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Abstract. DNA has a well-defined structural transition – the denaturation of its
double-stranded form into two single strands – that strongly affects its thermal
transport properties. We show that, according to a widely implemented model
for DNA denaturation, one can engineer DNA “heattronic” devices that have a
rapidly increasing thermal conductance over a narrow temperature range across the
denaturation transition (∼ 350 K). The origin of this rapid increase of conductance,
or "switching", is the softening of the lattice and suppression of nonlinear effects
as the temperature crosses the transition temperature and DNA denatures. Most
importantly, we demonstrate that DNA nanojunctions have a broad range of thermal
tunability due to varying the sequence and length, and exploiting the underlying
nonlinear behavior. We discuss the role of disorder in the base sequence, as well
as the relation to genomic DNA. These results set the basis for developing thermal
devices out of materials with nonlinear structural dynamics, as well as understanding
the underlying mechanisms of DNA denaturation.

Submitted to: Nanotechnology

1. Introduction

Thermal transport in nanoscale materials and molecules has enormous potential in
developing devices that manage heat in electronic and other systems [1]. For instance,
thermal rectifiers [2, 3], thermal transistors [4], tunable thermal links [5], and thermal
memory [6, 7] have been experimentally demonstrated (for a recent review, see [8]). One
can envision that many more such devices will become feasible as methods are developed
to engineer and control nonlinear effects in materials that transport heat.

Nature has provided us with a versatile and diverse nonlinear structure: DNA.
The structural dynamics of DNA are fundamentally interesting due to their relevance
in biological processes, such as transcription [9] and replication [10]. Further, DNA
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is also being used in constructing functional nanoscale devices, such as a template
for electronic devices [11] and molecular motors [12]. Thus, its ability to transport
heat under different conditions is technologically important and may allow the “DNA
template” to be exploited not just as a scaffold but also as a functional device in itself.
In addition to theoretical predictions [13], a recent experiment shows that incorporation
of DNA into a device can indeed give rise to nonlinear behavior in the thermal current
[14]. The experimental setup examines a change in the thermal conductance from a
combined duplex DNA and fluid conductor to a disordered single-stranded DNA layer,
the latter being thermally insulating compared to the former. A complete theoretical
reconstruction of the experimental results would thus need to delineate the role of DNA’s
intrinsic thermal conductance from the surrounding media, and examine a disordered
layer of single-stranded DNA.

In this work, however, we envision instead a single molecule of duplex DNA bridging
two thermal reservoirs in a water vapor atmosphere. Such environment is essential for
our purposes since (i) it suppresses solvent-mediated leakage heat currents between the
reservoirs, and yet (ii) the vapor atmosphere has been shown to preserve the natural
behavior of DNA (e.g., denaturation) [15]. We demonstrate that in this setup one
can tune the thermal transport properties of DNA by taking advantage of its function
as the carrier of the genetic code via its sequence of the four bases – Adenine (A),
Guanine (G), Cytosine (C), Thymine (T). The sequence of bases determines both local
structural properties that influence the thermal conductance and also where nonlinear
effects give way to denaturation. Together with the length of the DNA strand, these
characteristics make DNA’s thermal transport properties highly tunable. Based on this
behavior, we predict that a DNA-based nano-device can act as a thermal switch: the
thermal conductance can rise rapidly by many orders of magnitude as the temperature
of the DNA strand is driven across the denaturation transition. Thus, the proposed
device can switch between "off" (i.e., heat-insulating) and "on" (i.e, heat-conducting)
states. This is the “heattronic” analog of an electronic switch [11]. Further, we illustrate
the “engineering principles” behind tuning thermal transport, which will be broadly
applicable to nonlinear materials and help set the foundations for developing novel
thermal devices for applications in, e.g., nanoscale electronics.

2. Theoretical Analysis

Our starting point is the Peyrard-Bishop-Dauxois (PBD) model [16, 17, 18], which
considers double-stranded DNA as a one-dimensional lattice of nonlinear oscillators.
This model – the common model for the dynamics of DNA denaturation – captures the
essential statistical features of DNA’s structural transition and allows for the direct
calculation of non-equilibrium thermal transport properties [13] [19], see Figure 1.
Within the PBD model, the DNA is described by the Hamiltonian

H =
∑

n

[
mnẏ

2
n

2
+ Vn (yn) +Wn (yn, yn−1)

]
, (1)
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(a)

(b)

Figure 1. (a) Schematic of a DNA strand (in a water vapor atmosphere) bridging
two thermal reservoirs. A hot reservoir (left, red) pumps heat into DNA, which can
cause partial denaturation, and a cold reservoir (right, blue) absorbs heat from DNA.
(b) Schematic of the PBD model for DNA dynamics. It represents DNA as a nonlinear
lattice of fluctuating base pairs, i.e., the base to base distance in each base pair is
confined in a non-linear (Morse) potential transverse to the backbone, neighboring
bases couple only through the fluctuation of this coordinate. This does not include
the helical nature of the ordered state. The strongly fluctuating denatured DNA is
predicted to have higher thermal conductance according to the common model for
DNA denaturation.

