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Polymeric composites exhibit time-dependent behavior, which raises a concern

about their long term durability and leads to a viscoelastic study of these materials.

Linear viscoelastic analysis has been found to be inadequate because many polymers

exhibit nonlinear viscoelastic behavior. Classical laminate theory is commonly used in

the study of laminated composites, but due to the plane stress/strain assumption its

application has been limited to solving two dimensional, simple plate problems. A

three dimensional analysis is necessary for the study of interlaminar stress and for

problems involving complex geometry where certain local effects are important.

The objective of this research is to develop a fully three-dimensional, nonlinear

viscoelastic analysis that can be used to model the time-dependent behavior of

laminated composites. To achieve this goal, a three-dimensional finite element

computer program has been developed. In this program, 20-node isoparametric solid

elements are used to model the individual plies. The three-dimensional constitutive

equations developed for numerical calculations are based on the Lou-Schapery one-

dimensional nonlinear viscoelasticity model for the uniaxial stress case. The transient

creep compliance in the viscoelastic model is represented as an exponential series plus

a steady-flow term, which allows for a simplification of the numerical procedure for
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handling hereditary effects. A cumulative damage law for three dimensional analysis

was developed based on the Brinson-Dillard two-dimensional model to predict failure

initiation.

Calculations were performed using this program in order to evaluate its

performance in applications involving complex structural response. IM7/5260-H

Graphite/Bismaleimide and T300/5208 Graphite/Epoxy were the materials selected for

modeling the time-dependent behavior. The cases studied include: 1) Tensile loading

of unnotched laminates; 2) bending of a thick laminated plate; and 3) tensile loading

of notched laminates. The analysis emphasized the study of the traction-free edge-

effect of laminated composites, stress distribution around a circular hole, and stress

redistribution and transformation in the layers. The results indicate that the stress

redistributions over time are complicated and could have a significant effect on the

long-term durability of the structure.
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THREE-DIMENSIONAL, NONLINEAR VISCOELASTIC ANALYSIS OF

LAMINATED COMPOSITES A FINITE ELEMENT APPROACH

CHAPTER 1

INTRODUCTION

Modern aerospace industries are intensely interested in using composite

materials with polymeric matrices when a need exists for weight-critical and stiffness-

critical structures. However, in addition to the advantages of high specific strength

and stiffness, polymeric-matrix composites present time-dependent behavior in strain-

stress response during a long term load. That is, under long-term loads polymer

composites no longer exhibit linear elastic behavior. They exhibit a continuous

increase of deformation under constant long term load, which will cause stress

redistribution inside the composites and may lead to delayed failure of the structures.

Thus, the long term durability of polymer composite components becomes a major

concern for designers for use in critical designs. To accurately predict the long-term

behavior of these structures, it is important for the designer to have analysis tools

capable of modeling the viscoelastic response of complex structures composed of

fiber-reinforced plastics.

1.1 Review of Viscoelasticity Study of Creep

The study of viscoelasticity has existed for more than 100 years. A systematic

observation of the creep phenomenon was first reported in 1834 by Vicat. Andrade

proposed the first creep law in 1910, and then empirical equations have been

continuously proposed based on experimental observations. Of these empirical

equations, the Norton-Bailey power law, Ludwik stress exponential law, and Prandtl-

Nadai hyperbolic sine law have been widely used to calculate steady creep for a

uniaxial state of stress (Findley, W.N., 1975. Shames, I.H. and Cozzarelli, F.A.,

1992). These three expressions are given as follows:
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e s(t)=AT:t (1.1)

eSto) =Be =et (1.2)

es(to) = C sinhato) t (1.3)

where the subscript s denotes steady creep, 'co the constant applied stress, and n in the

Equation (1.1) denotes the stress power. A and B in Equation (1.1) and (1.2) are

reciprocal viscosity coefficients. The Norton-Bailey power law and Ludwik stress

exponential law are the most widely used equations for the steady creep components

under low stress and give good agreement with experimental data. The Prandtl-Nadai

hyperbolic sine law represents a behavior which is nearly linear for small stresses and

nonlinear for large stresses.

However, the stress-strain-time relations reviewed above are primarily

empirical. Most were developed to fit experimental creep curves obtained under

constant stress and constant temperature. The actual behavior of materials has shown

that the strain at a given time depends on the past history of the stress, not just on its

final value. Thus the creep phenomenon is affected by the magnitude and sequence of

stresses or strains in all of the past history of the material. Based on this fact, various

mathematical methods have been suggested to represent the time dependence or

viscoelastic behavior of materials. In the mathematical models, creep is represented

by means of a linear differential method and an integral operator representation. For

example, the following integral

e(t) = flAt - t)aaa4c14,

called a hereditary integral, was first suggested by Volterra (Findley, W.N, 1975),

where 4 is any arbitrary time between 0 and t, representing past time. The kernel
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function of the integral, ./(t-4) is a memory function which describes the stress history

dependence of strain. Both the differential operator method and the integral

representation can be easily generalized to a multiaxial state of stress.

The creep models discussed above are mostly limited to the linear viscoelastic

range. However, many polymers exhibit nonlinear viscoelastic behavior. Thus, if a

structurally efficient design is to be realized, it is necessary to provide a more accurate

representation than is possible by assuming linear behavior. There has been

considerable effort to develop a general constitutive equation for nonlinear viscoelastic

material since late 1950's. Green, Rivlin and Spencer proposed a general constitutive

equation where stress-strain relations are represented in the form of a sum of a

multiple integral (Green, A.E. and Rivlin, R.S., 1957. Green, A.E., Rivlin, R.S. and

Spencer, A.J.M., 1959). The advantage of the multiple integral is that it is very

appealing theoretically since it is not limited to a particular material or class of

materials, and permits one to construct approximations with respect to any order of

nonlinearity desired. However, Schapery stated that the multiple integral

representation becomes impractical with strong nonlinearities, unless one assumes the

kernels can be written in terms of products of a single function, and it does not take

advantage of certain simplicity that exists in the mechanical behavior of many

polymers and non-polymers. Based on this later point, Schapery derived a single-

integral constitutive equation from thermodynamic principles of irreversible processes

(Schapery, R.A., 1966. Schapery, R.A. 1969) to describe nonlinear viscoelastic

behavior of materials. In this equation the nonlinearity is contained in a reduced time

and nonlinear coefficients, where the reduced time and nonlinear coefficients are

function of stress and time in the creep formulation. Further discussion of the

Schapery model is given in chapter 2.

1.2 Applications of Viscoelasticity in Composites Material

Along with the increased use of composite materials, especially the increased

use of fiber reinforced polymeric matrices composites in aerospace and other
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transportation industries, the viscoelastic study of composites becomes important due

to the time dependent behavior contributed by the polymer matrix of the composites.

Studies of time-dependent behavior of composite materials have been very

popular subjects. A number of studies based on different theories with different

approaches have been presented. Wang Y.Z. and Tsai T. J. conducted an analysis of

the quasi-static and dynamic response of a linear viscoelastic plate based on classical

plate theory, using finite element method (Wang, Y.Z. and Tsai, T.J., 1988). Stango

and Nelson developed an analytical procedure for representing viscoelastic constitutive

equations for fiber composites, where the composite creep compliance and relaxation

moduli functions are in convolutional integral form (Stango, R.J., Wang, S.S. and

Nelson, C.R., 1989). Chulya and Walker developed a new integration algorithm for

elasto-plastic creep and unified viscoplastic theories including continuum damage

(Chulya, A. and Walker, D.P., 1991).

During the past decade, a number of these analyses have been developed based

on Schapery's viscoelasticity models (Lou, Y.C., and Schapery, R.A., 1971. Schapery,

R.A., 1974). Tuttle and Brinson developed a numerical procedure for the prediction of

nonlinear viscoelastic response of laminated composites based on classical lamination

theory (Tuttle, M.E. and Brinson, H.F., 1986). Ha and Springer developed a

viscoelastic/viscoplastic analysis for composites at elevated temperature, also using

classical lamination theory (Ha, S.K. and Springer, G.S., 1989). Henriksen developed

a two-dimensional finite element analysis for nonlinear viscoelastic behavior of an

isotropic material (Henriksen, M., 1984). Roy and Reddy presented a similar analysis

including large displacements and moisture diffusion (Roy, S. and Reddy, J.N., 1988.

Roy, S. and Reddy, 1988). Lin and Hwang developed a two-dimensional, finite

element analysis for the linear viscoelastic response of anisotropic materials (Lin,

K.Y., and Hwang, I.H., 1989). Lin and Yi presented a similar analysis for generalized

plane-strain conditions (Lin, K.Y. and Yi, S., 1991). Results of Horoschenkoff's test

for PEEK and Epoxy Matrices showed that the maximum difference between

measured and approximated creep strain based on Schapery's uniaxial tensile stress

model is less than 4% (Horoschenkoff, A., 1990).
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There is very limited work presented for the study of delayed failure of

composites. Brinson, Dillard and Morris have developed a linear cumulative damage

rule which is based on a modification of the Tsai-Hill failure criterion for two

dimensional problems (Dillard, D.A., and Brinson, H.F., 1983). This will be discussed

in more detail in chapter 2.

1.3 Objectives of This Research

Based on the above discussions, it is seen that the viscoelastic behavior of

composites is currently intensively studied. The primary analysis tool for composite

material structural applications is the finite element method. However, there are no

results published for three-dimensional, nonlinear viscoelastic analysis of laminated

composites yet. Certain aspects of the response of laminated composites are beyond

the modeling capabilities of classical laminated plate theory. These include modeling

delamination of plies and analyzing stress states in complex structural details such as

notch laminate. For these problems a fully three-dimensional analysis is required.

Thus, the objective of this research is to develop a fully three-dimensional, nonlinear

viscoelastic analysis that can be used to model the time-dependent behavior of

laminated composites.

To achieve this goal, three-dimensional constitutive equations were developed

based on Lou and Schapery's nonlinear vicoelasticity model for the uniaxial stress

case. Then considerable work has been done to make these constitutive equations

suitable for an efficient numerical analysis procedure. Details of the viscoelasticity

theoretical development are given in Chapter 2. Due to the complexity of the analysis

the finite element method approach was chosen. The basic finite element theory and

its applications in laminated composites are given in Chapter 3. Chapter 4 describes

the algorithms and organization of the computer program. In chapter 5, calculations

were performed to evaluate the program's performance in applications involving

complex structural response and to bring out certain physical features that influence

design of composite structures. The cases studied in chapter 5 include: 1) Tensile
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loading of unnotched laminates; 2) bending of a thick laminated plate; and 3) tensile

loading of notched laminates. These problems were chosen to be analyzed because

they have been popular subjects of several studies, and they are typical structures

appearing in practical designs. While the conclusions drawn in each case apply to that

particular problem, they are valuable in the design of similar laminates. The

viscoelastic materials to be modeled are 1M7 /5260-Graphite/Bismileimide and

T300/5208-Graphite/Epoxy. They are chosen because the availability of viscoelastic

property functions, and because these materials are widely adapted in current

aerospace and other advanced designs.
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CHAPTER 2

TIME-DEPENDENT BEHAVIOR OF ORTHOTROPIC MATERIALS

Viscoelastic materials exhibit time-dependent behavior in their load-

deformation response. This time-dependent behavior is studied in viscoelasticity. In

this chapter, basic concepts in viscoelasticity are introduced in Section 2.1. Section

2.2 is devoted to developing constitutive equations to model time-dependent behavior

of composite materials. In Section 2.3, the theory of delayed failure of composites is

presented.

2.1 Background on Viscoelasticity Theory

As its name implies, viscoelasticity combines elasticity and viscosity (viscous

flow), and is concerned with materials which exhibit time-dependent strain effects in

response to applied stresses.

2.1.1 Elastic Behavior

For an elastic material, the stress-strain relationship of the material follows a

linear Hooke's law. When the material is loaded, an immediate elastic strain response

is obtained upon loading, and the strain then stays constant as long as the stress is

fixed and disappears immediately upon removal of the load.

2.1.2 Viscoelastic Behavior

Some materials exhibit elastic action upon loading followed by a slow and

continuous increase of strain at a decreasing rate. When the stress is removed, a

continuously decreasing strain (delayed recovery) follows an initial elastic recovery.

Such materials are significantly influenced by the rate of loading, and they are called



viscoelastic or time-dependent materials. Figure 2.1 illustrates some common

phenomena of many viscoelastic materials: a) instantaneous elasticity, b) creep under

constant stress, c) stress relaxation under constant strain, d) instantaneous recovery, e)

delayed recovery, and f) permanent set.

a
a.

1 >
r

t

e

la >
C

C

8

Figure 2.1 Phenomena common to many viscoelastic materials: a. Instantaneous elasticity,
b. Creep under constant stress, c. Stress relaxation under constant strain, d. Instantaneous
recovery, e. Delayed recovery, f. Permanent set.
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2.1.3 Creep

Creep is one of the major subjects studied by viscoelasticity theory, and it can

be described as a slow continuous deformation of a material under constant stress. In

general, creep may be described in terms of three different stages illustrated in

Figure 2.2. The first stage in which creep occurs at a decreasing rate is called primary

creep. In stage two, called the secondary stage, creep proceeds at nearly constant rate.

In stage three, called third or tertiary stage, creep occurs at an increasing rate and

terminates in fracture.

e A

Creep rate

r

Figure 2.2 Three stages of creep.

Plastics, wood, natural and synthetic fibers, concrete and metals at elevated

temperature are some of the materials showing viscoelastic behavior. Recently there

have been tremendous advances in the development of composite materials. Some

fiber reinforced polymer materials have been incorporated into aircraft designs. These

materials occasionally work under high temperature and are subjected to long-term

loads. Due to the time-dependent behavior of the polymer matrix, the components
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made of composite materials may fail after serving for a period of time even though

the external applied load did not exceed the ultimate strength of the materials. The

objective of this research is to apply viscoelasticity theory in the development of

numerical models to predict the time-dependent behavior of composite materials. It is

hoped that this research will contribute to practical designs.

2.1.4 Basic Viscoelastic Elements

Viscoelastic behavior can be physically described by a model composed of a

linear spring (elastic part) and a linear dash-pot (viscous part). Two very basic models

are the Maxwell fluid model where spring and dashpot are connected in series (Figure

2.3a), and the Kelvin solid model where spring and dashpot are connected in parallel

(Figure 2.4a). R in Figure 2.3 and Figure 2.4 can be interpreted as a linear spring

constant or a Young's modulus, and 71 as the coefficient of viscosity.

For a Maxwell fluid model, it can be shown that under a constant stress cs° the

relationship between strain and stress has the following form

e(1 ati = ___ao
. + __°..t.

R q
(2.1)

This result is shown in Figure 2.3b. Under a constant strain e0 for which the initial

stress is a0, the stress relaxation for a Maxwell model can be expressed as

o(t) = 00 e"R" = Reoe 4"

This phenomenon is shown in Figure 2.3c.

(2.2)
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Co

Maxwell Model

ti
(b)

Creep and Recovery Stress Relaxation

to
(c)

Figure 2.3 Behavior of a Maxwell model.

(a)

Kelvin Model

Figure 2.4 Behavior of a Kelvin model.

A

a

ti

a 0 /R

t

t. ti
(b)

Creep and Recovery

t

11



For a Kelvin solid model, under a constant stress cso at t = 0, the strain

response to the stress can be expressed as

Re = .41-e -"n).
R

12

(2.3)

and is shown in Figure 2.4b. Upon the removal of the stress at t = ti, strain will be

recovered and the recovery can be described by

e =
R

Cr0 e -RttiLer Rtin 11, t > t1. (2.4)

and illustrated in Figure 2.4b. The time t, in Figure 2.4 is called retardation time. It is

the time that would take the creep strain to the asymptotic value ao/R if the strain

were to increase linearly at its initial rate actn. It can be shown that t, = i/R.

The response of the Kelvin model to an abruptly applied stress is as follows.

The stress is at first carried entirely by the viscous element, 11. Under the stress the

viscous element then elongates, thus transferring a greater and greater portion of the

load to the elastic element, R. Finally the entire stress is carried by the elastic

element. The behavior just described is appropriately called delayed elasticity.

However, neither the Maxwell nor Kelvin model can fully represent the

behavior of most viscoelastic materials when they are used individually (Findley,

W.N., 1975). More complicated models, in which several Kelvin models or Maxwell

models are connected in series, or in parallel, or in any other mixed combination, are

often used to describe a particular material behavior. For example, several Kelvin

models in series are called generalized Kelvin Models in series (Figure 2.5). The

creep strain of generalized Kelvin models in series under constant stress a0 can be

obtained by considering that the total strain is the sum of the creep strain of each

individual Kelvin model. Thus the creep strain of the generalized Kelvin models has

the following form (Findley, 1975)



e(t) = e -us) ,

13

(2.5)

where = rh/Ri, are the retardation times. Similarly, if Maxwell models are

connected in parallel, they are called generalized Maxwell models. Figure 2.5a shows

generalized Kelvin models in series, and Figure 2.5b shows another generalized model

for elastic response, viscous flow and delayed elasticity with multiple retardation

times.

The generalized Kelvin model is more convenient than the generalized

Maxwell model for viscoelastic analysis in cases where the stress history is prescribed.

The generalized Maxwell model is, however, the more convenient in cases where the

strain history is prescribed.

R1

R2

R

(a)

71

(b)

Figure 2.5. (a) Generalized Kelvin models in series. (b) Generalized model for elastic
response, viscous flow and delayed elasticity.



14

2.2 Viscoelastic Constitutive Equations for Composites

The time-dependent behavior of viscoelastic materials must be expressed by a

constitutive equation which includes time as a variable in addition to the stress and

strain variables. Considerable work has been done to study the creep behavior of

various materials and several equations have been proposed since the early nineteenth

century. The three-dimensional constitutive equations developed in this study are

based on Lou and Schapery's one dimensional nonlinear viscoelasticity model for the

uniaxial stress case (Lou and Schapery, 1971).

According to Lou and Schapery, the nonlinear viscoelastic equation for strain

in response to a uniaxial loading under constant temperature has the form of

e: = g:Doal + g1' i'Dc(lie -1r) Vg;Ocit + 0' (2.6)

where Do is the elastic (time-independent) compliance, and Div' - xr) the creep (time-

dependent) compliance. ty' and lif are called reduced times which are implicit

functions of stress given by

p _du r du
-10 a Jo a

(2.7)

where a is a shift factor which physically modifies viscosity as a function of

temperature and stress. 9 represents the hygrothermal component of strain. The

superscript t or t denotes the time at which a quantity is evaluated. The quantity a

and the compliance coefficients got, gi' and g2' are material properties that are generally

functions of stress and temperature. At constant temperature, they are functions of

stress which, in turn, are functions of time. Physically, go' defines stress and

temperature effects on elastic compliance. gl and g2' define stress and temperature

effects on transient (or creep) compliance. Equation (2.6) will be reduced to the linear

viscoelastic creep equation by defining go = g, = g2 = a = 1. Equation (2.6) physically
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represents the Kelvin elements in series and an elastic spring element. Based on the

discussion of thermodynamic theory (Schapery, 1969), and molecular models (Ferry,

1961), and the characteristics of Kelvin models discussed previously (Equation 2.5),

Schapery (Schapery, 1969) suggested that the creep compliance can be decomposed

into two parts as

r

L o c(w` V) = D ,11 e -)`Av -'''' ' 1 + NV 116
(2.8)

r.1

where the D, and Df are positive constants. The term pf is called the flow component,

and leads to a residual strain after the removal of the load. Substituting Equation (2.8)

into Equation (2.5), the constitutive equation becomes

N
t N

es = go' Dod + glrg2VE Dr gis f E Dre44v-v)_ka I g; olds
r=1 r.1 at

+ g isD f NI116a--(a g; cr' r_leit + 0`.

(2.9)

In this equation 't is any arbitrary time between 0 and t, representing past time.

This shows that the strain at any given time depends on all that has happened before -

in the entire stress history cf(t). Thus, the integrations in Equation (2.9) are called

hereditary integrals.

To establish a general equation similar to Equation (2.9) for a three-

dimensional anisotropic case, a set of contracted single notation is introduced to

define the stress and strain components as follows:



al = all'

a = CT2 22'

e

£2

= ell'

e 22,

03 = 033' e
3

= £33,

04 = 023' e4 = 2 e
239

05 = 013' e5 = 2e13,

06 = 012, £6 = 2e12,

where av and ey are tensor notations.

Now for three-dimensional anisotropic material, Equation (2.9) becomes

where

E [gozip Ozj +gi:ig2;i0M E Dnie -x.(44-44) a (g
21.1

..01
r1 r1

1

a I
gipfiif(x6-14_v2Ti.cridt, +0:at

r, du r du
a

V
A aij
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(2.10)

(2.11)

(2.12)

Equation (2.11) is difficult to deal with because it requires information from

the entire stress history. The effort next is to rewrite Equation (2.11) into an

equivalent form so that a numerical method can be easily applied. Consider the first

integral in Equation (2.11), and name it qril, then

=
4,0(44_4 a (q; - e .

Breaking this integral into two parts, qn; can be written as

(2.13)



ffr&e -1.4(41#-,4)±(g2Ti jaiT)dt
at

e

= 1 + 12

where

= -kfk-'4242y j

and

-4ee) / 1,
r2 = e ", g2,T,a fTiat .

Defining

du
=

ft-td
,

I, can be written as

I = e -14("e'-'1'4+AV4 '4) 421e)ds
at j j

= e 44'1'4 ft -At e -1"114-4 242:. dt
at j j

Because

17

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



the integral 1, now becomes

r I du

at/.

t-At

Ar
,

du

du f du
a aij

du

all..

r
er

du

aIf

1 = e -1"16V4 e 44(41.-"--,4) a
--kg2, )dtat I I
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(2.19)

(2.20)

Note that the integration part in Equation (2.20) has the identical form with the

qd defined in Equation (2.13) but with different integration limits. This leads to the

following results:

gives

I = e-141"4 qh;A:
1

(2.21)

Now consider the second integral 12 in Equation (2.14). Integration by parts

A (v/a e , 4 a je -14AV'-'4)
/2 = -g2at r y a2 oldt (2.22)

aT "4 4)T2

Assuming that kip, is linear over At (i.e., a2(g2,;659/ar2 = 0.), then

12 =
1 e AsAV" 82:,cr;

rY

when At is sufficiently small. Now, q,,,` can be finally written as

(2.32)



where

= e -x 4"4q,;:' + r J J -g-1-1 .1

xp- it,
1 e

rrY

1.1
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(2.24)

(2.25)

From a computational standpoint, Equation (2.24) is much easier to deal with

than Equation (2.11) because Equation (2.24) requires only a knowledge of quantities

at the current time step t and the previous time step t-At, whereas Equation (2.11)

requires a knowledge of quantities over the complete history of the response of the

material.

Likewise, if similar procedures are applied, the second integral in Equation

(2.11) can be defined as

S S

= k 1./

(
g2i,c0dt,

Breaking this integral into two parts, qn; can be written as

where

and

qf:J f`14-14-a-ia (g2TiicY;)dt

2,(t g2:0;)dt

=1s +

(2.26)

(2.27)

= (V:j ) 42: al tit (2.28)



Defining

13 can be written as

14; = 111:;& + A114

13 = ft td(w:,ta + A*, - v a
tiji

211 Joldt

V%) g 13;)t

24 g27,jalds .
at

20

(2.29)

(2.30)

(2.31)

Note that the first integral in the above equation can be written as (See

Equation (2.27)). This leads to the following results:

13 = qty + Axiliig274 (3.1)

Now consider the second integral 14 in Equation (2.27) and write it into the

following form

I AST S±LCS
14 = g2i.o )dt v,i g2ijai PT.

-Ai at t-ett at

The first integral in Equation (2.33) turns out to be

14/
2.4g2i 4:7T)dt

1A/ at

1 1

= g ai
r-ha t-At)

g211 a,

(2.33)

(2.34)



Name the second integral in Equation (2.33) as 15 and do the following:

15 = 1
,6

) Ch

,14
CI;

at aa..

a.

=1 421'1

Integration by parts gives

115 = (yi
2

Alyi;) g2; cr; or& )

21

(2.35)

(2.36)

With the combination of Equation (2.32), (2.34), (2.36), qh` can be finally written as

:-At 1-Al _I -1q_. = q,. + _46,114. (g2:431. + g2ii
2 I " (2.37)

Equation (2.37) is now in a form to which numerical analysis can be easily

applied because it requires only a knowledge of quantities at the current time step t

and the previous time step t-At.

