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THE CONVERGENCE OF AITKEN'S 8§~ - PROCESS

INTRODUCTION

Iteration methods are often useful in approximeting the solutions
of various types of equations, but it may happen that convergence is
impracticably slow. To meet such a difficulty which he encountered
while solving an algebraic equation by Bernoulli's method, A. C. Aitken

devised his ® §°

- process * (1, pp.300=303). This technique has
proved useful on many examples. The purpose of thie thesis is %o
analyse the method of Aitken, to show that under certain conditions
it actually does speed up convergence, and to estinate the degree of
improvement.

The remaining part of the introduction will give a brief discussion
of Bernoulli's method and the underlying idea of the 82 - process, In
the second chapter, theorems concerning the 82 - process are proved.
The third chapter contains a summary of Theorem 3, found in Chapter II,
and Chapter IV presents a few practical applications of the 8> = pro -
cess with error estimates.

Bernoulli's method obtains the root, say oy of an algebraic

equation
(1) box"+blx"1+bax"2+...+bn=o

under the conditions that Gy is real and the modulus of o is

greater than the modulus of any other root of (1l.1). If a satisfies



these conditions, then Bermoulli's method is briefly as follows.
Arbitrary mumbers X, X, X5y eee y X, are chosen and from (1.1)

vwe form the equation
(1.2) DX, v X +D, K o+ eeeth X =0

from which In is determined. We then consider the sequence

Lo X0 X30 ees o X and form the equation

(1.3) B Xy +0y X #5, X 0 4 aee*b X =0

from which xn-l-]. is determined. The process is contimued in the
manner indicated by (1.2) and (1.3) to form an infinite sequence

xal xll x2' eees which has the property that ..

(1.4) lim .. ] = 3
e w/ e T
This is Bernoulli's result.
If @, Gy ees o &% are the n roots of (1.1) where o and
o,

2
Aitken (1, pp.300~303) shows that

are real and |ﬁ| > lﬂEI > Iakl y k=3, l". sse 3 N, then

(1.5) Jn (Syp = Sp) [ (Spyy = 8)) =ap [ oy,

where sn = le / xn' n= 0. 1, 2. ese @
It should be noted that in this case



(1.6) la2 / a1| > Ry

®

In general, if any infinite sequence {Sn}o of real mumbers

satiefies conditions similar to (1.5) and (1.6), the 8> = process
can be used to accelerate the convergence.

The basic ides of the 8=

- process is that it gives the exact sum
of an infinite geometiric series. Thus, when used with an infinite
series which is nearly geometric, we can expect to obtain a sum dif-
fering little from the true sum of the series. This idea will be made
precise by theorems in chapter II ,

In 1937 Altken shows the extended use of the 82 = process in
finding the latent roots and latent vectors of a metrix (3, pp.291-295).

In chapter IV, an example of this type will be given .
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TEE 8~ = PROCESS

It will be assumed that an iteration of some type yields a

00
sequence of real numbers [Snll converging to 5 , The - process

00
is then as follows, A first derived sequence {81(11)]1 is formed by

use of the function l’(S o Spape n+2) where
(2.1) s(2) - xs , s " ..n__n+a siﬂ
" n n' n+l’ n+2 n - 28 ntl + 8 b2 .

That is, three succescive elements of {sn]{" ere used to form an
element of the first derived sequence., This idea can be extended to a

second, third, etc., derived sequence where in general

(2.2) sfl""'l) ” r(sfl") , g{ . sg?a). 281, 2, 3y eeo o

The function ¥F(x, y, 2) has the useful property that if

x =2y +g# 0, then
(2.3) Mx+a, y+a, z+a)=a+Px 7 2) .
Prom (2.1)
P(xta, yha, z+a) = [(x+a) (s4a) = (y+a)?] / [(xva)=2(y+a)i(z+a)]
= [ xevastaxra®=y =20y-a’] / [x = 2y + 2]
=[(xz -y2) +alx=2y +2)] [ [x =2y + 2]

= a + F(x, vy, 2)



which proves (2.3).
From (2.3) we see that any left hand digits common to Sp0 Sp4
and Sm_,‘_2 can be neglected in the calculation of 8’?’) and then

added into the final result. As an example, the rumbers

51 = 15.001418373, 8{) = 15.000304169 and §_,, = 15.000065221 are
listed in (1, p.302) from which sflz) = 14,999999987 was calculated.
Applying (2.2) and (2.3)

= e, o). 2

= P(15.001418373, 15.,000304169, 15.000065221)

= 15 + P(,001418373, .000304169, .000065221) .

