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GIBBS STATES AND CORRELATION

Chapter 1. INTRODUCTION

During the last centuries, physics has been the most inspiring

nonmathematical field for mathematics. One of the recent fields of

interest of mathematicians in physics is statistical mechanics. The

theory of random fields is a subject which arose from this, starting

with the description of the complicated subject of ferromagnetism.

It is a known fact from quantum mechanics that every electron

possesses an angular momentum, called spin, and associated with it a

magnetic moment or magnetic spin. Furthermore additional magnetic

moments occur, resulting from the rotation of electrons around protons.

By this, an atom can be thought of as a little magnet, called an

elementary magnet, and thus matter can be viewed as a collection of

elementary magnets. These elementary magnets influence each other by

speeding neighboring elements up or down in their rotation, changing

their spins. This so called interaction results in most cases in a

zero overall magnetic moment. Ferromagnetic matter has the property

that the elementary magnets tend to line up, i.e. tend to have the

same spin direction over certain local domains.

An interesting phenomenon occurs at a matter dependent tempera-

ture, called critical temperature. Above this temperature, the ten-

dency to line up vanishes. Another form of realizing this critical

temperature is obtained by the fact that ferromagnets may have a non

zero magnetic moment, even though the external field is zero, which

is not observed above the critical temperature. Much of the aim of
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modern mathematical statistical physics is to give precise theoretical

descriptions of this phenomena. The physicist E. Ising presented in

the early twenties of this century a model to describe this subject on

a lattice, the set of sites of the lattice representing elementary

magnets, by associating to each spin configuration on the lattice a

certain probability of occurrence, governed by interaction, if the sys-

tem is in equilibrium. The corresponding probability measures on the

set of all spin configurations are called Gibbs states. General

properties of Gibbs states are known for countable sets of sites with-

out any structure. The predominant aim of investigating Gibbs states

is to detect the different possibilities of magnetization for zero

external field below some critical temperature, referred to as phase

transition.

In this connection correlations between sets of spin variables

play a basic role. So the major focus of this thesis is on correla-

tion formulae for Gibbs states. The results are based on a method of

Waymire, which is previously known to work for one-dimensional Ising

models (see [18]). The method is explored for higher dimensional

lattics configurations here.



Chapter 2. GIBBS STATES ON COUNTABLE SETS
(THE FINITE VOLUME CASE)

Let S be a finite set of sites and let W be the set 11,-11,

representing the spin directions up and down. With the discrete

topology and the usual multiplication W becomes a compact topologi-

cal abelian group.

Let

2 = WS = {1,-1}
s
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be the finite topological product. 2 is called configuration space,

the elements of 2 are called configurations. In the case of finite

S all topological and measure theoretical considerations are entirely

trivial. However these notions are essential to the case when S is

infinite and so they will be brought out here for pedagogical reasons.

In this case 2 is trivially compact since the product topology

on 2 is the discrete topology, generated by singleton sets of the

form

{c
n
:nE S}

where each c
n

E ,-1}.

Defining a group operation on 2 by coordinatewise multiplication, 2

becomes also a compact abelian topological group.

The topology on 2 can also be characterized to be the smallest

topology on SZ for which all coordinate projections are continuous,

i.e. if (X
n
), n E S denotes the family of coordinatewise projections

on 2, Xn E C(S1) V n.



Since

R:o R, X := (xn), n E S
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is the identity map, X is used to denote a specific configuration in

0 or a random variable as seen later.

The sites represent elementary magnets, which influence other

sites, called interaction. A configuration then is a certain state of

a ferromagnetic matter specifying the spin direction for every ele-

mentary magnet.

From now on only pairwise interaction will be considered. The

interaction energy, I, between two sites n,m may then be repre-

sented by

I
n,m

(TO = J
n,m

X
n

X :in

where J
n,m is the coupling constant between these sites.

The influence of a homogeneous external field H on the individual

sites can be represented by

n E S.HXn ,

The total energy of a configuration in Q becomes then

U(R) = -(3 X J
n,m n m

XX - SH X
n,mES nES

where the first sum counts each pair only once, B = 1/kT,

k = Boltzman's constant, T = absolute temperature.

(2.1)
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Let A be the Borel-algebra of Q. Since Q is finite A coincides

with the power set of Q.

Definition 2-1: A finite dimensional Gibbs state is a probability

measure on R of the form

where

P(X) = Z-1 expl-U(R)1

Z = _I exp{-U(R)}
Xe0

(2.2)

is called partition function and normalizes (2.2) to a probability

measure.

Since 2 is finite, P is specified in terms of its density with

respect to counting measure, i.e.

dP -

dm
(X) = Z

-1
exp{-U(R)}

-

where
AL

is the Radon-Nikodym derivative.
dm

(2.2) factors into

P(R) = Z-1 exp{-S JXXl exp{-31an}
n,mES ' nES

= Z
-1

exp{-SI(R)) 11 exp{ -SHX
n

}

neS
(2.3)

where 1(R) = I
n

m(X) represents the total interaction potential.
,m -

n,mES



Let a probability measure u on Q be defined by its projected

measures:

p
n

:= Xnp.

n
is the probability measure on W with

p({-1}) =
exp expf-SH1
2 cosh SH ' Iln({1/1 2 cosh BH

p is then the product measure of the p
n
is, n E S.

(2.3) then becomes

where

P(R) = Z-1 expt-SI(501 II fpn(Xn)2 cosh 3111

nES

-
= Z

-1
exp{-SI(X)}p(X)2

ISI
(cosh (31.1)

IS1

=
o

1
eXP{-13I(5) 400

Z-1 = Z-12ISI(cosh SH)IS1

Note: P << p << m, where m is the counting measure on Q and

-d7
dP

(X) = Zo
1
expf-SI(R)1

dp

dm -
(X) = p(R)

Substituting this into (2.4) yields

P(X)

dP

dm dP

(R)

dm
dp (5)

- p

By (2.2) and (2.4) follows

6

(2.4)

(2.5)



Zo

11(R) = .exp{-BH
n

}

nES

and thus

ZdP dP -
Z

dm
= Tp- (X) exp{-6H 1 X

n
}

nES

which is equivalent to (2.5).

Summing now (2.4) over all R E S2 yields:

< = >

1 P(X) = 1 - Zo
1

_1 expl-BI(R)111(R)

REP XEQ

Z
0 -

= exp{-6I(R)}11(R) = E exp{-6I(50}

XES2

By (2.6) Z0, as a function of B, can be interpreted as the

moment generating function of the total interaction energy I.

2-1. The Use of the Partition Function

7

(2.6)

In (2.6) the partition function was probabilistically interpreted

in terms of the total interaction energy. On the other hand the par-

tition function is useful to express magnetization and susceptibility,

indicating it to be more than just a normalization constant. In par-

ticular Z(B,(Jnm),H) is a physically meaningful quantity.

The magnetization of a configuration X E Q is defined by

M
S '

(B H) := X
n
= {it of lts} - {it of -1's}

nES
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From (2.2), noting that Z is analytic as a function of 8 and H:

or

-5171 In Z(8,H) = Z-1 _X exp{ -a J X X -8H X
n

}n,m n m
XES2 nES

_1 (- y a )Z-1 exp{-8 J XXm -8H X
XES2

n,m n
XES2 nES n n,mES nES

n

= _1 y x
n -
P(R)

XES2 n6S

= -8E( Xn) = -BEMs
nES

EM
S
(8

'

H) = -
1

DH
In Z(8,H)

8
(2.7)

where - 18 In Z(8,H) is called the free energy and Ms(8,H) is con-

sidered as a random variable.

Magnetic susceptibility xs(8,H) is defined as the rate of change

of the expected magnetization resulting from an external field H

By (2.7):

xs(s,H) = H EMs(8,H)

1 2
x
s
(8,H) = In Z(8,H)..

(3

all
2

Also from (2.2):

(2.8)

8
in Z = Z

-1
exp{-8I(R)-8HM }

XES2

= _X {I(R-1.-HM} F(R)

XES2

= - EI(X) - HEMS (2.9)



where now also I(R) is considered as a random variable.

2-2. Spontaneous Magnetization and Boundary Specifications

It can be seen from (2.7) that EMs((3,H) is continuous in H.

For H= 0, EXn = 0, V n E S since P(R) = P(-)0. Therefore

EMs(13,0) = 0, again by (2.7). By continuity now follows:

lim EM
S '

H) = 0
H+0

9

(2.10)

It is a known experimental fact that for sufficiently low temperatures,

i.e. high S, spontaneous magnetization occurs for H = 0. Further-

more this spontaneous magnetization is known to obtain two distinct

values corresponding to limits H + 0
+
, H ± 0 , i.e.9 11+(3) , 11(3)

such that

lim EM,(f3,H) = 1.1

+
(13)

+
H+0

lim EMU, H) = (0
S '

H+0

By (2.10) spontaneous magnetization cannot be observed in the finite

dimensional model.

It seems to be natural then to extend the finite model by

assuming S c Zn for some n and letting ISI + ... in the sense of

van Hove (see [7] p. 12). This can be achieved in several ways by

specifying the boundary of S such that in the limit spontaneous

magnetization occurs. In this case phase transition is said to occur.

Now let S be a finite cube in Zn. The two major cases to specify
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the boundary, i.e. the sites at the edge of the cube, are

(a) Fixed Boundary: All sites outside of S are fixed to a

certain spin direction.

(b) Free Boundary: The boundary sites are treated as any other

site.

2-3. The Roles of the LLN and the CLT

(a) Assume the case of infinite temperature, i.e. B = 0. From

(2.2) follows for specified R E

P(30
1

(-2 ) = -2-- A
nES

and therefore P is the product measure of Bernoulli dis-

tributions B(-i) on Xn(Q) = W. Since P represents the

joint distribution of the (Xn)'s, viewed as random vari-

ables, the family of projections is an i.i.d. family of

random variables. In this case EX
n
= 0, Var X

n
= 1.

Both the LLN and the CLT apply:

LLN: lim x = 0
Isl.. I nES n IS1±Pf S

with probability 1, where (Si -9- 0. again in the sense

of van Hove.

This means that the average overall magnetization of the

model is 0.
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CLT: lim [MS -- Normal (0,1)

in distribution, i.e. Ms is for large IS', after

scaling, approximately normal distributed.

Empirical observations are quoted below to show that the effective

absence of interaction at infinite temperature makes these results

inapplicable at low temperatures.

(b) Assume now E > 0, H = 0 and S to be a cube in Zn.

Fixing the boundary to 1 and letting 'SI -> co yields a

n
probability measure P

+ on Wz
and a probability measure

P for -1 boundary. In the case of n = 2, i.e. S Z
2

,

it comes out that for a specific Sc, for 0 < S < E
c

, P
+

and P coincide, for E > Ec they are different, reflect-

ing experimental results. Therefore it is expected that the

LLN and the CLT fail at low temperatures, moreover the dis-

tribution of the fluctuations of Ms(E,H) in the limit

should be a linear combination of bell shaped distributions

about u+,

(c) Assume now H 0 0. Again by experimental results one expects

that for the LLN

where

lim M,(E,H) = p(S,H)
IS14.co

lim p(S,H) lim 11(3,H) if S >
c

114-0 11+0-

for a specified S and that the LLN holds for 0 < <
c
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Chapter 3. GIBBS STATES ON COUNTABLE SETS
(THE INFINITE VOLUME CASE)

In order to get a reasonable model to describe the physical

subject of ferromagnetism it is necessary to extend the theory to the

case of an infinite set of sites. For reasons discussed in (2) only

then phenomena like phase transition can be observed. However, as will

be seen, the properties of Gibbs states depend on the structure of the

underlying set of sites.

3-1. Introduction and General Notations

Let the set of sites S now be a countable infinite set and let

W = {1,-1} again be the compact abelian group under multiplication

and with discrete topology.

Define

2 := {1, -1 }S

as the set of all {1,-1} valued functions on S.

Let (X
n
), n E S again be the coordinate projections

X
n
:2 W

n
, W

n
=W V nES

X E 2 will then again be denoted as

= (X
n
), n S

2 may also be viewed as the power set of S, where each X E 2 is

associated with a subset A of S by
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X - A if A = {nES, Xn=-1}

Let B(S) be the set of finite subsets of S. Since 2 is a

product of topological spaces, a topology on 2 is defined by the

product topology, i.e. the smallest topology such that all X
n

are

continuous.

Then 2 has the following properties:

(i) 2 is compact, by Tychonoff.

(ii) 0 is metrizable: Since W is metrizable with the trivial

metric and countable products of metric spaces are metrizable,

2 is metrizable.

A metric on can be defined in the usual way:

d
n
(X
n
,Y
n

)

d(X,Y) :=
nES 2n

(3.1)

where X, E do the trivial metric on W and S is_ _

labelled (i.e. ordered and numbered). This metric induces

the product topology.

Note: Since 2 is compact and satisfies the second axiom of

countability it also follows by a lemma of Urysohn

that 0 is metrizable. This follows also by a

theorem of Bing-Nagata and Smirnow, who construct a

metric in their proof which comes out to be equivalent

to (3.1).

(iii) C = C(R) where C is the set of all real valued functions

depending on at most finitely many coordinates and C denotes
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closure in the sup-norm.

To see this let f E C. Then 3A E B(S) such that f

depends only on coordinates in A and hence f can be

viewed as a function on WA.