The constitutive Equation (2.11) now becomes

6

[e: = E go:Poipti + gi:,g2:A E Dry gituED,,,q,:i + gi:Pfiflfili +0:
j.1 r.1 r.1

(2.38)

Substituting Equation (2.24) and Equation (2.37) into Equation (2.38) and grouping

terms appropriately, Equation (2.38) becomes



6

e =E [goa,D0,,g,:ig2iiE ry(
j=1 r=1

-gi:JE (e-X4A*4 Al rn.j
r=1

2,7scri:&)+,gl'uDfii(q.k-As +0.5 AVy g2,710-`;') ) (2.39)

+ Co:.

Equation (2.39) can be written in matrix form as

{e} = [S]{al + {H} + fel

22

(2.40)

where (e), (a) and (0) are column matrices containing the total strains, stresses, and

hygrothermal components of strain respectively, (S) is the instantaneous compliance

matrix whose terms are given by

S = go:iDoif + g1 8 jE Dri,(1 - I'rry) + 0.5g1 g2:13/4
r=1

and (H) is the hereditary strain matrix whose terms are given by

6 N
-X4601/41 t-At -4 t t-At A=E -gli; e q,i; --1 +gli qfj; +uolawilig2,71a11 .

j=1 r=1

Solving for (a) in Equation (2.39) gives

{a} = [s]-' {e} -[s]-1({H} {e})

2.3 Delayed Failure of Composites

(2.41)

(2.42)

(2.43)

Failure studies of composite materials are still a wide open area and new

failure criteria are continuously being proposed (Feng, 1989; Theocaris, 1990; Chamis
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and Ginty, 1990). Of the failure criteria developed in the past, the maximum stress

and maximum strain criteria are the simplest. A major disadvantage, however, is that

they do not consider interaction between modes of failure (Jones, 1975). Tsai-Wu

tensor theory has shown a very good agreement with experimental result for E-

glass/epoxy. It's extension, however, has been limited because it requires an

interaction term F12 which is relatively difficult to obtain, especially for compression.

Compared with the others, Tsai-Hill theory is the most popular. It overcomes the

disadvantage of maximum stress and maximum strain theories, and shows very good

agreement between theory and experiment (though not as good as Tsai-Wu theory ).

Based on the above discussion, the study of delayed failure for time-dependent

composites is an even more challenging area. There have been very limited criteria

proposed in this area. The delayed failure criterion developed in this study is based on

Brinson-Dillard's two dimensional model (Dillard and Brinson, 1983). In this model,

Brinson and Dillard started from Tsai-Hill failure criterion, but instead of using

constant material strengths, they assumed that the shear strength and transverse

strength are functions of time. This causes the Tsai-Hill failure criterion to become

time-dependent. Then, they introduced a linear cumulative damage law to predict the

material's failure. Following similar procedures, a three dimensional delayed failure

model is developed here.

In three dimensions, the Tsai-Hill criterion can be written as

0.21 ::: a '51°2 Q1 a3 2 1+ + -.._ -_ _
ct 2153

X' y2(t) y2(t) X2 X2 y2(t) X2

,,,,2 ,r2 2
612 '13 623

+ + + =1
Sgt) S122(t) S23(t)

(2.44)

where X, Y and S are material strengths. For elastic materials, they are material

constants, while for fiber-reinforced viscoelastic composites, we assume that X is a

constant due to the elastic behavior of the fibers in the X-direction, but Y and S are



time-dependent values defined as

Y(t) = A - Blogt

S12(t) = K12(A Blogt)

S23(t) = K23(A Blogt)
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(2.45)

where A, B, K12 and K23 are material constants. Substituting Y(t), S!2(t) and S23(t) into

Equation (44) gives

021.+
+ -'tr C4 0102 0103 2 1

0203
X2 (A -Blogt)2 (A -Blogt)

2
X 2 X 2 ( (A -BlOgi)2 X2

1
r2 r2 2
'12 613 T23

+ + + = 1
102(A -B log 02 K2(A -B log t)2 K223(A -B log 02

Rearranging the above equation gives

Then t can be solved by

1
1.2 ,r2 2

Q2 +0.3- 20203+ '12 I3 T23

Ki22 K12 K23

(A -B log02

1
-6t +6162 +6163 -6263

X2 X2 X2 X2

A -
cr; 01 02 01 03 02 03

logt= x2 x2 x2 x2.
B

I

I 1

+

2

+

2 ,r2
"12 613 1'23

2 2 2
K12 K12 K23

7

(2.46)

(2.47)

(2.48)



Thus, the time to failure is given by

where

C

A -C

tI = 10-17

1

62 + 2 02 03 4- 6122 + 13 4. 4.23
2 K232

K12

424 +6162 +6163 -62631

X2 X2 x2 x2

25

(2.49)

(2.50)

tf is the time to rupture, i.e., the time it will take the material to fail. Equation

(2.49) shows that tf is not a constant but a function of stresses and other parameters if

more complicated situations are considered, for example temperature. To account for

a time-varying stress state in each ply, a linear cumulative damage rule is used. To

apply this law for each layer, tf is calculated for each individual element from the

current stresses, then the accumulated ratio (Atiti) over the time period is evaluated as

N. Ata

E
i.1 tf

(2.51)

where N is the total number of time steps done by then. If this ratio is larger than 1,

then the ply has failed according to this criterion. Once the ply is predicted to have

failed, its stiffness will be reduced to a certain percentage of the original value. Then

the contribution of this ply to the total strength of the structure is lowered accordingly.

As time goes on, a strength degradation profile of the structure can be obtained.
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CHAPTER 3

FINITE ELEMENT FORMULATION

The viscoelastic constitutive equations for an orthotropic material were

developed and given in Chapter 2. As a method of approach, the finite element

method is chosen due to its advantages in solving complex problems. In this chapter,

general finite element procedures are introduced first in Section 3.1 and Section 3.2.

Based on these, the application of the finite element method in viscoelasticity is then

presented in Section 3.3.

3.1 Background of FEA Method

The finite element method is a numerical procedure for solving continuum

mechanics problems with an accuracy acceptable to engineers (Cook, R.D., 1981).

Compared to analytical methods and experimental methods, the finite element method

is considered to be one of the most powerful, inexpensive, relatively simple and time

saving ways for analyzing problems which involve very complicated geometry and

loading conditions. The basic idea of finite element method is dividing a complicated

structure into a number of relatively small, simple elements, then obtaining stress and

deformation profiles of the complicated structure based upon the calculations of each

individual element. The specific type of element used for current study is a 3-

dimensional, 20-node isoparametric solid element.

In the finite element displacement method, displacements of nodal points are

the primary unknowns which can be obtained first by solving a system of equations,

where strains and stresses are the secondary unknowns which can be calculated from

nodal displacements. The overall equilibrium equation for static analysis is:

Ku =R (3.1)



where: K = total stiffness matrix defined as

K=

u = nodal displacement vector,

N = number of elements,

K. = element stiffness matrix,

R = total external nodal force, Fa + F'

= total applied load vector, Pd + Pq,

where
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(3.2)

F'd = applied nodal forces,

Pq = equivalent applied nodal forces.

F' = reaction load vector.

If tie stands for nodal displacement vectors of an element, then the displacements at

any point within this element can be described as

dd = Nu

where N is a set of interpolation functions called shape functions. In general, the

shape functions have the properties of

y) = I (identity matrix)

while

(3.3)

Ni(x), = N,(x,, y,) = 0, etc.

With displacements known at all points within the element, the strains and stresses

within the element are calculated by

and

e =But

a = De

(3.4)

(3.5)
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where B is the strain matrix composed of derivatives of the shape functions, and D the

elasticity matrix which contains material properties.

The equations for calculating the element stiffness matrix lc and equivalent

applied nodal forces Fe can be derived by imposing an arbitrary virtual nodal

displacement, and equating the external and internal work done by the various forces

and stresses during that displacement (Zienkiewicz, O.C. and Taylor, R.L., 1989). The

results are

and

Ke = LB TDBdvol (3.6)

N

F "=E -i N Tqdvol 5 B 'De dvol + f B Ta dvol
..i v

5B . v.
(3.7)

where q is the body forces per unit volume, eo and ao are the initial strain and stress

respectively.

3.2 Three-dimensional 20-node Isoparametric Solid Element

Figure 3.1 shows a typical three-dimensional 20-node solid element, where

nodes 1, 2, 3, 4, ....,20 are numbered in an anticlockwise order starting from any of the

corner nodes. , T1 and y are local element coordinates defined as follows. The

positive 4 axis is in the direction defined by moving along an element edge from the

1st to the 2nd and then the 3rd node. The positive n axis is in the direction of the

element edge from the 3rd nodal connection number, through the 4th to the 5th

number. The y axis direction can be defined from the other two by applying the right

hand rule to form a mutually perpendicular local coordinate system.



3.2.1 Interpolation Functions

The interpolation of a 20-node solid element can be written as

20

x(4,TLY) = E NA;Twhx,

20

Y (,11,Y) = E
i.1

20

z ,Y) = E N,(4,71,Y)z,
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(3.8)

According to Equation (3.3), the displacement at any point within the element can be

expressed as

20

a(49117) = E A/Am,*

where the shape functions 111 are given by

3

Figure 3.1 A time-dimensional 20-node isoparametric solid element.

(3.9)



NA,TLY)

N2(4,71,Y)

N3(,TLY)

N4(4,11,Y)

N5(,T1,y)

44,11,Y)

NAM,Y)

44,11,Y)

N9(4971,Y)

Nio(,T1,Y)

N 11(4,11,Y)

N 12(4 ;11,Y)

N 13(447)

N1 4(4,11 ,Y)

N 15(4,11,Y)

N 16(4,T1,i)

N Ail ,Y)

N 18(4,11,Y)

N 19(4,11,11)

N 20(4,TLY)

1-
(1 -4)(1 -q)(1 -yX-4 -r -y-2)

4(1 -42X1 -41 -y)

-i.1(1 +00. -n)(1-y)(4 -fl -y-2)

-14-(i +4X1 -12)(1 -y)

1(1 +4Xi +n)(1 -y)( +n-y-2)

4(1-42X1 +1X1 -1)

-1(1 -4)(1 +TIX1 -yk +n -Y-2)

4
-1(1 -4X1 -12X1 -1)

:1-4(1 -4X1 -71X1 -Y2)

il (1 +4X1 -nXi -y2)

741(1 +4)0 +1X1 -Y2)

(1 -4)(1 +41 -72)
4

g(1 -4X1 -nXi +yX-4 -ii +y-2)

1(1 -411 -41 +y)4

(1 +0(1 -TIX1 +1)(4 -ii +y-2)
8

4(i +4X1 -Ill +1)
4

il (1 +4Xi +41 +A +11 +Y-2)

4(1 -411 +1)(1 +y)

-g-1(1 -4)(1 +nXi +yX-4 +1 1 -2)

1(1 -4)0 -n2X1 +y)
,4
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(3.10)
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3.2.2 Strains

With displacements known at all points within the element, the strains can be

determined by Equation (3.4), with B matrix written as

B = {B 1,B ,B i = 1,....,20 (3.11)

where

B1

Equation (3.4) now becomes

aNi
0 0

ax

0
aNi

ay

aNi
o 0

az

N. N.
0

--a-T ay

aNi aNi

az ay
N. aNi

0
ay ax

(3.12)



C

LT

Ex

aN.

ax
0 0

aNi

ay

o 0
az

0
aNi aNi

az ay

aNi aNi

az ax

a, a1
ay ax

0

ui

vi

W
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(3.13)

Note that B is composed of the Cartesian derivatives of Ni while Ni are

expressed in terms of element coordinates Ti and y rather than the Cartesian

coordinates x, y and z. This can be readily solved by applying the Chain rule of

differentiation. Consider the derivatives of Ni with respect to the local element

coordinates

aN, aN, ax am ay am az
at a x 7 ay 7 az 7'
aN, ax am ay am az
an a x ay an az an'
aN ax aN; ay aN, az

ay a x ay ay ay az Ty'

In matrix form, Equation (3.14) becomes

(3.14)



aN,

aN

ay

ax ay az

a4 7 7
ax ay az

T1 -F ai
ax ay az

Ty
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aN,

=J

aN,

(3.15)

ax

aN,

a
aN.

ay

aN, aN;

az az

where J is known as the Jacobian matrix which can be found explicitly in terms of

the local coordinates. Substitution of Equation (3.8) into Equation (3.15) gives

20

J = E

aN;

-T x° WY`' 7-z4
aN. aN. aN.

an
aN. aN. aN.

iz,
ay ay ay

(3.16)

The Cartesian derivatives of Ni can be found now from Equation (3.15) as

ax

aN,

ay

aN,

az

aN

=

aN,

at
aN

ay

(3.17)

It also can be proved by vector algebra that the element volume dvol can be evaluated

as

dvol = dxdydz

= detid4 dr) dy
(3.18)



where det J is the determinant of Jacobian matrix.

3.2.3 Stresses

The stress-strain relation can be expressed as

a = De

where D is the stiffness matrix, and the strain-stress relation

e = Ca

or

13

12

13

12
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(3.19)

(3.20)

(3.21)

where C is the compliance matrix defined by the inverse of the stress-strain relation.

The subscripts 1, 2 and 3 denote the three principal material directions. For a general

orthotropic material, the compliance matrix components in terms of the engineering

constants are



=

where

1

E1

V21 V31

E2 E3

V12 1 V32

E1 T E3

V13 V23 1

E1 E2 T
o

o

0

0 0

o 0

0 0
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0 0 0

0 0 0

0 0 0
(3.22)

1 0 0
G23

0
G31

0 0 1

G12

E2, E3 = Young's moduli in 1, 2 and 3 directions, respectively.

vij = Poisson's ration for transverse strain in the j-direction when stressed in

the i-direction.

G23, G31, G12 = shear moduli in the 2-3, 3-1, and 1-2 planes, respectively.

Due to the symmetric property of the compliance matrix and assuming that the

fiber-reinforced composite materials are transversely isotropic, where

E2 E3, v,3 = v12, and G23 = E2/2(1 v23),

then [CO can be rewritten as
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[C4] =

1 V12 V12

0

0

v23 )

0

0

0

0

1

0

0

0

0

0

1

(3.23)

E1

V12

E,

1

E1

V23

E1

V12

E2

-V
23

E2

1

E1

0

0

0

E2

0

0

0

E2

0

0

0

E2

0

0

E2

G12

0
G12

The stress matrix D can be obtained by

[D] = [C]-1

3.2.4 Transformation Matrix

(3.24)

The matrix D in the previous section has been defined in the principal material

directions. However, the principal material directions are not always coincident with

the global coordinate system in which the directions of displacements, applied external

loads, and the rotations of the principal material axies are defined. Consider the case

where the principal material direction is rotated an angle 9 about z-axis, relative to x-

axis in the global Cartesian coordinate system. The stress-strain relationship in the

global coordinates becomes



= [T]-i [DJ[T.
]

where [7] is called transformation matrix and it has the form of
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(3.25)

coee sin20 0 0 0
_

2sinecose

sin29 cos20 0 0 0 -2sinOcose

0 0 1 0 0 0
[I]=

0 0 0 cos° -sine 0
(3.26)

0 0 0 sine cos° 0

-sinecose sinecoses 0 0 0 cos20 -sin29_

[T,] is strain transformation matrix, which is related with [7] as (Jones, 1975)

[T,] = [T].T

where the superscript T denotes the matrix transpose. If [D] = [T]-i[D][T,], the stress-

strain relations in xyz coordinates becomes

.

(3.27)



3.2.5 Numerical Integration of Element Stiffness Matrix

With the matrix D defined by [D] = [7]-1[D][L] in the global coordinate

system, the element stiffness matrix in Equation (3.6) becomes

[Ks] = fv[B]r[T]l[DIT.}[B]dvol.

where

dvol = dxdydz.

Switching to element coordinates, Equation (3.28) becomes

[lc] = :f :[/31T[T] 1/)}[T. ][B]det.Achidy.
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(3.28)

(3.29)

Note here that [B] and det J in the above integral involve functions of and y, and

so the integration has to be performed numerically. The Gauss quadrature method has

proved most useful in finite element work, and it shows that the integral

(3.30)

can be approximated by sampling 4)(4) at the midpoint of the interval and multiplying

by the length of the interval, thus 1= 24),. This result is exact if the function 4)

happens to be a straight line of any slope.

Generalization of Equation (3.30) leads to the formula

I = 1:404 = w1o1 +w202+ +wnon. (3.31)

Thus, I has been approximated by evaluating $ = 4() at each of several locations 4,,

multiplying the resulting 4, by an appropriate weight Wi, and adding. Gauss's method

locates the sampling points so that for a given number of points, greatest accuracy is

achieved. In three dimensions, Gauss's method can be written as



= fif,f,44,11,Mcindy

EEE w1w,wk4 (4.Ag)
i j k

Consider now that 44,711) is replaced by [B]r[7]-1[D]7,][B] and I by K
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(3.32)

[K.] = E E E [B ]TIT1-1[/3][T. ][B "du/ WiWiWk (3.33)
j k

3.3 The Application of FEA Method in Viscoelasticity

3.3.1 Constitutive Equation

Recall from Chapter 2, the stress-strain relationship for transversely isotropic

viscoelastic material is

{a} = [s]-' {e} [S] -1({H} + {e })

where the compliance matrix [S], can be written as

[s] = [sA] [5] [sc].

(3.34)

(3.35)

In terms of engineering constants and viscoelastic property quantities, the matrices

[SA], [SB] and [Se] are
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[SA]

1 V12 V12 0

0

0

2 go(1 +v23)

0

0

0

0

go`

0

0

0

0

0

gos

(3.36)

E1

12
RN

El

V23 got

Ei

V12 V23gOt

E2

got

0

0

0

E2

0

0

0

E2

0

0

0

E2

0

0

G12

0
G12

[SB]

with

0 0 0 0 0 0

0 5822 5823 0 0 0

0 S832 5B33 0 0 0

0 0 0 5844 0 0

0 0 0 0 455 0

0 0 0 0 0 S866

(3.37)



and

with

N
r r= glrg2TE Dr7.(1 rrT)SB22 = SB33

r=1

N

SB = SB32 = -V23 glri ,g2Ti E DrT( I -1-,T)
..1

N

S = 2(1 +v23)g1 '12TE D,T(1 -r,r)
,1

N

SB55 = SB66 = gi:g251E Drs(1 -r)
,1

[5c]

SC22

0 0 0 0 0 0

0 Sc22 Sc23 0 0 0

0 SC32 Sc33 0 0 0

0 0 0 Sc44 0 0

0 0 0 0 Sc55 0

0 0 0 0 0 Sc66

= Sc33

SC23 = SC32

Sc44

1 I t /Th A ..,/
=

2
glTg2TL'frLI II° T

1 i i
i

n A= --
"

V.., g 1 Tg2T1-"frLiNf
2

r ,

= (1 +V23 )gl IT g2TPIDAVT ,

1 i tSc55 = .
66

=
Sc 2

gugz,D41,

41

(3.38)

(3.39)

(3.40)

The subscript T denotes the transverse viscoelastic properties and subscript s denotes

shear viscoelastic properties. In the above equations, the nonlinear terms in the 1-

direction, which is the fiber direction, are zero. This means that compared to the

matrix properties, fibers behave as linear elastic materials, which dominate the



properties in 1-direction.

The hereditary strain fin can be written as

{H} = ([HA] + [H,3]){art
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(3.41)

In terms of nonlinear viscoelastic quantities, the two (6 x 6) matrices [HA], [H 8] are

-0 0 0 0 0 0

0 HA22 HA23 0 0 0

0 HA HA 0 0 0
[H = (3.42)A]

0 0 0 HA44 0 0

0 0 0 0 HA55 0

0 0 0 0 0 HAS

with the nonzero terms defined as

N
t21-AM-

HAn = HA33 2., DrTrrT '
r.1

HA = HA 32

N

= -V2.3g1 TITg2-AgE DrTrrT '
r+.1

N

HA44 2(1 +v23)gliTg2;AtE DrTrrT ,
rul

N

HA = HA66 = &g ' -AiabE Drir,
r=1

and

(3.43)



[He]

-
0 0 0 0 0 0

0 H HB23 0 0 0

0 1/832 H833 0 0 0
=

0 0 0 H8 0 0

0 0 0 0 Hc 0

0 0 0 0 0 H

with the nonzero terms defined

H822

H823

= H

= 118 32

1 t t-A1 n A,./
=

2
g1Tg2T L'fr"12T

1 t t-et r, Aa.,

2
= -- V23 g 1T g2T L'fr"WT

H844 = (1 +V23)giTg2T
At

Df A lif

1 t t -At 1H855 = H
866 2

= glsg2, Di Aws .

The (6 x 1) column matrix V') is

0
N

t-At t -At t2 t E -XrA44 (q2, v23q3, ) + gitrDfl.(q.12,.v239137,1T D rTe
r=1

N
t -At t -At t -At)

P -X4-AVT(q 31 r- At -V23 g2), ) +giT` Dfl.(qi3 v23qj2gni DrT-
r.1

N

-2(1 +v23)gl5E D,Te -a.,A 14
q,;,el + 2(1 +v23)gIT'Dirqf4"1

r.1

N

-gisE D rse -X -AV,q5:
-At

+ gi:DfiCifs5-At

"I
N

-X Aq t-e,gitED e - rq6, + gist Disq;6-ed
IS

1.1
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(3.44)

(3.45)

(3.46)



where

and

t t 5 -A2. t -At)-A.,044. - At

+ rrT(g2Ta2- g2T a2 ,

,44 t -At t t t -At t -At
q3, =

-2.,0
e q3, + 1-,(g2T(53- g2T a3 ) 9

t -Al ,t -At-X .,,A944 At
4. rrr(g2iT°14 g2T u4 )

4. AV, q5c-At ( gL-Ai 0/5-1

AV,

q6r = e
4.

q6, + r,s(g2t, 06 g 27' 061 ,

t -At

qn qi2

t -At
q13 913

t-At
qp = qtfa

t-At
q.15 913

t -At
qf6 q16

3.3.2 Element Stiffness Matrix

lA t( t t t -At t -At
+ "VT g2T 452 g2T

2

tri oni t -At if -At

2
-"-"Yl\g2Tu3 g2T u3 )1

A Vt( Fr/ t - t-+ T g2Tu4 42T
At At

) 904
2

LI

L+
(g2:0.55 +q27,5,0,5-1,

2

_stvis(g2stat6+qzts.-Atat6-At)1

2

The element stiffness matrix can then be written as (See Section 3.2.5,

Equation (3.28))

44

(3.47)

(3.48)

[Ks] = .0BiT[T]-1[S]-'[T ][B]dvo/ (3.49)

where [B], [T] and [Tj are matrices defined in Section 3.2.4, and [S] is the

viscoelastic compliance matrix defined in the previous section.



3.3.3 The Generalized Nodal Loads

The total generalized nodal loads for each element are

{Re} = {F el + {Fel + {F µ}

45

(3.50)

where Fend is the applied nodal load vector, Fe" is the element hereditary strain load

vector, and Feth is the element thermal load vector. The finite element formulation to

calculate the generalized load for each element is

{R } = {F1 + DBY[T1-1[S]-1({H}+{0})dvo/ (3.51)

= E [Br[Tr[sr({H} AT{a}) wiw, w,

3.3.4 System Equations and Numerical Solution Procedure

The structure stiffness matrix and load vectors are formed by addition of the

element stiffness matrix and vectors respectively. For example

K = E K1 (3.52)

where N is the number of total elements in the structure. The system equation to

solve now has the form of

[K]fu} = {R} (3.53)

where (U) is the list of nodal displacements and (R) is the total assembled nodal load

vector of the structure. Each of the forces in (RI must contain the same number of

components as the corresponding nodal displacement and be ordered in the



appropriate, corresponding directions. In determining a solution to Equation (3.53)

Newton's method is used. The major steps of solution procedure are listed below.

1. Read external load vector from input file, initialize creep strain vector and

nodal displacement vectors. Initialize stresses and strains.

2. Update old variables by replacing them with the converged solutions in

previous time step. For first time step, use initialized values from step 1.

For each time step

3. Calculate nonlinear creep parameters g,`, gl` and g2t from previous stresses.

Calculate unbalanced load vector due to nonlinear creep strain.

4. Form stiffness matrix, K.

5. Solve the system of equations for displacements.

6. Solve for new displacement increments:

where

= {u}' {AuY.'

[K [ Y+62rajwy,+& = K U

7. Calculate stresses, strains from Mit.

8. Check iteration convergence to see if

< 0.00001 .
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(3.54)

(3.55)

(3.56)

If convergence is achieved, (u) = (u)i, print out stresses, strains, displacements

and creep strains for each element. Increase time by t = t + At for next time

step, and go to 2.

