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The cgcdnt. of differential equations can be per-
formed by methodss x:by-m integration end successive approxi-
mations. Unique imbegrals are obtained by both methods if the Cauechy-
1ipschits hypothesis is satisfied. Numerioal proeesses suitsble to
caloulating machine procedure sre almost exelusively limited to those
uging stop-by-step intogration. In this thesls are presented two
numerical proecesses for obtaining by the method of successive approxi-
mations a segment of the integral curve of the seeond order differential
equation with agsigned emd points. Thoso processes are called the Shert
Formula Frocess and the long Formula Frocess.

The Short Formmls Frocess employs Siupesonts Rule and lodified
Siapson's Rule. The lodified Sinpson's Rule debermines the second ordi-
nate in terms of the initial ordinate. Bxecopt for this ordinmate, sll
other ordinates are foumd by moving Sipson's Rule over the interval.
Since the inmitial first derivative is not given, e special ident
invelving a gemernl form of Simpson's Rule 1s necessary for its
nination. The whole process goes forwerd repidly in easily remerbered
steps using simple formlas. In the examples investigated, eizght
operstions usually provide a satisfactory solutiom.

The long Formula Process differs from the Short Formula Prooess in
that it epplios directly the Thwee, Five, and Fine Ordinate Formulas.
This process shows little promise of roplacing the Short Formula Process
bmi of the tediousness of applying formulas using cumbersome coeffi-
clents,

Ascurasy in both processes is browght about by making the subdivisions
of the interval smell emough to meke nearly zero the neglected terms in
the Maolourin expansions from which all the formulas are derived. To
accomplish this, special forms of Lagrange's interpolatiom formmls are
applicd every altermate time to the second derivabtives to biseet each
sognant of the inbervel. By this method, fifteen new ordinates are
interpolated into the original iuterval in eight operations.



No rigorous attempt has beon made to debermine the comditions
neeessary for the existence of & solubion. In practice, if, as the
continve, the values of the ordinates tend to Lesoms
a solution is oomsidered reashed.. If, as the operations continme, the
values of the ordinates do not tend to become stationery, work is dis-
continued. No distinction is made between problems heving no solution
and problems for which the processes fadl.
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ON THE NUMERICAL INTEGRATION OF THE SECOND
ORDER DIFFERENTIAL EQUATION WITH
ASSIGNED END POINTS

INTRODUCTION

The routine work of the modern scientist and engineer requires
the solution of an inoreasingly greater number of differential equations.
In many practiocal problems, no formal method of solution of the equation
is possible. 1In these cases, approximate methods must be employed.

Only a few methods suitable to calculating machine procedure are avail-
able. The existing processes are found mainly in the field of step-by-
step integration. Among the special types that have been thus inte-
grated is y" = f(x,y).

In this thesis are presented two methods of approximating the
solution to the second order differential equation y" = f(x,y,y') in
which the value of the integral at each end of the interval of inte-
gration is given. Both processes are adapted to calculating machine
procedure. As far as can be determined, neither of these two processes

has been presented before.



NUMERICAL INTEGRATION

Methods

Ince states that "Of all ordinary differential equations ... only
certain very special types admit of explicit integration, and when an
equation which is not of one or other of these types arises in a prac-
tical problem the investigator has to fall back upon purely numerical
methods of approximating to the required solution." (2)

Approximate methods may be classified into two groups: (&) suc-
cessive approximations and (b) step-by-step integration. In the first
method, the desired region is assigned in advance or is made as large as
possible. In the second method, a form of approximate solution, such as
a polynomial of given degree, is chosen arbitrarily in advance and is
applied to sub-intervals of not too great extent until the region is
covered. The existence of a solution using either method is based on the
work of Cauchy (1820 to 1830) and improved by Lipschitz in 1876. Previ-

ously in 1768, Euler, in his Institutiones calculi integralis, had sug-

gested this idea as a method of calculation.

Successive approximations may be carried out in several forms,
three of which are (&) direct substitution into power series--a method
dating back to Newton and Leibnitz; (b) Liouville's method, appearing in
the second volume of his journal (1837), in which he writes the solution
as an integral equation and proceeds to form a series from this form; and
(e¢) Picard's method of successive substitutions (appearing in Liouville's
journal in 1890) in which Cauchy's principle was revived assuming the
Cauchy-Lipschitz hypothesis as an initial condition but proceeding in a
manner less restricted than Liouville's. That Picard's method actually

1
provides the correct solution was shown by Bendixon and Lindeloéf in 18945 )



Several step-by-step methods of computation have been devised.
The simplest in form and often the most difficult in practice is the
Taylor's series. Outstanding objections to this form were overcome
by Runge in 1895 and continued by Kutta in 1901. A method especially
adapted to the equation y" = f(x,y) was devised by Milne in 1933.(3)

The Cauchy-Lipschitz Hypothesis

Theoretical considerations in this thesis will be dismissed with
a statement of a set of conditions which have been shown to provide a
correct solution if they are satisfied.

"In the case of the differential equation of the first order,
dy/dx = f(x,y), let £, and d£/)y be real one-valued continuous functions
for all real values of x, y, satisfying the conditioms, |x - xolé a,
|¥ - Yo/ £ b, and let |f/< M be satisfied in this rectangle. Let 1
denote the [smaller of the values] a, and b/M. Then if the interval,

X, to x, where |x - x4,/ <1, be broken up into m equal subintervals of
length h, by points, Xg, X35 +sees, Xy 7, X, One may defiine Y1sYpseeeesVn
by the equations yj,7 = y3 +hf(xi,y1), 1 =0, 1, sees;, m = 1. Then
Cauchy showed that under the given hypotheses y,(x) tended, as m in-
creased, toward a limit function y(x), which is the unique function sat-
isfying the given differential equation with the boundary conditionm,
¥(X0) = yo. The proof was extended to apply to the general system of

n such first order equations in n dependent variables, equivalent to a
single differential equation of the nth order.