Note: The induced topology on WA is discrete since

lwAl <

If B is open in ]R, f-1(B) c WA and therefore open. So

C c C(c)

C now forms an algebra, containing the constants and

separating points (take e.g. coordinate projections). With

these properties it follows from the Stone-Weierstrass

theorem that C is dense in C(Q).

(iv) The finite dimensional cylinders form a basis for the product

topology on Q, where a finite dimensional cylinder [A,F]

is defined by

[A,F] := {REQ, X
n

nEA,X
n
=1, neF\A} c Q,

F E B(s), A c F

The set of finite intersections of the form

n X
n
1
(E
n

) for some F E B(S)
nEF

where each e
n

E {1,-1}, forms a basis for the product

topology. Let B be an element of this basis



then

B= n xn
1
(e
n

) for fixed (e
n
),nEFeB(S)

nEF

A := fnEF, en=-11

B = {RES-2, X
n
=E

n
, nEF]. = {REQ, X

n
=-1, nEA, X

n
=1, nEF\A}

= [A,F]

15

Now let A denote the Borel algebra on Q, i.e. the a-algebra

generated by open sets. Each Xn is A-measurable, so the site vari-

ables Xn, n E S may be regarded as random variables on (Q,A).

Definition 3-1: A probability measure on (0,A) is called a

random field on (2,A).

Example 3-1: S = Z, S2 = {1,-1}Z . A random field on Q is a

discrete time stochastic process with state space {1,-1}.

Remark 3-1: 0 is also a Polish space and a random field P is,

as the distribution of the coordinate projections, a projective family

of probability measures, i.e. X_ P = P
F

where F1 c F2 E B(S)
1

F
2 1'

and P
F.

is the distribution of the coordinate projections onto sites

in F., indexed by B(S). Therefore, by a theorem of Kolmogoroff

(see [1] p. 347), it is enough to specify (PF),F E B(S) to construct

P.

Example 3-2: Ferromagnet with infinite temperature;

(a) Without external field

P([A,F]) =
1)IFI

F E B(s)
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(b) With external field

P(Xn=1) =p v n E S, 0 <p< 1

P([A,F]) = p IF\AI (1-p) 1111

3-2. Definition of Gibbs States

For the finite dimensional case it was possible to define a Gibbs

state by its probability for every configuration, i.e. probability

mass function. This is not possible for the infinite volume case.

The number of configurations is the same as the number of binary codes

of numbers in [0,1]; every configuration represents a code. There-

fore Q has the same cardinality as the continuum. However it is

possible to derive properties of Gibbs states in the finite case such

that these properties are preserved by taking the thermodynamic limit,

i.e. letting S tend to a countable infinite set, in a sense to be

made precise. The following two different approaches define an

infinite volume Gibbs state in an equivalent way. The equivalence is

established in Theorem 3-1 below.

3-2.1. General Notations

A system of functions (I) := (OF:QF.4IR, FEB(S) where QF = WF.

is called an interaction potential on Q if:

(i) (1)(0) = 0

(ii) 011 = sup ' sup{14)
A(R)1:RE2A

} <- -
1ES A:1EA
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Two sites n,m E S are said to interact if 3F E B(S) such that

n,m E F and 4)F, O.

Definitions 3-2:

(a) 4) is said to have finite range if every site n E S inter-

acts only with finitely many m E S.

(b) (D is called H-invariant if it is invariant under a family H

of bijections on S.

(c) 4) is called a pair potential if 1)1, 0 <=> F = {n,m} or

F = {n }; n,m E S where 4){
n}

will usually result from an

external field. 4) is called a symmetric pair potential if

in addition: 4) is invariant under cp:S S,

(1)(n) = m, gm) = n, cp(k) = k, k # m,n.

From now on consider 4) to be a symmetric, invariant pair potential

with

F
(R) =

-JX
n
X
m if F = {n,m}

-HX
n

if F = {n}

0 otherwise,

where H is due to an external field.

Given a potential 4), an energy function is defined for each

F E B(S) by

0(X) = A(R).
F -

AnEW
(3.1)



3-2.2. Gibbs States in the Sense of Dobrushin

Consider a sequence of finite sets (S.), i EIN such that

CO

S
i +
c S

i+1
V i and S = u Si .

i=1 S
iLetforfixedi,F.1 cS

i
and P

i
be a Gibbs state on W .

exp I-8J 1 En cm -f3H
n

P.(X =e ,nES.) n,mES nES
1 n n 1

P.(X =e ,nES.\F.)
1 n n 1 explr-8J

n m
-13H /

n
E ,E n,mES, nES.
n M 1 1

n,mEF.
1

exp enem-f3H X en]
numEF. nEF .

1

1 exp 1-8J 1 c
n
E
m
-1311 1 e

n
I

E
n
,E
m

numEF. nEF.
1 1

n,mEFi

(I) -

PF .(3S),
1

where X = (X
n
), n E S. (6

n
), n E S. .

1 1

Note that for every i

(I)

n
P
F

(X) = P.(X =c
n

, nEF.1 X =6
m i

, mES\F),
i im

1

18

(3.2)

that is P
F

(X) is the conditional probability that (en), n E F.,
. -
i1

is the configuration inside, given the configuration outside is (cm),

M E S.\F..
1 1

Dobrushin used this specification to characterize Gibbs states on

infinite S by letting Si + S in the following sense.



Let A
F

be the Borel algebra on Q
F'

F c S.

Definition 3-3: A random field on 2 is a Gibbs state with

respect to (I) iff V F E B(S) the conditional distribution

P(-IA
Fc

)(R) is given by (3.2) where F = F..

Note: P(- IA ) is a probability mass function with
F
c

dP(IA )

Fc (I)

dm
P
F '

Since

m counting measure.

ffdP = fffdP(-IA c)dPcVfEC(2),
F F

Definition 3-3 is equivalent to the condition

ffdP = fffp dmdP
c
V f E C(c),

F

for random fields to be a Gibbs state.

In order to see that this definition is reasonable, consider the

process (Y.), i E IN defined by

Y. := P(XFEB, BEAF.IAs.\F.)

(I)

(X) ,= P
F

if B is a singleton.

Note that S. \F. S\F if S. -4- S, F.1 1 1 1

A. := c(X
m
, mESAF.)

1 1

19

(3.3)
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(Ai), i E IN is an increasing sequence of c- algebras. Then

Yi = P(XF EBIAi) E Ai ,

E(YilAi_i) = E(P(XF EBIAi)lAi_i)
i

= P(X,

since Ai
1

(Yi) is a martingale,

Y. > 0 V i and hence by a martingale limit theorem
1

Y1. 4- Y
0=
[P] V B E A

F.
1

(I)

([P] means with probability 1) where Yco EAco =A
F
c'

Yc0 = p
F

(see

[1], p. 332).

cl)

Remark 3-2: (p
F

)
'

F E B(S) is called local specification.

3-2.3. Gibbs States in the Sense of Lanford, Ruelle

Consider the function

T
A
:n n,

T (50 =
A

A E B(S)

Xn n E S\A

-X
n

n E A

i.e T
A

changes spin direction inside of A. Let S be finite

again and A c F c S. Let CEA
S\F'

C= IREO, X
n
-=E

n'
nES\Fl.

Then



where

T
AP([0,F]nC) P([A,F)nC)
P([O,F]nC) P([0,F]nC)

= exp4[2$ 1 J + 2$ JX
n

+ 2$H1A1
nEA niF

mEF\A mEA

=: h
F
([A F]nC)

h
F
(R) := expl $ J+$ 1 JX

m
+$H1F1-$ JX

n
X
m
-$H

.
X
nn,mEF miF numEF nEF

nEF

Condition (3.4) is the same as

dT P
AdP(X) = h

F
o T

A
(TO for 51 6 [0,1]

21

(3.4)

(3.5)

Definition 3-4: A random field P is called a Gibbs state iff

it satisfies (3.5) VAcFcB(S).

Remark 3-3: (3.5) is equivalent to:

V f E C(S-2): f f o TA dP = f f(h
F
oT
A
)dP .

[A,F] [0,F]

Note: Z
F
(T) := 1 h

F
(R)

Xn,nEF

then h
F
(R)

(1),-

Z a) PF0i) V F E B(S).
F -

Theorem 3-1: The definitions 3-3 and 3-4 are equivalent.

(3.5')

(3.6)
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Proof: (3.3) => (3.5): Let F E B(S); since P « P,
Fc

3gEA such that

P c(B) fiBgdP
V B E A

F F
c

Let f(R) = 1
[A,F]

(R) for A c F; f E C => f E C(2)
-

(I)fl
[A,F]

dP = ffl
[A,F]

p dmdP
c

= f 1 [A,F]PF
Ap

c

h
F

h
F

fl[A,F]
F

dP
F
c fl[A,F] ZF gdP

ZF(TC)

=> g(X) = E [A,F] (3.7)

h
F
(X)

Note that h
F

is constant in (3.7)

f f o TA dP = ffl
[A,F]

(foT
A
)p F dmdP

Fc[A,F]

which is (3.5')

(foT )13F (1)dP=
[A,F] A

Fc

f.(pc'oT= fi
[0,F] F A

)dP
Fc

= fi
[0,F]

f(h
F
oT
A
)dP

(3.5) => (3.3): For f E C(0, Ef = ffdP = E(E(flA )),

Fc

F E B(S). If the conditional expectation can be written as the

integral with respect to a conditional probability, the only part to

cl)

show would be that p
F

is this conditional probability.

Since Q is a complete, separable metric space, there exists a

version of P(1A ) (see [2]).
Fc



Claim:

pc')

F
= P(-1,1 c)

F

To show:

4)

(1) p
F
(X) E A

c
F

(ii) P([A,F]nB) = f1B p
F
([A,F])dP, B E A

Fc

(i) follows from the construction of 4 in (3-2.2).

(ii) Pc(B) = 1 P([A,F]nB), BEA ,AcFEB(S)
F AcF F

c

i.e.

dP
Fc

= 1 T
A
P([0

'

F]nB) = 1 f 1
B
dT
A
P

AcF AcF [0,F]

= 1 f 1
B
(h

F
oT
A
)dP = I 1

B
(Z

F
oT
A
)dP

AcF [0,F] [0,F]

dP
ZF o TA on [0,F]

4,

i 1B1[A,F], F
OdP

F
c
= flB(pFoTA)10,FldP

' F
c

= I 1 (pp0 oTA)(ZFoTA)dP

[0,F] B r

= f 1,,,,(hF0TA)0,

[0,F]

= I 1BdP = P([A,F]nB)
[A,F]

23
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3-3. General Notions to the Structure of the Set of Gibbs States

For a locally compact, countable at infinity space E, let

K(E) = {f, f E C(0), Tf compact}

where T
f

= {fO0} and E is countable at infinity if there exists a

sequence of compact sets with E as its union.

2 is compact and therefore satisfies the conditions on E

above. Since T
f

is closed in Q, T
f

is compact V f E C(R) so

K(R) = C(0)

Denote now by M(0) the set of Borel measures on R. By the Riesz

representation theorem, there exists to every positive linear form I

on K(Q) exactly one Borel measure p such that

I(f) = Jfdp V f E K(0)

Note: Since Q is metrizable, the Baire algebra coincides with the

Borel algebra (see [1] p. 216).

Definition 3-4: A sequence (pn), n IN, pn E M(I) is said to

converge weakly to a measure p E M(R) if

lim ffdpn = Jfdp , V f E K(Q)
n40.

Note: Weak convergence means convergence of the sequence of numbers

ffdp
n

, this limit is unique. Then f4lim ffdp
n

is a positive

linear form on K(Q) and hence there exists an p E M(2)

such that
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lim ifdp
n

= ifdp

Lemma 3-1: Let p
n

E M(c) and p
n

-4- p weakly, p E M(2). Then

(PA)n -+ PA
weakly VACS

Proof: XA: S2 Q
A'

X
A

E C(0) V A

ifdX
A
p
n
= ff o X

A
dp

n
4- ff o X

A
dp = ifdX

a
p

V f E C(0) since f o XA E C(2).

Let G(4)) be the set of Gibbs states on 0 with the same local

specification for a given potential (1).

Note: G(0) c M(c)

3-3.1. The Set of Gibbs States

In 3-2.2 the Gibbs states were characterized by their local

specifications, namely a family of conditional probabilities indexed

by B(S). However, it is not always true that two Gibbs states with

the same local specification are the same. This phenomenon represents

a point of central interest to the theory.

Definition 3-5: Phase transition is said to occur if
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In the following, general properties of G(cD) are established leading

to distinguishing properties of certain Gibbs states in G(0) in case

of phase transition.

Proposition 3-1: If for a pair potential 0

1 J < co VFEB(S)
numEF

n,m

then G(0) is weakly compact.

Proof: C(2) is a Banach space and therefore the unit ball in

C *(c) is weakly compact. G(4)) is contained in the unit ball of

C*(Q) V 0 since M(Q) c C*(Q) by the Riesz representation. There-

fore G(0) is weakly compact if it is weakly closed and G(4) is

weakly closed if every limit of a weakly converging sequence in G(0)

is also in G(0), i.e. if for pn E GOO

Since

lim ffdp = ffdp V f E C(2)
n4.00

=> p E G(0)

rr 0
p
n

E G(0): ffdp
n

= jjfp
F
dmd(p )

Fc n

cl) r (I)

If p
F

is continuous on S2 jfp
F
dm is continuous on 0

c
Set

F F

SO

r (I)

F = jfp
F
dm

fFd(p
Fc

)
n

-)- fFdT1



where p is a random field on
Fc

and

j jj
rt (1)

jFdp= fp
F
dmdp = fdp

By Lemma 3-1 (p

Fc
) p

Fc

so p = and
P
F
c

ffdp = fffp%mdp
Fc

p
F

is continuous on S2 c:

F

where

i.e. p E G(4))

pF E CO c) <=>
F
E CO c)

Y; (R) = exp -8J X
n
X
m-811

X
nF -

numEF nEF
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To show: For X E Q, E > 0 38(c) > 0 such that for Y E S2 with

d(R,V) < (5, IT-100-11()1 < E where d is the metric defined in (3.1).