If no convergence is achieved, i = i + 1 and go to 3.
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CHAPTER 4

DEVELOPMENT OF THREE-DIMENSIONAL FINITE ELEMENT PROGRAM

Based on the theoretical discussions presented in the earlier sections, a finite

element computer code was developed. This section gives overall descriptions of

program development and organization, which will be necessary for the reader to

understand the program. Instructions for using the program is given in Appendix A.

4.1 General Description of Program

LAMCREP (LAMinate-CREeP) is a 3-D fmite element program developed for

analyzing nonlinear viscoelastic creep phenomena for laminate composites. A 20-node

isoparametric solid element employed in the program can be used both in general

purpose isotropic (or orthotropic) linear elastic analysis and in orthotropic nonlinear

creep analysis. A failure model to predict long term delayed failure of laminates is

available for nonlinear analysis in LAMCREP.

4.2 Program Development

LAMCREP is based upon a 2-D finite element program PLANE (in

FORTRAN 77) developed by E. Hinton and D. R. J. Owen (Hinton, E. and Owen,

D.R.J., 1989) in their plane stress/strain analysis. However, the original program has

been dramatically modified and changed for solving the problem of nonlinear

viscoelastic creep in laminated composites with orthotropic material properties.

Compared to the original program, the major differences include:

1) Conversion to a three-dimensional analysis from two-dimensional plane

stress/strain situations. The corresponding changes were made in shape

functions (Tong, P. and Rossettos, J.N., 1977), constitutive equations and all

quantities relating to coordinate dimensions.
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12) Capability to handle nonlinear problems. The corresponding changes

made in the program are: a) adding a time iteration loop and a

convergence iteration loop in the main program; b) performing error

estimation in the equation solving subroutine.

3) Development of new constitutive equations to model viscoelastic creep

phenomena.

4) Capability to handle orthotropic properties.

5) Development of a failure criterion to predict long term failure of laminated

composites.

6) The subroutine GAUSS in the original program was substituted by

setting a gauss point table in element stiffness subroutine STIFE.

7) The subroutine LOADPS, which reads external nodal forces in the original

program, was merged into the subroutine INPUT in LAMCREP.

4.3 Program Organization

4.3.1 Subroutines and Algorithms

LAMCREP can be divided in to four major phases:

1) Data input:

a. control information

b. geometry data

c. constraint data

d. material property data

e. load data

f. output table

2) Calculation of the element stiffness and stress matrices.

3) Assemblage of stiffness matrix and equation solver.

4) Strain/stress calculations and failure predictions.

Table 4.1 on this page lists all the subroutines in LAMCREP.
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Table 4.1 LIST OF SUBROUTINES

(Listed in an order that each subroutine appeared in the program)

LAMCREP: Main program.

INPUT: The subroutine which reads the input data file, and saves all of the input information

into a file named data.out.

CHECK 1 : The error diagnostic subroutine.

CHECK2: The error diagnostic subroutine.

ECHO: The data echo subroutine.

INITIA: The subroutine which initializes variables before time iteration starts.

S I thE: The element stiffness subroutine which

1) forms element stiffness [ICJ and saves them into file 1,

2) saves matrix product [D][B] into file 3, and [B] into file 7 for future use in the

stress and creep strain calculations,

3) calculates the force vector increments due to creep strains, and adds them on to the

external nodal forces.

DMATX: The subroutine which evaluates the linear and nonlinear stress-strain matrix [D] for

each element.

SHAPE: Shape function subroutine.

JACOB: The subroutine which calculates:

1) the coordinates of the Gauss points,

2) the Jacobian matrix,

3) the inverse of the Jacobian matrix,

4) the Cartesian shape function derivatives.

BMATX: The subroutine which evaluates the strain matrix [B].

DBE: The subroutine which multiplies matrix [D] by matrix [B].

FRONT: The equation solution subroutine which solves the system equations for displacements

and reaction forces, and saves then into the file named disp.out.

STRESS: The subroutine which

1) calculates strains and saves them into the file named strain.out.

2) calculates stresses and saves them into the file named stress.out.

3) performs failure analysis.
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Several flowcharts were developed from different aspects to provide better

views of the algorithms of the program. The bold boxes in the flowcharts represent

related subroutines.

Figure 4.1 is a flowchart of the main program which controls the overall

program.

Figure 4.2 shows the procedure to form the element stiffness matrix. In

addition, because the analysis is nonlinear, there will be increments in load vectors due

to nonlinear creep strains in each time step. The calculation of creep load vectors are

also done in the subroutine SITE.

The algorithm of failure analysis is shown in Figure 4.3. The flowchart in

Figure 4.3 was developed in the main program level. Since failure analysis is

performed on the converged values, the convergence iteration loop was omitted here.

The element failure control parameters are stored in the array kfact(nelem) and are

initialized to zero before the elements failed. Once an individual element is predicted

to have failed, its kfact will be set equal to 1. Then in the next time step, the stiffness

of this element will be reduced by a factor less than 1. The stiffness reduction is done

in the subroutine DMATX. In Figure 4.3, the box for subroutine DMATX shows the

procedure for stiffness reductions. dl 1, d22 and d12 are the stiffness reduction

factors, and they are greater than zero and less than 1. For example, when kfact = 0,

El = El x dl lu'et = El; after the element failed, kfact =1, El = El x dl lu" = El x

dl 1, i.e., the Young's modulus will be reduced by a factor of dll for a failed element.

The frontal equation solution technique was adopted in program LAMCREP

because it has the advantage of minimizing core storage which is very important for

solving three-dimensional problems. The details about the frontal technique are given

by Hinton (Hinton, E. and Owen, D.R.J.,1989). Figure 4.4 is a flowchart of the

subroutine FRONT.

The maximum problem size that LAMCREP can handle is limited by the

maximum frontwidth, MFRONT, which depends on the structural geometry as well as

the order of element numbering. MFRONT is currently set equal to 600. If

MFRONT needs to be increased for solving a larger problem, the dimensions of the
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Figure 4.1 Flowchart of the main program.
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Subroutine STIFE

ISet up gauss point table)
1

!Rewind files to be used I

8

Evaluate the coordinates of the
element nodal points.

Initialize the element stiffness matrix.

S

8

Evaluate the element stiffness matrix.

Call

I

I Shape I I Jacobi IBmatx I DBE

EIC-jEZE[Bfriii[Dilm [B] 1.11 w w wj k 1 1

Calculate the increments of load vectores
due to the nonlinear creep strains

FcCEEE[B]liTil[Dji({E}+AT(a)) IJ IW W W
k 1 k 1

41

t tunioad?

No

Ftotal+ Fexternal+Fer

Yes

Save the element stiffness matrix into file 1.
Save the product matrix [D] [B] into file3 at gauss points
for future use in the stress calculations.
Save the [B] matrix into file7 at the gauss points for
future use in the strain calculations.

Return to the main program

Figure 4.2 Flowchart of element stiffness subroutine S 1114h.
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Main program level
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Front {u}, {R}
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Jacob I
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I DBE
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El El*d11**kfact
E2 E2*d22**kfact
G12 G12*d12**kfact

Stress I Stresses, strains, delayed failure.

I Initialize stress and strain values.

I ts

Read stress matrix and [B] matrix from files.]

tEl = [B] {u}
(a) =

Calculate average element stress and strain.
{a}e, {e}e

Ifs

8

No

Has the current element failed?
(if kfact = 1?)

I No
Calculate damage factor

ittfact-E Ail

i-1 tf

Has the element failed ?
(if tfact z 1 ?)
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Set the element failure parameter to 1.
kfact = 1

Add 1 to the counter of total failed elements.
nfe nfe +1

Return to the main program
I

I Have all plies failed? 'Yes'
1I No

if t z tfinal?' Y Stop

Figure 4.3 The algorithm of failure analysis.



Subroutine Front

Interpret fixity data in vector form

Set a marker for the last appearance of each node
before elimination.

Assign positions in the front for the element degrees
of freedom and adjust the frontwidth if nessary.

1

Assemble the element stiffnesses and assemble the
element loads.

Can the node be eliminated?

Yes

Extract the equation coefficients and the right hand
side terms corresponding to the eliminated node
for writing to file.

Deal with prescribed displacements or elminate a
free variable.
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elimination

phase

Read the equations in reverse sequence from file,
Backsubstitution
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Backsubstitute in the current equation.
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err -I

u2

E u

If error s 0.00001?
Yes

Store the displacements for stress and strain
4

Output the nodal displacements and reactions at
restrained nodal points.
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Figure 4.4 Operation sequence for frontal equation solution.

Output phase
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arrays listed in a DIMENSION statement in subroutine FRONT should be adjusted

accordingly. Two parameters have been set in subroutine FRONT to make this

adjustment easier. Appendix B gives more details about the array dimensions.

4.3.2 Common Blocks

Several common blocks are used to store the information requested in different

subroutines. The often used common blocks are saved in files with the extension

'.INC' in order to avoid the potential for multiple copies of the same common block

to get out of step when modifications made to one of these copies are made

incorrectly to one other of the copies. Then, INCLUDE filename statements are used

so that the contents of the file named in the INCLUDE statement are placed at the

point where the INCLUDE statement occurred.

File GLOBE.INC contains four common blocks named CONTRO, CONTRO2,

LGDATA, and WORK. CONTRO and CONTRO2 store control parameters which are

defined in subroutine INPUT and are used throughout the program. LGDATA stores a

set of arrays. Care must be taken whenever the dimensions of the arrays need to be

adjusted for solving a larger problem, and the DIMENSION statement in subroutine

FRONT should be modified accordingly as well as the dimension of NDFRO in

subroutine CHECK2. The third common block in file GLOBE.INC is called WORK.

WORK stores a set of arrays which specifically relates to the element variables so that

dimensions of the arrays in this common block do not change with the size of the

problem.

File CRPIN.INC contains a common block named CRPIN. Common block

CRPIN stores the nonlinear creep array variables to be initialized in subroutine

INITIAL and to be used in subroutine DMATX. File CRP2.INC contains two

common blocks named CREP and CREP2. CREP and CREP2 store two sets of

nonlinear creep array variables calculated in subroutine DMATX to establish the

nonlinear stress-strain relationships. Care also must be taken when the dimensions of

the arrays need to be adjusted for a larger problem.
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All the common blocks used in program LAMCREP are listed in appendix B.

The rules for determining the dimensions of each array are also discussed in the same

appendix.
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CHAPTER 5

CASE STUDIES AND DISCUSSIONS OF THE RESULTS

A finite element computer program LAMCREP has been developed for

analyzing time-dependent behavior of laminated composites. The algorithms and code

structures of the program are described in Chapter 4. The objectives of this chapter

are: a. to verify the program's solutions, and to illustrate its capabilities of solving

complex problems by comparing results with calculations published by other

researchers; b. to demonstrate the capabilities of the program for solving problems of

three-dimensional, nonlinear viscoelastic laminated composite by analyzing time-

dependent behavior of selected viscoelastic composite materials.

5.1 Material Properties

New high-temperature, graphite-fiber composite materials have been evaluated

for lightweight and cost-effective aircraft structure over different types of composite

materials. Besides the advantages of these materials, one major concern is their long

term durability because of their viscoelastic behavior. In the current calculations,

IM7/5260-H Graphite/Bismaleimide and T300/5208 Graphite/Epoxy were chosen for

modeling their time-dependent viscoelastic behavior under different loads. The

material properties of these composites are given below.

1M7/5260-H Graphite/Bismaleimide

The viscoelastic parameters for IM7/5260-H have been experimentally

determined by the University of Washington and have the following values:



Elastic Properties

E11 = 22.92 x 106 psi,

1/12 = v23 0.32,

E22 = 1.3355 x 106 psi,

012 = 0.821 x 106 psi.

E. = 5.46 x 105 psi, v, = 0.4

Transverse Creep Properties

Dn. = 1.073 x 10-8 psi'

D2T = 4.675 x 10-9 psi1

D3T = 8.895 x 10-'9 psi'

D4T = 4.895 x 10-9 psi'

= 1.131 x 1041 psi-1 min -1

goT = 1 + 2.017 x 10-5 exp(rJ363.99)

gIT g2T ar = 1

Shear Creep Properties

DI, = 1.989 x 10.8 psi-1

D2, = 7.715 x 10-19 psi-1

= 9.460 x 10-9 psi1

= 1.000 x 10.8 psi-1

= 4.474 x 10-" psi'

go, = 1 + 0.01023 exp(T,J1747.73)

gl, = 1 + 0.02747 exp(toc,/2878.04)

g2, = 1 + 0.1071 exp(toc/3308.2)

as = 1 -0.0696 exp(to12268.92)

= 0.0162 min'

A.2T = 0.1412 inin-1

X3T= 0.1426min'

?4T = 0.544 min-1

= 0.0137 min-'

A.25 = 0.0157 min'

= 0.09 min'

'4s = 0.279 min'
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T300/5208 Graphite/Epoxy

The nonlinear viscoelastic properties of T300/5208 Graphite/Epoxy were

determined by Tuttle and Brinson (Tuttle, M.E. and Brinson, H.F., 1986). To fit the

creep model developed in Chapter 2, those values have been converted to an

exponential series through a curve-fitting technique based on the Levenberg-Marquardt
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method. The properties of this material are given below.

Elastic Properties

En = 19.17 x 106 psi,

v12 = v23 = 0.273,

Transverse Creep Properties

DIT = 9.522 x 10-9 psi'

D2T = 9.453 x 10-9 psi-1

D3T = 1.641 x 104 psi'

D4T = 2.680 x 104 psi'

D5T = 4.134 x 104 psi'

D6T = 8.915 x 104 psi"

= 7.102 x 10-13 psi' min'

goT = 1

E22 = 1.368 x 106 psi,

G12 = 0.9297 x 106 psi.

= 1.861 min"

"2T = 0.1128 min'

Xyr = 0.01184 min"

= 0.001523 min'

X5T = 0.0002430 min-1

24-6T = 0.0000368 min'

1 for 'cm, 5. 932.6 psi
gIT

1 + 6.033 x - 932.6) for 'cc, > 932.6 psi

g2T = 1

1 for toc, 5 932.6 psi
aT =

exp(-1.703 x 10-3(t, 932.6)) for 'Cm > 932.6 psi.

Shear Creep Properties

DI, = 2.297 x 104 psi'

DZs = 1.835 x 104 psi"

= 2.916 x 104 psi"

A.1, = 2.097 min-1

22, = 0.1251 min"

= 0.01309 min-1

134, = 4.346 x 104 psi" 24, = 0.001682 min"

D5, = 6.299 x 104 psi' 71 Ss = 0.000267 min"

D6, = 1.251 x 10-7 psi' At, = 0.00003955 min'

Dr, = 9.39 x 1043 psi" min"



go. =
{1

1 + 3.537 x 10-5(toct - 1748)

1

gls =
1 1 + 6.75 x 10-5(toe, - 1049)

1 1

g2s =
1 + 8.55 x 10-5(tcc, 1049)

a. =

for t S 1748 psi

for 'Loi > 1748 psi

for 'roc, S 1049 psi

for cm, > 1049 psi

for ;a 1049 psi

for toc, > 1049 psi

f1 for 'cm, 5. 2103 psi

1 exp(-2.344 x 10-4(Tcc, - 2103) for toct > 2103 psi

where toct is the octahedral shear stress in the matrix material defined as

in
1 2 -.( 2 2 2 )1toc:=[(cf,ra )2 +(a -a )2 +(ax-as) +o T,,y +Tx, +T
3 Y

Y z

5.2 Tensile Loading of Unnotched Laminates
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(5.1)

Rectangular unnotched laminated plates subjected to uniform tensile stress are

analyzed for different loading levels and different lay-ups.

5.2.1 Creep strain response to uniform tensile stress

5.2.1.1 Description of the Problem

To test the creep model of LAMCREP, problems of laminates subjected to

constant tensile loads were chosen to be analyzed first. The first case considered here

is a unidirectional laminate subjected to a constant tensile stress in the direction

normal to the fibers. In this situation, the load is carried by matrix material only.

Analyses were done for both 1M7/5260-H and T300/5208 with constant tensile stresses



of a = 5,000 psi and a = 3,000 psi respectively. The analytical results for this case

were obtained in a manner similar to that by Lou and Schapery (Lou, Y.C. and

Schapery, R.A., 1971) creep equation, i.e.,

N

e = goDoo + gig2o D Al -el' ) + .

r -1
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(5.2)

Comparisons of the analytical solution and program solution are given in figure 5.1

and Figure 5.2, where the creep strains are plotted versus time. The agreement

between finite element solution and analytical solution is excellent.

The second case considered here is a multidirectional laminate of [90/45/-

45/90]6 subjected to a uniform tensile stress in global x-direction. The tensile stress

for this case is a = 10,000 psi, and the material modeled is T300/5208. Figure 5.3

shows the creep strain versus time for this case. Since a viscoelastic analytical

solution is not available for the mutildirectional plate problem, the finite element

solution is compared with the classical lamination theory (CLT) solution. Figure 5.3

shows excellent agreement between these two solutions.

5.2.1.2 Discussion

The nonlinear viscoelastic model in LAMCREP has been verified by the

excellent agreement between the results from LAMCREP and those obtained from

analytical analysis and classical laminate theory.

It is observed that the creep strain in both materials increases rapidly first and

then continues to increase at a decreasing rate. Comparision of Figures 5.2 and 5.3

shows that for a T300/5208 laminate with [90/45/-45/90]6 lay-up, 233% increment of

the applied load leads to only 11% increment in deformation in the loading direction.

This indicates that the strength of the laminate is increased by the fibers in +45 and

-45-degree layers.
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Figure 5.1 Strain versus time for a unidirectional laminate (IM7/5260-H) under tension.
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Figure 5.2 Strain versus time for a unidirectional laminate (T300/5208) under tension.
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Figure 5.3 Strain versus time for a [90/45/-45/90]s laminate under tension.
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5.2.2 Free Edge Effect

When a laminated plate is subjected to a tension load, the out-plane stress

(interlaminar stress) profiles near the traction free edges are important in delamination

predictions. The classic plate theory cannot give a realistic solution due to the plane

stress and plane strain assumptions. In this situation, the finite element method is the

most powerful tool for solving general three-dimensional problems. The next

application of LAMCREP shown here is to analyze an unnotched multidirectional

laminate under tension. By analyzing the interlaminar stresses between layers, the

location of the maximum interlaminar stress is assumed as the point where

delamination is most likely to occur.

5.2.2.1 Description of the Problem

An elastic analysis was performed first for verification purposes. The physical

model considered in this analysis is a [90/01 laminate subjected to constant tensile

stress, as shown in Figure 5.4, where b is half the width and ho is the thickness of

each ply. Figure 5.5 shows the finite element mesh and geometries for this problem.

Due to symmetry, only one-eighth of the laminate was modeled with five elements in

the x-direction, two elements through the thickness of each ply and ten unequally

spaced elements in y-direction. As suggested by Wang and Crossman, the thickness-

to-width ratio of the laminate is taken as (2t):(2b) = 1:4. The mesh becomes finer as

y near the traction free edge and the ratio between the first and last element in y-

direction is 17. A comparison of LAMCREP's result with those of Wang and

Crossman (Wang, A.S.D. and Crossman, F.W., 1977) is shown in Figure 5.6 where the

distribution of interlaminar stress az is plotted versus position y/b along the middle

plane of the laminate at z4o. The agreement between the two solutions verifies the

adequacy of the finite element mesh. Similar analysis is then performed for

viscoelastic response of IM7/5260 and T300/5208, under tensile load of 10,000 psi and

8,000 psi, respectively. The interlaminar stress distributions for three different time
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Figure 5.4 A rectangular laminated plate under tension.
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z

Figure 5.5 Finite element mesh for a [0/90]5 laminate under tension.
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1.0

Figure 5.6 Normalized interlaminar normal stress versus position for a [0/90/90/0]
laminate under tension (elastic response).
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intervals, over a period of approximately two months, are shown in Figure 5.7 and

Figure 5.8.

In addition, the same analysis is performed for a [90/0/-45/45], laminated

composite plate. A finite element mesh similar to the previous one was generated and

is shown in Figure 5.9. The elastic verification results for this problem is shown in

Figure 5.10, and the viscoelastic results in Figure 5.11.

5.2.2.2 Discussion

The correctness of LAMCREP has been verified by the elastic verification

results. The interlaminar stress a, rises dramatically toward the free edge of laminate

composites due mainly to mismatches in layer properties. This may initialize failure

by delaminations at the edges of laminate structures. For laminates made of

viscoelastic materials, the same results are obtained but with some additional time

dependent phenomena. Figures 5.7, 5.8, and 5.11 indicate that there are reductions in

the a, over time. Similar behavior was observed by Lin and Yi (Lin, K.Y. and Yi, S.,

1991) in their linear viscoelastic analysis. Results obtained here show that over a

period of approximately two months, az decreases 78 percent for the IM7/5260-H

[0/90], laminate under a of 10,000 psi, and az decreases 25 percent for the T300/5208

[90/90], laminate where a 20 percent reduction is obtained in the first 23 days. For

[90/0/-45/45], laminate, az rises in value at the free edge but with opposite sign. This

suggests that different lay-ups of laminates behave fundamentally differently and might

be favorable for different designs.

5.3 Bending of a Thick Laminated Plate

5.3.1 Description of the Problem

To further evaluate the performance of the program, the response of a thick,

simply supported laminated plate subjected to bending was analyzed. A square
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Figure 5.7 Inter laminar normal stress versus position for a [0/90], laminate of 1M7 /5260 -H
under tension (viscoelastic response).
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Figure 5.8 Interlaminar normal stress versus position for a [0/90]6 laminate of T300/5208
under tension (viscoelastic response).
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Figure 5.9 Finite element mesh for a [90/0/-45/45] laminate.
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Figure 5.10 Normalized interlaminar normal stress versus position for a [90/0/-45/45],
laminate under tension (elastic response).
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Figure 5.11 Interlaminar normal stress versus position for a [90/0/-45/45]5 laminate of
IM7/5260-H under tension (viscoelastic response).
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[0/90/0] laminate is chosen to compare with the results of an elasticity solution given

by Pagano (Pagano, N.J., 1970). The plate is simply supported along all edges and

subjected to a nonuniformly distributed pressure on the top surface. The geometries

and boundary conditions of this problem are shown in Figure 5.12 as

at x = 0, a, w = v = 0,

at y = 0, b, w = u = 0.

where u,v and w denote the displacements in x, y and z-directions respectively. The

orientations of the fibers are defined as follows: for zero degree layers, the

longitudinal direction of the fibers is parallel to the x-axis, whereas the ninety degree

layer orientation designates fibers transverse to x and parallel to the y-axis.

Only one-fourth of the plate was modeled due to the symmetry . Thus,

additional boundary conditions are imposed on the plane of symmetry in the finite

element mesh given as

at x = a./2, w = 0,

at y = b/2, u = 0.

The finite element model is meshed with nine elements in the plane and two elements

through the thickness of each ply for a total of 54 elements in the mesh (See Figure

5.13).

The pressure is sinusoidally distributed as a function of position, and can be

written as

a(x,y) = aosin- sin /1 , (5.3)
a a

where ao is intensity of the sinusoidal load. Since LAMCREP takes only concentrated

forces at nodal points, the pressure was converted into consistent element joint loads

by performing the following integration:

{Pi} = I: (Ni}iN,} Adri (5.4)

where [Pi) is the list of consistent joint loads on the loading surface of an element,
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a = aosinArc sin7tY
a a

Figure 5.12 Thick, simply supported laminated ([0/90/0]) plate subjected to bending.
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Figure 5.13 Finite element mesh for a thick, simply supported laminated plate.
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{TO is the list of the pressure values evaluated at each particular node on the loading

surface of the element (See Figure 5.14). For the 20-node isoparametric solid element

used in the program, the integration of Equation (5.4) gives the following result which

converts nonuniformly distributed pressure into consistent nodal forces

P2

P3

P4

P5

P6

P7

PS

=AB x (5.5)

137

0.01852 -0.0185 1.5E-9 -0.037 0.00926 -0.037 1.5E-09 -0.0185

-0.0185 0.1481 -0.0185 0.1111 -0.037 0.07407 -0.037 0.1111

1.5E-09 -0.0185 0.01852 -0.0185 1.5E-09 -0.037 0.00926 -0.037

-0.037 0.1111 -0.0185 0.1481 -0.0185 .1111 -0.037 0.07407

0.00926 -0.037 1.5E-09 -0.0185 0.01852 -0.0185 1.5E-09 -0.037
PS

-0.037 0.07407 -0.037 0.1111 -0.0185 0.1481 -0.0185 0.1111
P6

1.5E-09 -0.037 0.00926 -0.037 1.5E-09 -0.0185 0.01852 -0.0185
F7

-0.0185 0.1111 -0.037 0.07407 -0.037 0.1111 -0.0185 0.1481

PS
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Figure 5.14 Equivalent joint loads for distributed loading.



where A and B are as shown in Figure 5.14. For a uniformly distributed load, the

coefficients to calculate consistent joint loads are given in Figure 5.14b.

