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RECURSIVE LEAST -SQUARES SMOOTHING WITH CONSTANT 
OR FACTORIAL WEIGHTS 

I. LINEAR SMOOTHING 

The statistical foundation for the following development is 

the Gauss -Markoff Theorem which is now stated. 

If a number n of uncorrelated observations x. are 
J 

distributed with common variance about means 

E(31i) = e1z.l + 82z.2 J J 
+ + Okz.k (j = 1, 2, ,n) where z.i 

J J 

denotes a known constant and O. an unknown parameter, then the 

minimum -variance linear unbiased estimators of the O. are the i 

solutions O. of a system of linear equations obtained by mini- 
]. 

mizing the sum of the squared deviations of the k from the 

means E(k) with respect to the unknown parameters A. The 
J 1 

minimum -variance estimate of a linear combination 

g + + 6kzk is 81z + + 6kzk. 

Suppose it is desirable to fit, by the method of least- squares, 

the straight line 

(1. 1) yn(t) = a +b t 

to the observations x. each weighted by 

(p + j - 1)! wj - where j = 1, 2, ,n. 

x 

J 

z 

n n n 

J 

, 

(J 1)' 



If the observations occur exactly T units apart, then a 

relation giving the ordinate y 
n 

for the corresponding abscissa 

values at which the observations occur can be stated in terms of 

j and T by replacing t by T(j- 1) in (1. 1). Thus 

yn(t) = yn[T(j- 1)] = fn(j) or 

(1. 2) fn(j) = an+ bnT(j- 1). 

Evaluating f (j) 
n 

at j = n gives 

(1.3) fn(n) = an bnT(n- 1). 

Differentiating (1. 1) or (1. 2) with respect to t and sub- 

stituting j = n produces 

(1. 4) 

b = f' (n) 
n n 

an f (n) - f' (n)T(n-1). 
n n n 

Substituting from (1. 4) into (1. 2) results in 

fn(j) = fn(n) - f' (n)T(n -1) +fn' (n)T(j -1) or 

fn(j) = fn(n) - f' (n)T(n (n)T(n-j). n 

2 

n 

= 



3 

(1. 5) 

For convenience let fn(n) = x 
n 

and 

f' (n)T = u . Then 
n n 

fn(J) _ xn - ún(n-j) 

which is the form to be fitted in following the precedent of Levine 

The weighted sum of the squared deviations of f 
n 

(j) from 

the observations x., where (j = 1, 2, ,n) is 

(1.6) R2 = Rn 

n 

j=1 

-[n - (n-j) ú ] } 
2 w.. 

J n n J 

Differentiating R2 
n 

with respect first to x 
n 

and then to 

un and setting these derivatives equal to zero produces the normal 

equations, the solution of which minimizes R2n . The normal 

equations are thus 

(1.7) 

n 
o 

F 
n 

x 
n 

- G ú 
n n 

x.w. 
LL J 

-G x +H ú 
n n n n 

j=1 

n 

j=1 

x.(n -j)w., where 

[1] . 

{z 

= - 



n 

(1. 8) Fn = 
L 

w., G 
J n 

j=1 

(1. 9)- 

-j)w. and H = 
J n 

2 
-j) w. 

J 

Replacing n by n-1 in the above equations gives 

n-1 

Fn- 1xn-1 Gn-lun-1 L 3 3 

j = 1 

n-1 

-G n-137n- 1 
+H n-1 ú n-1 =- > x.(n-j-1)wj . n-L 

4 

Recursion being the objective, explicit presence of the first 

n-1 observations should be eliminated. This is done by subtracting 

from (1.7) a changed form of (1. 9). The next few steps will be con- 

cerned with changing (1. 9) to a more opportune form. 

First one verifies that 

(1.10) 

=F -w , G =G - Fn and n-1 n n n-1 n n n 

n-1 -Hn- 2Gn + Fn - wn. 

