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Some Communication Algorithms for Gaussian and Eisenstein-

Jacobi networks 

 

Chapter 1 

Introduction 

    Parallel computers are classified into two categories: shared memory 

multiprocessors and distributed multi computers. A shared-memory multiprocessor 

consists of a number of processors that communicate with each other through one or 

more shared memory modules. In a distributed multiprocessor, however, the 

processing elements communicate with each other over an interconnection network. 

The interconnection network plays important role in the design of high performance 

computers. In the past many machines have been designed based on the toroidal 

[12][35] or the De Bruijn topology [36]. Recently two new networks, Gaussian and 

Eisenstein, were introduced [15][27]. They are based on quotient rings of Gaussian 

and Eisenstein integers. In this thesis, some topological properties and communication 

algorithms for these networks are described.  

    Gaussian networks were recently proposed [15][27]. These networks are based on 

quotient rings of Gaussian integers. Each node in these networks is labeled as 𝑥 + 𝑦𝑖. 

By choosing 𝛼 = 𝑎 + 𝑏𝑖, two nodes A and B are connected if and only if  𝐴 −

𝐵 𝑚𝑜𝑑 𝛼 is ±1 or ±i. Gaussian networks are degree four symmetric networks with 

𝑎2 + 𝑏2 nodes.  
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   The other recently introduced interconnection networks are called the Eisenstein-

Jacobi networks, and are based on the quotient rings of the Eisenstein-Jacobi integers. 

In these networks, nodes are labeled as 𝑥 + 𝑦𝜌, where 𝜌 = (1 +  𝑖 3)/2 and by 

choosing 𝛼 = 𝑎 + 𝑏𝜌, two nodes A and B are adjacent if  𝐴 − 𝐵 𝑚𝑜𝑑 𝛼 is ±1, ±𝜌, 

or  ±𝜌2. The Eisenstein-Jacobi networks are degree six symmetric with 𝑎2 + 𝑏2 + 𝑎𝑏 

nodes. 

   In the rest of this chapter, a brief summary of results in the thesis are given.  

 

1.1   Edge Disjoint Hamiltonian Cycles 

   The generation of edge disjoint Hamiltonian cycles for Gaussian networks with 

𝛼 = 𝑎 + 𝑏𝑖 and 𝑔𝑐𝑑(𝑎, 𝑏) =  1 has already been investigated in [15][3]. However, 

finding edge disjoint Hamiltonian cycles in these networks when the gcd 𝑎, 𝑏 = 𝑑 >

1 has been an open research problem. This thesis provides a solution to this problem in 

Chapter 2. 

   Some efficient communication algorithms can be designed based on these disjoint 

Hamiltonian cycles. For example, consider the all-to-all communication algorithm, 

where each node broadcasts a message to all other nodes [22][13][10]. In a single I/O 

port model, this problem can be solved optimally, by first generating a Hamiltonian 

cycle of the nodes and then exchanging the message as follows. In the first step, each 

node sends its message to its neighbor in the ring. In the ith step, 

𝑖 =  2, 3, … , (𝑁 –  1),  where 𝑁 =  𝑎2 + 𝑏2 is the total number of nodes, each node 
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sends to its neighbor the message which it receives in the previous step. If we could 

find edge disjoint Hamiltonian cycles, the above algorithm could also be extended to 

the case of a multiport model, where a node can send or receive from all its neighbors 

in unit time.  

 1.2  Communication Algorithms and Resource Placement 

   The design of efficient communication algorithms in a multicomputer is quite 

crucial to its performance. There are four communication primitives [22][10]: one-to-

all, all-to-all, one-to-all personalized, and all-to-all personalized. In the case of one-to-

all communication, a node wants to send its message to all other nodes in the network, 

whereas in all-to-all communication each node wants to send its message to all other 

nodes in the network. In one-to-all personalized communication, a node sends a 

distinct message to every node in the network, and in all-to-all personalized 

communication, every node performs one-to-all personalized communication. In this 

thesis, all these algorithms are studied for Eisenstein networks with   𝛼 = 𝑘 +

 𝑘 + 1 𝜌. These algorithms can communicate messages with no node getting a 

redundant message. These algorithms are described in detail in Chapter 3. 

   In parallel systems, some resources, such as certain software, I/O, etc., are installed 

in some nodes and all other nodes share these resources. The optimal resource 

placement problem can be addressed in two different ways [27][31][11][6]. The so- 

called j-adjacency problem ensures that any non-resource node has j neighboring 

resource nodes and that no two resource nodes are next to each other. The other 

approach is the t-embedding or t-dominating set problem. This resource placement 
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will grant every node a resource within a distance of 𝑡 and that the resource nodes are 

separated by at least 2𝑡 + 1.  

   This problem is analogous to the selection of codewords in error-correcting codes 

[9][11][24][6]. Recently in [6], perfect codes based on Eisenstein-Jacobi graphs are 

addressed. In addition, the solution to a particular case of this problem is considered in 

[26][24]. In [26][24] it is assumed that the number of nodes in the network is 𝑎2 +

𝑏2 − 𝑎𝑏, whereas in our case the number of nodes in the network is 𝑎2 + 𝑏2 + 𝑎𝑏, 

where  𝑎, 𝑏 ≥ 0.  

   In Chapter 3, we present a solution to the t-dominating set problem for a subfamily 

of degree six circulant graphs based on Eisenstein-Jacobi integers. This gives a perfect 

code over Eisenstein-Jacobi integers as a solution to 𝑡-embedding and resource 

replacement problems. This problem has been solved in [25][29] with 𝜌 =
−1+𝑖 3

2
. 

 

1.4  Thesis Structure and Results 

   In this section, we give details of the organization of the rest of this thesis. For each 

chapter, we summarize our main results. 

   Chapter 2 is devoted to the definition and properties of Gaussian graphs and 

constructing two edge disjoint Hamiltonian cycles for 𝛼 = 𝑎 + 𝑏𝑖 when gcd 𝑎, 𝑏 =

𝑑 > 1 . First, we define Gaussian graphs in Section 2.1 as graphs that are built over 

quotient rings of Gaussian integers. We also give a simple, two-dimensional drawing 
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for Gaussian graphs. This drawing is based on the fact that the number of graph 

vertices is the sum of two squares. In addition, we state theorems describing the 

diameter and the average distance of Gaussian graphs given in [27]. Section 2.2 is 

devoted to the problem of generating two edge disjoint Hamiltonian cycles in a 

Gaussian graph. There, we provide the previous work that has been done on this 

problem. Then in Section 2.3, an algorithm for generating such cycles for the Gaussian 

networks when  gcd 𝑎, 𝑏 = 𝑑 > 1 is given. Finally, Section 2.5 provides a summary 

of the chapter. 

   In Chapter 3,   Section 3.1 gives the definition of the Eisenstein-Jacobi networks. 

We also provide a simple drawing to illustrate how to draw these graphs. In addition, 

we state theorems describing the diameter and the average distance of Eisenstein-

Jacobi graphs. In Section 3.2, we present efficient algorithms for some basic 

communication operations in Eisenstein-Jacobi networks with   𝛼 = 𝑘 +  𝑘 + 1 𝜌. In 

all of these algorithms, no node gets redundant data. In Section 3.2.1, we describe the 

procedure to implement an algorithm for one-to-all communication. Section 3.2.2 

introduces an algorithm for all-to-all communication in the Eisenstein-Jacobi 

networks. In Section 3.2.3, an efficient algorithm for one-to-all personalized 

communication is given. Section 3.2.4 describes the procedure for all-to-all 

personalized communication in the Eisenstein-Jacobi networks. 

   We consider the problem of finding perfect t-dominating sets over Eisenstein-Jacobi 

graphs in Section 3.3. Section 3.3.1 is devoted to finding a solution to the resource 
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placement problem for Eisenstein-Jacobi networks. Finally, Section 3.4 draws the 

conclusions of this chapter. 

   Finally, in Chapter 4, after briefly describing the contributions, some open problems 

are presented.  
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Chapter 2 

Edge Disjoint Hamiltonian Cycles in Gaussian Networks 

 

 2.1  Gaussian Graphs 

   Gaussian graphs have been recently introduced as a suitable topology model for 

interconnection networks [15][27]. In this chapter, we describe these networks using 

different Gaussian representations. The distance related properties and the diameter of 

these graphs are also explained. Finally, solutions to the problem of finding edge 

disjoint Hamiltonian cycles are given. 

 

2.1.1  Quotient Rings of Gaussian Integers 

   The Gaussian integers ℤ[𝑖] is the subset of the complex numbers with integer real 

and imaginary parts; that is, 

 ℤ[𝑖] = {𝑥 + 𝑦𝑖|𝑥, 𝑦 ∈ ℤ} 

𝑍[𝑖] is a Euclidean domain and the norm is defined as: 

𝑁 ∶  𝑍[𝑖]  →  𝑍+ 

𝑥 +  𝑦𝑖 ↦  𝑥2  +  𝑦2 

     Then, for every 𝛼, 𝜋 ∈  𝑍[𝑖] with 𝜋 ≠  0 there exists 𝑞, 𝑟 ∈  𝑍[𝑖] such that 

𝛼 =  𝑞𝜋 +  𝑟 with 𝑁 𝑟 <  𝑁 𝜋  where 𝑁 𝛽 = 𝑎 + 𝑏𝑖 = 𝑎2 + 𝑏2. This means that 



8 
 

there exists a Euclidean division algorithm for Gaussian integers. Typically, we denote 

the set of remainders of the division by any integer 𝑁 ≠ 0 as 𝑍𝑁 . This set is usually 

called the integers modulo 𝑁. In an analogous way, we can consider 𝑍[𝑖]𝛼 , i.e. the 

Gaussian integers modulo 𝛼. It is well known that the number of residue classes 

modulo a Gaussian integer 𝛼 ≠  0 is equal to 𝑁(𝛼) [17] and various representations of 

these residue classes as points in a complex plane are given in [21]. 

    One of the methods described in number theory books [17] is as follows. Given 0 ≠

 𝛼 ∈ ℤ[𝑖], we consider the finite set of the Gaussian integers modulo 𝛼 or ℤ[𝑖]𝛼 ∶=

 {𝛽 𝑚𝑜𝑑 𝛼 | 𝛽 ∈ ℤ[𝑖] }. For any 𝛼, 𝛽 ∈  ℤ[𝑖], with 𝛼 = 𝑎 + 𝑏𝑖, one of the representat- 

ion with smallest norm of its class in ℤ[𝑖]𝛼  or 𝛽 𝑚𝑜𝑑 𝛼 can be computed as 

 𝛽 𝑚𝑜𝑑 𝛼 =  𝛽 −  
𝛽𝛼 ∗

𝑎2+𝑏2 𝛼. The operation [c+di] denotes rounding in Gaussian 

integers and is defined by [𝑐 + 𝑑𝑖] = [𝑐] + [𝑑]𝑖 with [c] denoting the rounding to the 

closest integer. Besides, 𝛼∗ is the conjugate of 𝛼. 

 

2.1.2  Definition of Gaussian Graphs 

   In this section, we describe the Gaussian graphs and then show some examples to 

illustrate the interconnection topology. 

   Gaussian graphs are defined over quotient rings of Gaussian integers as follows. 

Definition 2.1[27]: Given  𝛼 = 𝑎 + 𝑏𝑖 ∈ ℤ[𝑖], we define the graph 𝐺𝛼(𝑉, 𝐸) where: 
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     i) 𝑉 = ℤ[𝑖]𝛼   is the node set, and 

    ii) 𝐸 =  {(𝛽, 𝛾)  ∈   𝑉 ×  𝑉 | (𝛽 −  𝛾)  ≡   ±1, ±𝑖 𝑚𝑜𝑑 𝛼} is the edge set. 

We call 𝐺𝛼  the Gaussian network generated by 𝛼.  

   Gaussian graphs are a regular degree four graph, since every vertex is adjacent with 

four other vertices. In addition, they are undirected, connected, and vertex-symmetric 

by definition. 

   Next, we describe how to draw these graphs in a constructive way. There are many 

ways to draw such a graph. We give four simple ways to represent these graphs as in 

[27][15][21]. For all these representations, we assume that  𝛼 = 𝑎 + 𝑏𝑖 ∈  ℤ[𝑖] with 

0 < 𝑎 ≤ 𝑏. 

 

 Utah Representation: 

   Gaussian graphs can be represented as a mesh-like fashion. The idea is to arrange 

𝑎2 + 𝑏2   vertices in two attached square meshes of 𝑎 × 𝑎 and 𝑏 × 𝑏 vertices, 

respectively. The bigger square will be to the right of the smaller square. The zero 

vertex will be located at the bottom left corner of the smaller square as shown in 

Figure 2.1. 

   Each node is adjacent to four other vertices in four different directions: North, East, 

South, and West. Node B is adjacent to node A in the North direction if 𝑖 ≡

 𝐵 − 𝐴 𝑚𝑜𝑑 𝛼, in the East direction if 1 ≡  𝐵 − 𝐴 𝑚𝑜𝑑 𝛼, in the South direction if 
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−𝑖 ≡  𝐵 − 𝐴 𝑚𝑜𝑑 𝛼, and in the West direction if −1 ≡  𝐵 − 𝐴 𝑚𝑜𝑑 𝛼. The 

connection between a node and its neighbors is clear if the vertex is not located at the 

borders of the two mesh squares. For the vertices located in the borders, Theorem 2.2 

defines a simple way to find its adjacent neighbors. 