An intuitive reason for defining the function P(x, y, z) can be
given by the following theorem.

DHEOREM ] :If the sequence {Sn}g' converges geometrically to
the limit S, that is to say, for some L, |L| < 1, we have

(2.4) 8, - 8=1%s, ~9), e 8, $e B ves a
then for n= 0, 1, 2, «ee« Ve have,
(2.5) ¥(s

nt Sna1r Spep) = S

FROQF: From (2.4)



(2.6) 5, =5+ s (s, = 8), e 8 X B sva o
From (2.3) and (2.6), with a =S5 ,
R(5,, 5,10 5,,,) = 5 + Hi® (5 -5), x.“"’l(so - 5), 1™%s -s)]

2n+2 2 2n+2 2
122(s, - 9)° = 1225 - 5)

=5 +
(s, - 8) 1%z -1)®

This proves Theorem 1. From Theorem 1 we see that, if the sequence
{8,]7° converges geometrically (in the limit), we may expeet timt the
first derived sequence {sﬁl)}f will converge more rapidly than the
original sequence { Sn]? .

Two questions concerning the 32 = process which seem immediate

are as follows.

l. Doees the derived sequence converge to the same limit?

2. If so, is the convergence accelerated?

In answer to the first question, we prove the following theorem.

THECREM 2 : If the sequence {%}? converges to S5 and

e Ay /Ay =Ty |5l <1, vhere A) =8 end A =5 -8,

n=2, 3, 4, eee , then



(2.7) 1im s‘(‘l) -8,
n-o

FROCF : From (2.1) and hypotheses we have for n = 1, 2, ses

sﬁl’ =T (8, 5, 5,,0)

(2.8) =T (5 StA g0 SHA 0t 00)

From (2.3)

(1)
Sa =S R0, A Ay YA .

From (2.1)
2
- A
s(1) _ S + atl
n n
A1 * Ay * A
22
A " Ay
>
(2-9) - sn e A .
1.2'.!'..% -l
n+l
Also,
(2.10) lim A = 1lim (s, =8 _.)=0,
% 5 8 n 2 D & n n-1

From (2.9) and (2.10)



A
a1 = g [ 8 - —28- ]
n-> o n=> o &!2 -

A

nt+l

Is-—-q—-
L=1
=8 ,

This proves Theorem 2 .

The question concerning the accelerated convergence by use of
the 62 - process, i.e., forming a derived sequence {sf‘)};“ from
the convergent sequence { Sn};c'. will be answered in the following
theorem which imposes certain conditions on {Sn}m. Also, an estimate
of the error of 51 will be found, but in most cases vill be
difficult to apply. leverthelese,the accelerated convergence will be

shown,

TEEOREM 3: If {Sn}iD is a convergent sequence converging to
S and

(2.11) im A . /A =1L, ln] <1,

e ntl n
vhere A, =S, and A =85 -5 _,, n=2, 3 B, ees 5 then
given any ¢ > 0, there existe a positive integer N such that for

ng N



s =8V S Iaol ¢ .

