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GIBBS STATES AND CORRELATION
Chapter 1. INTRODUCTION

During the last centuries, physics has been the most inspiring
nonmathematical field for mathematics. One of the recent fields of
interest of mathematicians in physics is statistical mechanics. The
theory of random fields is a subject which arose from this, starting
with the description of the complicated subject of ferromagnetism.

It is a known fact from quantum mechanics that every electron
possesses an angular momentum, called spin, and associated with it a
magnetic moment or magnetic spin. Furthermore additional magnetic
moments occur, resulting from the rotation of electrons around protons.
By this, an atom can be thought of as a little magnet, called an
elementary magnet, and thus matter can be viewed as a collection of
elementary magnets. These elementary magnets influence each other by
speeding neighboring elements up or down in their rotation, changing
their spins. This so called interaction results in most cases in a
zero overall magnetic moment. Ferromagnetic matter has the property
that the elementary magnets tend to line up, i.e. tend to have the
same spin direction over certain local domains.

An interesting phenomenon occurs at a matter dependent tempera-
ture, called critical temperature. Above this temperature, the ten-
dency to line up vanishes. Another form of reélizing this critical
temperature is obtained by the fact that ferromagnets may have a non
zero magnetic moment, even though the external field is zero, which

is not observed above the critical temperature. Much of the aim of
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modern mathematical statistical physics is to give precise theoretical
descriptions of this phenomena. The physicist E. Ising presented in
the early twenties of this century a model to describe this subject on
a lattice, the set of sites of the lattice representing elementary
magnets, by associating to each spin configuration on the lattice a
certain probability of occurrence, governed by interaction, if the sys-
tem is in equilibrium. The corresponding probability measures on the
set of all spin configurations are called Gibbs states. General'
properties of Gibbs states are known for countable sets of sites with-
out any structure. The predominant aim of investigating Gibbs states
is to detect the different possibilities of magnetization for zero
external field below some critical temperature, referred to as phase
transition.

In this connection correlations between sets of spin variables
play a basic role. So the major focus of this thesis is on correla-
tion formulae for Gibbs states. The results are based on a method of
Waymire, which is previously known to work for one-dimensional Ising
models (see [18]). The method is explored for higher dimensional

lattics configurations here.




Chapter 2. GIBBS STATES ON COUNTABLE SETS
(THE FINITE VOLUME CASE)

Let S be a finite set of sites and let W be the seﬁ {1,-1},
representing the spin directions up and down. With the discrete
topology and the uéual multiplication W becomes a compact topologi-
cal abelian group.

Let
Q=w = {1,-1}5

be the finite topological product. Q 1is called configuration space,
the elements of § are called configurations. In the case of finite
S all topological and measure theoretical considerations are entirely
trivial. However these notions are essential to the case when § 1is
infinite and so they will be brought out here for pedagogical reasons.
In éhis case § 1is trivially compact since the product topology
on { is the discrete topology, generated by singleton sets of the

form

{en:ne st ,
where each e ¢ {1,-1}.

Defining a group operation on § by coordinatewise multiplication, Q
becomes also a compact abelian topological group.

The topology on  can also be characterized to be the smallest
topology on  for which all coordinate projections are continuous,
i.e. if (Xn), n € S denotes the family of coordinatewise projections

on £, Xn e C(Q) V¥ n.




is the identity map, g is used to denote a specific configuration in
¢ or a random variable as seen later.

The sites represent elementary magnets, which influence other
sites, called interaction. A configuration then is a certain state of
a ferromagnetic matter specifying the spin direction for every ele-
mentary magnet.

From now on only pairwise interaction will be considered. The
interaction energy, I, between two sites n,m may then be repre-

sented by

In,m(§) = Jn,mknxm J

where Jn o is the coupling constant between these sites.

The influence of a homogeneous external field H on the individual

sites can be represented by
HX , n e S.
The total energy of a configuration in Q becomes then

U =-8 ] J XX -gH ] X (2.1)

n,mn m
n,meS i nes

where the first sum counts each pair only once, B8 = 1/kT,

k = Boltzman's constant, T = absolute temperature.
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Let A be the Borel-algebra of Q. Since Q is finite A coincides

with the power set of .

Definition 2-1: A finite dimensional Gibbs state is a probability

measure on § of the form

]
[y

P(g) -1 exp{—U(g)} ’ (2.2)

where

N
]

L exp{-UX)}
Xef

is called partition function and normalizes (2.2) to a probability

measure.

Since @ 1is finite, P 1is specified in terms of its density with

respect to counting measure, i.e.

%g @ =z expl-u®}

where dp is the Radon-Nikodym derivative.

dm

(2.2) factors into

- -1
P(X) = Z = exp{-8 ) Jn’anXm} i exp{—BHXn}
n,meS nes
= 270 exp{-8I(®)} T expl-gHX} (2.3)
nes
where I(g) = ) I m()_() represents the total interaction potential.

n,meS




Let a probability measure u on { be defined by its projected

measures:

Mo is the probability measure on W with

_1}) = _°Xp BH _ _ exp{-BH}
un({ 1h 2 cosh RH ’ un({l}) 2 cosh BH

p  1is then the product measure of the un's, nesS.

(2.3) then becomes

1 PX) = 270 expf-81(®)} T {n_(X )2 cosh BH)
| nes n
=z eXP{—BI(g)}u(g)ZIS'(cosh o 11
= 25" exp{-81(®) u(®) , (2.4)
where
z(')l = z'lzlsl(cosh BH)IS[ (2.5)

Note: P << p << m, where m 1is the counting measure on § and

T @ =25 expl-p1(D)

L@ =u@® .

Substituting this into (2.4) yields

B& (2.2) and (2.4) follows




- ZO
U(§) = 3r~-exp{—BH z Xn}
nes

and thus

z
dP o, _dP = 0 _
am &) =g @ - 7 expl-gH nZS X}

which is equivalent to (2.5).

Summing now (2.4) over all g e 0 vyields:

3 OR® =1 -250 ] expl-s1® (D

XeQ XeQ
=> z, = Y exp{-BL(X) I (X) = E exp{-8I(X)}. (2.6)
- - - u -
Xefd
By (2.6) ZO’ as a function of B, can be interpreted as the

moment generating function of the total interaction energy I.

2-1. The Use of the Partition Function

In (2.6) the partition function was probabilistically interpreted
in terms of the total interaction energy. On the other hand the par-
tition function is useful to express magnetization and susceptibility,
indicating it to be more than just a normalization constant. In par-
ticular Z(B,(Jn m),H) is a physically meaningful quantity.

’

The magnetization of a configuration g € @ 1is defined by

M (8,H) := ] X ={# of 1's} - {# of -1's}
n
nes




From (2.2), noting that Z is analytic as a function of B8 and H:

-1 3
35 10 Z(B,H) = 277 == ] exp{-8 ] T XX BH I X}
Xef n,meS nes
=) (-st>z exp{-8 ) J 80 ] X}
Xef nes n,meS n,m n m nes
=-8 ] 1 xp®
geQ nes
= —BE( ) X)) = -BEM
nes
or
EM_(8,H) = - = 2= In Z(8,H) (2.7)
st T T TR eH N MY '

where - %-ln Z(B,H) 1is called the free energy and MS(B,H) is con-

sidered as a random wvariable.

Magnetic susceptibility XS(B,H) is defined as the rate of change

of the expected magnetization resulting from an external field H

0

xg(B,H) = == EM(8,H) .
By (2.7):
1 32
Xc(B,H) = - &= — 1n Z(B,H), (2.8)
S B oy
Also from (2.2):
2mz=2" 3— ) exp{-BI(X)-BHM,}
38 38 P = S
Xef
= - ] (1@} PR
Xel
= - EI(X) - HEM (2.9)

S
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where now also I(g) is considered as a random variable.
2-2. Spontaneous Magnetization and Boundary Specifications
It can be seen from (2.7) that EMS(B,H) is continuous in H.
For H = 0, EXn =0, ¥ne$S since P(g) = P(—g). Therefore
EMS(B,O) = 0, again by (2.7). By continuity now follows:
lim EM_(8,H) = 0 (2.10)

H->0

It is a known experimental fact that for sufficiently low temperatures,
i.e. high B, spontaneous magnetization occurs for H = 0., Further-
more this spontaneous magnetization is known to obtain two distinct

values corresponding to limits H - 0+, H->0, i.e.31ﬁ18), u (8)

such that
. +
lim EMS(B,H) = u (B)
H—>O+
lim EM(8,H) = u (B)

H~+0

By (2.10) spontaneous magnetization cannot be observed in the finite
dimensional model.

It seems to be natural then to extend the finite model by
assuming S < z" for some n and letting ]S| + « 1in the sense of
van Hove (see [7] p. 12). This can be achieved in several ways by
specifying the boundary of S such that in the limit spontaneous
magnetization occurs. In this case phase transition is said to occur.

Now let S be a finite cube in Zn. The two major cases to specify




the boundary, i.e. the sites at the edge of the cube, are
(a) Fixed Boundary: All sites outside of S are fixed to a
certain spin direction.
(b) Free Boundary: The boundary sites are treated as any other

site.

2-3. The Roles of the LLN and the CLT

(a) Assume the case of infinite temperature, i.e. B = 0. From

(2.2) follows for specified g € 9

1

D =L = &lsl_
P(X) = Tal = ) = 1

nes

N |

and therefore P 1is the product measure of Bernoulli dis-
tributions B(%) on Xn(ﬂ) = W. Since P represents the
joint distribution of the (Xn)'s, viewed as random vari-
ables, the family of projections is an i.i.d. family of
random variables. In this case EXn = 0, Var Xn =1,

Both the LLN and the CLT apply:

LLN: lim -’ir ) X = limd M, =0

| S [+ nes HE:

with probability 1, where |Sl =+ ® gagain in the sens

of van Hove.

This means that the average overall magnetization of the

model is O.

10

e
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CLT: lim v SiMS - Normal (0,1)

ElRes

in distribution, i.e. MS is for large |S|, after
scaling, approximately normal distributed.
Empirical observations are quoted below to show that the effective
absence of interaction at infinite temperature makes these results
inapplicable at low temperatures.
(b) Assume now B > 0, H= 0 and S to be a cube in Z".
Fixing the boundary to 1 and letting |S| - » yields a

n
probability measure P+ on WZ and a probability measure

P for -1 boundary. 1In the case 6f n=2, i.e. S - 22,

it comgs out that for a specific BC, for 0 < B < BC, P+
and P coincide, for B8 > B, they are different, reflect-
ing experimental results. Therefore it is expected that the
LLN and the CLT fail at low temperatures, moreover the dis-
tribution of the fluctuations of MS(B,H) in the limit
should be a linear combination of bell shaped distributions

+
about u , u .

(c) Assume now H # 0. Again by experimental results one expects
that for the LLN
lim M (B,H) = u(B,H)
| 5]+
where

lim u(B,H) # 1im u(B,H) if B> 2R

C
507 H+0

for a specified BC and that the LLN holds for 0 < B < BC.
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Chapter 3. GIBBS STATES ON COUNTABLE SETS
(THE INFINITE VOLUME CASE)

In order to get a reasonable model to describe the physical
subject of ferromagnetism it is necessary to extend the theory to the
case of an infinite set of sites. For reasons discussed in (2) only
then phenomena like phase transition can be observed. However, as will
be seen, the properties of Gibbs states depend on the structure of the

underlying set of sites.

3-1. 1Introduction and General Notations

Let the set of sites S now be a countable infinite set and let
W = {1,-1} again be the compact abelian group under multiplication
and with discrete topology.

Define
Q 2= {l,—l}S

as the set of all {1,-1} wvalued functions on §S.

Let (Xn)’ n € S again be the coordinate projections

X :Q~->W, W =W ¥ n €S
n n n
g € € will then again be denoted as

X=(X), nes

2 may also be viewed as the power set of S, where each g € 0 1is

associated with a subset A of S by
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X~A if A = {neS, Xn=—l}

Let B(S) be the set of finite subsets of S. Since o is a
product of topological spaces, a topology on  1is defined by the
product topology, i.e. the smallest topology such that all Xn are
continuous.

Then § has the following properties:

(i) @ 1is compact, by Tychonoff,

(ii) @ is metrizable: Since W 1is metrizable with the trivial
metric and countable products of metric spaces are metrizable,
2 1is metrizable.
A metric on Q can be defined in the usual way:

d (X ,Y)
_n n n (3.1)

where X, i e Q, dn the trivial metric on W and S is

labelled (i.e. ordered and numbered). This metric induces

the product topology.

Note: Since Q 1is compact and satisfies the second axiom of
countability it also follows by a lemma of Urysohn
that { is metrizable. This follows also by a
theorem of Bing-Nagata and Smirnow, who construct a
metric in their proof which comes out to be equivalent

to (3.1).