Given X E Q, c> 0 choose y> 0 such that

T1F(R)(1-e-2Y) < E

By the assumption

and FIF(R)(e2-1) < E

J
n,m

< VFEB(S)
numEF

there exists a finite set M E B(S), M D F with

Jn m < Y
nEF '

miM

(3.8)



Choose now 7E2 such that Ym = Xm V m E M so

d(X,Y)
1

C,7) < X 6(E)

mitl 2m

By (3.8) and the definition of i;F:

SO

and

hence

T/F(R)e-2Y < TIF(-1h < i'/F(R)e2Y

hF(Y) -
F
(R) < (e2Y-1)TF (R) < E

i;
F
(7) -

F
(R) > (e-4-1)TF (T) > -E

111 (V) -11(R) <

and thus p
F

is continuous on S2

then

and

Proposition 3-2: G(0) is convex.

Proof: Let

P = aP1 + (1-a)P2 , 0 < a < 1, P1,P2 E G(4))

P = aP + (1-a)P , F e 8( S)
Fc 1Fc 2Fc

PHA
Fc

) = aP1(1A c) + (1-a)P2(-1,4 c)

aPF (1-a)PF

PF

i.e. P E G(0)

28
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SZ by

Proposition 3-3: G(0 is non empty.

Proof: Let F E B(S) with F fi S. Define random fields on

(i)P([A,F]riB) = pF([A,F]nBnC) where AcFcF,BEAF

B singleton and C = {REP, Xn=-1 V nEF}

(ii) P
y
(X
n
=-1) = 1 V n E Fc

Note: P (C) = 1.

Since the set of random fields on Q is contained in the unit ball of

C*(S2), which is weakly compact, every sequence of random fields has

a weakly converging subsequence. Assume therefore P converges

weakly to some random field P.

SO

Or

P ([A,F]riB) = f p ([A,F]lA )dP
B F

c

= f P ([A,F]lA )dP
BnC F

C y

P ([A,F]lA )({Bno)
Fc

= y[A,F] IA, \,)({B})

P ([A,F]) = P ([A,F]IAF \F)

p.F ([A
'

F]nC) = P
y
([A

'

F]IA
F XF

)

(I)In the limit y co: pF([A,F1)(R) = P([A,F11,4 c)(R), X E SZ

Fc
Therefore

P E G(4))
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An extremal point of G(0) is an extremal set in G(o) consisting

of only one point, whereas an extremal set E c G(D) is such that

every convex combination of two elements is in E only if both

points are in E. These points play an important role in the theory

of Gibbs states.

Definition 3-6: An extremal point of G() is called a pure

state or pure phase, the set of pure states in G(D) is denoted by

ext GO).

Remark 3-4: Phase transition is equivalent to

lext G(01 > 1

Theorem 3-2: [Krein Millman] (see [20] for proof). Let E be

a locally convex topological vector space, satisfying the Hausdorff

axiom. Let K be a non void, convex, compact subset. Then K has

at least one extremal point and K is the closure of the convex hull

of the set of all extreme points.

Corollary 3-1: G(D) has at least one pure phase and every

Gibbs state which represents a non pure phase can be obtained as a

limit of convex combinations of pure phases.

Proof: C *(c) is locally convex, i.e. any of its open sets con-

taining 0, contains a convex, balanced and absorbing open set, and

is Hausdorff: The local convexity is easily seen and the separation

axiom follows from the fact that the weak topology is Hausdorff,

which can be proved by using the Hahn Banach theorem. GO) is a
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non void, convex, compact subset of C*(52) and the result follows by

Theorem 3-2.

Definition 3-7: A subset of a topological space B is called a

G
u
-set if it is the intersection of a sequence of open sets.

Definition 3-8: Let K be convex, compact and p be a prob-

ability measure on the Borel algebra of K. A point x0 E K is

called barycenter of p if for each f E C(K) of the form

f(x) = Q(x) + a, 2, E K*, a EIR

f(x0) = ff(x)u(dx) (3.9)

The following theorem provides an extension of Corollary 3-1.

Theorem 3-3: [Choquet] (see [8] for proof). Let E be a locally

convex topological vector space, which is Hausdorff and K a non

void, compact, convex set such that the induced topology on K is

metrizable. Then ext K is a Go -set and hence belongs to the Borel

algebra of K.

For every x e K 3 at least one probability measure

that p(ext K) = 1 and x is the barycenter of p.

A further result we need is

p on K such

Lemma 3-2: If E is a compact metrizable space then M(E) is

metrizable in the weak topology (for a proof see [17], p. 148).

In Corollary 3-1 it was proved that every non pure Gibbs state is the

limit of convex combinations of pure phases. The limit of convex

combinations is an integral with respect to some probability measure.



Corollary 3-2: For every Gibbs state p E G(0) 3 at least

one probability measure P on G(0) with its Borel algebra, such

that

p(A) = fy(A)dP

where y E ext (4))

VAE A
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Proof: Q is compact and metrizable. By Lemma 3-2 M(Q) is

metrizable and so is the induced topology on G(0) c M(0). GO) is

a non void, convex and compact subset of a locally convex topological

vector space which is Hausdorff, namely C*(0). Therefore by Theorem

3-3 3 to V E G(0) at least one such P on G(0) such that

P(ext G(0)) = 1 and p is the barycenter of P:

f(u) = ff(Y)P(dY) Y E G(D)

where f is as in Theorem 3-3. Set f
A
(p) = p(A) for A E A then

p(A) = fy(A)P(dy) = f y(A)P(dy)
ext GO)

From the above follows that G(0) is completely determined if the

pure phases are known. In the following various properties and

characterizations of pure phases are presented.

Definition 3-9: A := n A is called tail
00

Fa(S) F
c

probability measure P on S2 is said to have trivial

P(E) = 0 or 1 VEEA..

a-algebra. A

tail if
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Note: If g is measurable with respect to A., g is constant since

if g E A
Fc
,g is constant on QF; for gEA,g is con-

stant on QF V F E B(S).

Proposition 3-4: P E G(4)) is extreme <=> P has trivial tail.

Proof: (a) Assume P is extreme and E E A such that

0 < P(E) < 1. For

A E A: P(A) = P(AIE)P(E) + P(Ale)P(e)

The measure P(.. 1E) on Q is in G(0. To see this note that

since

P(.IEIA c) = PHA c) = pF for any F E B(S)

E E A
Fc

V F E B(S)

One also has P(1e) is in G(4)) by the same reason. Set

a = P(E), then P(A) = aP1(A) + (1-a)P2(A) where P1 = P(IE),

P
2

= P(. 1e), contradicting that P is extreme.

(b) Assume P has trivial tail, P E G(4) and

P = aP1 + (1-a)P2, 0 < a < 1, P1,P2 E G(0, Pi << P and therefore 3

g E A with

dP
1

dP g
g> 0

E g = fgdP = P
1

= 1

Let now A E AF, B E A
Fc



P
1
(AnB) = f1A 1

B
dP

1
= ffl

A
1
B
dP

1
(.IA

c
)dP

1
F

= f1BP1(AIA c)dP1 = flBlyAlA c)gdP
F F

On the other hand

P1(AnB) = fl
A
1
B
gdP = f1B E(1

A
glA

c
)dP

F

but since P P
2
E G))

So

P1(AIA c) = P(AIA c) = E(lAIA c)
F F F

f1B E(1
A
glA

c
)dP = .11

B
gE(1

A
IA

c
)dP

F F

=> g E A
Pc

=> g E Am

V F E B(S)

=> g constant [P]

34

Since E
P
g = 1 => g = 1 [P] and hence P = P

1
[P] i.e. P is extreme.

Proposition 3-5: If P1,P2 E ext G(4)) and P
1

I

A
= P 21A then

P1 = P
2

.

n
: :=Proof: Label all F e B(S). Define C = C , C n A

1
Flc

n
k=1 F

kNote that

SO

A nA =A
c

2
F
1

Fc Fc1 nFc
2

C = A
n n

c
n F

k
1



C
n is a decreasing sequence of a-algebras with C

n
-I, Ate. Therefore

P(1Cn) P(1A.)[P] V P E G(1))

Since P1,P2 E G(0 P
1 n

) = P
2
(IC

n
) and since they are extreme

1
(IC

n
) i P

1
(.1,4 ) = const. = c

1
[P
1

]

P
2
(IC

n
) P

2
(IA ) = const. = c

2
[P

2
]

If cl 0 c2 let Al be the set of convergence to cl, then

P1(A1) = 1, P2(A1) = 0 and therefore, by the assumption, cl = c2.

For B E A:

Pi(B).= Pi(BIA.) = P2(BIA.) = P2(B)

Proposition 3-6: If P
1

0 P2, P1,P2 E ext G(1)) then P
1

P2,

i.e. min(P1,P2) = 0.

Proof: By Proposition 3-5 P1 P2 on Ate, but both are tail

trivial, i.e. Pi(A) = 0 or 1 for A E A., i = 1,2. 3 A E A.

s. th.

P
1
(A) = 0, P

2
(A) = 1

35

If B E A with P
2
(B) > 0 => B c A[P

2
] since if B n Ac 0 0

P
2
(BnAc) = 0. Also if C E A with P

1
(C) > 0 => C c Ac [P

1
] => P

1
1 P2*

By Proposition 3-4 it is now possible to obtain conditions for a Gibbs

state to be pure by conditions for tail triviality. The following

result characterizes pure Gibbs states by conditions for tail

triviality.



Theorem 3-4: (Lanford-Ruelle). Let P be a probability

measure on 2. Then P has trivial tail iff V A E A, 6 < 0

3 F E B(S) such that

IP(AnB) - P(A)P(B)! < VBEA
F
c

Proof: Assume (3.10) holds. Let E E A, i.e. E E A

V F E B(S). Set A= E to get

P(E)
2
= P(E) => P(E) = 0 or 1

Conversely define linear functionals on L
1
(n) by

SO

B
= flBfdP,

B
(1
A
) = P(AnB)

B E A

B
fl fifldP = 11 f I'L =>

B 1
E Lic(n) = L.(0

1

F
c

36

(3.10)

L
1
(2) is separable and complete and so Li(S2) has a sequentially

compact unit ball. 23 is contained in this unit ball V B E A. Con-

sider now F
n

E B(S), F
n

t S. Then 3 a subsequence such that

lim
B

(f) = ffgdP, f E L
1
(Q)

nk

g E L.(2), B c Fc
n
k nk

(3.11)

Since no R., Bf depends on coordinates inside of F
n

AgEL. sat-
n

isfying (3.11) and g E A. => g is constant. From (3.11) follows



that for E> 0 3 F
no

E B(S) such that

IkB (f) - ffgdP1 < E, f E L (SO
1

no

B
no

c F
c

no

Let f = 1
A'

A E A then (3.12) becomes

If1A1B dP g PAH' < E
n
0

For A = Q follows that g = lim P(B n). Therefore

< = >

Il1A 1
B

dP - fl
B

dP fl
A
dPI < E, for some n

1
n
1

n
1

1P(AnB
ril

) - P(A)P(B
nu

)1 < E

where B
n

arbitrary in F
c

.

1
n
1

Remark 3-5: The following are equivalent to Theorem 3-4.

(i) Given any f E L1(S2) there exists F E B(S) such that

IffgdP - ffdPfgdP I < II g L

whenever g E L.(0 c) .
F

37

(3.12)

(3.13)



(ii) For each f E C(Q) there exists F E B(S) such that

IffgdP - ffdPfgdP1 f_ II g L

whenever g E A ,gEC(Q) (see [19]).
Fc

38

(3.14)
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Chapter 4. MARKOV RANDOM FIELDS AND NEAREST
NEIGHBORHOOD GIBBS STATES

Up to now no special structure on the set of sites S was used.

Let S now have a graph structure, i.e. S is the set of vertices of

some graph, where a graph (r,E) is a set of sites r and a set of

edges E such that:

(i) every edge connects two sites

(ii) two sites are connected by at most one edge

(iii) there are no edges connecting a site with itself (i.e. no

loops).

Two sites are called neighbors if there exists an edge connecting

them. For A E S the boundary of A is defined by

DA := {nS \A, 3 mEA, n and m are neighbors}

i.e. BA is the set of neighbors of A outside of A.

A set F E B(S) will be called connected if for n,m E F there

exists a sequence of sites n0 = n, ni,n2...nk = m in F such that

n.1 isaneighborofni44.Asequenceofsites(nTh
11

where n. is

a neighbor of ni+1 is called a path.

A potential (I) is defined as in Chapter 3 and again only

symmetric, invariant pair potentials are considered where

(D({Xn,Xm}) = cD{ri,m}(R)

= -J
n,m n

X
m

,

J = J = J
n,m m,n

RE P,

and invariant now means invariant under graph-isomorphisms.
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Definition 4-1: A pair potential is said to have the nearest

neighborhood property if Jnm = 0, whenever n and m are not

neighbors.