Making these substitutions in (1. 9) leads to 

j=1 j=1 

wj 
- 

j=1 



(1.11)< 

n-1 
( 

(X u X,W ü Fn n-1 + n-1 )-G n 
ü n- 1 

,+W 
J J n 

(X n- 1 
+ n- 1 

) 

j=1 

-Gn(xn-l+un- 1)+Hntzn-l+Fx )-G rin- l+un-1nûn- 1 

n-1 

xj(n-j- 1)w). + wn(xn- 
1 + 

71n-1). 

j =1 

Subtracting the first equation of (1. 11) from the second and 

substituting this result for the second changes (1. 11) to 

(1. 12) 

n-1 

F( xn-l+un- 1)-Gnun- 1 

-Gn(xn- + 1+un- 1) Hnun- 
1 

x . w . + wn(xn- 1+un-1) 
J J 

j=1 

x.(n-j)w. 
J J 

which is therefore the changed form of (1. 9) to be subtracted from 

(1.7). 

The results of subtracting (1. 12) from (1.7) follows. 

5 

n 

n- 

n 

-y 

j=1 



(1. 13) 

follow. 

(1. 14) 

6 

F 
n[ xn-(xn- 1+un- 1)1 - Gn(un-un- 1) - wn[xn-(3in-l+un-1)1 

-G n[ xn-( xn- 1+un- 1)1 + Hn(un - n- 1) 
= 0. 

Solving (1. 13) for x and u , 
n 

the smoothing equations 
n 

xn - xn 
- 1 + un-1 + ñ n 

[3Z 
- 

(Rn-1 
+ 

Un-1)1 

ú = ú + ß [ -(x + ú )] where 
n n-1 n n n-1 n-1 ' 

(1. 15) a = J 
Hn 

, ßn = J 
Gn 

and J = FnHn - Gñ . 

n n 

Making formulas (1. 14) explicit requires the evaluation of 

an, ßn and hence Fn, Gn and Hn. 

(P + n)! (p+ n)! and F G - n (n-1)! (p+l) ' n (n-2)! (p+ 1)(p+2) 

(1. 16) 

(p+n)! (p- 1+2n) 
n (n -2)' (p +l)(p +2)(p +3) 

by finite integration [2, 

x 

w 
n 

n 

= 

H 



p. 20-27] . 

From (1. 16) and the definition of J 
n 

in (1. 15), 

(1. 17) J - (p+n)! 2(p+ 1+n) 
n (n-1)(n-2) ' 2(p+ 1)(p+2)2(p+3) 

Applying (1. 16) and (1. 17) to (1. 15) yields 

(p-1+2n)(p+2) 
an (p+n) (p+ l+n) and ß - 

(p +2) (p +3) 
n (p +n) (p+ l +n) 

7 

The results of this part on linear smoothing are summarized 

by the following theorem. 

Theorem A: 
0 

Given the real -valued observations x., 
J 

each of which is weighted by wj = ( p +j- 1)! / (j-1)! where 

j = 1, 2, , n and where successive observations are some 

constant T units apart, then the least -squares estimates of the 

parameters x and ú n 
in the representation 

n 

E(Xi) = fn(j) = xn - (n -j) iTn are determined recursively as follows: 

xn = Rn- 1+ un- 1+ an[ xn- (xn- 1+ un- 1)] 

Tin =ú n-1 +ß n [x n -(x n-1 + un- n-1 )] , where 

(p- 1+ 2n)(p+ 2) an 
(p+n) (p+ l+n) and P 

(p+2)(p+3) 
n (p+n)(p+ 1+n) 

n 

- - 

n 

n 
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II. QUADRATIC SMOOTHING 

Suppose it is desired to fit by the method of least- squares, 

the quadratic function 

(2. 1) f(j) = c -.(n-j) z +(n-j)2s n n n n 

to the observations x., each of which is Weighted by 
J 

w. = (p +j- 1)! / (j- 1)! where j = 1, 2, ,n and where successive 

observations occur some constant T units apart. Here 

sn = 2 T2 times the acceleration (or rather its estimate) while 

Tin = T times the velocity as before. 