EROOF : As in (2.8) and (2.9)

1)
(2.12) sfl = F (8, 8,00 5p40) = 5 _A_Anﬂ_ .
B _ .
Y
n+l
Also,

S = By (B = 808y < B)t oo IR, ~ B,)

n
(2013) = I °
k=1 Lk
Then ,
(2.14) 3 z S =8
2e = lim z = lim " .
k-:.Ak m--->a|:ah---1‘.k n=>o0 °

Prom (2.12), (2.13) and (2.14)
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2
A
s -s(l) . g: AR Y W s - —
WB"A: atl * Ape2 A=A
2 2 é
= (En A.k-l-fl*a ‘nﬂ”&l.
Y=n+3 Ao = A
® A2
= p Lk+_—m_-
lent3 Ave =~ Ay
® A A
2&15) = A b A e -—m—— } o
( nt2 {h-n-l'3 Ane2 Anve < Ay
From (2.15)
® A
2.16) |8 = S(l) = (A 2 —‘-k— NEg— . - .
( n | "“EHW Ao An-l-l"‘m-zl

The proof will now be separated into three cases, namely,

(2.17) case 1, 0<L<
(2.18) case 2, -1<L<O
(2'19) cage 3’ L=0 .,

GASE ] : From (2.11) and (2.17), given any ¢ > O, where

0L~=¢ and L+ o<1, there exists a positive integer ll

such



that for ale
(2.20) 0<L-a<1n+1/1h<l.+o<1 n=ml, 2, ceo o

Por simplicity let
(2.21) p=L=~0¢ and gq=L+o ,

Then (2.20) becomes

(2.22) 0(])(1”_1/1‘((1(1 n=mtl, 22, see o
From (2.22)
(2.23) OCPCA L, /A, <acl na N .
From (2.23)
.
) a
(2.24) 0¢ 7mm ¢ —Eh_ ¢ — n2 K .
=3 C T, ¢ T4 5
‘n*l
Also, ‘lﬂ
(2.25) e A
g - S )
A
mHl

From (2,24) and (2,25)



P A q
(2.26) 0w ¢ e <
1= A=Ay 1™

From (2 22)

A A A A

= se e q
Ava  Anp1  Appep Arvo

for !"-}, h. een @

From (2.27)
r A =2
(2.28) 0¢<z pFc¢ z ®E¢ 3
=1 w3 Aw2

for r=3, 4, ... o Letting r become infinite in (3.28) we have,

(s 4] o [+'s]
(2.29) 0< £ p&§ = Jk § = &.
Y
k=1 kw3 A2 kml
Also,
® P o
I opfegsss I fepie
=1 P k=1 Q

so that from (2.29)

P «© q >
(2.30) °<T:3‘,i,%5ﬁ nal .



¢ Mha] o = g
w2! 1l =g l-p

B

2.31) = |a — EN .,
(83 wal I(l-q) (l-'p)l "SR
From (2.,21) and (2.31)
(Ito) = (I~o)
-sl1)) g
s A
15 =57 gl (1=Ir0) (1~ito)
) R [ >
e J2 = e e 3 = .
(243 wal | 22 n= N

[
Since o was arbitrarily small, given any ¢ > O, there exists a

positive integer K, such that for = 4 ‘2

(2.33) | o
2e :
» (-1)2 - &°

| & ¢ .

Let N = max, {!1, Ha}. Then, for m 2 N, we have from (2.32) and
(2.33)

-8 & |al e.

CASE 2 : From (2,11) and (2.18), given any o > O where

“l1<{L=¢ and L+ o< 0, there exists a positive integer Rl such
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that for m .). Hl

(2.34) -1<L-c<1n+1/An<L+o<o

nllll"'l. B"'ag easa o

For simplicity let

(2.35) p=L=-¢g and g=L+o,

From (2.34) and (2.35)

(2.36) —1<p<an+1/;n<q<o n=mtl, M2, cee .
Since
A A A
Wk, mtk el | et
Awe  Apier  Aphie2 w2

for k=3, U4, 5, eee , from (2.36) we have the following inequalities:

-1<p(!.n+3/.l..'e(q<0

0< <A/ Ayp<p°

2r=1 2r-1
P <A|2u/1‘+a<q
2r 2r

T < Aomn [ Agp < 0

L ]
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From the preceding inequalities we have