Again, an elastic analysis was performed first to verify the correctness of

program solution and adequacy of the finite element mesh for solving this problem.

The material properties used in elastic analysis are

En = 25 x 106 psi

G12 = G13 = 0.5 x 106 psi

v13 = v23 = 0.25

E22 = E33 = 1 x 106 psi

G23 = 0.2 x 106 psi

v12 = 0.01

The intensity of the sinusoidal load ao has the value of 1. Comparisons of the

program solutions and the elastic analytical solutions given by Pagano (Pagano, N.J.,

1970) are shown in Figure 5.15-5.17. As suggested by Pagano in the elasticity

analysis, the following normalizations to the stresses make the results independent of

the span-to-depth ratio and the magnitude of stress a.:

(8eziy,cy)

(cc)

1

(ax'a '1"CY0S 2 Y

1 br k

CroS k '""Yzi
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(5.5)

S= a z= z
h h

where a is the width of the plate, h is the total thickness of the plate, i.e., h = 3ho, and

S is the span-to-depth ratio, in this particular case, S = 4. In Pagano's analysis, the

distributions of ax at (a,a), C at (0,0) and T. at (0,a) were plotted through the

thickness h. Because LAMCREP calculates stresses at Gauss integration points, the

distribution of ax at (0.993a, 0.993a), TX), at (0.007,0.007) and tu at (0.007, 0.007a)

were plotted through the thickness h for the program solution. Figures 5.15 through

5.17 show that agreement with the elasticity solution is excellent.

A nonlinear viscoelastic analysis was conducted to study the time-dependent

response for bending of a thick plate. The intensity of the sinusoidal load a. was

3,500 psi for IM7/5260-H and 3,000 psi for T300/5208. The results are plotted in

Figures 5.18-5.23.
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Figure 5.15 Normalized, in-plane normal stress versus position for elastic response.
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Figure 5.16 Normalized in-plane shear stress versus position for elastic response.
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Figure 5.17 Normalized interlaminar shear stress versus position for elastic response.
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Figure 5.18 In-plane normal stress versus position for a thick, [0/90/0] laminate of
IM7/5260-H under bending (viscoelastic response).
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Figure 5.19 In-plane shear stress versus position for a thick [0/90/0] laminate of
IM7/5260-H under bending (viscoelastic response).
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Figure 5.20 Interlaminar shear stress versus position for a thick, [0/90/0] laminated plate
under bending (viscoelastic response).
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Figure 5.21 In-plane normal stress versus position for a thick, [0/90/0] laminate of
T300/5208 under bending (viscoelastic response).
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Figure 5.22 In-plane shear stress versus position for a thick, [0/90/01 laminated plate of
T300/5208 under bending (viscoelastic response).
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Figure 5.23 Interlaminar shear stress versus position for a thick, [0/90/0] laminated plate
of T300/5208 under bending (viscoelastic response).
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5.3.2 Discussion

The agreement with the analytical solution verified the adequacy of the finite

element mesh.

For the nonlinear viscoelastic analysis, stresses redistribute themselves over a

period of approximately two months. For IM7/5260-H, the peak value of ax increases

30 percent, the peak value of cy decreases 70%, and the peak value of tu increases

6.5%. For T300/5208, the peak value of ay, increases by 8 percent, the peak value of

CiLy decreases 6.6 percent, and the peak value of txz increases 10 percent in 0-degree

layer and decreases 27.8 percent in the 90-degree layer.

It is interesting to notice that for the two different materials, the transverse

shear stresses cu redistributed themselves differently. For IM7/5260-H, t a

maximum in the outer layers first, then later it becomes a maximum in the middle

layer. Whereas for T300/5208, Tiz is a maximum in the middle layer first then the

outer layer.

5.4 Tensile Loading of Notched Laminates

5.4.1 Description of the Problem

The final application considered here is the analysis of a four layer rectangular

laminated plate with a circular hole at its center. The plate is subjected to a uniaxial

tensile load as shown in Figure 5.24. An elastic analysis was performed first to verify

the accuracy of the finite element program LAMCREP. A [90/0/0/90] laminate is

chosen to compare with the results given by Nishioka and Atluri (Nishioka, T. and

Atluri, S.N., 1982) and Chen and Huang (Chen, W.H. and Huang, T.F., 1989). The

material used in the verification case is boron/epoxy laminate whose material

properties are: E1 = 30 x 106 psi; E2 = E3 = 3 x 106 psi; G12 = G13 = 023 = 106 psi; v12

= v13 = v23 = 0.336. The geometries are shown in Figure 5.24, where a denotes the

width of the square plate, R the radius of the circular hole, ho the thickness of each
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co/

Figure 5.24 A plate with a centered hole under tension.
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lamina and h the total thickness of the laminate plate, i.e., h = 4h,,. In the finite

element analysis, only one-eighth of the plate was meshed due to symmetry. The

applied load in this verification case is 1 psi. The finite element mesh is shown in

Figure 5.25. Figures 5.26-5.27 are the comparisons of the elastic results from

LAMCREP and the results published by others (Nishioka, T. and Alturi, S.N., 1982;

Chen, W.H. and Huang, T.F., 1989). In Figure 5.26 and Figure 5.27, the

circumferential stresses ae at the edge of the hole in the 0- degree ply and 90-degree

ply are plotted as functions of the angular position 0 = tan-1 y/x. Again, the agreement

between these results verifies the adequacy of the finite element mesh used for this

analysis.

A viscoelastic analysis was conducted next. A tensile stress of 6,000 psi was

applied to both materials for a time duration from t=0 to t=100,000 minute. The

circumferential stresses ae versus angle position 0 are plotted for the 0-degree ply and

the 90-degree ply at three different time steps. In addition, the interlaminar stress az

in the 0-degree ply was also examined by plotting it as a function of radial position at

various time intervals along the line 0 = 87.3 (this line passes through the element

integration points nearest the y-axis). Figures 5.28 5.30 are these results for

IM7/5260-H and Figures 5.31-5.33 for T300/5208.

5.4.2 Discussion

Both elastic and viscoelastic analysis show that for a [90/0/0/90] laminate with

a centered hole, there is no stress concentration observed in the 90-degree layers, i.e.,

the ratio of ache < 1 (Figure 5.27, 5.28 and 5.31). The stress concentrations mainly

occurred in the 0-degree layers. For the plate with the geometry chosen here (2R/a =

1/9), the peak values of (Vac, are as high as 10.5 for Boron Epoxy (Figure 5.26), 15.4

for IM7/5260-H at t = 0 (Figure 5.29), and 8.4 for T300/5208 at t = 0 (Figure 5.31).

As expected, the interlaminar stresses increase rapidly as they approach the edge of the

hole (Figure 5.33, Figure 5.34).
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Figure 5.25 Finite element mesh for a laminated ([90/0]5) plate with a circular hole under
tension.
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Figure 5.26 Normalized circumferential stress versus angular position in the 0-degree ply
for elastic response.
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Figure 5.27 Normalized circumferential stress versus angular position in the 90-degree ply
for elastic response.
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Figure 5.28 Circumferential stress versus angular position in the 90-degree ply for
viscoelastic response (IM715260-H).
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Figure 5.30 Interlaminar normal stress versus radial position in the 0-degree ply for
viscoelastic response (IM7/5260-H).
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Figure 5.31 Circumferential stress versus angular position in the 90-degree ply for
viscoelastic response (T300/5208).



50 -

30 -

a
'' 20 -

10-

-10

Material: T300/5208 Graphite/Epoxy

Load: fl,= 6,000 psi

--+-
t " 0
-a-

t - 32400 min

-A-
t - 92600 min.

0° 10° 20° 30° 40° 5(1 60' 76 80' 9(?

e

100

Figure 5.32 Circumferential stress versus angular position in the 0-degree ply for
viscoelastic response (T300/5208).
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Figure 5.33 Interlaminar normal stress versus radial position in the 0-degree ply for
viscoelastic response (T300/5208).
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It is interesting to see that the stresses around the surface of the hole have

redistributed themselves. For IM7/5260-H, the peak value of ae increases 74.5 percent

in the 0-degree layer, decreases 41 percent in the 90-degree layer, and the peak value

of interlaminar stress az decreases 30 percent over a period of approximately two

months. For T300/5208, the peak value of ae increases 5.7 percent in the 0-layer,

decreases 26.3 percent in the 90-degree layer, and the interlaminar stress az decreases

15.6 percent over a period of approximately two months. Thus, based the results

presented above, it can be concluded that the load is gradually transferred from the

plies with fibers transverse to the load to plies with fibers parallel to the load.

5.4.3 Failure Analysis

5.4.3.1 Description of the Problem

The failure process for the notched plate under tension was examined by using

the delayed failure model developed in Section 2.3. Before analyzing the problem, the

case of a [45/-45], unnotched laminate under tension was tested to check the failure

calculation of the program. In the test example, a 7,000 psi tensile load was applied

on a [45/-45]6 laminate (T300/5208) for a duration of 500 minutes. The comparison

between LAMCREP's result and the result of classic laminate theory is shown in

Figure 5.34. Both results show that all plies have failed about 70 minutes after the

load was applied.

The delayed failure in the notched plate was a very slow process. First, a

constant load of a° was applied on a [45/ -45], lamiated plate (T300/5208) with a

centered hole for a period of 60,000 minutes (about 42 days). The result show that

the failure initiated at the hole surface at the point where maximum stress occurred,

then propagated in the radial and tangential directions near the edge of the hole

(darkende area in Figure 5.35). After 60,000 minutes, only a small region of 0.5" in

the radial direction normal to the loading direction and ±10° in the tangential direction

had failed. However, the result reveals nothing more than failure initiation. To better
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Material: T300/5208 Graphite/Epoxy

2.551
.

0 10 20 30 40 50 60 70

t (min.)

Figure 5.34 Delayed failure of a [45/-45], laminate under tension.

80
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t = 2 min.

t = 6,000 min.

Figure 5.35 The predicted damage initiation in a [45/-45] laminate with a centered hole
under a constant tensile load.
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t = 185 min.
a = 3a0

t = 2,455 min.
a = 4.2a0

Figure 5.36 The predicted damage growth pattern in a [45/-45]6 laminate with a centered
hole under an increasing tensile load.
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t = 2,455 min.
a = 4.2a0

t = 3,000 min.
a = 4.2a0

Figure 5.37 The predicted damage growth pattern in a [45/-45], laminate with a centered
hole under an increasing tensile load.
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observe the failure propagation pattern of this problem, the same analysis was repeated

but with an increasing load. During the time iterations, the applied load was increased

by an increament of 20% of its original value between time steps, until some new

elements had been predicted to have failed. Figures 5.36-5.37 plot the damage

propagation profile at four different time steps.

5.4.3.2 Discussion

This application was chosen to study tensile failure of a laminated plate with a

centered hole. Both Figure 5.35 and Figure 5.36 show that failure initiated from the

edge of the hole where stress concentration occurred, then propagated in the radial and

tangential directions. In the final stage of the failure propagation, Figure 5.37 shows

that for a [45/-45], laminate, the damage propagated mainly by approximately 45

degrees from the direction normal to the loading direction. Similar results were

obtained by Chang, Lin and Chang (Chang K., Liu, S. and Chang, F., 1990) in their

numerical predictions and X-radiographs. Their X-radiograph shows that the failure

modes were dominated by matrix cracking and fiber-matrix shearing. The material

failed finally by tearing along the fiber direction.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

CONCLUSIONS

The goals of this research can be summarized as follows: establishing three

dimensional, nonlinear viscoelastic constitutive equations for orthotropic composites,

developing a finite element computer program to perform the calculations, and

revealing the time-dependent behavior of laminated composite structures by analyzing

distributions of stress and deformation developed in these structures under different

loads.

The three-dimensional nonlinear viscoelastic constitutive equations were

developed based on Lou-Schapery's one dimensional model. The transient creep

compliance in the constitutive equation was represented by an exponential series plus a

linear term. This choice resulted in the development of a recursive relation that

greatly reduces the computational effort in accounting for hereditary effects.

A three-dimensional finite element program based on the above analysis was

developed using 20-node, isoparametric solid elements to model individual plies in the

laminate. The correctness of the program was verified by performing several analyses

for which published data are available for comparison. Based on the verification

results, time-dependent behavior of selected composites was analyzed. Results

indicate that the finite element program developed in this research provides very good

results in both elastic analysis and viscoelastic analysis of orthotropic composites.

The time-dependent behavior of 1M7 /5260 -H and T300/5208 Graphite/Epoxy

was chosen to be analyzed because they are of interest for use in aircraft designs. The

information obtained concerning characteristics of time-dependent stress/deformation

states developed under long term loads, transformation of the loads between layers,

and delayed failure can be summarized as follows:

1) viscoelastic materials present time-dependent deformation under constant

tensile loads. The continuously increasing deformation may lead to failure of the
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composite structure under a long term load which did not initially exceed the ultimate

strength of the material according to an elastic analysis.

2) the strength of the material is greatly improved by the presence of the fibers.

However, results have shown that different lay-ups of laminates behave fundamentally

different. Thus, great care must be taken to make use of the full advantages of

composites and to avoid unfavorable results.

3) the stress redistributions over time are different from most common

materials, and are often very complicated and difficult to predict. The redistributions

do not always lead to a higher stress value after a period of time. This indicates that

the redistribution may change the failure mode of the composite structure due to the

growth of the stress in one direction and reduction of the stress in other directions.

This analysis was found to be capable of accurately modeling complex, three-

dimensional, time-dependent stress states.

SUGGESTIONS FOR FUTURE WORK

The analyses done so far are under a constant temperature (200°F for

IM7/5260-H, 300°F for T300/5207) and a constant applied load. The long term

durability of composite structures under cyclic load and temperature is not considered

here, but this will surely have an influence on the final results. This consideration will

extend the application of the program to the study of creep-fatigue life prediction. A

micromechanics study of delamination is possible by including nonlinear link elements

in the program to model bonding between layers. The program also needs

improvements to be user friendly. Preparation of input data files is a difficult task,

especially for a model with a large number of nodes and elements, and with complex

loads. Another idea worth trying is to combine the capabilities of this program with a

commercial FEA program for the analysis of a large scale problem, for example, an

airplane wing, by utilizing substructures.
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APPENDIX A

INSTRUCTIONS FOR PREPARING INPUT DATA FILE

Details about data in the input file are given in the following sections.

Variable names listed here are the same as the names used in the program.

A.1 Control Information

input set input parameters

1 nprob

2 title

3 npoin, nelem, nuvfx, ncase, nnode,ndofn, nmats, nreal, nprop,

ngaus, ndime, nstre, ifail.

4 tstart, tfinal, tunld, dt, error.

where

nprob: Total number of problems to be solved in one run.

title: Title of the problems to be solved in one run.

npoin: Total number of nodal points.

nelem: Total number of elements.

nuvfx: Total number of fixed nodes.

ncase: 1.

nnode: Number of nodes per element (=20).

ndofn: Number of degrees of freedom per node (=3).

nmats: Total number of different materials.

nreal: Total number of different real constants.

nprop: Number of constants per material(=45).

ngaus: Order of integration formula for numerical

integration (2 or 3).
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ndime: Number of coordinate dimensions (=3).

nstre: Number of stress components (=6).

ifail: Failure model control parameter.

ifail=1, turn on the failure model,

ifail4), turn off the failure modle.

tstart: Starting time.

tfinal: Ending time.

tunld: Time at which load will be removed.

dt: Time increment.

error: Convergence criterion.
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A.2 Geometry data

Input set Input parameters

1 dummyt

2 ipoin, coord(ipoin,1), coord(ipoin,2), coord(ipoin,3)

3 dummyt

4 numel, matno(numel), ireal(numel), lnods(numel,1),

lnods(numel,2), lnods(nume1,20).

where

dummyt: A character variable, maximum length is 20.

ipoin: Nodal point number.

coord(ipoin,1), coord(ipoin,2), coord(ipoin,3):

x, y and z coordinates of node.

numel: Element number.

matno: Material property number.

ireal: Real constant number.

lnods(numel,1), lnods(nume1,20):

1st to last nodal connection number.

Notes:

1) The character variable 'dummyt' has been set to make the input file more readable.

It can be any word or phrase containing 1 to 20 characters to explain the content of

following data. For example, in set 1, dummyt = 'nodal point:', and in set 2, dummyt

= 'elements:'.

2) Set 2 needs to be repeated for each node up to total of npoin nodes.

3) Set 4 needs to be repeated for each element up to total of nelem elements.

4) The nodal connection numbers in set 4 must be listed in an anticlockwise sequence,

starting from any corner node. See figure 5.



117

Figure A.1 A twenty-node solid element.



A.3 Constraint data

Input set Input parameters

1 dummyt

2 nofix(ivfix), ifpre(ivfix,2),ifpre(ivfix,3), ifpre(ivfix,1),

presc(ivfix,1), presc(ivfix,2), presc(ivfix,3).

where

dummyt:

nofix:

ifpre(ivfix,1),

presc(ivfix,1)

A character variable, maximum length is 20.

Restrained node number.

ifpre(ivfix,2), ifpre(ivfix,3):

Condition of restraint on x, y and z displacement,

0 = Unconstrained. 1 = nodal displacement restrained.

, presc(ivfix,2), presc(ivfix,3):

The prescribed value of the x, y and z component of nodal

displacement.

118

Example: Node 5 has been fixed in y and z direction, and it is free in x direction. In

z-direction, it has a prescribed value uz = 0.005. This condition can be input as:

5,0,1,1,0,0,0.005

Note:

Set 2 need to be repeated nufix times.
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A.4 Real constant and material property data

Input set Input parameters

1 dummyt

2 nureal,realc(nureal)

3 dummyt

4 numat, props(numat,1), props(numat,2),

, props(numat,8).

5 numat, props(numat,9), props(numat,10).

6 numat, props(numat,11),...., props(numat,14).

7 numat, props(numat,15),...., props(numat,18).

8 numat, props(numat,19),...., props(numat,22).

9 numat, props(numat,23),...., props(numat,26).

10 numat, props(numat,27),...., props(numat,30).

11 numat, props(numat,31),...., props(numat,33).

12 numat, props(numat,34),...., props(numat,36).

13 numat, props(numat,37),...., props(numat,41).

14 numat, lamtt(numat,ir),lamts(numat,ir).

15 numat, dtr(numat,ir),dts(numat,ir).

where

dummyt: A character variable, maximum length is 20.

nureal: Real constant identification number.

realc: The angle of the fiber specified in global coordinates x, y, and z.

See figure 6.

numat: Material identification number.

prop(numat,1): Young's modulus El (fiber direction).

prop(numat,2): Young's modulus E2 (transverse direction).

prop(numat,3): Shear modulus G12.

prop(numat,4): Poisson's ratio v12.

prop(numat,5): Poisson's ratio v23.
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prop(numat,6): Em, Young's modulus for the matrix material.

prop(numat,7): vm, Poisson's ratio for the matrix material.

prop(numat,8): itype, type of element. 3: linear elastic element. 4: element with creep

nonlinearities.

prop(numat,9): Dft.

prop(numat,10): Dts.

prop(numat,11): bOt.

prop(numat,12): blt.

prop(numat,13): b2t.

prop(numat,14): bt.

prop(numat,15): bOs.

prop(numat,16): bls.

prop(numat,17): b2s.

prop(numat,18): bs.

prop(numat,19): kOt.

prop(numat,20): klt.

prop(numat,21): k2t.

prop(numat,22): kt.

prop(numat,23): kOs.

prop(numat,24): kls.

prop(numat,25): k2s.

prop(numat,26): ks.

prop(numat,27): g023.

prop(numat,28)-prop(numat,30): Thermal coefficients, alf(1), alf(2), alf(3).

prop(numat,31): Current temperature, temp.

prop(numat,32): Reference temperature, tempo.

prop(numat,33): nr, an integer constant used in later property input.

prop(numat,34): dl 1, coefficient used to reduce value of El for a particular element

which has failed.

prop(numat,35): d22, coefficient used to reduce value of E2 for a particular element
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Figure A.2 The angle of fiber defined in global X,Y plane, and relative to X-direction.
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which has failed.

prop(numat,36): d12, coefficient used to reduce value of G12 for a particular element

which has failed.

prop(numat,37): X, ply strength in El direction.

prop(numat,38): a, material constant used in calculation of rupture time.

prop(numat,39): b, material constant used in calculation of rupture time.

prop(numat,40): ks12, material constant used in failure equation.

prop(numat,41): ks23, material constant used in failure equation.

lamtt, lamts:

drt, drs:

Nonlinear creep parameters in transverse and shear direction

respectively.

Nonlinear creep parameters in transverse and shear direction

respectively.

Notes:

1) To fully define one group of material properties, all 41 constants, lamtt(ir),

lamts(ir), drt(ir), and drs(ir) must be input.

2) lamtt, lamts, drt and drs are array constants. The dimensions of the arrays have

been input earlier in data set 37 of this part.
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A.5 Load data

Input set Input parameters

1 dummyt

2 iplod

3 lodpt, point(1), point(2), point(3)

where

dummyt: Character variable, maximum length is 20.

iplod: Applied point load control parameter, iplod4, no applied nodal loads to

be input. iplod=1, applied nodal loads to be input.

lodpt: Node number at which load has been applied.

point(1): Load component in x direction.

point(2): Load component in y direction.

point(3): Load component in z direction.

Example: 100 lb point load is applied at nodal point 1,

then:

1,100,0,0

Notes:

1) The last node number should be that for the highest numbered node whether it is

loaded or not.

2) If iplod=0 in set 2, omit set 3.
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A.6 Output table

Input set Input parameters

1. dummyt

2. iprtrs,iprtrn,iprdis,iprforc

3. notrs

4. noeltrs(1),noeltrs(2), noeltrs(notrs).

5. notrn

6. noeltrn(1),noeltrn(2) noeltrn(notrn).

7. nodis

8. nodisp(1),nodisp(2), nodisp(nodis).

where

dummyt: A character variable, maximum length is 20.

iprtrs: Stress output control parameter.

iprtrs = 1, element stress components to be printed.

iprtrs = 0, no element stress components to be printed.

iprtrn: Strain output control parameter.

iprtrn = 1, element stress components to be printed.

iprtrn = 0, no element stress components to be printed.

iprdis: Displacement output control parameter.

iprdis = 1, nodal displacements to be printed.

iprdis = 0, no nodal displacements to be printed.

iprforc: Reaction force output control parameter.

iprforc = 1, reaction forces to be printed.

iprforc = 0, no reaction forces to be printed.

notrs: Total number of elements at which stresses are to be printed.

noeltrs: Specified element numbers at which stresses are to be printed.

If notrs = nelem, the total elements defined in current mesh, ignore data

in this set.
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notrn: Total number of elements at which strains are to be printed.

noeltrn: Specified element numbers at which strains are to be printed.

If notrn = nelem, the total elements defined in current mesh, ignore

data in this set.

nodis: Total number of nodes at which displacements are to be printed.

nodisp: Specified nodal numbers at which displacements are to be printed.

If nodis = npoin, the total nodal points defined in current mesh, ignore

data in this set.

Notes:

1) The average strains of all elements are always to be printed for the specified time

steps.

2) The Strains and stresses to be printed in this part are the element strains and

element stresses. Strains were calculated in global Cartesian coordinate directions.

