## Profiles of Commercial Agriculture for the Southern Willamette Valley

## District II Linn County

OSU Extension Service Department of Geography Oregon State University Special Report 696

Acknowledgements ..... 1
Explanatory Notes ..... 2
Summary ..... 5
Dominant Agricultural Types ..... 6
Types of Agriculture:
Dairies \& Animal Husbandry ..... 7
Field Crops \& General Crops ..... 12
Grass Seed ..... 17
Horticulture ..... 22
Livestock Grazing/General Stock ..... 27
Vegetable Crops ..... 32
Survey Questionnaire ..... 37
Map of Agricultural Districts ..... 40
List of Counties by Agricultural Districts ..... 41
A Delphi Application for Land Use Data ..... 42
Delphi Panel Results ..... 49

## ACKNOWLEDGEMENTS

This study was funded by grants from the OSU Extension Service, the Western Rural Development Center, and Title V, Rural Development Act. Without these funds, this study would not have been possible.

I would like to thank the committee within the county who helped formulate the survey questionnaire. The committee members were: Hugh Hickerson and Erric Ross of the Extension Service; Bill Forrest, SCS; Steve Wulff, ASCS; John Detar and Steve Michaels, Linn County Planning Department.

Kevin Harrison and Dave Nelson, Graduate Research Assistants, have been responsible for much of the data handling and analysis, as well as working closely with me on data display formatting and other aspects of the project. Dave Nelson also worked on the Delphi data analysis.

I would like to thank all of these people for contributing to the project.

James R. Pease<br>Principal Investigator

This survey was administered from Oregon State University, Department of Geography, for the purpose of supplementing census data on characteristics of commercial agriculture. The data for Linn County are intended to represent baseline data for agricultural district 2 , which also includes Benton, Polk, Lane, and Marion Counties. Similar surveys have been completed for districts 1,4 , and 5 . The project will complete a county level survey for each of three additional districts.

In Linn County, 12 types of agriculture were surveyed. However, some types were combined with others or dropped because of too few responses per type. We also dropped all responses below $\$ 2,500$ in gross annual income from the data analysis.

A farm or ranch unit is defined as all lands (owned, rented, or leased) that are operated as one unit. The fields do not have to be contiguous. A farm or ranch unit is classified as a type of agriculture by $50 \%$ or more of value of products sold. If no one type contributes $50 \%$ or more, the farm is classified as general farm. The types of agriculture correspond to Standard Industrial Classification types, which are used by the U.S. Census Bureau. These types are published in the appendix.

A summary page combines all types of agriculture in the county for certain data items. This summary serves as an overview of general agricultural characteristics.

Dominant types of agriculture for the county as a whole are ranked as well as dominant types for each landform. Dominance is measured by: number of farms, number of acres, and value of products sold. The user can then select the measure of dominance most appropriate for his or her use. In determining dominance, census of agriculture numbers are used to obtain actual numbers of farms for each SIC type. These "population" numbers are multiplied by survey sample means to obtain figures for acreage and value of products sold. Since census figures do not relate SIC type to landform, the proportion of each SIC type that occurred on a given landform (e.g. bottomlands) in the sample was assumed to be the same proportion of the actual "population" which occurred on the landform.

Data are then displayed by types of agriculture. For each type, totals are given, as well as a breakdown by landforms. By keying data to landforms, the characteristics of commercial agriculture for different agricultural areas of the county can be determined. Farm units are classifjed by landform according to the majority of acreage. Data item 1, for example, indicates the mean size of farm units classified on each landform, although some of the acreage may occur on another landform. Data for selected items are also displayed for size groupings, which allows comparison of characteristics among groupings.

Data are suppressed ("S") for any data cell which contains less than 3 responses and for any type of agriculture with less than 5 responses.

If data are used to calculate average net income, the user may want to adjust gross income by an asset amortization value, as well as by operating expenses. While data for asset value are given, we have not calculated an amortization value for assets or an income capitalization rate.

Data are averaged for each item, i.e., the mean is given. For some SIC types, only farms lying within given size ranges were included in the computations. These ranges account for at least $90 \%$ of the value of products sold. Farms lying outside these size ranges were dropped to prevent skewing of the data by a few very large farms or a large number of very small farms. The ranges were determined from census data and are noted in the tables. Also, we have given the median for each data item. The user should evaluate these two measures of the "average" for the purpose of his or her analysis.

A standard error is given for each data item which displays a mean. The standard error means that we can be $68 \%$ confident that the true mean is within a certain range of the sample mean. The range can be determined by subracting the standard error from the sample mean to derive the lower end of the range and by adding the standard error to the mean to get the upper end. Likewise, we can be $95 \%$ confident that the true mean lies within two standard errors, and $99 \%$ confident that it lies within three standard errors. We have provided the standard error to allow the user to determine reliability of the data for his or her purposes.

The standard error will vary according to two factors: the size of the sample and the variability of the response. The larger the sample, the smaller the standard error. Likewise, the closer together the responses, the smaller the standard error.

For some data items, a mean and standard error are not given. Instead, the number of farms in the sample must be used to evaluate the reliability of the statistic. In these items, \# of farms means \# of sample farms.

We drew a $33 \%$ random sample from a list of 1,536 farmers in Linn County. Of 512 farmers in the sample, we received a $63 \%$ return rate. However, $31 \%$ were unusable for a variety of reasons and others were dropped because of suppression criteria. We were left with 145 valid responses with gross sales over $\$ 2,500$ per year.

In the appendix, data are tabulated for a Delphi Expert Opinion panel. Definitions of farm and landforms are the same as in the survey. An explanation of the Delphi technique and its validity are given in the appendix. Both mail-out surveys and Delphi panels are subject to error. The user should consider these error factors in utilizing the data.

The data base can be used for various research, educational, and public policy applications. We have selected certain types of analyses for this report. Many other types of analysis are possible on the original data base. The survey form is reproduced in back of the report. Reference to the survey form will clarify certain data items as well as suggest other types of analyses. Questions on data interpretation or special analysis requests should be addressed to Dr. James R. Pease, OSU Extension Service, Dept. of Geography, Oregon State University, Corvallis, 97331, or telephone 503-754-3141

By Landforms


LINN COUNTY DOMINANT TYPES OF AGRICULTURE

| Landform | Rank | \# of Farms | $\begin{gathered} \text { By } \\ \# \text { of Acres } \end{gathered}$ | By <br> Value of Products Sold |
| :---: | :---: | :---: | :---: | :---: |
| TOTALS <br> (for all landforms) | 1. 2. 3. 4. 5. | Grazing/General Stock Grass Seed Animal Husbandry | Grass Seed Grazing/General Stock Vegetable Crops | Grass Seed <br> Animal Husbandry <br> Dairy <br> Vegetable Crops <br> Grazing/General Stock |
| Bottomlands | 1. 2. 3. 4. 5. 6. | Grazing/General Stock <br> Vegetable Crops <br> Dairy <br> Grass Seed. <br> Fruits/Berries <br> General Crops | Vegetable Crops <br> Grazing/General Stock <br> Grass Seed <br> General Crops | Vegetable Crops <br> Dairy <br> Grazing <br> General Crops |
| Terraces | 1. 2. 3. 4. | Grass Seed Grazing/General Stock Dairy Field Crops Animal Husbandry | Grass Seed Grazing/General Stock Field Crops | Grass Seed Animal Husbandry Dairy |
| Foothills | 疗. | Grazing/General Stock <br> Animal Husbandry <br> Grass Seed Fruits/Berries | Grazing/General Stock Grass Seed Animal Husbandry | Animal Husbandry Grazing/General Stock Grass Seed Fruits/Berries |

Note: Estimates of income and acreage were made by multiplying sample means by population numbers. Estimates of number of farms for landforms were made by relating proportion of sample farms to the population numbers. Types of agriculture which account for less than $5 \%$ of totals are dropped. Cash grains are not included because of a low number of sample responses, which may affect rankings. Low response rate for field crops may also affect rankings. Livestock Grazing and General Livestock farms have been combined.
Type of Agriculture__Dairies_\& Animal_Husbandry
Landform
Number of Survey Responses
Population Number (From Census Data)
Size Range Used in Computations

| Data Item |  | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bottomlands | Terraces | Foothills |
| 1. | Size (acres) of total |  |  | MEAN | 191.25 | "S" ${ }^{2}$ | 236.50 | 150.00 |
|  | farm unit (includes ${ }^{1}$ | S.E. | 43.84 |  | 75.98 | 60.28 |
|  | rented and leased lands) ${ }^{1}$ | MED. | 137.00 |  | 144.00 | 200.00 |
|  |  | VC/MC | 8/0 |  | $4 / 0$ | 3/0 |
| 2. | Gross Value of | MEAN | 231.63 | "S" | 367.50 | 77.67 |
|  | Products Sold (1981) | S.E. | 64.52 |  | 76.74 | 42.45 |
|  | (in thousands of dollars) | MED. | 165.00 |  | 265.00 | 80.00 |
|  |  | VC/MC | 8/0 |  | 4/0 | 3/0 |
| 3. | Percent of leased or | MEAN | 28.35 | "S" | 21.69 | 46.67 |
|  |  | S.E. | 11.97 |  | 12.81 | 26.03 |
|  |  | MED. | 6.62 |  | 6.62 | 50.00 |
|  |  | VC/MC | 8/0 |  | 4/0 | 3/0 |
| 4. | Asset Value (1981): | MEAN | 645.13 | "S" | 980.52 | 413.00 |
|  | Land, Bldg., Equip. | S.E. | 221.85 |  | 359.57 | 171.70 |
|  | (In thousands of dollars) | MED. | 540.00 |  | 633.00 | 535.00 |
|  | (See Item 19) | VC/MC | 8/0 |  | 4/0 | 3/0 |
| 5. |  | MEAN | 117.10 | "S" | 210.10 | 32.12 |
|  | (In thousands of dollars) | S.E. | 52.75 |  | 83.82 | 16.18 |
|  | (See Item 20) | MED. | 61.55 |  | 89.75 | 27.15 |
|  |  | VC/MC | 8/0 |  | 4/0 | 3/0 |
| S.E. $=$ Standard Error M |  | MED $=$ Median |  | VC/MC = Valid Cases/Missing Cases |  |  |

1 Farms are classified by landforms according to the majority of acreage. Some acreage of a given farm may be on another landform.