(iii) C = c(R) where C 1is the set of all real valued functions

depending on at most finitely many coordinates and C denotes




(iv)
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closure in the sup-norm.

To see this let f € C. Then JA € B(S) such that f
depends only on coordinates in A and hence f can be
viewed as a function on WA.

Note: The induced topology on WA is discrete since

IwAI < o,

If B is open in IR, f_l(B) c WA and therefore open. So
C c c()

C now forms an algebra, containing the constants and
separating points (take e.g. coordinate projectiomns). With
these properties it follows from the Stone-Weierstrass
theorem that ( is dense in C(Q).

The finite dimensional cylinders form a basis for the product
topoiogy on {, where a finite dimensional cylinder [A,F]

is defined by

[A,F] := {XGQ, Xn=—L neA,Xn=l, neF\A} c Q,

FeB(S), AcF

The set of finite intersections of the form

-1
n Xn (en) for some F e B(S)

neF

where each e € {1,-1}, forms a basis for the product

topology. Let B be an element of this basis




15
-1

B= n Xn (en) for fixed (en), n e F e B(S)
neF
A := {neF, ¢ =-1}
n
then
B = {XeQ, X_=c_, neF} = {XeQ, X _=-1, neA, X =1, neF\A}
- n n - n n

[A,F]

Now let A denote the Borel algebra on , i.e. the o-algebra
generated by open sets. Each Xn is A-measurable, so the site vari-

ables Xn’ n € S may be regarded as random variables on (Q,A).

Definition 3-1: A probability measure on (Q,A) is called a

random field on (Q,A).

Example 3-1: S =12, Q = {l,—l}z . A random field on Q is a

discrete time stochastic process with state space {1,-1}.

Remark 3-1: Q 1is also a Polish space and a random field P 1is,
as the distribution of the coordinate projections, a projective family

of probability measures, i.e. XF PF = PF where Fl c F2 e B(S)
1°2 1’

and PF is the distribution of the coordinate projections onto sites

i
in Fi’ indexed by B(S). Therefore, by a theorem of Kolmogoroff
(see [1] p. 347), it is enough to specify (PF)’F € B(S) to construct

P.

Example 3-2: Ferromagnet with infinite temperature;

(a) Without external field

paarh = G re B
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(b) With external field

P(Xn=l) p V¥VneS, 0<p<1

P([A,F]) = p P&l (1py 4]

3-2. Definition of Gibbs States

For the finite dimensional case it was possible to define a Gibbs
state by its probability for every configuration, i.e. probability
mass function. This is not possible for the infinite volume case.

The number of configurations is the same as the number of binary codes
of numbers in [0,1]; every configuration represents a code. There-
fore Q has the same cardinality as the continuum. However it is
possible to derive properties of Gibbs states in the finite case such
that these properties are preserved by taking the thermodynamic limit,
i.e. letting S tend to a countable infinite set, in a sense to be
made precise. The following two different approaches define an
infinite volume Gibbs étate in an equivalent way. The equivalence is

established in Theorem 3-1 below.

3-2.1. General Notations

A system of functions ¢ := {QF:QF+]R, FeB(S) where 9 = W

is called an interaction potential on § if:

(1) o) =0

(ii) o sup ) sup{[®A(g) :geQA} < o

ieS A:ieA
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Two sites n,m € S are said to interact if dF € B(S) such that

n,m € F and @F 2 0.

Definitions 3-2:

(a) ¢ is said to have finite range if every site n € S inter-
acts only with finitely many m € S.

(b) & is called H-invariant if it is invariant under a family H
of bijections on S.

(c¢) & 1is called a pair potential if o # 0 <=>F = {n,m} or
F=1{n}; n,me S where ®{n} will usually result from an
external field. ¢ is called a symmetric pair potential if

in addition: ¢ is invariant under ¢:S > S,
¢(n) = m, ¢(m) = n, o(k) = k, k # m,n.

From now on consider ¢ to be a symmetric,invariant pair potential

with
-JX X if F = {n,m}
nm
®F(§) = -HXn if F = {n}
0 otherwise,

where H 1is due to an external field.

Given a potential ¢, an energy function is defined for each

F ¢ B(S) by

3y =
Up(X) =8 ) o

X). (3.1)
AnF#¢

A



3-2.2. Gibbs States in the Sense of Dobrushin

Consider a sequence of finite sets (Si)’ i eIN such that

o]

Si i Si+1 Vi and S = 2 Si . .
Let for fixed i, Fi < Si and Pi be a Gibbs state on W 1.
exp {—BJ ) € €y~ PH ¥ €
P.(X =¢ ,nesS.) n,mes, nes,
i“n n i _ i i ;
Pi(xn=€n’nesi\Fi) z exp{‘—BJ z e_e_—-fH z € .}
nm n
€ ,€ n,meS, nes,
n’ m i i
n,meFi
exp {—BJ z snsm—BH z En}
numeF, neF,
_ i i
z exp {—BJ z snsm—BH Z En}
E € numeF, neF,
n’ m i i
n,meFi
) -—
=3 PF (g), (3.2)
i

where X = (Xn)’ n e Si’= (sn), nes, .

Note that for every 1

@ -—
PF1(§) = Pi(Xn—sn, neFi Xm—sm, meSi\F),

that is P§ (g) is the conditional probability that (sn), n e Fi’
i
is the configuration inside, given the configuration outside is (sm),

me S \F,.
ivi

Dobrushin used this specification to characterize Gibbs states on

infinite S by letting Si -+ 8 in the following sense.
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Let AF be the Borel algebra on Q., F < 8.

Definition 3-3: A random field on  1is a Gibbs state with

respect to ¢ 1iff ¥V F € B(S) the conditional distribution

P(-|A C)()__() is given by (3.2) where F = Fi'
F
Note: P(+[A C) is a probability mass function with
F
dP(- AFC) ;
am = PF s m counting measure.
Since

J£ap = [[fdP(.

A AP ¥ f e C(R),
¢ rC

Definition 3-3 is equivalent to the condition

J£dp = [[fp dmap LV Eec@, (3.3)
F

for random fields to be a Gibbs state.

In order to see that this definition is reasonable, consider the

process (Yi), i eIN defined by

o]
I

P(X, €B, BeA, [A )
i

i Sy

= Pg (g) R if B 1is a singleton.

1

Note that S_\F, - S\F if S, > S, F, > F,
1 1 1 1

A, := o(X_, meS, \F,)
i m ivi
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(Ai), i €eIN is an increasing sequence of o-algebras. Then

Y, = P(XFieB]Ai) €A,
E(YilAi_l) = E(P(xFieBlAi)lAi_l)
= P(g <BlA; )
i
since A _, © A, (see [4] p. 35). Therefore (Y,) is a martingale,

Yi~i 0 V¥V i and hence by a martingale limit theorem

Yi - Yw[P] VB e AFi

([P] means with probability 1) where Y _e¢ A =A , Y =0p (see

[11, p. 332).
Remark 3-2: (pg), F ¢ B(S) is called local specification.

3-2.3. Gibbs States in the Sense of Lanford, Ruelle

Consider the function

TA:Q +Q, A e B(S)

_ Xn n ¢ S\A
TA(§) =

-X neA
n

i.e TA changes spin direction inside of A. Let S be finite

again and A c Fc S. Let Ce A C = {Xeq, Xn=€n, neS\F}.

S\F’
Then
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T,P([8,F]nC) _ P([A,F)nC)
P([@,FInC) ~ P([@,FInC)

exp-{ZB ) J+28 ¥ JK_+ ZBHIA]}

neA néF
meF\A mecA
=3 hF([A,F]nC)
where
hp(X) := exp{ 8 ] J+8 ] JX +gH|F|-g ] JX X -BH ] X_
n,meF mfF numeF neF
neF
(3.4)
Condition (3.4) is the same as
dT, P _ _ _
5 ¥ =hy0T,(X) for X e [8,F] (3.5)

Definition 3-4: A random field P is called a Gibbs state iff

it satisfies (3.5) V A cF c B(S).

Remark 3-3: (3.5) is equivalent to:

Yfec®@: [ foT,dP=/  f£(h_oT,)dP . (3.5")
a,F] & (gp T A
Note: z_(X) := h_(X)
F= X %neF F=
n
then h.(X)
F'2 o -
ZF(X) = pF(g) ¥V F ¢ B(S). (3.6)

Theorem 3-1: The definitions 3-3 and 3-4 are equivalent.
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Proof: (3.3) => (3.5): Let F € B(S); since P o << P,

F
JgeA such that
PFC(B) = [lpgdP ¥ B e AFC
Let £(X) = 1[A’F](§) for AcF; feC=>fcCQ)
_ ® _ ®
fl[A’F]dP = ffl[A’F]demdPFC - fl[A’F]dePFC
h h
- 1 Lap =1 =L oap
[A,F] Zg FC [A,F] Zg
o p® -
=> g(X) = — , X ¢ [A,F] (3.7)
hy (%)

Note that hF is constant in (3.7)

&
{A F]f o T,dP = ffl[A’F](foTA)demdPFc
= jl[A F](foTA)pgdP
3 FC

)
= fl[g’F]f-(pFoTA)dPFc

fl[g’F]f~(hFoTA)dP

which is (3.5'")

(3.5) => (3.3): For f e C(R), Ef = [fdP = E(E(f|A ),
F € B(S). If the conditional expectation can be writtenFas the
integral with respect to a conditional probability, the only part to
show would be that pi is this conditional probability.

Since § 1is a complete, separable metric space, there exists a

version of P(']A ) (see [2]).
FC
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Claim:

L)
p. = P(-|A )
F Fc

To show:

(1) pp®) € A _
F

(11) P([A,F]nB) = [1.p2([A,F])dP, B ¢ A

FC

(i) follows from the construction of p§ in (3-2.2).

(ii) P (B) = ) P([A,FInB), BeA , AcF e B(S)
FC ACF F©
= } T,P([#,FInB) = § f 1.d4T,P
AcF A AcF [g,F] B A
= 1 (h_oT,)dP = 1 (2 _oT, )dpP
ACF [p,Fp] D F A {¢,F1 BUETA
i.e
dp
FC
i ZF o TA on [0,F]

5 5
lel[A,F]dePFc = le(pFOTA)l[¢,F]dPFc

-l 1, (ppoT,) (20T, )dP
JF]

= 1,(h_oT,)dP
RIS

| = 15dP = P([A,F]nB)
[A,F]
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3-3. General Notions to the Structure of the Set of Gibbs States

For a locally compact, countable at infinity space E, Ilet
K(E) = {f, £ € C(Q), Tf compact}

where Tf = {f#0} and E is countable at infinity if there exists a
sequence of compact sets with E as its union.
? 1is compact and therefore satisfies the conditions on E

above. Since Tf is closed in @, Tf is compact ¥ f ¢ C(Q) so
K(Q) = Cc(Q)

Denote now by M(Q) the set of Borel measures on §. By the Riesz
representation theorem, there exists to every positive linear form I

on K(f) exactly one Borel measure u such that
I(f) = [fdu ¥ £ € K(Q)

Note: Since { is metrizable, the Baire algebra coincides with the

Borel algebra (see [1] p. 216).

Definition 3-4: A sequence (un), n 1IN, W€ M(Q) is said to
converge weakly to a measure u € M(Q) if
lim [fdu_ = [fdu , ¥ f e K(Q)
n->o n
Note: Weak convergence means convergence of the sequence of numbers
[fdu_, this limit is unique. Then f4lim [fdu_ is a positive
n e n
linear form on K(Q) and hence there exists an u e M(Q)

such that
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lim [fdu_ = [fdu

n-o>e
Lemma 3-1: Let W€ M(Q) and W weakly, u e M(Q). Then

(uA)n > My weakly V A c S

Proof: XA:Q - QA, XA e C(Q) ¥V A

Jfdx,u_ = [f o X du_ > [f o X,du = [£ax u

A A

¥VIfe C(Q) since f o X, € C(Q).

A

Let G(®) be the set of Gibbs states on § with the same local

specification for a given potential .
Note: G(@) < M(Q)

3-3.1. The Set of Gibbs States

In 3-2.2 the Gibbs states were characterized by their local
specifications, namely a family of conditional probabilities indexed
by B(S). However, it is not always true that two Gibbs states with
the same local specification are the same. This phenomenon represents

a point of central interest to the theory.

Definition 3-5: Phase transition is said to occur if

|G(a)| > 1
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In the following, general properties of G(&) are established leading
to distinguishing properties of certain Gibbs states in G(¢) in case

of phase transition.

Proposition 3-1: If for a pair potential ¢

) J_<e ¥ Fe B(S)
n,m
nuymeF

then G(®) is weakly compact.