where each base pair (bp) of mass mn is represented by stretching of its hydrogen
bonds via the coordinate yn. The onsite and nearest-neighbor interaction potentials,
Vn and Wn, depend on the sequence of bases. The potentials take on the form
Vn(yn) = Dn(e−anyn − 1)2 (known as the Morse potential), which describes hydrogen
bonding and effective interactions due to the backbone/environment, and

Wn(yn, yn−1) =
Kn

2
(1 + ρne

−βn(yn+yn−1))(yn − yn−1)2, (2)

which describes the stacking interaction between neighboring base pairs. The scenario
of interest is a DNA strand in a water vapor atmosphere similar to recent experiments
[15], where it was shown that the PBD model still describes the transition well [20].
For the analytic results, we consider a uniform stacking parameter, and then we address
sequence dependent stacking using numerical simulations (see Refs. [21, 22], and the
Supplemental Data for a detailed derivation and numerical parameters). We designate
the sequence of DNA by the series of bases in one of the strands (in the 3’-to-5’ direction).
The sequence of the other strand is unambiguously determined by requiring the DNA
duplex to be 100% complementary. Thus, only DNA double strands with no mismatches
are dealt with in this work.

We will first focus on the thermal conductance ratio

R =
κH
κL
, (3)

where κL(H) is the thermal conductance at low (high) temperatures. This quantity
was introduced in Ref. [13] as a way to characterize heat transport properties of a
material near its thermally induced structural transition. Here, we will examine its



Tunable Thermal Switching via DNA-Based Nano Devices 4

sequence dependence. When calculated using a small temperature change, e.g., around
the denaturation temperature, it can play the role of an “on-off” ratio. We will see that
adjusting the sequence and length of DNA can tune R while the sequence alone allows
the transition temperature to be tuned within certain limits.

One of the main principles behind the nonlinear behavior predicted by the PBD
model is captured in the low (L) and high (H) temperature limits of Eq. (1):

Hµ =
∑

n

[
mnẏ

2
n

2
+Dn

µy
2
n +

Kn
µ

2
(yn − yn−1)2

]
, (4)

where µ = L, H. We note that the PBD model is an effective model of DNA
near the denaturation transition [23]. However, these limiting forms that occur at
much higher/lower temperatures give the appropriate physical description – within the
PBD model – of DNA going from its double-stranded to single-stranded forms. With
reservoirs attach on the end sites, the thermal conductance of an infinite strand in these
limits has the form

κ ≡ J

TH − TL
=

ˆ

ω∈W
dω T(Dn

µ, K
n
µ ,m, γ, ω), (5)

which can be calculated analytically (see Refs. [24, 25, 13] and the Supplemental Data).
Here, J is the heat current, the integration is over the frequencies that correspond to
propagating modes (W ), γ characterizes the coupling strength to the reservoirs, and the
transmission function T is determined by the structure of the lattice.

Figure 2(a) shows κL(H) and R for an infinite strand with several different motifs,
i.e., the basic unit cells of the DNA lattice. The high temperature conductance of all
the sequences is identical due to the uniform stacking interaction. The low temperature
conductance, however, varies tremendously as the motif is changed and is universally
much lower than its high temperature counterpart. This behavior is driven by two
distinct physical mechanisms. First, going from the low temperature form to the
high temperature form results in the release of the onsite confining potential upon
denaturation. This leads to softening of the phonon modes and consequently to the
increase of the thermal conductance, as described analytically in Ref. [13]. Second, the
introduction of different motifs creates a non-uniform lattice (due to the different binding
potentials of the AT and GC pairs). This results in a narrowing and splitting of the
phonon bands, as shown in Fig. 2(b), and a subsequent reduction in the low temperature
thermal conductance. In the extreme case of a semi-infinite poly(A) strand connected
to a semi-infinite poly(G) strand the non-uniformity would have maximal effect: The
phonon bands would have no overlap (see Fig. 2(b)) and the strand as the whole would
have zero heat conduction within this model. Actual DNA, though, will have other
contributions to heat conduction (e.g., the backbone), which will lead to a non-zero
conductance.