2 "S" = Suppression. Data are suppressed for any data cell with less than 3 responses.

| Data Item | BY LANDFORM |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Totals |  | Bottomlands | Terraces | Foothills |
| 6. Minimum \# of acres to arrange a contract with a buyer | MEAN | "S" | "S" | "S" | No Cases |
|  | S.E. |  |  |  |  |
|  | MED. |  |  |  |  |
|  | VC/MC |  |  |  |  |
| 7. Typical field size(most common acreage) | MEAN | 44.71 | "S" | 32.00 | 61.67 |
|  | S.E. | 16.66 |  | 5.23 | 40.45 |
|  | MED. | 36.67 |  | 35.00 | 40.00 |
|  | $\overline{V C / M C}$ | 7/1 |  | 4/0 | 3/0 |
| 8. Distance to rent typical field size (in miles, one way) | MEAN | 4.00 | "S" | 4.50 | 3.33 |
|  | S.E. | 1.56 |  | 1.66 | 3.33 |
|  | MED. | 4.50 |  | 5.00 | 2.50 |
|  | VC/MC | 7/1 |  | 4/0 | 3/0 |
| 9. $\underset{\substack{\text { Minimum } \\ \text { (acres) }}}{\text { field size }}$ | MEAN | 8.00 | "S" | 6.00 | 10.67 |
|  | S.E. | 2.20 |  | 1.68 | 4.70 |
|  | MED. | 6.50 |  | 6.00 | 7.00 |
|  | VC/MC | 7/1 |  | 4/0 | 3/0 |
| 10. Distance to rent minimum field size (in miles, one way) | MEAN | 1.71 | "S" | 1.75 | 1.67 |
|  | S.E. | . 75 |  | . 75 | 1.67 |
|  | MED. | 1.00 |  | 1.50 | 1.25 |
|  | VC/MC | 7/1 |  | 4/0 | 3/0 |
| 11. Field Proximity a. \% of farm adjacent to home parcel | MEAN | 67.14 | "S" | 65.00 | "S" |
|  | S.E. | 17.00 |  | 23.63 |  |
|  | MED. | 96.25 |  | 80.00 |  |
|  | VC/MC | 7/1 |  | 4/0 |  |
| b. \% of farm less than <br> 5 miles away | MEAN | 32.86 | "S" | 35.00 | "S" |
|  | S.E. | 17.00 |  | 23.63 |  |
|  | MED. | 3.75 |  | 20.00 |  |
|  | VC/MC | 7/1 |  | 4/0 |  |
| c. \% of farm 5-10 miles away | MEAN | 0 | "S" | 0 | "S" |
|  | S.E. | 0 |  | 0 |  |
|  | MED. | 0 |  | 0 |  |
|  | V'C/MC | 7/1 |  | 4/0 |  |


| Data Item | Totals |  | BY LANDFORM |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bottomlands |  | Terraces |  | Foothills |  |
| d. \% of farm more than 10 miles away | 1 MEAN | 0 | "S" |  | 0 |  |  |  |
|  | S.E. | 0 | 0 |  |  |  |  |  |
|  | MED. | 0 | 0 |  |  |  |  |  |
|  | IVC/MC | 7/1 | 4/0 |  |  |  |  |  |
| 12. Percent of sample farms \& income, by landform | \# of farms <br> \% of farms <br> $\%$ <br> of total <br> income | NA | "S" |  | 4. |  | 3 |  |
|  |  |  | 50 |  |  |  | 38 |  |
|  |  |  |  |  | 79 |  | 13 |  |
| 13 Type of Market (by \% of product sold) |  | Broker | Auction |  | Coop. or Assoc. |  | Retail Sales | Other |
|  | MEAN | 25.00 | 12.50 |  | 48.75 |  |  | 10.63 |
|  | S.E | 14.17 | 11.14 |  | 18.46 | $\frac{3.13}{2.10}$ |  | 9.28 |
|  | MED. | 7.50 | 1.67 |  | 5.00 | 2.83 |  | 1.67 |
|  | VC/MC | 8/0 | 8/0 |  | $8 / 0$ |  |  | 8/0 |
| 14. Distance to Market (miles one way) | MEAN |  | - $\quad 60.00$ |  |  | "S" |  | S" |
|  | S.E |  | 20.41 |  |  |  |  |  |
|  | MED. |  | 75.00 |  |  |  |  |  |
|  | VC/MC |  | 4/4 |  |  |  |  |  |
| 15. County |  |  | Other Valley |  | Other | Out-ofState | otherCountry |  |
|  |  |  | In-State |  |  |  |
| Processing Location (by \% of product) | $\begin{array}{l\|} \hline \text { MEAN } \\ \hline \text { S.E. } \\ \hline \end{array}$ | - 1.88 |  |  | 50.63 |  | 34.38 | 13.13 | 0 |  |
|  |  | 1.88 | 16.38 |  | 17.00 | 9.77 | 0 |  |
|  | MED. | 1.07 | 22.50 |  | 7.50 |  | 0 |  |
|  | VC/MC | 8/0 | - 8/0 |  | 8/0 | 8/0 | 8/0 |  |
| 16. Market Openness (by sample farms) |  | Very Limi | imited |  | Somewhat Limited |  | Open |  |
|  | \# | 2 |  |  | 3 |  | 3 |  |
|  | \% | 25.0 |  |  | 37.5 | - | 37.5 |  |


*More than one soil type per farm may be reflected in statistics, which will give a row total of more than $100 \%$.

## LINN COUNTY <br> SELECTED dATA BY SIZE GROUPINGS

| Data Item |  | 1-119 | Acres | $120+$ Acres |
| :---: | :---: | :---: | :---: | :---: |
| 1. Size of total farm unit (includes rented and leased lands) | Mean | "S" |  | 214.29 |
|  | S.E. |  |  | 43.07 |
|  | Med. |  |  | 200.00 |
|  | VC/MC |  |  | 7/0 |
| 2. Gross Value of Products Sold (1982) <br> (in thousands of dollars) | Mean | "S" |  | 264.29 |
|  | S.E. |  |  | 64.25 |
|  | Med. |  |  | 220.00 |
|  | VC/MC |  |  | 7/0 |
| 3. Percent of leased or rented lands | Mean | "S" |  | 25.3 |
|  | S.E |  |  | 13.4 |
|  | Med. |  |  | 5.0 |
|  | VC/MC |  |  | 7/0 |
| 4. Value of investment in Land, Buildings, Machinery and Equipment (1982) <br> (in thousands of dollars) | Mean | "S" |  | 584.51 |
|  | S.E. |  |  | 149.16 |
|  | Med. |  |  | 470.03 |
|  | VC/MC |  |  | 6/1 |
|  |  |  |  | $6 / 1$ |
| 5. Annual Expenses (1982) (in thousands of dollars) | Mean | "S" |  | 154.98 |
|  | S.E. |  |  | 63.61 |
|  | Med. |  |  | 63.05 |
|  | VC/MC |  |  | $6 / 1$ |
| 6. Contribution to Total Ag. Type Sales | By \% | 0.2 |  | 99.8 |

## FIELD CROPS \& GENERAL CROPS

District 2, Linn Co. 1983 OSU Extension Service


| Data Item |  | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bottomlands | Terraces | Foothills |
| 1. | Size (acres) of total |  |  | MEAN | 358.92 | 232.25 | 555.83 | "S" |
|  | farm unit (includes | S.E. | 144.40 | 78.65 | 298.29 |  |
|  | rented and leased lands) ${ }^{1}$ | MED. | 299.25 | 163.50 | 302.50 |  |
|  |  | VC/MC | 13/0 | 4/0 | 6/0 |  |
| 2. | Gross Value of | MEAN | 120.57 | 166.75 | 137.65 | S" |
|  | Products Sold (1981) | S.E. | 49.45 | 116.30 | 77.25 |  |
|  | (in thousands of dollars) | MED. | 32.00 | 13.00 | 32.55 |  |
|  |  | VC/MC | 13/0 | 4/0 | 6/0 |  |
| 3. | Percent of leased or | MEAN | 32.48 | 38.68 | 39.54 | "S" |
|  | rented lands | S.E. | 8.73 | 10.10 | 17.76 |  |
|  |  | MED. | 33.80 | 39.75 | 41.67 |  |
|  |  | VC/MC | 12/1 | 4/0 | 5/1 |  |
| 4. | Asset Value (1981): | MEAN | 918.27 | 662.88 | 1,537.33 | "S" |
|  | Land, Bldg., Equip. | S.E. | 465.96 | 308.37 | 961.75 |  |
|  | (In thousands of dollars) | MED. | 245.00 | 256.25 | 230.50 |  |
|  | (See Item 19) | VC/MC | 13/0 | 4/0 | 6/0 |  |
|  | Annual Expenses (1981) | MEAN | 81.30 | 142.88 | 80.42 | "S" |
|  | (In thousands of dollars) | S.E. | 36.91 | 103.49 | 40.62 |  |
|  | (See Item 20) | MED. | 17.00 | 7.00 | 30.50 |  |
|  |  | VC/MC | 13/0 | 4/0 | 6/0 |  |

S.E. = Standard Error $\quad$ MED $=$ Median $\quad V C / M C=$ Valid Cases/Missing Cases

1 Farms are classified by landforms according to the majority of acreage. Some acreage of a given farm may be on another landform.