 

Figure 2.1: Utah Representation for the Graph Generated by 𝜶 = 𝟔 + 𝟖𝒊. 

Theorem 2.2 [27]: Let 𝛼 = 𝑎 + 𝑏𝑖 be the graph generator where 0 < 𝑎 ≤ 𝑏, and 𝑆 be 

the set of all the vertices located at the borders of the two squares. Let 𝐴 = 𝑥 + 𝑦𝑖 ∈ 𝑆, 

then the wrap-around edges are defined as: 

i) If 0 ≤ 𝑥 ≤ 𝑏 − 1  then 𝐴 is connected to  𝑥 + 𝑎 +  𝑏 − 1 𝑖 from the  

   South direction. 

ii) If 𝑏 ≤ 𝑥 ≤ 𝑎 + 𝑏 − 1  then 𝐴 is connected to  𝑥 − 𝑏 +  𝑎 − 1 𝑖 from the  

   South direction. 

iii) If 0 ≤ 𝑦 ≤ 𝑎 − 1  then 𝐴 is connected to  𝑎 + 𝑏 − 1 +  𝑦 + 𝑏 − 𝑎 𝑖 from 

   the West direction. 

iv) If 𝑎 ≤ 𝑦 ≤ 𝑏 − 1  then 𝐴 is connected to  𝑎 + 𝑏 − 1 +  𝑦 − 𝑎 𝑖 from the 

   West direction. 
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    Then, the graph defined by this adjacency pattern is isomorphic to the Gaussian 

graph generated by 𝛼.                        ∎ 

   The proof for adjacency pattern is easy by using the plane tessellations as in [14] or 

[37]. Figure 2.2 shows the plane tessellation associated with the Gaussian graph for 

𝛼 = 6 + 8𝑖.                           

 

Figure 2.2: Plane Tessellation Associate with 𝜶 = 𝟔 + 𝟖𝒊. 

Example 2.1: Let us consider the Gaussian graph generated by 𝛼 = 3 + 4𝑖. We need 

to arrange the 25 vertices in two attached meshes of 32  and 42  vertices respectively. 

Then, by following the wrap-around edge patterns described in Theorem 2.2, we 

obtain the graph shown in Figure 2.3. 
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Figure 2.3: Utah Representation for the Graph Generated by 𝜶 = 𝟑 + 𝟒𝒊. 

Example 2.2: Figure 2.4 shows some other Gaussian graphs for 𝛼 = 6𝑖, 𝛼 = 1 +

6𝑖, 𝛼 = 2 + 6𝑖, and 𝛼 = 6 + 6𝑖. As we can see, when 𝑎 = 0 the Gaussian graph 

becomes identical to Torus graph. 

 

Figure 2.4: Utah Representation for Gaussian Graphs. 
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 Diamond Representation: 

   This representation was recently introduced for Gaussian graphs in [15]. The idea 

here is to draw a square of size  𝛼 2 . We can draw this square by first locating the 

four points in the complex plane where the x-axis represents the real dimension and 

the y-axis represents the imaginary dimension. The points are 0, 𝛼, 𝑖𝛼, and  𝛼 𝑖 + 1 . 

Then, the graph vertices will be all points inside that square and the zero vertex. The 

only vertices landing on the square borders that will be counted on the graph are the 

points which land on the line 0 and 𝛼 or 0 and 𝑖𝛼.  

   Each node in the square is connected to four other neighboring nodes, one from each 

side. The nodes in the border will have wrap-around links with other nodes. Theorem 

2.3 defines a simple way for the wrap-around links. 

Theorem 2.3: Let 𝛼 = 𝑎 + 𝑏𝑖 be the graph generator  0 < 𝑎 ≤ 𝑏 and 𝑆 be the set of 

all the vertices located at the square borders. Let 𝐴 = 𝑥 + 𝑦𝑖 ∈ 𝑆, then the wrap-

around edges are defined as: 

i) If 𝑥 = 𝑦 = 0  then 𝐴 is connected to −1 + 𝛼 , 1 + 𝑖𝛼 and  

   𝛼 1 + 𝑖 − 𝑖. 

ii) If 0 < 𝑥 𝑎𝑛𝑑 𝑏 > 𝑦 then 𝐴 is connected to 𝐴 + 𝑖𝛼 + 1 and 𝐴 + 𝑖𝛼 − 𝑖. 

iii) If 0 > 𝑥 𝑎𝑛𝑑 𝑎 > 𝑦 then 𝐴 is connected to 𝐴 + 𝛼 − 1 and  𝐴 + 𝛼 − 𝑖. 

   ∎ 

   Figure 2.5 shows the plane tessellation associated with the Gaussian graph for 

𝛼 = 3 + 4𝑖 using the diamond representation.  
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Figure 2.5: Plane Tessellation Associate with 𝜶 = 𝟑 + 𝟒𝒊. 

Example 2.3: Let us consider the Gaussian graph generated by 𝛼 = 3 + 4𝑖. We need 

to locate four points which are 0 = 0, 𝛼 = 3 + 4𝑖, 𝑖𝛼 = −4 + 3𝑖, and 𝛼 𝑖 + 1 =

−1 + 7𝑖. Then, by following the wrap-around edge patterns described in Theorem 2.3, 

we obtain the graph shown in Figure 2.6. 
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Figure 2.6: Diamond Representation for the Graph Generated by 𝜶 = 𝟑 + 𝟒𝒊. 

 Rectangle Representation: 

   This representation is more useful when gcd 𝑎, 𝑏 = 𝑑 > 1. For 𝛼 = 𝑎 + 𝑏𝑖, 

with gcd 𝑎, 𝑏 = 𝑑, the set of point  𝑆 =     𝑥 + 𝑦𝑖      0 ≤ 𝑥 <
𝑎2+𝑏2

𝑑
, 0 ≤ 𝑦 < 𝑑} 

forms a complete residue classes 𝑚𝑜𝑑 𝛼 [21]. There are 𝑎2 + 𝑏2 points in this set. 

Furthermore, all points in this set are distinct under 𝑚𝑜𝑑 𝛼 as shown in [21].  

    The idea to represent the graph is to arrange 𝑎2 + 𝑏2 vertices in a rectangle of 

size (
𝑎2+𝑏2

𝑑
) × 𝑑. The zero node is located on the lower left corner of the rectangle, as 

Figure 2.7 shows. Each interior node in the rectangle is connected with four other 

neighboring nodes, one from each side. The nodes in the border have wrap-around 

links with other nodes, as explained in Theorem 2.4. 
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Figure 2.7: Rectangle Representation for the Graph Generated by 𝜶 = 𝟓 + 𝟏𝟎𝒊. 

    

Theorem 2.4[21]: Let 𝛼 = 𝑎 + 𝑏𝑖 be the graph generator where 0 < 𝑎 ≤

𝑏, gcd 𝑎, 𝑏 = 𝑑, 𝑟 =
𝑎2+𝑏2

𝑑
 and 𝑆 be the set of all vertices located at the rectangle 

borders. First, we need to find −𝑖 (𝑚𝑜𝑑 𝛼), since gcd 𝑎, 𝑏 = 𝑑, we can write 𝑑 as: 

                                                          𝑢𝑎 + 𝑣𝑏 = 𝑑                                                       (1) 

Let 𝑛 = 𝑎𝑣 − 𝑏𝑢 (𝑚𝑜𝑑 𝑟). Then, −𝑖 (𝑚𝑜𝑑 𝛼) = 𝑛 +  𝑑 − 1 𝑖. Now let 𝐴 = 𝑥 + 𝑦𝑖 ∈

𝑆, then the wrap-around edges are define as: 

i) If 0 ≤ 𝑥 < 𝑟 − 𝑛 then 𝐴 is connected to  𝑥 + 𝑛 +  𝑑 − 1 𝑖  from the 

   South. 

ii) If 𝑟 − 𝑛 < 𝑥 ≤ 𝑟 − 1  then 𝐴 is connected to  𝑥 − (𝑟 − 𝑛) +  𝑑 − 1 𝑖 from 

   the South. 

iii) If 0 ≤ 𝑦 ≤ 𝑑 − 1  then 𝐴 is connected to  𝑟 − 1 + 𝑦𝑖 from the West.  

          ∎ 
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Example 2.4: Let us consider the Gaussian graph generated by 𝛼 = 𝑎 + 𝑏𝑖 = 4 + 4𝑖. 

Here, the gcd 𝑎, 𝑏 = 4 and 𝑟 = 8. We need to arrange the 32 vertices in a rectangle 

of size 4 × 8. Then, by solving equation (1) we can choose 𝑢 = −1, 𝑣 = 2. Then 

 −𝑖 𝑚𝑜𝑑 𝛼 = 4 + 3𝑖. Now, by following the wrap-around edge patterns described in 

Theorem 2.4, we obtain the graph shown in Figure 2.8. 

 

Figure 2.8: Rectangle Representation for the Graph Generated by 𝜶 = 𝟒 + 𝟒𝒊. 

 

2.1.3  Distance Properties of Gaussian Graphs  

   In this section, the properties for the diameter and the average distance of a Gaussian 

graph are reviewed. The diameter 𝑘 is defined as the length of any longest shortest 

path among all pairs of vertices of the graph. To this aim, we will describe the vertex-

to-vertex distance distribution of any Gaussian graph [27]. Note that the distance 

between the two vertices 𝛽 and 𝛾 in 𝐺𝛼  can be expressed as: 

𝐷𝛼 𝛽, 𝛾 = min  𝑥 +  𝑦    𝛽 − 𝛾 ≡ 𝑥 + 𝑦𝑖 (𝑚𝑜𝑑 𝛼)}. 
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 Also, since 𝐺𝛼  is vertex-symmetric, we can define the weight of vertex 𝛽 (its distance 

to vertex 0) as: 

𝑊𝛼 𝛽 = 𝐷𝛼 𝛽, 0 = min  𝑥 +  𝑦     𝛽 ≡ 𝑥 + 𝑦𝑖 (𝑚𝑜𝑑 𝛼)}. 

Example 2.5: Let 𝛼 = 3 + 4𝑖. We want to find the distance between node −1 

and 1 + 𝑖. Figure 2.9 shows an example of this distance. Now,  −1 −  1 + 𝑖 = 

 −2 − 𝑖 𝑚𝑜𝑑 𝛼 = 2𝑖 𝑚𝑜𝑑 𝛼. Thus, the distance is 2. The shortest path from (−1) to 

(1 + 𝑖) is given by −1, −1 −  𝑖, 1 +  𝑖. Note that if we use the path −1, 0, 1, 1 +  𝑖 , 

the distance becomes 3. 

  

Figure 2.9: Graphical Representation of the Distance Induced by the Gaussian Graph 

Generated by 𝜶 = 𝟑 +  𝟒𝒊. 

   To compute the distance distribution of a Gaussian graph, it is enough to find the 

number of vertices of weight s, for 𝑠 =  0, 1, . . . , 𝑘, where 𝑘 is the diameter of the 

graph. This number will be denoted as ∆𝛼(𝑠). Next, we state a couple of theorems that 

characterize the distance distribution of odd and even order Gaussian graphs. 
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Theorem 2.5[27]: Let 0 ≠ 𝛼 = 𝑎 + 𝑏𝑖 ∈ 𝑍[𝑖] be such that 0 <  𝑎 ≤  𝑏, 𝑁 =  𝑎2  +

 𝑏2 be an odd integer, and 𝑡 =
𝑎 + 𝑏−1

2
. The distance distribution of the graph 𝐺𝛼  is as 

follows: 

i) ∆𝛼 0 = 1. 

ii) ∆𝛼 𝑠 = 4𝑠    if 0 < 𝑠 < 𝑡. 

iii) ∆𝛼 𝑠 = 4(𝑏 − 𝑠)   if 𝑡 < 𝑠 ≤ 𝑏 − 1. 

Theorem 2.6[27]: Let 0 ≠ 𝛼 = 𝑎 + 𝑏𝑖 ∈ 𝑍[𝑖] be such that 0 <  𝑎 ≤  𝑏, 𝑁 =  𝑎2  +

 𝑏2 be an even integer, and 𝑡 =
𝑎 + 𝑏

2
. The distance distribution of the graph 𝐺𝛼  is as 

follows: 

i) ∆𝛼 0 = 1. 

ii) ∆𝛼 𝑠 = 4𝑠    if 0 < 𝑠 < 𝑡. 

iii) ∆𝛼 𝑡 = 2 𝑏 − 1 .   

iv) ∆𝛼 𝑠 = 4(𝑏 − 𝑠)   if 𝑡 < 𝑠 < 𝑏. 

v) ∆𝛼 𝑏 = 1.   

   We refer to [27] for the proofs of Theorem 2.5 and 2.6. Using the distance 

distribution of Gaussian graphs proved in Theorems 2.5 and 2.6 in [27], a closed 

formula for their diameter and the average distance can be easily deduced.  

