


AN ABSTRACT OF THE THESIS OF

David Barry for the degree of Master of Science in Electrical and Computer

Engineering presented on May 31, 2017.

Title: Channel Estimation in TDD MU-MIMO Systems using Sub-Linear Sparse Signal

Recovery Algorithms

Abstract approved:

Mario E. Magaña

Massive Multiple-User Miltiple-Input Multiple-Output (MU-MIMO) wireless communi-

cation systems incorporate promising advanced strong technologies for upcoming 5G

communications. To obtain some of the high spectrum and energy efficiencies bonuses

brought by MU-MIMO systems, the ability to obtain Channel State information, espe-

cially on the receiver side (CSI), is important. To minimize the amount of overhead and

the complexity caused by the more common Frequency Division Duplexing standard, a

Time Division Duplex scenario will be considered. The scenario will exploit the spar-

sity of the CSI in the angular domain to leverage compressive sensing techniques for

channel estimation. The characteristics of the DFT matrix will be exploited to recover

major channel components with sub-linear computational complexity. Simulation results

will demonstrate that the algorithm can, with relatively low error, estimate the major

components within a channel matrix while reducing the complexity of calculations.



c©Copyright by David Barry
May 31, 2017

All Rights Reserved



Channel Estimation in TDD MU-MIMO Systems using Sub-Linear
Sparse Signal Recovery Algorithms

by

David Barry

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented May 31, 2017

Commencement June 2017



Master of Science thesis of David Barry presented on May 31, 2017.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

David Barry, Author



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advising professor, professor Mario E.

Magaña. His patience, intelligence, and resourcefulness have helped guide me throughout

the course of my research and course work. During every stage of research and thesis

writing, Dr. Magaña was always available for my questions, even when his schedule was

tightly packed. Without him, I probably would never have chosen a topic for my thesis,

especially one that I enjoy so much.

Next, I would like to thank my family. My parents, Jeff and Bobbi Barry have been

constant supporters of my endeavors into the Electrical Engineering field. Their love and

encouragement have helped me to always strive to be better. My sister and brother-in-

law, Val and Isaac, have also helped me tremendously in settling into and handling life

in graduate school.

Finally, I want to thank all my friends at Oregon State University. Whether new or

old, they have all helped me grow and learn. While too many to name, all my companions

have helped me look at problems from new angles, learn new information, or relax, even

under the most stressful of times.

Thank you all.



TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Notation and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Telecommunication Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Wireless Channel Physical Modeling . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Channel Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Multipath Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Baseband Equivalent Model . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Rayleigh Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Stable Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Reconstruction Algorithms . . . . . . . . . . . . . . . . . . . . . . 11

3 System Modeling 13

3.1 Angular Domain Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Proposed Channel Estimation 23

4.1 Ideal Algorithm Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Measurement Design . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Bin Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.3 Bin Detection and Peeling . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Noisy Recovery Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Measurement Design . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Bin Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.3 Single-ton Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.4 Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Other Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



TABLE OF CONTENTS (Continued)

Page

4.3.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 SPRIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.3 Computational Complexity Comparison . . . . . . . . . . . . . . . 34

5 Algorithm Performance Evaluation 35

5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Gaussian Channel Estimation Quality . . . . . . . . . . . . . . . . . . . . . 37

5.3 Threshold Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Large-Scale Fading Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Angular Domain Estimation Quality . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusion 65

Bibliography 65



LIST OF FIGURES

Figure Page

1.1 MU-MIMO System Illustration [1] . . . . . . . . . . . . . . . . . . . . . . 1

2.1 High Level Configuration of Cell Networks [2] . . . . . . . . . . . . . . . . 5

2.2 Graphical Representation of Fading [2] . . . . . . . . . . . . . . . . . . . . 7

4.1 Divide and Conquer Strategy [3] . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Frequency Visualization [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Frequency Combination [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 MSE calculated over SNR (dB) for 8 MU and 64 base station antennas. . 37

5.2 Random channel coefficient tracking for 8 MU and 64 base station antennas 38

5.3 Random channel coefficient tracking for 8 MU and 64 base station antennas. 39

5.4 15dB SNR channel estimation error for 8 MU and 64 base station antennas. 40

5.5 15dB SNR channel estimation error for 8 MU and 64 base station anten-

nas. (A) The magnitude difference between real components. (B) The

magnitude difference between imaginary components. . . . . . . . . . . . 41

5.6 2σ cutoff 15dB SNR channel estimation error for 8 MU and 64 base station

antennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7 2σ cutoff 15dB SNR channel estimation error for 8 MU and 64 base station

antennas. (A) The magnitude difference between real components. (B)

The magnitude difference between imaginary components. . . . . . . . . . 43

5.8 MSE calculated over SNR (dB) for 16 MU and 128 base station antennas. 44

5.9 Random channel tracking for 16 MU and 128 base station antennas . . . . 45

5.10 Random channel tracking for 16 MU and 128 base station antennas. . . . 46

5.11 15dB SNR channel estimation error for 16 MU and 128 base station an-

tennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



LIST OF FIGURES (Continued)

Figure Page

5.12 15dB SNR channel estimation error for 16 MU and 128 base station an-

tennas. (A) The magnitude difference between real components. (B) The

magnitude difference between imaginary components. . . . . . . . . . . . 48

5.13 2σ cutoff 15dB SNR channel estimation error for 16 MU and 128 base

station antennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.14 2σ cutoff 15dB SNR channel estimation error for 16 MU and 128 base

station antennas. (A) The magnitude difference between real components.

(B) The magnitude difference between imaginary components. . . . . . . . 50

5.15 Threshold tracking for 8 MU and 64 base station antennas. . . . . . . . . 51

5.16 15dB SNR performance for 8 MU and 64 base station antennas. . . . . . . 52

5.17 Threshold tracking for 16 MU and 128 base station antennas. . . . . . . . 53

5.18 Random channel tracking for 16 MU and 128 base station antennas. . . . 54

5.19 The computational complexity of the system calculated over the number

of mobile users on a per antenna basis . . . . . . . . . . . . . . . . . . . . 55

5.20 Affects of B
1/2
lj on MSE for 8 MU and 64 BSA . . . . . . . . . . . . . . . 56

5.21 Affects of B
1/2
lj on MSE for 16 MU and 128 BSA . . . . . . . . . . . . . . 57

5.22 MSE calculated over SNR (dB) for 8 MU and 64 base station antennas. . 58

5.23 Random channel coefficient tracking for 8 MU and 64 base station antennas 59

5.24 Random channel coefficient tracking for 8 MU and 64 base station antennas 60

5.25 MSE calculated over SNR (dB) for 16 MU and 128 base station antennas. 61

5.26 Random channel coefficient tracking for 16 MU and 128 base station an-

tennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.27 Random channel coefficient tracking for 16 MU and 128 base station an-

tennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



LIST OF TABLES

Table Page

3.1 B
1/2
lj Singular Value Comparisons . . . . . . . . . . . . . . . . . . . . . . . 22



Chapter 1: Introduction

1.1 Challenges

Over the past twenty years, the simple multiple-input multiple-output technologies were

studied. These technologies improved the system capacity of wireless communicating

systems. They also improved their reliability. While initial MIMO work focused on

point-to-point links, multi-user multiple-input multiple-output (MU-MIMO) is becoming

a widely discussed topic. This move has allowed the study of a single base station with

hundreds of antennas to be connected with many individual and simple users. This leads

to two important results. One, the expensive multi-antenna equipment is only required

at the base station, so the users only need cheap single-antenna devices. Two, Because

of the system’s user diversity, the system generally suffers less from the propagation

environment the the point-to-point system does [1].