Stresses were calculated in both global Cartesian coordinates and material directions.
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A.7 Sample Input File

1

failure testing case, sigx=7,500 psi, [45/-45]s
56,4,40,1,20,3,1,4,12,2,3,6,1
0.0,300.0,350.,1,0.0
001
nodal points:
1,0,0,0
2,0,10,0
3,0,20,0
4,10,20,0
5,20,20,0
6,20,10,0
7,20,0,0,
8,10,0,0
9,0,0,0.0025
10,0,20,0.0025
11,20,20,0.0025
12,20,0,0.0025
13,0,0,0.005
14,0,10,0.005
15,0,20,0.005
16,10,20,0.005
17,20,20,0.005
18,20,10,0.005
19,20,0,0.005
20,10,0,0.005 / /////
21,0,0,0.0075 0
22,0,20,0.0075
23,20,20,0.0075
24,20,0,0.0075
25,0,0,0.01
26,0,10,0.01
27,0,20,0.01
28,10,20,0.01
29,20,20,0.01
30,20,10,0.01 Figure A.3 One-fourth of an 8-layer laminated composite.
31,20,0,0.01
32,10,0,0.01
33,0,0,0.0125
34,0,20,0.0125
35,20,20,0.0125
36,20,0,0.0125

UY = 0

UX B 0

UZ = 0
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37,0,0,0.015
38,0,10,0.015
39,0,20,0.015
40,10,20,0.015
41,20,20,0.015
42,20,10,0.015
43,20,0,0.015
44,10,0,0.015
45,0,0,0.0175
46,0,20,0.0175
47,20,20,0.0175
48,20,0,0.0175
49,0,0,0.02
50,0,10,0.02
51,0,20,0.02
52,10,20,0.02
53,20,20,0.02
54,20,10,0.02
55,20,0,0.02
56,10,0,0.02
elements:
1,1,1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
2,1,2,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32
3,1,3,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44
4,1,4,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56
restrained nodes:
1,1,1,1,0.,0.,0.
2,1,0,1,0.,0.,0.
3,1,0,1,0.,0.,0.
4,0,0,1,0.,0.,0.
5,0,0,1,0.,0.,0.
6,0,0,1,0.,0.,0.
7,0,1,1,0.,0.,0.
8,0,1,1,0.,0.,0.
9,1,1,0,0.,0.,0.
10,1,0,0,0.,0.,0.
13,1,1,0,0.,0.,0.
14,1,0,0,0.,0.,0.
15,1,0,0,0.,0.,0.
21,1,1,0,0.,0.,0.
22,1,0,0,0.,0.,0.
25,1,1,0,0.,0.,0.
26,1,0,0,0.,0.,0.
27,1,0,0,0.,0.,0.
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33,1,1,0,0.,0.,0.
34,1,0,0,0.,0.,0.
37,1,1,0,0.,0.,0.
38,1,0,0,0.,0.,0.
39,1,0,0,0.,0.,0.
45,1,1,0,0.,0.,0.
46,1,0,0,0.,0.,0.
49,1,1,0,0.,0.,0.
50,1,0,0,0.,0.,0.
51,1,0,0,0.,0.,0.
12,0,1,0,0.,0.,0.
20,0,1,0,0.,0.,0.
19,0,1,0,0.,0.,0.
24,0,1,0,0.,0.,0.
32,0,1,0,0.,0.,0.
31,0,1,0,0.,0.,0.
36,0,1,0,0.,0.,0.
44,0,1,0,0.,0.,0.
43,0,1,0,0.,0.,0.
48,0,1,0,0.,0.,0.
56,0,1,0,0.,0.,0.
55,0,1,0,0.,0.,0.
real constant:
1,45.
2,45.
3,-45.
4,-45.
material group:
1,19.17d6,1.368d6,.9297d6,0.273,0.273,7.5d5,0.4,4
1,7.102d-13,9.391d-13
1,0.,932.6.,0.,932.6.
1,1748.,1049.,1049.,2103.
1,0.,6.033d-04,0.,-1.703d-03
1,3.537d-05,6.75d-05,8.55d-04,-2.344d-04
1,1.,0.0000001,0.000015,0.000015
1,75.,75.,6
1,.4,.2,.2
1,195600.,6800.,544.,.65,.65
1,1.861,2.097
1,0.1128,0.1251
1,0.01184,0.01309
1,0.001523,0.001682
1,0.000243,0.000267
1,0.0000368,0.00003955
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1,9.522d-09,2.297d-08
1,9.453d-09,1.835d-08
1,1.641d-08,2.916d-08
1,2.680d-08,4.346d-08
1,4.134d-08,6.299d-08
1,8.915d-08,12.51d-08
nodel force
1,0,0,0
7,62.49997,0,0
5,62.49997,0,0
19,124.9988,0,0
17,124.9988,0,0
31,124.9988,0,0
29,124.9988,0,0
43,124.9988,0,0
41,124.9988,0,0
55,62.49997,0,0
53,62.49997,0,0
6,-249.998,0,0
12,-249.998,0,0
11,-249.998,0,0
18,-499.995,0,0
24,-249.998,0,0
23,-249.998,0,0
30,-499.995,0,0
36,-249.998,0,0
35,-249.998,0,0
42,-499.995,0,0
48,-249.998,0,0
47,-249.998,0,0
54,-249.998,0,0
56,0,0,0
output table:
1,1,0,0
4
4
END



APPENDIX B

COMMON BLOCKS AND DIMENSIONS OF ARRAY VARIABLES

common/contro/npoin,nelem,nnode,ndofn,ndime,nstre,ngaus,
nprop,nmats,nvfix,nevab,icase,ncase,itemp,iprob,nprob,
ifail,nreal

common/contro2/tstart,tfinal,tunld,dt,error

common/lgdata/coord(mpoin,ndime),realc(nreal),props(raats,nprop),
presc(mvfix,ndofn),asdis(ntotv),eload(melem,nevab),strin(nstre,
ntotg),nofix(mvfix),ifpre(mvfix,ndofn),1nods(melem,nnode),matno
(melem),eloadn(melem,nevab),ireal(melem)

common/work/elcod(ndime,nnode),shape(nnode),deriv(ndime,nnode),
dmatx(nstre,nstre),cartd(ndime,nnode),dbmat(nstre,nevab),bmatx
(nstre,nevab),smatx(nstre,nevab,ngasp),gpcod(ndime,ngasp),neror
(24),dsmatx(nstre,nevab,ngasp)

common/crepin/g2t(ngasp,melem),g2told(ngasp,melem),g2s(ngasp,
melem),dsit(ngasp,melem),dsis(ngasp,melem),gamt(5,ngasp,melem).
gams(5,ngasp,melem),g2sold(ngasp,melem),qs1(ngasp,melem),qs2
(ngasp,melem),qs3(ngasp,melem),qs4(ngasp,melem),qs5(ngasp,melem),
qs6(ngasp,melem),qr1(5,ngasp,melem),qr2(5,ngasp,melem),qr3(5,
ngasp,melem),qr4(5,ngasp,melem),qr5(5,ngasp,melem),c1r6(5,ngasp,
melem),sig(6,ngasp,melem),sigold(6,ngasp,melem)

common/creep/qrlold(5,ngasp,melem),qr2old(5,ngasp,melem),qr3old
(5,ngasp,melem),qr4old(5,ngasp,melem),qr5old(5,ngasp,melem),
qr6old(5,ngasp,melem),gamto(5,ngasp,melem),gamso(5,ngasp,melem),
sigvold(nstre,ngasp,melem)

common/creep2/qslold(ngasp,melem),qs2old(ngasp,melem),qs3old(ngasp,

melem),qs4old(ngasp,melem),qs5old(ngasp,melem),qs6old(ngasp,
melem),dsitold(ngasp,melem),dsisold(ngasp,melem),g2tvold(ngasp,
melem),g2svold(ngasp,melem)

common/tmatx/to(nstre,nstre,melem),tde(nstre,ngasp,melem)

common/add/tfact(melem),kfact(melem)

common/print/iprtrs,iprtrn,iprdiss,iprforc,noeltrs(melem),noeltrn
(melem),nodisp(mpoin),notrs,notrn,nodis

where
mpoin:

ndime:
mmats:
nprop:

mvfix:
ndofn:
ntotv:

melem:
nevab:
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The maximum number of nodal points for which the program is
to be dimensioned.
Number of coordinate components.
Maximum number of material sets.
The number of material parameters required to define the
characteristics of a material completely.
Maximum number of fixed nodes.
The number of degrees of freedom per nodal point.
Number of total variables in the structure.
ntotv = mpoin*ndfon.
Maximum number of elements.
Number of variables per element.
nevab = nnode*ndofn.



nstre:
ngasp:

Number of stress components at any point.
Total number of Gauss points per element.
ngasp = ngaus*ngaus*ngaus, where ngaus is the order
of the Gauss integration adopted.
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The dimension statement and the local arrays in subroutine FRONT
are listed below.

DIMENSION fixed(mpoin*mdofn),equat(mfron),vecrv(mpoin*mdofn),
gload(mfron),gstif(mstif),estif(mevab,mevab),detau
(mpoint*mdofn),iffix(mpoin*mdofn),nacva(mfron),locel
(mevab),ndest(mevab)

where
mdofn: The maximum number of degrees of freedom per node for which

the program is to be dimensioned.
mevab: The maximum number of nodal variables per element for which

the program is to be dimensioned.
mfron: The maximum permissible number of variables (degrees of

freedom) allowed in the front.
mstif: The maximum permissible number of positions in the one-

dimensional global stiffness array.

After the maximum frontwidth MFRON is defined, the maximum space
required in the global stiffness array, GSTIF, can be calculated for a
given maximum frontwidth as follows

MSTIF = MFRON*(MFRON+1)/2.
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APPENDIX C

LIST OF THE FINITE ELEMENT PROGRAM

PROGRAM lamcrep3
***********************************************************************

This program can be used to solve nonlinear creep problem in
three-dimensional analysis. A 3-d isoparamtic element has been *
employed in the program.

***********************************************************************
include 'pres.inc'
include 'globe.inc'
include 'fail.inc'
common/fail2/dforc,newfe
character*11 resultl,result2,sdate,stime
dimension title(12)

c
open(25,file='data.dat',status='old')
open(26,file='creep.out',status='unknown')
open(1,status='scratch',form='unformatted')
open(2,status='scratch',form='unformatted')
open(3,status='scratch',form='unformatted')
open(4,status='scratch',form='unformatted')
open(7,status='scratch',form='unformatted')
open(9,file='data.out',status='unknown')
open(10,file='stress.out',status='unknown')
open(11,file='disp.out',status='unknown')
open(12,file='strain.out',status='unknown')
open(13,file='inform.dat',status='unknown')

c
c********* record the beginning time **********

call date(result1)
call time(result2)

c**********************************************
c
c**** read information from file 'data.dat'

read(25,*) nprob
900 format(i5)

write(9,905) nprob
905 format(lh ,5x,'Total no. of problems =',i5)

do 20 iprob= l,nprob
read(25,910) title

910 format(12a6)
write(26,915) iprob,title
write(10,915) iprob,title
write(9,915) iprob,title
write(12,915) iprob,title

915 format(//,6x,12hProblem No. ,i3,10x,12a6)
c
c*** call the subroutine which reads most of
c the problem data
c

write(13,*)'Read input data
call input
ntotv=npoin*ndofn

c**** initialize variables before time iterations ***********



write(13,*)'Initialize variables....'
do 5 i=1,ntotv

5 asdis(ntotv)=0.0
err=1.0
kf=0
dforc=1.
newfe=0
call initial
do 10 icase=1,ncase

c**** write headers in the output files
write(26,987)
write(10,907)
write(11,988)
write(12,986)

c***** begin time iterations***************************
ptime=0.
it=0

920 continue
it=it+1
write(26,1001) ptime
write(10,1001) ptime
write(11,1001) ptime
write(12,1001) ptime

1001 format('t=',f14.2)
986 format (/,7x,' XX-STRAIN',3x,

1 'YY-STRAIN',3x,'ZZ-STRAIN',3x,'YZ-STRAIN',3x,'XZ-STRAIN',3x,
2 'XY-STRAIN')

987 format (/,' TIME',2x,' XX-STRAIN',3x,
1 'YY-STRAIN',3x,'ZZ-STRAIN',3x,'YZ-STRAIN',3x,'XZ-STRAIN',3x,
2 'XY-STRAIN')

907 format (4x,'11-STRESS',3x,
1 '22-STRESS',3x,'33-STRESS',3x,'23-STRESS',3x,'13-STRESS',3x,
2 '12-STRESS'/)

988 format(lx,'Displacements'//,6x,4hnode,5x,7hx-disp.,
,7x,7hy-disp.,7x,7hz-disp./)
ic=0

4 continue
ic=ic+1
rewind 1
rewind 2
rewind 3
rewind 4
rewind 7

c*** next create the element stiffness file,
write(13,*)'Forming element stifness
call stife(ptime,ic)

c
c*** Merge and solve the resulting equations

by the frontal solver
c

write(13,*)'Solving the equations
call front (err)

c
c*** Compute the stresses in all the elements,
c

call stress(ptime,err,kf,it)
if (ic.ge.15) then
write(26,*)'Nonconverging problem! ic=',ic
write(26,*)'error=',err
write(13,*)'Nonconverging problem! ic=',ic
write(13,*)'error=',err
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close (1)
close (2)
close (3)
close (4)
close (7)
close (9)
close(10)
close(11)
close(12)
close(25)
close (26)
stop
endif
write(13,990)ptime,it,ic,err

990 format(4x,'time=',f12.2,' at time step=',i4/
' iteration no',i3,' completed.',' error=',e12.4)

if(err.gt.error) go to 4
c write(26,1000)ic,ptime,err

write(13,1000)ic,ptime,err
1000 format(' Problem converged at iteration',i2,2x,'t=',f8.2/,

error=',e12.4//)
if(kf.eq.1) then
write(26,*)'****** All plays have failed *******'
go to 9000
endif

c if(ptime.ge.10.) dt=10.
dt=1.2*dt
ptime=ptime+dt
if(ptime.le.tfinal) then

c ptime=ptime+dt
go to 920

endif
10 continue
20 continue

9000 continue
c******record the ending time************

sdate=result1
stime=result2
call date(result1)
call time(result2)
write(26,7000)sdate,stime
write(26,8000)resultl,result2

7000 format(' Program began at ',a11,a11)
8000 format(' Program stop at ',a11,a11)

close (1)
close (2)
close (3)
close (4)
close (7)
close (9)
close(10)
close(11)
close(12)
close (25)
close (26)
stop ' ******** Program completed ********'
end
subroutine input
include 'pres.inc'
character*8 selers,selern,seledis
double precision lamtt,lamts
include 'globe.inc'
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include 'constl.inc'
include 'print.inc'
dimension title(12),point(3)
data anode/4hnode/
data al1/3hall/
data sele/4hsele/

c********************************************************************
c* this subroutine reads information form the file named data.dat. *
c********************************************************************
c*** read the first data card, and echo it
c immediately,
c

read(25,*) npoin,nelem,nvfix,ncase,
, nnode,ndofn,nmats,nreal,nprop,ngaus,ndime,nstre
ifail
read(25,*)tstart,tfinal,tunld,dt,error
nevab=ndofn*nnode
write(9,905) npoin,nelem,nvfix,ncase,

, nnode,ndofn,nmats,nreal,nprop,ngaus,ndime,
, nstre,nevab,ifail,tstart,tfinal,tunld,dt,error

905 format(//8h npoin =,i4,4x,8h nelem =,i4,
, 4x,8h nvfix =,i4,4x,8h ncase =,i4,4x,
, 8h nnode =,i4,4x/,8h ndofn =,i4,4x,
, 8h nmats =,i4,4x,8h nreal =,i4,4x,
, 8h nprop =,i4,4x,8h ngaus =,14,4x,/
, 8h ndime =,i4,4x,8h nstre =,i4,4x,
, 8h nevab =,i4,4x,8h ifail =,i4,4x,//
, 8h tstar =,f5.1,3x,8h tfina =,f12.1,2x,
, 7htunld =,f12.1,1x,5h dt =,f5.2,3x,/
, 8h error = ,e10.4/)
call checkl

c*** zero all the nodal coordinates, prior
c to reading some of them,
c

do 20 ipoin=1,npoin
do 20 idime=1,ndime

20 coord(ipoin,idime)=0.0
c
c*** read some nodal coordinates, finishing
c with the last node of all,
c

c

read(25,926)dummyt
926 format(a20)

write(9,920)
920 format(//25h nodal point coordinates)

write(9,925)
925 format(6h node,7x,lhx,9x,lhy,9x,lhz)
30 read(25,*) ipoin,(coord(ipoin,idime),

, idime=1,ndime)
930 format(i5,5f10.5)

if(ipoin.ne.npoin) go to 30

40 continue
do 50 ipoin=1,npoin

50 write(9,935) ipoin,(coord(ipoin,idime),
, idime= l,ndime)

935 format(lx,i5,3f10.3)
c
c*** read the element nodal connections, and
c the property numbers,
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C
read(25,926)dummyt
write (9,2005) (anode,i,i=1,nnode)

2005 format(///40hELEMENT INFORMATIO N
1 ///17hELEM. PROP. REAL.
2 lx,8(a4,i1,3x)/18x,a4,i1,3x,7(a4,i2,2x)/
3 18x,8(a4,i2,2x))
do 3000 ielem=1,nelem
read(25,*)numel,matno(numel),ireal(numel),(1nods(numel,inode),

linode=1,nnode)
3000 write (9,2004) numel,matno(numel),ireal(numel),

1 (lnods(numel,inode),inode=1,nnode)

2004 format( /i4,lx,i3,lx,i4,2x,i4,7(4x,i4)/
1 15x,i4,7(4x,i4)/15x,i4,7(4x,i4))

C
c*** read the fixed values,

read(25,926)dummyt
write(9,940)

940 format(//17h RESTRAINED NODES)
write(9,945)

945 format(5h node,lx,4hcodf,6x,
, 12hfixed values)
do 80 ivfix=1,nvfix
read(25, *) nofix(ivfix),(ifpre(ivfix,

, idofn),idofn=1,ndofn),(presc(ivfix,
, idofn),idofn=1,ndofn)

80 write(9,955) nofix(ivfix),(ifpre(ivfix,
, idofn),idofn-1,ndofn),(presc(ivfix,
, idofn),idofn=1,ndofn)

955 format(lx,i4,2x,3i1,3f10.6)
c 90 continue
C
c*** read the real constant and available selection of element

properties,
c

read(25,926)dummyt
write(9,*)' Table of real constants'
do 99 irel= 1,nreal
read(25,*)nureal,realc(nureal)
write(9,927)nureal,realc(nureal)

927 format(lx,'Real constant',i3,' =', f7.2)
99 continue

read(25,926)dummyt
write(9,960)

960 format(//21h Material properties)
write(9,965)

965 format(6hnumber,2x,10hProperties,
e,et,g,v,vt,em,vm,itype:')

do 100 imats=1,nmats
read(25,*) numat,(props(numat,iprop),

, iprop=1,8)
write(9,970) numat,(props(numat,iprop),

, iprop=1,8)
970 format( lx,i2,2x,7(e8.2,1x),f6.2,2x,i1)

c*******iprop9-10:dft,dfs
read(25,*)numat,(props(numat,iprop),iprop=9,10)
write(9,975)(props(numat,iprop),iprop=9,10)

975 format(lh dft =',e10.3/,
lh dfs -,,e10.3/)

c*******iprop11-14:b0t,b1t,b2t,bt
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read(25,*)numat,(props(numat,iprop),iprop=11,14)
write(9,976)(props(numat,iprop),iprop=11,14)

976 format(lh bOt =',e10.3/,
lh bit =',e10.3/,
lh b2t =',e10.3/,
lh bt =',e10.3/)

c*******iprop15-18:b0s,b1s,b2s,bs
read(25,*)numat,(props(numat,iprop),iprop=15,18)
write(9,977)(props(numat,iprop),iprop-15,18)

977 format(lh bOs -',e10.3/,
lh bls =',e10.3/,
lh b2s =',e10.3/,
lh bs =',e10.3/)

c*******iprop19-22:k0t,k1t,k2t,kt
read(25,*)numat,(props(numat,iprop),iprop=19,22)
write(9,978)(props(numat,iprop),iprop=19,22)

978 format(lh kOt =',e10.3/,
lh kit =',e10.3/,
lh k2t =',e10.3/,
lh kt =',e10.3/)

c*******iprop23-26:k0s,k1s,k2s,ks
read (25, *) numat, (props (numat, iprop) , iprop=23, 26)
write(9,979)(props(numat,iprop),iprop=23,26)

979 format(lh kOs =',e10.3/,
ih kls =',e10.3/,
ih k2s =',e10.3/,
lh ks =',e10.3/)

c******* iprop27-30:g023,alf(1),alf(2),alf(3)
read(25,*)numat,(props(numat,iprop),iprop=27,30)
write(9,1055)(props(numat,iprop),iprop=27,30)

1055 format(lh ,'g023 =',e10.3/,
lh ,'alf(1),alf(2),alf(3)=',3(e10.3,2x)/)

c*******iprop31-33:temp,tempo,nr
read(25,*)numat,(props(numat,iproP),

, iprop=31,33)
nr=int(props(numat,33))
write(9,995) (props(numat,iprop),
/ iprop=31,32),nr

c********temp,tempo,nr
995 format(lh ,4x,25htemp =,f10.3/,

lh ,4x,25htempo(reference temp.) =,f10.3/,
lh ,4x,25hnr =,i10/)

c********iprop34-36:d11,d22,d12
read(25,*)numat,(props(numat,iprop),

, iprop=34,36)
write(9,996)(props(numat,iprop),
/ iprop=34,36)

996 format(lh ,4x,25hd11 =,f10.3/,
lh ,4x,25hd22 =,f10.3/,
lh ,4x,25hd12 =,f10.3/)

c*******iprop37-41:x,y,s12,s13,s23
read(25,*)numat,(props(numat,iprop),iprop=37,41)
write(9,994)(props(numat,iprop),iprop=37,41)

994 format(lh x =',e10.3/,
lh y =',e10.3/,
lh ,'s12 =',e10.3/,
lh ,'s23 =',e10.3/,
ih ,'s13 =',e10.3/)

c************input creep costants ********************
write (9, 980)

980 format(15hcreep constants)
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do 985 ir=1,nr
read(25,*)numat,lamtt(numat,ir),lamts(numat,ir)

985 write(9,1100)ir,lamtt(numat,ir),lamts(numat,ir)
1100 format(lh ,'nr=',i2,2x/,' lamtt,lamts:'/,

5x,2(e12.5)/)
do 990 ir=1,nr
read(25,*)numat,dtr(numat,ir),dsr(numat,ir)

990 write(9,1150)ir,dtr(numat,ir),dsr(numat,ir)
1150 format(lh ,'nr= ',i2,2x /,'dtr,dsr:' /,

5x,2(e12.5)/)
991 continue
100 continue

c******************************************************
c**** input external nodal loads

do 2000 ielem=1,nelem
do 2000 ievab=1,nevab

2000 eloadn(ielem,ievab)=0.0
read(25,2100) title

2100 format(12a6)
write(9,2200) title

2200 format(lh ,12a6)
c
c*** read data controlling loading types
c to be input
c

read(25,*) iplod,igrav,iedge,itemp
write(9,2300) iplod,igrav,iedge,itemp

2300 format(4i5)
c
c*** read nodal point loads
c

if(iplod.eq.0) go to 5000
21 read(25,*) lodpt,(point(idofn),idofn=

, 1,ndofn)
write(9,2400) lodpt,(point(idofn),idofn=

, 1,ndofn)
2400 format(i5,3f15.5)

c
c*** associate the nodal point loads with
c an element
c

do 2500 ielem=1,nelem
do 2500 inode=1,nnode
nloca=lnods(ielem,inode)
if(lodpt.eq.nloca) go to 41

2500 continue
41 do 51 idofn=1,ndofn

ngash=(inode-1)*ndofn+idofn
51 eloadn(ielem,ngash)=point(idofn)

if(lodpt.lt.npoin) go to 21
5000 continue

c if(igray.eq.0) go to 6000
c 6000 continue
c if(iedge.eq.0) go to 7000
c 7000 continue
c if(itemp.eq.0) go to 8000
8000 continue
2700 continue
1005 format(1x,i4,5x,6e10.2/(9(10x,6e10.2/)))

c**********************************
c* set up output tables
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c**********************************
read(25,926)dummyt
read(25,*)iprtrs,iprtrn,iprdis,iprforc
if(iprtrs.eq.0) go to 8100
read(25,*)notrs
if(notrs.eq.nelem) then
do 8050 i=1,notrs

8050 noeltrs(i)-i
else
read(25,*)(noeltrs(i),i=1,notrs)
endif

8100 if(iprtrn.eq.0) go to 8200
read(25,*)notrn
if(notrn.eq.nelem) then
do 8150 i=1,notrn

8150 noeltrn(i)=i
else
read(25,*)(noeltrn(i),i=1,notrn)
endif

8200 if(iprdis.eq.0) go to 8300
read(25,*)nodis
if(nodis.eq.npoin) then
do 8250 i=1,npoin

8250 nodisp(i) =i
else
read(25,*)(nodisp(i),i=1,nodis)
endif

8300 if(iprforc.eq.0)go to 8400
c*
8400 continue

call check2
return
end
subroutine checkl

c
c*** to criticize the data control card and
c print any diagnostics
c

include 'pres.inc'
include 'globe.inc'

do 10 ieror=1,24
10 neror(ieror)=0

c
c*** create the diagnostic messages
c

if(npoin.le.0) neror(1)=1
if(nelem*nnode.lt.npoin) neror(2)=1
if(nvfix.lt.l.or.nvfix.gt.npoin) neror(3)=1
if(ncase.le.0) neror(4) =1

c if(ntype.lt.0.or.ntype.gt.3) neror(5)=1
if(nnode.lt.3.or.nnode.gt.20) neror(6)=1
if(ndofn.lt.2.or.ndofn.gt.3) neror(7)=1
if(nmats.le.O.or.nmats.gt.nelem) neror(8)=1
if(nprop.lt.3.or.nprop.gt.41) neror(9) =1
if(ngaus.lt.2.or.ngaus.gt.4) neror(10)=1
if(ndime.lt.l.or.ndime.gt.3) neror(11)=1
if(nstre.it.2.or.nstre.gt.6) neror(12)=1

c
c*** either return,or else print the errors
c diagnosed
c
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keror=0
do 20 ieror=1,12
if(neror(ieror).eq.0) go to 20
keror=1
write(26,900) ieror

900 format(//24h *** diagnosis by checkl,
, 6h error,i3)

20 continue
if(keror.eq.0) return

c*** otherwise echo all the remaining data
c without further comment

call echo
end
subroutine echo
include 'pres.inc'
include 'globe.inc'
dimension ntitl(80)
write(26,900)

900 format(//25h now follows a listing of,
, 25h post-disaster data cards!)

