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:ke appa'oTtte Jsterzt1on of differential equationc can be per- 
forLTted by two nethodcs step-by-etep iriteratìon ncì tucoosive approi- 

t!O!S. Uniclue iuegr.1 cire ohtind by both ethoda if the Caciy- 
Li8ohit h7poth.sis is saifiod. Nx r1oal proeee5n.e suitabi. to 
oa1ou1atin moL.no procodure 'ro a1rìot oxo1ive1y 1ittcd to those 
uß1r4 5by-irt it'.tio' Th thi" re 'on'od two 
flW$YiO31 'OøO38O$ for obtainiu bp ho itethod of auooeaive appro- 
matona a iont of tho intoa1 cire of th3 soond order differ-ial 
equation pith auign.d end points. Thoso ?r000so8 ae oilled the Short 
For:uJ.a Proceaa and thu Lo 7ornula Proo os. 

TLe Short Fr21ft P,00Gsa onzpThy S.ao'a Rulo and Lkdîfied 
SimpEoli' kUlO. Tho kdified Sieon's iuìe deternimos the second ordi- 
nite in terue of the iiitial ordinabe. ,xoo$ for t1ii oriinato, íd.]. 
other ordinits ra fcu'id b; tvin Si peona ì Rule ovor the intervi1. 
Sinoe the initial fir6t derivotive is nt given, a special identity 
invo1vin a onor:i forai of Sisoii ' a Rulo 1. , neosøary or its detor- 
mination. The ho2.e prooeas oeo forwørd rapidly in ias11y rnerr.d 

using sirçia form1ut. In the e:aos invotigato, eiht 
operationa uEu.l1y 'o'-ido satafaotory solution. 

The 1on Pormu.la Process diffore from the Short Fortu1a Pr003 in 
that it app1ioi dfreetr th ihreo, F1v2, Nito Ordiitì Forula3. 
This process how 1ttlo proria of rc1aoin th.i Short )ornu1a Prooesu 
beoUubO of the tødiounøa of applyizg f or1as us obereone ooeffi- 
dents. 

.'ootr1o:, rrocoss brorht abod by naith' the subdivisions 
of the interval smll enough to nak, nearl7 zero the ne&lectod terme n 
the Wol.urin o:r.n&io fron wMch all the forrtu.ia nzo derived. To 
accomplish this, specIal for of Lcraiio's inturpolation fori re 
applied every s.ltornate t1ìs to the scoond derivativos to bisect eaoh 
eoat o± the inttrvd . By this ntìod, fifteen new ordivatev re 
intorpo.atod into the origLnal interval in eight operations. 
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?;o r1oroua atteì:pt ha bo'n incde to oterm1no the couditioms 
fl000S8a.Ty for the ex1atnoe of c. 3olubiou. In praotioo, if, as the 
O)eratiOfl8 ooiitiuo, t v1u of tb ord1nata tend io oeo 8tationary-, 
a 8oiution is considered reeshed. . f, as the operations oontirnie, the 
valws o!1 th ordJ.n&t, do .ot tend to h000no etatioue.r,r, j 
eonttnued. No ditintioii le rd- between prob1ora hain mo ealutlon 
and n'ob13z to th.ich the rootaaes £afl.. 
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ON THE NUMERICAL INTEGRATION OF THE SECOND 
ORDER DIFFERENTIAL EQUATION V1TR 

ASSIGNED END POINTS 

INTRODUCTION 

The routine work of the modern scientist and engineer requires 

the solution of an inoreasin1y greater number of differential equations. 

In many praotioal problems, no formal method of solution of the equation 

is possible. In these cases, approximate methods must be employed. 

Only a few methods suitable to calculating machine procedure are avail- 

able. The existing orocesses are found mainly in the field of step-by- 

steo integration. Anong the special types that have been thus inte- 

grated is y" f(x,y). 

In this thesis are presented two methods of approximating the 

solution to the second order differential equation y" f(x,y,y') in 

which the value of the integral at each end of the interval of inte- 

gration is given. Both processes are adapted to calculating machine 

procedure. As far as can be determined, neither of these two processes 

has been 7resented before. 
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Methods 

mce states that "Of all ordinary differential equations ... only 

certain very special types admit of explicit integration, and when an 

equation which is not of one or other of the8e types arises in a prao- 

tioal problem the investigator has to fall baok upon purely numerical 

,, (2) 
methods of approximating to the required solution. 

Aporoximate nthods may be classified into two groups: (a) SUO- 

cessive a)oroximations and (b) step-by-step integration. In the first 

method, the desired region is assigned in advance or is made as large as 

possible. In the second method, a form of approximate solution, such as 

a polynomial of given degree, Is chosen arbitrarily in advance and is 

applied to sub-intervals of not too great extent until the region is 

covered. The existence of a solution using either method is based on the 

work of Cauchy (1820 to 1830) and improved by Lipsohitz in 1876. Previ- 

ously in 1768, Euler, in his Institutiones calculi integralis, had sug- 

gested this idea as a method of calculation. 

Successive approximations may be carried out in several forms, 

three of whioh are (a) direct substitution into oower series--a method 

dating back to Newton and Leibnitz; (b) Liouvillets method, appearing in 

the second volume of his journal (1837), in which he writes the solution 

as an integral equation and proceeds to form a series from this form; and 

(o) Pioards method of successive substitutions (appearing in Liouville's 

journal in 1890) in which Cauchy's principle was revived assuming the 

Cauchy-Lipschit hypothesis as an initial oondition but proceeding in a 

manner less restricted than Liouville's. That Picard's method actually 

(1) 
provides the correct solution was shown by Bendixon and Lindelöf in 1894. 
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Several ste-by-steo methods of comoutation have been devised. 

The simplest in form and often the most difficult in practice is the 

Taylor's series. Outstanding objections to this form were overcome 

by Runge in 1895 and continued by Kutta in 1901. A method especially 

adaDted to the equation y11 f(x,y) was devised by Mime in 1933. 

The Cauchy-Lipsohitz Hypothesis 

Theoretical considerations in this thesis will be dismissed with 

a statement of a set of conditions which have been shown to provide a 

correct solution if they are satisfied. 