Corollary 2.7[27]: Let 0 ≠ 𝛼 = 𝑎 + 𝑏𝑖 ∈ 𝑍[𝑖] be such that 0 <  𝑎 ≤  𝑏. Let  𝑁 =

 𝑎2  + 𝑏2 be the norm of 𝛼. The diameter 𝑘 of the Gaussian graph 𝐺𝑎+𝑏𝑖  is: 
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𝑘 =  
𝑏                  if  𝑁 is even 
𝑏 − 1          if 𝑁 is odd    

  

Example 2.6: Figure 2.10 shows a Gaussian network generated by 𝛼 = 3 + 5𝑖 with 

34 nodes and diameter 𝑘 = 𝑏 = 5. 

 

Figure 2.10: Gaussian Network with 𝜶 = 𝟑 + 𝟓𝒊. 

2.2 Edge Disjoint Hamiltonian Cycles in Gaussian Networks 

2.2.1  Previous Work 

   Finding edge disjoint Hamiltonian cycles for Gaussian graphs has been investigated 

before in [15][3]. In both papers, a solution to this problem is given only when 

gcd 𝑎, 𝑏 = 1, where the graph is generated by  𝛼 = 𝑎 + 𝑏𝑖.  

    However, the edge disjoint Hamiltonian cycle for Gaussian graphs generated by 

𝛼 = 𝑎 + 𝑏𝑖 when the gcd 𝑎, 𝑏 = 𝑑 > 1 has not been investigated, and in this section 

we give some solutions to this problem. When the  gcd 𝑎, 𝑏 = 1, the first 

Hamiltonian cycle can be generated by adding 1 to the starting node 𝑁(𝑎 + 𝑏𝑖) times.    
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For example, starting from node 0, the 𝑗th node will be 0 + 𝑗 (𝑚𝑜𝑑 𝛼). The other 

cycle can be generated by adding 𝑖 to the starting node. Figure 2.11 shows an example 

with 𝛼 = 3 + 5𝑖; the solid line cycle and the dotted line cycle form two edge disjoint 

Hamiltonian cycles. The following argument shows why these two Hamiltonian cycles 

are edge disjoint. 

   Suppose  0 + 𝑠 = 0 + 𝑡  𝑚𝑜𝑑 𝛼  for some integers 𝑠 and 𝑡. Then 𝑠 − 𝑡 = 0 𝑚𝑜𝑑 𝛼, 

and 𝑠 − 𝑡 is an integer. This implies 𝛼| 𝑠 − 𝑡 . However, the smallest integer that 

𝛼 can divide is  𝑎2 + 𝑏2. This implies 𝑠 − 𝑡 = 𝑎2 + 𝑏2. Thus, the cycle is 

Hamiltonian. Similarly, it can be proved that adding i's to a starting node will result in 

a Hamiltonian cycle. Furthermore, from any node, the first cycle traverses along the 

real dimension edges and the second along the imaginary dimension edges; so there is 

no common edge between these two cycles [15][3].                                              

 

Figure 2.11: Edge Disjoint Hamiltonian Cycle with 𝜶 = 𝟑 + 𝟓𝒊. 
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2.3  Edge Disjoint Hamiltonian Cycles in Gaussian Networks with 

𝒈𝒄𝒅 𝒂, 𝒃 = 𝒅 > 1 

   Here, we consider how to construct two edge disjoint Hamiltonian cycles when the 

gcd 𝑎, 𝑏 = 𝑑 > 1. The following theorem is useful in generating the Hamiltonian 

cycle. 

Theorem 2.8: Let 𝛼 = 𝑎 + 𝑏𝑖 ∈ ℤ[𝑖] and the gcd 𝑎, 𝑏 = 𝑑. Then in the Gaussian 

network generated by 𝛼, there exist two sets of 𝑑 node disjoint cycles, each cycle is of 

length  𝑟 = (𝑎2 + 𝑏2) 𝑑 . The edges in the first set of cycles are in the real dimension 

and the second along the imaginary dimension.   

Proof: Start with node 𝛽1 and traverse the successive nodes with node addresses 

increased by +1 ( or always increased by +𝑖). Since the number of nodes is finite, 

some node has to be revisited such that the cycle is the length of the least integer 𝑘, i.e. 

𝛽1 + 𝑘 = 𝛽1 𝑚𝑜𝑑 𝛼. This implies 𝑘 = 0 𝑚𝑜𝑑 𝛼,  i.e.  𝑘 is the least Gaussian multiple 

of 𝛼 that is an integer. 

   This means 𝑘 = 𝛽𝛼 =  𝑥 + 𝑦𝑖  𝑎 + 𝑏𝑖 =  𝑎𝑥 − 𝑏𝑦 +  𝑎𝑦 + 𝑏𝑥 𝑖. Since 𝑘 is an 

integer, the imaginary part is zero and so 𝑎𝑦 + 𝑏𝑥 = 0. Since the  gcd 𝑎, 𝑏 = 𝑑, we 

get  𝑎 = 𝑎1𝑑 , 𝑏 = 𝑏1𝑑 and  gcd 𝑎1, 𝑏1 = 1. Therefore, 𝑑 𝑎1𝑦 + 𝑏1𝑥 = 0. Since 

the gcd 𝑎1, 𝑏1 = 1, we get −𝑎1𝑦 = 𝑏1𝑥. This implies 𝑦 = −𝑔𝑏1, 𝑥 = 𝑔𝑎1. 

Therefore, 𝑘 =  𝑎𝑥 − 𝑏𝑦 =  𝑎𝑔𝑎1 + 𝑏𝑔𝑏1 = 𝑔𝑑 𝑎1
2 + 𝑏1

2 = 𝑔(
𝑎2+𝑏2

𝑑
).  
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   We need to prove that 𝑔 = 1. If  
𝑎2+𝑏2

𝑑
= 0 𝑚𝑜𝑑 𝛼, then 𝑔 = 1. Now,  

   
𝑎2+𝑏2

𝑑
= 𝑑 𝑎1

2 + 𝑏1
2 = 𝑑 𝑎1 + 𝑏1𝑖  𝑎1 − 𝑏1𝑖  

              =  𝑎1𝑑 + 𝑏1𝑑𝑖  𝑎1 − 𝑏1𝑖 =  𝑎 + 𝑏𝑖  𝑎1 − 𝑏1𝑖 . 

 This implies  𝑎 + 𝑏𝑖  𝑎1 − 𝑏1𝑖  𝑚𝑜𝑑 𝛼 = 0. Thus, 𝑔 = 1. 

   This proves there is a cycle of length  
𝑎2+𝑏2

𝑑
 if we start with node 𝛽1 and traverse the 

successive nodes by adding 1 to the previous node address.  

   In addition, we need to prove there are 𝑑 node disjoint cycles. Suppose 𝛽2 is not a 

node in the above cycle. We need to prove, by adding successive 1’s to 𝛽2 we get 

another cycle of length 
𝑎2+𝑏2

𝑑
 and there is no common node between this cycle and the 

above cycle. We will prove this by contradiction. Suppose  𝛽2 + 𝑘1 =  𝛽1 +

𝑘2 𝑚𝑜𝑑 𝛼 where 𝛽1 is a node in the first cycle and 𝑘1, 𝑘2 ≤ 𝑟. This implies 𝛽1 +

 𝑘2 − 𝑘1 = 𝛽2 (𝑚𝑜𝑑 𝛼). This is not possible because  𝑘2 − 𝑘1 ≤ 𝑟; therefore, 𝛽2 is 

not in the first cycle. Extending the above argument, we can see that there are d node 

disjoint cycles of length 
𝑎2+𝑏2

𝑑
.                              

                  ■ 

Example 2.7: Consider the graph generated by 𝛼 = 4 + 4𝑖 . Then, the graph has four 

node disjoint cycles in each dimension, and each cycle contains 8 nodes. Figure 2.12 

shows this graph in rectangle representations.  
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Figure 2.12: Four Disjoint Cycles in both dimensions in Gaussian Network with 

 𝜶 = 𝟒 + 𝟒𝒊.  

    Theorem 2.8 indicates that we have 𝑑 disjoint cycles of length  (𝑎2 + 𝑏2) 𝑑  in each 

dimension. Thus, we not only need to combine these cycles to form one Hamiltonian 

cycle but also to make sure that the remaining edges also form another Hamiltonian 

cycle.  

    Now based on the value of 𝑑, we can divide the Gaussian networks into two cases: 

Gaussian network with odd number of cycles (𝑑-odd) and Gaussian network with even 

number of cycles (𝑑-even). First, we present and prove how to generate such cycles 

when 𝑑 is odd, and then, by using the same argument, we show how to generate these 

cycles when 𝑑 is even.  

  Let 𝑑 = 2𝑡 + 1, the node visiting sequence for the first Hamiltonian cycle when 𝑑 is 

odd, is as follows: 

1. Starting from the zero node, go to node −𝑖 which takes us to cycle number 

𝑑 − 1; from this node, go in the right direction (along the real dimension) and 

visit all the nodes except the last two nodes in this cycle.  
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2.  The following two steps are repeated for  𝑡 − 1  times.  

a. Go to the next cycle by adding −𝑖. Then going along the left direction, 

visit all the nodes except the last node in this cycle. 

b. Go to the next cycle by adding −𝑖. Then going along the right 

direction, visit all the nodes except the last three nodes in this cycle.  

3. Then visit all nodes in cycles 2 through 𝑑 − 1 not visited in Step 1 and Step 2. 

4.  From the last node visited in cycle 𝑑 − 1, visit the adjacent node in cycle 

number zero and all the remaining nodes in this cycle. 

5.  Then move to cycle number 1, and visit all the nodes in this cycle, then get 

back to the starting node.  

   Figure 2.13 shows the node sequence used to generate the first Hamiltonian cycle.  

 

Figure 2.13: First Hamiltonian Cycle for 𝑮𝟗+𝟗𝒊 . 

   Table 2.1 shows the node sequence generating the first Hamiltonian cycle, and Table 

2.2 shows another node sequence generating the second Hamiltonian cycle when 𝑑 is 

odd. In each of the tables, we represent a Gaussian integer as a pair of two 
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numbers 𝑥 + 𝑦𝑖 = (𝑥, 𝑦) where 𝑟 = (𝑎2 + 𝑏2) 𝑑 . These numbers need to be taken 

under (𝑚𝑜𝑑 𝛼).   

Cycle 

Number 

Nodes  

0 (0,0) Step 1 

-1 (0,-1),(1,-1),(2,-1),…,(r-3,-1) 

-(2j) (r-2j-1,-2j),(r-2j-2,-2j),…,(r-2j+1,-2j) Step 2 

j=1,2,...,t-1 -(2j+1) (r-2j+1,-(2j+1)),(r-2j+2,-(2j+1)),…,(r-2j-3,-(2j+1)) 

… … ... 

2(k-t)-1 (r-2t-2+2k,-2t-1+2k),(r-2t-1+2k,-2t-1+2k), 

(r-2t+2k,-2t-1+2k) 

Step3 

k=1,2,...,t-1 

2(k-t) (r-2t+2k,-2t+2k) 

... ... ... 

-1 (r-2,-1),(r-1,-1) Step 4 

0 (r-1,0),(r-2,0),…,(1,0) 

-d+1 (1,-d+1),(2,-d+1),…,(0,-d+1) Step 5 

0 (0,0) 

Table 2.1: The First Hamiltonian Cycle for 𝒅 Odd. 

Lemma 2.9: The sequence shown in Table 2.1 gives a Hamiltonian cycle. 

Proof:  Let 𝑑 = 2𝑡 + 1. Each consecutive pair of nodes in the table represent an edge. 

Each row in the table represents the order in which the nodes are visited. The nodes 

visited in each row are in the real dimension. The last node of a row is adjacent to the 

first node in the next row, and this edge is in the imaginary dimension. In the last row, 

the last node of the cycle is (0, 0) which is the starting node. The number of distinct 

nodes visited in each step is calculated as follows:  

1. In Step one, (𝑟 − 1) nodes are visited. 

2. In Step two, (𝑡 − 1)((𝑟 − 1) + (𝑟 − 3)) nodes are visited.  

3. In Step three, (𝑡 − 1)(1 + 3) nodes are visited. 

4. In Step four, 2 + (𝑟 − 1) nodes are visited. 

5. In Step fife, 𝑟 nodes are visited. 
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  Thus, the total number of nodes is  2𝑡 + 1 𝑟 = 𝑑𝑟 = 𝑎2 + 𝑏2 nodes. Therefore, the 

node sequence given in Table 2.1 generates a Hamiltonian cycle.       ■ 

Cycle 

Number 

Nodes  

0 (0,0) Step 1 

-1 (-1,0),(-1,1),(-1,2),…,(-1,r-3) 

-(2j) (-2j,r-2j-1,),( -2j,r-2j-2),…,(-2j,r-2j+1) Step 2 

j=1,2,...,t-1 -(2j+1) (-(2j+1),r-2j+1),( -(2j+1),r-2j+2),…,(-(2j+1),r-2j-3) 

… …  

2(k-t)-1 (-2t-1+2k,r-2t-2+2k),(-2t-1+2k,r-2t-1+2k), 

(-2t-1+2k,r-2t+2k) 

Step 3 

k=1,2,...,t-1 

2(k-t) (-2t+2k,r-2t+2k) 

... ... ... 