10 read(25,905) ntitl
905 format(80a1)

write(26,910) ntitl
910 format(20x,80a1)

go to 10
end
subroutine check2
include 'pres.inc'
include 'globe.inc'
dimension ndfro(400)

c
c*** to criticize the data from subroutine input

mfron=720

write(13,*)'Checking
c*** check against two identical nonzero
c nodal coordinates

do 10 ielem=1,nelem
10 ndfro(ielem)=0

do 40 ipoin=2,npoin
kpqin=ipoin-1
do 30 jpoin=1,kpqin
do 20 idime=1,ndime
if(coord(ipoin,idime).ne.coord(jpoin,

, idime)) go to 30
20 continue

neror(13)=neror(13)+1
30 continue
40 continue

c*** check the list of element property numbers

do 50 ielem=1,nelem
50 if(matno(ielem).1e.0.or.matno(ielem).gt.

, nmats) neror(14)=neror(14)+1

c*** check for impossible node numbers
c
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do 70 ielem=1,nelem
do 60 inode=1,nnode
if(lnods(ielem,inode).eq.0) neror(15)=

, neror(15)+1
60 ifanods(ielem,inode).1t.O.or.lnods(ielem,

, inode).gt.npoin) neror(16)=neror(16)+1
c write(26,*)'nerorl6=',neror(16),ielem,inode

70 continue

c*** check for any repetition of a node
c number within an element

do 140 ipoin=1,npoin
kstar=0
do 100 ielem=1,nelem
kzero=0
do 90 inode=1,nnode
if(lnods(ielem,inode).ne.ipoin) go to 90
kzero=kzero+1
if(kzero.gt.1) neror(17)=neror(17)+1

c write(26,*)'nerorl7=',neror(17),ielem,inode,ipoin

c*** seek first, last and intermediate
c appearances of node ipoin

if(kstar.ne.0) go to 80
c

kstar=ielem

c*** calculate increase or decrease in
c frontwidth at each element stage
c

ndfro(ielem)-ndfro(ielem)+ndofn
80 continue

c
c*** and change the sign of the last
c appearance of each node
c

klast=ielem
nlast=inode

90 continue
100 continue

if(kstar.eq.0) go to 110
if(klast.lt.nelem) ndfro(klast+1)=

, ndfro(klast+1)-ndofn
lnods(klast,nlast)=-ipoin
go to 140

c
c*** check that coordinates for an unused
c node have not been specified

110 write(26,900) ipoin
900 format(/15h check why node,i4,

, 14h never appears)
neror(18)=neror(18)+1
sigma=0.0
do 120 idime=1,ndime

120 sigma=sigma+abs(coord(ipoin,idime))
if(sigma.ne.0.0) neror(19)-neror(19)+1

c*** check that an unused node number is not
c a restrained node
c
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do 130 ivfix=1,nvfix
130 if(nofix(ivfix).eq.ipoin) neror(20)=

, neror(20)+1
140 continue

c*** calculate the largest frontwidth
c

nfron=0
kfron=0
do 150 ielem=1,nelem
nfron=nfron+ndfro(ielem)

150 if(nfron.gt.kfron) kfron =nfron
write(26,905) kfron
write(13,905) kfron

905 format(//30h Max frontwidth encountered =,i15)
if(kfron.gt.mfron) neror(21)=1

c*** continue checking the data for the
c fixed values

do 170 ivfix=1,nvfix
if(nofix(ivfix).1e.0.or.nofix(ivfix)

, .gt.npoin) neror(22)=neror(22)+1
kount=0
do 160 idofn=1,ndofn

160 if(ifpre(ivfix,idofn).gt.0) kount=1
if(kount.eq.0) neror(23)=neror(23)+1
kvfix=ivfix-1
do 170 jvfix=1,kvfix

170 if(ivfix.ne.l.and.nofix(ivfix).eq.
, nofix(jvfix)) neror(24)-neror(24)+1
keror=0
do 180 ieror=13,24
if(neror(ieror).eq.0) go to 180
keror=1
write(26,910) ieror,neror(ieror)

910 format(//30h*** diagnosis by check2, error,
, i3,6x,18h associated number,i5)

180 continue
if(keror.ne.0) go to 200

c
c*** return all nodal connection numbers to
c positive values
c

do 190 ielem=1,nelem
do 190 inode=1,nnode

190 lnods(ielem,inode)=iabs(lnods(ielem,inode))
return

200 call echo
end
subroutine initial
include 'pres.inc'
include 'globe.inc'
include 'crpin.inc'
include 'fail.inc'

c common/add2/strain(6,27,40),sigb(6,27,40)
c**********************************************************************
c this subroutine is used to initialize variables for nonlinear *

analysis
c *

c************initialize variables************************************
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lint=ngaus*ngaus*ngaus
do 20 ielem=1,nelem

1prop=matno(ielem)
tfact(ielem)=0.
kfact(ielem)=0
itype=props(lprop,8)
if(itype.eq.3) go to 20
nr=props(lprop,33)
kgasp=0

do 11 kglsp=1, lint
kgasp=kgasp+1
dsit(kgasp,ielem)=0.
dsis(kgasp,ielem)=0.
g2t(kgasp,ielem)=0.
g2s(kgasp,ielem)=0.
g2told(kgasp,ielem)=0.
g2sold(kgasp,ielem)=0.
do 13 ir=1,nr
gamt(ir,kgasp,ielem)=0
gams(ir,kgasp,ielem)=0
qr1(ir,kgasp,ielem)=0.
qr2(ir,kgasp,ielem)=0.
qr3(ir,kgasp,ielem)=0.
qr4(ir,kgasp,ielem)=0.
qr5(ir,kgasp,ielem)=0.
qr6(ir,kgasp,ielem)=0.

13 continue
qs1(kgasp,ielem)=0.
qs2(kgasp,ielem)=0.
qs3(kgasp,ielem)=0.
qs4(kgasp,ielem)=0.
qs5(kgasp,ielem)-0.
qs6(kgasp,ielem)=0.
do 12 j=1,6
sig(j,kgasp,ielem)=0.
sigold(j,kgasp,ielem)=0.

c strain(j,kgasp,ielem)=0.
12 continue
11 continue
20 continue

return
end
subroutine stife(time,ic)
include 'pres.inc'
include 'globe.inc'
include 'tmatx.inc'
dimension estif(60,60),xg(4,4),wgt(4,4)
common/dg/dgmatx(6,6,27)
common/fail2/dforc,newfe

c***********************************************************************
c set up gauss point table:
c

data xg / 0., 0., 0., 0.,
1 -.5773502691896, .5773502691896, 0., 0.,
2 -.7745966692415, .0000000000000, .7745966692415, 0.,
3 -.8611363115941,-.3399810435849, .3399810435849, .8611363115941/
data wgt / 2.000, 0., 0., 0.,
1 1.0000000000000,1.0000000000000, 0., 0.,
2 .5555555555556, .8888888888889, .5555555555556, 0.,
3 .3478548451375, .6521451548625, .6521451548625, .3478548451375/

c***********************************************************************
c************* file 1: element sifness matrix
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c************* file 3: Ed][b] matrix at each gauss point/element
c************* file 7: [b] matrix at each gauss point/element

rewind 1
rewind 3
rewind 7

c rewind 8
c*** loop over each element

do 70 ielem= l,nelem
lreal=ireal(ielem)
1prop=matno(ielem)
itype=props(lprop,8)
kgasp=0.
write(13,*)'element ',ielem

c*** evaluate the coordinates of the element
c nodal points

do 10 inode= l,nnode
lnode=lnods(ielem,inode)
do 10 idime= l,ndime

10 elcod(idime,inode)=coord(lnode,idime)
do 11 ievab= l,nevab

11 eload(ielem,ievab)=0.0

c*** evaluate the d-matrix
c*** initialize the element stiffness matrix

do 20 ievab=1,nevab
do 20 jevab=1,nevab

20 estif(ievab,jevab)=0.0
kgasp=0

c*** enter loops for area numberical integration

do 50 igaus=1,ngaus
r-xg(igaus,ngaus)
do 50 jgaus= l,ngaus
s=xg(jgaus,ngaus)
do 50 kgaus=1,ngaus
t=xg(kgaus,ngaus)
kgasp = kgasp +l

wt=wgt(igaus,ngaus)*wgt(jgaus,ngaus)*wgt(kgaus,ngaus)
c*** evaluate the dmatx for nonliner creep materials

call dmatrx(lprop,lreal,ielem,ic,kgasp,itype)
c 25 continue
c
c*** evaluate the shape functions,elemental

volume,etc.

c**** shap3 gives jacobian matrix and its determinat
call shap(r,s,t)
call jacob(ielem,djacb,kgasp)
dvolu=djacb*wt

c*** evaluate the b and db matrices
c

call bmatrx
call dbe

c
c*** calculate the element stiffnesses
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do 30 ievab=1,nevab
do 30 jevab=ievab,nevab
do 30 istre=1,nstre

30 estif(ievab,jevab)=estif(ievab,jevab)+
, bmatx(istre,ievab)*dbmat(istre,
, jevab)*dvolu

c*** calculate unbalanced load vector increaments due to creep
c strain
c

do 1060 ievab=1,nevab
do 1060 istre=1,nstre
eload(ielem,ievab)=eload(ielem,ievab)+

bmatx(istre,ievab)*tde(istre,kgasp,ielem)*dvolu
1060 continue

c*** store the components of the b matrix and db matrix for
c the element
c

do 40 istre=1,nstre
do 40 ievab=1,nevab
dsmatx(istre,ievab,kgasp)=dbmat(istre,ievab)

40 smatx(istre,ievab,kgasp)=bmatx(istre,ievab)
do 45 istre=1,nstre
do 45 jstre=1,nstre

45 dgmatx(istre,jstre,kgasp)=dmatx(istre,jstre)
50 continue

6000 format(6e12.4)
c*** adding load increament on to the external load vector

if (time.ge.tunld) go to 1000
do 295 ievab=1,nevab

295 eload(ielem,ievab)=dforc*eload(ielem,ievab)+eloadn(ielem,ievab)
1000 continue

c*** construct the lower triangle of the
c stiffness matrix

do 60 ievab=1,nevab
do 60 jevab=1,nevab

60 estif(jevab,ievab)=estif(ievab,jevab)

c*** store the stiffness matrix, stress matrix
c and sampling point coordinates for each
c element on disc file
c

write(1) estif
write(3) dsmatx,gpcod
write(7) smatx

c write(8) dgmatx
70 continue

return
end
subroutine dmatrx(lprop,lreal,ielem,ic,kgasp,itype)

c
c
c .

c .

c . program
c .

c . to generate stress-strain law for isotropic or orthotropic
c . linear elastic or nonlinear creep materials
c.
c.
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include 'pres.inc'
double precision lamtt, lamts ,kt,k0s,kls,k2s,ks,k0t,klt,k2t
include 'globe.inc'
include 'constl.inc'
include 'crpin.inc'
include 'crp2.inc'
include 'tmatx.inc'
include 'fail.inc'
common indx,dinv
dimension d(6,6),dinv(6,6),indx(6),tbar(6,6),tinv(6,6),alf(6),
,p(6),sigm(6),sigmold(6),db(6,6),do(6,6),ep(6),ds(6,6),dc(6,6),
,td(6, 6)
n=6
e-props(lprop,1)
et=props(lprop,2)
g=props(lprop,3)
v=props(lprop,4)
vt=props(lprop,5)
beta=realc(lreal)

pi=4.*datan(l.d+00)
pi2=pi*2.
gam=beta*pi/180.
if (gam .ge. pi2) gam = gam - pi2

c
c set the coordinate transformation for rotation of properties

c***** tranformation matrix t*************
sg=dsin(gam)
cg=dcos(gam)
do 106 i=1,6
do 106 j=1,6
to(i,j,ielem) =0.0
tinv(i,j)=0.0
tbar(i,j)=0.0

106 continue
do 107 istre=1,nstre
do 107 jstre=1,nstre

do(istre,jstre)=0.0
107 continue

to(1,1,ielem)=cg**2
to(1,2,ielem)-sg**2
to(1,6,ielem)=2.*sg*cg
to(2,1,ielem)=to(1,2,ielem)
to(2,2,ielem)=to(1,1,ielem)
to(2,6,ielem)=-to(1,6,ielem)
to(3,3,ielem)=1.
to(4,4,ielem)=cg
to(4,5,ielem)=-sg
to(5,4,ielem)=-to(4,5,ielem)
to(5,5,ielem)=to(4,4,ielem)
to(6,1,ielem)=-sg*cg
to(6,2,ielem)=-to(6,1,ielem)
to(6,6,ielem)=to(1,1,ielem)-to(1,2,ielem)
tbar(1,1)=cg**2
tbar(1,2)=sg**2
tbar(1,3)=0.0
tbar(1,4)=0.0
tbar(1,5)=0.0
tbar(1,6)=sg*cg
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tbar(2,1)=tbar(1,2)
tbar(2,2)=tbar(1,1)
tbar(2,3)=0.0
tbar(2,4)=0.0
tbar(2,5)=0.0
tbar(2,6)=-tbar(1,6)
tbar(3,1)=0.0
tbar(3,2)=0.0
tbar(3,3)-1.0
tbar(3,4)=0.0
tbar(3,5)=0.0
tbar(3,6)=0.0
tbar(4,1)=0.0
tbar(4,2)=0.0
tbar(4,3)=0.0
tbar(4,4)-cg
tbar(4,5)=-sg
tbar(4,6)=0.0
tbar(5,1)=0.0
tbar(5,2)=0.0
tbar(5,3)=0.0
tbar(5,4)=-tbar(4,5)
tbar(5,5)=tbar(4,4)
tbar(5,6)=0.0
tbar(6,1)=-2.*sg*cg
tbar(6,2)=-tbar(6,1)
tbar(6,3)=0.0
tbar(6,4)=0.0
tbar(6,5)=0.0
tbar(6,6)=tbar(1,1)-tbar(1,2)

c write(26,*)'tbar'
c write(26,3010)((tbar(it,jt),jt=1,6),it=1,6)
c**** t(transpor)(tinvers in kennedy's note)

tinv(1,1)=cg**2
tinv(1,2)=sg**2
tinv(1,3)=0.
tinv(1,4)=0.
tinv(1,5)=0.
tinv(1,6)=-2.*sg*cg
tinv(2,1)=tinv(1,2)
tinv(2,2)=tinv(1,1)
tinv(2,3)=0.
tinv(2,4)=0.
tinv(2,5)=0.
tinv(2, 6)=- tinv(1, 6)
tinv(3,1)=0.
tinv(3,2) =0.
tinv(3,3)=1.
tinv(3,4)=0.
tinv(3,5)=0.
tinv(3,6)=0.
tinv(4,1)=0.
tinv(4,2)=0.
tinv(4,3)=0.
tinv(4,4)=cg
tinv(4,5)=sg
tinv(4,6)=0.
tinv(5,1)=0.
tinv(5,2)=0.
tinv(5,3)=0.
tinv(5,4)=-sg
tinv(5,5)=cg
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tinv(5,6)=0.
tinv(6,1)=sg*cg
tinv(6,2)=-sg*cg
tinv(6,3)=0.
tinv(6,4)=0.
tinv(6,5)=0.
tinv(6,6)=(cg**2)-(sg**2)

c**************************************************
c if nonlinear analysis is required, go to 202

if(itype.eq.4) go to 202
c**************************************************

c form the strain-stress law
c.... for linear elastic orthotropic material

dl=e
d2=v
d3=et
d4=vt
d5=g
do(1,1)=1./d1
do(2,2)=1./d3
do(3,3)=1./d3
do(4,4)=2.*(1./d3+d4/d3)

c do(4,4)=1./1000000.
do(5,5)=1./d5
do(6,6)=1./d5
do(1,2)=-d2/d1
do(1,3)=-d2/d1
do(1,4)=0.0
do(1,5)=0.0
do(1,6)=0.0
do(2,3)--d4/d3
do(2,4)=0.0
do(2,5)=0.0
do (2, 6) =0.0

do(3,4)=0.0
do(3,5)=0.0
do(3,6)=0.0
do(4,5)=0.0
do(4,6)=0.0
do(5,6)=0.0
do 3000 i=1,6
do 3000 j-1,6

3000 do(j,i)=do(i,j)
c*******************inverse of dmatrix*******************

do 3014 i=1,n
do 3015 j=1,n

dinv(i,j)=0.
3015 continue

dinv(i,i)=1
3014 continue

call ludcmp(do,6,6,indx,c)
do 3016 jj=1,n
call lubksb(do,6,6,indx,dinv(1,jj))

3016 continue
c
c rotate the stress-strain matrix to global coordinates
c
c t(transpose) * d(material)
c
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do 3060 irow=1,6
do 3050 icol=1,6
td(irow,icol)=0.0
do 3048 ik=1,6
td(irow,icol) = td(irow,icol)+tinv(irow,ik)*dinv(ik,icol)

3048 continue
3050 continue
3060 continue

c
c lint=ngaus*ngaus*ngaus
c do 3200 kgasp= 1,lint

c t(transpose) * dinv(material) * t
c

do 3080 irow = 1,6
do 3075 icol = 1,6
dmatx(irow,icol) = 0.0
do 3070 in =1,6
dmatx(irow,icol) = dmatx(irow,icol)

, + td(irow,in)*tbar(in,icol)
3070 continue
3075 continue
3080 continue
c 3200 continue

return
c
c****** form nonlinear creep stress-strain matrix [d]
c
202 continue

em=props(lprop,6)
vm=props(lprop,7)
dft=props(lprop,9)
dfs=props(lprop,10)
b0t=props(lprop,11)
blt=props(lprop,12)
b2t=props(lprop,13)
bt-props(lprop,14)
bOs=props(lprop,15)
bls=props(lprop,16)
b2s=props(lprop,17)
bs=props(lprop,18)
k0t=props(lprop,19)
klt=props(lprop,20)
k2t=props(lprop,21)
kt=props(lprop,22)
kOs=props(lprop,23)
kls=props(lprop,24)
k2s=props(lprop,25)
ks-props(lprop,26)
g023=props(lprop,27)
alf(1)=props(lprop,28)
alf(2)=props(lprop,29)
alf(3)=props(lprop,30)
alf (4) =0.
alf (5) =0.
alf(6)=0.
temp=props(lprop,31)
tempo=props(lprop,32)
nr=props(lprop,33)
dll=props(lprop,34)
d22=props(lprop,35)
d12=props(lprop,36)
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c*********** elastic part of the dmatrix ****************

dl=e*d11**kfact(ielem)
d2=v
d3=et*d22**kfact(ielem)
d4=vt
d5=g*d12**kfact(ielem)
do 25 io=1,6
do 25 jo=1,6

25 do(io,jo)=0.0
do(1,1)=1./d1
do(2,2)=1./d3
do(3,3)=1./d3
do(4,4)=2.*(1./d3+d4/d3)
do(5,5)=1./d5
do(6, 6) =1. /d5
do(1,2)=-d2/d1
do(1,3)=-d2/d1
do(1,4)=0.0
do(1,5)=0.0
do(1,6)=0.0
do(2,3)=-d4/d3
do(2,4)=0.0
do(2,5)=0.0
do(2,6)-0.0
do(3,4)=0.0
do(3,5)=0.0
do(3,6)=0.0
do(4,5)=0.0
do(4,6)=0.0
do(5,6)=0.0
do 30 i=1,6
do 30 j=1,6

30 do(j,i)=do(i,j)

c**************** define old variables ***************

if(ic.eq.l) then
c write(13,*)' updataing old variables...,ic=',ic

tempold=temp
lint=ngaus*ngaus*ngaus

c do 151 kgasp =l,lint
qslold(kgasp,ielem)=qs1(kgasp,ielem)
qs2old(kgasp,ielem)=qs2(kgasp,ielem)
qs3old(kgasp,ielem)=qs3(kgasp,ielem)
qs4old(kgasp,ielem)=q84(kgasp,ielem)
qs5old(kgasp,ielem)=qs5(kgasp,ielem)
qs6old(kgasp,ielem)=qs6(kgasp,ielem)
do 150 j=1,6
sigvold(j,kgasp,ielem)=sigold(j,kgasp,ielem)
sigold(j,kgasp,ielem)=sig(j,kgasp,ielem)

150 continue
g2tvold(kgasp,ielem)=g2told(kgasp,ielem)
g2told(kgasp,ielem)=g2t(kgasp,ielem)
g2svold(kgasp,ielem)=g2sold(kgasp,ielem)
g2sold(kgasp,ielem)=g2s(kgasp,ielem)
dsitold(kgasp,ielem)=dsit(kgasp,ielem)
dsisold(kgasp,ielem)=dsis(kgasp,ielem)
do 155 ir=1,nr
gamto(ir,kgasp,ielem)=gamt(ir,kgasp,ielem)
gamso(ir,kgasp,ielem)=gams(ir,kgasp,ielem)
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qrlold(ir,kgasp,ielem)=qr1(ir,kgasp,ielem)
qr2old(ir,kgasp,ielem)=qr2(ir,kgasp,ielem)
qr3old(ir,kgasp,ielem)=qr3(ir,kgasp,ielem)
qr4old(ir,kgasp,ielem)=qr4(ir,kgasp,ielem)
qr5old(ir,kgasp,ielem)-qr5(ir,kgasp,ielem)
qr6old(ir,kgasp,ielem)=qr6(ir,kgasp,ielem)

155 continue
c 151 continue

tempold=temp
endif

156 continue
1600 continue

c************ nonlinear part of dmatrix *******************
c****************** calculate g's ************************

tauold=0.
tau=0.
do 1201 j=1,6
sigmold(j)=0.0
sigm(j)=0.0

1201 continue
sigmold(1)=(em/e)*sigold(1,kgasp,ielem)

,+(vm-(em/e)*v)*sigold(2,kgasp,ielem)+(vm-(em/e)*vt)
,*sigold(3,kgasp,ielem)
sigm(1)=(em/e)*sig(1,kgasp,ielem)+(vm-(em/e)*v)

,*sig(2,kgasp,ielem)+(vm-(em/e)*vt)*sig(3,kgasp,ielem)
do 1151 j=2,6
sigmold(j)=sigold(j,kgasp,ielem)

1151 sigm(j)=sig(j,kgasp,ielem)
tauold=dsqrt((sigmold(1)-sigmold(2))**2+

,(sigmold(1)-sigmold(3))**2+(sigmold(2)
,-sigmold(3))**2+6.*(sigmold(4)**2+sigmold(5)**2
,+sigmold(6)**2))/3.
tau=dsqrt((sigm(1)-sigm(2))**2+(sigm(1)

,-sigm(3))**2+(sigm(2)-sigm(3))**2+6.
.*(sigm(4)**2+sigm(5)**2+sigm(6)**2))/3.

c***** creep properties of T300/5208 GRIEP
c***** transvers g's

got=1.
if(tau.le.blt) then

glt=1.
else

glt=1.+klt*(tau-blt)
endif

g2t(kgasp,ielem)=1.
if(tauold.le.bt) then

astold=1.
else

astold=dexp(kt*(tauold-bt))
endif
if(tau.le.bt) then

ast=1.
else

ast-dexp(kt*(tau-bt))
endif

c***** shear g's
if(tau.le.b0s) then

gos=1.
else

gos=1.+k0s*(tau-b0s)
endif
if(tau.le.bls) then
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gls=1.
else

gls=1.+kls*(tau-b15)
endif
if(tau.le.b2s) then

g2s(kgasp,ielem)=1.
else

g2s(kgasp,ielem)=1.+k2s*(tau-b2s)
endif
if(tauold.le.bs) then

assold=1.
else

assold=dexp(ks*(tauold-bs))
endif
if(tau.le.bs) then

ass=1.
else

ass=dexp(ks*(tau-bs))
endif

19 continue
dsit(kgasp,ielem)=0.5*(1./ast+1./astold)*dt
dsis(kgasp,ielem)=0.5*(1./ass+1./assold)*dt

c*******************************************************
c******************* [cis] ([da] in ncte)****************
c

do 13 is=1,6
do 13 js=1,6

ds(is,js)=0.
13 continue

ds(1,1)=do(1,1)
ds(1,2)=do(1,2)
ds(1,3)=do(1,3)
ds(2,1)=ds(1,2)
ds(2,2)=got*do(2,2)
ds(2,3)=got*do(2,3)
ds(3,1)=ds(1,3)
ds(3,2)=ds(2,3)
ds (3, 3) =ds (2, 2)

ds(4,4)=2.*(ds(2,2)-ds(2,3))
ds(5,5)=gos*do(5,5)
ds(6,6)=ds(5,5)

c********************************************************
c
c***********calculate dc(i,j)=dr(i,j)*(1-gam(i,j))******

do 21 idc=1,6
do 20 jdc=1,6
dc(idc,jdc)=0.