"In the case of the differential equation of the first order, 

dy/dx = f(x,y), let f, andaf/Jy be real one-valued continuous functions 

for all real values of x, y, satisfying the conditions, ¡X - 

¡y - yoj b, and let !fIM be satisfied in this rectangle. Let 1 

denote the Esmaller of the values] a, and b/M. Then if the interval, 

X0 to x, where /x - X0 '- 1, be broken up into m equal subintervals of 

length h, by points, x, x1 ...... , x1 x, one may define 

by the equations Yi+i = yj+hf(xj,yj), i : o, i, ...., m - 1. Then 

Cauchy showed that under the given hypotheses y(x) tended, as m in-. 

creased, toward a limit function y(x), which is the unique function sat- 

isfying the given differential equation with the boundary condition, 

Y(Xçj) Yo' The proof was extended to apply to the general system of 

n such first order equations in n dependent variables, equivalent to a 

single differential equation of the nth order. 

"This method was notably imoroved by Lipsehitz, who replaced 

Cauchy's absolute bound for af/dy by the bound for the difference 

quotient, namely, /f(x,y) - f(x,Y)} < k 
/ 

y - , for (x,y) and (x,Y) 

in the fundamental rectangle, and similarly for the system of the nth 

(1) 
order 
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DEVELOPMENT OF FORMULAS IN 
TERMS OF ORDINATES 

The set of formulas about to be derived are directly aplicable 

to the differential equation y" f(x,y,y') with assigned values of y 

at the end ooints. They cive values of y and y' directly in terms of 

y" for 2 -- i ordinates, if the end ordinates are also included. The 

three-ordinate formulas are exceedingly simple, but the formulas for 

five and higher ordinates are apparently too complex to be of great 

practical value. Since the three-ordinate formulas form the basis 

of the method used in succeeding sections, their derivation will be 

given in detail. 

Three Ordinate Formulas 

Let the origin be taken at the midpoint of the interval. Let 

the distance to either end ordinate be h. If all the derivatives of 

y with respect to x that are needed exist, Maolaurin's expansion of 

a function about the origin yields: 

y1 = f (h) = y0 hy0' 
. 

h2y0fl h3y,tt h4y iv h5y0V vi 
l2O 

720 

hy1t: hf(h) hy0' h2y0" h3y" h4y iv h5y0 h6y0Vi ot- o 
6 

5 V 6 vi 
h2y1" h21"(h) h2y0" -t h3y" -f- 

h410i7 h y hy 

with a corresoonding set of three where h is everywhere replaced by - h. 

This set gives values at the initial ordinate designated as y. Since 

it is assumed that the values of the second derivatives are available 

from the differential equation y" = f(x,y,y'), they are considered 

given. 



From linear combinations of these expansions result the six formulas: 

h2 6 vi. 

(Y_] - 10 y0t' -t y1") (i) y0 2 + y_1) - 
- 450 

5v-i. 
(ii) y_1' Yl - Y..1 - . (y_i" 2 y0") - 13 h4 

V hy 
3 360 

° 
180 2h 

4V (iii) y0' Y1 - Y_1 .. -(Yl" - Y]') _O 
12 180 2h 

5 vi 
(iv) Y1' Yi - Y_i + h (2 y0t' + - 13 h4y0V - io i- 

2h 360 180 

1_h( ii 5 vi (y) y1' - y_1 - y_1 - 4 y01' ,- y11t) - _10 ,d- 

90 

(vi) y1 - y_1 (y_1' 4 Yo' + Yi') 
h5y 

90 

Formula (vi) is the well knovn Simpson's Rule, after Thomas Simpson 

(1743). Its geometric anaioue is credited to Cavalieri (1639). 

Five Ordinate Forsailas 

If, in addition to the Maclaurin expansions for f( ± h) and the 

derivatives f'(h) and f"(± h), are added expansions for the values 

f( ± 2h) , f' ( :t 2h) and f"( i 2h) , there result twelve equations in 

eight Unknowns: three ordinates and five first derivatives. In these 

equations the third, fourth, fifth and sixth derivatives may be ehm- 

mated to yield formulas in which the lowest appearing derivative 

is the seventh. 



(i') Y_1Y_2 Y2-Y_2 - 
4 

(27 y_2" + 332 + 222 y01' 132 y1t' 7 Y2") 
480 

7 vii 
-t- .. 

(ii') y0 y_2 2(12 - y_E) - 
480 

1- ________ 
4 

h2 t' - ( y_21' - 16 
i-i" +- 26 y0 16 y11' + y2tt) 

30 

8 viii 
.t.. 

945 
(iii') l = Y.2 (Y2 - Y-2) - 

4 

( Y2t' + 132 y_1" 222 y0t' + 332 y1" + 27 y2" 
480 

7 vii 
i-hy i-.. 

(iv') 
r_2' - Y-2 - 480 

4h 

45 
7 Y_ - 24 _" - 6 y0t' + 8 y1tt ) 

6 vii 
- ___y0 + 

315 
(y') y_1' Y2 - Y-2 - 

4h 

jj-27 Y-2 - 122 -" 456 y0t' 150 y1 i- 19 

720 
6 vii 61h, .. 

10080 
(vi') y0' = Y2 - Y2 . 

4h 

( 
90 

Y_21' + 28 y_1t' -28 y1t' - y2") 
6 vii -hv0 
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(vii') y1' 12 - Y-2 
4h 

19 y_2t' 150 y1t' 456 122 y" - 27 y2tt) 

720 

61 h6 
i- .. 

10080 
(viii') 

2' - Y_2 
4h 

2h 
I') 8 y1 * 6 

y0tt r 24 y1" - 7 y2 

4_hy,' 

315 

Nine Ordinate Formulas 

These are developed by dividing the interval at the midpoint and 

employing the Five Ordinate Formulas separately to each half with the 

requirement that the two applications give the same values for the mid- 

ordinate and its first derivative. Sixteen formulas are needed. 