A natural question to ask is what is the heat conductance of genomic or random
sequences? Studying strands with periodic motifs helps understand the behavior of
random sequences. An infinite random sequence – and likely genomic sequences – will
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(a)

(b)

Figure 2. Engineering the thermal conductance of DNA. (a) The thermal
conductance ratio and conductance for infinite strands with different periodic motifs
computed analytically from the high/low temperature limits of the PBD model. The
low temperature conductance (blue circles), κL, drops precipitously as the motif of the
sequence is enlarged while the high temperature conductance (red squares), κH , stays
the same. The thermal conductance ratio, R, introduced in Ref. [13], is the ratio of the
high to low temperature thermal conductance and characterizes how DNA’s thermal
conductance changes as it denatures. (b) Analytically calculated phonon bands, from
the lattice parameters used to fit the PBD model to experimental denaturation curves,
for selected DNA sequences at low temperature. The left most bands are for a
homogeneous sequence of G (upper, purple band) and a homogeneous sequence of
A (lower, green band). As the motif is enlarged, the bands will become more narrow
and also split. In other words, periodic sequences with increasing lengths of periodicity
will decrease the bandwidth of the phonon modes, drastically reducing DNA’s ability
to conduct heat at low temperature. Although some bands have relatively small widths
on the plot, all bands have finite widths.

look like a periodic strand with an extremely long motif. The allowed bandwidth of
propagating modes will be narrowed by the large number of sites in the motif. Thus,
we do not expect heat to be conducted efficiently and the low-temperature κ should
be very small for random sequences (compared to a uniform sequence or an alternating
sequence). Genomic DNA, of course, is always finite and not completely random. We
expect, however, that the result will be similar to that of a random sequence. However,
small regions of the genome can look very different from a random sequence, and nature
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may exploit sequence variation to optimize heat (signal) transport.

3. Numerical Results and Discussions

The PBD model was developed to describe the properties of DNA around the
denaturation transition. The analytic results above addressed high and low temperature
limits (within the simplification of uniform stacking interactions). In order to understand
the extent to which the values of R realized in Fig. 2(a) can be realized in a narrow
temperature range around a transition, we perform numerical simulations of the full
model including a sequence-dependent stacking interaction (parametrized in Ref. [22]).
The heat current is obtained by keeping the temperature difference between the heat
baths constant (TH − TL = 10 K) and scanning the average temperature 〈T 〉 =

(TH + TL)/2. We consider 90 base-pair (bp) long strands with 20 bps at each end
connected to Langevin reservoirs. The damping of the individual sites by the reservoirs
is 0.5 ps−1. This is large enough to keep the very ends at the temperature of the
reservoirs, while still allowing the sites to fluctuate at their natural frequency. The
Supplemental Data has further details on the numerical simulations.

Fig. 3(a) shows the heat current for several sequences. The analytical results
above predicted that the heat conductance at temperatures higher than the melting
temperature is insensitive to a particular sequence since the stacking interaction was
assumed uniform. This is not the case in the numerical simulations, where the stacking
potential assumes a more realistic sequence-dependent form. Accordingly, the heat
current exhibits a dependence (although rather weak) on sequence in the temperature
range 400 − 450 K. However, the heat conductance of DNA increases drastically when
the temperature increases across the denaturation point. That this is indeed the
denaturation transition where the conduction of DNA strand changes rapidly (versus
temperature) can be seen by the correspondence between these curves and the peaks in
the heat capacity shown in Fig. 3(b). Around the transition, poly(AG) and poly(A2G2)
have about the same conductance and heat capacity, implying that the denaturation
bubbles – where the two strands locally come apart – are much longer than the motif
and, thus, only the average sequence matters. Thus, the sequence can be used to tune
the “operating temperature” of the device via its effect on the denaturation temperature.
The GC base pair has a higher dissociation energy than AT, and thus its incorporation
into a strand increases the transition temperature.

Furthermore, while the sequence can change the “operating” temperature and the
thermal conductance ratio, R, measured by the high/low temperature limits, the on-off
ratio around the “operating” temperature, e.g., just below to just above the transition, is
due to a more complex set of factors than just R. However, tuning the length of the DNA
nano-junction allows one to directly tune this important device characteristic. Fig. 4(a)
shows the heat conductance of poly(A) strands of various lengths. Below the transition,
the strand is anharmonic and is expected to demonstrate finite well-defined conductivity,
i.e., the conductance is expected to be inversely proportional to the length of the strand
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(a)

(b)

Figure 3. Engineering the operation temperature of a DNA-based thermal device
using the sequence dependence of the denaturation transition. (a) Numerically
calculated heat current across select DNA sequences with ∆T=10 K and with 90
bp length, where the first and the last 20 bp segments are connected to Langevin
reservoirs. (b) Numerically calculated heat capacity normalized per number of base
pairs for a 90 base-pair (bp) strand with periodic boundary conditions. The inset shows
the heat capacity for an infinite chain with A200G200 repeat unit. The peak in the heat
capacity marks the spot where DNA transitions into the denatured regime, and thus
it sets the temperature around which the conductance will drastically increase.

so long as this length is longer than the typical bubble size. As seen in Fig. 4(a), near
(and above) the transition, the conductance weakly depends on the length, signifying
that the harmonic, high temperature Hamiltonian is being approached. This is further
supported by Fig. 4(b), where above the transition point the heat capacity is seen to
rapidly approach C/kB = 1 – the harmonic limit.