20 continue
21 continue

do 22 ir=1,nr
gamt(ir,kgasp,ielem)=(1.-dexp(-1amtt(lprop,ir)*
/dsit(kgasp,ielem)))/(lamtt(lprop,ir)*dsit(kgasp,ielem))
gams(ir,kgasp,ielem)=(1.-dexp(-1amts(lprop,ir)*
/dsis(kgasp,ielem)))/(lamts(lprop,ir)*dsis(kgasp,ielem))
dc(2,2)=dc(2,2)+(1.-gamt(ir,kgasp,ielem))
,*dtr(lprop,ir)*glt*g2t(kgasp,ielem)
dc(2,3)=-d4*dc(2,2)
dc(3,2)=dc(2,3)
dc(3,3)=dc(2,2)
dc(4,4)=2.*(dc(2,2)-dc(2,3))
dc(5,5)-dc(5,5)+(1.-gams(ir,kgasp,ielem))
,*dsr(lprop,ir)*gls*g2s(kgasp,ielem)
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dc(6,6)=dc(5,5)
22 continue

c***********calculate db((dc] in note)
do 24 ib=1,6
do 23 jb=1,6
db(ib,jb)=0.0

23 continue
24 continue

db(2,2)=0.5*glt*g2t(kgasp,ielem)*dft*dsit(kgasp,ielem)
db(2,3)=-d4*db(2,2)
db(3,2)=db(2,3)
db(3,3)=db(2,2)
db(4,4)=2.*(db(2,2)-db(2,3))
db(5,5)=0.5*gls*g2s(kgasp,ielem)*dfs*dsis(kgasp,ielem)
db (6, 6) =db (5, 5)

c*******************calculate
do 26 i=1,6
do 26 j=1,6
d(i,j)=0.

26 continue
do 41 irow=1,6
do 41 jcol=1,6
d(irow,jcol)=ds(irow,jcol)+dc(irow,jcol)+db(irow,jcol)

41 continue
c write(26,5000)((d(i,j),j=1,6),i=1,6)
5000 format('d:',/6f12.4)
c******************* inverse of dmatrix *******************

do 14 i=1,n
do 15 j=1,n

dinv(i,j)=0.
15 continue

dinv(i,i)=1
14 continue

call ludcmp(d,6,6,indx,c)
do 16 j=1,n
call lubksb(d,6,6,indx,dinv(1,j))

16 continue
c rotate the stress-strain matrix to global coordinates
c
c t(transpose) * d(material)
c

do 60 irow=1,6
do 50 icol=1,6
td(irow,icol)=0.0
do 48 ik=1,6
td(irow,icol) = td(irow,icol)+tinv(irow,ik)*dinv(ik,icol)

48 continue
50 continue
60 continue

c
c t(transpose) * dinv(material) * t
c

do 80 irow = 1,6
do 75 icol = 1,6
dmatx(irow,icol) = 0.0
do 70 in =1,6
dmatx(irow,icol) = dmatx(irow,icol)

, + td(irow,in)*tbar(in,icol)
70 continue
75 continue
80 continue

c*****************calculate e(i)**********************
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c do 200 kgasp =l,lint
do 82 i=1,6
p(i)=0.

82 continue
qs1(kgasp,ielem)=0.
qs2(kgasp,ielem)=0.
qs3(kgasp,ielem)=0.
qs4(kgasp,ielem)=0.
qs5(kgasp,ielem)=0.
qs6(kgasp,ielem)=0.

do 86 ir=1,nr
qr1(ir,kgasp,ielem)=0.
qr2(ir,kgasp,ielem)=0.
qr3(ir,kgasp,ielem)=0.
qr4(ir,kgasp,ielem)=0.
qr5(ir,kgasp,ielem)=0.
qr6(ir,kgasp,ielem)=0.

86 continue
c********* evaluate each individual term at gauss point ******
c*********[gr]([hl] in note)

dgt-0.0
dgs=0.0
dqt-0.0
dqt1=0.0
dqt2=0.0
dqs1=0.0
dqs2=0.0
do 90 ir=1,nr
qr1(ir,kgasp,ielem)=0.
qr2(ir,kgasp,ielem)=exp(-1amtt(lprop,ir)*dsitold(kgasp,ielem))*

/ qr2old(ir,kgasp,ielem)+gamto(ir,kgasp,ielem)*
/ (g2told(kgasp,ielem)*sigold(2,kgasp,ielem)-
/ g2tvold(kgasp,ielem)*sigvold(2,kgasp,ielem))
qr3(ir,kgasp,ielem)=exp(-1amtt(lprop,ir)*dsitold(kgasp,ielem))*

/ qr3old(ir,kgasp,ielem)+gamto(ir,kgasp,ielem)*
/ (g2told(kgasp,ielem)*sigold(3,kgasp,ielem)-
/ g2tvold(kgasp,ielem)*sigvold(3,kgasp,ielem))
qr4(ir,kgasp,ielem)=exp(-1amtt(lprop,ir)*dsitold(kgasp,ielem))*

/ qr4old(ir,kgasp,ielem)+gamto(ir,kgasp,ielem)*
/ (g2told(kgasp,ielem)*sigold(4,kgasp,ielem)-
/ g2tvold(kgasp,ielem)*sigvold(4,kgasp,ielem))
qr5(ir,kgasp,ielem)=exp(-1amts(lprop,ir)*dsisold(kgasp,ielem))*

/ qr5old(ir,kgasp,ielem)+gamso(ir,kgasp,ielem)*
/ (g2sold(kgasp,ielem)*sigold(5,kgasp,ielem)-
/ g2svold(kgasp,ielem)*sigvold(5,kgasp,ielem))
qr6(ir,kgasp,ielem)=exp(-1amts(lprop,ir)*dsisold(kgasp,ielem))*

/ qr6old(ir,kgasp,ielem)+gamso(ir,kgasp,ielem)*
/ (g2sold(kgasp,ielem)*sigold(6,kgasp,ielem)-
/ g2svold(kgasp,ielem)*sigvold(6,kgasp,ielem))
dgt=dgt+dtr(lprop,ir)*gamt(ir,kgasp,ielem)
dgs=dgs+dsr(lprop,ir)*gams(ir,kgasp,ielem)
dqt1=dqt1+(exp(-1amtt(lprop,ir)*dsit(kgasp,ielem)))*

(qr2(ir,kgasp,ielem)-d4*qr3(ir,kgasp,ielem))*dtr(lprop,ir)
dqt =dqt +(exp(-1amtt(lprop,ir)*dsit(kgasp,ielem)))*

(d4*qr2(ir,kgasp,ielem)-qr3(ir,kgasp,ielem))*dtr(lprop,ir)
dqt2=dqt2+(exp(-1amtt(lprop,ir)*dsit(kgasp,ielem)))*

qr4(ir,kgasp,ielem)*dtr(lprop,ir)
dqs1=dqs1+(exp(-1amts(lprop,ir)*dsis(kgasp,ielem)))*

qr5(ir,kgasp,ielem)*dsr(lprop,ir)
dqs2=dqs2+(exp(-1amts(lprop,ir)*dsis(kgasp,ielem)))*

qr6(ir,kgasp,ielem)*dsr(lprop,ir)
90 continue
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c************( of in note )****************************
qs1(kgasp,ielem)=0.
qs2(kgasp,ielem)=qs2old(kgasp,ielem)+0.5*

/ dsitold(kgasp,ielem)*(g2told(kgasp,ielem)*
/ sigold(2,kgasp,ielem)+g2tvold(kgasp,ielem)*
/ sigvold(2,kgasp,ielem))
qs3(kgasp,ielem)=q8301d(kgasp,ielem)+0.5*

/ dsitold(kgasp,ielem)*(g2told(kgasp,ielem)*
/ sigold(3,kgasp,ielem)+g2tvold(kgasp,ielem)*
/ sigvold(3,kgasp,ielem))
qs4(kgasp,ielem)=q8401d(kgasp,ielem)+0.5*

/ dsitold(kgasp,ielem)*(g2told(kgasp,ielem)*
/ sigold(4,kgasp,ielem)+g2tvold(kgasp,ielem)*
/ sigvold(4,kgasp,ielem))
qs5(kgasp,ielem)=qs5old(kgasp,ielem)+0.5*

/ dsisold(kgasp,ielem)*(g2sold(kgasp,ielem)*
/ sigold(5,kgasp,ielem)+g2svold(kgasp,ielem)*
/ sigvold(5,kgasp,ielem))
qs6(kgasp,ielem)=qs6old(kgasp,ielem)+0.5*

/ dsisold(kgasp,ielem)*(g2sold(kgasp,ielem)*
/ sigold(6,kgasp,ielem)+g2svold(kgasp,ielem)*
/ sigvold(6,kgasp,ielem))
P(1)=0.
p(2)=-glt*(dqtl-dft*(qs2(kgasp,ielem)-d4*qs3(kgasp,ielem)))
p(3)= glt *(dqt + dft*(qs3(kgasp,ielem)-d4*qs2(kgasp,ielem)))
P(4)=-2.*(1.+d4)*glt*(dqt2-dft*qs4(kgasp,ielem))
p(5)=-gls*(dqs1-dfs*qs5(kgasp,ielem))
p(6)=-gls*(dqs2-dfs*qs6(kgasp,ielem))

do 96 jcol=1,6
ep(jcol)=0.0

96 continue
97 continue

ep(1)=0.0
ep(2)=g2told(kgasp,ielem)*glt*(dgt+0.5*dft*

dsit(kgasp,ielem))*(sigold(2,kgasp,ielem)-
. d4*sigold(3,kgasp,ielem))+p(2)
ep(3)=g2told(kgasp,ielem)*glt*(-dgt-0.5*dft*

dsit(kgasp,ielem))*(d4*sigold(2,kgasp,ielem)-
. sigold(3,kgasp,ielem)) +p(3)
ep(4)=g2told(kgasp,ielem)*glt*(2.*(1.+d4)*dgt+2.0*dft*

dsit(kgasp,ielem))*sigold(4,kgasp,ielem)+p(4)
ep(5)=g2sold(kgasp,ielem)*gls*(dgs+0.5*dfs*dsis(kgasp,ielem))

*sigold(5,kgasp,ielem)+p(5)
ep(6)=g2sold(kgasp,ielem)*gis*(dgs+0.5*dfs*dsis(kgasp,ielem))

*sigold(6,kgasp,ielem)+p(6)
******** calzculate t(transform)[i,j] *dinv[i,j)*(e(i)+alf*dtemp)

do 100 i=1,6
100 tde(i,kgasp,ielem)=0.

c do 105 i=1,6
do 105 j=1,6
tde(1,kgasp,ielem)=td(11j)*(eP(j)+alf(j)*(temp-tempo))

+tde(1,kgasp,ielem)
tde(2,kgasp,ielem)=td(2,j)*(ep(j)+alf(j)*(temp-tempo))

+tde(2,kgasp,ielem)
tde(3,kgasp,ielem)=td(3,j)*(ep(j)+alf(j)*(temp-tempo))

+tde(3,kgasp,ielem)
tde(4,kgasp,ielem)=td(4.j)*(ep(j)+alf(j)*(temp-tempo))

+tde(4,kgasp,ielem)
tde(5,kgasp,ielem)-td(51j)*(ep(j)+alf(j)*(temp-tempo))

+tde(5,kgasp,ielem)
tde(6,kgasp,ielem)=td(6,j)*(ep(j)+a1f(j)*(temp-tempo))
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+tde(6,kgasp,ielem)
105 continue

c 100 continue
c 200 continue
2000 format (10h**** error,/

1 43h zero length between nodes 1-2 in element (,i4,1h))
c

return
end
subroutine ludcmp(a,n,np,indx,d)
implicit double precision (a-h,o-z)

c real a,vv,d,sum,aamax,dum
integer indx,n,np

parameter (nmax=100,tiny=1.0e-20)
dimension a(np,np),indx(n),vv(nmax)
d-1.
do 12 i=1,n
aamax=0.
do 11 j=1,n

if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))
11 continue

if (aamax.eq.0.) pause 'singular matrix.'
vv(i)=1./aamax

12 continue
do 19 j=1,n
if (j.gt.1) then

do 14 i=1,j-1
sum=a(i,j)
if (i.gt.1)then

do 13 k=1,i-1
sum=sum-a(i,k)*a(k,j)

13 continue
a(i,j)=sum

endif
14 continue

endif
aamax=0.
do 16 i=j,n

sum=a(i,j)
if (j.gt.1)then

do 15 k=1,j-1
sum=sum-a(i,k)*a(k,j)

15 continue
a(i,j)=sum

endif
dum=vv(i)*abs(sum)
if (dum.ge.aamax) then

imax=i
aamax=dum

endif
16 continue

if (j.ne.imax)then
do 17 k=1,n

dum=a(imax,k)
a(imax,k)=a(j,k)
a(j,k)-dum

17 continue
d=-d
vv(imax)=vv(j)

endif
indx(j)=imax
if(j.ne.n)then
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if(a(j,j).eq.0.)a(j,j)=tiny
dum=1./a(j,j)
do 18 i=j+1,n

a(i,j)=a(i,j)*dum
18 continue

endif
19 continue

if(a(n,n).eq.0.)a(n,n)=tiny
return
end
subroutine lubksb(a,n,np,indx,b)
implicit double precision (a-h,o-z)

c real a,sum,b
integer indx
dimension a(np,np),indx(n),b(n)
ii =0

do 12 i=1,n
11=indx(i)
sum=b(11)
b(11)=b(i)
if (ii.ne.0)then

do 11 j=ii,i-1
sum=sum-a(i,j)*b(j)

11 continue
else if (sum.ne.0.) then

ii=i
endif
b(i)=sum

12 continue
do 14 i=n,1,-1
sum=b(i)
if(i.lt.n)then
do 13 j=i+1,n

sum=sum-a(i,j)*b(j)
13 continue

endif
b(i)=sum/a(i,i)

14 continue
return
end
subroutine shap(r,s,t)
include 'pres.inc'
include 'globe.inc'

c***dfngt***5****************
shape(1)=(1.0-r)*(1.0-s)*(1.0-t)

1 *(-r-s-t-2.0)/8.0
shape(2)=(1.0-(r)**2)*(1.0-s)*(1.0-t)/4.0
shape(3)=(1.0+0*(1.0-s)*(1.0-t)

1 *(r-s-t-2.0)/8.0
shape(4)=(1.0+r)*(1.0-(s)**2)*(1.0-t)/4.0
shape(5)=(1.0+r)*(1.0+s)*(1.0-t)

1 *(r+s-t-2.0)/8.0
shape(6)=(1.0-(r)**2)*(1.0+s)*(1.0-t)/4.0
shape(7)=(1.0-r)*(1.0+s)*(1.0-t)

1 *(-r+s-t-2.0)/8.0
shape(8)=(1.0-r)*(1.0-(s)**2)*(1.0-t)/4.0
shape(9)=(1.0-r)*(1.0-s)*(1.0-(t)**2)/4.0
shape(10)=(1.0+r)*(1.0-s)*(1.0-(t)**2)/4.0
shape(11)=(1.0+r)*(1.0+s)*(1.0-(t)**2)/4.0
shape(12)=(1.0-r)*(1.0+s)*(1.0-(t)**2)/4.0
shape(13)=(1.0-r)*(1.0-s)*(1.0+t)

1 *(-r-s+t-2.0)/8.0
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shape(14)=(1.0-(r)**2)*(1.0-s)*(1.0+t)/4.0
shape(15)=(1.0+r)*(1.0-s)*(1.0+t)

1 *(r-s+t-2.0)/8.0
shape(16)=(1.0+r)*(1.0-(s)**2)*(1.0+t)/4.0
shape(17)=(1.0+r)*(1.0+s)*(1.0+t)

1 *(r+s+t-2.0)/8.0
shape(18)=(1.0-(r)**2)*(1.0+s)*(1.0+t)/4.0
shape(19)=(1.0-r)*(1.0+s)*(1.0+t)

1 *(-r+s+t-2.0)/8.0
shape(20)=(1.0-r)*(1.0-(s)**2)*(1.0+t)/4.0

deriv(1,1)=(1.0-s)*(1.0-t)
1 *(1.0+2.0*r+s+t)/8.0
deriv(1,2)=-r*(1.0-s)*(1.0-t)/2.0
deriv(1,3)=(1.0-s)*(1.0-t)

1 *(-1.0+2.0*r-s-t)/8.0
deriv(1,4)=(1.0-(s)**2)*(1.0-t)/4.0
deriv(1,5)=(1.0+s)*(1.0-t)

1 *(-1.0+2.0*r+s-t)/8.0
deriv(1,6)=-r*(1.0+s)*(1.0-t)/2.0
deriv(1,7)=(1.0+s)*(1.0-t)

1 *(1.0+2.0*r-s+t)/8.0
deriv(1,8)=-(1.0-(s)**2)*(1.0-t)/4.0
deriv(1,9)=-(1.0-s)*(1.0-(t)**2)/4.0
deriv(1,10)=(1.0-s)*(1.0-(t)**2)/4.0
deriv(1,11)=(1.0+s)*(1.0-(t)**2)/4.0
deriv(1,12)=-(1.0+s)*(1.0-(t)**2)/4.0
deriv(1,13)=(1.0-s)*(1.0+t)

1 *(1.0+2.0*r+s-t)/8.0
deriv(1,14)=-r*(1.0-s)*(1.0+t)/2.0
deriv(1,15)=(1.0-s)*(1.0+t)

1 *(-1.0+2.0*r-s+t)/8.0
deriv(1,16)=(1.0-(s)**2)*(1.0+t)/4.0
deriv(1,17)=(1.0+s)*(1.0+t)

1 *(-1.0+2.0*r+s+t)/8.0
deriv(1,18)=-r*(1.0+s)*(1.0+t)/2.0
deriv(1,19)=(1.0+s)*(1.0+t)

1 *(1.0+2.0*r-s-t)/8.0
deriv(1,20)=-(1.0-(s)**2)*(1.0+t)/4.0

deriv(2,1)=(1.0-r)*(1.0-t)
1 *(1.0+r+2.0*s+t)/8.0
deriv(2,2)=-(1.0-(r)**2)*(1.0-t)/4.0
deriv(2,3)=(1.0+r)*(1.0-t)

1 *(1.0-r+2.0*s+t)/8.0
deriv(2,4)=-s*(1.0+r)*(1.0-t)/2.0
deriv(2,5)=(1.0+r)*(1.0-t)

1 *(-1.0+r+2.0*s-t)/8.0
deriv(2,6)=(1.0-(r)**2)*(1.0-t)/4.0
deriv(2,7)=(1.0-r)*(1.0-t)

1 *(-1.0-r+2.0*s-t)/8.0
deriv(2,8)=-s*(1.0-r)*(1.0-t)/2.0
deriv(2,9)=-(1.0-r)*(1.0-(t)**2)/4.0
deriv(2,10)=-(1.0+r)*(1.0-(t)**2)/4.0
deriv(2,11)-(1.0+r)*(1.0-(t)**2)/4.0
deriv(2,12)-(1.0-r)*(1.0-(t)**2)/4.0
deriv(2,13)=(1.0-r)*(1.0+t)

1 *(1.0+r+2.0*s-t)/8.0
deriv(2,14)=-(1.0-(r)**2)*(1.0+t)/4.0
deriv(2,15)-(1.0+r)*(1.0+t)

1 *(1.0-r+2.0*s-t)/8.0
deriv(2,16)=-s*(1.0+r)*(1.0+t)/2.0
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deriv(2,17)=(1.0+r)*(1.0+t)
1 *(-1.0+r+2.0*s+t)/8.0
deriv(2,18)=(1.0-(r)**2)*(1.0+t)/4.0
deriv(2,19)=(1.0-r)*(1.0+t)

1 *(-1.0-r+2.0*s+t)/8.0
deriv(2,20)=-s*(1.0-r)*(1.0+t)/2.0

deriv(3,1)=(1.0-r)*(1.0-s)
1 *(1.0+r+s+2.0*t)/8.0
deriv(3,2)=-(1.0-(r)**2)*(1.0-s)/4.0
deriv(3,3)=(1.0+r)*(1.0-s)

1 *(1.0-r+s+2.0*t)/8.0
deriv(3,4)=-(1.0+r)*(1.0-(s)**2)/4.0
deriv(3,5)=(1.0+r)*(1.0+s)

1 *(1.0-r-s+2.0*t)/8.0
deriv(3,6)=-(1.0-(r)**2)*(1.0+s)/4.0

deriv(3,7)=(1.0-r)*(1.0+s)
1 *(1.0+r-s+2.0*t)/8.0
deriv(3,8)=-(1.0-r)*(1.0-(s)**2)/4.0
deriv(3,9)=-t*(1.0-r)*(1.0-s)/2.0
deriv(3,10)=-t*(1.0+r)*(1.0-s)/2.0
deriv(3,11)=-t*(1.0+r)*(1.0+s)/2.0
deriv(3,12)--t*(1.0-r)*(1.0+s)/2.0
deriv(3,13)=(1.0-r)*(1.0-s)

1 *(-1.0-r-s+2.0*t)/8.0
deriv(3,14)=(1.0-(r)**2)*(1.0-s)/4.0
deriv(3,15)=(1.0+r)*(1.0-s)

1 *(-1.0+r-s+2.0*t)/8.0
deriv(3,16)-(1.0+r)*(1.0-(s)**2)/4.0
deriv(3,17)=(1.0+r)*(1.0+s)

1 *(-1.0+r+s+2.0*t)/8.0
deriv(3,18)=(1.0-(r)**2)*(1.0+s)/4.0
deriv(3,19)-(1.0-r)*(1.0+s)

1 *(-1.0-r+s+2.0*t)/8.0
deriv(3,20)=(1.0-r)*(1.0-(s)**2)/4.0
return
end
subroutine jacob(ielem,djacb,kgasp)
include 'pres.inc'
include 'globe.inc'
dimension xjacm(3,3),xjaci(3,3)

c***bm at * * *[b] * * * * * * * * * * * * * * * * * * **

c... compute jacobian transformation from x,y,z to rg,sg,tg
c vj:jacobian array

do 10 idime=1,ndime
gpcod(idime,kgasp)=0.0
do 10 inode=1,nnode
gpcod(idime,kgasp)=gpcod(idime,kgasp)+

elcod(idime,inode)*shape(inode)
10 continue

c***invi***[fl**********************
do 1301 idime=1,3
do 1301 jdime=1,3
xjacm(idime,jdime)=0.0
do 1301 inode=1,20
xjacm(idime,jdime)=xjacm(idime,jdime)+