Fourteen are duplicates of (i') to (viii'), excepting (ii') and (vi'), 

which now take the forms 

y0 = Y4 Y_4 2(4 
_3ft r-2" 12 y_1t' * 7 y0t' 12 y1 

t, 

2 45 

t- 
2" Y3tt) 

y0' y4 - Y..4 2h - (4 Y..3" i-2" ,- 12 y_1t' -12 y1t' 
8h 45 

- Y2t' - 4 y3tt) 



Interpolation Formulas 

The basis for the necessary interpolations is Lagrange's formula: 
n 

= yj (t) / 1 (- 
If the given ordinates are òually spaced and the interpolated 

values lie midway between any two consecutive given ordinates, the 

formula reduces to these simple forms: 

Three Ordinates: 

(I) 

y1 (l/s)(3 y0 #6 Y2 - 14) 

Four Ordinates: 

13 (l/8)(- Yo 6 y2 # 3 y4) 

y1 (l/l6)(5 y0 15 y2 - 5 y4 t 

(II) Y3 (l/lß)(- y0 t 9 Y2 Y4 - Y6) 

Five Ordinates: 

y5 (l/16)( Y0 - 5 y2 tl5 y4 # 5y6) 

- (l/l28)(35 y0 140 12 -70 14 t 28 
6 

- y8) 

y3 = (1/l28)(-5 Y t 60 Y2 90 y4 - 20 
6 YB) 

(III) 
y5 = (l/128)( 3 y0 - 20 y2 - 

90 y4 60 Y6 5 Y8) 

y7 : (1/l28)(-5 y0 28 Y2 70 Y4 140 y6 t 35 Yß) 

Modified Simpson's Rule 

By combining Simpson's Rule for ordinates located at x - h and 3h 

and Newton' s Three-Eighths Rule for ordinates located at x O and 3h 

a formula for determining the ordinate at X h is obtained. Newton's 

Three Eighths Rule gives 

(i) Y3 yo - (Yo' + 3 y1' 3 
2' Y3') * 

35Y/V - 3h 

80 



Simpson's Rule (vi) gives 

5v (viii) y3 - y1 - (y1' - 
'2' 

y3') h y2 

The subtraction of (viii) from (vii) frnishes the formula 

(ix) y1 - y0 = y0' 19 y' 5 y2' ± y') h5 (27 *8 
3/2 

y2 
720 

By a similar process there is obtained 

(x) y ' - y h (9 y0" 4 l9y1 - 5y2" y3tt) h5 (27y 
1 o ;j 3/2 

Formula for Determining y0' 

In the Short Formula process, the first integral of the differential 

equation is known exceot for an additive constant, y0'. This constant 

can be determined from the assigned end points as follows: 

Let y' - y0' be integrated over the interval Xc, to a, subject 

to the conditions y a y0 at x x0 and y y at x a a. Then it follows 

directly that J0(ï' - yc,' ) dx Ya - y0 - (a - x0) y0'. If the 

integral is replaced by a general form of Simpson's Rule (vi), the 

formula to determine y0' is 

h( (xi) (a - x0' y0' (ia Yo) [(y1' - y0') 

+(y _ y0') .t ...J 1- 2 ((y2 _ yo') -t 

"' y0')+ 
...] ta 

where i 1, 3, 5, ..., a - 1, and k - 2, 4, 6, ..., a - 2. 
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APPLICATION OF TItE FORMULAS TO A DIFFERENTIAL EQUATION 

The differential equation is taken in the form y" (f(x,y,y') 

with the assigned end points (x0,y0) and (a,ya). To illu8trate the 

procedure, the processes are applied to the differential equation 

(1 t x2) yt' = x - 2y - 4xy', for which is desired the solution passing 

through (0,1) and (2,2). 

Starting the Solution 

The first aproxiin&tion to the solution is assumed to be a 

straight line cormecting the assigned end points. The midpoint of 

the line has the coordinates Xm (x0 -# a) and Ym (Yo t Ya). 

The slope of the line is y' s (Ya y0)/(a - x0). The coordinates 

of the two end points and of the midpoint together with the slope are 

substituted into the differential equation to give the three second 

derivatives Yo" Ym" Ya". For example, in the chosen equation, the 

end points are (0,1) and (2,2). Then x,, 1, y 1.5, and 

Ym' 0.5. The differential equation gives y09' -2, ya" 2, 

and Ya" - 1.2. These values of x.LJ, and 
m' 

are now refined by 

substituting the y" values into equations (i) to (iv) inclusive, of 

the Three Ordinate Formulas. The value of h is given by (a - x0)/(N - 1) 

where N is the number of ordinates in the interval. The equations 

become, since h = 1, 

yn *(2 1) ____ (_2 * lO(2) - 1.2) 2.47 

(A) 

2(1) - 
(-2 i- 2(-2) 2.50 

Ym' 0.43, and - 1.22. 
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The work up to this point may be conveniently sho'wn in tabular form: 

X ylt 
y1 - y0' __r' y 

0 0.5 1.0 

i 0.5 1.5 

2 0.5 2.0 

0 -2 2.50 1.00 

i - 2 0.43 .47 

2 - 1.2 - 1.22 2.00 

First Interpolation 

Another set of values for y" is found from the differential 

equation using the values (A) and the end øoints. These are y0" = - 2, 

m 2.608, Ya" 0.992. At this stage, a second derivative is 

interpolated midway between y0" and y" and another midway between 

Y1n" 8fld Ya" The interpolation is carried out using Lagrange's three 

ordinate formulas (I). Five second derivatives are now available. 

The interpolated values are Yi" - 2.830 and Y3" - 1.334. Let 

yll Y2" Ya" y4t1. At this point, either of the two processes: 

The Short Formula rocess or The Long Formula Process, may be employed. 

The solution by The Long Forlrn2la Process is given in a later section. 

The Short Formula Process 

The Short Formula process uses the Simoson and the Modified 

Simpson Rules together with the Formula for Determining y0'. 

Formula (x) gives the value of y1' - Y0' and formula (y) gives 

'2' YO' . The values for Y3' Y1' and 14' y2' are found by 

moving formula (y) forward one ordinate at a time. By adding y3' - y1' 

to y1' - y0' , Y3' - Yo' 15 obtained. By adding Y4' y2' to Y2 - Yo'' 

y4' - y0' is obtained. This gives a set of values y' - y0' . ?hen the 



12 

column headed y' - y0' is completed, y0' is determined from formula (xi). 