Figure 1.1: MU-MIMO System Illustration [1]

In general, the MU-MIMO format has become important in standars such as 802.11,
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802.16, and LTE [1]. Most implementations only use a few antennas, but papers have

proposed systems with well over 100 antennas. The 3 key reasons for this suggestion are

that effects due to noise and small-scale fading are reduced/eliminated, the amount of

users is independent from the size of a base station cell, and the required transmission

energy trends toward a minuscule number. Of course these are idealistic in nature, but

most of the effects can still be felt. This change in hardware structure and duplexing

require development of new system algorithms to keep complexities low.

The goal of this thesis is to develop a method to acquire channel information at the

base station side of the system while also keeping computational complexities below the

linear scale. The common approach currently utilizes a Least Squares method [4],[5]

which requires linear growth in both the computational and measurement complexity as

the number of antennas increases. Another common approach is the Minimum Mean

Square Error approach which has similar conditions [5],[6]. In this thesis we will discuss

the sparsity of the channel propagation coefficient matrix and how we can use compressive

sensing techniques to estimate the channel in a sub-linear time frame.

1.2 State of the Art

To cover these challenges, it is important to review similar discussions in other papers.

In [7], Xiongbin Rao, Vincent Lau, and Xiangming Kong employ a modified version of

the Orthogonal Matching Pursuit (OMP) algorithm to the sparsity of a massive MIMO

channel. This paper first identifies the common support within the assumed joint sparsity

channel matrices. After the common support is identified, the individual remaining

supports are identified to recover the whole support. The main theory of this method

is again revised for the creation of a modified subspace pursuit algorithm in [8]. In
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this documents, Xionbin Rao and Vincent Lau exploit the information quality and the

support of the system to recover the channel matrix. In [9], Yang Nan, Li Zhang, and

Xin Sun exploit the block sparsity of the channel matrix in TDD mode to recover the

channel matrix. With an auxiliary block subspace pursuit algorithm and the path delay

information acquired from the up-link signal, the authors propose a method to reduce

the potential pilot overhead by near one-third.

Recent reports have made modifications to the standard Least Squared methods,

Minimum Mean Squared Error Methods, or l1 minimizations. [5] proposes an iterative

search using a subgradient method. Simmilarly, [6] first compares the LS and MMSE

methods before implementing a H-infinity approach for suppression of pilot contamina-

tion. [10] employs Multiple Shrinkage Factors to improve the LS approach.

Another common aspect for study is within methods to design pilot symbols in such

a fashion as to reduce the amount needed. For example, in [11], compressive sensing

theory is utilized to design the pilot symbols and their sequences in order to reduce the

measurement and calculation complexities. In [12], You, Gao, Sindlehurst, and Zhong

produce a plan to increase the amount of pilots by making the phase shifts adjustable.

Also, Gao, Zhange, Dai, and Han present a spectrum-effecient channel estimation tech-

nique to reduce pilot overhead in [13].

Finally, this thesis would be remiss to not recognize the effort put forward by my

colleagues in [14] and [15]. In Yichuan’s thesis, the SPRIGHT framework presented in [16]

was adapted and tested in terms of a TDD MU-MIMO system for channel estimation.

This work is building directly off of that work’s efforts. Meanwhile, [15] presented a

Kalman filter approach to estimate the channel.
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1.3 Proposed Method

The goal is to estimate the channel via uplink signals from mobile users in a sub-linear

time frame. Functioning in TDD operation mode, the following work will take advantage

of the intrinsic sparsity of the channel matrix and estimate the channel. The algorithm

used will take advantage of the properties of the Discrete Fourier Transform matrix

and Bipartite Graphs to separate the results into single, zero, and multi-ton bins based

on how many relevant paths are within the channel matrix and affect that output.

The algorithm will then use a peeling method based upon the known bipartite graph

to estimate the single-ton bins and remove the critical pieces from multi-ton bins to

create new single-ton bins. This methodology can be completed all within a sub-linear

measurement philosophy and a sub-linear computational time.

1.4 Notation and Organization

Throughout this thesis, we use bold lowercase letters to represent vectors containing

complex samples such as x, with elements xij . Upper case letters represent matrices, X.

The thesis is organized as follows. Section 2 describes background information cover-

ing Telecommunication Systems, Wireless Channel Modeling, and Compressive Sensing.

Section 3 continues by developing the system model in the angular domain. Finally,

section 4 presents the channel estimation framework used and simulates the system pro-

viding detailed discussion on the results and their meanings.
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Chapter 2: Background

2.1 Telecommunication Systems

Wireless communication has existed for nearly 120 years. In 1897, Marconi demonstrated

wireless telegraphy. Following this demonstration, in 1901, radio reception reached across

the Atlantic Ocean. Since this time frame, wireless systems have rapidly developed

with some being iterated upon while others discarded for more efficient methods. In

transmission systems, such as with the old-style television, the older wireless systems

have been replaced for stronger wired systems. Meanwhile, telephones are leaving the

wire-based home models to become easily transported wireless cellphones [2].

Cellular networks have developed to become a very unique and strong system, espe-

cially over the past twenty years. In general, cellular networks are pictured as hexagonal

systems with a base station situated in the middle. This can be seen in Figure 1 below.

Figure 2.1: High Level Configuration of Cell Networks [2]
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Cellular users are within the radius of each base station and connect to the base

station when making a call. Because this is an ideal representation, this representation

is not accurate. Due to costs, terrain changes such as mountains and other physical

obstructions, base stations are placed irregularly throughout the landscape. The cell

phone user would then be connected to the base station with the least interference, not

based on a pre-defined radius as in the ideal model [2].

The communication between users and their base stations is a complicated transac-

tion. There are downlink signals, from the base station to the cell phone user, and uplink

signals, from the cell phone user to the base station. The downlink signals are sent out

as a single signal: relying on cell phones to filter out or discriminate the signals meant

for other users and obtain their own information. In the uplink process, each user sends

a signal to the base station which is received as a combination of all the signals and any

added noise [2].

To make matters more complicated, the mode of operation appears to be changing

as well. Frequency division duplexing has been the standard and contains two frequency

channels, one for uplink and one for downlink. In this thesis, we are assuming time

division duplexing which only requires a single frequency band where the signals can be

sampled regularly.

2.2 Wireless Channel Physical Modeling

2.2.1 Channel Fading

In reality, when discussing and modeling the characteristics of a cellphone network, there

are specific issues and ideas that must be taken into account. It is key to understand
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channel fading, grouped into large-scale and small-scale components, when discussing

wireless communication. Large-scale fading occurs due to shadowing from large objects

and other forms of path loss over scales the size of a single base station cell. It is

usually only worried about when constructing base stations, but will still be added into

the simulations here. Small-scale fading on the other hand is important for techniques

which will be used in the future model. Small-scale fading takes into account constructive

and destructive interference and other problems that occur at the scale of the carrier

wavelength. In figure 2, the low frequency movement represents large-scale fading while

the high-frequency effects represent the small-scale fading [2].

Figure 2.2: Graphical Representation of Fading [2]

2.2.2 Multipath Fading

A large amount of small-scale fading is caused due to multipath fading. In the real world,

the electromagnetic signals are dispersed by the mobile user and reflected off objects in

the environment. These signals can be reflected off of walls, buildings, etc. As the signal

is reflected, part of the signal might reflect onto the proper path toward the receiver.
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This reflection adds onto part of the direct waveform, creating a sum of the direct and

the reflected waveform. Although the two signals are added, they have distinct phases.