| Data Item | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bottomlands | Terraces | Foothills |
| 6. Minimum \# of acres to arrange a contract with a buyer | MEAN | 28.00 | 13.33 |  |  |
|  | S.E. | 18.55 | 6.67 |  |  |
|  | MED. | 15.00 | 15.00 |  |  |
|  | VC/MC | $5 / 8$ | $3 / 1$ |  |  |
| 7. Typical field size (most common acreage) | MEAN | 33.83 | 26.25 | 40.17 | "S" |
|  | S.E. | 3.92 | 5.54 | 6.08 |  |
|  | MED. | 30.50 | 22.50 | 42.00 |  |
|  | VC/MC | $12 / 1$ | $4 / 0$ | 60 |  |
| 8. Distance to rent typical field size (in miles, one way) | MEAN | 6.43 | 4.50 | 9.00 | " ${ }^{\text {" }}$ |
|  | S.E. | 2.07 | 2.22 | 3.79 |  |
|  | MED. | 6.00 | 3.00 | 10.00 |  |
|  | VC/MC | 716 | $4 / 0$ | $3 / 3$ |  |
| 9. Minimum field size (acres) | MEAN | 12.50 | 8.25 | 13.00 | "S" |
|  | S.E. | 3.53 | 2.72 | 5.48 |  |
|  | MED. | 8.00 | 5.50 | 9.00 |  |
|  | VC/MC | 12/1 | 4/0 | 6/0 |  |
| 10. Distance to rent minimum field size (in miles, one way) | MEAN | 2.90 | 2.75 | 2.60 | "S" |
|  | S.E. | . 74 | 1.60 | . 81 |  |
|  | MED. | 2.50 | . 50 | 2.00 |  |
|  | VC/MC | 10/3 | 4/0 | 5/1 |  |
| 11. Field Proximity a. \% of farm adjacent to home parcel | MEAN | 74.18 | 93.75 | 67.20 | "S" |
|  | S.E. | 9.18 | 6.25 | 16.55 |  |
|  | MED. | 75.00 | 95.83 | 66.00 |  |
|  | VC/MC | 11/2 | 4/0 | 5/1 |  |
| b. \% of farm less than <br> 5 miles away | MEAN | 16.90 | 6.25 | 22.80 | "S" |
|  | S.E. | 5.80 | 6.25 | 9.37 |  |
|  | MED. | 2.00 | 4.17 | 34.00 |  |
|  | VC/MC | 10/3 | 4/0 | 5/1 |  |
| c. \% of farm 5-10 miles away | MEAN | 2.00 | 0 | 4.00 | "S" |
|  | S.E. | 2.00 | 0 | 4.00 |  |
|  | MED. | 1.11 | 0 | 2.50 |  |
|  | VC/MC | 10/3 | 4/0 | 5/1 |  |



District 2, Linn Co. 1983 OSU Extension Service

*More than one soil type per farm may be reflected in statistics, which will give a row total of more than $100 \%$

## SELECTED DATA BY SIZE GROUPINGS



## GRASS SEED FARMS

Type of Agriculture $\qquad$ Grass Seed
Landform ${ }^{1}$ Terraces
Number of Survey Responses 40
Population Number (From Census Data)(Estimate) 258
Size Range Used in Computations $\qquad$
all

| Data Item | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bottomlands | Terraces | Foothills |
| 1. Size (acres) of total | MEAN | 992.73 | 224.00 | 1080.54 | 661.25 |
| farm unit (includes ${ }^{1}$ | S.E. | 181.59 | 57.18 | 247.25 | 140.90 |
| rented and leased lands) ${ }^{1}$ | MED. | 652.00 | 260.00 | 655.00 | 547.50 |
|  | VC/MC | 40/0 | 3/0 | 28/0 | 4/0 |
| 2. Gross Value of | MEAN | 220.25 | 53.33 | 250.36 | 87.50 |
| Products Sold (1981) | S.E. | 53.91 | 10.93 | 74.77 | 27.50 |
| (in thousands of dollars) | MED. | 125.50 | 45.00 | 126.00 | 45.00 |
|  | VC/MC | 40/0 | 3/0 | 28/0 | 4/0 |
| 3. Percent of leased or | MEAN | 51.73 | 92.31 | 50.47 | 32.13 |
| rented lands | S.E. | 4.94 | 7.69 | 5.74 | 14.13 |
|  | MED. | 54.22 | 94.23 | 50.06 | 30.01 |
|  | VC/MC | 38/2 | 3/0 | 26/2 | 4/0 |
| 4. Asset Value (1981): | MEAN | 1426.19 | 509.07 | 1638.02 | 794.00 |
| Land, Bldg., Equip. | S.E. | 261.29 | 278.22 | 348.77 | 180.30 |
| (In thousands of dollars) | MED. | 1023.00 | 319.00 | 1201.00 | 715.00 |
| (See Item 19) | VC/MC | 40/0 | 3/0 | 28/0 | $4 / 0$ |
| 5. Annual Expenses (1981) | MEAN | 76.20 | 19.78 | 86.69 | 65.75 |
| . (In thousands of dollars) | S.E. | 13.33 | 5.14 | 17.72 | 27.47 |
| (See Item 20) | MED. | 47.55 | 14.90 | 71.60 | 37.55 |
|  | VC/MC | 40/0 | 3/0 | 28/0 | 4/0 |

S.E. = Standard Error $\quad$ MED $=$ Median $\quad$ VC/MC $=$ Valid Cases/Missing Cases

1 Farms are classified by landforms according to the majority of acreage. Some acreage of a given farm may be on another landform.

| Data Item | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bottomlands | Terraces | Foothills |
| 6. Minimum \# of acres toarrange a contract witha buyer | MEAN | 46.11 | "S" | 65.83 | "S" |
|  | S.E. | 21.66 |  | 29.85 |  |
|  | MED. | 20.00 |  | 27.50 |  |
|  | VC/MC | 9/31 |  | 6/22 |  |
| 7. Typical field size(most common acreage) | MEAN | 68.82 | 45.33 | 70.30 | 42.50 |
|  | S.E. | 7.32 | 27.36 | 9.64 | 9.68 |
|  | MED. | 60.25 | 20.00 | 59.50 | 37.50 |
|  | VC/MC | 39/1. | 3/0 | $27 / 1$ | 4/0 |
| 8. Distance to rent typical field size (in miles, one way) | MEAN | 8.35 | 5.67 | 7.17 | 5.00 |
|  | S.E. | 1.49 | 1.33 | 93 | 1.08 |
|  | MED. | 6.75 | 6.00 | 6.75 | 4.50 |
|  | VC/MC | 34/6 | 3/0 | 23/5 | 4/0 |
| 9. Minimum field size (acres) | MEAN | 12.67 | 37.00 | 11.85 | 4.75 |
|  | S.E. | 2.84 | 31.01 | 2.34 | 1.93 |
|  | MED. | 5.75 | 7.00 | 6.25 | 4.00 |
|  | VC/MC | 39/1 | 3/0 | 27/1 | $4 / 0$ |
| 10. Distance to rent minimum field size (in miles, one way) | MEAN | 2.42 | "S" | 2.96 | 75 |
|  | S.E. | . 67 |  | . 93 | 48 |
|  | MED. | 1.00 |  | 1.25 | 50 |
|  | VC/MC | $33 / 7$ |  | 23/5 | 4/0 |
| 11. Field Proximity a. \% of farm adjacent to home parcel | MEAN | 57.16 | "S" | 60.64 | 83.25 |
|  | S.E. | 7.02 |  | 7.45 | 15.45 |
|  | MED. | 65.25 |  | 66.00 | 98.00 |
|  | VC/MC | 31/9 |  | 22/6 | 4/0 |
| b. \% of farm less than 5 miles away | MEAN | 35.67 | 68.67 | 34.04 | 15.50 |
|  | S.E. | 6.15 | 28.87 | 6.99 | 14.20 |
|  | MED. | 25.50 | 95.00 | 30.00 | 2.00 |
|  | VC/MC | 36/4 | 3/0 | 25/3 | 4/0 |
| c. \% of farm 5-10 miles away | MEAN | 8.83 | "S" | 6.12 | 1.25 |
|  | S.E. | 3.27 |  | 2.13 | 1.25 |
|  | MED. | . 50 |  | 71 | . 83 |
|  | VC/MC | 36/4 |  | 25/3 | 4/0 |



District 2, Linn Co. 1983 OSU Extension Service

*More than one soil type per farm may be reflected in statistics, which will give a row total of more than $100 \%$

## SELECTED DATA BY SIZE GROUPINGS

| Data Item |  | 1-319 Acres | 320-999 Acres | 1,000 + Acres |
| :---: | :---: | :---: | :---: | :---: |
| 1. Size of total farm unit (includes rented and leased lands) | Mean | 182.50 | 599.71 | 2,001.54 |
|  | S.E. | 40.15 | 40.55 | 440.64 |
|  | Med. | 166.50 | 570.00 | 1,400.00 |
|  | VC/MC | 6/0 | 21/0 | 13/0 |
| 2. Gross Value of Products Sold (1982) <br> (in thousands of dollars) | Mean | 44.83 | 113.86 | 473.08 |
|  | S.E | 9.08 | 13.34 | 143.29 |
|  | Med. | 42.50 | 110.25 | 268.75 |
|  | VC/MC | 6/0 | 21/0 | 13/0 |
| 3. Percent of leased or rented lands | Mean | 64.4 | 47.2 | 53.8 |
|  | S.E. | 19.0 | 7.1 | 6.5 |
|  | Med. | 76.9 | 38.7 | 57.1 |
|  | VC/MC | $5 / 1$ | $20 / 1$ | 13/0 |
| 4. Value of investment in Land, Buildings, Machinery and Equipment (1982) <br> (in thousands of dollars) | Mean | 478.25 | 984.68 | 2,994.06 |
|  | S.E | 193.03 | 84.47 | 826.76 |
|  | Med. | 309.00 | .1,020.00 | 1,952.50 |
|  | VC/MC | 4/2 | 19/2 | 1,9/4 |
|  |  |  |  |  |
| 5. Annual Expenses (1982) (in thousands of dollars) | Mean | 12.97 | 74.32 | 160.50 |
|  | S.E. | 1.69 | 19.23 | 39.44 |
|  | Med. | 14.40 | 47.10 | 140.00 |
|  | VC/MC | 3/3 | 12/9 | 5/8 |
| 6. Contribution to Total Ag. Type Sales | By \% | 3.1 | 27.1 | 69.8 |