-1 (-1,r-2),(-1,r-1) Step 4 

0 (0,r-1),(0,r-2),…,(0,1) 

-d+1 (-d+1,1),(-d+1,2),…,(-d+1,0) Step 5 

0 (0,0) 

Table 2.2: The Second Hamiltonian Cycle for 𝒅 Odd. 

Lemma 2.10: The sequence shown in Table 2.2 gives a Hamiltonian cycle. 

Proof: It is similar to the proof of Lemma 2.9. Note that the node sequence given in 

this table is obtained from the node sequence in Table 2.1 as follows. If two 

consecutive nodes differ by +1, −1, +𝑖, or −𝑖, the corresponding nodes in Table 2.2 

differ by +𝑖, −𝑖, +1, or −1, respectively. Here, the nodes visited in each row are in the 

imaginary dimension; again, the last node in a row is adjacent to the first node in the 

next row, and this edge is along the real dimension. Since the nodes are all distinct, 

with 𝑎2 + 𝑏2 elements, the sequence forms a Hamiltonian cycle.            ■  
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Theorem 2.11: The two Hamiltonian cycles constructed using Lemma 2.9 and 2.10 

are edge disjoint. 

  Proof: Now we need to prove that these two Hamiltonian cycles are edge disjoint. As 

Table 2.1 shows, we construct the first Hamiltonian cycle by visiting the nodes using 

the edges in the real dimension by either adding or subtracting 1, unless we want to 

visit the next cycle, in which case we need to use one edge in the imaginary 

dimension. Similarly, Table 2.2 shows that we construct the second Hamiltonian cycle 

by visiting the nodes using the edges in the imaginary dimension by either adding or 

subtracting 𝑖, unless we want to visit the next cycle, in which case we use one edge in 

the real dimension. 

   Note that the first Hamiltonian cycle uses exactly 2𝑑 − 2 edges belonging to the 

imaginary dimension, and the remaining edges are in the real dimension. On the other 

hand, the second Hamiltonian cycle uses 2𝑑 − 2 edges belonging to the real 

dimension, and the remaining edges are along the imaginary dimension. 

    In order to prove that these two Hamiltonian cycles are edge disjoint, we have to 

show the 2𝑑 − 2 edges, which belong to the imaginary dimension in Table 2.1, are not 

being used in Table 2.2; similarly, we have to show the 2𝑑 − 2 edges, which belong to 

the real dimension in Table 2.2, are not in Table 2.1.  

   Table 2.3 shows all edges traveling in the imaginary dimension used in the first 

Hamiltonian cycle using the representation as in Table 2.1 and their equivalent edge 

values using the representation as in Table 2.2. Similarly, Table 2.4 shows all edges 
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belonging to the real dimension in the second Hamiltonian cycle using the 

representation as in Table 2.2 and their equivalent edge values using the representation 

as in Table 2.1. 

    As we can see, none of the edges given in Table 2.3 is in Table 2.2, and similarly, 

none of the edges given in Table 2.4 is in Table 2.1. The edges shown in columns A 

and B are equivalent to the edges shown in columns C and D. This is because 𝐴 − 𝐶 ≡

𝐵 − 𝐷 ≡  𝑟 − 𝑟𝑖 𝑚𝑜𝑑 𝛼 ⇒ 𝑟 1 − 𝑖 =
 𝑎+𝑏𝑖  𝑎−𝑏𝑖  1−𝑖 

𝑑
 ≡ 0 𝑚𝑜𝑑 𝛼. Thus, these two 

Hamiltonian cycles generated by the node sequences given in Tables 2.1 and 2.2 are 

edge disjoint.                     ■ 

 

First Hamiltonian cycle edges in 

imaginary direction 

Equivalent edges value   

A B C D 

(0,0) (0,-1) (0,0) (0,-1) 

(0,1) (1,1) (0,1) (1,1) 

(0,0) (0,-1) (0,0) (0,-1) 

(r-1,0) (r-1,-1) (-1,r) (-1,r-1) 

(r-2j-1,-2j+1) (r-2j-1,-2j) (-2j-1,r-2j+1) (-2j-1,r-2j) 

(r-2j,-2j+1) (r-2j,-2j) (-2j,r-2j+1) (-2j,r-2j) 

(r-2j+1,-2j) (r-2j+1,-(2j+1)) (-2j+1,r-2j) (-2j+1,r-(2j+1)) 

(r-2j,-2j) (r-2j,-(2j+1)) (-2j,r-2j) (-2j,r-(2j+1)) 

Table 2.3: The 𝟐𝒅 − 𝟐 Edges Belonging to the Imaginary Dimension in Table 2.1  

(here 𝒋 =  𝟏, 𝟐, … , 𝒕 − 𝟏). 
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First Hamiltonian cycle edges in 

imaginary direction 

Equivalent edges value   

A B C D 

(0,0) (-1,0) (0,0) (-1,0) 

(1,0) (1,1) (1,0) (1,1) 

(0,0) (-1,0) (0,0) (-1,0) 

(0,r-1) (-1,r-1) (r,-1) (r-1,-1) 

(-2j+1,r-2j-1) (-2j,r-2j-1) (r-2j+1,-2j-1) (r-2j,-2j-1) 

(-2j+1,r-2j) (-2j,r-2j) (r-2j+1,-2j) (r-2j,-2j) 

(-2j,r-2j+1) (-(2j+1),r-2j+1) (r-2j,-2j+1) (r-(2j+1),-2j+1) 

(-2j,r-2j) (-(2j+1),r-2j) (r-2j,-2j) (r-(2j+1),-2j) 

Table 2.4: The 𝟐𝒅 − 𝟐 Edges Belonging to the Real Dimension in Table 2.2 

 (here 𝒋 =  𝟏, 𝟐, … , 𝒕 − 𝟏). 

  Example 2.8: Let 𝛼 = 3 + 6𝑖. By following the node sequence given in Table 2.1, 

we get the first Hamiltonian cycle as: 

0 , −𝑖 , 1 − 𝑖 , 2 − 𝑖 , 3 − 𝑖 , 4 − 𝑖 , 5 − 𝑖 , 6 − 𝑖 , 7 − 𝑖 , 8 − 𝑖 , 9 − 𝑖 , 10 − 𝑖 , 11 − 𝑖 , 12 

−𝑖 , 13 − 𝑖 , 14 − 𝑖 , 14 , 13 , 12 , 11 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 1 + 𝑖 , 2 + 𝑖 , 3 + 𝑖 

 , 4 + 𝑖 , 5 + 𝑖 , 6 + 𝑖 , 7 + 𝑖 , 8 + 𝑖 , 9 + 𝑖 , 10 + 𝑖 ,11 + 𝑖 , 12 + 𝑖 , 13 + 𝑖 , 14 + 𝑖 , 𝑖 , 0. 

   Then we take the 𝑚𝑜𝑑 𝛼 for each of these nodes. The modular operation varies 

depending on which representation we use. Moreover, by following the node sequence 

given in Table 2.2, we get the second Hamiltonian cycle as: 

0 , −1 , −1 + 𝑖 , −1 + 2𝑖 , −1 + 3𝑖 , −1 + 4𝑖 , −1 + 5𝑖 , −1, +6𝑖 , −1 + 7𝑖 , −1 + 8𝑖 , 

 −1 + 9𝑖 , −1 + 10𝑖 , −1 + 11𝑖 , −1 + 12𝑖 , −1 + 13𝑖 , −1 + 14𝑖 , 14𝑖 , 13𝑖 , 12𝑖 , 11𝑖  

, 10𝑖 , 9𝑖 , 8𝑖 , 7𝑖 , 6𝑖 , 5𝑖 , 4𝑖 , 3𝑖 , 2𝑖 , 𝑖 , 1 + 𝑖 , 1 + 2𝑖 , 1 + 3𝑖 , 1 + 4𝑖 , 1 + 5𝑖 , 1 + 6𝑖 , 

 1 + 7𝑖 , 1 + 8𝑖 , 1 + 9𝑖 , 1 + 10𝑖 , 1 + 11𝑖 , 1 + 12𝑖 , 1 + 13𝑖 , 1 + 14𝑖 , 1 , 0 . 
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Figure 2.14 shows the first Hamiltonian cycle, and Figure 2.15 shows the second 

Hamiltonian cycle. It can be seen that no edge is common in both cycles. The cycles 

are shown using both Utah and rectangle representations.  

 

 

Figure 2.14: The First Edge Disjoint Hamiltonian Cycle for  𝜶 = 𝟑 + 𝟔𝒊. 

 

 

Figure 2.15: The Second Edge Disjoint Hamiltonian Cycle for  𝜶 = 𝟑 + 𝟔𝒊. 
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   Next, we describe the result when d is even. Let 𝑑 = 2𝑡, the node visiting sequence 

for the first Hamiltonian is as follows: 

1. Starting from the zero node, go to node −𝑖 which takes us to cycle number 

𝑑 − 1; from this node, go in the right direction (along the real dimension) and 

visit all the nodes except the last two nodes in this cycle.  

2.  The following two steps are repeated for  𝑡 − 2  times.  

a. Go to the next cycle by adding −𝑖. Then going along the left direction, 

visit all the nodes except the last node in this cycle. 

b. Go to the next cycle by adding −𝑖. Then going along the right 

direction, visit all the nodes except the last three nodes in this cycle.  

3. Then go one more step to the right by adding one. After that, go to cycle 

number 2, and visit all the nodes in this cycle.  

4. Then visit all nodes in cycles 2 through 𝑑 − 1 not visited in Step 1 and Step 2. 

5.  From the last node visited in cycle 𝑑 − 1, visit the adjacent node in cycle 

number zero and all the remaining nodes in this cycle. 

6.  Then move to cycle number 1, and visit all the nodes in this cycle, then get 

back to the starting node.  

   Figure 2.16 shows the node sequence used to generate the first Hamiltonian cycle.  
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Figure 2.16: First Hamiltonian Cycle for 𝑮𝟖+𝟖𝒊.  

   Table 2.5 shows the node sequence generating the first Hamiltonian cycle when 𝑑 is 

even, and Table 2.6 shows another node sequence generating the second Hamiltonian 

cycle when 𝑑 is even. In each of the tables, we represent a Gaussian integer as a pair 

of two numbers 𝑥 + 𝑦𝑖 = (𝑥, 𝑦) where 𝑟 = (𝑎2 + 𝑏2) 𝑑 . These numbers need to be 

taken under (𝑚𝑜𝑑 𝛼).   
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Cycle 

Number 

Nodes  

0 (0,0) Step 1 

-1 (0,-1),(1,-1),(2,-1),…,(r-3,-1) 

-(2j) (r-2j-1,-2j),(r-2j-2,-2j),…,(r-2j+1,-2j) Step2 

j=1,2,...,t-2 -(2j+1) (r-2j+1,-(2j+1)),(r-2j+2,-(2j+1)),…,(r-2j-3,-(2j+1)) 

… … ... 

-d+3 (r-2t+2,-d+3) Step 3 

-d+2 (r-2t+2,-d+2),(r-2t+1,-d+2),...,(r-2t+3,-d+2) 

-d+3 (r-2t+3,-d+3),(r-2t+4,-d+3) Step 4 

k=2,3,...,t-2 

 
2(k-t) (r-2t+2k,-2t+2k) 

2(k-t)+1 (r-2t+2k,-2t+2k+1),(r-2t+2k+1,-2t+2k+1), 

(r-2t+2k+2,-2t+2k+1) 

... .... 

-2 (r-2,-2) 

-1 (r-2,-1),(r-1,-1) Step 5 

0 (r-1,0),(r-2,0),…,(1,0) 

-d+1 (1,-d+1),(2,-d+1),…,(0,-d+1) Step 6 

0 (0,0) 

Table 2.5: The First Hamiltonian Cycle for 𝒅 Even. 

Lemma 2.12: The sequence shown in Table 2.5 gives a Hamiltonian cycle. 

Proof: It is similar to the proof of Lemma 2.9. 
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Cycle 

Number 

Nodes  

0 (0,0) Step 1 

-1 (-1,0),(-1,1),(-1,2),…,(-1,r-3) 

-(2j) (-2j,r-2j-1,),( -2j,r-2j-2),…,(-2j,r-2j+1) Step 2 

j=1,2,...,t-2 -(2j+1) (-(2j+1),r-2j+1),( -(2j+1),r-2j),…,(-(2j+1),r-2j-3) 

… …  

-d+3 (-d+3,r-2t+2) Step 3 

-d+2 (-d+2,r-2t+2),(-d+2,r-2t+1),...,(-d+2,r-2t+3) 

-d+3 (-d+3,r-2t+3),(-d+3,r-2t+4) Step 4 

k=2,3,...,t-2 

 
2(k-t) (-2t+2k,r-2t+2k) 

2(k-t)+1 (-2t+2k+1,r-2t2k),(-2t+2k+1,r-2t+2k+1), 

(-2t+2k+1,r-2t+2k+2) 

... .... 