(2'3?) P"'qa"‘u-"'qH*par-l( 2 inu<q+p2
=3 “m2
¥ visa: @ par-a . q?r-l

and
2r2 A
(2.38) P“'q.a"'oo-"'pa'-l“"qar( z im(q_-l-pa
J=3 "m+2
* vou ¥ q?r-i + p2r

for r=1, 2, 3, ves o Letting r Decome infinite in (2,37)
and (2.38) we have

@ [+ o A @ w
(239) = p¥ 4 3z B § 3z BEQ 5 AU, 3 N,
=1 J=1 =3 "m2 =l J=1
From (2.39)
2 2
) ® P
(2440) g+ —Saf T pE et s Do
l=-p l=gq ke=pt3 w2 l=g l1+-p
for -zll,
Fron(2.36)
(2.41) -1<p<.o.n,,2/a.+1<q<o nc’sll.

For simplicity let
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(2.112) t-Lﬁallﬁl °

From (2,41) and (2.42)

(2.43) -1<{p<t<qg<c<0O ,
From (2.43)
(2.44) p/=-09<t/@=-tD<a/ Q=0
and
(2.%5) f/a-P<E/a-BcF/a-.
From (2.44) and (2.45)

P o ¢ ¢ q »°
(el 1-p2+1-q2<1-t2+1-t2<1-qa+1-ya.
Also,
(2.47) e e ¥

1=t 1-t2 1-4°

so that from (2.46)
(2.48) — q22< — 2. pza.

l1=-p l1=-q 1-% ) 1=-p

From (2.42)
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A2
4 Ay A
(2.49) " A - 3 - .
1=-t% ] - 2 ml | m2
A
From (2.48) and (2.49)
2 2
P A P
(2.50) aq. - 2( nto < 1 2+ s
1=p 1=-q A, -A. 1=q¢ 1l=-p
for mZ N . Prom (2.16), (2.40) and (2.50)
® A
I R I e e vl
w3 ‘w2 Aea T Ame
S Wl — o 2 z <
we! (72 Lep? 1epf  1eg
.- | a=4q p-pal
m+2 '1_12 1 = p°
q P
= Byl 335 - 1757
Q=P
2. " IA l l lzﬁ .
(2.51) w+2 a.'l.-l- a) (1 + p) 4

From (2.35) and (2.51)
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L+o~-L+ao

B-aMg b T

= >
(2.52) IAﬂ"‘al I(l . L)z " ozl n = !1 ™

Since o was arbitrarily small, given any ¢ > O , there exists

a positive integer liz sach that for m .Z E, .

| 20 | £
(2.53) !(1 N L)a ~ czl L

Let N = max, [!1, 12} e Then, for m & § we have from (2.52)
and (2.53)

(2.54) Is =8B & la,l « .

CASE 3 : From (2.11) and (2.19), given any o , where 0 < o< 1,

there exists a positive integer '1 such that for m i Il
(2.55) |Ah+1 / ;nl <o n=mtl, o2, eee

From (2,55) for r =3, 4, ...

¥ A A A
(256) |B| o |- =l B8 2,
mH2 mér=-l “wir-2 m+2

From (2.56) for r= 3. h’. 5. see
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r A r A r
(57) |z Bdje z |Ed|¢ 5 S,
=3 fwe p=3 fwe 53

Letting r Dbecome infinite in (2.57)

@ @ o
(2058) l ¥ Lj- l s z GJ-E = 10 °*
k=m¥3 w2 =3
From (2.55)
(2.59) ~o<A /A, <0 nd W
Also,
Ao
A A
(2.60) a2 “ ..
e s - Ao
Ar1
w2
o A o
(2.61) wasons 4 ' o nd W .
1-2
L

From (2.60) and (2.61)

(2.62) - ¢ BB ¢ ma k.

From (2)6), (2.58), and (2.62)



-5l . © A o Amo
18 =571 sl | n-:; Ave A1 " Ame l
20
(2063) S l‘&'g.zi I i-:'—ﬂ'- I n z ll e

Since ¢ was arbitrarily small, given any ¢ > 0, there exists

a positive integer la puch that for m H 12

(2.64) 2o/ (1=0)| £ ¢ .