| Type of Agriculture | Horticulture |
| :--- | ---: |
| Landform |  |
| Number of Survey Responses | Bottomlands |
| Population Number (From Census Data) | 6 |
| Size Range Used in Computations | all |


| Data Item |  | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bottomlands | Terraces | Foothills |
| 1. | Size (acres) of total |  |  | MEAN | 68.50 | 97.25 | "S" | "S" |
|  | farm unit (includes | S.E. | 58.37 | 87.62 |  |  |
|  | rented and leased lands) ${ }^{1}$ | MED. | 10.50 | 13.00 |  |  |
|  |  | VC/MC | 6/0 | 4/0 |  |  |
| 2. | Gross Value of | MEAN | 43.33 | 53.75 |  |  |
|  | Products Sold (1981) | S.E. | 11.23 | 14.34 |  |  |
|  | (in thousands of dollars) | MED. | 27.50 | 42.50 |  |  |
|  |  | VC/MC | 6/0 | $4 / 0$ |  |  |
| 3. | Percent of leased or | MEAN | 29.40 | 31.60 |  |  |
|  | rented lands | S.E. | 15.37 | 21.94 |  |  |
|  |  | MED. | 8.33 | 16.67 |  |  |
|  |  | VC/MC | 6/0 | 4/0 |  |  |
| 4. | Asset Value (1981) : | MEAN | 236.17 | 311.75 |  |  |
|  | Land, Bldg., Equip. | S.E. | 154.02 | 231.28 |  |  |
|  | (In thousands of dollars) | MED. | 112.50 | 123.50 |  |  |
|  | (See Item 19) | VC/MC | 6/0 | $4 / 0$ |  |  |
| 5. | Annual Expenses (1981) | MEAN | 22.23 | 25.53 |  |  |
|  | (In thousands of dollars) | S.E. | 7.96 | 12.15 |  |  |
|  | (See Item 20) | MED. | 15.36 | 15.40 | V | $\downarrow$ |
|  |  | VC/MC | 6/0 | 470 |  |  |

S.E. = Standard Error $\quad$ MED $=$ Median $\quad V C / M C=$ Valid Cases/Missing Cases

1 Farms are classified by landforms according to the majority of acreage. Some acreage of a given farm may be on another landform.

| Data Item | BY LANDFORM |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Totals |  | Bottomlands | Terraces | Foothills |
| 6. Minimum \# of acres to arrange a contract with a buyer | MEAN | "S" | No Cases | "S" | "S" |
|  | S.E. | "S" | No Cases |  | 1 |
|  | MED. | "S" | No Cases |  |  |
|  | VC/MC | "S" | $0 / 4$ |  |  |
| 7. Typical field size(most common acreage) | MEAN | 35.00 | 55.00 |  |  |
|  | S.E. | 28.78 | 47.52 |  |  |
|  | MED. | 8.00 | 10.00 |  |  |
|  | VC/MC | $5 / 1$ | $3 / 1$ |  |  |
| 8. Distance to rent typical field size (in miles, one way) | MEAN | 3.25 | 2.67 |  |  |
|  | S.E. | 1.03 | 1.20 |  |  |
|  | MED. | 2.50 | 2.00 |  |  |
|  | VC/MC | 4/2 | $3 / 1$ |  |  |
| 9. $\underset{\substack{\text { (acres) }}}{\operatorname{Minimum}}$ field size | MEAN | 6.40 | 9.67 |  |  |
|  | S.E. | 4.67 | 7.69 |  |  |
|  | MED. | 2.00 | 3.00 |  |  |
|  | VC/MC | 5/1 | $3 / 1$ |  |  |
| 10. Distance to rent minimum field size (in miles, one way) | MEAN | 2.33 | "S" |  |  |
|  | S.E. | 1.33 |  |  |  |
|  | MED. | 2.00 |  |  |  |
|  | VC/MC | 3/3 |  |  |  |
| 11. Field Proximity a. \% of farm adjacent to home parcel | MEAN | 85.00 | 91.67 |  |  |
|  | S.E. | 10.00 | 8.33 |  |  |
|  | MED. | 91.67 | 93.75 |  |  |
|  | VC/MC | 5/1 | 3/1 |  |  |
| b. \% of farm less than <br> 5 miles away | MEAN | 15.00 | 8.33 |  |  |
|  | S.E. | 10.00 | 8.33 | , |  |
|  | MED. | 8.33 | 6.25 |  |  |
|  | VC/MC | 5/1 | 3/1 |  |  |
| c. \% of farm 5-10miles away | MEAN | 0 | "S" |  |  |
|  | $\frac{S_{0} E_{0}}{M E D}$ | $\frac{0}{0}$ |  | $\downarrow$ | $\forall$ |
|  | MED. | 0 |  |  | $\checkmark$ |
|  | C/MC | 4, |  |  |  |




## LINN COUNTY

## SELECTED DATA BY SIZE GROUPINGS

| Data Item |  | $1-19$ Acres | $20+\ldots$ Acres |
| :---: | :---: | :---: | :---: |
| 1.Size of total farm unit <br> (includes rented and <br> leased lands) | Mean | 7.75 | "S" |


| 2. Gross Value of Products Sold (1982) (in thousands of dollars) | Mean | 53.75 | "S" |
| :---: | :---: | :---: | :---: |
|  | S.E. | 14.34 |  |
|  | Med. | 42.50 |  |
|  | VC/MC | 4/0 |  |
| 3. Percent of leased or rented lands | Mean | 20.8 | "S" |
|  | S.E. | 12.5 |  |
|  | Med. | 8.30 |  |
|  | VC/MC | $4 / 0$ |  |

4. Value of investment in Land, Buildings, Machinery and Equipment (1982)
(in thousands of dollars)

| Mean | 102.00 | "S" |
| :--- | :---: | :---: |
| S.E. | 21.50 |  |
| Med. | 115.00 |  |
| VC/MC | $3 / 1$ |  |
|  |  |  |

5. Annual Expenses
(1982)
(in thousands of dollars)

| Mean | 33.21 | "S" |
| :---: | :---: | :---: |
| S.E. | 27.38 |  |
| Med. | 20.38 |  |
| VC/MC | $4 / 0$ |  |

6. Contribution to Total
Ag. Type Sales

| By \% | 82.7 | 17.3 |
| :--- | :--- | :--- |

Livestock Graziny/
Type of Agriculture General. Stock


| Data Item |  | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bottomlands | Terraces | Foothills |
| 1. | Size (acres) of total |  |  | MEAN | 218.49 | 200.38 | 170.46 | 266.27 |
|  | farm unit (includes ${ }^{1}$ | S.E. | 55.74 | 40.95 | 58.07 | 115.93 |
|  | rented and leased lands) ${ }^{1}$ | MED. | 106.00 | 184.50 | 60.50 | 140.50 |
|  |  | VC/MC | 59/0 | 8/0 | 22/0 | 26/0 |
| 2. | Gross Value of | MEAN | 17.55 | 45.00 | 15.54 | 12.05 |
|  | Products Sold (1981) | S.E. | 3.90 | 21.03 | 4.84 | 3.77 |
|  | (in thousands of dollars) | MED. | 7.95 | 12.50 | 5.90 | 7.75 |
|  |  | VC/MC | 59/0 | 8/0 | 22/0 | 26/0 |
| 3. | Percent of leased or | MEAN | 22.74 | 28.94 | 18.35 | 23.01 |
|  | rented lands | S.E. | 4.66 | 14.18 | 7.57 | 6.61 |
|  |  | MED. | 0.11 | 3.57 | 0.09 | 0.82 |
|  |  | VC/MC | 56/3 | 8/0 | 20/2 | $25 / 1$ |
| 4. | Asset Value (1981) : | MEAN | 297.97 | 345.38 | 293.83 | 313.90 |
|  | Land, Bldg., Equip. | S.E. | 62.36 | 105.06 | 83.89 | 119.24 |
|  | ( In thousands of dollars) | MED. | 178.85 | 302.50 | 179.60 | 170.50 |
|  | (See Item 19) | VC/MC | 59/0 | 8/0 | 22/0 | 26/0 |
|  |  | MEAN | 11.29 | 20.12 | 12.66 | 8.47 |
|  | ( In thousands of dollars) | S.E. | 2.04 | 9.64 | 2.54 | 2.73 |
|  | (See Item 20) | MED. | 4.90 | 5.20 | 6.60 | 3.95 |
|  |  | VC/MC | 59/0 | 8/0 | $22 / 0$ | 26/0 |

[^0]1 Farms are classified by landforms according to the majority of acreage. Some acreage of a given farm may be on another landform.