As before Gibbs states are characterized by their local specifications,

i.e. their conditional probabilities.

Definition 4-2: A random field on Q is a Markov random field

(MRF) if

(i) P([A,F]lA c) > 0 VFEB(S),AcF

(ii) P([A,F]IA ) = (P[A,F]1Xk, kEDF) V F E B(S) [Markov
Fc

property].

It is easy to see that every nearest neighborhood Gibbs state satisfies

(I)

(i) and (ii) since p
F

has exponential form and Jnm = 0 whenever

n E On the other hand for a given MRFp, it is possible to

define a potential (I) such that the Markov property of the conditional

distributions yields the nearest neighborhood property of the potential

and p E G(4)) (see [15]). Therefore one has the result:

Lemma 4-1: Every MRF on Q is a nearest neighborhood Gibbs

state and vice versa.

The conditional probabilities of a MRF, P, in Definition 4-2 are

completely determined by a given nearest neighborhood potential (I), if

P E G(0, through



P([A,F]lA ) = 1 I (I) (R4
Fc WnFi0

W

for A c F E B(S)

41

(4.1)

The conditional probabilities in (4.1) again are determined by

specifying them for connected F E B(S). Since arbitrary F E B(S)

can be decomposed into

F = 1 F.

i=1 1

where F. E B(S) connected and

[A,F] = n [A. Fi]
i=1

where A. = A n F.
1 1

These conditional probabilities of connected cylinder sets again are

determined by probabilities of the form

Since

a
(n)

:= P(X
n
=11k neighbors of n are -1), n E S

P([A,F]lA c) = P([A,F113(k, ItEF)

can be expressed in terms of a
(k n)

'

k = 0,1...1B{n}1. So G(cD)

denotes the set of MRF's such that probabilities of form (4.2)

satisfy

(n) exp{-(N-2k)(3.7-f3R}
a
k

=
2 cosh{(N-2k)SJ +13H} '

(4.2)

(4.3)
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if N is the number of neighbors of n E S and 4 a nearest

neighborhood (n.n.) potential.

A set of graphs for which calculations turn out to be fairly

simple is the set of trees or Bethe Lattices.

if

Definition 4-2: A graph S is called a tree or a Bethe lattice

(i) S is connected

(ii) S contains no circuits

(iii) Every site has the same number of neighbors.

T
N

denotes the tree with N branches, i.e. each site n E TN has

N+1 neighbors. From the definition follows that to n,m E T
N

there

exists a unique path from n to m.

Note: For N = 1, TN = Z a Gibbs state on T1 is referred to as

the one dimensional Ising model.

For a connected finite subset of TN th ere exists a simple but

useful labeling: Let M E B(TN) be connected, M = (1,...,k) where

each i has exactly one neighbor j with i > j for 1 < i < k;

(i) := j.

Note: This labeling is not unique.

T

iA state p on 0 = {1,-1} is a nearest neighborhood Gibbs

state if the conditional probabilities of the form (4.2) satisfy (4.3)

and is then called Ising model on the tree.



For the repulsive case J < 0 it is possible to define a MRF

such that for fixed site n transitions from sites an even number

of branches away from n to sites an odd number of branches away

from n have different probability than from sites an odd number

away to sites an even number away. If this occurs the MRF is said

to exhibit symmetry breaking.

43
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Chapter 5. INFINITELY DIVISIBLE GIBBS STATES

Infinitely divisible distributions have the property that their

characteristic function, i.e. Fourier-Stieltjes transform admits an

exponential representation. The characteristic function of a Gibbs

state is called a correlation function and is of significant importance

in statistical mechanics, since correlation can be measured experi-

mentally and represents therefore also a measure for the reference to

the physical reality of the mathematical model.

The mathematical operation of convolving Gibbs states may be

interpreted as to randomly change the spins.

5-1. General Notations

Let G be a locally compact abelian (LCA) group and M1(G) the

set of finite, normalized Borel measures. The mapping

(1):Gn G

defined by

(I)(glgn) / gi
i=1

gi E G

is continuous and therefore measurable. Hence (!) induces a mapping

T:ml(G)n
M1(G)

T(Ple (D/-111)(B) (11) Pn(

-1(
B))

for any Borel set B.
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Definition 5-1: u
1

* * 1.1

n
:= cp(p le ...

n
) is called the

convolution of
1,

...,p
n

Definition 5-2: A group homomorphism a:G C is called an

algebraic character if la(x)I = 1 V x G. The group of continuous

characters of G is called the dual group G of G.

E I countable, are LCA groups then

G. = G.
1 1

i.e. a continuous character on the direct product is a product of

characters of each group.

Remark 5-2: The function

p(y) := fy(x)p(dx) y E G

on G is called Fourier Stieltjes transform of p. Note that u is

a complex valued function.

Properties of p:

(i) p is uniformly continuous on G

(ii) P*Y = P Y V 1.1,y e M1(G) since

fTdp*y = ff y(xy)dp x y = ffT(x)T(y)dpdy = fTdpFdy

(iii) The mapping p p is one to one.

Definition 5-3: A measure p on G with p(Ax) = p(A) for

every Borel set A and every x E G is called Haar measure on G.
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Note: On every compact topological group exists a unique Haar measure

(see [5]), e.g. on a the Lebesgue-measure is the unique Haar

measure.

With this it is now possible to define the Fourier transform also for

functions:

Definition 5-4: For f E L1(G), L1 with respect to Haar

measure A on G,

f(y) := fT(x)f(x)X(dx), y E G

is called the Fourier transform of f.

A useful fact for estimations is the Riemann Lebesgue Lemma: f van-

ishes at infinity V f E L1(G), i.e. f E K(G), where K(G) is

the set of functions f with compact Tf.

With this preparation, infinite divisibility can now be defined.

Definition 5-5: A measure p E Mi(G) is called infinitely

divisible if for each n there exists pn E M1 (G) such that

P = Pn * * pn (n fold)

or equivalently by property (ii)

n
1.1 = (1-111)



Example 5-1: Define exp p as

2

exp p = exp {-p(G)}{1 + p + + + + ...}
2! n!

for p E M1(G). Then

/\
dun

(exp p)(y) = fTd expo - 5 exp{-p(G)} n!

n=0

= 5 exp{ -p(G)1 (dOn

n=0
n!
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00 (fTdp)n
exp{-p(C)}

n.
n=0

= exp{-p(G)}exp{ iTdp}

= exp{fT-ldp}. (5.1)

If p
1,

p
2

E M
1
(G), exp(p

1
+p

2
) = exp p

1
* exp p

2
and from (5.1) fol-

lows that exp p is infinitely divisible.

Distributions as constructed in Example 5-1 are called elementary

infinitely divisible distributions and every infinitely divisible dis-

tribution contains an elementary distribution as a factor (with

respect to convolution). The advantage of infinitely divisible dis-

tributions is, that its characteristic function admits a canonical

representation as stated below in a special case.

Theorem 5-1: On a totally disconnected LCA group G an infi-

nitely divisible distribution has the form

= Y(x0) A(Y) exP{f(Y-1)dF} (5.2)
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where x
0

E G, A the Haar measure on a compact subgroup of G, F

a a-finite measure, finite outside every neighborhood of the identity

and

f(1-Rey)dF < 00, V y E G.

F is called the Levy-Khintchin measure of p. (See [12] for a proof

and more general cases.)

5-2. The Case of the Ising Model

If a Gibbs state would be infinitely divisible, its correlation

function would have the form (5.2). For a countable set of sites S,

= w. = w. = {1,-1}
s

is the direct product of the multiplicative groups Wi. So by Remark

5-1

SZ = W.

iES
1

since W. = { ,-1} V i E S is a LCA group.

(a)CharactersonW.:Since the characters are linear

y(-1) = y(1)y(-1) and hence y(1) = 1 V characters. From

y(-1) -y(-1) = y(1) = 1 follows that y(-1) has to be real and

A

y(-1)=10r-1.111ereforeW.=fyl'
y21 V i E S, where

y
1
(1) = 1 y

1
(-1) = 1

y
2
(1) = 1 y

2
(-1) = -1



and both characters are continuous.

(b) Characters on 0: To each character y on 2 exist

characters Y
E

on W., C. E {1,2}, i E S such that

Y (R) = fl y (Xi) = YE (Xi)
iES 6i iES

c.=2
1
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(5.3)

In order to have y be well defined, the last product in (5.3) has to

be finite, i.e.

Y(X) = II 12(Xi), A E B(S). (5.4)
iEA

This means that each character on S2 can be associated with some set

in B(S). (5.4) is equivalent to

where

Y(X) = YA(50 = II Y2(Xi) = (-1)1AnXI
iEA

A = {iES, ci=21

x = {iES, xi=-11.

(5.5)

On the otherhand, define for given A E B(S)

YA(X) = (1)1AnX1

y
A

is continuous (y
A

E C), linear and has absolute value 1 and

so YA E S2. Therefore:
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Lemma 5-1: For the configuration space S2 over a countable set S

= B(S) .

y E 2 will be denoted by yp or D, D E B(S), D y. Note: The

group operaton on B(S) is symmetric difference.

(c) The Correlation Function: Let now P be a Gibbs state on

2. The Fourier-Stieltjes transform P of P is called correlation

function.

P(y
D

) = fy
D
dP = f(-1)I Dnx IdP = f II Xn dP = E II Xn , D E B(S)

P(yo) is called IDI-point correlation function.

Remark 5-3: A Gibbs state P is infinitely divisible if there

exists for each n a probability distribution P
n

, such that

P = (P
n

)
n

where P
n

need not be a Gibbs state.

The set fyi):11(yD)=EyDOO =: Bo for u a Gibbs state is an open sub-

group of B(S), if B(S) is viewed as a group under symmetric dif-

ference, since B
c

is closed. Let H be the annihilator of B
0

in

2, i.e.

H = 07E2, yo(R)=1, v yoEB01

= fRE2, yo(R)=1, F7 yDEB(S) with EyD00

then X in Theorem 5-1 can be taken to be the normalized Haar measure

on H. Note that H is a compact subgroup of Q. With these notations:

Corollary 5-1: H = {Ra, Xn=1 or Xn=-1 V nEs}

=
+'

} for 0-external field
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A is Bernoulli (
1
) measure on H and

2

1 if IDI even
A(D) =

0 if IDI odd D E B(S)

Proof: It is easily seen that EyD 0 if D = {n,m} for

n,m E S. The rest follows easily from this and the definition of I'

Lemma 5-2: For a Gibbs state P on Q with 0-external field

P(D) = EyD = 0 if IDI is odd

Proof: For a given configuration, II X

n
= yD = 1 iff IDnx1

D

is even and yD = -1 iff IDnx! is odd. 2D can be decomposed into

0
D

= 2
0

u 0 where

0 = {RE0
D'

y
D
(R)=1}

0 -

2 = 151E0
D'

y
D
(50=-11

1 -

0
o

and Q are homeomorphic, take for example f(R) = - R;

f(R) E => E Q and f = f-1. f(R) and X have the same dis-

tribution.tribution. Therefore

EyD = P(yD=1) - P(yD=-1)

= POO - P(R) = 0.

o
2
1

The Haar measure on Q is Bernoulli (
1
) measure Q. So the Fourier

transform of f E L
1
(2) becomes



f(D) = f(-1)
IDnxI fdQ=f1IXf(R)QdR .

D n
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(5.6)

From the Riemann-Lebesgue Lemma follows that for E > 0 3 F E B(S)

such that

I f(D)I <E V D C Fc, D E B(S)

5-3. Examples of Infinitely Divisible Gibbs States

(a) Infinite temperature model: For infinite temperature there

is no interaction among the particles so the model can be described by

A
=

n
if A = {n }, s.th. ISHI < 00

(1) (T)

0 otherwise

which means the only influence is due to an external field H. Since

no interaction occurs P(AIA
Fc

) = P(A), V A E AF, V F E B(S) and

therefore it follows from the Kolmogoroff construction that G)) is

a singleton V 4), i.e. V H.

Let F = {n}

Note that

exp SH
P(X

n
=-1) = 1-p =: q.

` n 2 cosh SH 13'

1
P 2- iff H < O.

Then for F e B(S)

P([A,F] = P(Xn=-1, nEA, Xn=1, nEF\A)

= P
IF\AI IAI



With this P can be obtained: Let D E B(S)

where

SO

D
P(D)

f(_1)10nX1dp =
1

I

1

f (-1)1DnXidP

i=0 U.

U. = {REQ, IDnx1=i}

P(D)
. 'DI

p) = (-1)1p(ui)
i=0 i=0

= (p-q)
IDI = (2p-1) IDI

1
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(5.7)

If P would be infinitely divisible, there would exist a P
n

for each

n with P = (P
n

)
n

. It is possible to construct infinite temperature

models satisfying this: Consider for each n the infinite tempera-

ture model with external field H
n

such that

and

Then

1 1+/77
13Hn = -f In

11

1-111/1-p'

exp (Kin

Pn 2 cosh 1311
n

Pn 2

l+ni2p
or (2pn-1)n = 2p-1

and thus P(D) = (Pn(D))n if Pn E G(%) for cDn H.

This shows:
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Lemma 5-3: The infinite temperature model is infinitely

divisible.