"This method was notably improved by Lipschitz, who replaced
Cauchy's absolute bound for 0f/)y by the bound for the difference
quotient, namely, lf(x,y) - f(x,Y)l< k Iy - Yl » for (x,y) and (x,Y)
in the fundamental rectangle, and similarly for the system of the nth
(1)

order."



DEVELOPMENT OF FORMULAS IN
TERMS OF ORDINATES

The set of formulas sbout to be derived are directly applicable
to the differential equation y" = f(x,y,y') with assigned values of y
at the end points. They give values of y and y! directly in terms of
y" for 20 + 1 ordinates, if the end ordinates are also ineluded. The
three-ordinate formulas are exceedingly simple, but the formulas for
five and higher ordinates are apparently too complex to be of great
practical value. Since the three-ordinate formulas form the basis
of the method used in succeeding sections, their derivation will be

given in detail.

Three Ordinate Formulas

Let the origin be taken at the midpoint of the interval. Let
the distance to either end ordinate be h. If all the derivatives of
y with respect to x that are needed exist, Maclaurin's expansion of
a function about the origin yields:

2 3 5, v vi
V= f(h)'Yo+hY°'+%Yo"+£y°"' h4Yi' by, .&9  aeR

8 ey HEge 120
5 6
hy,'= hfr(h) = hyo! + by + B8, %% T %%ovi-r sins

hzyln- 2f"(h) hzyo" + hsyg,"

with a corresponding set of three where h is everywhere replaced by = h.

This set gives values at the initial ordinate designated as Y.1+ Since
it is assumed that the values of the second derivatives are available
from the differential equation y" = f(x,y,y'), they are considered

given,
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From linear combinations of these expansions result the six formulas:

2 6. vi
(i) Yo ™ %(yl * Y_l) Cx -2: (Y..]_“ + 10 yo" + Y]_") 42 z_ago Foeee

& - 4 vV vi
(11) y_q' =91 -7V - % (y1"+ 2y,") - 13 h A AT
oh 360 180
(111) yo' P ﬁ'—-_yi + %(y"ln = y].") -+ _hiy_ov+ cs
oh 180
v 5, vi
(19) »' =T -Ta+ B2y yy") - 280%y, - by, .
a9 360 180
8 e - h ny Vi .
(v) 1 ya' = 3 (Y_lu + 4 Yo"+ Yln) - 9_010 + ese

A | 5, v
(W) 7 -7 = Simat+ S yt+ ) %61"" B R

Formula (vi) is the well known Simpson's Rule, after Thomas Simpson
(1743). Its geometric analogue is credited to Cavalieri (1639).

Five Ordinate Formulas

If, in addition to the Maclaurin expansions for f(+ h) and the
derivatives f'(+ h) and f"(+ h), are added expansions for the values
f( +2h), £'( £2h) and £"( + 2h), there result twelve equations in
eight unknowns: three ordinates and five first derivatives. In these
equations the third, fourth, fifth and sixth derivatives may be elim-
inated to yield formulas in which the lowest appearing derivative
is the seventh.



(1') y_l = }'_2 . Yz - y_z -
4

2
R (27 y.0" + 532 ya" r222 y," #1382 " 4 T y,m)

480
B o
-h y + oo
480
(11') vy, =y, . 2yy = ¥.5) -
&
hz n n " n
- (y.2" + 18y,)" + 26y, +16y" + ¥,")
8 wviii
2 h y, oo
945
(114') ¥y =y, ,3(y2 - ¥-2) -
4
hZ
oo (T V" #1323y + 222y +552 y)" 4 27 "
7 vii
FRFS R
(iv') y o' = Y2 -yp - 480
4h
4—22( Ty.o" + 24 y_l" + 6 yo" + 8 yl"+ )
6. vii
-8, 4+ e
315
(vr) Y_l' = Y2-Y2 =
h(-27 Yo" + 122 y_1" + 456 y " +150 yl" +19 y,")
720
6 wvii
P15 Ny
10080
(vi') vy, = Y2 ;hY.z +
h "
%( V.2 + 28 y_l" - 28 yl" A yzn)

6 wii
- h vo + LR
630



o e AR | el

+
4h
h
;EE( 19 y_o" +150 y_," + 456 Yo' + 122 yy" = 27 y,")
6_ vii
g 61 h Yo PR
10080
(viid ' = -
) Yo s
4h
2( 8 + 8 ye® . "
- Y1 Yo t24y" + 17 Yo )
6 vii
) 4 h'y .o
315

Nine Ordinate Formulas

These are developed by dividing the interval at the midpoint and
employing the Five Ordinate Formulas separately to each half with the
requiremanf that the two applications give the same values for the mid-
ordinate and its first derivative. Sixteen formulas are needed.
Fourteen are duplicates of (i') to (viii'), excepting (ii') and (vi'),
which now take the forms

yo = Y4 + Y4 - &2(4 y.s”

+3y_"+12y_"+7y" +12yn
A 45 2 1 0 1

+3 Y," + 4 yz")

' -
Yo' = V4 - ¥ou +.§E (4 Y.g" + 3 y;zn + 12 Y;ln -12 yi"
8h 45



Interpolation Formulas

The basis for the necessary interpolations is Lagrange's formula:
n n

Z 1T (x-2¢)
% )/L K:o (K# L)
/ —cj:(xt‘%k)