At temperatures further below the transition, the conductance drops inversely with
length of the DNA within the error of the simulations [26]. This observation is in
agreement with the heat capacity which shows the transition narrowing for longer
strands of DNA. This is simply an indication that when the bubble length becomes
comparable to the strand length denaturation has effectively occurred. This finite size
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(a)

(b)

Figure 4. Engineering the range of operation using the length of DNA. (a)
Numerically calculated heat conductance of poly(A) of length 50, 100, and 200 bps
(with an additional 20 bp segment connected to a reservoir at each end). (b)
Numerically calculated heat capacity around the denaturation temperature for poly(A)
of varying lengths.

effect broadens the transition in temperature. We conjecture that using sequence effects
(e.g., the suppression of the low temperature conductance shown in Fig. 2(a)) together
with length will allow for even more drastic on-off jumps in the thermal conductance.
However, a more detailed study of DNA, including backbone effects, will be required to
investigate this issue.

4. Conclusion

To summarize, we have examined the thermal transport properties of DNA as described
by the PBD model. We predict that a DNA-based nano-device can act as a thermal
switch due to its rapidly rising thermal conductance as the temperature of the DNA
strand is driven across the denaturation transition. The operating principle behind this
behavior is the release of the base pairs from their confining potential, which both softens
the lattice and suppresses nonlinear effects as the temperature is increased through the
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transition [27]. Using analytic calculations and numerical simulations with sequence-
specific parameters, we have shown that the operating temperature of the thermal switch
can be tuned by choosing different DNA motifs and that the "on/off" ratio can be tuned
by the DNA length. Our suggested experiments are well within current experimental
reach, and recent advances in the measurement of the thermal conductance in various
nano-junctions composed of, e.g., carbon nanotubes [28], Si nanowires [29, 30, 31], and
especially individual DNA-gold complexes [32] give potential routes to realizing the
setup we propose.

Further possibilities for engineering thermal transport may be offered by molecular
or chemical modification of the nucleotides, using much longer sequences (e.g., see the
inset of Fig. 3(b), showing that a two step jump in conductance may be possible),
and exploiting extrinsic changes in heat conduction (e.g., due to a structural change
modifying the surrounding environment in addition to changing intrinsic properties,
as in a recent experiment [14]). This work sets the foundation to developing thermal
switches out of materials and molecules with nonlinear structural dynamics. In addition,
it will allow one to test underlying mechanisms for structural transitions [13] and, in
particular, the dynamical behavior captured within the PBD model [13, 33, 34]. We
speculate that biological systems may take advantage of such nonlinear behavior in
engineering their own control of heat flows and signaling.
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I. BASIC MODEL AND PARAMETERS

In the main text we discuss the thermal transport
properties of a DNA nano-junction. We designate the
sequence of DNA by the series of bases in one of the
strands and its complementary strand is implicitly im-
plied. Furthermore, a DNA sequence with a periodic
motif is denoted by, e.g., poly(AG), which is the alter-
nating sequence AGAGAG. . .

We describe the DNA in the framework of the PBD
model [1–3] widely used to describe the dynamics of DNA
denaturation. Essentially, the DNA is represented as a
set of balls and springs with the balls representing the
base-pair stretching and the springs encoding the com-
plex interactions of bases within pairs (H-bonding) and
between pairs (stacking). The PBD Hamiltonian is

H =
∑

n

[
mẏ2n

2
+ Vn (yn) +Wn (yn, yn−1)

]
. (1)

yn is the stretching of the base pair hydrogen bonds, and
mn are the masses of the base pairs, which are assumed
uniform throughout the strand with mn = m = 300
a.m.u. [4, 5]. The functions V (yn) and W (yn, yn−1)
describe the effective (intra-pair) potential felt by the
hydrogen bond and the effective inter-pair stacking in-
teraction, respectively. These potentials take the form

Vn(yn) = Dn(e−anyn − 1)2

Wn(yn, yn−1) =
Kn

2
(1 + ρne

−βn(yn+yn−1))(yn − yn−1)2.

(2)

Recently developed parameters [4, 5] of the Morse
potential for complementary base pairs are DA−T =

0.05 eV, aA−T = 4.2 Å−1 for the A − T base pair, and
DG−C = 0.075 eV, aG−C = 6.9 Å−1 for the G − C base
pair. The parameters of the stacking interaction be-
tween successive base pairs depends on both the pairs
and their orientation. However, we first consider the
uniform “average” stacking potential with parameters
Kn = K = 0.025 eV/Å−2, ρn = ρ = 2, and β = 0.35Å−1

[5]. The effect of the sequence-dependent stacking inter-
action is addressed in the numerical simulations using the
Langevin equation.