(b) One dimensional Ising model: This refers to the case when

S = Z. For this case it is known that G(4)) is a singleton V (1)

(see [6]). It turns out that in the case of 0-external field the

Gibbs state associated with a n.n. potential is infinitely divisible

and thus the correlation function has exponential form. Let now

P E G(cD) with

-J
n,m

XnXm if A = {n,m}, nED{m}
(I)

A
(R) =

0 otherwise

where J
n,m

= = J.
m,n

From (4) it is known that P is a MRF.

Lemma 5-4: A Markov chain (X
n
), n E Z is a MRF and vice

versa.

Proof: A MRF is trivially a Markov chain. So assume now

(X
n
), n E Z is a Markov chain. Assume further that

P(Xn,...,X
n+k

) > 0 V n,k

Then



P(X
n'
X
n+1'

,Xn+k)
P(XnlXn+1,...,Xn+k) =

P(X X )n+1" . .
' n+k

P(Xn+klxn'''''Xn+k -1)
P(Xn,...,Xn+k _1)

P(Xn+klXn+1"."Xn+k -1) P(Xn+1'''''Xn+k -1)

P(X
n+k

IX
n+k -1

) P(X ..
n'

.

'

X
n+k -1

)

P(X
n+k

IX
n+k -1

) P(X
n+1' '

X
n+k -1

)

so by induction

P(X
n
IXn+1"."Xn+k) P(x

Ix )

n n+1
V k
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P(X ,X .,X
n n-I n z

P(X IX X ...,X X ) -
n n-1' n+1' n-k' n+k P(Xn_1,...,Xn_kiXn+1,...,Xn+k)

So (X
n
), n E Z is a MRF.

where

since

P(Xn,Xn_1,...,X
n-k

IX
n+1

)

P(Xn,Xn+11Xn_1,...,Xn_k)

P(X
n+1

IX
n-1' '

X
n-k

)

= P(X
n
IX
n-1,

X
n+1

)

(
Remark 5-4: For A

k
n)

:= a(X X ... X X ) then
n-1' n+1' ' n-k' n+k

P(xn1A1((n)) P(xn1A(()n))[P]

(
A
0

n)
:= a(X

m
, mEZ\fnl)

A (n)
4, A

(n)

k 0



By (4) every Gibbs state is a Markov-chain and is completely deter-

mined by conditional probabilities of the form (4.2) where

and

p := P(X =1IX
n-1

=1) = exp(-aJ)
= P(X

n
7-11X

n-1
=-1)n 2 cosh oJ

= P(X
n
=1IX

n-1
=-1) = P(X

n
=-11X

n-1
=1) = 1-p

so the transition matrix of P becomes

M = (P
P
q)

The equilibrium distribution is r = (r
+
,r
-
) =

1 1
). Therefore:

exp(-aJ)
P(X =1,Xn-.=1) -n i 4 cosh aJ

Lemma 5-5: The convolution of two one dimensional Ising models

with prescribed potential is again an Ising model with potential of

that kind.

Proof: Let J J
2

be the coupling constants for the Gibbs

states and Markov chains P
1,

P
2

and let

P = P
1

* P
2

X will denote a configuration for the model P

Z = Tc. for P

1'
Y for P

2
and
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For all in the following occurring n,m E Z it will be assumed that

In -mi = 1. Let a
m ,8

m E { -1,1}

P(Z
n
=1iX

m
=a
m
,Y
m
=8m )

P(X
n
=a

n'
Y
n
=a

n
X
m
=a

re
Y
m=8m)

a
n
E(-1,1)

= / P(X
n
=a

n
X
m
=a
m
)P(Y

n
=a

n
Y
m
=8
m

)

a
n
E(-1,1)

exp 8Jlam exp 8J28m exp -8J/am exp -8J8
z m\

(
2 cosh 8J1 )(

2 cosh 8J2 ) + (2 cosh 8J
1

) (
2 cosh 8J

2
1

(exp fiJiam)(exp f3J213m) + exp(-8.71am) exp(-8J28m)

4 cosh 8J
1
cosh 8J

2

Now if a
m

= 8m => Z
m

= 1 and

P(Z
n
=11X

m
=a
m ,Y

m=8m ) = P(Z
n
=11Z

m
=1)

exp 8(J1+J2) + exp(-8(J1+J2))

4 cosh 8J
1

cosh 8J
2

(5.8)

If a
m

= -8
m

=> Z
m = -1 and

exp 8(J1-J2) + exp 8(J2-J1)
P(Z

n
=11Z

m
=-1) =

4 cosh 8J
1

cosh 8J
2

From (5.8), (5.9) follows that

P(Z
n
=1IX

m
,Y
m

)

is a function of X .Y = Z
m m m

(5.9)



The same calculation goes through for

P(Z
n
=-1IX ,Y )m m

where P(Z
n
=-1IZ

m
=1) has form (5.9), P(Z

n
=-1IZ

m
=-1) form (5.8).

To see that (Z
n
), n E Z is a Markov chain let

An := a{(Xk,Yk) k < n}

A
n

:= af(z ) k < n}

Since Zk = Xk .Yk is a continuous function on {- 1,1
}S,

(Zk) = (Xk)(Yk), (coordinatewise), is a continuous function and it

follows that

A
Z

c An

Let now A E a(Z
n
), (=> AEG(X

n,
Y
n
))

E(AIAn) = E(E(AIA
n
)IAZ)

= E(E(AIX Y )IA )
n-1' n-1 n

= E(AIZn_i)

Since E(AIX
n-1,

Y
n-1

) is a function of Z
n-1'

Therefore (Z
n
), n E Z is a Markov chain.

In order that P has a nearest neighborhood potential with

H = 0 there has to exist some J such that
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independent of A
n-1.



and

ex SJ
exp(S(J1+J2)) + exp(-S(J14-J2))

p

2 cosh SJ 4 cosh SJ
1

cosh SJ
2

exp(-SJ)
exp(S(J1 -J2)) + exp(S(J2-J1))

2 cosh 13J 4 cosh SJ
1

cosh SJ
2

Subtracting (5.11) from (5.10) yields

tanh SJ = (tanh SJ1) (tanh SJ2)

which has a solution for J.

Note: (i) J > 0
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(5.10)

(5.11)

(5.12)

(ii) Since tanh SJ < 1 it follows from (5.12) that

tanhSJ<tanhSJ.,i = 1,2 and so SJ < SJ., i = 1,2

which means convolution leads to higher temperature.

Corollary 5-2: A one dimensional Ising model with n.n. poten-

tial and zero external field is infinitely divisible if J > 0.

Since

Proof: For given n choose J
n

tanh ELT = (tanh SJ
n
)n

Itanh SJI < 1,

SJ
n

= arc tanh(nitanh SJ)

such that

exists and P = (P )n where P 4)E G(), (I) J
n n n n

The above results were first observed in [18].
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5-4. The Levy-Khintchin Representation of the
One Dimensional Model

Assume an Ising model as in Corollary 5-2; since it is infinitely

divisible its correlation admits the Levy-Khintchin representation

P(D) =
H
(D) expff[(-1)1 Dnx 1-1]dFl V D E B(S).

By Lemma 5-2 and Corollary 5-1 (if H is taken as there)

P(D) =
{exp{f[(-1) IDnX1_1]dF1 if IDI is even

0 if IDI is odd

In order to get the Levy-Khintchin measure, the correlation function

will be derived first. Various details left to the reader in [18]

are supplied here.

Lemma 5-6: If (X
n
), n E Z is a ±1 valued Markov-chain with

transition matrix

M = (13 q)
P

EX
n
X
m

= EX
n
X
m-1

EX
m-1

X
m

; n,m E Z (5.13)

Proof: It is easily checked that

E(X
k
IX
k-1

) = X
k-1

E(X
k X k-1

) (5.14)

then
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E(Xnxm) = E[XnE(XmIXm_1,...,xn)]

= E[XnE(Xmlxm_1)]

= E[XnXm_l_Xm_lE(XmIXm_1)]

= EX
n
X
m-1

EX
m-1

X
m

Corollary 5-3: If (Xn), n E Z is as in Lemma 5-6

EXnXm = EXnXn+1EXn4.1Xn+2...EXm_iXm V n,m (5.15)

Proof: Induction, using Lemma 5-6.

Corollary 5-4: If (Xn), n E Z is as in Lemma 5-6 and

n
1,

n
k

are any numbers in Z

E(X ...X
n
k
) = E(X ...Xn-1 )EXn-1Xnn

1
n
1 k k k

Proof: Like proof of Lemma 5-6.

Lemma 5-7: For the one dimensional Ising model with n.n.

potential and zero external field

where

for

0 if IDI is odd

P(D) =
(p-q) P(D) if ID! is even

11(D) =
Ck n2i n2i_l

i-1

D = in n 1 (n. < n. )1" 2k 1 1+1

(5.16)

(5.17)
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Proof: The result for IDI odd was already proved. Assume IDI

is even, D = -En
'

n
2k

1. Note that P(D) = EXn...X
112k

. The
1

proof follows by induction over k.

k = 1: EX
n
X
n+1

= p - q

Therefore by Corollary 5-3

EXnXn
= (p-q)

In2-n1I
(p_op(D)

1 2

Assume now (5.17) for D0 = {ni,...,n2k-2} and let

D = D0 u {n2k_i,n2k}

P(D) = E H X= E(H X X -X
-1 n2k 1 n2k

)EX _X
D0

ni n2k_j_ n2k

by Corollary 5-4. Successive application yields:

P(D) = E(R X X
2

D
ni n

2k-1
)E(X

n
2k-1

n
2k-1

+1
)...E(X

n
2k

-1
x
n
2k

)

0

p(D
0

) (n
2k

-n
2k-1

)

= (p-q) (p-q)
(p_op(D)

Notes: - For D connected: v(D) if IDI even

- Cov(Xn,Xm) = (p-q)11(D) with D = {n,m }.

Now the Levy-Khintchin form will be derived. For D E B(S) with

'DI even

P(D) explf[(_1)1Dnx 1-1]dF}



or

11(D) In (13_0 f[(_1)1Dnxl_
1]c:1F.
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(5.18)

The right hand side will only be non zero if IDnxi is odd. Then

p(D) In (p-q) = -2F(IDnx1 is odd)

= -2 _1 F(R)
xEc2

*XI is odd

Let now X
(k)

E Q be a configuration with

(k)
1 i > k

In {REQ,IDnxl is odd} there are p(D) configurations of the form

X
(k)

. If F is now restricted to these configurations with equal

mass distribution one gets

so choose

p(D) In (p-q) = -2p(D)F(R
(k)

) for some fixed k

F(R) =
--ln(lp-q) if R = R(k) v k

I 0 otherwise (5.19)

F satisfies the conditions of the Levy-Khintchin measure in Theorem

5-1 and from the uniqueness of the representation follows that (5.18)

is the Levy-Khintchin measure for the one dimensional Ising model with

n.n. potential and 0 external field.
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5-5. Characterization of Tail Triviality by the
Correlation Function

Let P be a Gibbs state on an arbitrary countable set S. The

correlation function is then given by the Fourier-Stiltjes transform

of P and is a function on B(S):

P(D) = EyD (5.20)

where YD E Q' YD(X) = (-1)*X1 = II X
n

.

The continuous characters on Q can now be viewed as ±1 valued

random variables with mean

EYD = P(D)

and covariance

Cov yAyB = EyAyB - EyAEyB

= P(AAB) - P(A)P(B), A,B,D E B(S)

With this it is possible to characterize tail triviality of Gibbs

states in terms of correlation. In (3) it was stated that (3.14) is

equivalent to tail triviality. The idea is now to write (3.14) in

terms of the correlation:

For f E

f(x) = yp(x)f(D)
DEB(S)

and so
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ffgdP - ffdPfgdP = f G G yAyBf(A)8(B) - (f 1 yA
f(A))(f y

B
g(B))

A B A

= G G f(A)g(B)fYAYB (/ f(A)IYA)(/ g(B)fYB)
A B A

= 1 f(A)(fyAyB-fyAfyB)g(B), integrals w.r. to P

A,B

= f(A) Cov yeBg(B); A,B E B(S) (5.21)

A,B

This gives rise to

Lemma 5-8 (Waymire): A random field P on S2 is tail trivial

if V f E C(Q) , 3 F E B(S) such that

I 1 f(A) Cov(YAYB)g(B) < II g co

A,B

V g E C(Q), g E A .

Fc

(5.22)

Example 5-1: Infinite temperature model with 0-external field.

In this case (Xn), n E S is a family of i.i.d. Bernoulli (2) dis-

tributed random variables. Tail triviality follows then by

Kolmogoroff's 0-1 law, but also by Lemma 5-8. Let f c C(Q); by

the Riemann Legesgue Lemma there exists an F E B(S) such that

If(D)1 < 1 V D c Fc, D E B(S). (5.23)

Let geA ,gcC(Q).
Fc
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For A,B E 13(5)

If

Cov(y
A
,y

B
) =E

=

ALB

B n F 0 decompose

g(B) = fyBgdP

II X -ERXER X
ALB n A n B

n

II EX {1- II (EX )2}
n

AnB

0 for A B

1 otherwise

B into B= B1 uB
2'

= fyB yB gdP = fyB dPfy
B

1 2 1 2

B
1

c F, B2

gdP = 0

F
c

(5.24)

(5.25)

So by (5.23-5.25):

^ ^

y f(A) Cov(yA yB)g(B)I =
I

1 f(A)g(A)I
A,B 1 Ai0

= I / f(A)g(A)I
AcFc

< I g (A) I

AcFc

A Fc
Ig(A)I < A IyA(4)g(A)I <

c

Since y(37
+

) = 1 V A E B(S) and therefore P is tail trivial by
A -

Lemma 5-8.
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Chapter 6. GIBBS STATES ON THE BETHE LATTICE

Gibbs states on the Bethe Lattice or tree T
N

were defined in

Chapter 4. Only n.n. potentials, i.e. symmetric, invariant pair

potentials with the n.n. property, are considered; so Gibbs states

are also MRF's. Within the class of MRF's on Q there exists a

subclass for which calculations simplify and which will be the main

object of study in the following. This subclass will be called the

set of Markov-chains on Q and can be defined as follows:

Let M be a stochastic matrix

M(1,1) M(1,-1) ( s 1-s
M = = 0 < t,s, < 1

M(-1,1) M(-1,-1) 1-t t

(6.1)

and r = (r+,r_) the unique invariant distribution.