-2 (-2,r-2) 

-1 (-1,r-2),(-1,r-1) Step 5 

0 (0,r-1),(0,r-2),…,(0,1) 

-d+1 (-d+1,1),(-d+1,2),…,(-d+1,0) Step 6 

0 (0,0) 

Table 2.6: The Second Hamiltonian Cycle for 𝒅 Even. 

Lemma 2.13: The sequence shown in Table 2.6 gives a Hamiltonian cycle. 

Proof: It is similar to the proof of Lemma 2.10. 

 

Theorem 2.14: The two Hamiltonian cycles constructed using Lemma 2.12 and 2.13, 

are edge disjoint. 

  Proof: The proof is similar to that of Theorem 2.11. Table 2.7 shows all edges 

traveling in the imaginary dimension used in the first Hamiltonian cycle, using the 

representation as in Table 2.5 and their equivalent edge values, using the 

representation as in Table 2.6. Similarly, Table 2.8 shows all edges belonging to the 
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real dimension used in the second Hamiltonian cycle, using the representation as in 

Table 2.6 and their equivalent edge values using the representation as in Table 2.5. 

    As we can see, none of the edges given in Table 2.5 is in Table 2.6, and similarly, 

none of the edges given in Table 2.7 is in Table 2.8. Thus, these two Hamiltonian 

cycles generated by the node sequences given in Table 2.1 and 2.2 are edge disjoint.

                                ■ 

 

First Hamiltonian cycle edges in 

imaginary direction 

Equivalent edges value   

A B C D 

(0,0) (0,-1) (0,0) (0,-1) 

(0,1) (1,1) (0,1) (1,1) 

(0,0) (0,-1) (0,0) (0,-1) 

(r-1,0) (r-1,-1) (-1,r) (-1,r-1) 

(r-4,3) (r-4,2) (-4,r+3) (-4,r+2) 

(r-5,3) (r-5,2) (-5,r+3) (-5,r+2) 

(r-2j-1,-2j+1) (r-2j-1,-2j) (-2j-1,r-2j+1) (-2j-1,r-2j) 

(r-2j,-2j+1) (r-2j,-2j) (-2j,r-2j+1) (-2j,r-2j) 

(r-2j+1,-2j) (r-2j+1,-(2j+1)) (-2j+1,r-2j) (-2j+1,r-(2j+1)) 

(r-2j,-2j) (r-2j,-(2j+1)) (-2j,r-2j) (-2j,r-(2j+1)) 

Table 2.7: The 𝟐𝒅 − 𝟐 Edges Belonging to the Imaginary Dimension in Table 2.5 

 (here 𝒋 =  𝟏, 𝟐, … , 𝒕 − 𝟐). 
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First Hamiltonian cycle edges in 

imaginary direction 

Equivalent edges value   

A B C D 

(0,0) (-1,0) (0,0) (-1,0) 

(1,0) (1,1) (1,0) (1,1) 

(0,0) (-1,0) (0,0) (-1,0) 

(0,r-1) (-1,r-1) (r,-1) (r-1,-1) 

(3,r-4) (2,r-4) (r+3,-4) (r+2,-4) 

(3,r-5) (2,r-5) (r+3,-5) (r+2,-5) 

(-2j+1,r-2j-1) (-2j,r-2j-1) (r-2j+1,-2j-1) (r-2j,-2j-1) 

(-2j+1,r-2j) (-2j,r-2j) (r-2j+1,-2j) (r-2j,-2j) 

(-2j,r-2j+1) (-(2j+1),r-2j+1) (r-2j,-2j+1) (r-(2j+1),-2j+1) 

(-2j,r-2j) (-(2j+1),r-2j) (r-2j,-2j) (r-(2j+1),-2j) 

Table 2.8: The 𝟐𝒅 − 𝟐 Edges Belonging to the Real Dimension in Table 2.6 

 (here 𝒋 =  𝟏, 𝟐, … , 𝒕 − 𝟐). 

 

2.4 Conclusion 

In this chapter, it has been shown that the Gaussian network with gcd 𝑎, 𝑏 = 𝑑 >

1 contains d node disjoint cycles. Any two consecutive nodes in these cycles differs by 

±1(or ±𝑖). By removing 2𝑑 appropriate edges from these cycles and connecting 2𝑑 

appropriate edges belonging to imaginary dimension, we have shown that the resultant 

sequence of edges form the first Hamiltonian cycle. Furthermore, the remaining edges 

form the second Hamiltonian cycle, which is edge disjoint from the first one. 
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Chapter 3 

Communication Algorithms and Resource Placement in  

Eisenstein-Jacobi Networks 

 

   Eisenstein-Jacobi graphs have been recently introduced as a suitable topology for 

interconnection network in [25]. The methodology described in the previous chapter 

for the Gaussian networks can also be applied to define the Eisenstein-Jacobi graphs. 

Here, we describe the Eisenstein-Jacobi networks whose vertices are labeled by the 

elements of quotient rings of Eisenstein-Jacobi integers. 

   The rest of this chapter is organized as follows. In Section 3.1, Eisenstein-Jacobi 

networks are described. In addition, the distance properties are also given. In Section 

3.2, some communication algorithms are designed. Section 3.3 describes some 

solutions to the resource placements in these networks. 

 

3.1  Eisenstein-Jacobi Graphs 

3.1.1  Quotient Rings of Eisenstein-Jacobi Integers 

      The ring of the Eisenstein-Jacobi integers ℤ [ρ] is defined as  

𝑍 [𝜌]  =  { 𝑥 +  𝑦𝜌 | 𝑥, 𝑦 ∈  𝑍 } 

 where 𝜌 =  (1 +  𝑖  3)/2 and 𝜌2  =  −1 + 𝜌. It can be proved that  𝑍 [𝜌] is a 

Euclidean domain with norm: 
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 𝒩 ∶       ℤ 𝜌  ⟶  ℕ 

             𝑥 + 𝑦𝜌 ⟼ 𝑥2 + 𝑦2  +  𝑥𝑦 

 Note that  𝒩  𝑥 + 𝑦𝜌 =  𝑥 + 𝑦𝜌  𝑥 + 𝑦𝜌            . Since   𝑥 + 𝑦𝜌              =  𝑥 + 𝑦 − 𝑦𝜌,  

 𝒩 𝑥 + 𝑦𝜌     =  𝑥 + 𝑦𝜌   𝑥 + 𝑦 − 𝑦𝜌  

  = 𝑥2 + 𝑥𝑦 − 𝑥𝑦𝜌 + 𝑥𝑦𝜌 + 𝑦2𝜌 − 𝑦2𝜌2 

  = 𝑥2 + 𝑥𝑦 + 𝑦2𝜌 − 𝑦2(−1 + 𝜌) 

  = 𝑥2 + 𝑥𝑦 + 𝑦2𝜌 + 𝑦2 − 𝑦2𝜌 

        = 𝑥2 + 𝑦2 + 𝑥𝑦 

 The units of ℤ[ρ] are the elements with norm equal to one; that is, {±1, ±ρ, ±ρ
2
}.  

For every 0 ≠  𝛼 ∈  ℤ[𝜌], we can consider ℤ[𝜌]α = {𝛽(𝑚𝑜𝑑 𝛼) | 𝛽 ∈  ℤ[𝜌]}, which 

is clearly a finite set. 

                                          

3.1.2  Definition of Eisenstein-Jacobi Networks 

   In this section, we describe Eisenstein-Jacobi networks, and then show some 

examples to illustrate the interconnection topology. 

   Eisenstein-Jacobi graphs are defined over the quotient rings of Eisenstein-Jacobi 

integers as follows. 

Definition 3.1: Let 𝛼 = 𝑥 + 𝑦𝜌 ∈ ℤ[𝜌] and consider ℤ[𝜌]𝛼 . We denote the 

Eisenstein-Jacobi graph generated by 𝛼 as 𝐸𝐽𝛼 =  𝑉, 𝐸 , and it is defined as follows: 
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    • 𝑉 = ℤ[𝜌]𝛼  is the set of nodes, and 

    • 𝐸 =   𝛽, 𝛾 ∈ 𝑉 × 𝑉    𝛽 − 𝛾 = ±1, ±𝜌, ±𝜌2  (𝑚𝑜𝑑 𝛼)} is the set of edges. 

   Note that any Eisenstein-Jacobi graph is a regular graph of degree six, since every 

vertex is adjacent to exactly six other vertices.  

     The representation of the graph has the special feature that all the vertices are 

obtained at a minimum distance from the central vertex, which we have stated to be 

vertex zero. Figure 3.1 gives an example of this representation for the Eisenstein-

Jacobi graph generated by  𝛼 =  3 +  4𝜌. 
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Figure 3.1: Eisenstein-Jacobi Network with 𝜶 = 𝟑 + 𝟒𝝆.  
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3.1.3  Distance Properties of Eisenstein-Jacobi Graphs 

   Over this quotient ring of Eisenstein-Jacobi integers, we can define a new distance, 

which is presented in [20][30] as follows. 

Definition 3.4: Let 0 ≠ 𝛼 ∈  ℤ[𝜌]. For 𝛽, 𝛾 ∈ ℤ[𝜌]𝛼 , consider 𝑥 + 𝑦𝜌 + 𝑧𝜌2 in the 

class of 𝛽 − 𝛾 with  𝑥 +  𝑦 +  𝑧  minimum. The distance 𝐷𝛼  between 𝛽 and 𝛾 is:  

𝐷𝛼 =  𝑥 +  𝑦 +  𝑧  

As in the Gaussian case, 𝐷𝛼  defines a distance over the quotient ring ℤ[𝜌]𝛼 . 

Definition 3.5[15]: Let nonzero 𝑤 ∈ 𝐶. Then w is in the 𝑗-th sector  if 𝑤 is between 

𝜌𝑗−1 and 𝜌𝑗 .  

Theorem 3.6[15]: Let 𝑤 ∈ 𝐶. If 𝑤 is in the 𝑗-th sector, then 𝐷𝛼(𝑤, 0) = 𝑥 + 𝑦  where 

𝑤 = 𝑥𝜌𝑗−1 + 𝑦𝜌𝑗  and 𝑥, 𝑦 ≥ 0.               ∎ 

Theorem 3.7[15]: Let 𝛼 =  𝑎 +  𝑏𝜌 be nonzero with 0 ≤ 𝑎 ≤  𝑏, 𝑇 = (𝑎 + 𝑏) 2 , 

and 𝑀 =  (𝑎 + 2𝑏) 3 . For any positive integer  𝑡, let 𝑊 𝑡  be the number of nodes 

with distance 𝑡 from 0 in the 𝐸𝐽 network generated by 𝛼. Then 

𝑊 𝑡 =

 
 
 

 
 

1                       𝑖𝑓 𝑡 = 0                                     

6𝑡                      𝑖𝑓 1 ≤ 𝑡 ≤ 𝑇                             

18 𝑀 − 𝑡        𝑖𝑓 𝑇 < 𝑡 < 𝑀                            

2                        𝑖𝑓 𝑏 ≡ 𝑎  𝑚𝑜𝑑 3 𝑎𝑛𝑑 𝑡 = 𝑀
0                       𝑖𝑓 𝑡 > 𝑀                                     

  

               ∎ 
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Example 3.8: For the 𝐸𝐽 network in Figure 3.4, we have 𝛼 = 2 + 3𝜌 with 4 + 9 +

6 =  19 nodes in the network, and 𝑇 = 5 2  , 𝑀 = 8 3 . Theorem 3.6 distributes the 

nodes as follows: 

𝑊 0 = 1,   𝑊 1 = 6,   𝑊 2 = 12. 

3.2  Communication Algorithms in Eisenstein-Jacobi Network 

   In parallel systems, processors need to exchange their data. The efficiency of the 

parallel programs depends on the efficiency of how this data is transmitted among the 

nodes. There are four different, commonly used communication patterns in parallel 

systems. They are one-to-all communication, all-to-all communication, one-to-all 

personalized communication, and all-to-all personalized communication [10][22]. 

Efficient implementation of these procedures can improve the performance of the 

system and reduce the development effort and cost. 

   The simplest and most fundamental communication operation is the one-to-all 

communication (or broadcasting). In this case, a node sends its message to all other 

nodes in the network. The all-to-all broadcast is defined as the process in which every 

node broadcasts its information to all other nodes in the system. One-to-all 

personalized communication is the process in which  the source node sends unique 

information to each node in the system. All-to-all personalized communication is the 

process by whitch every node sends distinct information to every other node.  

   We now briefly explain how these communication algorithms are used in some real 

applications. For the time being, assume that a parallel system has 𝑛 processor nodes. 
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Consider the matrix-vector multiplication 𝐴𝑛×𝑛 × 𝐵𝑛×1 = 𝐶𝑛×1. Assume that the 

processor node 1 contains both 𝐴 and 𝐵. A fast parallel algorithm can be designed as 

follows. Processor 1 can send the 𝑖𝑡𝑕  row of 𝐴 and the column vector 𝐵 to the 𝑖𝑡𝑕  

processor node, and that node calculates the 𝑖𝑡𝑕  row element of 𝐶. Here, we need to 

send 𝐵 to all processor nodes, which is the one-to-all broadcasting. Alternatively, 

sending 𝑖𝑡𝑕  row of 𝐴 to the 𝑖𝑡𝑕  processor node requires one-to-all personalized 

communication. 