This is important because the two waves can add constructively, increasing the signal

strength, or they could add destructively, decreasing the signal strength. How the waves

add is purely based on the phase difference between the two wave forms.

Based on the difference between propagation delays, the delay spread, Td, is im-

portant for determining the effects of the reflected wave onto the transmitted wave. If

the frequency changes less then the coherence bandwidth, given by 1
Td

, the construc-

tive/destructive interference does not affect the signal noticeably.

2.2.3 Baseband Equivalent Model

Since the reflected paths superimpose onto the transmitted signal, the receiving antenna

will receive summed replicas of the original signals. Furthermore, the variety of paths

taken present a large assortment of attenuation factors and propagation factors. Usually

the attenuation factor is due to the antenna patterns, reflections, and the distance the

signal traveled. To mathematically describe this model, we call the attenuation factors

ai, the propagation delays τi, the signal x, and the received signal y. The following

equation can be used to represent the baseband equivalent received signal without locally

generated noise

y(t) = Σiai(t)x(t− τi(t)) (2.1)

The frequency independence is assumed because transmission is generally over a

narrow frequency band when compared to the carrier frequency. As it turns out the
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baseban equivalent signal is composed of not only real components, but also imaginary

components. This involves a simple change as seen in the channel equation below

y(t) = Σiai(t)x(t− τi(t))e−j2πfcτi(t) (2.2)

Furthermore, a Doppler shift can be considered by incorporating mobility by the

user. This is seen by subtracting a component of

fd(t− τi(t)), where fd =
v

c
fc (2.3)

from the carrier frequency. This incorporates the slight change in frequency known as

the Doppler shift. In the calculation, v is the movement speed of the mobile user, c is

the speed of light, and fc is the carrier frequency.

2.2.4 Rayleigh Fading

The Rayleigh fading model will be used in this thesis to discuss the compressive sensing

application of channel recovery. The Rayleigh model is useful for its simplicity in normal

cellular situations. It states that the gains of the signal will be circularly symmetric

complex Gaussian random variables. This model is predicated on a large number of

independent paths due to reflection and scattering as well as random amplitudes. Since

the distance between the user and the reflectors is assumed to be much larger than the

carrier wavelength, λ = c
fc
� d, it can be assumed that each path phase is uniformly

distributed between zero and 2π. It is also safe to assume that the phase between each

path is independent. This means we can represent the model as a circular symmetric

complex random variable. Using the Central Limit Theorem, the system can be modeled
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as a zero-mean Gaussian random variable.

2.3 Compressive Sensing

2.3.1 The Problem

In the future algorithm discussion, we will be making use of the potential sparsity inherit

in the channel propagation coefficient matrix. Before the sparsity algorithm is used, the

terms and techniques of sparsity must be addressed. In this case, we formulate a system

defining equation in the form

Y = AX (2.4)

with Y εRM×1 containing the received information, X ∈ RN×1 containing the sparse

signal, and A ∈ RM×N containing the measurement matrix. X is considered κ-sparse if

it contains κ nonzero values while the rest are zero. If the rest of the values are, instead,

close to zero, X is considered compressible. The goal of compressive sensing is to use

the inherent compressibility or sparsity of X and the ability to control A to manipulate

and recover X in a below-linear time space, with M < N .

A simple solution to finding X is to use the N-by-N identity matrix for A to measure

each value individually. As the amount of measurements in X increase, A also increases

in size at a 1-to-1 rate. In the real world, this means more money is spent in constructing

the system to add more measurement sensors or antennae. It is preferable to design the

system so that the amount of measurements (M) required is less than the signal size (N).
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2.3.2 Stable Measurements

Because there are fewer measurements than signal length, the initial problem seems

poorly conditioned in its ability to recover X. To ensure our ability to recover the

signal, the system must be proven to be stable and properly conditioned. The main

property for showing this proof is the restricted isometry property, often labeled as RIP.

As long as the system meets the RIP, introduced in [17], the system is well conditioned.

This means that, for some ε ∈ (0, 1),

1− ε ≤ ‖ Az ‖2
‖ z ‖2

≤ 1 + ε (2.5)

must hold true for some arbitrary κ-sparse vector, z. As it turns out, RIP is achieved,

with high probability if A incorporates a probability density function with independent

and identically distributed Gaussian variables.

2.3.3 Reconstruction Algorithms

The most basic reconstruction algorithm uses convex optimization. This means the use

of lp norms defined as

‖ x ‖pp≡ ΣN
i=1|xi|p (2.6)

To solve for Y, a search over the vector norms needs to be completed. The conditions

are given by
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xest = argmin ‖ x̂ ‖p (2.7)

such that Ax̂ = y (2.8)

Using an l2 norm presents a simple solution to the previous problem, but rarely re-

turns a sparse solution. The l0 norm usually recovers the exact κ-sparse solution, but

requires a search over all

n
κ

 locations of nonzero entities in X. Finally, using the l1

norm will recover the approximate signal with high probability, but requires computa-

tional complexity of O(N3) [18].
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Chapter 3: System Modeling

Before sparse signal techniques can be employed, it is important to prove that the channel

matrix is sparse. To begin, a simple line of sight single-input multiple-output and line

of sight multiple-input single-output systems will be analyzed. The system will then

change to be discussed with physically separated antennas, angular resolvability, and

the addition of a reflected path. The channel propagation coefficient matrix will be

modeled into the angular domain where its sparsity is proven before finally discussing

the intricacies of the model used.

3.1 Angular Domain Derivation

The first place to begin when attempting to prove the sparsity of the MU-MIMO sys-

tem in the angular domain is to start with a Line of Sight single-input, multiple-output

(SIMO) system. At this early stage, some of the initial terms used further in the discus-

sion will be defined and some important properties will be discussed.

In this first model, there are no scatterers. As its name implies, the only path between

the transmitting antennas and the receiving antennas is the straight line between the

two nodes. Also, the receiving antenna is made up of multiple separate antennas, evenly

spaced within a linear array. The distance, d, between the receiving and transmitting

antennas is much larger than the the separation between the antennas within the antenna

array. The separation within the array is given by ∆rλc. ∆r is the separation normalized

to the carrier wavelength, λr.
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Using the assumption that the attenuation path, a, remains constant and that d is

signifiantly less than the speed of light divided by the transmission bandwidth, d� c
W ,

the baseband channel gain can be given by [2]

gi = a exp(−j2πdi
λc

) (3.1)

Using this channel gain, the line of sight SIMO channel baseband equivalent received

signal can be written as

y = gx+ w (3.2)

In this case x is the transmission signal, y is the received vector, g is the vector

of baseband channel gains, and w is circular Gaussian noise vector. Assuming the

distance between transmit and receive antennas is much larger than the antenna array,

d � ∆rλcnr, the paths from the transmitting antenna to the receiving antenna can be

treated as first-order parallel.

di = d+ (i− 1)∆rλc cosφ, i = 1, . . . , nr (3.3)

d can be considered the distance between the first receiving antenna and the transmitting

antenna while φ is the angle of incidence. To make things simple, cosφ shall be called

Ω. The spatial signature, g can be given by
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g = a exp(−j2πd
λc

)



1

exp(−j2π∆rΩ)

...

exp(−j2π(nr − 1)∆rΩ)


, (3.4)

where nr is the number of receive antennas. For simplicity, the unit spatial signature

vector can be given by

er =
1
√
nr



1

exp(−j2π∆rΩ)

...

exp(−j2π(nr − 1)∆rΩ)


(3.5)

A similar proof can be shown to obtain the same results for Line of Sight multiple-

input, single-output (MISO) channels. The only difference would be to change ∆r with

∆t and nr with nt, where nt is the number of transmit antennas.