This value of y0' is entered opposite x0 in the column headed y'. The 

algebraic addition of y0' to eaoh value in the y' - Yo' column gives a 

complete table of first integrals of the y" column. Since y0 is given, 

the integration of the y' column follows directly. The process this 

time goes forward in only one columns headed y, with the use of formulas 

(vi) and (ix). The complete process thus reauires only a fiv6 column 

table. 

The procedure applied to the example is as follows: h = i' 

From (x), y1' - y0' = i.... (9(-2) 19(-2.830) -t ...) - 1.251. 
48 

From (y), y2' - y0' ! (-2 + 4(.-2.830) - 2.608) - 2.655, 

y3' - y1' = ! (-2.830 ....) - 2.433, 

and y4' - Y2' : - 1.159. 

In terms of y01, these are Y3' - y0' - 3.684 and y4' - y0' - 3.814. 

These four values are now substituted into formula (xi) to give 

y0' 2.905. This value is entered in the y' column as indicated in 

the preceding paragraph. The y' column is completed by adding this 

value of' y' algebraically to each value in the y' - y0' oolumn. 

The integration of the y' column is exactly as before, beginning 

with formula (ix) and following with formula (vi). The work of this 

section forms a table like this: 

X y" 

o -2. 

0.5 -2.830 -1.251 
1.0 -2.608 -2.655 
1.5 -1.334 -3.684 
2.0 .992 -3.814 

y' y 

2.905 1.000 

1.654 2.517 
0.251 2.629 

- .779 2.470 
- .909 2.000 
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The Short Formula Process, from this point on, is merely a 

repetition of the procedure given in the last two paragraphs with the 

subdivision of each segment of the interval every alternate time after 

a set of ordinates has been calculated. After each interpolation, a 

refinement of the values is made on. the assumtion that variations due 

to interpolation will be practically eliminated. 

The rest of the work necessary to complete the illustrative 

example is shown in the table. 

X y" y' - y0' y' 

0 -2.000 
0.5 -5.698 -2.348 
1.0 -2.631 -4.571 
1.5 0.380 -4.988 
2.0 0.053 -4.580 

4.089 1.000 
1.741 2.445 

-0.482 2.762 
-0.899 2.264 
-0.491 2.000 

o -2.000 4.208 1.000 
0.25 -6.581 -1.203 3.005 1.921 
0.50 -6.298 -2.885 1.323 2.463 
0.75 -3.891 -4.175 0.033 2.615 
1.00 -1.298 -4.815 -0.607 2.534 
1.25 0.351 -4.903 -0.695 2.364 
1.50 0.728 -4.745 -0.537 2.207 
1.75 0.312 -4.605 -0.397 2.094 
2.00 0.386 -4.548 -0.340 2.001 

0.00 -2.000 3.938 1.000 
0.25 -6.209 -1.152 2.786 1.857 
0.50 -5.658 -2.708 1.230 2.359 
0.75 -2.931 -3.800 0.138 2.511 
1.00 -1.320 -4.267 -0.329 2.480 
1.25 -0.001 -4.484 -0.546 2.367 
1.50 0.095 -4.369 -0.431 2.235 
1.75 0.109 -4.443 -0.505 2.136 
2.00 0.145 -4.313 -0.375 2.000 
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X ylt yt 
- y0t y' y 

0.000 -2.000 3.824 1.000 
0.125 -4.663 -0.433 3.394 1.455 
0.250 -5.882 -1.106 2.718 1.838 
0.375 -5.998 -1.858 1.966 2.131 
0.500 -5.342 -2.573 1.251 2.331 
0.625 -4.238 -3.175 0.649 2.448 
0.750 -2.999 -3.627 0.197 2.500 
0.875 -1.929 -3.932 -0.108 2.503 
1.000 -1.322 -4.129 -0.305 2.478 
1.125 -0.572 -4.257 -0.433 2.430 
1.250 -0.294 -4.292 -0.468 2.374 
1.375 -0.203 -4.338 -0.514 2.313 
1.500 -0.118 -4.343 -0.519 2.247 
1.625 0.041 -4.364 -0.540 2.182 
1.750 0.249 -4.331 -0.507 2.115 
1.875 0.379 -4.305 -0.481 2.055 
2.000 0.200 -4.081 -0.257 2.003 

0.000 -2.000 3.809 1.000 
0.125 -4.393 -0.409 3.400 1.454 
0.250 -5.783 -1.056 2.753 1.840 
0.375 -5.993 -1.806 2.003 2.138 
0.500 -5.331 -2.518 1.291 2.342 
0.625 -4.238 -3.121 0.688 2.465 
0.750 -3.098 -3.575 0.234 2.520 
0.875 -2.126 -3.903 -0.094 2.529 
1.000 -1.368 -4.115 -0.306 2.501 
1.125 -0.788 -4.252 -0.443 2.456 
1.250 -0.452 -4.322 -0.513 2.393 
1.375 -0.147 -4.366 -0.557 2.329 
1.500 0.037 -4.364 -0.555 2.256 
1.625 0.212 -4.357 -0.548 2.190 
1.750 0.263 -4.316 -0.507 2.120 
1.875 0.304 -4.292 -0.483 2.063 
2.000 0.011 -4.254 -0.445 2.000 

Swmnary of the Short Formula Process 

By this process. the complete integration of a differential 

equation may be carried out in thirteen steps: 

1. Assume a straight line as the first guess. 
2. Correct the guess using the Three Ordinate Formulas. 
3. Interpolate with Lagrange's formulas (I). 
4. Apply the Modified Simpson Rule t .ne y't column to get y11-y' 
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5. Apply Simpson's Rule to the y" column to get remaining y' - y0'. 
6. Use formula (xi) to get y0'. 
7. Fill in y' column. 
8. Apply the Modified Simpson Rule to y' column. to et Yl 
9. Apply Simpson's Rule to the y' column to get remaining ordinates. 
lo. Check the calculated value of end ordinate with true value. 
11. Repeat steps 4 to 10 inclusive. 
12. Interpolate, using either (II) or (III) of Lagrange's formulas. 
13. Repeat steps 4 to 12 inclusive until solution is reaohed. 