| Data Item | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bottomlands | Terraces | Foothills |
| 6. Minimum \# of acres to arrange a contract with a buyer | MEAN | 35.29 | S" | 10.00 | 71.43 |
|  | S.E. | 29.22 |  | 6.55 | 71.43 |
|  | MED. | 1.54 |  | 2.00 | 41.67 |
|  | VC/MC | 17/42 |  | 7/15 | 7/19 |
| 7. Typical field size(most common acreage) | MEAN | 24.29 | 35.13 | 23.96 | 21.67 |
|  | S.E. | 2.79 | 12.80 | 3.47 | 3.80 |
|  | MED. | 15.32 | 18.00 | 15.50 | 13.50 |
|  | VC/MC | 56/3 | 8/0 | 22/0 | 24/2 |
| 8. Distance to rent typical field size (in miles, one way) | MEAN | 4.20 | 11.00 | 4.72 | 2.44 |
|  | S.E. | 0.85 | 5.05 | 1.00 | 1.10 |
|  | MED. | 1.75 | 9.00 | 4.75 | 0.60 |
|  | VC/MC | 41/18 | 4/4 | 18/4 | 16/10 |
| 9. Min imum field size (acres) | MEAN | 8.31 | 10.17 | 9.25 | 7.29 |
|  | S.E. | 1.29 | 1.28 | 2.38 | 1.97 |
|  | MED. | 5.83 | 10.00 | 6.00 | 4.90 |
|  | VC/MC | $52 / 7$ | 6/2 | $20 / 2$ | 24/2 |
| 10. Distance to rent minimum field size (in miles, one way) | MEAN | 2.81 | 10.75 | 3.06 | 1.06 |
|  | S.E. | 0.76 | 5.22 | 0.91 | 0.67 |
|  | MED. | 0.41 | 9.00 | 1.33 | 0.29 |
|  | VC/MC | 42/17 | 4/4 | 17/5 | 18/8 |
| 11. Field Proximity <br> a. \% of farm adjacent to home parce1 | MEAN | 85.27 | 65.43 | 92.35 | 89.32 |
|  | S.E. | 3.93 | 16.87 | 3.51 | 5.55 |
|  | MED. | 99.08 | 93.25 | 99.17 | 98.89 |
|  | VC/MC | 52/7 | 7/1 | 20/2 | 22/4 |
| b. \% of farm less than 5 miles away | MEAN | 6.59 | 0 | 3.14 | 7.61 |
|  | S.E. | 2.67 | 0 | 2.07 | 4.83 |
|  | MED. | 0.18 | 0 | 0.44 | 1.88 |
|  | VC/MC | 53/6 | 7/1 | 20/2 | 23/3 |
| c. \% of farm 5-10 miles away | MEAN | 5.51 | 20.29 | 1.50 | 5.00 |
|  | S.E. | 2.47 | 13.31 | 1.50 | 3.46 |
|  | MED. | 1.15 | 4.40 | 0.79 | 2.73 |
|  | VC/MC | 53/6 | 7/1 | 20/2 | 24/2 |

BY LANDFORM

| Data Item | Totals |  | Bottomlands | Terraces |  | Foothills |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d. \% of farm more than 10 miles away | MEAN | 3.08 | 14.29 | 3.00 |  | 0 |
|  | S.E. | 2.08 | 14.29 | 2.19 |  | 0 |
|  | MED. | 0.61 | 8.33 | 1.11 |  | 0 |
|  | VC/MC | 52/7 | $7 / 1$ | $20 / 2$ |  | 23/3 |
| 12. Percent of sample farms \& income, by landform | of farms | NA | 8 | 22 |  | 26 |
|  | \% of farms |  | 14 | 37 |  | 44 |
|  | \% of total income |  | 35 | 33 |  | 30 |
| 13. Type of Market (by \% of product sold) |  | Broker | Auction | Coop. or Assoc. | Reta | Sales ${ }^{\text {O }}$ Other |
|  | MEAN | 24.19 | 49.41 | 4.39 |  | 0-13.64 |
|  | S.E | 4.68 | 4.93 | 2.56 |  | 7 3.85 |
|  | MED. | 1.02 | 50.00 | 0.43 |  | 1 - 0.18 |
|  | VC/MC | 52/7 | 54/5 | 51/8 |  | 52/7 |
| 14. Distance to Market (miles one way) | MEAN | 23.10 | 43.35 | 28.25 |  | 1-71.25 |
|  | S.E | 5.02 | 14.43 | 20.76 |  | 7 44.52 |
|  | MED. | 19.79 | 20.25 | 11.50 |  | 1.25 |
|  | VC/MC | 20/39 | 43/16 | 4/55 |  | 6 $12 / 47$ |
| 15. <br> Processing Location (by \% of product) |  | County | Other Valley | Other 0 <br> In-State  | Out-ofState | Other Country |
|  | MEAN | 36.05 | 24.21 | 16.18 | 16.29 | 3.42 |
|  | S.E. | 6.74 | 5.91 | 5.14 | 4.98 | 1.92 |
|  | MED. | 19.67 | 3.26 | 1.02 | 0.23 | 0.29 |
|  | VC/MC | 39/20 | 38/21 | 38/21 | 38/21 | 38/21 |
| 16. Market Openness (by sample farms) |  | Very Lim |  | Somewhat Limited |  | Open |
|  | \# | - 16 |  | 19 |  | 17 |
|  | $\|\bar{z}\|$ | 30.8 |  | 36.5 |  | 32.7 |

District 2, Linn Co. 1983
OSU Extension Service

*More than one soil type per farm may be reflected in statistics, which will give a row total of more than $100 \%$

## LINN COUNTY

## sELECTED DATA BY SIZE GROUPINGS

| Data Item |  | 1-79 Acres | 80-319 Acres | $320+$ Acres |
| :---: | :---: | :---: | :---: | :---: |
| 1. Size of total farm unit (includes rented and leased lands) | Mean | 48.37 | 182.50 | 900.63 |
|  | S.E. | 3.02 | 13.53 | 327.04 |
|  | Med. | 42.00 | 160.00 | 502.50 |
|  | VC/MC | $27 / 0$ | 24/0 | 8/0 |
| 2. Gross Value of Products Sold (1982) (in thousands of dollars) | Mean | 5.44 | 15.80 | 63.69 |
|  | S.E. | . 63 | 3.24 | 21.10 |
|  | Med. | 4.92 | 10.05 | 31.50 |
|  | VC/MC | 27/0 | 24/0 | 8/0 |
| 3. Percent of leased or rented lands | Mean | 19.3 | 20.1 | 44.2 |
|  | S.E. | 6.7 | 6.9 | 15.4 |
|  | Med. | 0.3 | 0.1 | 40.0 |
|  | VC/MC | 26/1 | 23/1 | $7 / 1$ |
| 4. Value of investment in Land, Buildings, Machinery and Equipment (1982) <br> (in thousands of dollars) | Mean | 133.13 | 273.64 | 919.50 |
|  | S.E. | 16.34 | 22.46 | 434.93 |
|  | Med. | 106.25 | 272.70 | 380.00 |
|  | VC/MC | 26/1 | 20/4 | $7 / 1$ |
|  |  |  |  |  |
| 5. Annual Expenses (1982) <br> (in thousands of dollars) | Mean | 6.29 | 24.90 | "S" |
|  | S.E. | 2.51 | 8.61 |  |
|  | Med. | 4.35 | 15.79 |  |
|  | VC/MC | 6/21 | 8/16 |  |
| 6. Contribution to Total Ag. Type Sales | By \% | 14.2 | 36.6 | 49.2 |

Type of Agriculture
Landform $\qquad$ Vegetable Crops
$\qquad$ Bottomlands
Number of Survey Responses
Population Number (From Census Data)


| Data Item |  | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bottomlands | Terraces | Foothills |
| 1. | Size (acres) of total |  |  | MEAN | 543.18 | 580.56 | "S" | No Cases |
|  | farm unit (includes | S.E. | 106.68 | 128.10 |  |  |
|  | rented and leased lands) ${ }^{1}$ | MED. | 400.00 | 450.00 |  |  |
|  |  | VC/MC | 11/0 | 9/0 |  |  |
| 2. | Gross Value of | MEAN | 309.46 | 335.00 | "S" |  |
|  | Products Sold (1981) | S.E. | 88.18 | 106.51 |  |  |
|  | (in thousands of dollars) | MED. | 200.00 | 200.00 |  |  |
|  |  | VC/MC | 11/0 | 9/0 |  |  |
| 3. | Percent of leased or | MEAN | 53.61 | 53.46 | "S" |  |
|  | rented lands | S.E. | 8.82 | 10.86 |  |  |
|  |  | MED. | 60.00 | 62.50 |  |  |
|  |  | VC/MC | 11/0 | 9/0 |  |  |
| 4. | Asset Value (1981): | MEAN | 1216.55 | 1208.56 | "S" |  |
|  | Land, Bldg., Equip. | S.E. | 271.95 | 302.58 |  |  |
|  | (In thousands of dollars) | MED. | 1090.00 | 1090.00 |  |  |
|  | (See Item 19) | VC/MC | 11/0 | 9/0 |  |  |
|  | Annual Expenses (1981) | MEAN | 117.34 | 130.81 | "S" |  |
|  | (In thousands of dollars) | S.E. | 34.55 | 41.06 |  |  |
|  | (See Item 20) | MED. | 78.45 | 108.50 |  |  |
|  |  | VC/MC | 11/0 | 9/0 |  | $\cdot$ |

S.E. = Standard Error

MED $=$ Median
VC/MC = Valid Cases/Missing Cases

1 Farms are classified by landforms according to the majority of acreage. Some acreage of a given farm may be on another landform.