The sum of the squared deviations of the observations x. 

from fn(j) (j = 1, 2, , n) is 

(2. 2) R2 = 

n 

j=1 

X. - [7( - 
J n 

-(n-j) ún+ (n-j) 
2_ 2 snj } w. . 

Differentiating R2 
n 

with respect to x 
n 

, then ú 
n 

and 

finally to s and setting these derivatives equal to zero produces 

R2 the normal equations, the solution of which minimizes . This 

linear system is thus 

n 

n n J 

n 

J 



(2. 3) 

(2. 4) 

(2. 5) 

F x -G - ú+ H s 
n n n n n n 

-G +H ú -I n n n n n n 

H x- I ú +K n n n n n n 
s 

n 

Fn = 

i= 

n 

3= 

x.(n-j)w. 
j=1 J 

J 

n 

° 2 where = x.(n-j) w., 
J J 

j=1 

j=1 

n 

2 
-j)w., Hn = (n-j) wj, 

n n 

(n-j) 3 
w. and K = n 

j=1 j=1 

Replacing n in (2. 3) by n-1 gives 

j=1 

j)4 

n-1 

Fn- 1xn- 1-Gn- 1-un- 1+Hn- 1-in- 1 XJwJ 
j=1 

-Gn-15En- 1+Hn- 171n- 
1-In- n-1 sn-1 - 

Hn- 1Xn- 1-In- tun- 1 +Kn- lsn- 1 

n-1 

j=1 

n-1 

j=1 

;On- 1-j)wj 

xj(n- 1-j) 2 
wj . 

9 

x 

/wj, 

In 
J 

n- 

= 

3=1 

= 

G = 
n n 

= 
n 

. 

= 

3 

= 



lo 

In order to obtain a system free from explicit mention of the 

first n- 1 observations, coefficients Fn- G , , K 
n -1 n -1 n -1 

must be expressed in terms of Fn, , K 
n 

and w 
n 

then substi- 

tuted into (2. 5). The desired system is obtained by subtracting a 

further altered form of (2. 5) from (2. 3). The next few steps will be 

concerned with these alterations. 

It may be verified that 

(2. 6) 

F -w , G = G -F +w , H =H -2G +F -w n-1 n n n-1 n n n n-1 n n n n 

n- l =I 
n 

-3H 
n 
+3G n 

-F 
n 

+w 
n 

, and K 
n-1 

=K 
n 

-41 
n 

+6H n 
-4G 

n +F n -w 
n 

. 

Making substitutions (2. 6) into (2. 5) yields 

n-1 

(E:F-G+H 
1 n n n n n 

s n-1 
= .w. w x 

J J n n 
j=1 

(2. 7) E : 
2 

(F 
n 

-G 
n 

)x 
n +(H n 

-G 
n )ú n n +(H -I 

n 
)s n-1 = - n-j-1)w.+w x 

3 n n 

E3: n 
(H-2G+Fx )+(I-2H+G)ú+(K-2I+H)sn-1 

n- 1 

xj(n-j- 1)2w +w x , where 
n n 

j=1 

= 

+ 

n-I 

1-1 

= 



+ un 1 + sn- 1 
and xn = xn- 1 

A 
= ú + 2s are the predicted x and ú respectively. 

n n -1 n -1 n n 

When E2 -E1 is substituted for E2 and E3- 2E2 +E1 

is substituted for E3 the following system results. 

(2. 8) 

Fnxn - Gnu^ + Hnsn- 
1 

-Gnxn + Hnún - I nsn- 1 

Hnxn - Inún + Knsn- 

n- 

x.w.+ w 
n 

X 
n 3 3 

j=1 

n 

x(n-j)wJ 
j=1 

n 

xJ(n-) 
2 
wj 

j=1 

System (2. 8) is equivalent to (2. 5) and when (2. 8) is sub- 

tracted from (2. 3), the following system results which is free from 

explicit mention of the first n -1 observations. 

(2. 9) 

Fn(xn-Xn)-Gn(ün-ún)+Hn(sn-sn- 
1) 

= wn(Xn-Xn) 

-Gn(xn-xn)+Hn(ún- an) -In(sn-sn-1) = 0 

Hn(xn-Xn) -In(unn)+Kn(sn sn-1) = . 