If the problem is then combined to form a Line of Sight MIMO channel with similar

arrays for the receiving and transmitting antennas, it can then be shown that the channel

matrix, G can be given by

G = a exp(− j2πd
λc

)



1

exp(−j2π∆rΩ)

...

exp(−j2π(nr − 1)∆rΩ)





1

exp(−j2π∆tΩ)

...

exp(−j2π(nt − 1)∆TΩ)



∗

(3.6)

= a
√
nrntexp(− j2πd

λc
)ere

∗
t , (3.7)
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where e∗ is the complex conjugate transpose of e and a unique non-zero singular value

given by a
√
nrnt. Since there is only a single-dimension space, there is only one spatial

degree of freedom. The columns of the channel coefficient matrix are all along the

direction as defined by er. Although the power gain increases, the most important

aspect to be dealt with is the degrees of freedom. To increase the amount of degrees

of freedom, we will now consider a system where the transmitting antennas are placed

significantly farther apart. Now, assuming there are two transmitting antennas, the

spatial signature can be given by

g = ak
√
nrexp(−

j2πdk
λc

)er(Ωrk), k = 1, 2 (3.8)

The spatial signature er is a periodic function of Ω with period 1
∆r

. This means that

G has linearly independent columns as long as the difference in directional cosines is not

a multiple of 1
∆r

, or

Ωr2 − Ωr1 6=
c

∆r
(3.9)

Because the directional cosines exist between [−1, 1] and the difference cannot be

greater than 2, equation (3.9) can be simply reduced to the antenna spacing ∆r ≤ 1
2

when the directional cosines are not equal. In terms of resolvability and conditioning,

the channel matrix, G, is heavily dependent on how aligned the spatial signatures are.

If we denote the angle between the two spatial signatures as

|cosθ| := |e∗r1er2| (3.10)

and realize that the right hand side of the equation only relies on Ωr := Ωr1 −Ωr2, then
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we can define

fr(Ωr) = e∗r1er2 =
1

nr
exp(jπ∆t(nr − 1))

sin(πLrΩr)

sin(πLrΩr/nr)
(3.11)

In this case, Lr is defined as the normalized length of the antenna array, nr∆r.

Similar to er, fr is periodic based around 2/Lr and multiples of 1/∆r. To determine if

a matrix is ill conditioned the following is true.

|Ωr −
c

∆r
| � 1

Lr
(3.12)

Knowing that Ωr exists between [−2, 2], the condition can reduce to

|Ωr| �
1

Lr
(3.13)

when the antenna separation, ∆r, is less than 1
2 . Given that any received signal within

1
Lr

contributes to the same direction, adding more transmitting antennas within the

same amount of space can only contribute to the resolvability of the system to a certain

limit. This limit is inherently linked to the size of the array.

This problem of an ill conditioned channel matrix and a low number of degrees of

freedom can be resolved via the simple inclusion of the reflected path. If we sample

the angular domain at fixed angular spacings of 1/Lt and 1/Lr at the transmitter and

receiver, respectively.

Assuming there are i paths, the angles made with the transmitting and receiving

arrays will be denoted by Ωti and Ωri, respectively. The channel matrix can then be

given by
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G = Σia
b
ier(Ωri)e

∗
t (Ωti) (3.14)

where abi is defined by

abi ≡ ai
√
nrntexp(−

j2πdi
λc

) (3.15)

Using fr from earlier, we can determine the orthonormal basis for the received and

transmitted signal in the angular domain.

δr :=

[
er(0), er(

1
Lr

), . . . , er(
nr−1
Lr

)

]
δt :=

[
et(0), et(

1
Lt

), . . . , et(
nt−1
Lt

)

] (3.16)

To finally represent everything in the angular domain, a subscript ’a’ will be used

to denote the angular vectors of each appropriate term. U will be used to represent the

n × n unitary matrices of which the columns are the vectors in δ. The (k, l)th entry of

U is

1√
n
exp(

−j2πkl
n

) (3.17)

Using the standard matrix setup, y = Gx+w, we can craft the angular representation

of the channel matrix.
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xa := UTt x

ya := UTr y

= UTr (Gx + w) = UTr GUtxa + UTr w

= Gaxa + wa

(3.18)

With the assumption that there are only a select few local scatterers, only a few

angular bins contain active paths. This allows the approximation that Ga is sparse.

3.2 Assumptions

Now that the channel matrix has been expressed in the angular coordinates, let us discuss

the channel model. The first assumption being made is that we assume TDD operations

and perfect synchronization between the base station of interest and the other base

stations.

For a multi-cell scenario, the M × K channel propagation coefficient matrix of the

lth cell as affected by the jth cell is given by

L∑
j=1

Glj =

L∑
j=1

HljB
1/2
lj , l = 1, . . . , L (3.19)

where Hlj describes the small-scale fading coefficient matrix while Blj is the large-scale

fading coefficient matrix, including path loss and shadowing. Blj can also be described

as LljDlj for the path loss and shadowing aspects. Dlj is made up of diagonal elements

that have a lognormal distribution and pdf of
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fD =
exp(− (ln(d)−µ)2

2σ2√
2πσd

, d > 0 (3.20)

where µ and σ are in dB. This means that Blj is a diagonal matrix. The received vector

at the base station of the lth cell, yl(n), can be rewritten as

yl(n) =
√
Pu

L∑
j=1

Glj(n)xj(n) + wl(n) (3.21)

where Pu is the average mobile user (MU) transmitted power, xj is the MU signal vector,

and wj is zero-mean white complex Gaussian noise vector. Using this knowledge, we

need to estimate the channel matrix within a coherence time interval. Assuming a 7-cell

scenario, with the cell of interest in the middle and a constant pilot sequence used by all

cells, xj(n) = xp(n) for j = 1, 2 . . . 7 and n = 0, 1, . . . , Ns − 1, where Ns is the length of

the pilot sequence, we can write yl(n) as

yl(n) =
√
Pu[

L∑
j=1

Glj(n)]xp(n) + wl(n) (3.22)

During the coherence time period, the channel matrix is assumed to be constant, i.e.

Glj(n) ∼= Glj for n = 0, 1, . . . , Ns − 1. We can write yl(n) as

yl(n) ∼=
√
Pu[

L∑
j=1

Glj ]xp(n) + wl(n) (3.23)

Furthermore, during the coherence time period, we can write the received signal block

as [
yl(0) yl(1) . . . yl(Ns − 1)

]
(3.24)
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=
√
Pu

[
L∑
j=1

Gljxp(0)
L∑
j=1

Gljxp(1) . . .
L∑
j=1

Gljxp(Ns − 1)

]

+

[
wl(0) wl(1) . . . wl(Ns − 1)

] (3.25)

Let

Yl =

[
yl(0) yl(1) . . . yl(Ns − 1)

]
Xp =

[
xp(0) xp(1) . . . xp(Ns − 1)

]
Wl =

[
wl(0) wl(1) . . . wl(Ns − 1)

]
,

(3.26)

then

Yl ∼=
√
PuGlXj +Wl (3.27)

where Gl ≡
7∑
j=1

Glj and the matrix Xp is given by

Xp =



xp,1(0) xp,1(1) . . . xp,1(Ns − 1)

xp,2(0) xp,2(1) . . . xp,2(Ns − 1)

...
...