Proof: C(R) 1is a Banach space and therefore the unit ball in
C*(Q) is weakly compact. G(¢) is contained in the unit ball of
C*(Q) V¥ & since M(R) c C*(Q) by the Riesz representation. There-
fore G(¢) 1is weakly compact if it is weakly closed and G(¢) is
weakly closed if every limit of a weakly converging sequence in G(9)

is also in G(9), i.e. if for W€ G(d)

lim [fdu_ = [fdu ¥V £ e C(®)

n-><o
= u e G(8)
Since
d
wo€ G6(o): [fdu_ = ffprdmd(ch)n
¢ . o . .
If p is continuous on & , ffp dm is continuous on £ . Set
F F¢ F FC
F = ffpidm
SO

de(ch)n > [Fdu ,
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where u 1is a random field on @ c and
F

[Fai = [[fpgdmdi = [fau

By Lemma 3-1 (qu C) -y . SO u=wu o and
F F F

[fdu = fffpidmdu o l.e.uweG(9)
F

is continuous on § c

p®
F F

9 => h
P e C(RQ ) <=> h_ € C(Q )
F Fc F Fc

where

hp(X) = exp {—BJ ] XX -BH ) xn}

numeF neF

To show: For

1>}

€ Q, e >0 3J8(c) >0 such that for i € 0 with '

d(g,g) < 8, |ﬁ(g)—g(§)| < ¢ where d is the metric defined in (3.1).

1>

Given € 2, ¢ >0 choose vy > 0 such that

gF(g)(l—e_zY) < e and ﬁF(g)(ezY—l) < e
By the assumption

) J _<® VFe B(S)

there exists a finite set M ¢ B(S), M > F with

) I <y (3.8)
n,m

neF

méM




P2 e G(9)

Choose now g € € such that Ym = Xm YmeM so
= = 1
d(X,Y) < z — = §(g)
méM 2
By (3.8) and the definition of EF:
T e 2Y ¢ T %) < T (RyelY
hy@e™ < B(@ < B (De
so
B@) - b < @-DE®) < ¢
F - F - F -
and
B (@) - 5@ > (e DB (R) > -c
F'= F'S F 2
hence
IR@-R@®)| < ¢
and thus p® is continuous on Q
F Fc
Proposition 3-2: G(¢) is convex.
Proof: Let
P = aPl + (l—a)P2 s 0 <a<l, Pl’
then
P = qaP + (1-a)P . F e« B(S)
F© 1F© 2F°
and
P(«|A ) =aP («|A )+ (1-0)P,(<|A )
F LW g 20 e

¢ ¢
dpF + (l—d) pF

o
Pp

i.e. P e G(9)
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Proposition 3-3: G(¢) is non empty.

Proof: Let FY € B(S) with FY 4+ 8. Define random fields on
¢ by
. 9
(i) PY([A,F]nB) = pF([A,F]anC) where A c F c FY’ B € AF \F’
¥
B singleton and C = {geQ, X =-1¥ neF?}

c
ii) P X =-1) =1 Y F
(11) Y( 0 ) n e y

Note: P (C) = 1.
Y( )

C*(Q), which is weakly compact, every sequence of random fields has
a weakly converging subsequence. Assume therefore PY converges

weakly to some random field P.

PY([A,F]nB) = { P_([A,F]]A C)dPY

P_([A,F]|A LN

PY([A,F]IAFC)({Bnc})

= PY([A,F][AFY\F)({B})
SO
P ([AF]) = PY([A’FHAFY\F)
or
pi([A,F]ﬂC) = PY([AsF] IAF \F)
Y

In the limit vy + w: pi([A,F])(g) = P([4,F1|A D)D), X e _
F F

Therefore

P e G(9)

29

Since the set of random fields on § is contained in the unit ball of




30
An e#tremal point of G(®) 1is an extremal set in G(¢) consisting
of only one point, whereas an extremal set E < G(&) is such that
every convex combination of two elements is in E only if both
points are in E. These points play an important role in the theory

of Gibbs states.

Definition 3-6: An extremal point of G(9) is called a pure

state or pure phase, the set of pure states in G(¢) is denoted by

ext G(9).
Remark 3-4: Phase transition is equivalent to
lext G(@)I > 1

Theorem 3-2: [Krein Millman] (see [20] for proof). Let E be
a locally convex topological vector space, satisfying the Hausdorff
axiom. Let K be a non void, convex, compact subset. Then K has
at least one extremal point and K is the closure of the convex hull

of the set of all extreme points.

Corollary 3-1: G(®) has at least one pure phase and every

Gibbs state which represents a non pure phase can be obtained as a

limit of convex combinations of pure phases.

Proof: C*(Q) 1is locally convex, i.e. any of its open sets con-
taining O, contains a convex, balanced and absorbing open set, and
is Hausdorff: The local convexity is easily seen and the separation
axiom follows from the fact that the weak topology is Hausdorff,

which can be proved by using the Hahn Banach theorem. G(®) is a
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non void, convex, compact subset of C*(Q) and the result follows by

Theorem 3-2.

Definition 3-7: A subset of a topological space B is called a

Gc—set if it is the intersection of a sequence of open sets.

Definition 3-8: Let K be convex, compact and u be a prob-

ability measure on the Borel algebra of K. A point Xq € K is
called barycenter of y 1if for each f € C(K) of the form

f(x) = ¢(x) + a0, £ € K¥, 0 eR
£(xg) = [E£(x)u(dx) (3.9)
The following theorem provides an extension of Corollary 3-1.

Theorem 3-3: [Choquet] (see [8] for proof). Let E be a locally
convex topological vector space, which is Hausdorff and K a non
void, compact, convex set such that the induced topology on K is
metr;zable. Then ext K is a Gc—set and hence belongs to the Borel
algebra of K.
For every x ¢ K 3 at least one probability measure u on K such
that p(ext K) =1 and x 1is the barycenter of .

A further result we need is

Lemma 3-2: If E is a compact metrizable space then M(E) is

metrizable in the weak topology (for a proof see [17], p. 148).

In Corollary 3-1 it was proved that every non pure Gibbs state is the
limit of convex combinations of pure phases. The limit of convex

combinations is an integral with respect to some probability measure.
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Corollary 3-2: For every Gibbs state u e G(9) 3 at least

one probability measure P on G(¢) with its Borel algebra, such
that

n(A) = [y(a)dp VAceA
where v € ext (9)

Proof: & is compact and metrizable. By Lemma 3-2 M(Q) is
metrizable and so is the induced topology on G(&) < M(8). G(&) is
a non void, convex and compact subset of a locally convex topological
vector space which is Hausdorff, namely C*(Q). Therefore by Theorem
3-3 3 to u e G(®) at least one such P on G(¢) such that

P(ext G(%)) =1 and u is the barycenter of P:
£(u) = [E£()Py) v € G(9)
where f is as in Theorem 3-3. Set fA(u) = u(A) for A e A then

u(a) = [y(a)p@y) = | y(A)P(dy)
ext G(9)
From the above follows that G(®) is completely determined if the
pure phases are known. In the following various properties and

characterizations of pure phases are presented.

n A . 1s called tail c-algebra. A
FeB(S) F

probability measure P on Q is said to have trivial tail if

Definition 3-9: A :=

P(E) =0 or 1 VEce€ Am.
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Note: If g is measurable with respect to Aw, g 1is constant since
if geA , g is constant on Q_; for ge A, g is con-
FC F ©

stant on QF ¥V F ¢ B(S).

Proposition 3-4: P € G(®) is extreme <=> P has trivial tail.

Proof: (a) Assume P 1is extreme and E € Am such that
0 < P(E) <1. For

A e A: P(A) = P(A|E)P(E) + P(A|ES)P(E®)

The measure P(+|E) on Q is in G(®). To see this note that

P(-

EIAFC) = P(- AFC) =

pi for any F e B(S)

since

Ee A ¥ F ¢ B(S)
£C

EC) is in G(9) by the same reason. Set

One also has P(-

a = P(E), then P(A) = aPl(A) + (l—a)Pz(A) where P. = P(-|E),

1

P, = P(- EC), contradicting that P is extreme.

2

(b) Assume P has trivial tail, P e G(¢) and

P = aPl + (l—a)Pz, 0 <ac<l, Pl,P2 e G(9), P1 << P and therefore 3
g € A with

dp

I -8 820

Epg = [gdP = P_(Q) =1

Let now A e A, B e A




P, (AnB) flAlePl = fflAlePl(°[AFc)dPl

lePl(AiAFC)dPl = lePl(AIAFC)gdP

On the other hand

P (AnB) = [1 1 gdP = leE(lAg|AFC)dP
but since Pl’PZ e G(9)
P.(Al[A ) =P@JA ) =EQ,|A )
1 Fc Fc A Fc
So
J1E(1,glA )dP = [1.gE(1,|A )dP
F F
=> gedA ¥ F e B(S)
c
F
=>g e A =>g constant [P]
Since EPg =1=>g=1[P] and hence P = Pl[P] i.e.
Proposition 3-5: If Pl’PZ € ext G(¢) and Pl|A°° =
P1=P2.
Proof: Label all F € B(S). Define Cl = C .
F
Note that
Aanc=
P
s0
C =A

34

P is extreme.

P then

214

<
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Cn is a decreasing sequence of c-algebras with Cn v+ A_. Therefore

P(-

Cn) > P(- Am)[P] VP e G(3)

Since P;,P, € G(9), Pl(°|Cn) = P, (-

Cn) and since they are extreme

A)

Pl(- Cn) - Pl(- const. = cl[P

1!

Py(+]C) > B,(-]A)

const. = c2[P2]

# c let A, be the set of convergence to then

1 2 1 €1

Pl(Al) =1, PZ(Al) = 0 and therefore, by the assumption, c, = ¢

1 2°

For B e A:

P, (B).= P, (BJA) = P,(B|A) = P,(B)

€ ext G(®) then P, L P

Proposition 3-6: 1If P1 # P 1 E

2 PpsPy

i.e. min(Pl,Pz) = 0.

Proof: By Proposition 3-5 Pl # P2 on Am, but both are tail
trivial, i.e. Pi(A) =0 or 1 for AeA_,1i=1,2. JAce A

s. th.

Pl(A) = 0, P2(A) =1

If BeA with P,(B) >0 =>B c A[P,] since if B n AS # ¢

P2(BnAC) = 0. Also if Ce A with P,(C) » 0 => Cc AC[Pl] => P, LP,.

By Proposition 3-4 it is now possible to obtain conditions for a Gibbs
state to be pure by conditions for tail triviality. The following
result characterizes pure Gibbs states by conditions for tail

triviality.
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Theorem 3-4: (Lanford-Ruelle). Let P be a probability
measure on . Then P has trivial tail iff Vv A e A, ¢ < 0

JF € B(S) such that

|P(AnB) - P(A)P(B)| <e¢ V¥V BeA . (3.10)
F

Proof: Assume (3.10) holds. Let E ¢ Aw, i.e. E e A

VFe B(S). Set A=E to get

P(E)% = P(E) => P(E) = 0 or 1

Conversely define linear functionals on Ll(Q) by

25 () lefdP, BeA
SO

RB(lA) = P(AnB)

2]

A

[tlar = | £ IlLl => Ly € LE(@) = L_()

Ll(Q) is separable and complete and so Li(Q) has a sequentially

compact unit ball. 2B is contained in this unit ball V B ¢ A. Con-

sider now Fn e B(S), Fn + S. Then 3 a subsequence such that

lim 2, () = [fgdP, f e L (D) (3.11)

Dy

g € Lw(Q), Bn c Fg
k k

Since no ZB f depends on coordinates inside of Fn Jgel sat-
n

isfying (3.11) and g ¢ Aco => g 1is constant. From (3.11) follows




that for € > 0 3 Fn ¢ B(S) such that
0

|2p (£) - [fgdP| < e, fe )

Let f = lA’ A ¢ A then (3.12) becomes

|[1,1; dP - g f1,dP| < ¢
"o

For A= Q follows that g = lim P(Bn ). Therefore
k
|flAan dp - len dp flAdPl < g, for some n
1 1
<=> |P(AnB_ ) - P(A)P(B_ )| < ¢
| !

where B arbitrary in F*
1 M

(i) Given any f ¢ Ll(Q) there exists F e B(S)

| [fgdP - [fdP[gdP| < [ g |,

whenever g ¢ L (2 ).