| Data Item | Totals |  | BY LANDFORM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bottomlands | Terraces | Foothills |
| 6. Minimum \# of acres toarrange a contract witha buyer | MEAN | 77.78 | 86.25 | "S" | No Cases |
|  | S.E. | 47.60 | 53.12 |  |  |
|  | MED. | 22.50 | 25.00 |  |  |
|  | VC/MC | 9/2 | 8/1 |  |  |
| 7. Typical field size | MEAN | 35.91 | 36.67 | "S" |  |
|  | S.E. | 5.43 | 6.01 |  |  |
|  | MED. | 31.67 | 33.33 |  |  |
|  | VC/MC | 11/0 | 9/0 |  |  |
| 8. $\begin{aligned} & \text { Distance to rent typical } \\ & \text { field size (in miles, } \\ & \text { one way) }\end{aligned}$ | MEAN | 7.50 | 6.13 | "S" |  |
|  | S.E. | 1.83 | 1.52 |  |  |
|  | MED. | 5.17 | 4.83 |  |  |
|  | VC/MC | 10/1 | 8/1 |  |  |
|  | MEAN | 12.91 | 13.56 | "S" |  |
| 9. ${ }^{\text {Min imum }}$ (acres) field size | S.E. | 2.24 | 2.72 |  |  |
|  | MED. | 10.67 | 14.50 |  |  |
|  | VC/MC | 11/0 | 9/0 |  |  |
|  | MEAN | 2.60 | 1.38 | "S" |  |
| 10. Distance to rent minimum field size (in miles, one way) | S.E. | 1.47 | 0.63 |  |  |
|  | MED. | 0.83 | 0.83 |  |  |
|  | VC/MC | 10/1 | 8/1 |  |  |
| 11. Field Proximity a. \% of farm adjacent to home parcel | MEAN | 35.56 | 40.00 | "S" |  |
|  | S.E. | 12.49 | 13.23 |  |  |
|  | MED. | 20.00 | 25.00 |  |  |
|  | VC/MC | 9/2 | 8/1 |  |  |
| b. \% of farm less than 5 miles away | MEAN | 33.56 | 29.38 | "S" |  |
|  | S.E. | 10.19 | 10.54 |  |  |
|  | MED. | 25.00 | 15.00 |  |  |
|  | VC/MC | 9/2 | 8/1 |  |  |
| $\begin{aligned} & \text { c. \% of farm } 5-10 \\ & \text { miles away } \end{aligned}$ | MEAN | 25.90 | 25.11 | "S" |  |
|  | S.E. | 6.91 | 7.68 |  |  |
|  | MED. | 21.50 | 21.00 |  |  |
|  | VC/MC | 10/1 | $9 / 0$ |  |  |



*More than one soil type per farm may be reflected in statistics, which will give a row total of more than $100 \%$

LINN COUNTY
SELECTED DATA BY SIZE GROUPINGS


1
extension
SERVICE

## APPENDIX A

## EARM SURYEY

1. Please indicate which one of the following farm types best represents your operation. If your production occurs in more than one type, choose the type which contributes $50 \%$ or more of your total sales. If you do not produce a cormodity which contributes $50 \%$ or more in sales, choose one of the last two general farm categories. (CHECK ONE)
$\qquad$ CASH GRAINS (WHEAT, BARLEY, OATS, ETC.)
FIELD CROPS (SUGAR beEt SEED. MINT, hay, ETC.)
GRASS SEED (RYEGRASS, BENTGRASS, ETC.)
VEGETABLE CROPS (CARROTS, SQUASH, SWEET CORN, ETC.)
berries, grapes, tree frults and tree nuts
CHRISTMAS TREES
horticultural specialties (nurseries, greemhouses, etc.)
INTENSIVE ANIMAL HUSBANDRY (FEEDLOTS, RABBITS, ETC.)
dairy farms
extensive animal grazing (cattle, sheep, horses, etc.)
general farms, primarily crop
general farms, primarily livestock
2. How many years have you been farming:
(a) In Linn count
(b) $\qquad$ al together
3. How many acres do you farn? (Including rented and leased land)
(a) ACRES
How many of these acres, If any, are rented or leased?
(b) $\qquad$ ACRES
4. Farmed acreage may be located any number of miles from a "home farm." Using your home farm as the starting point, please indicate what percentage of your farm land falls in each of the categories IIsted below.
$\qquad$ * ADJACENT TO HOHE FARM
$\qquad$ * LeSS than five miles
$\qquad$
_ \% MORE THAN TEN MILES
5. Referring to the enclosed map of farm districts in Linn County, in which district (I, II, OR III) is your farm located?
$\qquad$ FARM DISTRICT
6. Listed below are the landforms and associated soils in Linn County. Please indicate which is the most common landform and soil association for your farm. Check only one landform and then only one associated soil for that landform.

LANDFORM (CHECK ONE)
$\qquad$ BOTTOMLANO SOILS ON FLOODPLAINS
____ SOILS ON MAJOR TERRACES OF THE MAIN valley floor

SOIL ASSOCIATION (CHECK ONE)
WELL DRAINED SILTY AND SANDY SOILS
CHEHALIS - CLOQUATO - NEWBERG WET, CLAYEY SOILS -- MCALPIN - WALDO - BASHAW DON'T KNOW
_ WEt, clayey solls on broad, level terrace DAYTON - AMITY - HOL COMB - AWBRIG - CONSER WET, GRAVELLY SOILS -- CLACKAMAS - COURTHEY WELL DRAIMED SILIY AND CLAYEY SOILS - NEA LEYEL TO GENTLY ROLLING -- WILLAMETTE
WOODBURN - MALABON - SALEM - COBURG DON'T KNOW
$\qquad$ red, clayey, well drained -- jory - hekia ELLPINE
DaRk brown to black, clayey -- ol xonville DON'T KNOH
6. (a) What is your most typical individual fteld size, in acres, on this landform/soil association?
$\qquad$ acres
b) What is your smallest field, in acres, on this landform/soil association which can be farmed, considering equipment and other limitations?
$\qquad$ ACRES
c) How for can you afford to travel, one way, to rent a field of typical size (6a) on this landform/soll assoctation?
$\qquad$
d) How far can you afford to travel to rent a field of minimum size (6b) on this landform/soil association? $\qquad$ miles one har
7. Please indicate how many miles one way you would be willing to travel to rent fields with each of the following combinations:
$\qquad$
(a) Typical field size - Better soil
(b) Typical field size - Poorer soil
(c) Minimum field size - Better soil
(d) Minimum field size - Poorer soll
$\qquad$

On the average, what is the approximate annual gross value of total farm sales from your farm
operation?
$\$$
9. How much do you think you would need to spend, at a mininum, to buy a farm operation similar to yours in today's market? Consider the following categories:
(a) LAND . . . . . . . . . . . . . . . .
(b) BUILDINGS (excluding home)
(c) MACHINERY \& EquIPMENT . ...... \&


Livestock . . . . . . . . . . . . .
(d) Livestock . . . . . . . . . . . . . \$
10. On the average, how much do you spend for each of the following items per year?
(a) LIVESTOCK REPLACEMENT . . . . . . . $\$$

(c) LABOR (excluding your own) . . . . .
(d) REPAIRS \& MAINTENANCE . . . . . . .

(f) interest on equipment . . . . . . .
(g) miscellaneous . . . . . . . . . . .
(h) replacement of machinery a equiphent

11. Please indicate what percentage of your production is marketed by each outlet listed below, and give the distance in miles one way to that outlet.

$$
\begin{gathered}
\text { PERCENT } \\
(x)
\end{gathered}
$$

DISTANCE
MILES ONE MAY
(a) BROKER, DEALER MAREHOUSE $\qquad$
$\qquad$ (Includes contract sales)
(b) AUCTION
(c) Marketing association on co.... $\qquad$
d) RETAIL SALES . . . . . . . . . . . (for example, a roadside stand)
(e) OTHER MEAMS, SPECIFY $\qquad$ - $\qquad$
$\qquad$
total
$00 \%$

12. For the locations ilsted below, please indicate what percentage of your production is processed changed from its raw field form) or packaged in each:
(a) In the county . . . . . . . . . .
(b) other valley locations
$\qquad$
(c) OTHER IN-STATE LOCATIONS
$\qquad$
(d) OUT OF STATE $\qquad$
(e) ANOTHER COUMTR $\qquad$ $*$
13. If applicable, what is the minimum number of acres you must farm in order to arrange a contract with a buyer or processor?
$\qquad$ ACRES
14. Would you say that the openness of the market to the purchase of products from new farm operations of your type is: (CHECK ONE)

$$
\begin{aligned}
& \text { VERY LIMITED . . . . . } \\
& \text { SOMELHAAT LIMITEO . . . } \\
& \text { OPEN . . . . . . . . . }
\end{aligned}
$$

15. Is there anything else you would include to better understand the physical and financial characteristics of your type of faraing in Linn County?


| District 1 | District 2 | District 3 |
| :---: | :---: | :---: |
| Columbia | Polk | Clatsop |
| Washington | Lane | Coos |
| Yamhill | Linn | Curry |
| Clackamas | Marion | Lincoln |
| Multnomah | Benton | Tillamook |
| District 4 | District 5 | District 6 |
| Douglas | Hood River | Union |
| Josephine | Wasco | Wallowa |
| Jackson | Sherman | Baker |
|  | Umatilla | Malheur |
|  | Gilliam |  |
|  | Wheeler |  |
|  | Morrow |  |
| District 7 |  |  |
| Lake |  |  |
| Deschutes |  |  |
| Jefferson |  |  |
| Harney |  |  |
| Klamath |  |  |
| Crook |  |  |
| Grant |  |  |



# A DELPHI APPLICATION FOR LAND USE DATA 

James R. Pease ${ }^{1}$

Federal, state, and local agricultural specialists have frequent need to obtain information on characteristics of agriculture within a county or trends in agriculture on a regional and state level. Most often, this information is obtained by questionnaire or by informal discussion among USDA agency staff, farmers or ranchers, people involved in the marketing of products, and suppliers of farm equipment.

We have been involved in a project to obtain data on spatial, financial, and marketing characteristics of commercial agriculture in Oregon. These data are useful for educational and research purposes, and, since Oregon has enacted a statewide program to preserve agricultural land, for land use decisions affecting agriculture. As an alternative to a mail-out survey, we decided to test the Delphi Expert Opinion Method to obtain the information we needed.

The Delphi method was developed in the 1960's at the Rand Corporation in California as a means to obtain group consensus on military forecasting problems (Dalkey, 1969). In general, Delphi is a systematic process for obtaining consensus among a group of experts on a set of questions. The technique has been used for a wide variety of applications in both government and industry. Although used primarily as a tool for developing policy and forecasting change, Delphi has been shown to be an inexpensive and efficient method for gathering information on specific topics (Linstone and Turoff, 1975; Dodge and Clark, 1977; Mitche11, 1979).