(=0 =0
If the given ordinates are edqually spaced and the interpolated

values lie midway between any two consecutive given ordinates, the
formula reduces to these simple forms:

Three Ordinates:
(1)

<
-
"

(1/8)(3 yo +6 yo - ¥a)

(1/8)(- yo + 6 y5 +3 y,)

o
"

Four Ordinates:

y1 = (1/16)(5yo + 16 75 - 65 y4 + ¥g)
(11) Yz = (1/16)(- yo + 9 y2 +9 ¥4 - ¥g)
Five Ordinates:
y1 = (1/128)(36 y, + 140 y, -T0 y, + 28 yg - 5 yg)
( vz = (1/128)(-5 y, + 60 yp + 90y, = 20 yg + 3 yg)
111)
Vg = (1/128)( 3y, - 20y, +90y, + 60Yg- 5 yg)
¥7 = (1/128)(~5 y, + 28 y3 - 70 y4 + 140 yg + 35 Yg)

Modified Simpson's Rule

By combining Simpson's Rule for ordinates located at x = h and 3h
and Newton's Three-Eighths Rule for ordinates located at x = 0 and 3h
a formula for determining the ordinate at x = h is obtained. Newton's

Three Eighths Rule gives

5
3h o
(vii) y3 - yo = - (Yo' +3 7' +3y, + yg') + -:—o-lly-*i"/z # o



Simpson's Rule (vi) gives

5 v
(vidl) yg -y s B (yq' + 4y, + ya2) -2 Y2 ...
3-N="zn 2' + ¥3') - =2 4

The subtraction of (viii) from (vii) furnishes the formula

5 v v
(ix) ¥y, =¥ -h_(9y'+19y'—5y'+y') h_(27y, *8y, ..
1 ° " 72 o 1 2 3 *720 3/2

By a similar process there is obtained

5 vi vi
i h h
(x) 3" - V' = 9 "+ 197" - Byp" +yg") + %(273;3/; s

Formula for Determining yo!

In the Short Formula process, the first integral of the differential
equation is known except for an additive constant, Yo'+ This constant
can be determined from the assigned end points as follows:

Let y' - yo' be integrated over the interval x, to &, subject
to the conditions y = y, at x = x5 and y = y, at x = a. Then it follows
directly that j: (¥' - ¥o') dx =y, - ¥o - (a - Xo) Yo'+ If the
integral is replaged by a general form of Simpson's Rule (vi), the

formula to determine y,' is

() (8-2) 7" = (ra-70) - e[y -70) 4 oo
+(yi| = Yo') + ooo] o - [(y2| o yo') + e

(Wt = ¥ )+ eee]  +(yy' - Yo')}

'hel'e i = 1’ 3’ 5’ L) 8 - 1, Gndk - 2) 4’ 6’ ooy & - 2'
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APPLICATION OF THE FORMULAS TO A DIFFERENTIAL EQUATION

The differential equation is taken in the form y" = (f(x,y,y')
with the assigned end points (x,,y,) and (a,yg). To illustrate the
procedure, the processes are applied to the differential equation
(1 + x2) y" = x - 2y - 4xy', for which is desired the solution passing
through (0,1) and (2,2).

Startinggthe Solution

The first approximation to the solution is assumed to be a
straight line connecting the assigned end points. The midpoint of
the line has the coordinates xy = 3(x, + &) and yp = 3(yo + ¥a)-

The slope of the line is yp' = (ya - ¥o)/(a - %5). The coordinates
of the two end points and of the midpoint together with the slope are
substituted into the differential equation to give the three second
derivatives yo", ¥n", ya". For example, in the chosen equation, the
end points are «; (0,1) and (2,2). Then xp = 1, yp = 1.5, and

Ym' = 0.5. The differential equation gives y," = -2, y," = - 2,

and yg" = - 1.2. These values of Xns Yps &nd yp' are now refined by
substituting the y" values into equations (i) to (iv) inclusive, of
the Three Ordinate Formulas. The value of h is given by (a - x,)/(N - 1)
where N is the number of ordinates in the interval. The equations
become, since h = 1,

Ym = (2 + 1) % (-2 + 10(-2) - 1.2) = 2.47

(A) vy, = 2(;)1 - % (=2 + 2(-2) = 2.50

Ym' = 00433 md ya' . - 1!22-



il

The work up to this point may be conveniently shown in tabular form:

x y“ yl s yo 1 y'

0 0.5 1.0
1 0.5 1.5
2 0.5 2.0
0 - 2 2.50 1.00
X -2 : 0.43 2.47
2 - 1.2 - 1.22 2.00

First Interpolation

Another set of values for y" is found from the differential
equation using the values (A) and the end points. These are y," = - 2,
Y = - 2.608, yo" = 0.992. At this stage, a second derivative is
interpolated midway between y," and y," and another midway between
Yn" and Yo"+ The interpolation is carried out using Lagrange's three
ordinate formulas (I). Five second derivatives are now available.

The interpolated values are y;" = - 2,830 and yg" = - 1.334. Let
Ym" = ¥2" and y," = y4". At this point, either of the two processes:
The Short Formula Process or The Long Formula Process, may be employed.

The solution by The Long Formulae Process is given in a later section.

The Short Formula Process

The Short Formula Process uses the Simpson and the Modified
Simpson Rules together with the Formula for Determining y,'.