II. ANALYTIC DERIVATION OF THE
THERMAL CONDUCTANCE

The thermal conductance of a classical harmonic lat-
tice can be found analytically. Our starting point is
to consider the limiting cases of the single-coordinate
Hamiltonian (Eq. (1) in the main text) for a lattice of
length N . The details of the high and low-temperature
expansions were presented in Ref. [6]. The low- (L) and
high- (H) temperature limits can be approximated by a
harmonic Hamiltonian of the form

Hµ =
∑

n

[
mẏ2n

2
+Dn

µy
2
n +

Kµ

2
(yn − yn−1)

2

]
, (3)

where µ = L, H, and the corresponding coefficients
KH = K, DH = 0 and KL = K(1 + ρ), DL = Da2.

Once a harmonic Hamiltonian is obtained, one can fol-
low the procedure of Refs. [7, 8]. To simplify the analysis,
the lattice is coupled to two heat reservoirs at the first
and last sites, which gives the equations of motion

mÿn = −2(Dn
µ +Kµ)yn +Kµ(yn−1 + yn+1)

+ (δn,1 + δn,Nt)

[
ˆ t

−∞
dt′A(t− t′)yn(t′) + ηn(t)

]
.

(4)

We choose the spectrum of the dissipation to be ohmic,
A(ω) = −iγω, with coupling γ, and the noise to be a
white noise, 〈ηL/H(ω)ηL/H(ω′)〉 = 4πTL/Hγδ(ω + ω′),
with TL/H the low and high reservoir temperatures. We
consider a periodic lattice of length Nt = N ×Ns, where
Ns is the length of the motif. This form for the reservoirs
will satisfy the fluctuation-dissipation theorem. The re-
sulting equations of motion are

mÿn = −2(Dn
µ +Kµ)yn +Kµ(yn−1 + yn+1)

+ (δn,1 + δn,Nt) [−γẏn(t) + ηn(t)] . (5)

The solution for the coordinates has the form

yn(t) = (1/2π)

ˆ ∞

−∞
dωŶ −1nm(ω)η̂m(ω)eiωt, (6)

where η̂ is a vector of length Nt with the first and last
components being ηL/H(ω) and the rest being zero. It
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represents the coupling of the reservoirs to the ends of the
lattice. The Nt ×Nt matrix Ŷ = φ̂− ω2M̂ − Â encodes
the solution. Here φ̂nm = 2(Dn

µ +Kµ)δn,m−Kµδn,m+1−
Kµδn,m−1, M̂ij = mδi,j , and Â11 = ÂNtNt = A(ω) and
Ânm = 0 otherwise.

The heat current flowing into the lattice is J =
〈[
´ t

−∞ dt′A(t − t′)y1(t′)]ẏ1(t)〉, where the average is over
the noise. Setting γ = λm, the heat current becomes

Jµ =
∆Tλ2m2

π

ˆ ∞

−∞
dωω2{(D1,Nt − λ2ω2m2D2,Nt−1)2

+ λ2ω2m2(D1,Nt−1 +D2,Nt)
2}−1|C1,Nt |2, (7)

where ∆T = TH − TR is the temperature difference of
the reservoirs, C1,Nt is the cofactor of Ŷ1,N , and Dn,m is
the determinant of the submatrix of (φ̂−ω2M̂) from the
n-th row (column) to the m-th row (column). It follows
that |C1,Nt |2 = K2Nt−2

µ and Dn,m = Kn−m+1
µ D0

n,m.

The elements
( D0

1,2Nt
−D0

1,2Nt−1
D0

2,2Nt
−D0

2,2Nt−1

)
= [Ts]N , where

Ts = T1T2 · · · TNs is the composite transfer matrix of one
segment with length Ns. Since each transfer matrix Ti is
unimodular, for an infinite lattice the allowed propagat-
ing modes correspond to Ts with eigenvalues e±iq. We
notice that for those propagating modes,

D0
1,Ns −D0

2,Ns−1 = 2 cos(q). (8)

This equation determines ω(q). In general, for a ba-
sis with Ns elements, there are Ns bands that satisfy
Eq. (8) though the bandwidths can be substantially re-
duced as Ns increases. Moreover, [Ts]N = [cos(Nq)]1 +
[sin(Nq)/ sin(q)][Ts − (cos(q))1], where 1 is the 2 × 2
identity matrix. Then we rewrite the denominator of
Eq. (7) as |zA|2, where zA = (1+λ2ω2m2/K2

µ) cos(Nq)+
(sin(Nq)/ sin(q))(zc− (1+λ2ω2m2/K2

µ) cos(q)) and zc =
(D0

1,Ns
− λ2ω2m2D0

2,Ns−1/K
2
µ)− iλω(m/Kµ)(D0

1,Ns−1 +

D0
2,Ns

). Eq. (8) determines ω(q) so the integration of
Eq. (7) can be considered as an integration over q for
those propagating modes. As N → ∞, one uses the
formula

´ 2π

0
dqF (q,Nq) → 1

2π

´ 2π

0
dq
´ 2π

0
dxF (q, x) by

treating x = Nq as an independent variable in the
N →∞ limit. After integrating over x and q, one obtains
the thermal current.