. . .
...

xp,K(0) xp,K(1) . . . xp,K(Ns − 1)


=



xTp,1

xTp,2
...

xTp,K


(3.28)

where xp,k is the pilot assigned to the mobile user k, k = 1, 2, . . . ,K.

In this case, the assumed perfect synchronization actually presents the worst case

scenario for interference from the surrounding cells. To show that this scenario does not

contain a large interference from the surrounding cells, even when all pilot sequences are

being broadcasted at the same time, the singular values from the generated matrices were

calculated using B
1/2
lj = IK for the cell of interest and B

1/2
lj = .1IK , .08IK , .05IK , .02IK

for the surrounding cells where IK is the K-dimensional identity matrix. Those values are
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contained in the table below and serve to show the lack of interference from surrounding

cells.

Table 3.1:

Gll Glj , B
1/2
lj =

.1IK

Glj , B
1/2
lj =

.08IK

Glj , B
1/2
lj =

.05IK

Glj , B
1/2
lj =

.02IK

7.95 2.90 2.32 1.45 0.58

6.55 1.83 1.46 0.91 0.37

5.68 1.41 1.13 0.70 0.28

5.13 1.20 0.96 0.60 0.24

4.53 1.00 0.80 0.50 0.20

4.08 0.79 0.63 0.39 0.16

3.48 0.62 0.49 0.31 0.12

2.57 0.46 0.37 0.23 0.09

Finally, we will present an algorithm which is based in sparse signal processing tech-

niques and will aim to estimate the small scale fading coefficient matrix Hll in one cell

despite pilot contamination and circular Gaussian noise.



23

Chapter 4: Proposed Channel Estimation

The proposed algorithm we will discuss utilizes Sparse-Bipartite Graphs to separate and

highlight the sparse locations within the channel. Assuming the problem being solved

is in the form of Y = AX + W, our goal will be to create a matrix A such that the

sparse components in X can be located and identified in a sub-linear time frame.

Figure 4.1: Divide and Conquer Strategy [3]

To perform this feat, a ”divide and conquer” strategy will be performed. The basics

of this strategy are shown in Figure 4.1. As shown, the red, green, and blue components

are the non-zero values in X. The grey components in A are used to represent any design.

In part (a), the resulting measurements of Y are combinations of the components in X.

The key to the proposed design is to introduce zeros into the measurement matrix

as shown in part (b). Using the created design and specific rule sets, the resulting

measurements can be inspected to find ”one-ton” measurements, or measurements with

only a single value reflected in the output. Using the calculated location, calculated value,
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and designed measurement matrix, each value can be removed from other measurement

results, forming new ”one-ton” measurements.

In Figure 4.1, it is determined that the first output bin only has the red value of X

within it. It is also known from the construction of A that the second measurement

contains the red value, so the red value is removed from the second measurement output

leaving only the blue value. This process is repeated with the blue component of X to

isolate the green value.

Before continuing, it is important to discuss how these matrices relate to the MU-

MIMO systems discussed and derived earlier. In affect, the designed A matrix will be

replaced by the pilot sequence produced from the users. The X matrix is replaced by

the channel matrix.

4.1 Ideal Algorithm Variation

4.1.1 Measurement Design

To understand the algorithm more completely, our goal is to construct the measurement,

or pilot sequence, for the noiseless scenario. To perform this, two matrices will be needed:

a sparse binary matrix with a known pattern and an n-sized DFT matrix. For the ideal

case, only the first two rows will be needed from the DFT matrix. The two matrices

might look something like the following:
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H =



1 0 0 1

0 1 0 1

1 1 1 0

0 0 1 0


, S =

 1 1 1 1

w0 w1 w2 w3

 (4.1)

with w = ei
2∗π
n . In this example, we are discussing 4 users in the system. If we let the

sparse binary matrix be generated randomly with a regular graph ensemble of degree

two, the redundancy parameter as calculated in [3] implies that the minimum amount

of rows needed to accurately recover the channel matrix is 2 multiplied by the number

of nonzero components.

AT = (H � S)T =



1 w0 0 0 1 w0 0 0

0 0 1 w1 1 w1 0 0

0 0 0 0 1 w2 1 w2

1 w3 1 w3 0 0 0 0


(4.2)

To create the pilot sequence signal, the next step is to use a row-tensor product.

As explained in [3], this means multiplying the matrix S component-by-component with

each row of the H matrix. The resulting matrix is displayed in equation 4.2.

4.1.2 Bin Definition

After the users send the pilot sequence to the base station, it is important that the base

station has the capability of determining which MU sent a signal and the strength of

the channel the signal traversed. To recover this information, the output measurement
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matrix, Y, should be separated into ’Bins.’ These bins will be separated by each row of

the binary matrix H. For the ideal scenario, each bin will contain two outputs.

The bins can then be classified into zero-ton, single-ton, or multi-ton bins which

contain no channel path, one channel path, or multiple channel paths. As we continue

to step through the example, the definition of the bins and their uses will be revealed.

First, let us create a m = 1, n = 4 channel matrix (1 antenna and 4 users).

GT =

[
1 0 0 1

]
(4.3)

If we continue by running the pilot sequence through the channel matrix, the output

appears as shown in equation 4.3.

Y = GT ∗AT =

[
1 + 1 w0 + w3 1 w3 1 w0 0 0

]
(4.4)

In this case, every two columns in Y make up a bin. The first bin contains contri-

butions from both nonzero components of the channel matrix; therefore, it is considered

a multi-ton bin. Both the second and third bin contain only one contribution from

the channel matrix, so they are only single-ton bins. Finally, the last bin contains no

contributions, so it is a zero-ton bin.

4.1.3 Bin Detection and Peeling

The most important part in this process is to be able to identify the type of bin, recovery

the location of single-ton bins, and recover the value contained within a single-ton bin.

Since the system is noiseless right now, it will be easy to classify the output bins.

• Zero-ton Test: ‖ yr ‖2= 0.



27

• Single-ton Test: There are two conditions that must be met. The first is the

magnitudes must be equal or |yr(1)| = |yr(0)|. The second condition is that the

angle division between the two bin components must be a factor of 2π
n or ∠yr(1)

yr(0) = 0

mod 2π
n .

• Multi-ton Test: Obviously, if the bin does not meet any of the previous condi-

tions, the bin can be considered multi-ton.

These tests are heavily reliant on vector addition. Because the second component

of all bins will be the addition of vectors (magnitudes at differing angles), the resulting

vector will not maintain the same magnitude as the first component. This is similarly

true for the angle tests which acts as a redundancy condition in case a rare exception

occurs.

Now that the conditions have been officially laid out, the example can be continued

showing the peeling process of the algorithm. The first step is to inspect the first bin

[2 1− 1j]. Obviously, this bin does not have zero energy and it can be shown that it will

not meet the single-ton tests, so the bin is marked as a multi-ton bin and left for later.

The next bin is calculated as [1 − 1j] which meets both the angle and magnitude

tests. To calculate the location and the magnitude of the value in G, we can use the

following equations.

k̂ =
n

2π
∠
yr(1)

yr(0)
, x(k̂) = yr(0) (4.5)

Using this previous information and the knowledge of the binomial matrix used to

construct A, H, we know one of the significant locations in G and can remove this factor

from both the first and second output bins. It follows that both the first and third bin

are the only single-ton bins remaining. They will also both recover the same location and
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value, recreating the channel matrix. Once all multi-ton bins have been eliminated and

all single-ton bins have been used to obtain channel estimates, the peeling and decoding

of the system is finished.