- 

1 



(2. 10) 

(2. 11) 

The solution of (2. 9) produces the smoothing equations: 

Rn x +ú +s + a [x -(x +ú +s )] 
n n-1 n-1 n-1 n n n- 1 n-1 n- 1 

Tin = Tin +ß [x -(x +ú s )] n-1 n n n-1 n- 1+ n-1 

= s n-1 + y n n [x -(x n-1 n-1 +ú +s n-1 )] , where 
n 

w (H K -I2) 
n nn n 

an D 
n 

Y n 

2 -H w (G I 
n n n n) 

D 
n 

ß 

w 
n 

(G 
n 

K 
n 

-H 
n 

I 
n 

) 

D 
n 

and where 

D = F (H K -I2)-G (G K -H I )+H (G I -H2) . 
n n n n n n n n nn n n n n 

t"L 

Obtaining explicit expressions for the smoothing equations 

(2. 10) requires that an, ß , 
n 

and yn 
n 

be evaluated in terms of 

the constants p and n. This further requires the evaluation of 

the sums Fn, Gn, .. , Kn in terms of p and n. 

The obvious approach would be to calculate a , ß and y 
n n n 

directly from their definitions in (2. 11). However this leads to 

serious computational obstructions. Therefore formulas (conjectured 

by Dr. E. L. Kaplan) for al, ßn and yn are proved demonstratively 

instead. 

= 

-in 

n 

n n n 

\ 

n n n 
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It is nevertheless still necessary to express Fn, G , H , 
n n 

In and K 
n 

in closed form as functions of p and n, (p > 0; - 
integer n > 3). This is done next. 

(2.12) 

(p+n) ! (p+n) ! (p+n) ! (p-1+2n) 
(n-1)!(p+1) ' Gn (n-2)!(p+2)(2) , Hn 

(n-2)!(p+3)(3) 

(p +n) ! [ 6(p+l+n)(n- 2)+(p+3)(p+4)] 

(n- 2) ! (p+4)(4) 
and 

(p+n) lRp+4)(p+5)(13p+11+14n)-12(p+2+n)(p+l+n)(p+9- 2n)1 
_ 

(n-2) ! (p+5)( 5) 

by finite integration [ 2, p. 20 -27]. Here 

(p +j)(k) (p +j)(p +j- 1)(p +j -2) ... (p +j -k +1) has k factors. 

Crucial elements in the following argument are two well 

known properties from elementary matrix theory which are stated 

next. 

Property 1: If each element in a row of a square matrix 

is multiplied by its own cofactor, the sum of the resulting 

products is the determinant of the matrix. 

Property 2: Consider two rows of a square matrix. If 

each element in one row is multiplied by the cofactor of the 

corresponding element of the other row, the sum of the 

- 
n 

O 
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resulting products are zero. 

Consider the matrix of coefficients of system (2. 3) 

Fn -G 
n 

H 
n 

C = -G 
n 

H 
n 

-I 
n 

H -I K 
n n n 

and the cofactors 

cofactors 

(2.13) \ 

of the first row. Applying these properties to the 

of the first row gives 

F (H K -I2)-G (G K -H I )+H (G I -H2) = D 
n n n n n n n nn n n n n n 

-G (H K -I2)+H (G K -H I )-I (G I -H2) = 0 
n n n n n n n nn n n n n 

H (H K -I2)-I (G K -H I )+K (G I -H2) = 0 
n n n n n n n n n n n n n 

(2. 14) 

When (2. 13) is multiplied by 
Dn 

the result is 

Fná - G ñ + Hy = w 

-G a+ H (3 - I y = 0 nn nn n n 

Ha-I3 + K y = 0, 
n n n n n n 

which follows from (2. 11) and amounts to a simple change of vari- 

ables in (2. 9). 

n 

n 



Substitution from (2. 12) and 

a 
n 

(p +3)[ 3(n- 1)(p +n) +(p +1)(p +2) ] 

(p+ 2+n) (3) 

( 2. 15) ( 3(p+3)(p+4)(p-1+2n) 
ßn 

2(p+2+n)(3) 

Y 
(p+3)(p+4)(p+5) 

n 2(p+2+n)(3) 

15 

Kaplan' s 
conjectures 

into (2. 14) makes (2. 14) a system of identities in p and n. 