In tabular form steps 4 to 10 inclusive can be performed as rapidly as 

the calculating machine can be operated and the figures recorded. The 

actual number of repetitions of step 13 needed for a solution depends 

almost entirely on three uncontrollable factors: (a) the length of the 

interval a - x0, (b) the given differential equation, and (o) the number 

of significant figures desired in the result. Ordinarily, when a short 

interval in which h will become 0.1 in a few operations and when not 

more than four significant figures are desired, eight operations suffice. 

This number of operations gives fifteen new ordinates in the interval. 

Except for the calculation of the values of the ytt column, the table can 

be filled in at the rate of from 60 to 100 figures of four digits each 

in an hour. In eight operations, about 200 figures are entered. The 

calculation of the ytt values depends upon the given equation. 

Although in the earlier examples, Lagranges formulas (III) were used 

for interpolation, later examples showed that the set (II) can be used 

when changes in the y" column are uniform. The set (II) is operated by 

applying the formulas for y and 13 to the first four values and then 

moving the formula for y3 ahead one row in the table at each step until 

the end is reached. The final interpolated value is found from the 

formula for Y5. Since the coefficients in the formula for y3 are -1 and 

9, this process is very rapid with a calculator. 

The procedure as outlined in steos i to 13 using Lagrange's four 

ordinate formulas (II) for interpolation in step 12 is, in the author's 
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opinion, the simplest that has been devised for the numerical integration 

of a second order differential equation with assigned end points. 

It is possible that the Long Formula Process may prove simpler if 

the first derivative is missing. When the ordinate is xnissin, the 

Short Formula Process is greatly shortened. 

The Short Formula Process is especially adapted to an electric 

calculating machine. It is simple enough so that all steps can proceed 

from memory. The actual work is simple enough so that a machine operator 

can solve the differential equation without recourse to methods beyond 

the level of High School Algebra. 

The Long Formula Process 

After a solution has been started, the Long Formula Process may be 

substituted for The Short Formula Process. 

The Long Formula 3rooess uses the Three, Five, and Nine Ordinate 

Formulas exolusively. The new ordinates are interpolated in the same 

manner as in the Short Formula Process. In orinciple, the mid-ordinate 

and slope found from the first guess are refined by repeated use of the 

formulas. In practice, the formulas (i) to (iv) and ti') to (viii') 

together with the two new formulas derived under the "Nine Ordinate 

Formulas" are applied direotly to the table of y" values. 

The process does not show promise of replacing the Short Formula 

Process. Exoept for the formulas for y0 and Y'o' the formulas contain 

such large coefficients that the process is tedious and cumbersome. 

These formulas were applied to the sama differential equation as was 

used in the Short Formula Process. The results were not as good after 

nine operations as had been obtained in eight operations by the simpler 

process. 
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The oomplete solution of the differential equation by the Long 

Formula Process follows. The table takes a different form. Two apolica- 

tions of the Three Ordinate Formulas, three applications of the Five 

Ordinate Formulas and three applications of the Nine Ordinate Formulas 

are shown in the table. 

X: 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

y 1.0 1.5 2.0 
y' 0.5 0.5 0.5 
y,' 

y 1.00 2.47 2.00 
y' 2.50 0.43 -1.22 
y' -2.00 -2.00 -1.20 

y 1.00 2.22 2.70 2.50 2.00 
y' 3.06 1.73 0.20 -0.88 -0.87 
yt' -2.00 -3.07 -2.83 -1.29 1.55 

y 1.00 2.57 2.81 2.40 2.00 
y' 4.25 1.73 -0.50 -0.95 -0.54 
y" -2.00 -5.92 -2.60 0.38 0.99 

y 1.00 2.51 2.59 2.24 2.00 
y' 4.33 1.39 -0.64 -0.61 -0.38 
y" -2.00 -6.48 -1.46 0.74 0.46 

y 1.000 1.872 2.366 2.506 2.441 2.319 2.213 2.118 2.000 
y' 3.996 2.795 1.416 0.035 -0.378 -0.475 -0.505 -0.474 -0.502 
ytt -2.000 -6.454 -5.840 -3.257 -0.810 0.386 0.209 -0.471 0.208 

y 1.000 1.841 2.333 2.487 2.459 2.361 2.236 2.112 2.000 
y' 3.821 2.740 1.213 0.136 -0.367 -0.472 -0.510 -0.447 -0.406 
y" -2.000 -5.928 -5.651 -2.795 -1.185 -0.395 0.032 0.205 0.403 

y 1.000 1.83]. 2.321 2.491 2.472 2.372 2.224 2.116 2.000 
y' 3.792 2.697 1.249 0.207 -0.377 -0.482 -0.526 -0.492 -0.433 
y" -2.000 -5.809 -5.273 -2.964 -1.225 -0.434 0.027 0.213 0.250 

y 1.000 1.835 2.333 2.507 2.486 2.382 2.248 2.117 2.000 
y' 

y" -2.000 -5.750 -5.312 -3.106 -1.218 -0.423 0.052 0.237 0.293 
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Comparison of Results 

For the assigned end points, direct integration of 

(1 + x2) y" - X - 2 y - 4 xy' by formal methods gives the equation 

6(1 . x2) y = x3 + 23 x 6. In the accompanying table, the correct 

values of the integral for seventeen ordinates are given In the second 

column. In the third column are the results for the same ordinates 

using the Short Formula Process. In the last column are the values for 

nine ordinates found by the Long Formula rocess. 