4.2 Noisy Recovery Variation

Now that the general process and steps have been laid out in the non-complicated noise-

less scenario, the sub-linear scenario will be dealt with. Because the same outline is

followed as in the noiseless scenario, only noticeable changes need to be discussed in the

coming algorithm discussion.

4.2.1 Measurement Design

The first major change is in the formation of the S matrix. The S matrix will still poll

from the DFT matrix, but it will pull more rows in separate variations. S will now be

made up of smaller sub-matrices pulled from the DFT: these will be called Sr.

S = [ST0 S
T
1 S

T
2 . . . S

T
r−1]T (4.6)

Each of the sub-matrices will contain Q = O(log0.3(n)) rows from the DFT matrix as

defined in Definition 5 from [3]. Each of the submatrices will start at a random row in

the DFT matrix and pull out every 3r row until Q rows have been pulled out.
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Sr =



1 wlr . . . wn∗lr

1 wlr+3r . . . wn∗(lr+3r)

...
...

...
...

1 wlr+(Q−1)3r . . . wn∗(lr+(Q−1)3r)


(4.7)

4.2.2 Bin Detection

There are changes in the bin detection tests as well. The first change is that a single-ton

search is included in the bin detection. This will be covered in section 4.2.3.

• Zero-ton Test: 1
P ‖ yr ‖

2≤ (1 + γ)σ2.

The zero-ton search now has to account for noise. To do this, the average energy

level in the bin is measured and compared against the expected noise variance multiplied

by some constant where γε(0, 1).

• Single-ton Search: Estimates the pair (k̂, x(k̂)) on the assumption the bin is

single-ton.

• Single-ton Verification: Verifies the pair recovered in the search is single-ton or

not. 1
P ‖ yr − x(k̂)sk̂ ‖

2≤ (1 + γ)σ2

• Multi-ton Test: If the bin does not meet the single-ton verification or zero-ton

verification conditions, the bin can be considered multi-ton.

Since the system is now noisy, there is not a clean way to determine whether a bin

is single or multi-ton. The solution now discussed is to treat all non-zero-ton bins as

single-ton bins. After solving for the theoretical location and value, the output is checked
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to determine if the recovered pair is indeed the only values contributing to the output.

If it is not, the bin is disregarded and returned to later after more peeling has occurred.

4.2.3 Single-ton Search

The reason why the S matrices were changed is revealed in the Single-ton Search. In

particular, S presents a Fourier structure that can be leveraged to estimate k. In general,

estimating k can be treated as estimating the frequency of a sinusoid. Each measurement

set associated with each sub-matrix Sr can be associated with some frequency wr =

2πk
n ∗ 3r and amplitude X(k).

Figure 4.2: Frequency Visualization [3]

Figure 4.2 helps visualize a single-ton output bin as a sinusoid. Each cluster is defined

by the sub-matrix Sr and the spacing is defined by 3r (or 2r as shown in Figure 4.2).

To estimate this frequency, it is important to take advantage of an efficient linear

estimator. This estimator can be seen in Lemma 4 of [3].

To reach the final estimate of the location k, the linear estimation process must

occur. First, the frequency obtained from the linear estimator must have its modulus
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Figure 4.3: Frequency Combination [3]

taken by 2π. Then, depending on the the sub-matrix, the frequency must be unwrapped

into multiple smaller slices as visualized in Figure 4.3. Each unwrapped frequency has

”certainty regions” that add up to about π, but when combined with higher frequency

estimations, a thin certainty region can emerge.

After finding the location k̂, the corresponding channel can be calculated through a

search over a predetermined set, Π. This is done by performing the below minimization

x̂(k̂) = minxεΠ‖ak̂ − x‖
2 (4.8)

where ak =
s∗ky

‖sk‖2
(4.9)

A discussion for a future time would be on how to form the library Π. In general,

a base station can be tuned by expected user counts and expected estimated ranges to

form this library. As the user count drops, the library would need to lower the amount

of values it searches over and compensate by using more power to broadcast its response

over a wider area.
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4.2.4 Adjustments

The previous changes can be made quite successfully to the algorithms, but a problem

is faced when the channel estimate is made with a low amount of users, ’n’. The major

problem is caused by the probability that the location of a single value falls outside the

estimated zone: this probability is of at least 1 − O(1/n). This sort of problem can

appear in significantly low-population density zones or in small size simulations such as

ones performed in this paper. To compensate for this, a few methods can be attempted.

• Expanding the Certainty Regions: The first method tried involved adding

extra room in the certainty regions. By increasing the certainty region, more

room for estimating the correct location was allowed at the cost of computation

complexity. This solution helped the result to a certain extent, but still suffered

from the estimation problems.

• Switch Methods at Low User Densities: The second method tried was to

switch algorithms at low densities. This is the method actually used in this paper.

At low user densities, switching to a modified version of the noiseless recovery

served to create a bump in correct recoveries while causing a drop in error.

The second method allows for a return to the ideal measurement design formation.

The main changes made to modify the noiseless algorithm were to change the zero-

ton test to the sub-linear version and then factor error in the magnitude and angle

comparison for the single-ton test. The tests become |yr(1)| − |yr(0)| ≤ nφ where φ is

some error threshold. A similar measurement is used for the angle test. Because of how

the noise adds on top of itself, these compensation techniques are not as accurate at

larger amounts of users.
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x̂(k̂) = min
k∈[k̂−1,k̂+1]

‖skak − yr‖2 (4.10)

Because of this return k̂, is calculated similar to the ideal case as in equation (4.5).

The resulting calculation of x is shown in equation (4.10). The resulting value is then

verified to determine if it single-ton or not.

4.3 Other Algorithms

4.3.1 Least Squares

For comparison, two other algorithms were implemented into the system. The least

squares method is a fairly common method for sparse signal recovery, but requires a linear

computational complexity of O(nc2). This method can be performed via a calculation

of G = (ATA)−1ATY . While this may be a good comparison for methods, it must be

noted that due to its linearity, it cannot meet the goals of sub-linearly determining a

channel estimate.

4.3.2 SPRIGHT

The second method used for comparison uses the SPRIGHT framework presented in [16]

and modified in [14]. The goal is to use the Walsh-Hadamard Transform and estimate

the channel using a near-linear time scheme.
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4.3.3 Computational Complexity Comparison

Before continuing to the simulation results, it is important to discuss computation com-

plexity of the algorithms as a whole. The hope with the whole system is to obtain an

accurate estimation in a sub-linear time frame, so it is important to confirm the compu-

tational complexity of all the algorithms. The following complexities are reported on a

per antenna basis.

First, the computational complexity of the ideal version presented in this thesis is

given by O(k). This is simply because there is only one calculation performed for each

non-zero entry in the channel matrix. The unmodified sub-linear algorithm functions

has three separate contributions. The first is a contribution from the non-zero entries, or

O(k). The second consideration comes from the number of clusters needed which is given

as O(log(n)) and the third contribution comes from the amount of measurements within

each cluster given by O(log1/3(n)). Together, this becomes a computational complexity

of O(k log1.3(n)). The modified version is closer to the ideal version, but only functions

at a low number of users. It requires three calculations for each single-ton search, so the

computational complexity is given by O(3k).

The near-linear algorithm reported in [16] and [14] reports a computational complex-

ity of O(n log(n)). The Least Squares method uses a standard linear algorithm, so the

computational complexity is O(n).
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Chapter 5: Algorithm Performance Evaluation

5.1 Simulation Setup

There are two simulated measurement designs that were used to test the algorithms

recovery performance: Gaussian generated and angular domain generation. To test

the measurement design in each of these scenarios, mean-squared error and individual

channel component tracking will be used to evaluate the results. The following tests will

be run with 8 mobile users/64 base station antennas as well as 16 mobile users/128 base

station antennas.