For a uniform lattice, Ns = 1 and Dn
µ = Dµ so

Ts = T1 =

(
2(1 +Dµ/Kµ)− (m/Kµ)ω2 −1

1 0

)
. (9)

Eq. (8) gives 2 cos(q) = 2(1 + Dµ/Kµ) − (m/Kµ)ω2.
After changing variables from ω to q that satisfy this
constraint, the final expression (for an infinite lattice
(N →∞)) is

Jµ
∆T

=
γ

2πm

ˆ 2π

0

dq
sin2(q)

1 + 2γ2

mKµ

[
1 +

Dµ
Kµ
− cos(q)

] . (10)

This gives for the low and high temperature thermal con-
ductance, κµ = Jµ/∆T ,

κµ =
kBmK

2
µ

4γ3

[
1 +

2γ2

mKµ
+

2γ2Dµ

mK2
µ

− Bµ
]
, (11)

with

Bµ =

√
1 +

4γ2

mKµ
+

4γ2Dµ

mK2
µ

+
8γ4Dµ

m2K3
µ

+
4γ4D2

µ

m2K4
µ

. (12)

With these expressions one can explicitly find the thermal
conductance ratio R. We have verified that for reservoirs
contacted to a single site on each end, the thermal con-
ductance from our numerical simulations agree with our
analytic formula to within 10 − 15%. The error may be
attributed to finite size effects in the numerical simula-
tions.

We can take various limiting forms of these equations.
If we define the prefactor as κ̃µ and a dimensionless reser-
voir coupling as

γµ =
γ√
mKµ

, (13)

the expressions for the conductance become

κµ = κ̃µ

[
1 + 2γ2µ + 2γ2µ

Dµ

Kµ
− Bµ

]
, (14)

with

Bµ =

√
1 + 4γ2µ + 4γ2µ

Dµ

Kµ
+ 8γ4µ

Dµ

Kµ
+ 4γ4µ

(
Dµ

Kµ

)2

.

(15)
The appropriate limiting forms for our case are the fol-
lowing. When the high temperature harmonic limit has
no onsite potential, then the heat conductance becomes

κH = κ̃H

[
1 + 2γ2H −

√
1 + 4γ2H

]
. (16)

For the low temperature limit that has a much greater
onsite term than the nearest neighbor coupling, i.e.,
KL/DL � 1, the heat conductance becomes

κL ≈
κ̃Lγ

2
LKL

DL
, (17)

which also assumes that the dimensionless coupling to the
reservoirs is γL ≥ 1. For strong coupling to the reservoirs,
the ratio becomes

R ≈ 2KHDL

K2
L

. (18)

This is the analytic expression that demonstrates that
softening of a harmonic lattice increases the thermal con-
ductance ratio (DL ∝ ω2

L). The strong coupling limit
gives the extreme value of R.
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Now we show that the characteristic frequency in the
PBD model is lowered as T crosses Tc from below.
For the low temperature Hamiltonian, the correspond-
ing equation of motion is

mÿn = −{2Da2yn+K(1+ρ)[(yn−yn−1)+(yn−yn+1)]}.
(19)

From the ansatz yn = y0ne
iωt−ikn , one obtains the

phonon spectrum as

mω2 = 2Da2 + 2K(1 + ρ)[1− cos(k)]. (20)

Thus, the frequency band of phonons is
√

2Da2/m ≤
ω ≤

√
[2Da2 + 4K(1 + ρ)]/m. For the high temperature

Hamiltonian, the equation of motion is

mÿn = −K[(yn − yn−1) + (yn − yn+1)] (21)

and the phonon spectrum is

mω2 = 2K[1− cos(k)]. (22)

The frequency band of phonons is 0 ≤ ω ≤
√

4K/m.
The two limiting Hamiltonians are both harmonic and
the characteristic frequency is indeed lowered, and sim-
ilar considerations apply for other models. In the low
temperature limit, the onsite potential stiffens the DNA
compared to the high temperature limit, which results in
the raising of the phonon spectrum of the low temper-
ature limit compared to the high temperature. In the
latter, as well, the nearest neighbor coupling drops from
K (1 + ρ) toK shrinking the bandwidth. This trade-off is
responsible for the change in thermal conductance across
the transition. If the drop in nearest neighbor coupling
is small, then the softening will dominate, and the heat
conductance will increase because these softened modes
can conduct heat more effectively.