True Short Long 
X Values Formula Formula 

0.000 1.000 1.000 1.000 
0.125 1.457 1.454 
0.250 1.846 1.840 1.835 
0.375 2.145 2.138 
0.500 2.350 2.342 2.333 
0.625 2.471 2.465 
0.750 2.525 2.520 2.507 
0.875 2.529 2.529 
1.000 2.500 2.501 2.486 
1.125 2.450 2.456 
1.250 2.387 2.393 2.382 
1.375 2.319 2.329 
1.500 2.244 2.256 2.248 
1.625 2.182 2.190 
1.750 2.117 2.120 2.117 
1.875 2.056 2.063 
2.000 2.000 2.000 2.000 

A Problem Having No Solution 

If the end points (0,0) and (1.6, 1) are assigned to the differen- 

tial equation y" = - (_2L)2 solution exists. The family of solu- 

tions vanishing at x O is y A sin (iTx/1.6), where A is an arbitrary 

constant. At x 1.6, y O independently of A so that no solution can 

be found. The Short Formula Process is used on the oroblem. The values 

of the ordinates found in each of the eight operations are given in the 

table. The non-existence of a solution is indicated by the steadily 

increasing values of the ordinates as the operations are continued. 
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X ist 2nd 3rd 4th 5th 6th 7th 8th 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.1 0.770 0.901 
0.2 1.045 1.289 1.514 1.772 
0.3 2.210 2.586 
0.4 1.087 1.522 1.967 2.417 2.832 3.314 
0.5 3.364 3.934 
0.6 2.656 3.247 3.794 4.424 
0.7 4.109 4.768 
0.8 0.500 1.117 1.751 2.389 3.029 3.669 4.274 4.955 
0.9 4.485 4.976 
1.0 3.037 3.631 4.194 4.827 
1.1 4.150 4.512 
1.2 1.741 2.218 2.672 3.127 3.560 4.047 
1.3 3.270 3.432 
1.4 1.968 2.218 2.449 2.718 
1.5 1.976 1.869 
1.6 1.000 1.000 1.000 0.999 1.001 1.001 1.000 1.000 

The Perfect Solution 

A perfect solution for four significant figures is reached when the 

calculated and true values do not vary by more than one unit in the last 

significant figure. In this example, the results are within the required 

limits. The equation integrated is y" - (1 # e2)3,/2 With the assigned 

end points (0,0) and (0.8,0.2). Since they are not needed in the oalcu- 

lations, the y column values are omitted from the table until the final 

operation is reached. The behavior of the y' column indicates that 

results correct to at least three significant figures can be obtained at 

the end of the sixth operation. Lagrange's formulas (II) are used in the 

interpolations. A check with the formal solution of the differential 

equation shows that the seventeen ordinates lie on the circle having the 

equation (x - 0.1790)2 + (y - 0.9838)2 1. The work for this example is 

given in full. 
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X ytt y' - y0' y' y 

0 .25 

.4 .25 

.8 .25 

0 1.0952 -.1881 
.4 1.0952 *.2500 
.8 1.0952 .6881 

o 1.0535 -.1826 
.2 0.9936 .2020 *.0194 
.4 1.0952 .4082 .2256 
.6 1.3604 .6510 .4684 
.8 1.7886 .9632 .7806 

0 1.0504 -.1830 
.2 1.0006 .2035 -.0205 
.4 1.0773 .4087 .2257 
.6 1.3465 .6473 .4643 
.8 2.0416 .9757 .7927 

o 1.0507 -.1822 
.1 1.0135 .1030 -.0792 
.2 1.0006 .2035 -1-.0213 

.3 1.0194 .3042 .1220 

.4 1.0774 .4087 .2265 

.5 1.1675 .5208 .3386 

.6 1.3402 .6449 .4627 

.7 1.6316 .7928 .6106 

.8 2.0779 .9764 .7942 

0 1.0502 -.1820 
.1 1.0094 .1027 -.0793 
.2 1.0007 .2030 -t-.0210 

.3 1.0224 .3039 .1219 

.4 1.0779 .4086 .2266 

.5 1.1768 .5209 .3389 

.6 1.3378 .6460 .4640 

.7 1.6085 .7921 .6101 
2.0825 .9745 .7925 
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X Y" l'-Y' y' y o 

o 1.0501 -.1820 
.05 1.0257 .0519 -.1301 
.10 1.0094 .1027 -.0793 
.15 1.0012 .1530 -.0290 
.20 1.0007 .2029 +.0209 
.25 1.0075 .2532 .0712 
.30 1.0224 .3038 .1218 
.35 1.0454 .3556 .1736 
.40 1.0780 .4085 .2265 
.45 1.1209 .4636 .2816 
.50 1.1771 .5208 .3388 
.55 1.2479 .5816 .3996 
.60 1.3397 .6459 .4639 
.65 1.4543 .7160 .5340 
.70 1.6074 .7920 .6100 
.75 1.8110 .8776 .6956 
.80 2.0773 .9741 .7921 

O 1.0501 -.1821 0 
.05 1.0255 .0519 - .1302 -.0078 
.10 1.0094 .1027 -.0794 -.0130 
.15 1.0013 .1530 -.0291 -.0157 
.20 1.0007 .2030 .0209 - .0159 
.25 1.0076 .2532 .0711 - .0136 
.30 1.0223 .3039 .1218 -.0088 
.35 1.0455 .3556 .1735 -.0014 
.40 1.0779 .4086 .2265 -,-.0086 
.45 1.1213 .4636 .2815 .0213 
.50 1.1770 .5209 .3388 .0368 
.55 1.2488 .5816 .3995 .0552 
.60 1.3396 .6461 .4640 .0768 
.65 1.4569 .7160 .5339 .1017 
.70 1.6072 .7923 .6102 .1303 
.75 1.8075 .8776 .6955 .1629 
.80 2.0761 .9742 .7921 .2000 



y" Infinite at One End of Interval 

When y" becomes infinite at one end of the interval, the Short 

Formula Process fails to give a solution. In this case, the result 

reached by stepping the process out from the initial point does not 

check with the value assigned at the end of the interval. 

When the end points (0,0) and (1.6, 0.9798) are assigned for the 

equation y" 1.1 (1 
12)3'2, 

y" becomes infinite at x 1.6. Three 

aP?lioations of the process are enough to show that the solution can- 

not be reached by this method. 

X y_t-yo' y y 

0.0 0.6124 0.0000 
O.B 3.t3124 0.4899 
1.6 0.6124 0.9798 

0.0 1.7737 -0.8066 0.0000 
0.8 1.7737 1-0.6124 -0.0777 
1.6 1.7737 2.0314 0.9798 

0.0 2.3325 -0.8829 0.0000 
0.4 0.6903 0.4921 -0.3908 -0.2318 
0.8 1.7737 0.8725 -0.0104 -0.3275 
1.2 5.8256 2.2961 1.4132 0.1308 
1.6 12.7650 5.0455 4.1626 1.3073 

y" Large at One End of Interval 

If at a few points in the interval, ytt becomes very large in 

proportion to the other values of y", repeated application of the Short 

Formula Process makes the fit to the solution increasingly poor. 