Therefore formulas (2. 15) are correct expressions for an, , 
' 

and Y 
n 

. The question of whether they constitute the unique solution 

will be considered next. However this question is the same as 

whether the least- squares solution for the parameters x , 
n n 

and s n 
is unique, since the coefficient matrix is the same in 

both cases. Therefore the question will be considered from the 

latter point of view. 

Consider the matrix 

M= 

Nrw 
2 

NÌw, 
J 

Nrwn- 
2 wn- 1 ñ 

-(n-1),Vw1 -(n-2)Nrw2 ... -(n-j)Niw. ... -2Nfwn-2 -'fwn-1 0 
J 

(n-1)2 n-1) 2w1 (n- 2) 2^Iw2 (n-j ) 2 2 Ñw. . . . 2Nrwn- 
2 

Nrwn-1 
0 _ 

= 

ú 

Nfw 
1 

- ... ... 
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each of whose columns is composed of the coefficients of the expres- 

sion for the estimated ordinate at one of the n abscissa values. 

The product of M and its transpose is the coefficient matrix C 

whose determinant is hence the sum of the squares of all the 3 x 3 

minors of M. Obviously if any one of these minors is non -zero, 

then the determinant of C is non -zero, which implies that any 

system having C as its coefficient matrix has a unique solution. 

It is an easy matter to show that the minor consisting of the last 

three columns of M is non -zero for n > 3. 

A formal statement of this part on quadratic smoothing is 

given by the following theorem. 

Theorem B: Given the real valued observations x. each 
J 

of which is weighted by w. = (p +j -1)! / (j -1)! , where j = 1, 2, ,n 

and where successive observations are some constant T units 

apart, also given that E(x.) has the form fn (j)=3?-(n-j)17. +(n -j) sn, 
2 

then the least- squares estimates of the parameters x , Tin and s 
n n 

are determined recursively as follows: 

x = n xn- 1.+un- l+sn- 1+ ñ[ xn- (xn-1 + un- 1+sn- 1)] ' 

IT = ú +2s +ß [x -(x +ú +s )] and 
n n-1 n-1 n n n-1 n-1 n-1 

T = -5-n- y x -( ú + -s- n- )] , where 
n 1+ n [x n 1 n-1 +n-1 

J 

n 



(p+3)[ 3(n- 1)(p+n)+(p+ 1)(p+2)] a - , n 
(p+ 2+n) (3) 

P. 
3(p +3)(p +4)(p- 1+ 2n) 

2(p+ 2+n) (3) 

(p+3) (p+4)(p+5) 
Yn 

2(p+ 2+n) 

and 

17 

- 
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III. EXPONENTIAL SMOOTHING 

Consider the observations p , o 

xo n xl . ,x ,..' . 

J 
which 

occur sequentially and exactly T units apart. Suppose it is re- 

quired to fit 

(3. 1) Yn(t) = an + bn et 

to these data by the method of least- squares. Consequently if 

= q, then yn(t) = yn[ T(j -1)] = fn(j) since the time of the jth 

observation is T(j- 1). i. e. , 

(3. 2) fn(J) = an + bneg(J- 1) 

The sum of the squared deviations of the observations x. 
J 

from the fn(j) is 

R2 {x.-[a +b eg(J-1)] } 2, 
n J n n 

j=1 

constant (unit) weights being assumed in this case. 

Differentiating R2 first with respect to an and then 

b 
n 

and setting these derivatives equal to zero produces 

, 

n n 



(3. 3) 

na + b 
n n 

n 

J= 

which are the normal equations. 