1

Remark 3-5: The following are equivalent to Theorem 3-4.

such that

37

(3.12)

(3.13)




(ii) For each f ¢ C(Q) there exists F ¢ B(S) such that

|[fgdP - [fdP[gdP| < [ g,

whenever g e A o 8 € C(R) (see [19]).
F

(3.14)
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Chapter 4. MARKOV RANDOM FIELDS AND NEAREST
NEIGHBORHOOD GIBBS STATES

Up to now no special structure on the set of sites S was used.
Let S now have a graph structure, i.e. S is the set of vertices of
some graph, where a graph (T',E) is a set of sites T and a set of
edges E such that:

(i) every edge connects two sites

(ii) two sites are connected by at most one edge

(iii) there are no edges connecting a site with itself (i.e. no
loops).
Two sites are called neighbors if there exists an edge connecting

them. For A € S the boundary of A is defined by
3A := {neS\A, I meA, n and m are neighbors}

i.e. JA 1is the set of neighbors of A outside of A.
A set F ¢ B(S) will be called connected if for n,m ¢ F there

exists a sequence of sites n, = n,

0 nl,nz...nk =m in F such that

n, is a neighbor of n A sequence of sites (ni) where n, is

i+1”

a neighbor of n, is called a path.

i+l

A potential ¢ 1is defined as in Chapter 3 and again only

symmetric, invariant pair potentials are considered where

@({Xn,Xm}) = ¢{n’m}(§)
= - X , X e @,
n,m n m -
J = J = J
n,m m,n

and invariant now means invariant under graph-isomorphisms.
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Definition 4-1: A pair potential is said to have the nearest

neighborhood property if Jn _— 0, whenever n and m are not
b

neighbors.

As before Gibbs states are characterized by their local specifications,

i.e. their conditional probabilities.

Definition 4-2: A random field on § is a Markov random field

(MRF) if

(1) P([A,F]/A ) >0 V¥ F e B(S), AcF
FC

(ii) P([A,F]|A ) = (P[A,F]IXk, kedF) V F € B(S) [Markov
FC

property].

It is easy to see that every nearest neighborhood Gibbs state satisfies

has exponential form and J = 0 whenever

, . , é
(i) and (ii) since Pp a,m

n ¢ 3{m}. On the other hand for a given MRFu, it is possible to
define a potential ¢ such that the Markov property of the conditional
distributions yields the nearest neighborhood property of the potential

and u e G(¢) (see [15]). Therefore one has the result:

Lemma 4-1: Every MRF on § 1is a nearest neighborhood Gibbs

state and vice versa.

The conditional probabilities of a MRF, P, in Definition 4-2 are
completely determined by a given nearest neighborhood potential &, if

P ¢ G(9), through




P([A,F1|A ) = zgl eXp{— ) @w(g)} (4.1)

F WnF#0

for A < F ¢ B(S)

The conditional probabilities in (4.1) again are determined by
specifying them for connected F € B(S). Since arbitrary F ¢ B(S)

can be decomposed into

where Fi € B(S) connected and

n

[a,F] = [ [AF,]
Ay

where Ai = An Fi

These conditional probabilities of connected cylinder sets again are

determined by probabilities of the form

aén) = P(Xn=l|k neighbors of n are -1), n e S (4.2)
Since

P([A,F][AFC) = P([A,F][X,, kedF)
can be expressed in terms of aén), k = 0,1...]3{n}|. So G(®)

denotes the set of MRF's such that probabilities of form (4.2)

satisfy

(n) _ exp{-(N-2k)RJ-BH}
% T 2 cosh{(N-2k)BJ+RH} °* (4.3)
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if N 4dis the number of neighbors of n e€ S and ¢ a nearest
neighborhood (n.n.) potential.

A set of graphs for which calculations turn out to be fairly

simple is the set of trees or Bethe Lattices.

Definition 4-2: A graph S 1is called a tree or a Bethe lattice

if
(i) S 1is connected
(ii) S contains no circuits

(iii) Every site has the same number of neighbors.

T denotes the tree with N branches, i.e. each site n € TN has
N+1 neighbors. From the definition follows that to n,m € TN there

exists a unique path from n to m.

Note: For N =1, TN = Z a Gibbs state on Tl is referred to as

the one dimensional Ising model.

For a connected finite subset of TN there exists a simple but
useful labeling: Let M ¢ B(TN) be connected, M = (1,...,k) where

each i has exactly one neighbor j with 1 > j for 1 < i < k;

Note: This labeling is not unique.

T
A state u on § = {1,-1} N is a nearest neighborhood Gibbs

state if the conditional probabilities of the form (4.2) satisfy (4.3)

and is then called Ising model on the tree.




For the repulsive case J < 0 ~it is possible to define a MRF
such that for fixed site n transitions from sites an even number
of branches away from n to sites an odd number of branches away
from n have different probability than from sites an odd number
away to sites an even number away. If this occurs the MRF is said

to exhibit symmetry breaking.

43
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Chapter 5. INFINITELY DIVISIBLE GIBBS STATES

Infinitely divisible distributions have the property that their
characteristic function, i.e. Fourier-Stieltjes transform admits an
exponential representation. The characteristic function of a Gibbs
state is called a correlation function and is of significant importance
in statistical mechanics, since correlation can be measured experi-
mentally and represents therefore also a measure for the reference to
the physical reality of the mathematical model.

The mathematical operation of convolving Gibbs states may be

interpreted as to randomly change the spins.

5-1. General Notations

Let G be a locally compact abelian (LCA) group and Ml(G) the

set of finite, normalized Borel measures. The mapping

6:G" > G
defined by
n
0(gq-vv8) = 1 8;» 8;€6
i=1

is continuous and therefore measurable. Hence ¢ 1induces a mapping

st )™ > Mt by

B, @ ... Bu)B) =1 @ ... By (67 (B)

for any Borel set B.
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Definition 5-1: My % eee kW3S ¢(ul ®...® un) is called the
convolution of SRR L

Definition 5-2: A group homomorphism o:G - C is called an

algebraic character if Ia(x)l =1 V x ¢ G. The group of continuous

characters of G 1is called the dual group G of G.

Remark 5-1: If Gi’ i € T countable, are LCA groups then

A -
e Gi =@ Gi

i.e. a continuous character on the direct product is a product of

characters of each group.

Remark 5-2: The function

u(y) = [YE®uEx) vy eG

on G 1is called Fourier Stieltjes transform of u. Note that u is
a complex valued function.

~

Properties of u:
(i) v is uniformly continuous on G

(ii) pxy = u -y Y ou,y € Ml(G) since

[ydury = [[ Yo du x v = [[Y(x)¥(y)dudy = [Ydu[ydy

~

(iii) The mapping u > p 1is one to one.

Definition 5-3: A measure u on G with up(A-x) = n(A) for

every Borel set A and every x € G 1is called Haar measure on G.
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Note: On every compact topological group exists a unique Haar measure
(see [5]), e.g. on IR the Lebesgue-measure is the unique Haar

measure,

With this it is now possible to define the Fourier transform also for

functions:

Definition 5-4: TFor f ¢ Ll(G), L, with respect to Haar

1

measure X on G,
£(y) = [Y®)E()A(K), y G

is called the Fourier transform of f£.

~

A useful fact for estimations is the Riemann Lebesgue Lemma: f van-
“~ ~ ~
ishes at infinity ¥ f ¢ Ll(G), i.e. f ¢ K(G), where K(G) is

the set of functions £f with compact Tf.
With this preparation, infinite divisibility can now be defined.

Definition 5-5: A measure 4y € Ml(G) is called infinitely

divisible if for each n there exists u, € Ml(G) such that
u=u * ,,. % u (n fold)
or equivalently by property (ii)

~ coon
= (un) .




Example 5-1: Define exp u as

2 n

expu= exp{-u(G)H1l +u+ %T-+ el + %T-+ eo.}

for yu e Ml(G). Then

n
du
n!

A
(exp 1) (v) = [vd expu - [y exp{-u(G)}

n

Il ~18

0

o n
J7 explu(eyy § AL
n=0 )

e (fyam™®
) eXP{—U(G)}——:;r——-
n=0 )

exp{—u(G)}exp{f§du}

exp{f?—ldu}. (5.1)

If Hys My € Ml(G), exp(ul+u2) = exp * exp Hy and from (5.1) fol-

lows that exp u 1is infinitely divisible.

Distributions as constructed in Example 5-1 are called elementary
infinitely divisible distributions and every infinitely divisible dis-
tribution contains an elementary distribution as a factor (with
respect to convolution). The advantage of infinitely divisible dis-
tributions is, that its characteristic function admits a canonical

representation as stated below in a special case.

Theorem 5-1: On a totally disconnected LCA group G an infi-

nitely divisible distribution has the form

() = ¥(xp) * A(y) explf(y-1)dF) (5.2)
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where x

0 € G, XA the Haar measure on a compact subgroup of G, F

a o-finite measure, finite outside every neighborhood of the identity

and
f(l—Rey)dF < o, ¥ v € G.

F is called the Levy-Khintchin measure of u. (See [12] for a proof

and more general cases.)

5-2. The Case of the Ising Model

If a Gibbs state would be infinitely divisible, its correlation

function would have the form (5.2). TFor a countable set of sites 8§,

_ S S
0= @ Wi = Wi = {1,-1}

is the direct product of the multiplicative groups Wi' So by Remark

5-1

since Wi = {1,-1} ¥ 1i e S is a LCA group.

(a) Characters on Wi: Since the characters are linear
v(-1) = y(1)y(-1) and hence +Yy(l) =1 V characters. From
v(-1) *y(=1) = y(1) = 1 follows that +y(-1) has to be real and

A
vy(-1) =1 or -1. Therefore Wi = {Yl,Yz} ¥ i€ S, where

i
=

(=1 v =

Yz(l) =1 Yz(-l) = -1
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and both characters are continuous.
(b) Characters on Q: To each character y on Q exist

characters Y, on Wi, e, € {1,2}, i € S such that

i
Y(X) = 1 YE.(Xi) = I ye.(xi) . (5.3)
ieS i ieS i
€.,=2
i

In order to have Yy be well defined, the last product in (5.3) has to

be finite, i.e.

yX) = 1 v,(X), A e B(S). (5.4)
icA

This means that each character on § can be associated with some set

in B(S). (5.4) is equivalent to

YE = v, &) = T y,(X) = -1y 14nx] (5.5)
icA
where
A = {ieS, €,=2}
1
x = {iesS, Xi=—l}.

On the otherhand, define for given A e¢ B(S)

v, ® = (- Al

Yo is continuous (YA € C), 1linear and has absolute value 1 and

so YA e Q. Therefore:
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Lemma 5-1: For the configuration space § over a countable set S
Q = B(S).

Yy € @ will be denoted by Yp or D, De B(S), D ~ y. Note: The
group operaton on B(S) is symmetric difference.
(c) The Correlation Function: Let now P be a Gibbs state on

2. The Fourier-Stieltjes transform P of P 1is called correlation

function.

1;(YD) = fdeP = f(—l)ID”XIdP = [ XdP=EINX , De B(S)
D D

ﬁ(yD) is called |D|-point correlation function.
Remark 5-3: A Gibbs state P 1is infinitely divisible if there
exists for each n a probability distribution Pn’ such that
P = (ﬁn)n, where P need not be a Gibbs state.
The set {YD:Q(YD)=EYD#O =3 BO for u a Gibbs state is an open sub-

group of B(S), if B(S) 1is viewed as a group under symmetric dif-

ference, since BS is closed. Let H be the annihilator of BO in

Q, 1i.e.
H = {XeQ, YD(§)=1, ¥ YDeBO}
= {XeQ, YD(§)=1, v YDGB(S) with EYD#O

then )\ in Theorem 5-1 can be taken to be the normalized Haar measure

on H. Note that H is a compact subgroup of Q. With these notations:

Corollary 5-1: H {geﬂ, Xn=l or Xn=-l V neS}

X,

X } for O~external field
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A is Bernoulli (%) measure on H and

N 1 if IDl even
A(D) =
0 if |D| odd D € B(S)

Proof: It is easily seen that EYD #0 if D = {n,m} for

n,m € S. The rest follows easily from this and the definition of H?
Lemma 5-2: For a Gibbs state P on § with O-external field

P(D) = Ey, =0 if [D[ is odd

Proof: For a given configuration, I Xn =Yp = 1 iff Ian|
D

is even and Yp = -1 4iff [anl is odd. QD can be decomposed into
QD = QO U Ql, where

Qp = Xeqp, vy (X)=1}

Ql = {)_SﬁQD’ YD()E):_l}
QO and Ql are homeomorphic, take for example f(g) = - g;
f(g) € QO => g € Ql, and f = f-l. f(g) and g have the same dis-

tribution. Therefore

Eyy = P(yp=1) - P(yp=-1)

] P@® - ] @ = 0.
B &

The Haar measure on { 1is Bernoulli (%) measure Q. So the Fourier

transform of £ ¢ Ll(Q) becomes
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£(D) = f(—l)anledQ==f T X £(X)QdX . (5.6)
D

From the Riemann-Lebesgue Lemma follows that for ¢ > 0 3 F ¢ B(S)

such that
[£ED) <e ¥DcFS De B(S)

5-3. Examples of Infinitely Divisible Gibbs States

(a) Infinite temperature model: For infinite temperature there

is no interaction among the particles so the model can be described by

- -HX_ if A= {n}, s.th. [gH| <
2,(X) = {

0 otherwise

which means the only influence is due to an external field H. Since
no interaction occurs P(AlAFc) = P(A), V¥ A € AF’ V F € B(S) and
therefore it follows from the Kolmogoroff construction that G(&) is
a singleton V ¢, i.e. ¥ H.
Let F = {n}
P(Xn=l) = §E§g§§E§ﬁ'=: P, P(Xn=—l) = 1l-p =: q.