The first scenario the system was tested under is the circular Gaussian generated

channel matrix scenario. In this case, the channel matrix was generated from a com-

plex Gaussian distribution, CG(0, σ), with each column generated independently using

distinct random generators to make sure no statistical dependence existed between each

mobile user’s channels. Six other matrices would then be generated and added as coming

from the surrounding cells using B
1/2
lj = .1IK for the large-scale fading where IK is the

K-dimensional identity matrix, K is the number of users, and l 6= j. Afterward, every

location under a certain threshold, 1.7σ, was ignored to create a sparse channel matrix.

After the requisite mobile user uplink pattern was created, the system added circular

Gaussian noise dependent on the SNR to create the measured signal at the base station.

The first measurements will inspect the mean-squared error (MSE) of the recovered

signal compared to the sparsified channel matrix. The Sub-linear recovery framework,

SPRIGHT framework, and Least Squares framework will have their MSE compared over
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SNR levels to determine their quality. The MSE is defined by

MSE =
1

KM

M∑
m=1

K∑
k=1

‖ĥmk − hmk‖22 (5.1)

Next, channel components will be monitored over individual channel estimations

within the SNR level of 15dB. Each iteration has the channel matrix being generated

independently; therefore, they can serve as individual coherence time periods.

Because the threshold of 1.7σ was chosen semi-arbitrarily, we are interested to see

how the system performs with changing thresholds and how the sparsity of the system

changes with different thresholds. In the following measurements, the threshold will

be set to five separate values where the MSE and the computational complexity of the

resulting system will be calculated. These five values are given at 1σ, 1.3σ, 1.5σ, 1.7σ,

and 2σ.

Another interesting decision to look at is how the change in the large-scale fading

factor affects the MSE of the system. B
1/2
lj was tested at the values of .1IK , .08IK ,

.05IK , .02IK to determine the error’s change over varying degrees of interference.

The second method of generating the channel matrix is the sparsity proof discussed in

[14]. In this case, eight users were generated within seven cells with random distances and

angles from their local base stations. Each user was generated ten channel paths of fast-

fading coefficients from a circular Gaussian distribution. The paths were then multiplied

through the steering matrix to create the channel matrix for a single cell. After the

noise from the surround cells channels where added, using B
1/2
lj = .1IK , the system was

then transformed into the angular domain by multiplying it with the unitary matrix Ur.

This generates an inherently sparse matrix where only the MSE and individual channel

tracking measurements are necessary.
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5.2 Gaussian Channel Estimation Quality

The first simulations are the Mean-Square Error (MSE) over the signal-to-noise ration

(SNR) in dB. These calculations were averaged over 500 separate tests per SNR level.

Figure 5.1: MSE calculated over SNR (dB) for 8 MU and 64 base station antennas.

As seen, the presented framework, named ”Sub Recovery” matches a similar slope

to the Least Squares recovery and, at lower SNR, slightly outperforms the SPRIGHT

recovery. Figure 5.1 showcases the simulations utilizing 8 mobile users and 64 base

station antennas.
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Figure 5.2: Random channel coefficient tracking for 8 MU and 64 base station antennas

During the 15dB SNR tests, two random channel coefficients, for mobile users 6 and

1 and their connection to the antennas 53 and 3, respectively, were picked and tracked

over the multiple tests. The magnitude of the generated channel coefficients and the

magnitude of the recovered channel coefficients where tracked.
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Figure 5.3: Random channel coefficient tracking for 8 MU and 64 base station antennas.

Because of the cutoff point at 1.7σ, the only estimated channel coefficients have

magnitudes above that threshold. As expected, the majority of channel coefficients are

not recovered because they are considered noise.



40

Figure 5.4: 15dB SNR channel estimation error for 8 MU and 64 base station antennas.

At 15dB SNR, a random snapshot of the channel matrix was taken. The recovered

matrix was then compared with the noisy sparse channel to determine the error in

the channel matrix. One thing to notice, which will be discussed later, is the six non

recovered channel constants. In this case, there are three separate BS antennas with two

non-recoveries each.
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Figure 5.5: 15dB SNR channel estimation error for 8 MU and 64 base station antennas.

(A) The magnitude difference between real components. (B) The magnitude difference

between imaginary components.

An interesting breakdown into the system is to look at more than just the error of

the channel matrix magnitudes by looking at the difference between the imaginary and

real components of the system. Here we can see the same six coefficients that were

completely missed by the algorithm in their various components. We can also see the

minor errors in the estimations.
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Figure 5.6: 2σ cutoff 15dB SNR channel estimation error for 8 MU and 64 base station

antennas.

As a comparison, the 2σ threshold channel matrix error was also measured. Notice

that there is no error in the channel matrix recovered above 5%. One of the main reasons

for this difference is the nature of sparsity. This will be explained in section 5.6.
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Figure 5.7: 2σ cutoff 15dB SNR channel estimation error for 8 MU and 64 base station

antennas. (A) The magnitude difference between real components. (B) The magnitude

difference between imaginary components.

Again, we can see the minute differences in the recovered matrices. There are very

few differences in the real and imagined components of the recovered system.
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Figure 5.8: MSE calculated over SNR (dB) for 16 MU and 128 base station antennas.

Figure 5.8 shows the system performance with 16 mobile users and 128 base station

antennas. The modified Sub Recovery framework is beginning to not perform as well,

especially in noisier situations. The limitations that cause some of these differences

between the sub-linear and SPRIGHT frameworks will be further discussed in section

5.6.
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Figure 5.9: Random channel tracking for 16 MU and 128 base station antennas

Again, during the 15dB SNR tests, two random channel coefficients, mobile users 13

and 15 as they connect to antennas 123 and 33 respectively, were picked and tracked over

the multiple coherence time periods. This time the channel coefficients were measured

during the test involving 16 mobile users and 128 antennas at the base station.
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Figure 5.10: Random channel tracking for 16 MU and 128 base station antennas.

In these figures, the Least-Squared method estimates closely to the whole of the sig-

nal, while the sub-linear method discussed only finds the values above the given threshold.
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Figure 5.11: 15dB SNR channel estimation error for 16 MU and 128 base station anten-

nas.

Again, a random snapshot of the channel matrix was compared with the noisy, sparse

channel matrix. This snapshot shows similar amounts of failed recoveries. It also shows

a new method of failure, an incorrect recovery. As it turns out, both of these forms of

failures have the same root which will be discussed in section 5.6.
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Figure 5.12: 15dB SNR channel estimation error for 16 MU and 128 base station an-

tennas. (A) The magnitude difference between real components. (B) The magnitude

difference between imaginary components.

The components in the system are displayed in real and imaginary component differ-

ences. From here, it’s easy to spot the major error contributions that show up in Figure

5.11.
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Figure 5.13: 2σ cutoff 15dB SNR channel estimation error for 16 MU and 128 base

station antennas.

The recovered matrix with a 2σ threshold recovers most of the important channels

in the given system. This is very clearly why section 5.3 will show recoveries near the

LS MSE.
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Figure 5.14: 2σ cutoff 15dB SNR channel estimation error for 16 MU and 128 base

station antennas. (A) The magnitude difference between real components. (B) The

magnitude difference between imaginary components.

Finally, the difference in real and imaginary components are again graphed. Like the

calculated error, there is minimal error in the recovery.