   Now consider a matrix-matrix multiplication 𝐴 × 𝐵 = 𝐶. Assume all processor 

nodes have both 𝐴 and 𝐵. Each processor node is responsible for calculating a sub-

matrix of 𝐶. If all processor nodes need the entire 𝐶 matrix, then an all-to-all 

broadcasting is required. 

   To see the usefulness of the all-to-all personalized communication, consider the 

transpose of a matrix 𝐴 𝑖, 𝑗 𝑇  = 𝐴 𝑗, 𝑖 , where  1 ≤ 𝑖, 𝑗 ≤ 𝑛. Assume that the 

𝑖𝑡𝑕  processor node contains the 𝑖𝑡𝑕  row. The 𝑖𝑡𝑕  processor node sends the element 

𝐴[𝑖, 1] to processor 𝑝1, 𝐴[𝑖, 2] to processor 𝑝2, and 𝐴[𝑖, 𝑛] to processor 𝑝𝑛 . In this 

case, every processor node sends a distinct element to every other processor node, 

which is the all-to-all personalized communication. 

    In this chapter, we present algorithms for each of the communication patterns 

mentioned above.  

 



44 
 

3.2.1  One-to-All Communication 

   In this section, an optimal broadcast routing for the Eisenstein-Jacobi networks 

where 𝛼 = 𝑘 + (𝑘 + 1)𝜌 is presented. The algorithm is simple, and since the network 

is vertex symmetric, any node in the network can be assumed as the source node. 

Hence, it can be easily implemented in hardware.  
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Figure 3.2: One-to-All Broadcasting in Eisenstein-Jacobi Network with 𝜶 = 𝟑 + 𝟒𝝆. 

   The number of nodes in the Eisenstein-Jacobi network with 𝛼 = 𝑎 + 𝑏𝜌 is equal to 

the sum of the squares of 𝑎 and 𝑏 plus their product. In our case, a and b are 

respectively 𝑘 and 𝑘 + 1, and consequently, (𝑘2 +   𝑘 + 1 2 + 𝑘  𝑘 + 1 ) 𝑚𝑜𝑑 6 =

 1. This suggests that, once an arbitrary node is fixed, the rest of the network nodes 

can be divided into six different subsets, each having  
𝑘(𝑘+1)

2
  nodes. Figure 3.2 shows 

the central node (0,0) and the six partitions, each with 
𝑘(𝑘+1)

2
  nodes. Each of these 

partitions forms a discrete triangle, and we call this special triangle a 𝑘-triangle. 
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   The main idea of the broadcast algorithm is as follows. In the initial step of the 

broadcasting algorithm, the node  0,0  sends its message to the six neighbors, and 

then each of these neighboring nodes broadcasts the message to the nodes in their 𝑘-

triangle. 

   We assume a router model with half-duplex links and all-port capability. In this 

case, a node cannot send and receive messages through an edge at the same time. 

Routers can support both broadcast and unicast, with the first header bit in every 

packet (B/U) indicating the class of routing service, i.e. when B/U=1, this indicates the 

broadcasting, and B/U=0, the unicasting. In the case of broadcast routing, the second 

field in the packet header, denoted as distance, will be set to the network diameter 𝑘 

when the broadcast communication starts. Before each new hop, every router will 

decrement this field, and when distance reaches zero, the broadcast is completed. The 

third and last field in the packet header, denoted as direction, has six bits to indicate to 

the router the output ports to which the packet will be forwarded. Figure 3.3 shows the 

directions of the edges. 

)(  NE)(  2 NW

)(  6 E)(  3 W

)(  4 SW )(  5 SE
 

Figure 3.3: The Directions of the Edges. 
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   Assume node (0,0) is the source node. As explained before, in the initial step, it 

sends the message to its six neighboring nodes 1 = 𝜌6   𝐸 , 𝜌2 𝑁𝑊 , −1 =

𝜌3 𝑊 ,−𝜌 = 𝜌4 𝑆𝑊 , and −𝜌2 = 𝜌5 𝑆𝐸 , and these six nodes are responsible for 

broadcasting the message to the nodes within their own 𝑘-triangles, call it as the 𝑗𝑡𝑕  𝑘-

triangle. As Figure 3.4 shows, at Step 𝑡, where 𝑡 = 1,2, … , 𝑘 − 1, in the 𝑗𝑡𝑕  𝑘-triangle, 

the node  𝑡 𝜌𝑗  sends the message to nodes  𝑡 + 1 𝜌𝑗  and  𝑡 𝜌𝑗 + 𝜌𝑗−1, whereas all 

other nodes which received the message at Step 𝑡 − 1 send the message to the nodes 

along the dimension 𝜌𝑗−1. The complete algorithm is shown in Figure 3.5.  

jt )(

jt )1(  1)(  jjt 

2)( t

2)1( t  2)(t

 

Figure 3.4: 𝝆𝒋 Dimension. 

      In this algorithm, no node receives duplicate messages. Note that the utilization of 

the network links is balanced, as in step 𝑑, there are 𝑑 packets traveling in each of the 

network quadrants. This means it is possible to make a balanced use of the E, NE, 

NW, W, SW, and SE network links when all nodes broadcast at once. 

   In this algorithm, since no node receives duplicate messages and it requires 𝑘 steps 

where 𝑘 is the network diameter, this algorithm is optimal. Besides, since the network 

is node symmetric, any node can be a source node, and thus this algorithm is universal 

for every node in the network.  
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   The time complexity of the algorithm can be calculated as follows. Let 𝑡𝑠  be the 

startup time to send a packet, 𝑡𝑤  be the time to transfer one word, and 𝑤 be the size of 

the packet. In this algorithm, a packet has to travel exactly k nodes away from the 

source node. Thus, the total time required is:  

𝑇𝑜𝑛𝑒−𝑡𝑜−𝑎𝑙𝑙 =  𝑡𝑠 + 𝑡𝑤𝑤 𝑘. 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

Algorithm: 

 

If distance = k then 

  distance = distance -1 

  send packet to E with 

  direction = 110000 

  send packet to NE with 

  direction = 100001 

  send packet to NW with 

  direction = 000011 

  send packet to W with 

  direction = 000110 

  send packet to SW with 

  direction = 001100 

  send packet to SE with 

  direction = 011000 

End 

If distance = 0 then 

  CONSUME pocket 

End 

   If 0 < distance < k then 

  CONSUME pocket 

  distance = distance -1 

  -incoming pockets with direction = 110000 

  Forward to E and Forward to SE with 

direction = 010000 

  -incoming pockets with direction = 100001 

 

 

  Forward to NE and Forward to E with 

direction = 100000 

  -incoming pockets with direction = 000011 

    Forward to NW and Forward to NE with 

direction = 000001 

  -incoming pockets with direction = 000110 

  Forward to W and Forward to NW with 

direction = 000010 

  -incoming pockets with direction = 001100 

  Forward to SW and Forward to W with 

direction = 000100 

  -incoming pockets with direction = 011000 

  Forward to SE. Forward to SW with direction 

= 001000 

  -incoming pockets with direction = 100000 

Forward to E 

  -incoming pockets with direction = 010000 

Forward to SE 

  -incoming pockets with direction = 001000 

Forward to SW 

-incoming pockets with direction = 000100 

Forward to W 

  -incoming pockets with direction = 000010 

Forward to NW 

  -incoming pockets with direction = 000001 

Forward to NE 

End   

 

 

Figure 3.5: One-to-All Broadcasting Algorithm for Eisenstein Network where 

 𝜶 = 𝒌 + (𝒌 + 𝟏)𝝆. 
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3.2.2  All-to-All Communication 

   In this section, we describe the all-to-all broadcasting algorithm for the Eisenstein-

Jacobi networks when 𝛼 = 𝑘 + (𝑘 + 1)𝜌. In this communication pattern, each node in 

the network sends its message to every other node in the network. More clearly, each 

node performs a one-to-all broadcasting. 

   Since no node can send and receive a message over the same edge at the same time, 

we cannot apply the one-to-all broadcasting algorithm for all the nodes in the network 

at the same time. However, the idea of the proposed algorithm is based on a three-

phase one-to-all broadcasting algorithm where in every phase, each node broadcasts 

its message to nodes in two distinct 𝑘-triangles. By the end of phase three, every node 

has broadcast its message to all six triangles. We use this three-phase algorithm in 

order to avoid network contention. The algorithm is first described using an example. 

Example 3.9: Consider the 𝐸𝐽 network generated by 𝛼 = 2 + 3𝜌. In phase one, every 

node sends its messages using NW and W edges. Figure 3.6 shows step one of phase 

one. As Figure3.7 shows, in step two, every node broadcasts the received message in 

the previous step to its corresponding triangle. After that, phase two starts, in which 

each node sends its message using NE and E edges and repeats the broadcasting as in 

phase one. Finally, in phase three, each node sends its message using SE and SW 

edges and again repeats the broadcasting as in phase one. 
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Figure 3.6: Step One of Phase One for All-to-all Broadcasting in 𝑬𝑱𝟐+𝟑𝝆. 
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Figure 3.7: Step Two of Phase One for All-to-all Broadcasting in 𝑬𝑱𝟐+𝟑𝝆. 
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Algorithm: 

 

If distance = k and phase = 1 then 

  distance = distance -1 

  phase = 2 

  send packet to NW with 

  direction = 000011 

  send packet to W with 

  direction = 000110 

else if distance = k and phase = 2 then 

  distance = distance -1 

  phase = 3 

  send packet to E with 

  direction = 110000 

  send packet to NE with 

  direction = 100001 

else distance = k and phase = 3 then 

  distance = distance -1 

  send packet to SW with 

  direction = 001100 

  send packet to SE with 

  direction = 011000 

End 

 

If distance = 0 and phase ≠ 3 then 

  CONSUME pocket 

  distance = k 

else If distance = 0 

  CONSUME pocket 

End 

 

   If 0 < distance < k then 

    CONSUME pocket 

    COMBINE pockets 

    distance = distance -1 

   

 

-incoming pockets with direction = 110000 

  Forward to E and Forward to SE with 

direction = 010000 

  -incoming pockets with direction = 100001 

 Forward to NE and Forward to E with 

 direction = 100000 

  -incoming pockets with direction = 000011 

    Forward to NW and Forward to NE with 

direction = 000001 

  -incoming pockets with direction = 000110 

  Forward to W and Forward to NW with 

direction = 000010 

  -incoming pockets with direction = 001100 

  Forward to SW and Forward to W with 

direction = 000100 

  -incoming pockets with direction = 011000 

  Forward to SE. Forward to SW with  

direction = 001000 

 

  -incoming pockets with direction = 100000 

Forward to E 

  -incoming pockets with direction = 010000 

Forward to SE 

  -incoming pockets with direction = 001000 

Forward to SW 

-incoming pockets with direction = 000100 

Forward to W 

  -incoming pockets with direction = 000010 

Forward to NW 

  -incoming pockets with direction = 000001 

Forward to NE 

End   

 

 

Figure 3.8: All-to-All Broadcasting Algorithm for Eisenstein Network where 

 𝜶 = 𝒌 + (𝒌 + 𝟏)𝝆.  
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    As Figure 3.8 shows, in the initial step of phase 1, a node sends its message along 

two dimensions, NW and W. Thus, at the end of this step, a given node receives 

messages from at most two nodes, which are adjacent to it in SE and E directions. In 

the next step, the node that receives a message from its SE adjacent node (E adjacent 

node) sends the message along NW and NE directions (along W and NW directions). 

From this step onwards, all the messages flow only along the W, NW, and NE 

directions. This is because at the initial step, no message was sent along the NE 

direction, and so all the messages that flow along the NE direction must go only in this 

direction. 

   Therefore, a node can receive messages from its E, SE, and SW adjacent nodes and 

send along W, NW, and NE directions. Thus, there is no edge contention in this 

algorithm. 

   Now, let us calculate the time complexity of each phase, which will be the same for 

each. In phase one, for example, since there are k steps required for each phase the 

start up time is 𝑘𝑡𝑠. Now, we calculate the transmission time. At the first step, a node 

will receive two messages, one from the E and the other from SE adjacent nodes. At 

the 𝑗𝑡𝑕  step, 𝑗 = 2,3, … , 𝑘 − 1: 

1. A node receives one message from the E adjacent node (this message is from 

the node at a distance j along the E direction). 

2. A node receives 𝑗 messages from the SE adjacent node (these messages are 

from nodes at a distance 𝑗 from the receiving node - distance 𝑗1 along the SE 
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direction and 𝑗2 distance along the E direction, where  𝑗1 + 𝑗2 = 𝑗, 0 ≤ 𝑗1, 𝑗2 ≤

𝑗 ). 

3. A node receives 𝑗 − 1 messages from the SW adjacent node (these messages 

are from nodes at a distance 𝑗 from the receiving node - distance 𝑗1 along the 

SW direction and distance 𝑗2 along the SE direction, where  𝑗1 + 𝑗2 = 𝑗, 1 ≤

𝑗1, 𝑗2 ≤ 𝑗 − 1 ). 