Note that

p<3 iff H<O.

Then for F e B(S)

[

P([A,F] P(Xn=—l, neA, Xn=l’ neF\A)

_ _|F\A] 4]
=P q
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With this P can be obtained: Let D e B(S)

A. _ |an| ) D
P(D) = [(-1) P = )

U

i=0 U,
1
where
U, = {Xeq, |Dnx|=1i}
sO
. ol ol i Iply 1 |-t
PMD) = )} ()P, = ] 1D NHap
i=0 Yi=0 8
- -0 ?l = @p-1y/?! (5.7)

If P would be infinitely divisible, there would exist a Pn for each
n with P = (Pn)n. It is possible to construct infinite temperature
models satisfying this: Consider for each n the infinite tempera-

ture model with external field Hn such that

RH =}-ln Lﬂ V1-
n 2 l—nVE:E?
and
" exp BHn
Pnh *T 2 cosh gH
n
Then

1+ 2p-1 n
p =—2fP7= o (2p_-1)" = 2p-1

n 2
and thus P(D) = (Pn(D))n if P_eG(e) for o ~H.

This shows:
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Lemma 5-3: The infinite temperature model is infinitely

divisible.

(b) One dimensional Ising model: This refers to the case when
§ = Z. For this case it is known that G(¢) is a singleton V ¢
(see [6]). It turns out that in the case of O-external field the
Gibbs state associated with a n.n. potential is infinitely divisible
and thus the correlation function has exponential form. Let now

P ¢ G(®) with
-J XX if A= {n,m}, ned{m}
0 otherwise

where J =7J = J.
n,m
From (4) it is known that P is a MRF.

Lemma 5-4: A Markov chain (Xn), n e Z is a MRF and vice

versa.

Proof: A MRF 1is trivially a Markov chain. So assume now

(Xn), n e Z 1is a Markov chain. Assume further that

P(X ,...,X ) >0 Vnk

n+k

Then




P(X_,X_

+1°°°

"Xn+k)

P(anxn+l’°°° n+k) TP

Py 3

ntl’" "

’Xn+k)

0 Kote1)

P(X ,...

»X

n+k—l)

P(Xn+klxn+

Pt

n+k—l)

Lok VP .,

P(Xn

""’Xn+k—l)

X

P(Xn+

so by induction

P(X_|X_

TR ) = P(Xn[X

n+k n+1)

P(Xn

1 Xpai-1

¥V k

X X

n-1’"n-2

R S b SR

N L

)

»X

n+k—l)

n+k

)

P(xn]x X ) =

n-1° n+l""’Xn—k’Xn+k

P(Xn

P(X__

S ST

PX

P(Xn

n_l,...

’Xn+llxn—l

S ¢

|
av]
~
>

So (Xn)’ ne Z is a MRF.
Remark 5-4: For A(n) = o(X
e - k n-—

P(xn|A£“)) - P(Xn|Aén))[P]
where

Aén) 1= o(Xm, meZ\{n})

since

(n) (n)
Ak ¥ A0

1’ n+l’""°

SRR LU TRRRS W)




By (4) every Gibbs state is a Markov-chain and is completely deter-

mined by conditional probabilities of the form (4.2) where

and

n
Il

P(X =1|X _;=-1) = P(X =-1]|X__,=1) = 1-p

so the transition matrix of P becomes

_ (B aq
M= p

The equilibrium distribution is r = (r r_) = (+,%5). Therefore:

=l) _ EXE(—BJ)

P(Xn=l’xn— " 4 cosh BJ

1

Lemma 5-5: The convolution of two one dimensional Ising models
with prescribed potential is again an Ising model with potential of

that kind.

Proof: Let Jl’JZ be the coupling constants for the Gibbs

states and Markov chains Pl, P2 and let

g will denote a configuration for the model Pl, g for P2 and

for P

N
Il
141
1 =<t

56
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For all in the following occurring n,m € Z it will be assumed that

|n-m| = 1. Let o« ,B € {-1,1}
m° m

P(Zn=l[Xm=am,Ym=Bm)

= z P(X =Q ,Y =Q X =a ,Y =B )
n nn n'm m’m m
a e(-1,1)
n
= ) P(X =a X =a )P(Y =a Y =B )
a e(-1,1)
n
i (exp BJlam )(exp BJZBm - exp -BJlam)(exp -BJZBm
2 cosh BJl 2 cosh 8J2 2 cosh BJl 2 cosh BJ2

(exp BJlam)(exp BJZBm) + exp(-BJlam) exP('BJZBm)
4 cosh BJl cosh 8J2

Now if am =B =>Z =1 and

av]
~
™~
o]
]
=
EN
]
Q
g
5*4
[}
Ron)
g
~
"

P(z =1|Z =1)

exp B(J1+J2) + exp(-B(Jl+J2))
- 4 cosh BJl cosh BJ2

If o« =-B =>2Z = -1 and
m

exp B(Jl—Jz) + exp B(Jz—Jl)
4 cosh BJl cosh BJ2

P(z =1]z =-1) =

From (5.8), (5.9) follows that
P(z =1|X ,Y )
n m m

is a function of X .Y =2
m m m

)

(5.8)

(5.9




The same calculation goes through for

P(Zn=-l]Xm,Ym)

where P(Zn=-l|Zm=l) has form (5.9), P(Zn=-l|Zm=-l) form (5.8).

To see that (Zn)’ n € Z 1is a Markov chain let

An = of (xk’Yk) k < n}
A% .= o{(z,) k < n}
n k

. _ . . . S
Since Zk = Xk .Yk is a continuous function on {-1,1}",
(Zk) = (Xk)(Yk), (coordinatewise), is a continuous function and it

follows that

AZ < A

n n °

Let now A € o(Zn), (=> Aeo(Xn,Yn))

yA z
E(A|An) E(E(A[An)|An)

z
E(EA[X__ .Y _)]AD)

= E(A[zn_l)

Since E(A|X ) is a function of Zn-l’ independent of Ai_

n-l’Yn-l
Therefore (Zn)’ n € Z is a Markov chain.

In order that P has a nearest neighborhood potential with

H =0 there has to exist some J such that
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exp(B(Jl+J2)) + exp(-B(Jl+J2))

exp BJ -
2 cosh BJ 4 cosh BJ, cosh BJ, (5.10)

exp(B(Jl-Jz)) + exP(B(Jz-Jl))

exp(-8J) _

2 cosh BRJ 4 cosh BJl cosh 8J2 (5.11)
Subtracting (5.11) from (5.10) yields

tanh BJ = (tanh BJl)(tanh 8J2) (5.12)

which has a solution for J.

Note: (i) J > O
(ii) Since tanh BJ < 1 it follows from (5.12) that
tanh BJ < tanh BJi, i=1,2 and so BJ < BJi, i=1,2

which means convolution leads to higher temperature.

Corollary 5-2: A one dimensional Ising model with n.n. poten-

tial and zero external field is infinitely divisible if J > O.
Proof: For given n choose Jn such that

tanh BJ = (tanh BJn)n
Since

|tanh B3| < 1,

BJn = arc tanh(®/tanh BJ)

n .

exists and P = (P )n where P ¢ G(® ), & ~J
n n n n

The above results were first observed in [18].




5-4. The Levy-Khintchin Representation of the

One Dimensional Model

Assume an Ising model as in Corollary 5-2; since it is infinitely

divisible its correlation admits the Levy-Khintchin representation

|Dx |

P(D) = A (D) exp{[[(-1) -1]dF} V¥ D e B(S).

By Lemma 5-2 and Corollary 5-1 (if H is taken as there)
N exp{f[(—l)anX]-l]dF} if |D| is even
P(D) =
0 if |D| is odd

In order to get the Levy-Khintchin measure, the correlation function
will be derived first. Various details left to the reader in [18]

are supplied here.

Lemma 5-6: If (Xn)’ ne Z is a *1 wvalued Markov-chain with

transition matrix

- (P 1
M (q p)

EX X = EX X n,m € 2 (5.13)
n'm

n m-lEXm—le 3
Proof: It is easily checked that

) (5.14)

EX |X, ;) = X, _jE(X X

k-1
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E(X_X_) E[an(xmlxm_l,...,xn)]

E[X_ E_|X ;)]

E[anm--lxm—lE(Xm|Xm—l)]

EX X EX X

Corollary 5-3: 1If (Xn), ne€ 2 is as in Lemma 5-6

EX X = EX X EX Vn,m (5.15)
n'm

n n+lExn+an+2”’ m—lxm
Proof: Induction, using Lemma 5-6.

Corollary 5-4: 1If (Xn), n € Z is as in Lemma 5-6 and

,Ni are any numbers in Z

1200

EX_ ...X_ ) =EX_ ...X )EX X (5.16)
n, n, n, 0, 1 n, 1 n,
Proof: Like proof of Lemma 5-6.
Lemma 5-7: For the one dimensional Ising model with n.n.
potential and zero external field
. 0 if |D| is odd
P(D) = (5.17)
(P-q)U(D) if D] is even
where
k
WD) = ] mpy = myy

i-1




Proof: The result for |D| odd was already proved. Assume

}. Note that P(D) = EX ...X . The

is even, D = {n,,...,n
1 2k n, Do
proof follows by induction over k.
k =1: EXan+l =p-4q
Therefore by Corollary 5-3
ln,-n, |
21 D
EX X = (p-q) = (p-q)“( )
2
Assume now (5.17) for Dy = {nl,...,nZk_z} and let
D =Dy U {nZk—l’nZk}
P(D) =E T X_=E(T X X +X _)EX_ X
p M p, M2 P2t Mokt Mok
by Corollary 5-4. Successive application yields:
A 2
P(D) = E(II X X JE(X X )...E(X X )
D, "P2k-1 "2kl P2k-1™ okl Pox
u(Dy) (n,, -n )
0 2k 2k-1 D
= (p-q) (p-q) = (p—q)“( )
Notes: - For D connected: u(D) = l%l if |D| even

- Cov(X_,X ) = (p-)* @ with D = {n,m}.

Now the Levy-Khintchin form will be derived. For D € B(S) with

|D| even

|Drx |

-1]4dF}

§(D) = exp{[[(-1)

62
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@) 1n (p-q) = [1¢-1) ™I 17aF. (5.18)

The right hand side will only be non zero if [an] is odd. Then

u(D) 1n (p-q) = -2F(|Dnx| is odd)

-2 ] F(X)
Lef
|Dnx| is odd

Let now g(k) € © be a configuration with

In {geQ,|an! is odd} there are u(D) configurations of the form
g(k)' If F 1is now restricted to these configurations with equal

mass distribution one gets

u(D) 1n (p-q) = —2u(D)F(g(k)) for some fixed k
so choose

{‘—1n(/p—q) if X = ):((k) ¥V k

F(X) =

0 otherwise (5.19)

T satisfies the conditions of the Levy-Khintchin measure in Theorem
5-1 and from the uniqueness of the representation follows that (5.18)
is the Levy-Khintchin measure for the one dimensional Ising model with

n.n. potential and 0 external field.
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5-5. Characterization of Tail Triviality by the
Correlation Function

Let P be a Gibbs state on an arbitrary countable set S. The
correlation function is then given by the Fourier-Stiltjes transform

of P and is a function on B(S):

P(D) = Evy (5.20)

where e 2, vy (X) = -1 Pl o x

s Y .
D D n

i5))

The continuous characters on  can now be viewed as *1 wvalued

random variables with mean

Ey. = ﬁ(D)A

D

and covariance

Cov vpYp = EvaYp = EVpFvg

P(AMB) - P(A)P(B), A,B,D e B(S)

With this it is possible to characterize tail triviality of Gibbs
states in terms of correlation. In (3) it was stated that (3.14) is
equivalent to tail triviality. The idea is now to write (3.14) in
terms of the correlation:

For f e C(Q)

f(x) = ) YD(X)E(D)
DeB(S)

and so
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[fgdP - [£dP[gdP

[T vvaf@e® - (T v, e T v,g(B)
[}t - 4 i |

z % £(A)g(B) [y,vg - <§ f(A)IyA><§ g(B) [vg)

z f(A)(fyAYB—fyAfyB)g(B), " integrals w.r. to P
A,B

] £(A) Cov v,vze(B); A,B ¢ B(S) (5.21)
A,B

This gives rise to

Lemma 5-8 (Waymire): A random field P on  1is tail trivial
if Ve C(Q), 3JF e B(S) such that

|7 @ COV(YAYB)é(B)I <lel . (5.22)
A,B

VgeCQ, geA .
C

Example 5-1: Infinite temperature model with O-external field.
In this case (Xn), ne S is a family of i.i.d. Bernoulli (%) dis-
tributed random variables. Tail triviality follows then by
Kolmogoroff's 0-1 law, but also by Lemma 5-8. Let f e C(Q); by

the Riemann Legesgue Lemma there exists an F ¢ B(s) such that

]%(D)] <1 ¥DcF°, De B(S). : (5.23)

Llet ge A , ge C(Q).
FC
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For A,B ¢ B(S)
Cov(y,,vo) =E T X -ETNXETX
A’'B AAB n A n g D
2
= 1 EXn{l- I (EX )"}
AAB AnB T
0 for A#B
1 otherwise (5.24)
If BnF# @ decompose B into B=B, uB,; B, c F, B, ¢ F*
1 2 1 > 72
g(B) = IYBgdP = fYBlYBzgdP = IYBldPIYBngP =0 (5.25)

So by (5.23-5.25):

| T £ coviy, vpe® ] = | I @@
1 AP

A,B
= |7 E(A)é(A)I
AcF¢
< 7 lew]
AcF¢
Lo [E®T 2] I Epe@wl < el

Since YA(g+) =1 V A e B(S) and therefore P is tail trivial by

Lemma 5-8.
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Chapter 6. GIBBS STATES ON THE BETHE LATTICE

Gibbs states on fhe Bethe Lattice or tree TN were defined in
Chapter 4. Only n.n. potentials, i.e. symmetric, invariant pair
potentials withvthe n.n. property, are considered; so Gibbs states
are also MRF's. Within the class of MRF's on Q there exists a
subclass for which calculations simplify and which will be the main
object of study in the following. This subclass will be called the

set of Markov-chains on Q and can be defined as follows:

Let M be a stochastic matrix

M(1,1) M(1,-1) s 1l-s
M= ( = ( 0<t,s, <1
1

M(-1,1) M(-1,-1) -t t
(6.1)
and r = (r+,r_) the unique invariant distribution.
A random field yu can then be defined by cylinder set prob-
abilities:
|F| .
HUIAED = () T MO %)) (6.2)

where A c F ¢ B(TN) and

This defines a projective family of finite dimensional distributions,
as can be seen by an easy summation and therefore gives rise to a
unique state on £, by the Kolmogoroff construction exhibited in

Chapter 3.
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Note: (6.2) is independent of the labeling, as long as the labeling

introduced in Chapter 4 is used.

States defined in this way by a stochastic matrix (6.1) will be
called Markov chains, since they behave like one dimensional Markov

chains along paths.

Lemma 6-1: Every Markov chain is a MRF and hence a Gibbs

state for a certain n.n. potential ¢ on {.

Proof: Note that finite dimensional probabilities are positive.

let ne Fc B(TN); A

M {n} = o(Xk?k F\{n})

P(X =1]Ap\ (q)) = PX=LIX keF\{nD)

_ P(Xn=l,Xk,keF\{n})
- P(Xk,keF\{n})

= I M(X

[y %)
tepuan}} D71

i.e. P(Xn=l|AF\{n}) depends only on the sites in B{p} ¥F ¢ B(TN)
with n e F. Let now F 4 T in an increasing way, to get the result.

N

Note: Markov-chains are homogeneous, i.e. independent of the position
of measurable sets on the tree. This follows from the fact that

MRF's are Gibbs states with invariant potential and from
r+(l-s) = r_(l-t)
If M denotes the set of all Markov-chains

M c u G(9)
i)
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the set of all Gibbs states with n.n. potential, i.e. the set of all
MRF's on Q.

As it was stated in Chapter 4, to each u ¢ M corresponds a

unique n.n. potential such that
uoe G(¢)

which means every stochastic matrix of form (6.1) determines a poten-
tial through the probabilities (6.2) (see also [16]). The question
which arises now is, does there exist an element u ¢ ¥ with

v e G(¢) for a given n.n. potential ¢ and is it uniquely deter-
mined by this potential. The answer in the case N = 2 1is, that for

every n.n. potential ¢
|MnG(8)| = 1,2 or 3.

If |MnG(®)| > 1, phase transition has occurred. This will be shown
below.

Two Gibbs states His My belong to the same G(¢) if their cor-
responding conditional probabilities (4.2) are equal. These will be
calculated next.

Let

Then



1
P(Xn=l[k neighbors are -1)

1

P(k neighb. are -1) - P(X =1,k neighb. are -1)
P(Xn=l,k neighb. are -1)

P(Xn=—l,k neighb. are —l)
P(Xn=l,k neighb. are -1)

k N-k

) r t (1-t) ) tk(l-s)(l—t)N_k

r_'_(l-s)ksN_k (l—s)ksN_k
and therefore:
@) r_'_(l—s)ksN_k
o = P(X =l|k neighb. are -1) = — —
k n r_t -0 4 r (1-9) "

= (l_s)ksN_k VnelTlT

5 1-0)¥* L (1-s) + (1-s) %MK N

If for a Markov chain E with

k k
Note also that

= = = _ _exp BJ+H
s = P(xn 1{xk 1,kea{n}) 2 cosh BITH

- — - _ _exp BJ-H
t P(xn 1|xk 1,ked{n}) 3 cosh BI-H

and hence
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(6.3)

(6.4)

o, =a Vks= 1...N, then P and P belong to the same G(9).

(6.5)
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So if P,P € G(¢), P,P e M

S t S t

1-s 1-t

1-s 1-t

s(1-s) _ (1-t)t
(1-s)s  t(1-t)

(6.6)

The following calculations investigate for T2 in which cases

[MnG(e)| = 1,2 or 3

Let P,? e M satisfy o, = o, k= 1,2,3 and (6.6). From a, = o

k k’ 0 0
and (6.3) results
a-o¥ta-e _ a-H%ta-e
N ~N
s s
<=> E_]._—_S = [_l__i _.S_]N_l (6.7)
S ~ _t ~
1-s s
Substituting (6.6) into (6.7) yields:
. s t(l_tl +1 - s N-1
t(1-t) _ (l-t)t
(1-t)t (1-t) t(l—tl 4t
(1-)t
or
N-1 st_1 +1 -8 N-1
X = No1 (6.8)
_(1—t)x + t
where

t(1-?)]1/N—1 -
(1-t)t

a~
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then

= X ' (6.9)

If Equation (6.8) has more than one positive, real solution then
|MnG ()| > 1
and phase transition has occurred among the class of Markov chains.

Analysis of (6.8): x =1 1is always a solution to (6.8) verify-

ing that
|MnG(®)| > 1 V¥ ¢,8 n.n.
In this case s = s, T =t as it can be seen from (6.9).
For N =1 (6.8) reduces to
(1-t)x? + (t-8)x = (1-s) = 0
which has only x = 1 as a positive real solution.

(6.8) is equivalent to

st_l + (l-s) _
X - NC1 =0
(1-t)x + t
<=> (1-t)x" + tx - sx" T - (1-s) = 0 (6.10)

Since x = 1 is a solution to (6.10) divide by (x-1) to get

-0 + (otes)™ 2 4+ ... + (I-t-s)x + (1-t-s)x + (1-s) = 0

(6.11)
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which becomes for N = 2
(1-t)x% + (1-t-s)x + (1-s) = 0 (6.12)

and has solutions

_ (sm14t) ¢ e-l4e) s (1-t) os)

2(1-t) (6.13)
Therefore, for N = 2, (6.8) has three solutions if
(s-14t)% - r(1-t) (1-s) > 0 (6.14)

and none of the solutions (6.13) equals 1; in this case the solu-

tions are real and positive. (6.14) is equivalent to
2
(s-t)° + 2(s+t) > 3. (6.15)

1f (s—t)2 + 2(s+t) = 3, (6.8) has two real, positive solutions if
the solution in (6.13) is not equal to 1. 1In all the other cases,
x = 1 1is the only real, positive solution to (6.8), except when
(6.15) holds and one solution in (6.13) is 1. Assume that (6.15)
holds with a '>', i.e. (6.13) is real and positive:

(1) If (6.12) factors into (x-1)2, (6.13) will be 1 in both
cases. This occurs for s =t = %- and in this case (6.8)
has only 1 positive, real solution.

(ii) 1f (1-t) + (1-t-s) + (1-s) = 0 <=> s + t = %- then one

solution to (6.12) is 1.
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Summary:
(a) For N =1, |MnG(®)| will always be one. Since this case
refers to the one dimensional model, this result confirms
again that in one dimension there occurs no phase transition

for n.n. potentials since M = v G(¢), for n.n. poten-

¢
tials.
(b) N = 2:
(1) [M0G(®)| = 1 for (s-t)> + 2(s#t) <3 and s =t =2
(11) |MnG(®)| = 2 for (s-t)% + 2(stt) = 3, s,t # (3,2)
and for s+t = %, s,t # (%,%)
(111) |MAG(8)| = 3 for (s-t)% + 2(s+t) > 3.

Note that for the case s + t < 1, referred to as the repulsive case,
there is no phase transition among the class of Markov-chains.

The fact that phase transition occurs within the class of Markov
chains will ‘be taken as a reason to further study this class of Gibbs

states.

Lemma 6-2: Isotherms for Markov chain Ising models are constants

] t . . .
for Tos 1-t ° An attractive Markov chain Pl and a repulsive P2

represent the same temperature iff

Proof: This follows from (6.5) and the fact that a repulsive

coupling constant J is negative.
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6-1. Infinite Divisibiljity of Markov Chains on the Tree

The use of infinite divisibility was already pointed out in
Chapter 5. It was shown that the convolution of two one dimensional
n.n. Ising models with no external field is again of that kind. As
will be shown this is also true for the subclass of Markov chains
with no external field on the tree. The way to prove this is slightly
different than in one dimension (compare Lemma 5-5). The results

here are new.

Lemma 6-3: Let g, 2 be two Markov chain Ising models with no

external field and Z their convolution. Then

P(Zn=€n|Xk=ak, Y, =B ked{nl}), ne Ty

is not a function of Xk- Y., k € 3{n}.

k’
Proof: This is easily checked by writing out the probabilities

and choosing Ay Bk appropriately.

Note: 1In one dimension it was possible to restrict to only one
neighbor to prove the converse of Lemma 6-3; this is not pos-

sible on the tree.

Theorem 6-1: The convolution of two Markov chains on the tree

with O-external field is again of that kind.

1 _
Note: r+ =r_=73 for H = 0.

The proof is prepared by the following results:
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TN
Lemma 6-4: If Z dis a MRF on = {1,-1} °, D ¢ B(TN)

connected and

_ _ . .ID[-1
P(Zn—l, neD) = s
P(Z =-1, neD) = r_t|D|'1
for some s,t ¢ (0,1) and (r+,r_) with r, +r =1 and

r+(l—s) = r_(1-t), then

e 0] e 0]
P(Zn=en, neD) = W(Zl)s +(1—s) ty T(1-t)

where
“(Zl) i { r, Tf z, = 1
r_ if Zl = -1
e, = # of bonds from +1 to +1
o, = ## of bonds from +1 to -1
e = # of bonds from -1 to -1
o = # of bonds from -1 to +1

Proof: Case 1l: s =t =: p. Assume D ¢ B(TN), ID| = 2; then
the assertion holds. Assume now the assertion holds for D e B(TN)

with |D| =n - 1, D connected. Let now D = D0 u {m}, D0 € B(TN),

IDOI =n - 1, D connected, where m is such that m > k, ¥ k € Dy
P(z, =€, , keDg, Z =¢ ) = P(zm=emlzk= > keDIP(Z,=¢, , keDy)
= P(Zm—em|2k0=ek0, kged{m})P(Z,=¢, , keD()

+ o,+
e, te o]
=P q
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Note that m has exactly one neighbor ko in DO. The proof for

s # t works the same way.
Lemma 6-5: Let D ¢ B(TN), connected and

I = {Xe@, X, fixed, 1eD}

1

where 1 1is the lowest label in D. Then there are (IDL_I) configura-
tions in T with k odd bonds, where a bond is odd if it connects

two sites with different values.