Formula (x) gives the value of ¥Y1' - ¥o' and formula (v) gives
¥2' = ¥o'. The values for yz' - yy' and y4' - yp' are found by
moving formula (v) forward one ordinate at a time. By adding yz' - ¥y
%o y3' - ¥o'» ¥3' - yo' is obtained. By adding y4' - ¥u' to ¥5' - ¥'s

Y4' - yo' is obtained. This gives a set of values y' - y,'. When the
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colum headed y' - y,' is completed, y,' is determined from formla (xi).
This value of y,' is entered opposite x, in the column headed y'. The
algebraic addition of y,' to each value in the y' - y,' column gives a
complete table of first integrals of the y" column. Since Yo is given,
the integration of the y' columm follows directly. The process this
time goes forward in only one column, headed y, with the use of formulas
(vi) and (ix). The complete process thus requires only a five columm
table.

The procedure applied to the example is as follows: h = %,
1 (9(-2) + 19(-2.830) + +..) = - 1.261.

Fl'Om (X)! Yl' = yo‘

48

From (v), ¥,' - ¥o' -%5. (-2 + 4(-2.830) - 2.608) = - 2.655,
¥s' - vy =% (<2.830 + «...) ® - 2.433,

and ¥i' = yo! = = 1.159,

In terms of y,', these are yz' - y,' = - 3.684 and y ' - y,' = - 3.814.
These four values are now substituted into formula (xi) to give
Yo' = 2.905. This value is entered in the y' column as indicated in
the preceding paragraph. The y' column is completed by adding this
value of y,°' algebraically to each value in the y' - y,' colum.

The integration of the y' column is exactly as before, beginning
with formula (ix) and following with formula (vi). The work of this

section forms a table like this:

x " y' - Yo v y

0 xS 2.906 1.000
0.5 -2.830 -1.251 1.654 2.6517
1.0 -2.608 -2.656 0.251 2.629
1.5 -1.334 -3.684 - 779 2.470
2.0 .992 -3.814 - .909 2.000
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The Short Formula Process, from this point on, is merely a
repetition of the procedure given in the last two paragraphs with the
subdivision of each segment of the interval every alternate time after
a set of ordinates has been calculated. After each interpolation, a
refinement of the values is mede on the assumption that variations due
to interpolation will be practically eliminated.

The rest of the work necessary to complete the illustrative

example is shown in the table.

x Y" Y' = yo' }" y

0 -2.000 4.089 1.000
0.5 -5.698 -2.348 1.741 2.445
1.0 -2.631 -4.571 -0.482 2.762
1.5 0.380 -4,988 -0.899 2.264
2.0 0.053 -4.580 -0.491 2.000
0 -2.000 4.208 1.000
0.25 -6.581 -1.203 3.006 1.921
0.50 -60298 -2.885 10323 20463
0075 -3-891 -40175 00053 2-615
1.00 -1.298 -4 .815 -0.607 2.534
1.26 0.351 -4.903 -0,695 2.364
1.50 0.728 -4-745 “00537 2-207
1.75 0.312 -4 .605 -0.397 2.094
2.00 0.386 -4.,548 -0.340 2,001
0.00 -2.000 3.938 1.000
0.26 =6.209 -1.152 2.786 1.8567
0.50 -5.658 -2.708 1.230 2.359
0.75 =2.931 -3.800 0.138 2.511
1.00 -1.320 -4.267 -0.329 2.480
1.25 -0,001 ~4.484 -0.546 2367
1.50 0.095 -4,369 -0.431 2.235
1.75 0.109 -4,443 -0.505 2.136
2.00 0.145 -4.313 -0.375 2.000
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equation may be carried out in thirteen steps:

1.
2.
3e
4.

x yﬂ y' - yo' y' y
0.000 =-2.000 3.824 1.000
0.125 -4,663 -0.433 3.394 1.455
0.250 -5.882 -1.106 2.718 1.838
0.375 -5.998 -1.858 1.966 2.131
0.500 -5.342 -2.573 1.251 2331
0.625 -4.238 -3.1756 0.649 2.448
0.750 -2.999 -3.627 0.197 2.500
0.875 -1.929 ~-3.932 -0.108 2.503
1.000 -1.322 -4.129 -0.305 2.478
1-125 -'0 0572 '4.257 -0 -433 20430
1-250 -00294 -4-292 -0 0468 20374
1.375 -0.203 -4.338 -0.514 2.313
1.500 -0.118 4,343 -0.519 2.247
1.625 0.041 -4.364 -0,540 2.182
1.7& 00249 "40331 -'00507 2.115
1.875 0.379 -4,305 -0.481 2.055
2.000 0.200 -4.081 -0.257 2.003
0.000 -2-000 50809 1'000
0.125 -4.393 -0.409 3.400 1.454
0.250 -5.783 -1.056 2.753 1.840
0.375 -5.993 -1.806 2.003 2.138
0.500 -5.331 -2.518 1.291 2.342
0.625 -4.238 -3.121 0.688 2.465
0.750 -3.098 ~3.575 0.234 2.520
0.875 -2.126 -3.903 -0.094 2.529
10000 -10368 "40115 "00306 20501
1.125 -0.788 -4.252 =-0.443 2.456
1.250 ~-0.452 -4,322 -0.513 2.393
1 0375 ‘0 0147 -4 0366 -0 0557 20329
1.500 0.037 -4,.364 -0.555 2.256
1.626 0.212 -4,357 -0.548 2.190
1.750 0.263 -4.316 ~0.507 2.120
1.876 0.304 -4.292 -0.483 2.063
2 0000 0 0011 -40 254 -0-445 20000

Summary of the Short Formula Process

By this process, the complete integration

Assume a straight line as the first guess.
Correct the guess using the Three Ordinate Formulas.
Interpolate with Lagrange's formulas (I).

of a differential

Apply the Modified Simpson Rule to the y" column to get yl'-yo'.
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5. Apply Simpson's Rule to the y" column to get remaining y' - Yo'

6. Use formula (xi) to get y,'.

7. Fill in y' colum.

8. Apply the Modified Simpson Rule to y' column to get Y1

9. Apply Simpson's Rule to the y' column to get remaining ordinates.
10. Check the calculated value of end ordinate with true value.