   As Figure 3.9 shows, the 𝑗 − 1 messages received from the SW adjacent node and 

the only message received from the E adjacent node, i.e. message sent by the node at a 

distance 𝑗 along the SE direction, must be sent to the NE adjacent node. Similarly, the 

𝑗 messages received from the SE adjacent node and the one message received from 

the E adjacent node (a total of 𝑗 + 1 messages) must be sent to the NW adjacent node. 

Furthermore, the message received from the E adjacent node must be sent to the W 

adjacent node. 

A={a1,a2,…,aj}B={a1,a2,…,a(j-1)}

M={m}M

}{ iaBMA

 

Figure 3.9: Message Broadcast in Step 𝒊 , 𝒊 =  𝟐, 𝟑, . . , 𝒌. 
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   To summarize, at the 𝑗𝑡𝑕  step of the algorithm, a node has to send 𝑗 + 1, 𝑗, and 1 

messages to its NW, NE, and W adjacent nodes respectively, for 𝑗 = 1,2, . . . , 𝑘 − 1. 

Thus, in each step, the messages sent to the NW adjacent nodes take the maximum 

time. Therefore, the transmission time required is: 

 1 + 2 + 3 + ⋯ + 𝑘 𝑡𝑤𝑤 = 𝑡𝑤𝑤
𝑘(𝑘 + 1)

2
 

Since the algorithm uses three phases, the total time required is: 

𝑇𝑎𝑙𝑙 −𝑡𝑜−𝑎𝑙𝑙 = 3(𝑡𝑠𝑘 +  𝑡𝑤𝑤
𝑘 𝑘+1 

2
 ). 

3.2.3  One-to-All Personalized Communication 

   The one-to-all personalized communication is different from one-to-all broadcast in 

that a node starts with 𝑁 − 1 distinct messages, where 𝑁 is the number of nodes, and 

each of the messages has to be sent to different nodes. In other words, a single source 

node sends a distinct message to every other node in the network. 

   Initially, the source node (node 0) contains all the messages, and each message is 

identified by the labels of its destination node. In the first communication step, the 

source node divides the messages into six groups according to the six 𝑘-triangles and 

then sends each group of messages to the node responsible for that 𝑘-triangle. In each 

of these triangles, every node follows the same broadcast pattern used in the one-to-all 

communication except that it first combines all the messages needed for the next step, 

and then sends this long message. 



54 
 

0

1

2

3

4

56

(1,2,3,…,N-1)

0

1

2

3

4

56

0

1

2

3

4

56

(1,2,3,4,5,6)

(2,3)(4,5,6)

(1)

0

1

2

3

4

56

(1)

(2)(4)

(3)(5)(6)

(a) (b)

(c) (d)  

Figure 3.10: One-to-all Personalized Communication Broadcast. 

   Figure 3.10 shows the communication steps for the one-to-all personalized 

communication broadcast in a single triangle, which has six nodes. In the starting 

phase (a), the source node contains all the messages. In the first step (b), the source 

node divides the messages into six groups and then sends the six messages associated 

with the NW 𝑘-triangle. In step two (c), node 1 keeps its message, divides the 

remaining messages into two groups according to the routing algorithm used in one-

to-all broadcast, and sends them to its adjacent nodes in this 𝑘-triangle. Finally, in step 

three (d), nodes 4 and 2 keep their messages and send the other messages to their next 

neighbors. Thus, after step three all the nodes have received their messages. 

   In this algorithm, no node receives a duplicate message. Besides, because the 

network is node symmetric, any node can be a source node, and thus this algorithm is 

universal for every node in the network. The time required for this broadcast can be 
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calculated as follows. In the 𝑗𝑡𝑕  𝑘-triangle, the number of messages to be sent along 

the 𝜌𝑗  dimension is more than or equal to the messages sent along the 𝜌𝑗−1 dimension. 

So we will calculate the time required to send along the 𝜌𝑗  dimension.  The number of 

messages sent along the 𝜌𝑗  dimension at step 𝑡 is 1 + 2 + ⋯ + 𝑘 − 𝑡 for 𝑡 =

0,1,2, … , 𝑘 − 1. Thus, the number of messages sent is: 

=  
𝑖 𝑖+1 

2

𝑘
𝑖=1 =

1

2
  𝑖2 + 𝑖 =𝑘

𝑖=1
1

2
  𝑖2𝑘

𝑖=1 +  𝑖𝑘
𝑖=1    

=  
1

2
 
𝑘 𝑘+1  2𝑘+1 

6
+

𝑘 𝑘+1 

2
 =

𝑘 𝑘+1 

4
 

2𝑘+1

3
+ 1 =

𝑘 𝑘+1 (𝑘+2)

6
 .  

 

Therefore, the required time for this communication is: 

𝑇𝑜𝑛𝑒−𝑡𝑜−𝑎𝑙𝑙  𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑡𝑠𝑘 + 𝑡𝑤𝑤
𝑘 𝑘+1 (𝑘+2)

6
 . 

3.2.4  All-to-All Personalized Communication 

   In the all-to-all personalized communication, each node sends a distinct message to 

every other node in the network. More clearly, every node performs a one-to-all 

personalized communication. This communication is one of the most expensive 

operations in terms of communication complexity. This pattern is useful in 

applications like fast Fourier transform, matrix transpose, and some parallel database 

join operations. 

   The communication patterns of the all-to-all personalized communication are 

identical to those of the all-to-all broadcast. Only the size and the contents of messages 
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are different. The algorithm idea is to combine the all-to-all and the one-to-all 

personalized communications together. 

   Again, this algorithm uses three phases, similar to the all-to-all communication 

algorithm. Initially, each node contains all the messages, the labels of their destination 

nodes identified within the messages. In phase one, each node uses only two edges to 

send the messages in order to avoid the conflict of sending and receiving the messages 

at the same time through an edge. In the first communication step, each node divides 

the messages according to the six 𝑘-triangles and then sends two groups of messages 

to two adjacent nodes, say W and NW adjacent nodes. These are responsible for 

sending messages to their corresponding 𝑘-triangles. In each of these two 𝑘-triangles, 

each node follows the same broadcast pattern used in the one-to-all broadcast, except 

that it sends all the messages needed for the next step as a group in the same way as in 

the one-to-all personalized communication pattern. Similarly, the same occurs in 

phases two and three, except that each node sends the messages to two different 

adjacent nodes (and so two different 𝑘-triangles) in each phase. In each phase, every 

node sends its messages to two of the six triangles and so by the end of the phase 

three, every node sends its messages to the entire network. 

   Similar to what we have shown in the case of the all-to-all communication 

algorithm, in the first step of the algorithm, a node can receive from its E and SE 

adjacent nodes. From next step onwards, a node receives messages from only its E, 

SE, and SW adjacent nodes and sends to its W, NW, and NE adjacent nodes. Thus, 

there is no edge conflict in this algorithm. 
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Steps Direction Number of messages 

Step 1 W 1+2+...+k 

NW 1+2+...+k 

NE 0 

Step 2 W 1+2+...+(k-1) 

NW (1+2+...+(k-1))+(k-1) 

NE k-1 

Step 3 W 1+2+...+(k-2) 

NW (1+2+...+(k-2))+2(k-2) 

NE 2(k-2) 

... ... ... 

Step j W 1+2+...+(k-j+1) 

NW (1+2+...+(k-j+1))+(k-j+1)(j-1) 

NE (k-j+1)(j-1) 

Table 3.1: The Number of Messages Sent to the W, NW, and NE Adjacent Nodes in 

Phase One.  

   Now, we calculate the time taken by the algorithm. Table 3.1 shows the size of the 

messages sent along W, NW, and NE adjacent nodes in each step. From this table, it is 

clear that the data transfer time is the maximum for sending data to the NW adjacent 

node of a given node. Thus, the total number of data transfer is as follows: 

𝑇𝑑𝑎𝑡𝑎 −𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟   =   (1 + 2 + ⋯ + (𝑘 − 𝑗 + 1))𝑘
𝑗=1 +   𝑘 − 𝑗 + 1 (𝑗 − 1)𝑘

𝑗=1  

=  
𝑗  𝑗+1 

2

𝑘
𝑗=1 +   𝑘 − 𝑗 + 1  𝑗 − 1 𝑘

𝑗=1  

=  
𝑗 2

2

𝑘
𝑗=1 +  

𝑗

2

𝑘
𝑗=1 +  ( 𝑘 + 1 𝑗 −  𝑘 + 1 − 𝑗2𝑘

𝑗=1 + 𝑗) 

=  
𝑗 2

2

𝑘
𝑗=1 +  

𝑗

2

𝑘
𝑗=1 +   𝑘 + 2 𝑗𝑘

𝑗=1 −   𝑘 + 1 𝑘
𝑗=1 −  𝑗2𝑘

𝑗=1  

=   𝑘 + 2 +
1

2
 𝑗𝑘

𝑗=1 −  
𝑗 2

2

𝑘
𝑗=1 −   𝑘 + 1 𝑘

𝑗=1  
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= 
 2𝑘+5 

2
 𝑗𝑘

𝑗=1 −  
𝑗 2

2

𝑘
𝑗=1 − 𝑘 𝑘 + 1  

= 
𝑘 2𝑘+5 (𝑘+1)

4
−

1

2
 
𝑘 𝑘+1 (2𝑘+1)

6
 − 𝑘(𝑘 + 1) 

= 
𝑘 𝑘+1 (2𝑘+1)

6
 . 

   Thus, the total time complexity of the algorithm is: 

𝑇𝑎𝑙𝑙 −𝑡𝑜−𝑎𝑙𝑙  𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑  = 3  𝑡𝑠𝑘 + 𝑡𝑤𝑤
𝑘 𝑘+1  2𝑘+1 

6
  . 

 

3.3  Resource Placement in Eisenstein-Jacobi Graphs 

     As we explained before, a parallel system may contain a limited amount of 

resources, and these resources need to be distributed so that all nodes in the system 

can access them uniformly. One such resource placement method is the 𝑡-embedding. 

The 𝑡-embedding, or  𝑡-dominating, set problem is defined as a resource placement 

that grants every node a resource within a distance of 𝑡, and the resource nodes are 

separated by at least 2𝑡 + 1. 

   Some solutions to this problem for the 𝐸𝐽 network are given in [25][29] with 

𝛼 = 𝑎 + 𝑏𝜌, where 𝜌 =
−1+𝑖 3

2
 and the norm of 𝛼, 𝑁 𝛼 = 𝑎2 + 𝑏2 − 𝑎𝑏. In this case, 

the number of nodes in the 𝐸𝐽 network is 𝑎2 + 𝑏2 − 𝑎𝑏. Here, we have given a result 

assuming 𝛼 = 𝑎 + 𝑏𝜌, where 𝜌 =
1+𝑖 3

2
 and the norm of 𝛼, 𝑁 𝛼 = 𝑎2 + 𝑏2 + 𝑎𝑏. 

Thus, the number of nodes in our case is  𝑎2 + 𝑏2 + 𝑎𝑏, whereas, the number of nodes 

in [25][29] as mentioned before is 𝑎2 + 𝑏2 − 𝑎𝑏; in some cases the number of nodes 
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can be equal. For example, if 𝑎, 𝑏 > 0 for the method proposed here and one of 𝑎 or 𝑏 

is less than 0 in the method proposed in [25][29], then we get the same number of 

nodes. 

 

3.3.1  The 𝐭-Dominating Set Problem    

   As described earlier, the problem of perfect 𝑡-dominating sets has been previously 

considered for other graphs [28][6]. The concepts of domination and perfect 

dominating set are defined as follows: 

Definition 3.10: A vertex 𝑢 of a graph 𝐺 is said to 𝑡-dominate another vertex 𝑣 if 

𝐷(𝑢, 𝑣)  ≤  𝑡, where 𝐷 denotes the graph distance. Then, a vertex subset 𝑆 ⊂ 𝑉 is 

called a perfect 𝑡-dominating set if every vertex of 𝐺 is 𝑡-dominated by a unique 

vertex in 𝑆. 

      In this section, we study the existence of perfect 𝑡-dominating sets over Eisenstein-

Jacobi graphs. Such sets are ideal of  ℤ[𝜌]𝛼 . This problem is directly related to the 

designing 𝑡-error correcting perfect codes in the ring of Eisenstein-Jacobi integers 

using the Eisenstein-Jacobi graph distance metric. Let us first introduce some 

necessary definitions. 

   Given 0 ≠ 𝛼 = 𝑎 + 𝑏𝜌 ∈ ℤ[𝜌], an integer 𝑡 > 0, and a vertex 𝜇 ∈ 𝐸𝛼 , a ball of 

radius 𝑡 centered in 𝜇 embedded in 𝐸𝐽𝛼  is the set: 
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          𝐵𝑡 𝜇 = {𝛾 ∈ 𝐸𝐽𝛼 |𝐷𝛼(𝛾, 𝜇) ≤ 𝑡}. 