-

Let N = max. {N, N} . Then for m% N we have from (2.63) and
(2.64)

s =8| S o,

This completes the proof of Theorem 3 .



SUMMARY OF THE 8° = PROCESS

A summary of Theorem 3 will be given in ovder to show if and
wvhen the 82 - process should be used. Of course, it will be assumed

that the sequence {Sn};“ satisfies the hypotheses of Theorem 3,
that is,

(3.1) lin imT'nﬂlim —m-x. 8] <1,
n=>® n n-1 n-> o n

It is easily seen that (2.21) and (2.35) are not necessary for
(2,31) and (2,51) respectively. We need only (2.22) and (2.36) in
order to assure the inequalities (2.31) and (2.51). With this in mind
we separate the summary into the three cases corresponding to those
found in Theorem 3.

CASE 1 ¢ If p and g can be determined as in (2,22), then
(3‘2) "&n’e! > P l'&mq.ll m z 11 °

From (2.30) and (3.2)
w3
18'3,,3| = | z A - n A |
= | 2 A

IA]II‘"}' IP/(l“P)l o


http:correapondt.ng
http:S'lllll:IIISI.l7

(3:3) s =8l 2 Al 9%/ =9 | ndu .
From (2;31)

- all) 1 a-Pr
G (s=st S A '(1-q)(1-p)l nd N .

with |q = p| sufficinetly small, the improvement of SEI') over Sm‘,‘3
is easily seen from (3.3) and (3.4%). It may only be possible to
estimate p and q 4in which case (3.4) gives only an estimste of

the error of SE") and not an exact error bound.
CASE 2: If p and q can be determined as in (2.36), then

Also, if p amd q are sufficiently near to L, from (2,40) we have

2
00 a 4
=mt3 w2 l=-g l=-p

From (3.5) and (3.6)

IS-s,_,,_,,l--lh_Em A |

(3.7) 2 a0l

Fronm (2.51)

qQ=»r
(3'8) ls gl S£l)l s IAMQI 5(1 + qT(l + p)l m -’: n]. @
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Vith |q = p| soufficiently small, the improvement of 85'1) over
Sﬁ,} is easily seen from (3.7) and (3.8)., As in the preceding case,
it may only be possible to estimate p and gq , in which case, (3.8)
gives only an estimate of the error of 851) and not an exact error

bound,

CASE 3 : In this case the original sequence {Sn]f will con=
verge rapidly and the 62 - process need not be used. Also, from

(3.9) |3“3a,,,2| 4 A0l le/ (@ - a)l
and
(3.20) s - M| & Iag,l leo/ @ -o) .

From (3.9) and (3.10), we cannot draw any conclusions concerning

acceleration.



24
NUMERICAL EXAMPLES

Two examples will be given with estimated error bounds. In the
first example, the root of largest modulus of an algebraic is approx-
imated using Bernoulli's method., In the second example, the latent

vector, associated with the latent root of largest modulus of a matrix,

is approximated by the sequence AX), A.zll, 1311, ees (3, DDe269-304) .

BXAMPLE ] : The equation to be considered is,
(4.1) !3-'&2-5:1-6-0.

whose roots are 1, =2, and 3 + TFollowing the method in chapter 1, we
have

Xz = Zpyo + 5%, ~ 6K

for m=1, 2, 3, eee o The calculations are given in tables one and
two.

The values x = -5, XZ = 5§, and 13 = 2 were arbitrarily chosen.
The values of Pn and q, vere taken from the corresponding sequences
Y6 /4 Mo/ Ag hp/ays coo wm A9 [ Ay Ay [ Aye s
413 / A oy +ee , since the first sequence is monotone increasing and
the second sequence is monotone decreasing. The sequence {Sn} con~
verging to the root S =3 of (4.1), is listed in Table 1, and in

Table 2, the derived sequence {32‘%} is listed. The estimated error


http:mod1.1l.us
http:Be!'nou.l.l1

bound of SE% is denoted by E in Table 2, where

=2
S _ P
g = I8, |1+q_ - 1+pml

from (2.,51). Since the true value of the root is 3, we see that the
estimated error bound is approximately twenty times as large as the

actual error of S&) .