Let 

eq(J-1) 
= 

j=1 

n n 
eq(J- 1) + b e2q(j- 1) 

_ n 

(3. 4) 

Then 

(3. 5) 

Gn 

J 

n 

=1 

eq(J-1) 

j=1 

and H = 
n 

n 

na 
n + G 

n b 
n 

= x. and 

G a n + H 
n 

b 
n 

= 

j=1 

n 

Replacing n by n- 1 gives 

eq(J- 1) 

J 

x.eq(J- 1) 

J 

e2q(J-1). 

19 

n 

j=1 

j=1 

n ! 
j=1 

LLL o 

x 
f 

j=1 

= 



(3. 6) 

(3.7) 

n-1 

(n- 1)an- 
1 + Gn- lbn- 1 % x. and 

Gn- lan- 1 + Hn- lbn- 1 

J 

j=1 

n- 1 

x .eq(jT 1) 
J 

Subtracting (3. 6) from (3. 5) and making the substitution 

G = G -eq(n- 1) 

n-1 n 
and H = H -e2q(n- 1) 

n-1 n 

results in the following system which no longer explicitly involves the 

first n -1 observations. 

(3. 8) 

Hence 

(3. 9) 

n(an-a n- 1)+Gn(bn-bn- 1) 
= xn-a n-1 -b 1-bn- 

leg(n- 1) 

Gn(an an-1)+Hn(bn-bn- 
1) 

= (3°( n-an- 
o (xn-an- 1-bn- le 

q(n-1)) 
e 
q(n-1) 

D (a -a ) 
n n n-1 

Dn(bn-bn- 1) 

= (x -a -b eq(n- 1))(H -G eq(n- 1)) n n-1 n-1 n n 

= (xn-an- 1-bn- leq(n- 
1))(rieq(n- 1)-Gn), where 

n 

- 

_ 

j=1 

20 



Zl 

D 
n 

=nH 
n 

- G2n . 

Solving (3. 9) for an and b 
n 

gives the following recursion 

relations (the smoothing equations). 

(3. 10) 

where 

an - an-1 
+ an xn-an- 1-bn- le 

q(n 1) 

) 

b = b + ß (x -a -b eq(n- 1))eq(n- 1), 
n n-1 n n n-1 n-1 

H -G eq(n- 1) neq(nr 1)-G 
n n n - an = and 

ßn D 
n n 

Finally inserting the following explicit evaluations 

n 

(3. 11) G = e 
n 

q(j-1) 
eqn-1 

and H e 

n 
2Q(j-l) e2qn-1 - = - 

eq-1 
n e2q-1 j=1 j=1 

yields the following theorem on the smoothing of exponential trends: 

Theorem C: Consider the real observations x. 
J 

(j = 1, 2, ,n) which successively occur a constant T units 

apart with E(x.) = f (j) = a + b eq(J -1). Then the least- squares 
J n n n 

estimates of the parameters an and b n are determined re- 

cursively as follows: 

( 

D 

e 

n 

n 



2 

an = - an- 1 + 
a n xn-an- 1-bn- le 

q(n- 1)) 

b 
n 

= b n-1 + 13,101 n-1 -h n-1 eq(n-1)), where 

(eq- 1)(eq(n-1)- 1) a - 

n (eq+ 1)(egn- 1)-n(eq- 1)(egn+ 1) 

and 

(e2q- 1)[ (egn-1)-neq(n-1)(eg- 1)] 
ßn 

(eqn- 1)L(eq+ 1)(egn- 1)-n(eq- 1)(egn+ 1)] 

n 
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IV. TRIGONOMETRIC SMOOTHING 

Suppose it is desired to fit by least- squares 

(4. 1) y (t) 
n 

= sin wt +c 
n 

cos at 
n 

to the observations o o o o 

Xl, x2'... 'XJ"... which are made suc - 

cessively T units of abscissa apart. Then the t value of the 

jth observation can be given by t = T(j- 1). Further, if u)T =q, 

then yn(t) = yn[ T(j - 1)] = fn(j). That is 

(4. 2) fn(j) = b11sin q(j- 1)+cncos q(j - 1). 