, deriv(idime,inode)*elcod(jdime,inode)
1301 continue

c.... inverse of jacobian matrix
xjaci(1,1)= (xjacm(2,2)*xjacm(3,3)-xjacm(2,3)*xjacm(3,2))



xjaci(1,2)=-(xjacm(1,2)*xjacm(3,3)-xjacm(1,3)*xjacm(3,2))
xjaci(1,3)= (xjacm(1,2)*xjacm(2,3)-xjacm(1,3)*xjacm(2,2))
xjaci(2,1)--(xjacm(2,1)*xjacm(3,3)-xjacm(2,3)*xjacm(3,1))
xjaci(2,2)= (xjacm(1,1)*xjacm(3,3)-xjacm(1,3)*xjacm(3,1))
xjaci(2,3)=-(xjacm(1,1)*xjacm(2,3)-xjacm(1,3)*xjacm(2,1))
xjaci(3,1)= (xjacm(2,1)*xjacm(3,2)-xjacm(2,2)*xjacm(3,1))
xjaci(3,2)=-(xjacm(1,1)*xjacm(3,2)-xjacm(1,2)*xjacm(3,1))
xjaci(3,3)= (xjacm(1,1)*xjacm(2,2)-xjacm(1,2)*xjacm(2,1))

c compute jacobian determinant

djacb=xjacm(1,1)*xjaci(1,1)+xjacm(2,1)*xjaci(1,2)
1 +xjacm(3,1)*xjaci(1,3)
if(abs(djacb).gt.0e-30) goto 30
write(26,900)ielem

900 format(//,'program halted in jacobm'/,'zero pr megatove area',/
'element number ',i5)

30 continue
do 2000 i=1,3
do 2000 j=1,3

2000 xjaci(i,j)=xjaci(i,j)/djacb
c.... compute global derivatives of shape functions
c cartd:dndx,dndy,dndz

do 3000 idime=1,ndime
do 3000 inode=1,nnode
cartd(idime,inode)=0.
do 3000 jdime=1,ndime
cartd(idime,inode)=cartd(idime,inode)+

, xjaci(idime,jdime)*deriv(jdime,inode)
3000 continue

return
end
subroutine bmatrx

c
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c .

c . program
c .

c . evaluates strain-displacement matrix b at point (r,s,t)
c .

c . curvilinear hexahedron 20 nodes
c .

c

include 'pres.inc'
include 'globe.inc'

c evaluate b matrix in global (x,y,z) coordinates
c

do 130 k=1,nnode
kl=k*3-2
k2=k*3-1
k3=k*3
bmatx(1,k1)=cartd(1,k)
bmatx(2,k1)=0.0
bmatx(3,k1)=0.0
bmatx(4,k1)=0.0
bmatx(5,k1)-cartd(3,k)
bmatx(6,k1)=cartd(2,k)
bmatx(1,k2)=0.0
bmatx(2,k2)=cartd(2,k)
bmatx(3,k2)=0.0
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bmatx(4,k2)=cartd(3,k)
bmatx(5,k2)=0.0
bmatx(6,k2)=cartd(1,k)
bmatx(1,k3)=0.0
bmatx(2,k3)=0.0
bmatx(3,k3)=cartd(3,k)
bmatx(4,k3)=cartd(2,k)
bmatx(5,k3)=cartd(1,k)
bmatx(6,k3)=0.0

130 continue

return

end
subroutine dbe
include 'pres.inc'
include 'globe.inc'

c**** calculats d*b
do 10 istre=1,6
do 10 ievab=1,nevab
dbmat(istre,ievab)=0.0
do 10 jstre=1,6
dbmat(istre,ievab)=dbmat(istre,ievab)+

1 dmatx(istre,jstre)*bmatx(jstre,ievab)
10 continue

return
end
subroutine front(err)
parameter (mfron=720,kpoin-2200)
include 'pres.inc'
include 'print.inc'
dimension fixed(3*kpoin),equat(mfron),vecrv(3*kpoin),
,gload(mfron),gstif(mfron*(mfron+1)/2),estif(60,60),detau(3*kpoin),
,iffix(3*kpoin),nacva(mfron),locel(60),ndest(60)
include 'globe.inc'
nfunc(i,j)=(j *j-j)/2+i

c mfron=100
mstif=259560

c
c*** interpret fixity data in vector form
c

ntotv=npoin*ndofn
do 100 itotv=1,ntotv
iffix(itotv)=0
detau(itotv)=0.0

100 fixed(itotv)=0.0
do 110 ivfix=1,nvfix
nloca=(nofix(ivfix)-1)*ndofn
do 110 idofn=1,ndofn
ngash=nloca+idofn
iffix(ngash)=ifpre(ivfix,idofn)

110 fixed(ngash)=presc(ivfix,idofn)
c
c*** change the sign of the last appearance

of each node

do 140 ipoin=1,npoin
klast=0
do 130 ielem=1,nelem
do 120 inode=1,nnode
if(lnods(ielem,inode).ne.ipoin) go to 120
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klast=ielem
nlast=inode

120 continue
130 continue

if(klast.ne.0) lnods(klast,nlast)=-ipoin
140 continue

c*** start by initializing everything that
c matters to zero

do 150 istif=1,mstif
150 gstif(istif)=0.0

do 160 ifron=1,mfron
gload(ifron)=0.0
equat(ifron)=0.0
vecrv(ifron)=0.0

160 nacva(ifron)=0

c*** and prepare for disc reading and writing
operations

rewind 1
rewind 2
rewind 3
rewind 4

c*** enter main element assembly-reduction loop
c

nfron=0
kelva=0
do 380 ielem=1,nelem
kevab=0
read(1) estif
do 170 inode =l,nnode
do 170 idofn =l,ndofn
nposi=(inode-1)*ndofn+idofn
locno=lnods(ielem,inode)
if(locno.gt.0) locel(nposi)=(locno-1)*

, ndofn+idofn
if(locno.lt.0) locel(nposi)=(locno+l)*

, ndofn-idofn
170 continue

c*** start by lloking for existing destinations

do 210 ievab=1,nevab
nikno=iabs(locel(ievab))
kexis=0
do 180 ifron= l,nfron
if(nikno.ne.nacva(ifron)) go to 180
kevab=kevab+1
kexis =l
ndest(kevab)=ifron

180 continue
if(kexis.ne.0) go to 210

c*** we now seek new empty places for
c destination vector

do 190 ifron=1,mfron
if(nacva(ifron).ne.0) go to 190
nacva(ifron)=nikno
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kevab=kevab+1
ndest(kevab)=ifron
go to 200

190 continue

c*** the new places may demand an increase
c in current frontwidth
c

200 if(ndest(kevab).gt.nfron) nfron=ndest(kevab)
210 continue

c
c*** assemble element loads

do 240 ievab-1,nevab
idest=ndest(ievab)
gload(idest)-gload(idest)+eload(ielem,ievab)

c
c*** assemble the element stiffnesses
c - but not in resolution
c

if(icase.gt.1) go to 230
do 220 jevab=1,ievab
jdest=ndest(jevab)
ngash=nfunc(idest,jdest)
ngish=nfunc(jdest,idest)
if(jdest.ge.idest) gstif(ngash)=

, gstif(ngash)+estif(ievab,jevab)
if(jdest.lt.idest) gstif(ngish)=

,gstif(ngish)+estif(ievab,jevab)
220 continue
230 continue
240 continue

5000 format(3f15.8)

c*** re-examine each element node, to
c enquire which can be eliminated
c

do 370 ievab =l,nevab
nikno=-1ocel(ievab)
if(nikno.le.0) go to 370

c
c*** find positions of variables ready
c for elimination

do 350 ifron=1,nfron
if(nacva(ifron).ne.nikno) go to 350

c
c*** extract the coefficients of the
c new equation for elimination
c

if(icase.gt.1) go to 260
do 250 jfron=1,mfron
if(ifron.lt.jfron) nloca=nfunc(ifron,jfron)
if(ifron.ge.jfron) nloca=nfunc(jfron,ifron)
equat(jfron)=gstif(nloca)

250 gstif(nloca)=0.0
260 continue

c
c*** and fxtract the corresponding right
c hand sides

eqrhs=gload(ifron)
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gload(ifron)=0.0
kelva= kelva +i

c*** write equations to disc or to tape

if(icase.gt.1) go to 270
write(2) equat,eqrhs,ifron,nikno
go to 280

270 write(4) eqrhs
read(2) equat,dummy,idumm,nikno

280 continue

c*** deal with pivot

pivot=equat(ifron)
equat(ifron)=0.0

c*** enquire whether prfsfnt variable is
c free or prescribed

if(iffix(nikno).eq.0) go to 300

c*** deal with a prescribed deflection

do 290 jfron=1,nfron
290 gload(jfron)=gload(jfron)-fixed(nikno)*

, equat(jfron)
go to 340

c*** eliminate a free variable - deal with
c the right hand side first

300 do 330 jfron=1,nfron
gload(jfron)=gload(jfron)-equat(jfron)*

, eqrhs/pivot

c*** now deal with the coefficients in core

if(icase.gt.1) go to 320
if(equat(jfron).eq.0.0) go to 330
nloca=nfunc(0,jfron)
do 310 lfron=1,jfron
ngash=lfron+nloca

310 gstif(ngash)=gstif(ngash)-equat(jfron)*
, equat(lfron)/pivot

320 continue
330 continue
340 equat(ifron)=pivot

c*** record the new vacant space, and reduce
c frontwidth if possible

nacva ( ifron) =0
go to 360

c*** complete the element loop in the forward
c elimination

350 continue
360 if(nacva(nfron).ne.0) go to 370

nfron=nfron-1
if(nfron.gt.0) go to 360
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370 continue
380 continue

c*** enter back-substitution phase, loop
c backwards through variables
c

do 410 ielva=1,kelva

c*** read a new equation

backspace 2
read(2) equat,eqrhs,ifron,nikno
backspace 2
if(icase.eq.1) go to 390
backspace 4
read(4) eqrhs
backspace 4

390 continue
c
c*** prepare to back-substitute from th
c current equation
c

pivot=equat(ifron)
if(iffix(nikno).eq.1) vecrv(ifron)=

, fixed(nikno)
if(iffix(nikno).eq.0) equat(ifron)=0.0

c*** back-substitute in the current equation
c

do 400 jfron=1,mfron
400 eqrhs=eqrhs-vecrv(jfron)*equat(jfron)

c
c*** put the final values where they belong

if(iffix(nikno).eq.0) vecrv(ifron)=
, eqrhs/pivot
if(iffix(nikno).eq.1) fixed(nikno)=-eqrhs
detau(nikno)=vecrv(ifron)
detau(nikno)=detau(nikno)-asdis(nikno)
asdis(nikno)=asdis(nikno)+detau(nikno)

410 continue
c****** convergence iteration ***********************
c****** calculate error

err1=0.
err2=0.
do 402 i=1,ntotv

errl=err1+(detau(i))**2
err2=err2+(asdis(i))**2

402 continue
err=sqrt(errl/err2)

if(err.lt.error) then
C
c write(11,900)

900 format(lho,5x,13hdisplacements)
c 420 write(11,910)

910 format(lh0,5x,4hnode,5x,7hx-disp.,
, 7x,7hy-disp.,7x,7hz-disp.)

440 continue
do 450 ipoin=1,npoin
ngash=ipoin*ndofn
ngish=ngash-ndofn+1
do 455 i=1,nodis
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if(nodisp(i).eq.ipoin) then
write(11,920) ipoin,(asdis(igash),igash=

, ngish,ngash)
endif

455 continue
450 continue
920 format(i10,3e14.6)

c write(11,925)
925 format(lh0,5x,9hreactions)

c 460 write(11,935)
935 format(lh0,5x,4hnode,5x,7hx-force,7x,

, 7hy-force,7x,7hz-force)
480 continue

do 510 ipoin=1,npoin
nloca=(ipoin-1)*ndofn
do 490 idofn=1,ndofn
ngush=nloca+idofn
if(iffix(ngush).gt.0) go to 500

490 continue
go to 510

500 ngash=nloca+ndofn
ngish=nloca+1

c write(11,945) ipoin,(fixed(igash),igash=
c , ngish,ngash)

510 continue
945 format(i10,3e14.6)

endif
c*** post front = reset all element connection
c numbers to positive values for subsequent

use in stress calculation

do 520 ielem=1,nelem
do 520 inode=1,nnode

520 lnods(ielem,inode)=iabs(lnods(ielem,inode))
return
end
subroutine stress(time,err,kf,it)

C******************************* * * * * * * * * * * * * * * * * * * * * * * * ** * * *

c* program
* **

*

c* 1) to calculate strains at each gauss point/element. *

c* 2) to calculate stresss at each gauss point/element. *

c* 3) to perform failure analysis. *

c* 4) to save strains and stresses into output files. *
c**************************************************************

include 'pres.inc'
double precision ksl2,ks23
include 'globe.inc'
include 'crpin.inc'
include 'print.inc'
include 'tmatx.inc'
include 'fail.inc'
dimension eldis(3,20),strain(6,27,400),sigb(6,27,400)
sig1(400),sig2(400),sig3(400),sig4(400)
sig5(400),sig6(400),strne(6,400),strn(6),sigel(400),sige2(400),
,sige3(400),sige4(400),sige5(400),sige6(400),f(400),tf(400)
common/dg/dgmatx(6,6,27)
common/fail2/dforc,newfe
rewind 3
rewind 7

c rewind 8
write(13,*)'calculating stress...'



167

c*** loop over each element
c

do 5 i=1,6
5 strn(i)=0.0

do 15 ielem=1,nelem
do 15 j=1,6
strne(j,ielem)=0.0
sigl(ielem)=0.0
sig2(ielem)=0.0
sig3(ielem)=0.0
sig4(ielem)=0.0
sig5(ielem)=0.0
sig6(ielem)-0.0
f(ielem)=0.0
sigel(ielem)=0.0
sige2(ielem)=0.0
sige3(ielem)-0.0
sige4(ielem)=0.0
sige5(ielem)=0.0
sige6(ielem)=0.0

15 continue
do 60 ielem=1,nelem
1prop-matno(ielem)
itype=props(lprop,8)
x=props(lprop,37)
a=props(lprop,38)
b=props(lprop,39)
ks12=props(lprop,40)
ks23=props(lprop,41)

c*** read the stress matrix, sampling point
c coordinates for the element
c

read(3) dsmatx,gpcod
read(7) smatx

c read(8) dgmatx

c*** identify the displacements of the
c element nodal points

do 10 inode= l,nnode
lnode=lnods(ielem,inode)
nposn=(1node-1)*ndofn
do 10 idofn=1,ndofn
nposn=nposn+1
eldis(idofn,inode)=asdis(nposn)

10 continue
ngasp=0

c
if(err.lt.error) then

c write(26,910) ielem
c write(26,985)
c*** enter loops over each sampling point

write(26,900)
endif

ngasp=0
do 50 igaus=1,ngaus
do 50 jgaus=1,ngaus
do 50 kgaus=1,ngaus
ngasp= ngasp +l



168

c*** compute the cartesian stress components
c at the sampling points

do 20 istre=1,nstre
strain(istre,ngasp,ielem)-0.0
kgash=0
do 20 inode=1,nnode
do 20 idofn=1,ndofn
kgash=kgash+1

c**** istrain1=[b](u)*******************************
strain(istre,ngasp,ielem)=strain(istre,ngasp,ielem)

, +smatx(istre,kgash,ngasp)*eldis(idofn,inode)
20 continue

c**** calculate stresses in x,y,z coordinates (sigh) * * * * **
do 30 istre=1,nstre
sigb(istre,ngasp,ielem)=0.
kgash=0.
do 30 inode= l,nnode
do 30 idofn=1,ndofn
kgash=kgash+1
sigb(istre,ngasp,ielem)=sigb(istre,ngasp,ielem)

, +dsmatx(istre,kgash,ngasp)*eldis(idofn,inode)
c do 30 jstre=1,nstre
c sigb(istre,ngasp,ielem)=sigb(istre,ngasp,ielem)
c , +dgmatx(istre,jstre,ngasp)*strain(jstre,ngasp,ielem)

30 continue
8000 format(6e12.4)

c if(err.lt.error)then
c write(26,*)'sigb'
c write(26,916)ngasp,(sigb(istrl,ngasp,ielem),istr1=1,nstre)
c endif

if(itype.eq.3) go to 400
do 32 istre =l,6

32 sigb(istre,ngasp,ielem)=sigb(istre,ngasp,ielem)
-tde(istre,ngasp,ielem)

400 continue
c rem=amod(real(time),50.)
c if(err.lt.error.and.rem.eq.0.0) then

if(err.lt.error) then
c do 1041 i=1,notrs
c if(noeltrs(i).eq.ielem) then
c write(10,914) ielem,ngasp,(gpcod(idime,ngasp),idime=1,ndime)
c write(10,916)ngasp,(sigb(istrl,ngasp,ielem),istr1=1,nstre)
c endif
c 1041 continue

endif
do 35 istre=1,nstre

35 sig(istre,ngasp,ielem)-0.
c***** calculate stress components in 1,2,3 coordinates(fiber direction)
c write(13,*)'calculate linear stress...'

do 36 k=1,6
sig(1,ngasp,ielem)=sig(1,ngasp,ielem)+to(1,k,ielem)

*sigb(k,ngasp,ielem)
sig(2,ngasp,ielem)=sig(2,ngasp,ielem)+to(2,k,ielem)

*sigb(k,ngasp,ielem)
sig(3,ngasp,ielem)=sig(3,ngasp,ielem)+to(3,k,ielem)

*sigb(k,ngasp,ielem)
sig(4,ngasp,ielem)=sig(4,ngasp,ielem)+to(4,k,ielem)

*sigb(k,ngasp,ielem)
sig(5,ngasp,ielem)=sig(5,ngasp,ielem)+to(5,k,ielem)

*sigb(k,ngasp,ielem)
sig(6,ngasp,ielem)=sig(6,ngasp,ielem)+to(6,k,ielem)
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*sigb(k,ngasp,ielem)
36 continue

c*** output the stresses

c if(err.lt.error) then
c write(26,*)ngasp,(gpcod(idime,ngasp),idime=1,ndime)
c write(26,915)ngasp,(strain(istrl,ngasp,ielem),istr1=1,nstre)
c write(26,916)ngasp,(sig(istrl,ngasp,ielem),istr1=1,nstre)
c endif

50 continue
if(err.lt.error) then
lint=ngaus*ngaus*ngaus
do 70 k= l,lint
strne(1,ielem)=strne(1,ielem)+strain(1,k,ielem)
strne(2,ielem)-strne(2,ielem)+strain(2,k,ielem)
strne(3,ielem)=strne(3,ielem)+strain(3,k,ielem)
strne(4,ielem)=strne(4,ielem)+strain(4,k,ielem)
strne(5,ielem)=strne(5,ielem)+strain(5,k,ielem)
strne(6,ielem)=strne(6,ielem)+strain(6,k,ielem)

sigl(ielem)=sigl(ielem)+sig(1,k,ielem)
sig2(ielem)=sig2(ielem)+sig(2,k,ielem)
sig3(ielem)=sig3(ielem)+sig(3,k,ielem)
sig4(ielem)=sig4(ielem)+sig(4,k,ielem)
sig5(ielem)=sig5(ielem)+sig(5,k,ielem)
sig6(ielem)=sig6(ielem)+sig(6,k,ielem)

c if(itype.eq.3) then
sigel(ielem)=sigel(ielem)+sigb(1,k,ielem)
sige2(ielem)=sige2(ielem)+sigb(2,k,ielem)
sige3(ielem)=sige3(ielem)+sigb(3,k,ielem)
sige4(ielem)=sige4(ielem)+sigb(4,k,ielem)
sige5(ielem)=sige5(ielem)+sigb(5,k,ielem)
sige6(ielem)=sige6(ielem)+sigb(6,k,ielem)

endif
70 continue

c
c******* average element strains and stresses

strne(1,ielem)-strne(1,ielem)/real(lint)
strne(2,ielem)=strne(2,ielem)/real(lint)
strne(3,ielem)=strne(3,ielem)/real(lint)
strne(4,ielem)=strne(4,ielem)/real(lint)
strne(5,ielem)=strne(5,ielem)/real(lint)
strne(6,ielem)=strne(6,ielem)/real(lint)

sigl(ielem)=sigl(ielem)/real(lint)
sig2(ielem)=sig2(ielem)/real(lint)
sig3(ielem)-sig3(ielem)/real(lint)
sig4(ielem)=sig4(ielem)/real(lint)
sig5(ielem)=sig5(ielem)/real(lint)
sig6(ielem)=sig6(ielem)/real(lint)

c if(itype.eq.3)then
sigel(ielem)=sigel(ielem)/real(lint)
sige2(ielem)=sige2(ielem)/real(lint)
sige3(ielem)=sige3(ielem)/real(lint)
sige4(ielem)=sige4(ielem)/real(lint)
sige5(ielem)-sige5(ielem)/real(lint)
sige6(ielem)=sige6(ielem)/real(lint)

endif

c***************failure analysis model*****************************
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if(itype.eq.3.or.ifail.eq.0.or.kfact(ielem).ge.1) go to 1000
f(ielem)=0.
f(ielem)=dsqrt((sig2(ielem)**2+sig3(ielem)**2-2.*sig2(ielem)*
,sig3(ielem)+sig4(ielem)**2/ks23**2+sig5(ielem)**2/ks12**2+
,sig6(ielem)**2/ks12**2)/(1.0-sigl(ielem)**2/x**2+sigl(ielem)*
,sig2(ielem)/x**2+sigl(ielem)*sig3(ielem)/x**2-sig2(ielem)*
,sig3(ielem)/x**2))
tf(ielem)=0.
tf(ielem)=10.**((a-f(ielem))/b)
tfact(ielem)=tfact(ielem)+dt/tf(ielem)
write(13,919)ielem,tfact(ielem)
if(tfact(ielem).ge.1.0) then
write(26,920)ielem,time,dforc
kfact(ielem)=kfact(ielem)+1

endif
1000 continue

c
c print element strain and stress values into files
c

do 1050 i=1,notrn
if(noeltrn(i).eq.ielem) then
write(12,917)ielem,(strne(istrl,ielem),istr1=1,nstre)
endif

1050 continue
do 1060 i=1,notrs

if(noeltrs(i).eq.ielem) then
c write(10,915)ielem,sigl(ielem),sig2(ielem),sig3(ielem)
c , ,sig4(ielem),sig5(ielem),sig6(ielem)

write(10,915)ielem,sigel(ielem),sige2(ielem),sige3(ielem)
,sige4(ielem),sige5(ielem),sige6(ielem)

endif
1060 continue

endif
c

60 continue
c
c calculate the average strains of all layers.
c

if(err.lt.error)then
do 100 ielem=1,nelem

strn(1)=strn(1)+strne(1,ielem)
strn(2)=strn(2)+strne(2,ielem)
strn(3)=strn(3)+strne(3,ielem)
strn(4)=strn(4)+strne(4,ielem)
strn(5)=strn(5)+strne(5,ielem)
strn(6)=strn(6)+strne(6,ielem)

100 continue
do 90 j=1,6

strn(j)=strn(j)/real(nelem)
90 continue

c write(26,986)
c write(26,918)time,(strn(istr1),istr1=1,nstre)

write(26,918)(strn(istr1),istr1=1,nstre)
endif

c******** count how many elements have failed *******
if(itype.eq.3.or.ifail.eq.0) go to 103
if(err.lt.error)then
nfe=0
do 102 ielem=1,nelem
if(kfact(ielem).eq.1) then

nfe=nfe+1
else
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go to 102
endif

102 continue
c***** increase external load to accelerate failure process ****

if(nfe.eq.newfe) then
dforc=dforc+0.2
elseif(nfe.gt.newfe) then
newfe=nfe
dforc=dforc

else
go to 103

endif
103 continue

c
c if all plys have failed, return to the main program.

if(nfe.eq.nelem) then
kf =1

go to 2000
endif

endif
c*****************************************************

900 format(/,10x,8hstresses,/)
910 format(4x,12helement no.=,i5)
914 format(i3,i3,3f10.4)
915 format(i3,2e13.5,3e12.4,e12.5)
916 format(i3,6e12.4,/)
917 format(i3,2e13.5,3e12.4,e12.5)

c 918 format(f6.1,1x,6e12.4)
918 format(6e13.5)
919 format(4x,'tfact( )=',f12.4)
920 format(4x,'element ',i3,' failed at time=',f10.2,' dforc=',f6.1)
985 format(4x,13hstrain/stress)
986 format (/,4x'11-strain',3x,

1 '22-strain',3x,'33-strain',3x,'23-strain',3x,'13-strain',3x,
2 '12-strain')

905 format (4x,'11-stress',3x,
1 '22-stress',3x,'33-stress',3x,'23-stress',3x,'13-stress',3x,
2 '12-stress'/)

906 format(5x,5e13.5)
2000 continue

return
end