11. Repeat steps 4 to 10 inclusive.

12. Interpolate, using either (II) or (III) of Lagrange's formulas.

13. Repeat steps 4 to 12 inclusive until solution is reached.

In tabular form steps 4 to 10 inclusive can be performed as rapidly as
the calculating machine can be operated and the figures recorded. The
actual number of repetitions of step 13 needed for a solution depends
almost entirely on three uncontrollable factors: (a) the length of the
interval a - x,, (b) the given differential equation, and (¢) the number
of significant figures desired in the result. Ordinarily, when a short
interval in which h will become 0.1 in a few operations and when not
more than four significant figures are desired, eight operations suffice.
This number of operations gives fifteen new ordinates in the interval.
Except for the calculation of the values of the y" colum, the table can
be filled in at the rate of from 60 to 100 figures of four digits each
in an hour. 1In eight operations, about 200 figures are entered. The
caleulation of the y" values depends upon the given equation.

Although in the earlier examples, Lagrange's formulas (III) were used
for interpolation, later examples showed that the set (II) can be used
when changes in the y" colum are uniform. The set (II) is operated by
applying the formulas for y; and ¥z to the first four values and then
moving the formula for ¥3 ahead one row in the table at each step until
the end is reached. The final interpolated value is found from the
formula for yg. Since the coefficients in the formula for ¥z are -1 and

9, this process is very rapid with a caleulator.

The procedure as outlined in steps 1 to 13 using Lagrange's four

ordinate formulas (II) for interpolation in step 12 is, in the author's
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opinion, the simplest that has been devised for the numerical integration

of a second order differential equation with assigned end points.

It is possible that the Long Formula Process may prove simpler if
the first derivative is missing. When the ordinate is missing, the
Short Formula Process is greatly shortened.

The Short Formula Process is especially adapted to an electriec
caleculating machine. It is simple enough so that all steps can proceed
from memory. The actual work is simple enough so that a machine operator
can solve the differential equation without recourse to methods beyond

the level of High School Algebra.

The Long Formule Process

After a solution has been started, the Long Formula Process may be
substituted for The Short Formula Process.

The Long Formula Process uses the Three, Five, and Nine Ordinate
Formulas exclusively. The new ordinates are interpolated in the same
manner as in the Short Formula Process. In principle, the mid-ordinate
and slope found from the first guess are refined by repeated use of the
formulas. In practice, the formulas (i) to (iv) and (i') to (viiir)
together with the two new formulas derived under the ™Nine Ordinate
Formulas" are applied directly to the table of y" values.

The process does not show promise of replacing the Short Formula
Process. Except for the formulas for y, and y'o, the formulas contain
such large coefficients that the process is tedious and cumbersome.
These formulas were applied to the same differential equation as was
used in the Short Formula Process. The results were not as good after

nine operations as had been obtained in eight operations by the simpler

process.



The complete solution of the differential equatign by the Long
Formula Process follows. The table takes a different form.

tions of the Three Ordinate Formulas, three applications of the Five

17

Two applica-

Ordinaté Formulas and three applications of the Nine Ordinate Formulas

are shown in the table.

x= 0 0.26 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y 1-0 1-5 200
y' 0.5 0.5 0.5
y”

1.00 2.47 2.00
y' 2050 0043 -10 22

-2000v -2.00 -1.20

1.00 2.22 2,70 2.50 2.00
y! 3.08 1.73 0.20 ~-0.88 -0.87
y' -2.00 -3.07 -2.83 -1.29 1.55
y 1.00 2457 2.81 2.40 2.00
y' 4025 1073 -0.50 -0095 -0054
y -2.00 -5092 "2060 0038 0099
y 1.00 2.51 2.59 2.24 2.00
y' 4;53 1.39 "0 064 -0 .61 -0058
¥ -2.00 -6.48 -1.46 0.74 0046
y 1.000 1.872 2.366 2.506 2.441 2.319 2.213 2.118 2.000
y' 3.996 2.795 1.416 0.0356 =0.378 =0.4756 =0.505 =-0.474 -0.502
y" -2.000 -6.454 -5.840 -3.257 -0.810 0.386 0.209 -0.471 0.208
y 1.000 1.841 2.333 2.487 2.459 2.361 2.236 2.112  2.000
y' 3.821 2.740 1.213 0.136 -0.367 =0.472 -0.510 -0.447 -0.408
y" -2.000 -5.928 -5.651 -2,795 -1.185 -0.395 0.032 0.205 0.403
y 1.000 1.831 2.321 2.491 2.472 2.372 2.224 2.116 2.000
¥ 3.792 2.697 1.249 0.207 =0.377 -0.482 -0.526 -0.492 -0.433
y" =-2.000 =5.809 -5.273 -2.964 -1.2256 -0.434 0.027 0.213 0.250
Yy 1.000 1.835 2.333 2.507 2.486 2.382 2,248 2.117 2.000
y!
y“ -2.000 -5.750 -50312 -30106 -10218 -00423 00052 00237 00293
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Comparison of Results

For the assigned end points, direct integration of
(1 + xz) y'®= x= 2y -4 xy' by formal methods gives the equation
6(1 + xz) y = x° + 23 x + 6. In the accompanying table, the correct
values of the integral for seventeen ordinates are given in the second
column. In the third column are the results for the same ordinates
using the Short Formula Process. In the last columm are the values for

nine ordinates found by the Long Formula Process.