Next we consider a lattice with periodic segments. For
a periodic lattice with alternating (AG) pairs, Ns =
2 so there are two onsite parameters D1,2

µ and Ts =

T1T2 =

(
D0

1,2 −D0
2,2

D0
1,1 −D0

2,1

)
=

(
[x1] −1
1 0

)(
[x2] −1
1 0

)
,

where [x1] ≡ 2(1 +
D1
µ

Kµ
)− m

Kµ
ω2 and [x2] ≡ 2(1 +

D2
µ

Kµ
)−

m
Kµ
ω2. From Eq. (8) and | cos(q)| ≤ 1 one can find two

bands which satisfy the condition:

ub1 ≤ ω2 ≤ ub2 and ut1 ≤ ω2 ≤ ut2. (23)

Here ub1 = (Kµ/m)[2 + (D1
µ + D2

µ)/Kµ −√
4 + (Dµ1 −D2

µ)2/K2
µ)], ub2 = 2(Kµ/m)(1 + D1

µ/Kµ),

ut1 = 2(Kµ/m)(1 + D2
µ/Kµ), and ut2 =

(Kµ/m)[2 + (D1
µ +D2

µ)/Kµ +
√

4 + (D1
µ −D2

µ)2/K2
µ)].

One can show that the current is

J

∆T
=
λ

π

m2

K2
µ

ˆ

ω∈W
dω|ω sin(q)|[(1 + λ2ω2m2/K2

µ)×

(m/Kµ)|D0
1,1 +D0

2,2|]−1

=
λm

2πKµ

(
ˆ ub2

ub1

+

ˆ ut2

ut1

)
du
√

1− cos2(q)[(1 +

λ2m2u/K2
µ)(4 + 2D1

µ/Kµ + 2D2
µ/Kµ −

2mu/Kµ)]−1. (24)

Here we have used u = ω2 and cos(q(u)) = (1/2)[(2(1 +
D1
µ/Kµ) −mu/Kµ)][2(1 + D2

µ/Kµ) −mu/Kµ] − 1 from
Eq. (8).

The heat currents for more complicated bases can be
derived in a similar way. For example, the heat current
for a poly(A2G) strand is given by

J

∆T
=

λm

2πKµ

ˆ

ω∈W
du
√

1− cos2(q)[(1 +

λ2m2u/K2
µ)|[x1][x2] + [x1]2 − 2|]−1 (25)

Here the three conduction bands are determined by
2 cos(q) = D0

1,3 − D0
2,2 = [x1]2[x2] − 2[x1] − [x2]. The

heat current for a poly(A2G2) strand is

J

∆T
=

λm

2πKµ

ˆ

ω∈W
du
√

1− cos2(q)[(1 + λ2m2u/K2
µ)×

|[x1]2[x2] + [x1][x2]2 − 2[x1]− 2[x2]|]−1 (26)

The four conduction bands are determined by 2 cos(q) =
D0

1,4 − D0
2,3, where D0

1,4 = [x1]2[x2]2 − [x1][x2] − [x1]2 −
[x2]2+1, D0

2,3 = [x1][x2]−1, D0
1,3 = [x1][x2]2− [x1]− [x2],

and D0
2,4 = [x1]2[x2]− [x1]− [x2].

For parameters relevant to real DNA, we have evalu-
ated the thermal conductance (in the harmonic limit)
of poly(A), poly(G) homogeneous lattices as well as
poly(AG), poly(A2G), poly(AG2) and poly(A2G2). They
qualitatively agree with our numerical simulations.

III. SIMULATION DETAILS

A. Transfer matrix

The transfer matrix formalism is based on the possi-
bility to evaluate the partition function for a classical
non-linear lattice using the matrix algebra [9]. Specifi-
cally, the total classical partition function for the PBD
model is given by

Z = ZTZU , (27)

where ZT = (2πmkBT )N/2 is the “kinetic” partition func-
tion and the “potential” partition function reads as

ZU =

ˆ N∏

n=1

dyn e
−[Vn(yn)+Wn(yn,yn−1)]/kBT . (28)
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The continuous integration can be represented through
summation on the grid yielding for periodic boundary
conditions (i.e., y0 ≡ yN )

ZU = Tr

[
N∏

n=1

M̂n

]
, (29)

where matrix M̂n is defined through its matrix elements
as

[M̂n]ij = ∆xe[
1
2Vn(xi)+Wn(xi,xj)+

1
2Vn−1(xj)]/kBT , (30)

where xi is the coordinate on the grid with the grid step
∆x, i.e., xi = x0 + i∆x. The parameters of the grid used
in our calculations are xmin = −1.5 Å, xmax = 50 Å with
∆x = 0.05 Å.