The use of Delphi for any purpose is characterized by the following features: (1) response anonymity, (2) controlled feedback, (3) statistical summary of group responses. Central to the Delphi is the advantage a group of individuals has over a single individual in making accurate estimations, or the " $n$ heads is better" rule (Dalkey, 1969). The usual procedure for obtaining a group opinion is through face-to-face discussion; however, as reviewed by Uhl (1971), serious problems are associated with that mode of group interaction: (1) group opinion is influenced by dominant individuals who, while not necessarilty the most knowledgeable, tend to talk the most; (2) group discussion often digresses from the question at hand to irrelevant and potentially biasing comments; and (3) group pressure to conform may distort individual judgement. Because group interaction in the Delphi is anonymous through the use of written questionnaire responses, these problems are largely avoided. In controlled studies conducted by Dalkey (1969), the Delphi proved to be consistently more accurate than traditional group discussion in answering almanac (verifiable) type questions.

The Delphi process is divided into two or more rounds: the first round elicits confidential written responses from the experts which are then statistically summarized for the group by median and interquartile range; in subsequent rounds, each participant is provided with the statistical summary of the previous round and another response is elicited. The expert may reconsider his
$1_{\text {Land Resource Management Specialist, Oregon State University Extension Service, Department of }}$ Geography, Oregon State University, Corvallis, OR .97331. This paper is based on the correlation analysis completed by David Nelson, graduate research assistant, for his master's research paper.
answer in light of the group response. Over successive iterations, individual responses tend to converge toward a group consensus as defined by the final median and interquartile spread; maximum consensus is usually achieved after two or three rounds (Linstone and Turoff, 1975). A more detailed discussion of the mechanics involved in the Delphi is provided in the following review of its specific application in Linn County, Oregon (Nelson, 1983).

## Linn County Case Study

As emphasized by Linstone and Turoff (1975), the Delphi technique of structuring group communication is not a "neatly wrapped package, sitting on the shelf and ready to use"; the technique is still evolving with respect to methodological variations and the uses to which it can be applied. The application of Delphi procedures in this project was intended not only to test the validity of the technique, but also to provide the participating county with a comprehensive set of potentially valuable data.

## Delphi Questionnaire

The first step in the process was the development of a questionnaire with which to facilitate and control the group communication. Based on the decision to provide the county with complete information on commercial agriculture, the questionnaire was designed to cover the full range of farm types in the area and their associated physical, financial, and marketing characteristics. The resulting format consisted of a matrix of 12 farm categories by 22 questions covering 57 individual variables.

The farm categories were defined by the Standard Industrial Classification (SIC) system used by the U.S. Bureau of Census in coding data from its census of agriculture. Grouping of SIC types was necessary to reduce the number of categories in order to maintain a questionnaire of manageable proportions. Because of their unique characteristics in Linn County, grass seed operations were separated out of the field crop SIC group and treated separately.

The spectrum of questions presented was finalized in consultation with county Extension agents and county land use planners. The first section of the questionnaire was concerned primarily with physical characteristics, e.g., geographic location, distance to rented and leased lands, total farm size, field sizes, landform, and soil type. The second section covered a variety of financial and marketing characteristics: e.g. annual operating costs, types of marketing outlets, location and distance to processors, and the openness of the market to new operations.

For each question a space was provided for the panelist to rate his/her expertise on a scale of one, (low confidence) to five (high confidence). In a study by Brown (1966), the subgroup of panelists with the highest self-rating had collectively better accuracy than the average; however, such a relationship between accuracy and self-rating was not found to be statistically significant in a later test of the Delphi by Brockoff (1975). Apparently, in some cases, the self-rating of expertise does not coincide with the panelist's actual expertise. Self-ratings were, however, considered to be potentially valuable in selecting the most accurate subgroup in this application of the technique because of the narrow limits of expertise of some of the panelists; a farmer of
one type of agriculture may have very limited knowledge of certain aspects of another type and would rate his responses accordingly.

## Panel Selection

The success of the Delphi is, of course, dependent on the quality of the participants. Selection of the experts to serve on the Linn County panel was guided by the understanding that their cumulative expertise would replace random survey as the basis for the validity of the information obtained. The panelists were selected in consultation with the county Extension agents. The minimum requirements were a group which represented a breadth of knowledge on agriculture and which was most likely to provide unbiased responses.

The resulting panel consisted of fifteen farmers, two bankers, two agricultural extension agents, two processor representatives, one farm cooperative manager, one Soil Conservation Service official, one Agricultural Stabilization and Conservation official, and one farm commodity buyer for a total of 25 participants. A group of this size was considered to be ideal from the perspective of both manageability and overall accuracy.

## Round I

The process of conducting the Delphi began with convening the panel of experts for an evening session at a Linn County conference facility. Notification of the scheduled meeting was sent to each panelist with an enclosed card to be returned indicating a commitment to attend. Since stimulating a willingness to participate, as well as to do so conscientiously, often requires an incentive such as a token payment or honorarium (Scheele, 1975), a banquet was provided prior to the Delphi. A brief statement of purpose preceeded the dinner and the participants and project investigators were given a chance to get acquainted. Following the dinner, the materials were distributed and a detailed explanation of the Delphi process was provided by the principal investigator. Our definitions of commercial agricultural and SIC farm categories were stressed, along with the important requirement that participants not verbally communicate with each other concerning responses to the questionnaire. The project investigators responded to questions during the session and attempted to clarify any problems in question interpretation. Upon completion, the questionnaires were collected for processing. A second round was completed by mail.

The control insturment used to validate the Delphi panel's responses was a mail-out survey. The most complete data on both the mail-out survey and the Delphi panel responses were for grass seed farms; therefore, we decided to test the panel's responses on grass seed operations. The results of the validation test are displayed in Table. I.

As the table indicates, the accuracy of the Delphi estimations was extremely good on some questions and less so on others. With respect to the main categories, the Delphi most accurately characterized marketing and processing followed by physical and then financial characteristics.

The Delphi accuracy was highest when identifying qualitative characteristics, such as predominant soil type or the typical type of marketing. Accuracy was also quite high in defining the areal extent of overall farm size and field sizes. However, the error increased when determining the distance to rented or leased land and the distance a farmer would be willing to travel to rent or lease fields of a specific size and soil quality. Some of this error is the result of the small distances being estimated and the possible tendency to "round off" to inappropriately large intervals. For example, the survey distance of 2.3 miles compared to the Delphi distance of five miles gave an error of 1.174 , the highest noted for all variables. However, in application of these data, this distance difference is insignificant.

The ability of the Delphi to characterize the initial and annual expenditures of a typical grass seed operation was consistently lower than for other question categories. Questions on financial characteristics proved to be the most troublesome to the Delphi; the fewest panelists responded to these questions compared to the high survey response of farmers with access to records. In general, the Delphi underestimated the initial minimum investment necessary to start up a new operation and overestimated the annual operating costs.

## Skagit County Case Study

A second validation test was conducted in Skagit County, Washington. The Washington State University Extension Service had just completed a mail-out survey, which we used as a control instrument. We decided to concentrate on one type of agriculture, vegetable farming, in order to complete the three rounds in one evening. The county Extension staff helped us to organize a panel of 16 persons, composed of farmers, USDA agency staff, processors, bankers, and equipment dealers. As in Linn County, we provided a dinner and then put the panelists to work on the task. We were able to complete the three rounds in about two and one-half hours, with the use of a personal computer to compute the group statistics at the end of each round. We found that focusing the panel on one type of agriculture and posting the group results after each round generated a much higher level of participant interest than the Linn County test where the panelists had to address 12 types of agriculture and did not receive immediate feedback. The results of the Skagit County test are shown in Table 2.

As can be seen, the Skagit County panel did not estimate the data as closely to the survey results as did the panel in Linn County. Part of this problem may be explained by the difficulty we had in composing questions for the Delphi panel that matched the survey questions. This was less of a problem in Linn County because we controlled both instruments.

However, the results in Skagit County indicate that the estimations are reasonably good for several of the questions. The panel had the most difficulty with the financial questions, as was the case in Linn County.

## Conclusions

The two validation tests are not really sufficient to fully evaluate the Delphi estimations. We intend to complete at least two more Delphi tests in other Oregon counties.

However, the tests do shed light on several points. Extension workers and other USDA agency county staff often use group discussions for estimates of various characteristics of agriculture. For example, the enterprise data sheets, which provide a profile of a type of agriculture, are often based on the consensus of a group organized by the Extension agent. The validation tests conducted in Linn County and Skagit County give a rough indication of how accurate such estimates are. The Delphi procedures could be used to improve the estimates by making the process more systematic than is common now.

In terms of a time and cost comparison, the Delphi panel was about 85 percent less expensive and required $75-90$ percent less time than did the mail-out survey. Once standardized feedback materials were developed for the Delphi panels, it should take about two to three days of organization and administration time to complete a Delphi report.

As an educational exercise, the Delphi technique was certainly superior to the mail-out survey. Panelists generally enjoyed the exercise and learned from it, whereas an adequate sample of mail-out survey responses was obtained only by repeated prodding through follow-up reminders.

In analyzing the results, we found a weak correlation between self-rating and accuracy of the responses. While this aspect of the process needs more testing, our preliminary conclusion is that the use of self-ratings could be eliminated, thus cutting down considerably on data handling procedures.

The panel size of 25 was necessary to cover adequately 11 types of agriculture. However, smaller panels of 6-9 persons have been found to be adequate for factual estimates (Linstone and Turoff, 1975). In future studies, we will organize a panel of 6-9 persons to address 1-3 types of agriculture. To cover all types of agriculture in a county may require $2-4$ separate panels.

For persons interested in using the Delphi technique, a more complete report on the validation tests is available from the author. In summary, the Delphi technique may provide an economical alternative to traditional information gathering methods for certain purposes. We feel more testing is necessary before the technique can be fully evaluated. In any application of Delphi, the quality of the information obtained will depend on the care given to the specific procedures of the technique. Valuable lessons can be learned from our experience and from other Delphi studies.