w e ~N o0 Fw o H

[ R~
ReE &S &K E B

S v ow &

110
553

1,226
4,457
11,846
38,621
109,730
341,489
999,902
3,048,869
9,048,314
27,341,561
81,631,478

sm-xn/xn-l

4 8U5U5U5H5
2,300187617
3635399673
24657841597
34260256626
28141200383
34112084206
24928065032
3.049167818
24967760831
3.021729904
2,985618760

An"su'srl

-2.545266928
1.335212056
~0.977558076
0,602415029
-0.419056243
0.270883823
-0,18401917%
0.121102786
-0, 081406987
0.053969073
-0,036111124

Ay

~0.524586259
~0.732136945
~0,616244TUE
=0,695627139
-0, 646414002
~0.679328769
~0.658098737
~0,672213990
~0,662953820
~0.669107731


http:8m=:r.Jx
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10
i1

11

15
16

Y

P

=0.732136945
~0,732136945
-0,695627139
=04695627139
=0,679328769
=0.679328769
-0.672213990
~0.672213990
~0.669107731

U

~0.5214586259
~0,6162u4T46
~0,616244746
-0, 646414002
~0 4646414002
~04658098737
~0.658098737
~0.662953820
~0,662953820

TABLE

‘n-e

1.593243640
0,679176811
0.284797545
0,123869143
0.053419375
0. 023450067
0,010253195
0.004523599
0.001992582

2

3,071034321
3.030566724
3.01311724k
34005729974
3002505201
343001102169
34000485659
34000214572
34000094917



EXANPLE 2: The equation to be considered is,

(4.2) AX = AX

where A is a second order matrix with elements

Illul, .12-9, 521-1, .2-1.

The symbol {e, d} will be used to denote a column vector, where ¢

is the first and d the second component. The latent roots of the
matrix A are A==2 and A= U4 , The latent vector associated

with A =4 4s {3, 1} . We arbitrarily chose the initial value of

X as
% ={x, 5} =1, 1}
and denoted A" X, as
(%:3) et T R m=2 3 4 o .

In the calculations to follow, the vector {:‘. r‘} in (4.3) will be

transformed into the vector

() {x, / g 1}

and for uniformity we let S =x /¥ .
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Since the second component of (4.%4) is 1, it will not be listed.

The quantities S0 A0 A / A g Ppr Qe B o and 8&% in tables

three and four are similar to the corresponding quantities in tables
one and two, so little discussion will be devoted to them. Comparing
E o and 8&% in table Y, we see that the estimated error bound,

Bn-av is approximately ten times as large the actual error of 5(1) ’

m=z
since the true value of first component is 3 ,
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136

2,080

8,128

32,896
130,816

10 524,800
11 2,096,128

E§ R no w

176

672
2,752
10,880
43,776
174,592
699,392

s,

1.000000000
5000000000
24333333333
34400000000
2.818181818
3.095238095
2.953488372
3.023529411
2,988304093
34005865102
2.99707T17T42

TABLE 3

&"8.-3‘_1

=2.666666667
1. 066666667
~0,581818182
0.277056277
~-0,141749723
0.070041039
~-0,035225318
0.,017561009
~0,008793360

30

A/

~0 (400000000
=0, 545454545
=0, 476190475
~0.511627906
~0.H94117642
-0,502923978
~0,198533725
-0,5007 32047



10

Pp
=0,5U5454515
=0.54545U545
=~0.511627906
~0.511627906
=0.502923978
~0.502923978
~0,500732047

I

~0,400000000
=0 76190475
~0,476190475
=0,494117 642
-0, 494117642
~0,498533725
-0,498533725

TABLE

Eﬂ""z

0.310303029
0.,080598190

0.019636325
0.004964150
0.001233610

0.000309296

0,000077209

3

1
o

34023529411
34005865102
3.001465201
34000366232
5000091553
3.000022887

3000005721
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