The sum of the squared deviations from the least -squares 

curve fn(j) is 

n 

R2 = Rn {X 
3.- 

[bnsinq(j -i) + cacos q(j- 1)] } 2 . 

Differentiating R 2 
n 

with respect to first b 
n and then 

c 
n 

and setting these derivatives equal to zero produces the normal 

equations, 

j=1 



(4.3) 

jn 
fl2q( 

-l)+c 

sin q(j -1)+cn 

j=1 

n 

j 

n n 

sinq(j-1)cosq(j-1) =Izj sin q(j-1) 

j=1 j=1 

n 

n 

j=1 

cos q(j- 1) 
2 

(4.4) Defining J 
n 

= sin2q(j- 1), I 
n 

(4. 5 

(4.6) 

j=1 j=1 

n 

cos z.J cos q(j-1), 

j=1 

?.4 

sin q(j- 1)cos q(j- 1) and 

n 

K 
n 

= cos 2q(j- 1) changes (4. 3) to 

j=1 

n 

J b + I c = 
n n n n 

x 
j 
sin q(j- 1) 

n 

I b +K c = x.cos q(j- 1) , nn nn L j 
j=1 

Replacing n by n-1 in (4. 5) gives 

n-1 

J n-1 b n-1 + I n-1 c n-1 => x. sinq(j-1) 
j 

In-1bn-1 + n-1 

j=1 

n-1 
o 
X,COs q(j- 1) . 

j 

q(j -1)cos 

j=1 

L 

j=1 

bnI = 

n 

=/. 

LL 

= 

j=1 



(4. 7 

Subtracting (4. 6) from (4. 5) yields 

J 
n n 
b -J 

n-1 
b 
n-1 

+ I c -I 
n n n-1 

c 
n-1 

= x sinq(n-1) 
n 

I 
n n 

b -I n-1 b n-1 +K n n c -K n-1 c n-1 = x cos 
n 

q(n- 1) 

From the definitions of J 
n 

, In and K 
n 

in (4. 4) it may 

be observed that 

(4. 8 

(4. 9) 
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J n-1 = J 
n 

-sin2q(n-1), I n-1 =I 
n 

-cos q(n- 1)sin q(n-1) and 

Kn- 1 
Kn - cos 2q(n- 1). 

Making these substitutions in (4. 7) gives 

Jn( ñ ñ-1)+ ñ(cn ñ- 1)-[ ñ ñ- is in q(n- 1) -ñ-lc os q(n-1)] sin q(n-1) 

In(bi -bn- 1) + Kn c 
ri* - en -1) =[ ñ ñ- Tsin q(n -1- ñ- lcosq(n ]] cosq(n -l) 

wherein bn- lsinq(n- 1) + cn- 1cosq(n- 1) may be denoted by xn, 

the expected value of the nth observation as predicted from the first 
2 n-1 observations. If also D 

n 
= J K 

n n 
- I , the solution of (4. 9) 

takes the following form. 

- 

- 

n 

n 

n 



(4. 10) 

(4. 11) 

f 

f 

b = bn-1 + (3n (x - n) 

cn = cn-1 + y n(x - n), where 

ß 
n 

= [K sin q(n-1) 
n 

- I 
n 
cosq(n-1)] _ D 

n 
and 

yn = [ -Insin q(n-1) + Jncosq(n-1)] = Dn 

26 

By the methods of finite integration it becomes apparent that 

i 
Jn = 

(4. 12) ( In = 

Hence 

sin2q(j -1) = [ (2n -1) sing- sing( 2n -1) ] -- 4 sin q , 

j=1 

sin q(j -1)cos q(j -1) _ [ cosq- cosq( -1)= 4 sing and 

j=1 

n 
2 

Kn = cos q(j- _ [ (2n+ 1 ) sinq+ sinq(2n -1) = 4 sin q . 

j=1 

D = J K -I2 2 2 2 2 

n n n n 
(n sin q- sin qn) 4 sin q, 

. 