TABLE 1

LINN COUNTY, OREGON
Comparison of the Delphi Characterization of Typical Commercial Grass Seed Operations to the Validation Instrument (Survey)

| Variable | Delphi (D) | Survey ( $S$ ) (Mean) | Error $\frac{(S-D)}{S}$ |
| :---: | :---: | :---: | :---: |
| 1. Annual value of total farm sales | \$200,000 | \$251,206 | . 204 |
| 2. Size of farm on terraces (including rented and leased land) | 1,000 ac. | 1,076 ac. | . 071 |
| 3. Size of farm on bottomlands | 500 ac . | 526 ac . | . 049 |
| 4. Predominant landform and soil type | terraces wet, clayey | terraces wet, clayey | . 000 |
| 5. Typical (modal) field size | 80 ac . | 78 ac . | . 026 |
| 6. Mininum field size | 10 ac . | 10 ac . | . 000 |
| 7. Percent of acreage rented or leased | 60\% | 48.4\% | . 154 |
| 8. Miles willing to travel to rent fields: |  |  |  |
| Typical size/common soil | 10 mi . | 8.8 mi . | . 136 |
| Minimum size/common soil | 5 mi : | 2.7 mi . | . 851 |
| Typical size/better soil | 10 mi . | 9.9 mi . | . 010 |
| 9. Minimum initial investment: |  |  |  |
| Buildings | \$80,000 | \$111,937 | . 285 |
| Machinery and equipment | \$150,000 | \$209,687 | . 285 |
| 10. Annual operating costs: |  |  |  |
| Energy | \$13,000 | \$10,379 | . 253 |
| Labor | \$13,000 | \$17,015 | . 236 |
| Repairs | \$12,000 | \$8,460 | . 418 |
| Interest on equipment | \$10,000 | \$6,502 | . 538 |
| Equipment replacement | \$25,000 | \$17,700 | . 412 |
| 11. Openness of market: |  |  |  |
| Very limited | 0\% | 8\% | *** |
| Somewhat limited | 45\% | 38\% | . 184 |
| Open | 55\% | 54\% | . 018 |
| 12. Marketing outlets: |  |  |  |
| Broker, dealer, warehouse | 90\% | 100\% | . 100 |
| Marketing association or co-op | 10\% | 0\% | *** |
| 13. Distance to marketing outlet: |  |  |  |
| Broker, dealer, warehouse | 10 mi . | 14 mi. | . 286 |
| 14. Location of processor: |  |  |  |
| In county Other valley counties | $90 \%$ $10 \%$ | $\begin{aligned} & 100 \% \\ & 0 \% \\ & \hline \end{aligned}$ | $.100$ |

***Error undefined because divisor zero or unity.

TABLE 2
SKAGIT COUNTY, WASHINGTON
Comparison of the Delphi Characterization of Typical Vegetable Farm Operations To The Validation Instrument (Survey)


[^1]**Number of responses - 14

Brockhoff, K. 1975. The Performance of Forecasting Groups in Computer Dialogue and Face-toFace Discussion. In: The Delphi Method, ed. H.A. Linstone and M. Turoff. Addison-Wesley Publishing Company, Reading, Massachusetts.

Brown, B. and 0. Helmer. 1966. Improvement in the Reliability of a Consensus Through the use of Self-Rating. In: Social Technology, ed. 0. Helmer. Basic Books, Inc., New York.

Dalkey, N.C. 1969. The Delphi Method: An Experimental Study of Group Opinion. Rand Corporation, RM5888-PR, Santa Monica, California.

Dodge, J.J. and R.E. Clark. 1977. Research Briefing: Research on the Delphi Technique. Educational Technology 17:58-59.

Linstone, H.A. and M. Turoff. 1975. The Delphi Method: Techniques and Application. Addison-Wesley Publishing Company, Reading, Massachusetts.

Mitche11, B. 1979. Geography and Resource Analysis. Longman, Inc. New York.
Scheele, S.E. 1975. Reality Construction as a Product of Delphi Interaction. In: The Delphi Method, edited by H.A. Linstone and M. Turoff. Addison-Wesley Publishing Company, Reading, Massachusetts.

Uh1, N.P. 1971. Encouraging Convergence of Opinion, Through Use of the Delphi Technique, in the Process of Identifying an Institution's Goals. Educational Testing Service, South Eastern Office. Durham, North Carolina.

Nelson, D.A. 1983. The Characterization of Commercial Agriculture: A Test of the Delphi Expert Opinion Method. Masters Research Paper, Department of Goegraphy, Oregon State University, Corvallis, Oregon.

## DELPHI PANEL RESULTS



[^2]

| DATA | TEM | $\begin{gathered} \text { Cash } \\ \text { Grains } \\ \hline \end{gathered}$ | Field Crops | Grass Seed Crops | Vegetables \& Melons | Berries \& Grapes Tree Fruits \& Nuts | Christmas Trees | Horticultural Specialties | General Farms Primarily Crop | Intensive Animal Husbandry | Dairy Farms | General Farms Primarily Livestock | Livestock Grazing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12. For a typical commercial farm, how much must a farmer spend for the minimum initial invest ment on the following:* |  | $\begin{gathered} 300 \\ 200-800 \\ \hline \end{gathered}$ | $\frac{250}{125-1,000}$ | $\frac{350}{250-900}$ | $\frac{480}{200-500}$ | $\begin{array}{r} 300 \\ \hline 70-400 \end{array}$ | $\frac{150}{80-175}$ |  | $\frac{350}{200-900}$ | 100 | 200 | 100 | 100 |
| Land | Median Range |  |  |  |  |  |  |  |  |  |  |  |  |
| Buildings | Median | 50 | 80 | 100 | 100 | 75 | 20 | 25 | 200-900 | 80-150 | 100-200 | 100-100 | 50-100 |
|  | Range | 40-850 | 40-100 | 40-150 | 40-100 | 40-100 | 0-50 | 10-25 | 30-100 | 80-150 | $\frac{150}{100-200}$ | ${ }_{80-100}$ | $\stackrel{40}{20-50}$ |
| Machinery \& Equipment (new or used) | Median | 100 | 200 | 150 | 200 | 100 | 40 | 75 | 100 |  |  |  |  |
|  | Range | 100-150 | 75-200 | 100-200 | 100-200 | 75-100 | 15-50 | 20-100 | 80-200 | 25-100 | 50-650 | 75 $50-75$ | 20-50 |
| Livestock | Median Range | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 100 | 50 | 50 |
| 13. How much must a tyoical commercial farmer spend each year for each of the following items:* Median Livestock Replacement Range |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ${ }^{2.5-30}$ | $\xrightarrow{20}$ | ${ }^{15}$ | 6-6 |
|  |  | 2.5-30 |  |  |  |  |  |  |  | 10-20 | 5-15 | 6-6 |  |
| Energy | Median |  | 10 | 10 | 13 | 10 | 10 | 2 | 10 | 12 | 4 | 10 | 3.5 | 1.5 |
|  | Range |  |  | 10-13 | 5-10 |  | 2-2 | 4-10 | 6-15 | 3-6 | 5-10 | 3.5-3.5 | 1.5-1.5 |
| (excluding operator's) | Median | 10 | 15 | 13 | 40 | 30 | 4.2 | 5 | 10 | 10 |  |  |  |
|  | Range | 10-10 | 10-40 | 10-20 | 40-40 | 20-40 | 4-4.2 | 4-5 | 10-10 | 2-20 | $\frac{25}{20-25}$ | $\frac{10}{10-10}$ | 5-5 |
| Repairs \& Maintenance | Median | 7 | 5 | 12 | 15 | 15 | 1 | 5 | 10 | 7.5 | 10 | 5 | 2.5 |
|  | Range | 7-8 | 5-5 | 10-15 | 10-15 | 10-15 | 5-1 | 3-5 | 10-10.5 | 3-40 | 8-10 | 5-5 | 2.5-2.5 |
| Taxes \& Insurance | Median | 8 | 5 | 9 | 5 | 5 | 4 | 5 | 10 | 5 | 5.5 | 5 | 3.5 |
|  | Range | 7-10 | 5-10 | 5-20 | 5-10 | 5-5 | 5-4 | 3-5 | 5-10 | 3-5 | 5-8 | 5-5 | 3.5-3.5 |
| Interest on Equipment | Median | 6 | 5 | 10 | 5 | 5 | 2.7 | 6 | 6 | 2 | 5 | 2.5 | 1.5 |
|  | Range | 5-10 | 5-25 | 6-14 | 5-25 | 2-12.5 | 2-2.7 | 4-6 | 4-10 | 1.5-3 | 3-5 | 2.5-2.5 | 1.5-1.5 |
| Miscellaneous (incl. marketing cost) | Median | 10 | 10 | 8 | 5 | 5 | 2 | 5 | . 5 | 3 | 6 | 3 | 2 |
|  | Range | 5-10 | 5-10 | 5-10 | 4-5 | 4-5 | 2-2 | 2-5 | 6-10 | 2-3 | 5-10 | 3-3 | 2-2 |
| Replacement Machinery$\qquad$ or Equipment | Median | 20 | 25 | 25 | 30 | 10 | 1 | 50 | 15 | 5 | 12 | 20 | 2 |
|  | Range | 15-25 | 15-30 | 15-30 | 6-30 | 10-10 | 2-1 | 20-50 | 6-20 | 3-6 | 10-12 | 5-20 | 2-2 |
| 14. If applicable, what is the minimum number of acres necessary to arrange a contract with a buyer or processor? $\qquad$ Median |  | $\frac{10}{10-20}$ |  |  | 10-25 |  | 5 | 5 | 10 | 10 |  |  |  |
|  | Range |  |  |  |  | 4-5 | 5-10 | 5-5 | 10-20 | 1-10 | 5-20 | 10-20 | 10-10 |



Ranges are not given for Questions 15,16 , and 17 but are available upon request.


[^0]:    S.E. = Standard Error

    MED $=$ Median
    VC/MC = Valid Cases/Missing Cases

[^1]:    *Number of panelists - 16

[^2]:    * Thousands of Dollars Median $=$ middlemost response Inter-Quar. Rge. incls. middle $50 \%$ of all responses