In the case of a homogeneous lattice, i.e., if Vn(yn) ≡
V (yn) and Wn(yn, yn−1) ≡ W (yn, yn−1), all the ma-
trices M̂n are identical and symmetric, which results
in the possibility to evaluate the trace in Eq. (29) as
ZU =

∑
i λ

N
i , where λi are the eigenvalues of symmetric

matrix M̂n. Naturally, if the lattice becomes very long,
only the largest eigenvalue, λmax of the transfer matrix
contributes to the partition function yielding ZU = λNmax

The natural generalization of this procedure to the case
of DNA strand made of repeating motif is as follows.
First, matrices corresponding to a single repeating unit
(r) are multiplied yielding M̂r =

∏
n∈r M̂n. The poten-

tial partition function is given by Tr[M̂Nr
r ], where Nr is

the number of repeat units in the strand with periodic
boundary conditions. Therefore, the potential partition
function becomes ZU =

∑
i v
Nr
i , where vi are the eigen-

values of M̂r. We note here, that even though matrix
M̂r might not be symmetric, the eigenvalue problem for
such a matrix is still well defined and eigenvalues is all
what is needed to evaluate the “potential” partition func-
tion above. Specifically, it can be shown that the Schur
decomposition, which yields eigenvalues, is always pos-
sible for any square matrix. This decomposition does
not guarantee the completeness of the eigenvector-based
basis, but only knowledge of eigenvalues is required for
the evaluation of the potential partition function for the
lattice with periodic boundary conditions.

Once the partition functions are found, the heat capac-
ity of the DNA strand, normalized per number of sites,
can be evaluated as

C = − T
N

∂2F

∂T 2
, (31)

where F = −kBT ln(ZTZU ) is the free energy of the
DNA strand.

B. Langevin dynamics

To study the dynamics of the DNA out of equilibrium
we solve numerically the Langevin equation, which de-

K(eV/Å2)
AA 0.023
GG 0.019
AG 0.0232
GA 0.0185

Table I. Harmonic parameter of the sequence-dependent
stacking interaction of the PBD model.

scribes the dynamics of a Hamiltonian system in the pres-
ence of thermal baths. The Langevin equation is given
by

mÿn = −∂W
∂yn
− ∂V

∂yn
− Γnẏn + f(t), (32)

where W (yn) and V (yn) are the potentials described in
Eq. (1) of the main text. The DNA strand is split into
three regions, the two ends, each of length l, serve as the
Langevin thermal reservoirs at temperatures TL and TH .
This means that the friction term Γn only operates for
n within the thermal reservoirs. The fluctuating term
f(t) is Gaussian white noise which obeys the fluctuation-
dissipation relation 〈f(t)f(t′)〉 = 2ΓnkBTL(H)δ(t− t′) for
the low and high temperature reservoirs, respectively. In
our simulations, the parameters of each Langevin ther-
mostat have always been set to l = 20 and Γn/m =
0.5 ps−1.

The middle region of the length M is the free DNA
strand, which is driven out of equilibrium by the
Langevin reservoirs when TL 6= TH . The length of
the middle region has been varied in the range M =
50 − 200 in our simulations. The parameters of the
PBD model are given in the main text except for the
sequence-dependent stacking interaction strength. These
are adopted from Ref. 5 and compiled in Table I. The
equations of motion are integrated with the fourth-order
Runge-Kutta method. The local heat current is given by
Jn = −

〈
ẏn

∂W (yn,yn−1)
∂yn

〉
. The simulations are performed

long enough to allow the system to reach its steady state,
where Jn does not depend on n, as long as n is within
the “free” middle region of DNA.

∗ chihchun@lanl.gov
† mpzwolak@physics.oregonstate.edu

[1] M. Peyrard and A. R. Bishop, Phys. Rev. Lett., 62, 2755
(1989).

[2] T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev.
E, 47, R44 (1993).

[3] T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev.
E, 47, 684 (1993).

[4] A. Campa and A. Giansanti, Phys. Rev. E, 58, 3585
(1998).

[5] B. S. Alexandrov, V. Gelev, Y. Monisova, L. B. Alexan-



5

drov, A. R. Bishop, K. Ø. Rasmussen, and A. Usheva,
Nucleic Acids Res., 37, 2405 (2009).

[6] K. A. Velizhanin, C.-C. Chien, Y. Dubi, and M. Zwolak,
Phys. Rev. E, 83, 050906 (1 (2011).

[7] A. Casher and J. L. Lebowitz, J. Math. Phys., 12, 1701
(1971).

[8] A. Dhar, Phys. Rev. Lett., 86, 5882 (1 (2001).
[9] Y.-L. Zhang, W.-M. Zheng, J.-X. Liu, and Y. Z. Chen,

Phys. Rev. E, 56, 7100 (1997).


	1 Introduction
	2 Theoretical Analysis
	3 Numerical Results and Discussions
	4 Conclusion