= _ 



ß - 

2.7 

2nsin2gsinq(n- 1) 

n 2 2 2 
n sin q - sin qn 

2sin q[ nsin gcos q(n- 1)-sin qn] 
Yn 2 2 . 2 

n sin q -sin qn 

The results of this section on trigonometric smoothing are 

summarized by the following theorem. 

Theorem D: Consider the real observations x. 
J 

(j = 1, 2, ,n) which occur successively some constant T units 

apart. Suppose E(,.) has the form fn(j) = bnsinq(j- 1) +cncosq(j -1). 

Then the least- squares estimates of the parameters b and c 
n n 

are determined recursively as follows: 

(4. 13) 

where 

b 
n 

= b n- 1 
+Tnsingsinq(n -1) and 

c = cn-1 + T[n sing cos q(n-1)-singn] 

T - 
2sin q[ xn -bn- Tsin q(n- 1) -cn- 1cos q(n- 1)] 

2 2 2 
n s in q - s in qn 
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V. AN EXAMPLE 

The following example is given to illustrate, in a small way, 

the labor saving advantages of recursive smoothing. It will be done 

by two methods. 

Consider the problem of fitting the function 

(5. 1) 

f4 (j)= b4sin-7-0-1) + c4cos 6 (j- 1) to the observations 

0 0 3 +2N3 0 2 +33 xl = 2, x2 - 2 , x3 = 2 
x4 = 2 after the 

first three have already been fitted with f3(j) = 3sin6(j- 1) +2cos6(j -1) 

and where j is the number of the observation, starting with 1. 

First the problem will be done using the traditional least - 

squares method, then it will be done recursively. 

The normal equations are 

(5. 2) 

4 

b4 sin 6 (j-1)+c 

i=l 

j=1 

4 

sin 6(j- 1)cos (j -1) = xjsin 6(j -1) and 

j=1 

sin 6(j -1)cos 6(j- 1) +c 

4 

j=1 

Tr 
cos 26(j-1)= x.J cos6(j -1). 

j=1 j=1 
J 

4 

4 



There are five sums of four terms each to be evaluated before 

the system can be solved. 

4 

sin26(j- 1) = 0+ 4+ 4+ 1 = 2 

j=1 

4 

cos 26(j-1) = 1+ 4+ 4+ 0 = 2 

j=1 

4 

sin6(j-1)cos 6(j-1) = 0+ 43+ 43 23 

j=1 

4 

Dlr .sin6(j-1) = 3+24-3 9+24-3 0+ 
4 + 4 + 2 = 5+f3 

J 

j=1 

4 

.cos 6(J- 1) = 2+ 6+34-3 8 3'f3 
L J 

i= 

Making these substitutions in (5. 2), the system to be solved be- 

comes 

= 

= 

5+4-3 

8 +324-3 Hence, 

2b4+23 c4 

3 2 b4+ 2c4 

26 +24-3 _31 
b4 13 

and c4 = 13 

;9 

2+43 

= 

- 
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Nexy by way of contrast, these same coefficients (of f4) 

will be calculated using recursion formulas (4. 13) on page 27. 

Substituting n = 4, q = 
6 
, b3 = 3, c3 = 2, and x4 = 2, 

b4 = 3 + 
(4)(2 )(1) 

16(-1)- 
3 

31 
13 

c 
= 2 

2(2)(2-3-0) 
4 1 0-3 26+2 4-3 

[ ( )( ) ] 4 16(- )- 4 2 2 13 

and 

The saving of computational energy is even more impressive 

if one considers the additional computation encountered in fitting 

to many observations instead of only four as in this example; each 

of the five sums would have as many terms as there are observa- 

tions. 

Comment: Formulas (4. 13) are useful for fitting purposes 

even though the axis of oscillation is not zero, provided the mean 

value µ is known a priori. Instead of fitting to the observations 

x. themselves, formulas (4. 13) could be used to fit f (j) n 
to 

x. - µ , (j = 1, 2, ,n). Then µ would be added back to f (j) 
n 

in order to obtain gn(j) = basin q(j- 1) +cncos q(j- 1) +µ which would 

be a fitting for the untransformed observations x. . 

2(2)(2-3-0) 

1 

, 
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