True Short Long
x Values Formula Formula
0.000 1.000 1.000 1.000
0.125 1.457 1.454
0.250 1.846 1.840 1.835
0.375 2.145 2.138
0.500 2.350 2.342 2.333
0.625 2.471 2.465
0.750 2.5625 2.520 2.507
0.875 2.529 2.529
1.000 2.500 2.501 2.486
1.126 2.450 2.456
1.250 2.387 2.393 2.382
1.375 2.319 2.329
1.500 2.244 2.256 2.248
1.625 2.182 2.190
1.750 2 11T 2.120 2.117
1.875 2.056 2.063
2.000 2.000 2.000 2.000

A Problem H&Y£§§¥No Solution

If the end points (0,0) and (1.6, 1) are assigned to the differen-
tial equation y" = - (i%b)z Y» no solution exists. The family of solu-
tions vanishing at x = 0 is y = A sin (7x/1.6), where A is an arbitrary
constant. At x = 1.6, y = 0 independently of A so that no solution can
be found. The Short Formula Process is used on the problem. The values
of the ordinates found in each of the eight operations are given in the
table. The non-existence of a solution is indicated by the steadily

increasing values of the ordinates as the operations are continued.
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x 1st 2nd 3rd 4th 5th 6th 7th 8th
0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.770 0.901
0.2 1.045 1.289 1.514 1.772
0.3 2.210 2.586
0.4 1.087 1.522 1.967 2.417 2.832 3.314
0.5 3.364 3.934
0.6 2.656 3.247 3.794 4.424
0.7 4,109 4.768
o.8 0.500 1,117 1.7561 2.389 3.029 3.669 4.274 4.955
0.9 4.485 4.976
1.0 3.037 3.631 4.194 4.827
1.1 4.150 4.512
1.2 1.741 2.218 2.672 3.127 3.560 4.047
1.3 3.270 3.432
1.4 > 1.968 2.218 2.449 2,718
1.5 1.976 1.869
1.6 1.000 1.000 1.000 0.999 1.001 1.001 1.000 1.000

The Perfect Solution

A perfect solution for four significant figures is reached when the
calculated and true values do not vary by more than one unit in the last
significant figure. In this example, the results are within the required
limits. The equation integrated is y" = (1 + y'2)3/2 with the assigned
end points (0,0) and (0.8,0.2). Since they are not needed in the calecu-
lations, the y column values are omitted from the table until the final
operation is reached. The behavior of the y' column indicates that
results correct to at least three significant figures can be obtained at
the end of the sixth operation. Lagrange's formulas (II) are used in the
interpolations. A check with the formal solution of the differential
equation shows that the seventeen ordinates lie on the circle having the
equation (x - 0.1790)2 + (y - 0.9838)2 = 1. The work for this example is
given in full.



x > i A S 7

0 +25
4 «25
.8 +25

0 1.0952 -.1881
4 1.0952 +.2500
.8 1.0952 .6881
0 1.0535 -.1826
o2 0.9936 «2020 +.0194
o4 1.0952 .4082 +2256
.6 1.3604 .6510 .4684
.8 1.7886 +9632 .7806
0 1.0504 -.1830
o2 1.0006 +2035 +.0205
4 1.0773 «4087 «2257
8 1.3465 «6473 +4643
8 2.0416 9757 7927
0 1.0507 -.1822
o 1.0135 «1030 -.0792
o2 1.0006 «2035 +.0213
3 1.0194 «3042 «1220
4 1.0774 .4087 «2265
5 1.1675 «5208 .5386
.6 1.3402 .6449 «4627
&7, 1.6316 7928 .6106
.8 2.0779 9764 7942
0 1-0502 --18%
. 1 1 00094 01027 o 00793
o2 1.0007 . 2030 +.0210
.3 1.0224 « 3039 .1219
.4 1.0779 .4086 .2266
<5 1.1768 .5209 «3389
6 1.3378 .6460 .4640
o7 1.6085 7921 .6101
.8 2.0825 9745 .7926




21

x : 5 e 4 y y

0 1.0501 -.1820

.05 1.0257 .0519 -.1301

.10 1.0094 .1027 -.0793

.15 1.0012 +1530 -.0290

.20 1.0007 .2029 +.0209

.25 1.0075 .2532 0712

+30 1.0224 .3038 .1218

.35 1.0454 .3556 1736

.40 1.0780 .4085 .2266

.45 1.1209 4636 .2816

.50 1.1771 .5208 .3388

.55 1.2479 .5816 3996

.60 1.3397 .6459 4639

.65 1.4543 .7160 5340

.70 1.6074 .7920 .6100

.75 1.8110 .8776 6956

.80 2.0773 9741 7921

0 1.0501 -.1821 (o}
.05 1.0255 0519 -.1302 -.0078
.10 1.0094 .1027 -.0794 -.0130
.15 1.0013 .1530 -.0291 -.0157
.20 1.0007 .2030 +.0209 -.0159
.25 1.0076 +2532 0711 -.0136
+30 1.0223 .3039 .1218 -.0088
.35 1.0455 .3556 1735 -.0014
.40 1.0779 .4086 .2265 +.0086
.45 1.1213 .4636 - +2815 .0213
.50 1.1770 .5209 .3388 .0368
.55 1.2488 .5816 .3995 .05652
.60 1.3396 .6461 .4640 .0768
.65 1.4569 .7160 .5339 .1017
.70 1.6072 7923 .6102 .1303
.75 1.8075 .8776 .6955 .1629
.80 2.0761 9742 7921 . 2000
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y" Infinite at One End of Interval

When y" becomes infinite at onme end of the interval, the Short
Formula Process fails to give a solution. In this case, the result
reached by stepping the process out from the initial point does not
.check with the value assigned at the end of the interval.