A random field p can then be defined by cylinder set prob-

abilities:

IFS

p([A,11) = 71-(X
1
) II M(X

(i)
,X.) (6.2)

i=2

where A c F E B(TN) and

T.+ if X1=1
71-(X

1
) =

r if X1 = -1

This defines a projective family of finite dimensional distributions,

as can be seen by an easy summation and therefore gives rise to a

unique state on Q, by the Kolmogoroff construction exhibited in

Chapter 3.
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Note: (6.2) is independent of the labeling, as long as the labeling

introduced in Chapter 4 is used.

States defined in this way by a stochastic matrix (6.1) will be

called Markov chains, since they behave like one dimensional Markov

chains along paths.

Lemma 6-1: Every Markov chain is a MRF and hence a Gibbs

state for a certain n.n. potential (I) on Q.

Proof: Note that finite dimensional probabilities are positive.

Let n E F C B(TN); Almnl = a(Xk,k F\1111)

P(Xn=11AF\Inl) = P(Xn=11Xleka\{n})

P(Xn=1,Xk,kEF\{n})

P(Xk,kEF \ {n })

II M(X( ,xi)
iefriv9{n}j

i.e. P(X
n
=11A

P\{h}
) depends only on the sites in {1.1} V F E B(T

N
)

with n E F. Let now F t TN in an increasing way, to get the result.

Note: Markov-chains are homogeneous, i.e. independent of the position

of measurable sets on the tree. This follows from the fact that

MRF's are Gibbs states with invariant potential and from

r (1-s) = r (1-t)

If M denotes the set of all Markov-chains

M C u G(4))
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the set of all Gibbs states with n.n. potential, i.e. the set of all

MRF's on Q.

As it was stated in Chapter 4, to each p E M corresponds a

unique n.n. potential such that

P E G(0)

which means every stochastic matrix of form (6.1) determines a poten-

tial through the probabilities (6.2) (see also [16]). The question

which arises now is, does there exist an element p E M with

p E G(4)) for a given n.n. potential 0 and is it uniquely deter-

mined by this potential. The answer in the case N = 2 is, that for

every n.n. potential

IMnG(0)1 = 1,2 or 3.

If 1MnG(01 > 1, phase transition has occurred. This will be shown

below.

Two Gibbs states p p
2

belong to the same G(0) if their cor-

responding conditional probabilities (4.2) are equal. These will be

calculated next.

Let

s 1-s

M= and P M
1-t t

Then



1
1

P(X
n
=11k neighbors are -1)

P(k neighb. are -1) - P(Xn=1,k neighb. are -1)

P(Xn=1,k neighb. are -1)

P(Xn=-1,k neighb. are -1)

P(X
n
=1,k neighb. are -1)

r t
k
(1-t)

N-k
t
k
(1-s)(1-t)

N-k

(1-s)
k
s
N-k

r
+
(1-s)

k
s
N-k

and therefore:

r
+
(1-s)

k
s
N-k

a(n) = P(X
n
=1Ik neighb. are -1) =

r t
k
(1-t)

N-k
+ r

+
(1-s)

k
s
N-k

(1-s)
k
s
N-k

=

t
k
(1-t)

N-k-1
(1-s) + (1-s)

k
s
N-k

V n c TN

If for a Markov chain P with

s 1-s
ii =

1.-t'
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(6.3)

(6.4)

;k = ak V k = 1...N, then P and P belong to the same G(4)).

Note also that

and hence

exp (3J+H
s = P(X

n
=1IX

k
=1,kElnl) -

2 cosh f3J+H

t = P(X
n
=-11Xk=-1,kEa{n}) =

2

exp
cosh 13.35J-H-H

s t
= exp 43J,

1-s 1-t
(6.5)



So if P,P E G(0, P,P E M

< = >

".. ,.....

S t S t

1-s 1 -t
=

1-s 1 -t

s(1-s) (1-0t

(1-s)-s' t(1-t)

71

(6.6)

The following calculations investigate for T2 in which cases

IMnG(01 = 1,2 or 3

Let P,P E M satisfy ak = ak, k = 1,2,3 and (6.6). From ao = ao

and (6.3) results

< = >

(1-0
N-1

(1-s) (1-t)
N-1

(1-s)

N -N
s s

s 1t
1-s [--

s 1-s 1-t s N-1

7 ;

my

Substituting (6.6) into (6.7) yields:

or

where

t(1-t)

(1-t)i'

t(1-t)
s + 1 - s

(1 -t)t

t(1-t)
(1 t) + t

(1-t)i'

N-1 sxN-1 + 1 - s N-1
x =

(1-t)x
N-1

+ t

x =
t(1-11/N-1

> 0

(1-t)i'.

N-1

(6.7)

(6.8)



then

- -
t -N+1 t s s

x
N-1

1-i

- x
1-s

=
1-t ' 1-s

If Equation (6.8) has more than one positive, real solution then
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(6.9)

IMnG(01 > 1

and phase transition has occurred among the class of Markov chains.

Analysis of (6.8): x = 1 is always a solution to (6.8) verify-

ing that

IMnG(01 > 1 V (1),(1, n.n.

In this case s = s, t = t as it can be seen from (6.9).

For N = 1 (6.8) reduces to

(1-t)x
2
+ (t-s)x - (1-s) = 0

which has only x = 1 as a positive real solution.

(6.8) is equivalent to

< = >

sx
N-1

+ (1-s)
0

(1-t)x
N-1

+ t

(1-t)x
N
+ tx - sx

N-1
- (1-s) = 0

Since x = 1 is a solution to (6.10) divide by (x-1) to get

(6.10)

(1-t)x
N-1

+ (1-t-s)x
N-2

+ + (1-t-s)x
2
+ (1-t-s)x + (1-s) = 0

(6.11)



which becomes for N = 2

(1-0x2 + (1-t-s)x + (1-s) = 0

and has solutions

(s-l+t) ± s-1+02-4(1-0(1-s)
x

2(1-t)

Therefore, for N = 2, (6.8) has three solutions if

(s-l+t)2 - r(1-t)(1-s) > 0 (6.14)
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(6.12)

(6.13)

and none of the solutions (6.13) equals 1; in this case the solu-

tions are real and positive. (6.14) is equivalent to

(s-t)
2
+ 2(s+t) > 3. (6.15)

If (s-t)
2
+ 2(s+t) = 3, (6.8) has two real, positive solutions if

the solution in (6.13) is not equal to 1. In all the other cases,

x = 1 is the only real, positive solution to (6.8), except when

(6.15) holds and one solution in (6.13) is 1. Assume that (6.15)

holds with a '>', i.e. (6.13) is real and positive:

(i) If (6.12) factors into (x-1)2, (6.13) will be 1 in both

3
cases. This occurs for s = t = T, and in this case (6.8)

has only 1 positive, real solution.

(ii) If (1-t) + (1-t-s) + (1-s) = 0 <=> s + t = f then one

solution to (6.12) is 1.
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Summary:

(a) For N = 1, IMnG(01 will always be one. Since this case

refers to the one dimensional model, this result confirms

again that in one dimension there occurs no phase transition

for n.n. potentials since M = u G(0, for n.n. poten-

tials.

(b) N = 2:

(i) IMnG(01 = 1 for (s-t)2 + 2(s+t) < 3 and s = t =

IMnG(01 = 2 for (s-t)2 + 2(s+t) = 3, s,t (U)

' '3 3'and for s + t =
3

s,t r kT.7)

(iii) iMnG(01 = 3 for (s-t)2 + 2(s+t) > 3.

Note that for the case s + t < 1, referred to as the repulsive case,

there is no phase transition among the class of Markov-chains.

The fact that phase transition occurs within the class of Markov

chains will be taken as a reason to further study this class of Gibbs

states.

Lemma 6-2: Isotherms for Markov chain Ising models are constants

for 1s
s

1t
t

. An attractive Markov chain P
1

and a repulsive P
2

represent the same temperature iff

sl + tl = 1 + s2 + t2

Proof: This follows from (6.5) and the fact that a repulsive

coupling constant J is negative.
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6-1. Infinite Divisibility of Markov Chains on the Tree

The use of infinite divisibility was already pointed out in

Chapter 5. It was shown that the convolution of two one dimensional

n.n. Ising models with no external field is again of that kind. As

will be shown this is also true for the subclass of Markov chains

with no external field on the tree. The way to prove this is slightly

different than in one dimension (compare Lemma 5-5). The results

here are new.

Lemma 6-3: Let X, be two Markov chain Ising models with no

external field and Z their convolution. Then

P(Zn=enlXk=ock, 7k=6k, ka{n}), nE T
N

is not a function of Xit. 7k, k E

Proof: This is easily checked by writing out the probabilities

and choosing ak, 6k appropriately.

Note: In one dimension it was possible to restrict to only one

neighbor to prove the converse of Lemma 6-3; this is not pos-

sible on the tree.

Theorem 6-1: The convolution of two Markov chains on the tree

with 0-external field is again of that kind.

1
Note: r

+
= r

-
= -2-- for H = 0.

The proof is prepared by the following results:
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TN
Lemma 6-4: If Z is a MRF on = {1,-1} , D E B(TN)

connected and

P(Z
n
=1, nED) = r

+
siD1-1

P(Z
n
=-1, nED) = r tID1-1

for some s,t E (0,1) and (r+,r_) with r
+
+ r = 1 and

r (1-s) = r (1-0, then

where

e o e

P(Z
n
=6

n
, nED) = n(Z

1
)s

+
(1-s)

+
t

-
(1-0

n
1
) =

if Z = 1
(Z

1

r if Z
1

= -1

e = # of bonds from +1 to +1

o
+

= # of bonds from +1 to -1

e = # of bonds from -1 to -1

o = # of bonds from -1 to +1

Proof: Case 1: s = t =: p. Assume D E 13(TN), IDI = 2; then

the assertion holds. Assume now the assertion holds for D e B(T
N

)

with 1DI = n - 1, D connected. Let now D = Do u {m}, Do E 13(TN),

ID01 = n - 1, D connected, where m is such that m > k, V k E Do

P(Z
k
=E

k'
kED

0' m
=E
m
) = P(Z111=EmiZk=

k'
kEDOP(Zk=ek, kED0)

= P(Z
m
-E
m
IZ
k

=e
k '

k
0
Ea{m})P(Z

k
=E

k'
kD0)

0 0

e
+
+e

-
o
+
+o

-=p
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Note that m has exactly one neighbor k
0

in D0. The proof for

s # t works the same way.

Lemma 6-5: Let D E B(TN), connected and

r = {51a, X1 fixed, lED}

where 1 is the lowest label in D. Then there are
IDI-1

(
k

) configura-

tions in r with k odd bonds, where a bond is odd if it connects

two sites with different values.

Proof: For D = 2 obvious. Assume now the assertion holds

for D0. 1,. ID I = n - 1 D
0

connected. Let D = D
0

u {n} connected,

where again n > k, V k E D0. The bond from n to (n), where

(n) E D
0

is either odd or even:

(i) Even: To get k odd bonds in D, they have to be among

D0, by assumption there are ( ) configurations in r

with this property.

(ii) Odd: To get k odd bonds in D, Do has to contain k-1.

DThere are (
IkI1 2

) configurations in r with this property.

Together there are (
IDI-2

k-1
) + ( ) =(

IDI-1
) configurations in r

with k odd bonds.

Proof of Theorem 6-1: Let P
x

, P
y

be two Markov chain Ising

models and P
Z

= P
x

* P
y

. Let D E B(TN) be connected. (Z
n
), n E TN

is a MRF: This is the case when P(Z
n
=11Z

k
=E

k'
kED\fnl), where

n E D, is a function of (Zk), k E .11.11. For IDI = 2 this is

obvious.
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Assume now P(Zn=11Zk=Ek, kED\{n}) is a function of (Zk),

k E {1-11 when 1D1 = j - 1. Let then 1D1 = j and m denote the

highest label in D. Note that m has exactly one neighbor in D.

W.L.O.G. m 9{11}.