For any 𝛽, the cardinality of 𝐵𝑡(𝛽) is 1 +  6𝑑 = 3𝑡2 + 3𝑡 + 1𝑡
𝑑=1 . 

   A subset 𝑆 of the vertices in 𝐸𝐽𝛼  is called a perfect dominating set if every node in 

𝐸𝐽𝛼  is 𝑡-dominated by exactly one node in 𝑆. If 𝑆 is a 𝑡-dominating set, then the set 

𝑆′ =  𝜇 𝜇 = 𝛽 + 𝛼, 𝛼 ∈ 𝑆  is also a 𝑡-dominating set.    

   An ideal 𝐼 in the quotient ring ℤ[𝜌]𝛼  is a subset of ℤ[𝜌]𝛼  such that the following 

rules hold: 

 For any 𝛾, 𝜇 ∈ 𝐼, then 𝛾 − 𝜇 ∈ 𝐼. 

 For any 𝜇 ∈ ℤ 𝜌 𝛼   and any 𝛾 ∈ 𝐼, then 𝛾𝜇 ∈ 𝐼. 

The ideal generated by an element 𝛽 ∈ ℤ[𝜌] is denoted as (𝛽). This means every 

element in (𝛽) is a multiple of  𝛽. The following theorem gives the main result of this 

section. 

Theorem 3.11: Let  𝛼 = 𝑎 + 𝑏𝜌 and 𝑡 be a positive integer; then,  

i) If 𝛽 = 𝑡 + (𝑡 + 1)𝜌 divides 𝛼 then  𝑆 =  𝛽 ⊆ ℤ[𝜌]𝛼  is a perfect 𝑡-dominating 

set in 𝐸𝐽𝛼 . 

ii)  If 𝛽′ =  2𝑡 + 1 −  𝑡 + 1 𝜌 divides 𝛼 then 𝑆 = (𝛽′) ⊆ ℤ[𝜌]𝛼   is a perfect 𝑡-

dominating set in 𝐸𝐽𝛼  . 

iii) If 𝛽′′ = − 2𝑡 + 1 + 𝑡𝜌 divides 𝛼 then 𝑆 = (𝛽′) ⊆ ℤ[𝜌]𝛼   is a perfect 𝑡-

dominating set in 𝐸𝐽𝛼  . 
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   Proof: First, note that S has exactly  
𝒩(𝛼)

𝒩(𝛽)
  elements [29]. Next, we prove the first part 

of the theorem. The second and the third parts can be proved using a similar argument. 

We need to prove that, if 𝛽1, 𝛽2  ∈ 𝑆 , then 𝐷𝛼 𝛽1, 𝛽2 ≥ 2𝑡 + 1, where  𝐷𝛼  denotes the 

Eisenstein-Jacobi graph distance. 

   Consider 𝛽1, 𝛽2  ∈ 𝑆. Then 𝛽1 = 𝛼1𝛽 and 𝛽2 = 𝛼2𝛽, with 𝛼1, 𝛼2 ∈  ℤ 𝜌 . We have 

to prove that 𝐷𝛼 𝛽1, 𝛽2 = 𝐷𝛼 𝛼1𝛽, 𝛼2𝛽 = 𝐷𝛼  𝛼1 − 𝛼2 𝛽, 0 ≥ 2𝑡 + 1. Note that it 

is enough to prove that, for any ∈ ℤ 𝜌  , 𝐷𝛼 𝜇𝛽, 0 ≥ 2𝑡 + 1. 

   Suppose  𝐷𝛼 𝜇𝛽, 0 ≤ 2𝑡. This means that there exists 𝑥, 𝑦, and 𝑧 such that 𝜇𝛽 =

𝑥 + 𝑦𝜌 + 𝑧𝜌2   𝑚𝑜𝑑 𝛼 , with   𝑥 +  𝑦 +  𝑧 ≤ 2𝑡. Note that 𝑁 𝜇𝛽 = 𝑁 𝜇 𝑁 𝛽 . 

Now  𝛽 = 3𝑡2 + 3𝑡 + 1 , and 𝑁 𝑥 + 𝑦𝜌 + 𝑧𝜌2 = 𝑁  𝑥 − 𝑧 +  𝑦 + 𝑧 𝜌  

=  𝑥 − 𝑧 2 +  𝑦 + 𝑧 2 +  𝑥 − 𝑧  𝑦 + 𝑧  

= 𝑥2 + 𝑦2 + 𝑧2 + 𝑦𝑧 + 𝑥𝑦 − 𝑥𝑧  

≤ ( 𝑥 +  𝑦 +  𝑧 )2 ≤ 4𝑡2, since  𝑥 +  𝑦 +  𝑧 ≤ 2𝑡. 

   As 𝑁 𝜇 𝑁(𝛽) ≤ 4𝑡2 then 𝑁 𝜇 ≤
4𝑡2

3𝑡2+3𝑡+1
< 2 for 𝑡 > 0. This implies 𝜇 is a unit, 

i.e. 𝜇 = {±1, ±𝜌, ±𝜌2}. Since 𝜇 ∈ {±1, ±𝜌, ±𝜌2}, 𝐷𝛼 𝜇𝛽, 0 =  𝐷𝛼 𝛽, 0 = 2𝑡 + 1, 

and this leads to a contradiction. Thus, the distance between any two resource nodes is 

at least 2𝑡 + 1. Furthermore, the number of elements in 𝑆 is 
𝑁 𝛼 

𝑁 𝛽 
 , the set S is a perfect 

𝑡-dominating set. 
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    For the second part of the theorem,  

𝛽′ =  2𝑡 + 1 −  𝑡 + 1 𝜌 =  2𝑡 + 1  𝜌 + 𝜌5 −  𝑡 + 1 𝜌 

     =  2𝑡 + 1 𝜌5 + 𝑡𝜌 =  2𝑡 + 1 𝜌5 +  1 − 𝜌5  

     =  𝑡 + 1 𝜌5 + 𝑡 =  𝑡 + 1 𝜌5 + 𝑡𝜌6 .  

  Thus, by Theorem 3.6, 𝐷𝛼(𝜇𝛽′ , 0) = 2𝑡 + 1. 

   Similarly, for the third part,  

𝛽′′ = − 2𝑡 + 1 + 𝑡𝜌 =  −2𝑡 − 1 + 𝑡𝜌 = 𝑡 −1 + 𝜌 −  𝑡 + 1 = 𝑡𝜌2 +  𝑡 + 1 𝜌3, 

and hence, by Theorem 3.6, 𝐷𝛼 𝜇𝛽
′′ , 0 = 2𝑡 + 1.                                                  

                                                                                                      ∎ 

 

Example 3.12: Let 𝛼 = 5 + 6𝜌. Since 1 + 2𝜌 divides 5 + 6𝜌, the ideal 𝑆 = {1 +

2𝜌, −4 − 𝜌, −3 + 𝜌, −2 + 3𝜌, −1 + 5𝜌, 5 − 4𝜌, −5 + 4𝜌, 1 − 5𝜌, 2 − 3𝜌, 3 − 𝜌, 4 +

𝜌, −1 − 2𝜌, 0} is a perfect 1-dominating set in 𝐸𝐽5+6𝜌 . Figure 3.11 illustrates this 

example. The wrap-around links of 𝐸𝐽5+6𝜌  have been omitted for the sake of clarity. 
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Figure 3.11: Perfect 1-Dominating Set in 𝑬𝑱𝟓+𝟔𝝆. 

Table 3.2 gives some 𝑡-dominating generators 𝛽 for a given networks generated by 𝛼. 

𝛼 𝛽 𝑡 

−1 + 5𝜌 1 + 2𝜌 1 

5 − 𝜌 3 − 2𝜌 1 

−4 − 𝜌 −3 + 𝜌 1 

−1 + 8𝜌 2 + 3𝜌 2 

8 − 𝜌 5 − 3𝜌 2 

−7 − 𝜌 −5 + 2𝜌 2 

−1 + 11𝜌 3 + 4𝜌 3 

11 − 𝜌 7 − 4𝜌 3 

−10 − 𝜌 −7 + 3𝜌 3 

Table 3.2: Some Values for 𝜶 and 𝜷 where 𝜷 Divides 𝜶. 
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3.4  Conclusion 

   In summary, we presented communication algorithms for the Eisenstein-Jacobi 

networks when 𝛼 = 𝑘 + (𝑘 + 1)𝜌. In all proposed algorithms, the number of steps 

required to complete the algorithm is minimum. Let 𝑡𝑠  be the startup time to send a 

packet, 𝑡𝑤  be the time to transfer one word, and 𝑤 be the size of the packet. When 𝑘 is 

the network diameter, the number of steps and time required for each communication 

pattern are as follows: 

 One-to-all broadcast required 𝑘 steps and  𝑡𝑠 + 𝑡𝑤𝑤 𝑘 time. 

 All-to-all broadcast required 3𝑘 steps and 3(𝑡𝑠𝑘 +  𝑡𝑤𝑤
𝑘 𝑘+1 

2
 ) time. 

 One-to-all personalized broadcast required 𝑘 steps and 

 𝑡𝑠𝑘 + 𝑡𝑤𝑤
𝑘 𝑘+1 (𝑘+2)

6
  time. 

 All-to-all personalized broadcast required 3𝑘 steps and 

3  𝑡𝑠𝑘 + 𝑡𝑤𝑤
𝑘 𝑘+1  2𝑘+1 

6
  time. 

   In all these algorithms, no node receives redundant messages. Furthermore, the 

proposed algorithms are optimal or close to optimal, at least in terms of the number of 

steps required.  

   In [25][29], a solution to 𝑡-dominating set problem is given for 𝐸𝐽 network with 

𝛼 = 𝑎 + 𝑏𝜌, assuming  𝜌 =
−1+𝑖 3

2
  and the norm of 𝛼, 𝑁 𝛼 = 𝑎2 + 𝑏2 − 𝑎𝑏. In this 

section, we have given another solution for the 𝑡-dominating set problem for 𝐸𝐽 
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networks with 𝛼 = 𝑎 + 𝑏𝜌, where 𝜌 =
1+𝑖 3

2
 and the norm of , 𝑁 𝛼 = 𝑎2 + 𝑏2 + 𝑎𝑏 , 

which gives the total number of nodes in the network as  𝑎2 + 𝑏2 + 𝑎𝑏. 
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Chapter 4 

Future Research 

   There are some open research problems related to the topics of this thesis. In this 

chapter, the problems are divided into three sections. Section 4.1 introduces the 

problem of finding three edge disjoint Hamiltonian cycles in Eisenstein-Jacobi 

networks. In Section 4.2, we describe the 𝑗-adjacency placement problem in 

Eisenstein-Jacobi networks. Finally, in Section 4.3, the problem of broadcasting in 

general Eisenstein-Jacobi networks is described.  

 

4.1  Edge Disjoint Hamiltonian Cycles in Eisenstein-Jacobi  Networks 

   Chapter 2 of this thesis provided a solution for generating two edge disjoint 

Hamiltonian cycles in Gaussian networks when gcd 𝑎, 𝑏 = 𝑑 > 1, and so the edge 

disjoint Hamiltonian cycle in the Gaussian network is now completely solved. On the 

other hand, for Eisenstein-Jacobi networks, the problem is solved when gcd 𝑎, 𝑏 =

1 in [15][3], but it is not clear how to solve this problem when gcd 𝑎, 𝑏 = 𝑑 > 1.  

    Studying and analyzing the relationship between the real dimension and the 

imaginary dimension helped us to construct the edge disjoint Hamiltonian cycles for 

the Gaussian networks. However, in the case of the Eisenstein-Jacobi network, similar 

approaches seemed too complicated because these networks are of degree six.  
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   Our preliminary investigation indicates that, starting from some node, if we proceed 

along the 1, 𝜌,  or 𝜌2  dimension, we get a cycle of length 
𝑎2+𝑏2+𝑎𝑏

𝑑
. It is not clear how 

to combine these smaller cycles to form Hamiltonian cycles in such a way that the 

edges form three edge disjoint Hamiltonian cycles. 

 

4.2  Broadcasting in Eisenstein-Jacobi  Networks in the General Case  

   Chapter 3 introduced four primitive communication patterns: one-to-all, all-to-all, 

one-to-all personalized, and all-to-all personalized for Eisenstein-Jacobi networks 

when 𝛼 = 𝑘 + (𝑘 + 1)𝜌. Designing efficient algorithms for general Eisenstein-Jacobi 

networks are challenging research topics. 

 

4.3  𝑱-adjacency in Eisenstein-Jacobi  Networks 

   Resource placement problems are divided into three classes. The first class of the 

problem is called the distance-𝑡 problem. This problem considers placing resources 

such that each node in the network either has a copy of the resource or is at a distance 

of at most 𝑡 from at least one node having a copy of the resource. The second class of 

the problem is called the 𝑗-adjacency problem. This problem considers placing 

resources such that each nonresourse node is adjacent to 𝑗 resource nodes. The third 

class of the problem is the generalized placement problem, which is a combination of 

the distance-𝑡 and the 𝑗-adjacency problems.  
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   In chapter 3, we provided a solution to the distance-𝑡 problem for the Eisenstein-

Jacobi network and solutions for the other two classes of problems are not yet known.  
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