5.3 Threshold Comparisons

Because we are inclined to test the system over various scenarios, we will want to identify

how its performance changes with the level of the threshold, as well as the sparsity of

the system.
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Figure 5.15: Threshold tracking for 8 MU and 64 base station antennas.

The first test to run is the same test as in Figure 5.1 and 5.8, but changing the

threshold between 1σ, 1.3σ, 1.5σ, 1.7σ, and 2σ. For now, it is enough to know that the

Sub Recovery framework performs better at higher thresholds.
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Figure 5.16: 15dB SNR performance for 8 MU and 64 base station antennas.

To take a closer look at this change, we can examine the MSE as a function of the

threshold for 15db SNR. Again, we notice that the error diminishes as the threshold

increases, but we also notice a slightly asymptotic curve to the measurements.
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Figure 5.17: Threshold tracking for 16 MU and 128 base station antennas.

The same tests were run again for the 16 mobile user and 128 base station antenna

scenario. Similar to Figure 5.8, we notice some of the odd behaviors caused by the

modifications.
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Figure 5.18: Random channel tracking for 16 MU and 128 base station antennas.

The 15dB SNR measurement was used to track the behavior of the Sub Recovery

framework over the threshold changes. Again, there appears to be diminishing returns

as the threshold increases.
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Figure 5.19: The computational complexity of the system calculated over the number of

mobile users on a per antenna basis

The most important factor that can explain the previous decreases in error is the

sparsity. Throughout the previous simulations, the sparsity, κ
KM of the system was

tracked, where κ is the number of important channel coefficients. The sparsity averaged

out over the 500 iterations per scenario to be 31.73%, 19.36%, 13.42%, 8.97%, and 4.57%.

This means that as the threshold increases, the amount of factors to recover decreases.

As expected, the system can recover, with higher accuracy, matrices with higher sparsity.

Finally, the goal of this system is to solve the provided system in a sub-linear time

frame. To do that, the measured sparsity of the threshold cutoff was used to calculate

the system’s computational complexity over the total number of mobile users, K. The

computational complexity is calculated per base station antenna.
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In general, all threshold complexities lie below the linear Least-Squared method for

this amount of users. The 1σ cutoff exists fairly close to the linear line while the remain-

ing four thresholds exist under the linear measurements.

5.4 Large-Scale Fading Comparisons

Another intriguing scenario is the effect of the large-scale fading on the MSE of the sub-

linear recovery algorithm. The large-scale fading will be tested over the same scenarios as

in section 3.2. This is another method of determining the total affects of the interference

on the system.

Figure 5.20: Affects of B
1/2
lj on MSE for 8 MU and 64 BSA

A very noticeable pattern in the 8 Mobile User and 64 antenna simulation is how
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closely grouped the mean-squared errors are. When there is high SNR, the measured

errors are tightly grouped and grow farther apart as the SNR decreases.

Figure 5.21: Affects of B
1/2
lj on MSE for 16 MU and 128 BSA

A similar, but to a more noticeable degree, effect happens in the 16 users and 128

antennas scenario. This means that the SNR informs much of the error closer to 1

dB, but as the SNR increases, the error becomes more defined by other aspects such as

large-scale fading.

5.5 Angular Domain Estimation Quality

For the angular domain models, the variance of the channel matrices is larger, so the

MSE will also be larger in scale than the previous calculations.
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Figure 5.22: MSE calculated over SNR (dB) for 8 MU and 64 base station antennas.

Similar to section 5.2, the MSE of the system was graphed over the SNR (dB). Each

SNR level had 500 channel matrices generated over which the algorithm attempted to re-

cover all channel constants above a certain threshold. These simulations were performed

with 8 mobile users and 64 base station antennas.
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Figure 5.23: Random channel coefficient tracking for 8 MU and 64 base station antennas

As before, two individual channels were observed over various measurements. In this

case, the magnitude was scaled to unity to show the data as a whole. In this first graph,

one can notice that the algorithm does not attempt to estimate small magnitudes.
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Figure 5.24: Random channel coefficient tracking for 8 MU and 64 base station antennas

The second channel tracked is useful because it displays even more so, the sparsity

and compressability of the system. The significant channel constant magnitudes tend to

be significantly larger than the noise of the system.
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Figure 5.25: MSE calculated over SNR (dB) for 16 MU and 128 base station antennas.

Moving on to the measurements for the 16 mobile user and 128 base station antennas

scenario, the errors remain about the same.
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Figure 5.26: Random channel coefficient tracking for 16 MU and 128 base station an-

tennas

As opposed to Figures 5.23 and 5.24, the sparsity of the system is better observed in

the next few graphs. Notice how the Least Squared method follows along with the original

channel constants, but the Sub Recovery method only obtains the major contributors.
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Figure 5.27: Random channel coefficient tracking for 16 MU and 128 base station an-

tennas

Once again, the magnitude estimation only recovers the significant portions of the

channel matrix.

5.6 Discussion

Within the measurement methods, there are a few observations to note. The first one

is that sparse signals rely on a large data pools of mostly non-values to work at their

maximum capability. In the test presented in this thesis, the size of the matrices, as

defined by K, limits the accuracy and potential recovery possibilities of the system.

Despite this drawback, we have shown through simulation that the system still works in
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a sub-linear computational framework with only a small drop in accuracy caused by the

limitations of the scenario sizes.

The second observation has to do with the measurement cost. Although not discussed

thoroughly in this thesis, the measurement cost can be considered the length of the pilot

sequence. Ideally, the measurement cost should operate in less than a linear framework

as well. This limits the time that the channel matrix can change over and allow for an

estimation of the system sooner. At such a low matrix size, it can be difficult to create

the sub-linear design patterns necessary within the pilot sequence constraints, but some

limit needed to be set on the pilot length. For this case, the approximate size of K was

used as that limit. This forced some limitations on the system and caused another minor

amount of error.

To return to the discussions around the channel matrix figures (Figure 5.4 and 5.11),

the errors noticed are common in low dimension scenarios. The main issue is the same

as discussed just prior, the limited pilot length. Because the H matrix, see equation

(4.1), is generated randomly and and it is limited by the pilot sequence length, there is a

non-insignificant likelihood that both channel constants will affect the same output bins.

This will either prevent the recovery of the channel components as shown in Figure 5.4

or it might cause a false recovery as seen in the large percent error in Figure 5.11.

The reason the 2σ figures do not have any false recoveries is because it has increased

sparsity. The channel is less likely to have significant channel propagation coefficients

that overlap, as they did in the 1.7σ scenario.
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Chapter 6: Conclusion

Over the course of this thesis, a massive MU-MIMO system was modeled in the angular

domain. The uplink channel matrix was shown to hold the sparsity conditions in the

angular domain. The sub-linear algorithm proposed in [3] can be used to recover the

sparse channel matrix. The algorithm was compared to a linear implementation of the

least squared algorithm and the SPRIGHT framework presented in [16] and implemented

in [14]. The below-linear methods yield a slightly large MSE in exchange for their quicker

recovery frameworks. The sub-linear algorithm was also tracked to show the recovery

over a sizable amount of consecutive coherence time periods.

There are a couple opportunities to expand this research framework that should be

explored. The first opportunity is to expand upon the SPRIGHT framework, using

the so-called SO-SPRIGHT and NSO-SPRIGHT algorithms presented in [16]. Another

option would be to simulate the system over a much larger amount of users. This would

allow the confirmation of the algorithm’s recovery over a truly MU-MIMO system.
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