When the end points (0,0) and (1.6, 0.9798) are assigned for the
equation y" = 1.1 (1 + y'z)a/z. y" becomes infinite at x = 1.6. Three
applications of the process are enough to show that the solution can-

not be reached by this method.

x i Y - Yo' v y
0.0 0.6124 0.0000
0.8 0.6124 0.4899
1.6 0.6124 0.9798
0.0 1.7737 : -0 .8066 0.0000
0.8 1.7737 +0.6124 -0.0777
1.6 1.7737 2,0314 0.,9798
0.0 2.3325 -0.8829 0.0000
0 04 0.6905 0049 21 "'0 03908 "0 -2318
0.8 1.7737 0.8725 -0.0104 -0.32756
1.2 5.8256 2.2961 1.4132 0.1308
1.6 12.7650 5.0455 4.1626 - 1.3073

y" Large at One End of Interval

If at a few points in the interval, y" becomes very large in
proportion to the other wvalues of y", repeated application of the Short
Formula Process makes the fit to the solution inereasingly poor.

When the end points (0,0) and (1.6, 0.5) are assigned to the
equation y" = (1 + y' 2)3/ 2, y" becomes infinite at x = 1.6373. At the
sixth operation, the value of y" at x = 1.6 is beginning to control the
table. At the eighth operation, y" at x = 1.6 is eight times the next

largest y" value in the table. This value has now become large enough
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to affect the values of all fifteen interpolated ordinates. The agreement
with the true values becomes worse at each operation beyond this stage.
The process for the sixth and eighth operations is shown. Correct values

are shown in the columm headed Y.

Sixth Operation

x & it - y Y
000 200807 "'0 08399 0.0000 0.0000
0.2 1.3767 0.3361 -0.5038 -0.1323 -0.1287
0.4 1.1108 0.5799 -0.2600 -0.2077 -0.2033
0.6 1.0053 0.7911 -0.0488 -0.2385 -0.2287
0.8 1.0577 0.9926 +0.1527 -0.2279 -0.2161
1.0 1.2182 1.2214 0.3815 -0.1756 -0.1613
1.2 1.7349 1.5036 0.6637 -0.0717 -0.0561
1.4 3.9759 2.0303 1.1904 +0.1062 +0.1239
1.6 23.8969 . 3.9904 3.1505 0.5000 0.5000

Eighth Operation

0.0 2.2134 -0.8392 0.0000 0.0000
0.1 1.6738 0.1919 -0.6473 -0.0739 -0.0738
0.2 1.3732 0.3427 -0.49656 -0.1308 -0.1287
0.3 1.1950 0.4706 -0.3686 -0.1740 -0.1708
0.4 1.0875 0.5841 -0.2551 -0.2050 -0.2033
0-5 100266 006896 -O 01496 -0-2253 -002199
0.6 1.0014 0.7906 -0.0486 -0.2351 -0.2287
0.7 1.0071 0.8909 +0.0517 ~0.2350 -0.2274
0.8 1.0436 0.9930 0.1538 -0.2247 -0.2161
0.9 1.0899 1.0999 0.2607 -0.2041 -0.1943
1.0 101009 1.2098 003706 "0.1725 -O -1615
1.1 1.3594 1.3283 0.4891 -0,1297 -0.1159
1.2 1.6370 1.4823 0.6431 -0.0735 -0.0661
1.3 2.1650 1.6640 0.8248 -0.0002 +0.0217
1.4 2.7993 1.9188 1.0796 +0.0939 0.1239
1.5 8.8492 2.4044 1.56562 0.2234 0.2649
1.6 74.7006 5.6820 4.8428 0.5000 0.5000
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PARAMETRIC FORM OF SOLUTION OF A DIFFERENTIAL EQUATION

Formation of the Parametric Equations

From the identity dy/dx = (dy/ds)/(dx/ds), the identity a%y/ax?

= (a2y/ds)/(dx/ds)* follows by ordinary differentiation. Further,
if s = kt, it follows that d2y/dx2 = k2(d%y/dt?)/(dx/dat)% and dy/ax =
(dy/at)/(ax/dt). I1f accents denote differentiation with respect to t,
the original differential equation

(1) dzy/hxz - f£(x,y,dy/dx) becomes

(2) k? Y"/k'4 = £(x,y,y'/x').
If s denotes the length of the arc of the curve, an element of are, ds,
is given by as? = ax% + dyz. Since ds = k dt, x' and y' are connected
by the relation

(38) x'2-+ y'z = k2.
The constant k can be eliminated from (2) and (3) by substituting (3)
into (2) and differentiating (3). The equations replacing the single
differential equation (1) take the forms

(4) (x4 yrB) y/xt = 2(xyy /x)

(5) xt x"+ y' y" = 0.
The substitution of (2) into (5) gives

(6) k2 xVxidyr = _f(x,y,y'/x).
Equations (2) and (6) form a pair of parametric equations replacing

the original equation (1).

An Application of the Equations

If equations (2) and (6) are applied to the equation dzy/axz
= [1 + (dy/ax) 2]3/ %, there is cbtained the simple pair y" = kx' and
x" = - ky'. If the end points assigned are (0,0) and (1.6, 0.5), the

problem becomes the same one which in the last chapter failed to yield



25
a solution. The integral is found by the simultaneous solution of this
pair of equations using a double application of the Short Formula
Process at each operation. The particular problem studied is carried
ten operations. This many operations interpolates a total of 31 new
pairs of values of x and y between (0,0) and (1.6,0.5).