P(Z
n
=11Z

k
=6

k'
kED\{n})

=
P(Z

n
=1

'

Z
k
=E
k

, kED\{n})

P(Z
k
=E

k'
kED\{n})

1 P(X
n
=a

n'
X
k
=a
k
)P(Y

n
=a

n'
Y
k
=a

n
E
k

)

a
k'

kED

P(Xk=ak)P(Yk=ak.Ek)
a ,kED\{n}

{ab+(1-a)(1-b)} P(X
n
=a

n'
X
k
=a

k
)P(Y

n
=a

n'
Y =a

k
.e
k

)

ak,kED \ {m}

{ab+(l-a)(1-b)} P(Xk=ak)P(Yk=ak.Ek)
a
k'
kED\{m,n}

= P(Z
n
=11Z

k
=E

k'
kED \ {n,m })

which is, by assumption, a function of (Zk), k E

a E {px,l-px}, b E {p
Y
,l-p

Y
}

The Markov property for (Zn), n E TN follows then by applying a

martingale limit theorem. To see that (Zn), n E TN, is also a

Markov chain:



P(Z
n
=1,nED) = P

x
(X
n
=E

n'
nED)P

y
(Y
n
=E

n
,nED)

(e),nED

1131 , ID1

2 )1 n 1.,= / HmxkE(i),Ei 2 ily(6ki, ,E.)
(sn),nED i=2

1 ID1
= R Mx(e(i),E1)My(c(1),c1)

E
1
=1

1 1DI
+ 4- R Mx(c(i),Ei)My(c(i),Ei)

1
=-1 i=2

These summations are each summation over F as introduced in Lemma

6-5 and thus:

where

17 1
P(Zn=1,nED) = 1 ID (

1121 1- )(pxpy)IDI-k(qxqy) k

k=0

+ 1 Itk
k

i,ID1-1
)(pxPy )

IDI-k
(q
xqy )

k

k=0

2
(p
x
p
y
+q

x
q
Y

)
IDI-1 = +13,1DI-1

PZ
pxpy

qxqy

P(Z
n
=-1,nED) = P(X

n
=6

n
,nED)P(Y

n
=c

n
,nED)

(en),nED

79

(6.16)

=

(en),nED

IDI

II

i=2

M (6 . ,6.)M (-6 .

x (1) y (1)
,-E.)

1

1 ID1-1

-2- PZ
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since My(-E(i),-Ei) = My(c(i),ci). Therefore Lemma 6-4 applies and

proves the assertion.

Corollary 6-1: The attractive Markov chain Ising model with

0-external field is infinitely divisible.

Proof: If J denotes the coupling constant of the convolution

of two Markov chains with 0 external field and J1, J
2

respectively,

their coupling constants then (5.10) through (5.12) hold and so the

proof is the same as of Corollary 5-2.

Remarks 6-1:

(i) For a given model with p >
1

(H = 0), there exists an

attractive and a repulsive model, representing the same

temperature, whose convolution yields the given model:

If pl, p2 are chosen to be

1 2p-1
P1 2 2

1 2p-1
p2 2 2

pl represents an attractive, p2 a repulsive Markov chain

Ising model, both representing the same temperature by

Lemma 6-2. The convolution yields the given model.

(ii) The convolution of two attractive or two repulsive models is

attractive and the convolution of an attractive with a repul-

sive model is repulsive. This is easily checked by (6.16).
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Corollary 6-3: A repulsive Markov-chain Ising model is not

infinitely divisible with Markov-chains as factors (still H = 0).

Proof: From Remark 6-1 (ii) follows that the convolution of a

Markov chain Ising model with itself is never repulsive.

6-2. Notes to the Correlation on T
N

The correlation function for n.n. Gibbs states, being of Markov

chain type corresponding to attractive potentials admits the repre-

sentation

P(D) = AH(D) exp{f(11 Xn-l)dF},
D

(6.17)

D E B(T
N
), H a compact subgroup and X the Haar measure on H.

This fact, resulting from the infinite divisibility of the

specified states, will be used to describe the general form of the

correlation. For the following only Markov chain Ising models with

attractive potential are considered; these also detect phase transi-

tion whereas repulsive models do not.

The fact that Markov-chains on trees act like one dimensional

Markov chains on paths, admits the application of Lemma 5-6 and

Corollaries 5-3 and 5-4. Denote by D the smallest, connected sub-

set of T
N

containing D E B(T
N
). 5 E B(T

N
).

Lemma 6-6: Let D E B(T
N

) be an arbitrary connected subset with

(DI = n, D = {1,2...n}. Then

E(Xi...Xn) = E(X ...X
n-1

.X
(n)

)E(X
(n)
Xn

) (6.18)
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If (n) = n-1:

E(Xi...Xn) = E(Xi...Xn_2)E(Xn_1.Xn)

Proof:

E(Xi...xn) = E(E(X-...XIIIA
fnlc

) = E(Xi...Xn_lE(XnIX(n)))

= E(Xi...Xn_iX(n))E(X(n)Xn)

using (5.12) and the fact that n has exactly 1 neighbor in D.

Remark 6-2: If D is not connected, (6.17) holds for (n) the

unique neighbor of in D; D is labelled in the usual way, D

has the induced labelling.

In the one dimensional case the correlation had the form

P(D) = (p-q)11(D) for D E 8(T2), IDI even

and

P(D) = 0 for IDI odd

where p(D) is given by (5.14).

In this case u was a counting function, counting the number of

bonds between succeeding sites in the subset. The idea for the tree

case is to get a similar counting function, which, starting from the

site with highest label, counts the number of bonds to the nearest

site and continues this way. The problem here is, that this nearest

neighbor may not be unique if the corresponding subset is disconnected.

Therefore the connected case will be treated first.
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Proposition 6-1: Let X be a Markov chain Ising model with

0-external field and p >
1

. Let D E B(TL) be connected. Then

where

P(D) =
j(p-q) lj(D) IDI even

t 0 IDI odd

p(D) = {# of bonds between (i)* and
iED*

k>i

and the sum starts at the highest label of D, (i)* denotes the

unique nearest site of i in

Di = D \ {k,(k)*,k>i}

Notes: - (n)* = (n) and D'Ilk = D if n is the highest label in D,

D*
n-1

= D \ {n,(n)}

- Di is in general not connected

- i is the highest label in Dt if i E Dt.
1 1

Proof: From the way of labeling and the connectedness follows

that each i E D has a unique (i)* in D.

P(D) = X,) = E(E(II XklA ))

D D {n}c

= E( II XkE(XnIX(n)))
D\{n}

= E( II XX(n)) -E(X(n)-Xn)
D\{n}

= E( II X
k
) E(X

(n)
X
n

) =

D \ {n,(n)}
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= E( II Xk) E(X (n)Xn )

D*
n-1

E( II Xk) E(X(n).Xn) if (n) n-1
D*

= n-1

E(X1...Xn_2) (p-q) if (n) = n-1

In general:

E(E
Dt

X
k

) = E(
D*

11 X
k
)E(X

(i)*
X
i

)

i i-1

from where the assertion follows. Note that if i-1 = (i)* then

Di-1
1= Di-2 and that

E(X(i)*Xi) = (p-q)a ; a = {ii of bonds between i and (i)*)

which follows from Corollary 5.4.

Example 6-1: Let D = {1,...,6} have the form

15 1.3

6 4 2 1

Both the formal calculation and Proposition 6-1 yield

P(D) = (p-q)
5

The calculation of the correlation for disconnected subsets works

principally the same way, but is much more involved and will therefore

be skipped. However some estimates will be given.



Let P represent an attractive Markov chain Ising model with

0-external field. If X
H

in (6.17) is taken to be the same as in

Chapter 5, then

P(D) = exp{f(yD-1)dF}

for D E B(TN), IDI even

where

and

P(D) = exp {f (YD -1)dF}

r
D

r
D '

= fREs2 II x
n
=-11

-
D

In P(D) = -2F(FD).

Let now D = D1 u D2, D1 n D2 = 0, 1D11, iD21 even, then

and

Note that

r
D

= r DA r
D

1 2

In P(D) = 2 {F(r )+F(rD )F(r nr )} .

D1 D2 D1
1 2

14- krol = IF(rD)I < -.

Therefore:

P(D) = P(D1)P(D2) exp {2f dF}

F nr
D
1

D
2

85

(6.19)
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Lemma 6-7: For D E B( T ) , 'DI > 2, even, 3 D1,D2 c D such

P(D) = P(D1)P(D2) (6.20)

Proof: Assume 1DI = n. For connected D the assertion follows

from Proposition 6-1. Let D be disconnected and let n be the site

with highest label and longest path to the lowest label in D.

Case I: n has a unique nearest site in D, n. Let

D
1

= {n,n }, D
2
= D \ D

1
and the assertion follows from Remark 6-2.

Case II: n does not have a unique nearest site; 3 sites m,k

with the same number of bonds to n. Assume m > k and let D
1
= {n,m}

P(D) = E(E(E X.IA ))

D 1 {n}c

= E(E(X.
2
E X.1A ))

j fnl1
C

D

= E(X. II Xk)E(X
n
.X.)

D \ {n} J

where j = (n) in 15, j D

W.l.o.g. J is the nearest site of m in D u {j}

P(D) = E(X X.)E(X X.)E( E X.)
n 3 m D\{n,m} 1

= E(X
n
X
m
)E( Xi)

D \ {n,m}

= P( {n,m })P(D \ {n,m })

by the fact that j is on the path between n and m and Lemma 5-6.
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I I I

<

Corollary 6-5: If D E 8(T2), 1DI even, 3 Di c D, i E I,

such that

P(D) = II P(D.)

I 1

and D.
1

is a path V i.

Proof: The result follows by applying Lemma 6-7 to D1, D2 and

theirfactors.MoreoverD.1 canbetakentohavelD1 d= 2 V i.

Corollary 6-6: For D E 8(T2), 11)1 even

P(D) = (p-q)11(D)

where p(D) is a function of the set D.

Proof: Follows from Corollary 6-5, taking

p(D) = p(Di)
iE I

Remark 6-3:

p(D) = min{ p(Di); (Di) finite decomposition of D}
iEI

= min{ p(D. 1) ; (D.1 ) decomposition of D with

iEI
!D1 J= 2 V

follows inductively from Lemma 6-7 and its proof.
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Properties of p: (defined for D E B(T2), 1D1 even)

_11_(i) p(D) > 21 by Corollary 6-5.

Let D1,D2 E 13(T2), 1D11,1D21 even, D1 n D2 = 0.

(ii) p(D
1
uD

2
) < p(D1) + p(D

2
) by Remark 6-3.

(iii) If 5
1

n 5
2

= 0 then p(D
1
up

2
) = u(D1) + p(D

2
) by Corollary

6-5 and Remark 6-3.

(iv) P(D
1
uD

2
) > P(D1)P(D2) by (ii).

(v) exp{2f dF} > 1 by (6.19) and (iv), therefore
r
D1

r
D2

f dF > 0 V D1,D2 disjoint and thus F non negative.
r
D1

r
D2

Let D1,D2 E B(T2), 11)11, 11)21 even:

(vi) P(D
1
AD

2
) > P(D1)P(D2) by (iv).

(vii) 0 < Cov < 1 by (vi).

p(D
1
AD

2
)

(viii) Cov YD YD < p-q since if either (p-q) < p-q or
1 2

p(D
1
AD

2
)

003_ = p-q and then p(D
1
) + p(D

2
) > 0.

The following lemma gives a sufficient condition for tail triviality,

showing that the Markov chain Ising models we have been looking at

are extreme.
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Lemma 6-8 (see [19]): P, representing a n.n. Gibbs state on

TN
S-2 = {1,-1} , is tail trivial, if for each D E B(T

N
), c > 0

F E B(TN) such that

1 Imax Cov(yAyB)g(A) I < Il g II., V gEAc,gEC(0)
AEB(T

N
) BcD F

AcFc

Corollary 6-7: The Markov chain Ising model with 0-external field

is extreme.

Proof: For D E B(T,), choose F such that F = F D D, then

A n B = 0 If B c D, A c Fc and hence p(AAB) = p(A) + p(B) by

property (iii) => Cov(YA,yB) = 0 V A c Fc, B c D, A,BEB(Tz), if

'Al, IBI are even. For Al,I IBI odd, the result follows by a

similar argument as in Example 5-1.



Chapter 7. ANOTHER APPROACH FOR THE GRAPH Z
d

The following approach will emphasize more the property of the

interaction of being invariant under a certain group of graph iso-

morphisms and will develop the theory of Gibbs states by considering

the set of invariant measures for this invariance group, where Gibbs

states will then be characterized within this set.

Let S = Z
d

for some d. A family of graph isomorphisms is

defined by the group of translations

a E Zd, Ta :Z
d

-4- Z
d

T
a
(n) = n+a = a+n, n E Zd

Each T
a

defines also a mapping T
a

:S] 4- Q by

Ta(X) = Y, R,,7 E 0

where Y
n
= X

n+a
.

Each T
a

is continuous as a mapping on 0 and thus defines also a

mapping

by

T
a
:C*(Q) .4- C *(c2)

T
a
p(A) = p(T

-1
(A)), A E A, p E C*(0)

Remark 7-1: For f E C(0)

ff o T
a
dp = ffdT

a
p V a E Zd

90
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which follows by the transformation lemma.

Let M(Q,Ta) denote the set of probability measures on Q,

which are invariant under T
a

, i.e.

for p E M(c ,Ta) Tap = p

The set

M(Q,H) = n M(2,Ta)
aEZd

is then the set of probability measures, which are invariant under

the group H of all translations on Z
d

.

Properties of M(Q,Ta):

(i) M(Q,Ta) is non empty: Let p be the normalized Haar

measure on Q.

(ii) M(Q,Ta) is convex.

(iii) M(S2,Ta) is compact: M(Q,Ta) is contained in the unit ball

of C*(Q), which is compact. Assume pn E M(Q,Ta), pn -+ p

weakly. Then

if o T
a
dp

n
= ifdp

n
-0- ifdp

but also

if o T
a
dp

n
-)- if o T

a
dp f E C(c)

and hence T
a
p = p, p E M(S2,T

a
) so M(2,T

a
) is closed.