Proof: For D = 2 obvious. Assume now the assertion holds

for D,. |D0| =n-1,D

0 connected. Let D = D, U {n} connected,

0

where again n > k, YV k € D The bond from n to (n), where

0

(n) €D is either odd or even:

0
(i) Even: To get k odd bonds in D, they have to be among
DO’ by assumption there are (IDl—Z) configurations in T
with this property.
(ii) 0dd: To get k odd bonds in D, D, has to contain k-1.

There are (|£1; ) configurations in T with this property.

Together there are (|Dl—2) + (|51I2) =(|DL_1) configurations in T

with k odd bonds.

Proof of Theorem 6-1: Let Px’ Py be two Markov chain Ising

models and P, = Px * P .

y

is a MRF: This is the case when P(Z_=1|Z =e¢ ,
n k "k

Let D ¢ B(TN) be connected. (Zn), neT T

Z N

keD\{n}), where
n € D, is a function of (Zk), k ¢ 3{n}. For |D| =2 this is

obvious.
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Assume now P(Z =1|z = keD\{n}) is a function of (Z, ),

k k’ k
k € 3{n} when |D| = j - 1. Let then |D| =j and m denote the

highest label in D. Note that m has exactly one neighbor in D.

W.L.0.G. m ¢ 3{n}.

P(Z_ =1z = keD\{n})

kK k’

P(z =1, Z
P(

WEe keD\{n})
keD\{n})

Z =

]  P(X =a_, X =0 )P(Y =a_, Y )

ak,keD

kK %n fk

P(X, =a, )P(Y, =

€.)
ak’kéD\{n} K Ok' U Ok

tab+(l—a)(l—b)} z P(X =a , X, = )P(Y =a_, =q, ‘€, )
k,keD\{m} n n k- %y n k k 'k

{ab+(1-a) (1-b)} z P(X =a,)P(Y, =qa, *c.)
ak,keD\{m,n} Xk k k "k 7k

P(z_=1|z,=¢,, keD\{n,n})

k °k’
which is, by assumption, a function of (Zk), k € 3{n}.

ae {px,l—px}, b € {py,l—py}

The Markov property for (Zn)’ n ¢ T, follows then by applying a

N

martingale limit theorem. To see that (Zn), n e TN’ is also a

Markov chain:




P(Zn=l,n€D)

These summations are

6-5 and thus:

P(Zn=l,neD)

where
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P = =
. )EneD X(Xn sn,neD)Py(Yn sn,neD)
n b

1 Igl w ) D|
= €,.0,6.) =
(sn),neD i=2 % (1)7717 2

_ Il
L Z-IEZ M (e(l),ei)My(a(i),ei)

+ Z- -% I Mx(s(l),a M (5(1)’5 )

each summation over T as introduced in Lemma

F
1 D| -1 |D |-k k
7 (| )(Pxpy) (qqu)

k=0

IDE

L1 P o o plk

+7 L TOee) P )
.1l

pl-1_ 1
(pxpy 1,9,) =3P (6.16)

Pz = PyPy * 44

P(Zn=-l,n€D)

) P(X_=e_,neD)P(Y_=e_,neD)
(sn),neD

D]
I M (e
(sn),neD i=2

=

( )’E-)My(_s(i)’_si)

_ 1 [p|-1
2

Pz
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since My(—e(i),—ei) = My(e(i),ei). Therefore Lemma 6-4 applies and

proves the assertion.

Corollary 6-1: The attractive Markov chain Ising model with

O-external field is infinitely divisible.

Proof: If J denotes the coupling constant of the convolution

of two Markov chains with 0 external field and J., J, respectively,

1° 72
their coupling constants then (5.10) through (5.12) hold and so the

proof is the same as of Corollary 5-2.

Remarks 6-1:
. . . 1 .
(i) For a given model with »p >-§ (H = 0), there exists an
attractive and a repulsive model, representing the same
temperature, whose convolution yields the given model:

If Py» P, are chosen to be

-1

P 773 2
21

Py =3 2

Py represents an attractive, P, a repulsive Markov chain
Ising model, both representing the same temperature by
Lemma 6-2. The convolution yields the given model.

(ii) The convolution of two attractive or two repulsive models is
attractive and the convolution of an attractive with a repul-

sive model is repulsive. This is easily checked by (6.16).

\
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Corollary 6-3: A repulsive Markov-chain Ising model is not

infinitely divisible with Markov-chains as factors (still H = 0).

Proof: From Remark 6-1 (ii) follows that the convolution of a

Markov chain Ising model with itself is never repulsive.

6-2. Notes to the Correlation on T
N

The correlation function for n.n. Gibbs states, being of Markov
chain type corresponding to attractive potentials admits the repre-
sentation

P(D) = iH(D) exp{f(g X_-1)dF}, (6.17)
D e B(TN), H a compact subgroup and X the Haar measure on H.

This fact, resulting from the infinite divisibility of the
specified states, will be used to describe the general form of the
correlation. For the following only Markov chain Ising models with
attractive potential are considered; these also detect phase transi-
tion whereas repﬁlsive models do not.

The fact that Markov-chains on trees act like one dimensional
Markov chains on paths, admits the application of Lemma 5-6 and

Corollaries 5-3 and 5-4. Denote by D the smallest, connected sub-

set of TN containing D ¢ B(TN). D e B(TN).
Lemma 6-6: Let D ¢ B(TN) be an arbitrary connected subset with

ID| = n, D= {1,2...n}. Then

E(X;.. X ) = EQGpue X X )EX g X)) (6.18)
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If (n) = n-1:

E(Xp. . X)) = E(Xpo X )E(X 1 °X )
Proof:
E(X;...X ) = ECEEp...X |[A ) = E(Xi”'xn—lE(Xn|X(n)))

{n}
EXpe - XX VEE LX)

using (5.12) and the fact that n has exactly 1 neighbor in D.

Remark 6-2: If D is not connected, (6.17) holds for (n) the
unique neighbor of n " in D; D is labelled in the usual way, D

has the induced labelling.

In the one dimensional case the correlation had the form

(D)

P(D) = (p-q)"

for D e B(Tz), |ID| even

and

I
o

P(D) for |D| odd

where u(D) is given by (5.14).

In this case 1 was a counting function, counting the number of
bonds between succeeding sites in the subset. The idea for the tree
case is to get a similar counting function, which, starting from the
site with highest label, counts the number of bonds to the nearest
site and continues this way. The problem here is, that this nearest
neighbor may not be unique if the corresponding subset is disconnected.

Therefore the connected case will be treated first.




Proposition 6-1: Let g be a Markov chain Ising model with

O-external field and p >-% . Let D e B(TZ) be connected. Then
. (p-q)U(D) |D| even
P(D) =
0 |D| odd
where
u(D) = ) {# of bonds between (i)* and i}
ieD¥*
k
k>1

and the sum starts at the highest label of D, (i)* denotes the

unique nearest site of i in

D¥ =D\ {k, (k)*,k>1}
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Notes: - (n)* = (n) and D: =D if n 1is the highest label in D,
* =
Dn-l D\ {n,(n)}

- D; is in general not connected

- i 1is the highest label in D; if i e D;.

Proof: From the way of labeling and the connectedness follows

that each i ¢ D has a unique (i)* in D;.

P(D)

E(I X,) = E(E(T X, |A )
p K D E {n}¢

n}

E( T X E(anx(n)))

D\{n} k
=E( I X, X ) E(X X )
D\{n} k T (n) (n) "n
=E( I XD tEX KD =

D\{n, (n)}
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E(Dil Xk) .E(X(n).xn)

n-1
E(DJI Xk) .E(X(n).xn) if (n) # n-1
= n-1
E(Xl"'xn—Z) * (p~q) if (n) = n-1
In general:
E(DIL X,) = E(D*H X OB 4y:%,)
i i-1

from where the assertion follows. Note that if i-1 = (i)* then

Di_l = D;—Z and that

E(X(i)*xi) = (p—q)a : a = {# of bonds between i and (i)*}
which follows from Corollary 5.4.

Example 6-1: Let D = {1,...,6} have the form

Both the formal calculation and Proposition 6-1 yield

P(D) = (p-q)°

The calculation of the correlation for disconnected subsets works
principally the same way, but is much more involved and will therefore

be skipped. However some estimates will be given.
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Let P represent an attractive Markov chain Ising model with

O-external field. If X in (6.17) is taken to be the same as in

H
Chapter 5, then

§(D) = exp{f(YD-l)dF}
for D ¢ B(TN), |D| even

ﬁ(D) = exp{f (YD-l)dF}
11D

where

= {Xeq, I X =-1}
D
and

1n P(D) = ~2F(rp).

Let now D=D, uD,, D. nD, = @, |Dl|, D, | even, then

and

in P(D) = -2{F(PD )+F(PD )-F(FD nTp )}

1 2 1 2

Note that
L e = |F(ry] < .
2 D
Therefore:

P(D) = B(D)P(D,) exp{2[  dF)

T
D, Dy

(6.19)
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Lemma 6-7: TFor D e B(T,), ID] > 2, even, J Dl’D c D such

that

Z 2

P(D) = P(Dl)P(Dz) (6.20)

Proof: Assume |D| = n. For connected D the assertion follows

from

with

with

where

W.l.0

by th

Proposition 6-1. Let D be disconnected and let n be the site

highest label and longest path to the lowest label in D.

Case I: n has a unique nearest site in D, n. Let

{n,;}, D2 =D\ Dl and the assertion follows from Remark 6-2.

Case II: n does not have a unique nearest site; 3 sites m,k

the same number of bonds to n. Assume m > k and let Dl= {n,m}

P(D)

E(E(T X, |A )
p *t {n}

2
= E(E(XS 1 X, |A )
Jp P )€

= E(X, T YE(X_+X,)
J D\ {n} Xk nod

(n) in D, 5 ¢ D

3

.g. j 1is the nearest site of m in D u {j}
P(D) = E(X X,)E(X X,)E( T X,)
ndl " p\{a,m ?
= E(X X )E( I X.)
nm D\{n,m}
= ﬁ({n,m})é(D\{n,m})

e fact that j 1is on the path between n and m and Lemma 5-6.
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Corollary 6-5: If D e B(Tz), ID[ even, 34 D, <D, iceI,

|1| < » such that

P(D) = g P(Di)

and Di is a path V¥V 1i.

Proof: The result follows by applying Lemma 6-7 to Dl’ D2 and

their factors. Moreover Di can be taken to have IDi! =2 VvV 1i.

Corollary 6-6: For D ¢ B(TZ)’ |D| even

p(D) = (p=q)" P

where u(D) is a function of the set D.

Proof: Follows from Corollary 6-5, taking

u(@ = J u)

iel
Remark 6-3:

u(D) = min{ Z u(Di); (Di) finite decomposition of D}
iel

= min{ z u(Di); (Di) decomposition of D with

iel
ID,| =2 V¥ i}
1

follows inductively from Lemma 6-7 and its proof.
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Properties of u: (defined for D e B(T,), |ID| even)

(i) w(D) z_J%%L by Corollary 6-5.

Let D,,D, € B(Ty), |Dl|,|D2| even, D, n D, = 9.

(ii) u(DlUDZ) :_u(Dl) + u(Dz) by Remark 6-3.

(iii) If Dl n 52 = @ then u(DlUDz) = u(Dl) + u(Dz) by Corollary

6-5 and Remark 6-3.

(iv) P(D uD,) > P(D)P(D,) by (ii).

(v) exp{2f dF} > 1 by (6.19) and (iv), therefore
TDlTDz
{ : dF > 0 A/ Dl’DZ disjoint and thus F non negative.
Dl D2

Let D;,D, € B(T,), |D |D2| even:

.

(vi) P(D4D,) > P(DIP(D,)) by (iv).

(vii) 0 < Cov Yp. Y <1l by (vi).
u(DlADz)
(viii) Cov Yp YDZ < p-q since if either (p-q) < p-q or
1
u(DlADz)
(p-q) = p-q and then u(Dl) + u(Dz) > 0.

The following lemma gives a sufficient condition for tail triviality,
showing that the Markov chain Ising models we have been looking at

are extreme.
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Lemma 6-8 (see [19]): P, representing a n.n. Gibbs state on
T
Q= {1,-1} N, is tail trivial, if for each D € B(TN), e >0

F e B(TN) such that

L Imax covivvple@ | < llgll, ¥ geA ,gec@
AcB(T,) BeD F
AcFC

Corollary 6-7: The Markov chain Ising model with O-external field

is extreme.

Proof: For D ¢ B(TZ)’ choose F such that F =F > D, then
AnB=¢ ¥V Bc D, Ac F¢ and hence u(AAB) = u(A) + u(B) by
property (iii) => Cov(yA,yB) =0 V¥VAC FC, B cD, A,B ¢ B(?Z), if
|A|, |B| are even. For |A|, |B| odd, the result follows by a

similar argument as in Example 5-1.