When the end ooints (0,0) and (1.6, 0.5) are assigned to the 

equation y" = (1 
-t- 

2)3/2, becomes infinite at x 1.6373. At the 

sixth operation, the value of y" at x . 1.6 is beginning to control the 

table. At the eighth operation, y" at x 1.6 is eight times the next 

largest y" value in the table. This value has now becon large enough 
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to affect the values of all fifteen interpolated ordinates. The agreement 

with the true values becomes worse at each operation beyond this stage. 

The process for the sixth and eighth operations is shown. Correct values 

are shown in the coluìn headed Y. 

Sixth Operation 

X y" y'-y0' y' y Y 

0.0 2.0807 -0.8399 0.0000 0.0000 
0.2 1.3767 0.3361 -0.5038 -0.1323 -0.1287 
0.4 1.1108 0.5799 -0.2600 -0.2077 -0.2033 
0.6 1.0053 0.7911 -0.0488 -0.2385 -0.2287 
0.8 1.0577 0.9926 #0.1527 -0.2279 -0.2161 
1.0 1.2182 1.2214 0.3815 -0.1756 -0.1613 
1.2 1.7349 1.5036 0.6637 -0.0717 -0.0561 
1.4 3.9759 2.0303 1.1904 +0.1062 *0.1239 
1.6 23.8969 3.9904 3.1505 0.5000 0.5000 

Eighth Operation 

0.0 2.2134 -0.8392 0.0000 0.0000 
0.1 1.6738 0.1919 -0.6473 -0.0739 -0.0738 
0.2 1.3732 0.3427 -0.4965 -0.1308 -0.1287 
0.3 1.1950 0.4706 -0.3686 -0.1740 -0.1708 
0.4 1.0875 0.5841 -0.2551 -0.2050 -0.2033 
0.5 1.0266 0.6896 -0.1496 -0.2253 -0.2199 
0.6 1.0014 0.7906 -0.0486 -0.2351 -0.2287 
0.7 1.0071 0.8909 +0.0517 -0.2350 -0.2274 
0.8 1.0436 0.9930 0.1538 -0.2247 -0.2161 
0.9 1.0899 1.0999 0.2607 -0.2041 -0.1943 
1.0 1.1009 1.2098 0.3706 -0.1725 -0.1613 
1.1 1.3594 1.3283 0.4891 -0.1297 -0.1159 
1.2 1.6370 1.4823 0.6431 -0.0735 -0.0561 
1.3 2.1650 1.6640 0.8248 -0.0002 +0.0217 
1.4 2.7993 1.9188 1.0796 1-0.0939 0.1239 
1.5 8.8492 2.4044 1.5652 0.2234 0.2649 
1.6 74.7006 5.6820 4.8428 0.5000 0.5000 
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PARAMETRIC FORM OF SOLUTION OF A DIFFERENTIAL EQUATION 

Formation of the Parametrio Equations 

From the identity dy/dx (dy/ds)/(dx/ds), the identity d2y/dx2 

(dy/ds2)/(dx/ds)4 follows by ordinary differentiation. Further, 

if s kt, it follows that dy/dx2 k2(d2y/dt2)/(d.X/dt)4 and dy/dx 

(dy/dt)/(dx/dt). If accents denote differentiation 'pith respect to t, 

the original differential equation 

(1) d2y/dx2 : f(x,y,dy/dx) becomes 

(2) k2 y'7x'4 = f(x,y,y'/x'). 

If s denotes the length of the arc of the curve, an element of arc, ds, 

is given by ds2 dx2 t dy2. Since ds k dt, X' and y' are connected 

by the relation 

(3) x'2+ y'2 = k2. 

The constant k oan be eliminated from (2) and (3) by substituting (3) 

into (2) and differentiating (3). The equations replacing the single 

differential eqiation (1) take the forms 

(4) (x'2-- y'2) y"/x'4 f(x,y,y'/x') 

(5) xl x" -i- y' y" O. 

The substitution of (2) into (5) gives 

(6) k2 xtt/x3y? _f(x,y,y'/x'). 

Equations (2) ad (6) form a pair of parametric equations replacing 

the original equation (1). 

An Application of the Eoiiations 

If equations (2) and (6) are applied to the equation d2y/dx2 

: fi (dy/dx)2]3/2, there is obtained the simple pair y" kx' and 

X't - ky'. If the end points assigned are (0,0) and (1.6, 0.5), the 

problem becomes the same one which in the last chapter failed to yield 
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a solution. The integral is found by the simultaneous solution of this 

pair of equations using a double application of the Short Formula 

rooess at each operation. The particular problem studied is carried 

ten operations. This many operations interpolates a total of 31 new 

pairs of values of z and y between (0,0) and (1.6,0.5). 

Starting the Solution 

For convenience, the equations are integrated from t O to 

t 3.2 The table is set up in nine coluinn8 headed t; z", z' - z0', 

X' and x; y", y' - Yo'' Y' and y. The connection between the block 

relating to z and the block relating to y is made through the oara- 

metric differential equations. Otherwise, the solution is just the 

same as though two separate equations were being solved in parallel 

columns. Each block is started separately. For the x-blook a straight 

line connecting t O , x O and t 3.2, x 1.6 is assumed. This 

gives Xm' _ 0.5000. For the y-block, a straight line connecting 

t 0, Y O an t 3.2 y 0.5000 is assumed. This gives Y'm 

: 0.1562. From the relationship (3), k 0.5235. Substituting for 

k, x' and y' in the pair of differential equations gives 
"m 

= 0.2619 

and x"m -0.0647. The Three Ordinate Formulas are applied directly 

to each block in turn to give the x' and y' values needed. New values 

of k are found again from (3). The table on the next page shows the 

first five operations. 