(iv) 11 E M(Q,Ta) is extreme iff Ta is ergodic under p:

(a) Assume p E M(52,Ta) and Ta not ergodic, i.e.

3 A E A, 0 < p(A) < 1 and TaA = A. Then

P ")
p(AB) p(A B)

1 p(A) P

(

2' 1
p(Ac)

define two measures in M(Q,T
a

) with

p = ap
1
+ (1-a)p

2 '

a = p(A)

(b) Assume T
a

is ergodic under p and p= api + (1-a)p2

then pl << p and

1-1 au

dp dp
1

dp
1

dp + f1(E) = J = f dp dp
E EnT

a
E E\T

a
E

Since p
1
(T

a
E) = p

1
(E):

dp dp

p
1
(T
a
E) = f

dp
1

dp + f
d

1
dp

EnT
a
E T

a
E\E

and so

dp dp
1

dp
du =J dp

a a

dp

T E\E E\T E

92

(7.1)

dui
If p p

1
then for E {- < 1} one has that

p(E\T
a
E) = p(T

a
E\E) and so (7.1) can only hold if p(E) = p

1
(E) = 0

which means p is extreme.
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From the definition of M(Q,H) follows that this set has also

the properties (i) through (iii). Furthermore:

(iv)' If u E ext M(0,Ta) for all a E Zd then u E ext M(Q,H).

The converse is not true.

Let F E B(Z
d
).

Definition 7-1: For u E M(0,H) the entropy of p in F is

defined by

hF(u) = - _Z p(R) log u(R), u(R) = p(Xlsites in Q
Fc

are 1)

XES2
F

log= ln
Let for a H-invariant potential (I) G (4)) denote the set of

H-invariant Gibbs states in G(4)).

Lemma 7-1: If p E G0(0), where (I) is an H-invariant poten-

tial, then

(1)

log Z(I)
F
= hF(u) - u(X)U

F
(X)

- -
REQ
- F

= hF(u) - fU
(1,

du, z _I exp{-4(50}
XEO
- F

(I)

where OF is the energy function defined by (3.1).

Proof:

hF(u) _y ,(7)[-4(R) log Z(I)]

)(ES-2
- F

SO



-h(p) - p(X)U
(I)

(X) = log Z4) 1 p(R)
F F - F

REQ XE
F -
S2

F

= log ZF

Definition 7-2:

h(p) := lim
d

11.1 lh
F
(p)

F.42

94

(7.2)

is called entropy; F Z
d

in the sense of van Hove.

Note: h(p) exists and is finite V p E M(S-2,H) (see [14], p. 46).

For a given H-invariant potential (I), define

1

A := lim IF1
-1
U

(I)

F
F-)-Z

F E B(Z
d
), F Zd in the sense of van Hove.

Note: A
(I)

is a continuous function.

Definition 7-3: The function

P(4),H) := sup!h(p) - fyp, p E M(c2,H)}

is called pressure.

Notes: - The supremum in Definition 7-3 is finite.

- If the supremum is obtained for V E Go(OC M(Q,H) then
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P(4),H) = lim IF1-1[hF(p) - f4d1-1]

F÷Zd

= lim IF'
-1

log ZF
F4-Zd

by Lemma 7-1, i.e. the pressure for Gibbs states is the

free energy per site.

Definition 7-4: A measure p E M(0,H) is called an equilibrium

state for 4), whenever

h(p) fyp = P(4),H)

The set of equilibrium states for 4) is denoted by 144)(Q,H).

Remark 7-2: Equilibrium states maximize the difference between

entropy and energy per site, which is an expected fact since equi-

librium states in physics represent states with highest entropy and

lowest energy. Pressure is the maximum of the difference between

entropy and energy per site. This is referred to as the variational

principle.

Let for p E M(O,H) and F E B(Z
d

)

Z(D
F F

:= exp{-U (X)}
- -
XES1

F

Lemma 7-2: For p E M(c2,H), F E B(Zd)

r

h
F
(p) - JU

F
dp < log Z4) (7.3)
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Proof:

h
F
(u) fedu = -_y p(R){log p(R)+O(R)}

F
XeCt

F

exp{-4(R)}
= _I p(R) log

XES2
F

U(R)

and the result follows by the concavity of the logarithm.

Corollary 7-1: If p E Go(cD) then p E M
c) '

H) and vice versa.

Proof: Equality in (7.3) holds iff p(X) = (4)-1 exp{-4(R)}

for X E
F'

i.e. p E G0(0. Taking the limit in the sense of

1

van Hove of 'Ft
-1

[h
F
(p) fU dp] as F Z

d
, yields the result.

So one has G
0

= M
()

(S2
'

H) for any H-invariant potential cp and

also that M4)(2,H) is non empty, convex and compact. Extreme Gibbs

states, i.e. extreme invariant equilibrium states can be described by

properties of translations:

Lemma 7-3: H-invariant sets are either in A or have

p-probability 0, for p a Gibbs state.

Proof: Assume TaA = A V a, A E Ate. Then 3 A B
1

0 s.th.

A = Al n B
1,

Al E A
F,

B
1

E A
c

for some F E 13(Z ). From the invari-
F

ance follows then immediately that A is a singleton.

Corollary 7-2: If p is extreme in 144)(Q,H), all H-invariant

sets are trivial: Extreme states in Mo(S2,H) are called H-ergodic.
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Proof: Since non trivial H-invariant sets are contained in Ate,

the result follows by Proposition 3-4.

Lemma 7-4: If for some a 0 0, Ta is ergodic under V E N(-2,H),

then p is extreme in N(2,H).

Proof: N(.2,H) C M(-2,H) C M(-2,T a) V a E Zd. If a E Zd is

such that T
a

is ergodic under p, then p is extreme in M(O,T
a
)

and if p is also in N(2,H), p is also extreme in N(c,H). Note

that for a = 0 no extreme state in M(0,Ta) is in N(c2,H) if 4)

is non trivial.

From now on let H =
a
}, a 0 0. Then, by [17] Theorem 9.13, noting

that Corollary 7-1 remains true:

Corollary 7-3: For H-invariant potential 4), p E Go(0 is a

pure state iff T
a

is ergodic under u, for any a 0 0.

The representation of non pure Gibbs states in Corollary 3-2 is called

ergodic decomposition.

Proposition 7-1: The following are equivalent for H-invariant 4):

(i) p E G
0
(4)) is extreme for H = {Ta }, a 0 0.

(ii) For any a E Z
d
\ {0 }, Ta is ergodic under p.

(iii) If f E A and f o Ta = f[p] then f is constant, for any

a E Zd \{0}

(iv) V A,B E A

n-1

n
y p(T

a
jAnB) p(A)p(B)[p] V a 0



(v) p has trivial tail.

Proof: This summarizes preceding results and different ways to

describe ergodicity.

Note: (i) => (iv) is implied by Theorem 3-4.

Lemma 7-5: For p E G0(4), a 0; Ta is weak mixing, T
a

is

mixing imply that p has trivial tail.

Proof: Mixing implies weak mixing, which implies ergodic;

ergodicity implies tail triviality by Proposition 7-1.

Lemma 7-6: If p E Go(0) is extreme, then

n-1 .

1-
lim

1
L f(T

a
X) = ffdp[p], f E L

1
(0)

'

a 0, R E
n .

n400 1=0

Proof: This is Birkhoff's ergodic theorem, which applies by

Proposition 7-1. With Lemma 7-6 it is possible to describe correla-

tion: Note that for D E B(Zd), iD E Ll (W.

Corollary 7-4: For D E B(Zd), p E Go(0) extreme

n-1
11(D) = lim

1
X y

D a
(Ti(R))[P]

n
n4-00 i=0

98

V D. (7.4)

Using the representation (7.4) it is possible to derive conditions for

tail triviality of Gibbs states in terms of the correlation.



Lemma 7-7: If p E M (0,H), D E B(Zd), a E Zd then

lim p(D+a) = p(D)
la140.

Proof:

p(D +a)
fp+adli fiD

o T
a
dp

= fy
D
dT

a
p = fy

D
dp

which remains the same by taking the limit.

Lemma 7-8: If p E ext Mci)(Q,H), then

(7.4)

99

^ ^

lim p(MAN+j) = p(M)p(N), V M,N E B(Zd) (7.5)

Ij14

Proof: lim p(MLN +j) exists since p E ext M4)(Q,H) and by

n-1
lim p(MAN+j) = lim lim

1
y
MAN+j

(Ta
-
(R))[p]

n
j 4c° HI' n4' i=0

n-1
-1

= lim lim yM a
(T

i
(X))y

N+J a
.(Ti(R))[p]

n-rm Ij14m n i=0

where the inner limit exists. Therefore also

1 I

lim 77-1-

Ij
IOW

1:11

-1

y
N+k a

(T(R)) = p(N+ia)
=0

(7.6)

(7.7)

exists and equals lim y
N+J a

.(T(R)) with probability 1. Hence (7.6)

becomes
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1
n-1

lim p(MLN +j) = lim T1- y (Ti(R)) -p(N+ia)
i=0

M a

= p (N) p (m)

by Lemma 7-7. (7.5) means if p E ext 144)(Q,H) then

lim Cov(yNYm+i) = 0, N,M E B(Z
d

)

And as a last characterization of pure states:

Proposition 7-2: For p E M(1)(Q,H) the following are equivalent.

(i) p is a pure state.

(ii) For a probability measure m on Q with m << p, a E Zd \{0}

, n-1 .

1 r 1
171 2, Tam + p

i=0

1
n-1
L(iii) L 6 . P[u]

n i=0 Tla(R)

Proof: (i) => (ii): Let f E C(Q), then

2
n- -1 n- -1

=

n- -1
r1

2, if o T
a
idm

n a
i=0

nr -1
1 r -i dm

= 171 L if o T
a T11.7

dp

i=0

ffdp
r dm

= ffdpdp

by (3.13).
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(ii) = (i): For given f E C(Q), g E L1(S2) with respect to p.

Define for B E A:

Then

m(B) = C
B
gdp ; C = (igdp)

-1

n-1
± ff o Ti gdp -- ifdpfgdu[11]

a
i=0

which is equivalent to p being ergodic.

(i) => (iii): Apply Birkhoff's ergodic theorem.

(iii) => (i): From the construction of measurable functions

n-1
2--

rIfoT
a

i
-4- jfc1141-1.1)

i=0

Let f E C(0), g E L/(Q), then

n-1
1

L
7TfoTig -4- gifp[p]

a
i=0

f E A

Using the dominated convergence theorem yields

n-11
y ff 0 Tigdp fgdpffdp[p]

a
i=0

If an H-invariant, extreme Gibbs state for H = {Ta, aZd} is not

extreme among all Ta-invariant Gibbs states, p has an ergodic

decomposition in terms of extreme, T
a
-invariant Gibbs states and

symmetry breaking is said to occur.

hold with H =
a

, aEZ
d
}.

In the other case all results



102

BIBLIOGRAPHY

[1] Bauer, H: "Wahrscheinlichkeits Theorie and Grund-Zuge der
Mass Theorie," 3. Auflage, de Gruyter (1978)

[2] Bhattacharya, R.N.; Waymire, E.C.: "Stochastic Processes and
Applications," Preprint.

[3] Dobrushin, R.L.: "Description of a Random Field by Means of
Conditional Probabilities and the Conditions Governing its
Regularity," Theor. Prob. Appl. 10, 193-213 (1968)

[4] Doob, J.L.: "Stochastic Processes," Wiley (1953)

[5] Halmos, P.R.: "Measure Theory," Springer Verlag (1976)

[6] Ising, E.: "Beitrag zur Theorie des Ferromagnetismus,"
Z. Phys. 31, 253-258 (1924)

[7] Israel, R.B.: "Convexity of the Theory of Lattice Gases,"
Princeton University Press (1979)

[8] Jacobs, K.: "Measure and Integral," Academic Press (1978)

[9] Kindermann, R.; Snell, J.L.: "Markov Random Fields and Their

Applications," AMS (1980)

[10] Lanford, 0.E.; Ruelle, D.: "Observables at Infinity with Short
Range Correlations in Statistical Mechanics," Comm. Math.

Phys. 13, 194-215 (1969)

[11] Loomis, L: "Abstract Harmonic Analysis," Van Nostrand (1953)

[12] Parthasarathy, K.R.: "Probability Measures on Metric Spaces,"
Academic Press (1967)

[13] Preston, C.J.: "Gibbs States on Countable Sets," Cambridge

University Press (1974)

[14] Ruelle, D.: "Thermodynamic Formalism," Addison-Wesley (1978)

[15] Spitzer, F.: "Markov Random Fields and Gibbs Ensembles," MAA,

142-154 (1973)

[16] Spitzer, F.: "Markov Random Fields on an Infinite Tree,"

Annals of Prob. 3, 387-398 (1975)

[17] Walters, P.: "An Introduction to Ergodic Theory," Springer

Verlag (1982)



103

[18] Waymire, E.: "Infinitely Divisible Gibbs States," Rocky Mtn.
J. of Math, 14(3), 667-680, (1984)

[19] Waymire, E.: "Lattice Random Fields and Short Range Correla-
tion," Preprint (1984)

[20] Yosida, K.: "Functional Analysis," Springer Verlag (1978)