Chapter 7. ANOTHER APPROACH FOR THE GRAPH Zd

The following approach will emphasize more the property of the
interaction of being invariant under a certain group of graph iso-
morphisms and will develop the theory of Gibbs states by considering
the set of invariant measures for this invariance group, where Gibbs
states will then be characterized within this set.

d

Let S =2 for some d. A family of graph isomorphisms is

defined by the group of translations
a e Zd, T :Zd - Zd
a
Ta(n) = n+a = a+n, ne 2

Each Ta defines also a mapping Ta:Q > Q by

T,(X) =

11
1541
11
m
D

where Y =X .
n

Each Ta is continuous as a mapping on  and thus defines also a

mapping

Ta:C*(Q) > C*(Q)

by

Tu(a) = w(T(A), AcA, ueCx®)

Remark 7-1: For f e C(Q)

ff 0 Tadu = fdeau ¥ a ¢ Zd

90
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which follows by the transformation lemma.

Let M(Q,Ta) denote the set of probability measures on {,

which are invariant under Ta’ i.e.

for o€ M(Q,Ta) Tau =y
The set
M(Q,H) = n  M(Q,T))
a
: acl

is then the set of probability measures, which are invariant under

the group H of all translations on Zd.

Properties of M(Q,Ta):
(i) M(Q,Ta) is non empty: Let u be the normalized Haar

measure on {.
(ii) M(Q,Ta) is convex.

(iii) M(Q,Ta) is compact: M(Q,Ta) is contained in the unit ball
of C*(Q), which is compact. Assume W€ M(Q,Ta), WM

weakly. Then
[ o T du = [fdu ~ [fdu
but also

JfoT dy ~ [foTdu £ eC(R)
a n a

and hence Tau = U, U € M(Q,Ta) S0 M(Q,Ta) is closed.
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(iv) v € M(Q,Ta) is extreme iff Ta is ergodic under u:
(a) Assume 1 € M(Q,Ta) and Ta not ergodic, i.e.

JAe A, 0<up(A) <1 and TaA = A. Then

u (AB)

Cc
]Jl(B) = W UZ(B) = U(A—B)

n(a%)

define two measures in M(Q,Ta) with
W= oan, + (l—cx)u2 » o = p(A)

(b) Assume Ta is ergodic under u and u-= Ay + (l—a)u2

then Hy << u and

f dul f dul f dul
u, (E) = | = du ~— du + — du
1 g dv gnr E 9V gt g W
Since ul(TaE) = ul(E):
du du
1 1
u, (T E) = [ — du + [ —=— du
17a EaT E ¥ T Eng
a a
and so
du du
1
f :ﬁ%-du = f ?ﬂr-du (7.1)
T E\E E\T E
a a
dul

< 1} one has that

If u # Hy then for E = {
u(E\TaE) = u(TaE\E) and so (7.1) can only hold if u(E) = ul(E) =0

which means u 1is extreme.
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From the definition of M(Q,H) follows that this set has also
the properties (i) through (iii). Furthermore:
(iv)'" If p e ext M(Q,Ta) for all a € Zd then u € ext M(Q,H).

The converse is not true.
d
Let F e B(z).

Definition 7-1: For u € M(Q,H) the entropy of u in F is

defined by
hp() = - ] w@ log u(@, uX = u(X|sites in 0 _ are 1)
Zen F
2€p
log = 1n .

Let for a H-invariant potential ¢ GO(®) denote the set of

H-invariant Gibbs states in G(®).

Lemma 7-1: If u e GO(®), where ¢ is an H-invariant poten-

tial, then
d -0 =
log Z_ = h (1) - ) &)U (X)
F F = =/ F 2
XeQ
- F
d =
= h(») - IUQdu, ANEE ) exp{—UF(§)}
F F ¥ -
Xef
- F
where Ug is the energy function defined by (3.1).
Proof:
- d - )
o) == ) w@I[-0p& - log Z.]
F = - F = F
§eQF

sO




94

- & = -
ho() - _1 w@US@) = log 2o T w®
F g F = 2
Xef Xef
2V 25VF
_ &
= log ZF

Definition 7-2:

-1
h(u) := lim |F| “h_(w) (7.2)
Fzd F

is called entropy; F - Zd in the sense of van Hove.
Note: h(u) exists and is finite ¥ u € M(Q,H) (see [14], p. 46).
For a given H-invariant potential ¢, define

e s -1,.0
A 4i= lim |F| U

? F~>Z
d d .
FeB(Z), F>2 in the sense of wvan Hove.
Note: A is a continuous function.

o

Definition 7-3: The function

P(¢,H) := sup{h(u) - [A,du, u € M(Q,H)}
is called pressure.

Notes: - The supremum in Definition 7-3 is finite.

- If the supremum is obtained for wu € GO(Q)C M(Q,H) then
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Lim, IFI'l[th) - fuf;du]

P(%,H)
| F~>Z
|

©

lim |F|_l log ZF

F-zd

by Lemma 7-1, i.e. the pressure for Gibbs states is the

i free energy per site.

Definition 7-4: A measure u € M(Q,H) is called an equilibrium

state for ¢, whenever

h(uw) - [Adu = P(&,H)

The set of equilibrium states for ¢ 1is denoted by MQ(Q,H).

Remark 7-2: Equilibrium states maximize the difference between
entropy and energy per site, which is an expected fact since equi-
librium states in physics represent states with highest entropy and
lowest energy. Pressure is the maximum of the difference between

entropy and energy per site. This is referred to as the variational

principle.

Let for u € M(Q,H) and F ¢ B(Zd)
@—
ARRE D) exp{-U,(X)}
§eQF

Lemma 7-2: TFor u € M(Q,H), F € B(Zd)

8 8
hp(u) - [Updu < log Zp (7.3)
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-1 u®{log n@H(® )}

§€QF
® =
_ exp{-U_(X)}
= ] u(® log .
XeQp u(X)

and the result follows by the concavity of the logarithm.

Corollary 7-1: If vy ¢ GO(Q) then 1y € MQ(Q,H) and vice versa.

Proof: Equality in (7.3) holds iff u(g) = (Zi)_l

exp{-UZ (D) }
for g € QF, i.e. 1€ GO(Q). Taking the limit in the sense of
van Hove of IFl_l[hF(u) - fUidu] as F -» Zd, yields the result.
So one has GO(Q) = MQ(Q,H) for any H-invariant potential ¢ and
also that MQ(Q,H) is non empty, convex and compact. Extreme Gibbs

states, i.e. extreme invariant equilibrium states can be described by

properties of tramnslations:

Lemma 7-3: H-invariant sets are either in Aw or have

u-probability ‘0, for wu a Gibbs state.

Proof: Assume T A=A Va, Ac A_. Then 3 A.By # 0 s.th.

A=A nB,,A €A, B, ¢ A for some F ¢ B(Zd). From the invari-
1 1 1 F 1 FC

ance follows then immediately that A 1is a singleton.

Corollary 7-2: If u 1is extreme in MQ(Q,H), all H-invariant

sets are trivial: Extreme states in MQ(Q,H) are called H-ergodic.
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Proof: Since non trivial H-invariant sets are contained in Am,

the result follows by Proposition 3-4.

Lemma 7-4: If for some a # 0, Ta is ergodic under v € MQ(Q,H),

then py is extreme in MQ(Q,H).

Proof: MQ(Q,H) c M(Q,H) < M(Q,Ta) Vace Zd. If a ¢ Zd is

such that Ta is ergodic under u, then u 1is extreme in M(Q,Ta)
and if u is also in MQ(Q,H), u is also extreme in MQ(Q,H). Note
that for a = 0 no extreme state in M(Q,Ta) is in MQ(Q,H) if ¢

is non trivial.

From now on let H = {Ta}, a# 0. Then, by [17] Theorem 9.13, noting

that Corollary 7-1 remains true:

Corollary 7-3: For H-invariant potential ¢, u ¢ GO(Q) is a

pure state iff Ta is ergodic under u, for any a # 0.

The representation of non pure Gibbs states in Corollary 3-2 is called

ergodic decomposition.

Proposition 7-1: The following are equivalent for H-invariant ¢:

(i) p e GO(Q) is extreme for H = {Ta}, a # 0.
(ii) For any a € Zd\{O}, T, 1is ergodic under .
(iii) If f e A and f o Ta = f[u] then f is constant, for any
ace Zd\{O}

(iv) ¥ A,B ¢ A
n-1

1
= .z

W(T_1AnB) » w(AuB)[u] V¥ a#0
n l=0 a
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(v) v has trivial tail.

Proof: This summarizes preceding results and different ways to

describe ergodicity.
Note: (i) => (iv) is implied by Theorem 3-4.

Lemma 7-5: For 1 € GO(Q), a# 0; Ta is weak mixing, Ta is

mixing imply that wu has trivial tail.

Proof: Mixing implies weak mixing, which implies ergodic;

ergodicity implies tail triviality by Proposition 7-1.

Lemma 7-6: If 1y € GO(Q) is extreme, then

n->o 1

n-1 .
lim 1 z f(Tli) = ffdu[u], f el (R),a#0,Xeq
n 20 a- 1 -

Proof: This is Birkhoff's ergodic theorem, which applies by

Proposition 7-1. With Lemma 7-6 it is possible to describe correla-

tion: Note that for D € B(Zd), Yp € Ll(Q).

Corollary 7-4: For D € B(Zd), U o€ Go(é) extreme

' 1 gt iz
WD) = lim = )y (T[] ¥ D. (7.4)
n+e  i=0

Using the representation (7.4) it is possible to derive conditions for

tail triviality of Gibbs states in terms of the correlation.
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Lemma 7-7: If vy e Mé(Q,H), D e B(Zd), ae Zd then

lim u(D+a) = u(D)
|afe

Proof:

[P
=
]

p(D+a) IYD 0 Tadu

= fYDdu

|
—
)
w)
[o P
—H
=

which remains the same by taking the limit.
Lemma 7-8: If u € ext Mé(Q,H), then

lim u(MAN4§) = n(Du(N), ¥V M,N € B(z9 (7.5

13 ]

Proof: lim up(MAN+j) exists since u € ext Mé(Q,H) and by
|3 [

(7.4)

n-1
o . . 1 is
}1m u (MAN+3) }1m lim = .Z YMAN+j(Ta(§))[u]
|J|—)oo |J|—)oo n->o i=0

1 n-1
lim lim = )
o [j e T 120

(T @ g TEN ] (7.6)

where the inner limit exists. Therefore also

ji-1 . ~
im T % Y (To®) = w(+ia) (7.7)
5 |0 k=0

exists and equals lim YN+j(T:(z)) with probability 1. Hence (7.6)
3]

becomes
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N n-1 . N
lin p@AN+) = lim = 4 7 v (t1 @) - p(wtia)
. n . M*"a -
|J >0 n->ow i=0

= p(N) * u(M)
by Lemma 7-7. (7.5) means if u € ext MQ(Q,H) then

lim Cov(y ) =0, N,M € B(Zd)

|5 ]

NYM+j

And as a last characterization of pure states:

Proposition 7-2: For 1y € MQ(Q,H) the following are equivalent.

(i) v is a pure state.
(ii) For a probability measure m on  with m << py, a € Zd\{O}
1% g
- z Tam > qu
" i=0 '
n-1

1
(iii) = ) & . _ » ulu]
" is0 T ()

Proof: (i) => (ii): Let f € C(), then

n-1 . n-1 :
fea 27y 1t =LY Jfo mTim
Pi=0 ° ti=0 4
1 nol -1 dm
=;izo Jf ot 3 o

+

dm _
ffdufa—l- du = [fdu

by (3.13).




(ii) = (i): TFor given f e C(Q), g € Ll(Q) with respect to

Define for B € A:

m(B) = C [lgdu ; €= (Jga) ™"
Then
1 ot i
=1 J£ o1, -gdu~ [£dufgduln]
i=0
which is equivalent to u being ergodic.
(i) => (iii): Apply Birkhoff's ergodic theorem.
(iii) => (i): From the construction of measurable functions
n-1

z £foT - ffdu[u], f e A
i=0 a

B

Let f e C(R), g € Ll(Q), then

1 n-1
= ]

i
- £ o T_g » gftulul
i=0

Using the dominated convergence theorem yields

n-1 .
} Jfo T;gdu > [gduffdulu]
i=0

1
n .
. . : . d .
If an H-invariant, extreme Gibbs state for H = {Ta, acZ } 1is not
extreme among all Ta—invariant Gibbs states, u has an ergodic
decomposition in terms of extreme, Ta—invariant Gibbs states and

symmetry breaking is said to occur. In the other case all results

d
hold with H = {Ta, aeZ }.
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