t Xt' 
Xt - 

X0? 
XI y" yt-yo' y? y 

0 .5000 0 .1562 0 

1.6 .5000 0.8 .1562 .25 

3.2 .5000 1.6 .1562 - 
.50 

0 -.0647 .6035 0 .2619 -.2628 0 

1.6 -.0647 .5000 0.8828 .2619 .1562 .0852 

3.2 -.0647 .3965 1.6000 .2619 .5752 .5000 

0 .1730 0 .4767 .3972 0 -.3350 

.8 .0666 .0975 .5742 .3108 .2807 -.0543 

1.6 -.0647 .0999 .5766 .2619 .5073 .1723 

2.4 -.2206 -.0126 .4641 .2507 .7098 .3748 

3.2 - .4018 -.2600 .2167 .2770 .9154 .5834 

0 .1918 0 .5119 0 .2730 0 -.3482 0 

.8 .0313 .0872 .5991 0.4528 .3312 .2431 -.1051 -.1852 
1.6 -.1037 .0569 .5688 0.9272 .3470 .5186 .1704 -.1595 

2.4 -.2236 -.0747 .4372 1.3359 .2768 .7754 .4272 .0825 

3.2 -.3630 -.3061 .2058 1.6001 .1349 .9424 .5942 .5001 

0 .2156 0 .4863 
.4 .1429 .0720 .5583 
.8 .0639 .1135 .5998 

1.2 -.0184 .1227 .6090 

1.6 -.1012 .0987 .5850 

2.0 -.1820 .0420 .5283 
2.4 -.2569 -.0461 .4402 
2.8 -.3220 -.1622 .3241 

3.2 -.3736 ____ -.3019 .1844 

.3169 0 -.3902 

.3750 .1419 -.2483 

.3644 .2908 -.0994 

.3588 .4341 .0439 

.3378 .5758 .1856 

.3070 .7030 .3128 

.2629 .8196 .4294 

.2041 .9114 .5212 

.1294 .9808 .5906 
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Continuation of the Process 

The first interoolation is made with Lagrange formulas (I). All 

later interpolations are made with the formulas (II). The process is 

continued as in the preceding examples, except that now k must also be 

determined for each value of t. k varies with each ordinate and from 

one operation to the other. As the solution is approached, k becomes 

more nearly constant. If the solution is perfect, k has the same value 

for all ordinates in the interval. This property of k offers it much 

promise of serving as a valuable guide in this type of solution. 

Comparison of Results 

Formal solution gives the equations 

x - 0.6373 
- 

sin (0.6211 t - 0.6909) 

y 0.7706 - cos (0.6211 t - 0.6909) 

For 33 ordinates, the true values of x and y for a given value of 

t are shown in the oolumns headed X and Y in the table. The third and 

fifth columns give the calculated values. Much better results are 

obtained here than were obtained in the case where the Short Formula 

Process was applied directly. 
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t X X Y y 

0.0 0.0000 0.0000 0.0000 0.0000 
0.1 0.0491 0.0491 -0.0381 
0.2 0.1004 0.1005 -0.0731 -0.0728 
0.3 0.1538 0.1539 -0.1048 -0.1044 
0.4 0.2091 0.2092 -0.1335 -0.1326 
0.5 0.2660 0.2661 -0.1579 -0.1573 
0.6 0.3243 0.3245 -0.1792 -0.1784 
0.7 0.3840 0.3840 -0.1968 -0.1959 
0.8 0.4445 0.4446 -0.2106 -.0.2096 
0.9 0.5058 0.5058 -0.2207 -0.2196 
1.0 0.5676 0.5676 -0.2270 -0.2258 
1.1 0.6295 0.6296 -0.2294 -0.2282 
1.2 0.6917 0.6916 -0.2279 -0.2267 
1.3 0.7535 0.7534 -0.2226 -0.2215 
1.4 0.8150 0.8148 -0.2135 -0.2123 
1.5 0.8757 0.8755 -0.2006 -0.1995 
1.6 0.9356 0.9353 -0.1838 -0.1828 
1.7 0.9942 0.9938 -0.1635 -0.1626 
1.8 1.0515 1.0512 -0.1396 -0.1386 
1.9 1.1072 1.1067 -0.1121 -0.1113 
2.0 1.1611 1.1607 -0.0816 -0.0804 
2.1 1.2129 1.2124 -0.0471 -0.0465 
2.2 1.2626 1.2622 -0.0098 -0.0091 
2.3 1.3098 1.3092 #0.0305 #0.0309 
2.4 1.3544 1.3541 0.0736 0.0742 
2.5 1.3963 1.3957 0.1197 0.1197 
2.6 1.4353 1.4350 0.1683 0.1683 
2.7 1.4712 1.4706 0.2187 0.2186 
2.8 1.5038 1.5036 0.2715 0.2717 
2.9 1.5331 1.5327 0.3262 0.3260 
3.0 1.5590 1.5589 0.3827 0.3828 
3.1 1.5813 1.5810 0.4406 0.4402 
3.2 1.6000 1.6000 0.5000 0.4999 
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CONCLUSION 

A comparison of the two processes developed in this thesis shows 

that in ordinary practice the Short Formula Process using Simpson's 

Rule and the Modified Simpson's Rule proceeds so rapidly and simply 

that it is greatly superior to the Long Formula Process using the 

Three, Five, and Nine Ordinate Formulas. The tabular form taken by the 

Short Formula Process is short, compact, and easily duplicated. 

Accuracy in both processes is brought about by reducing h to a 

value small enough to make nearly zero the terms neglected in the 

Maclaurin expansions of the formulas used. In ordinary cases where 

h becomes at least one-tenth by the seventh operation, a satisfactory 

solution is reached in the eighth. 

No rigorous attempt has been made to determine the requirements 

for the existence of a solution. Each of the examples presented dis- 

plays special characteristics which may serve as predictors of a 

successful solution. Problems to be solved may be classified as (a) 

those for which the Short Formula rooess gives a perfect solution, 

(b) those for which no solution is possible with the assigned end points, 

and (o) those capable of solution but to which the Short Formula Process 

is inapplicable. A perfect solution would appear to be indicated by 

( a) repetition of values for several operations, (b) steady approach of 

a value to a definite limit as operations proceed, and (o) in the para- 

metric form, the tendency of k to remain constant throughout the 

interval and from one operation to the next. That these conditions 

will insure a correct solution has not been examined. From the examples 

no distinction can be made between the failure of the process and 



non-existence of a solution. In both instances, the indication that the 

ordinates are not going to become stationary in value after a few oper- 

ations is taken as sufficient evidence that the continuance of the 

process will be unprofitable. 
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