Startigﬁithe Solution

For convenience, the equations are integrated from t = 0 to
t = 3.2 The table is set up in nine columns headed t; x", x' - x,',
x' and x; y", ¥' - Yo's> ¥Y' and y. The connection between the block
relating to x and the block relating to y is made through the para-
metric differential equations. Otherwise, the solution is just the
same as though two separate equations were being solved in parallel
colums. Each block is started separately. For the x-block a straight
line connecting t = 0 , x =0 and t = 3.2, x= 1.6 is assumed. This
gives x,' = 0.5000. For the y-block, a straight line connecting
t=0,y=0andt = 3.2 y=0.,5000 is assumed. This gives y'y,
= 0.1562. From the relationship (3), k = 0.5238. Substituting for
k, x' and y' in the pair of differential equations gives y"m = 0.2619
and x"y = -0.0647. The Three Ordinate Formulas are applied directly
to each block in turn to give the x' and y' values needed. New values
of k are found agﬁin from (3). The table on the next page shows the

first five operations.



<" x! - x,! x1 x > il - y! y
.5000 0 «1562 0
«5000 0.8 «1562 25
5000 1.6 1562 +50
-. 0647 «6035 0 2619 -+2628 0
-.0647 5000 0.8828 «2619 .1562 .0852
-. 0647 « 3965 1.6000 «2619 «5752 «5000
<1730 0 4767 « 3972 0 -.3350
+0666 «0975 5742 +3108 . 2807 -,0543
-, 0647 0999 5766 .2619 5073 1723
-+2208 -.0126 <4641 « 2507 7098 «3748
-.4018 =-+2600 3167 2770 .9184 .5834
.1918 0 «5119 0 <2730 0 -.3482 0
0313 0872 «5991 0.4528 «3312 2431 -.1051 -.1852
-.1037 0669 .5688 0.9272 « 3470 .5186 <1704 -.15956
-.2236 -.0747 4372 1.3359 «2768 7754 4272 .0825
-. 3630 -+ 3061 «2068 1.6001 « 1349 «9424 5942 +5001
«2156 0 «4863 «3169 0 -.3902
« 1429 0720 «5583 « 3750 «1419 - 2483
«0639 «1135 .5998 3644 «2908 -.0994
-.0184 «1227 «6090 «3588 4341 0439
-.1012 0987 «5860 « 3378 .5758 .1856
-.1820 «0420 5283 « 3070 «7030 «3128
-.2569 -.0461 «4402 «2629 +8196 4294
-.3220 -.1622 3241 «2041 9114 .5212
- 3736 -.3019 «1844 «1294 9808 «5906

92



Continuation of the Process

The first interpolation is made with Lagrange formulas (I). All
later interpolations are made with the formulas (II). The process is
continued as in the preceding examples, except that now k must also be
determined for each value of t. k varies with each ordinate and from
one operation to the other. As the solution is approached, k becomes
more nearly constant. If the solution is perfect, k has the same wvalue
for all ordinates in the interval. This property of k offers it much
promise of serving as a valuable guide in this type of solution.

Comparison of Results

Formal solution gives the equations
x = 0.6373 4 sin (0.6211 t - 0.6909)
y = 0.7706 - cos (0.6211 t - 0.6909)
For 33 ordinates, the true values of x and y for a given value of
t are shown in the columns headed X and Y in the table. The third and
fifth columns give the calculated values. MNuch better results are
obtained here than were obtained in the case where the Short Formula

Process was applied directly.



t 0 x ) 4 y
0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.0491 0.0491 -0.0381 -0.0380
0.2 0.1004 0.1005 -0.0731 -0.0728
0.3 0.1538 0.1539 -0.1048 -0.1044
0.4 0.2091 0.2092 -0.1335 -0.1326
0.5 0.2660 0.2661 -0.1579 -0.1573
016 005245 0-3245 -0 a1792 -0c1784
007 003840 0-3840 -0 01968 "0 01959
0.8 0.4445 0.4446 -0.2106 -0.2096
0.9 0.5058 0.5068 -0.2207 -0.2196
1.0 0.5676 0.5676 =-0.2270 -0.2258
1.1 0.6295 0.6296 -0.2294 -0.2282
1.2 0.6917 0.6916 -0.2279 -0.2267
1.3 0.7535 0.7534 -0.2226 -0.2215
1.4 0.8150 0.8148 -0,2135 =-0.2123
1.5 0.8757 0.8755 -0.2006 -0.1995
1.6 0.9356 0.9353 -0.1838 -0.1828
1.7 0.9942 0.9938 -0.1635 -0.1626
1.8 1.05156 1.0612 -0.1396 ~-0.1386
1.9 1.1072 1.1067 -0.1121 -0.1113
2.0 1.1611 1.1607 -0.0816 -0.0804
2.1 1.2129 1.2124 -0.0471 -0.0465
2.2 1.2626 1.2622 -0.0098 -0.0091
2.3 1.3098 1.3092 +0.0305 10.03098
2.4 1.3544 1.3541 0.0736 0.0742
2.5 1.3963 1.3957 0.1197 0.1197
2.6 1,4353 1.4350 0.1683 0.1683
2.7 1.4712 1.4706 0.2187 0.2186
2.8 1.5038 1.5036 0.2715 0.2717
2.9 1.5331 1.5327 0.3262 0.3260
3.0 1.5590 1.5589 0.3827 0.3828
3.1 1.5813 1.5810 0.4406 0.4402
3.2 1.6000 1.6000 0.5000 0.4999




CONCLUSION

A comparison of the two processes developed in this thesis shows
that in ordinary practice the Short Formula Process using Simpson's
Rule and the Modified Simpson's Rule proceeds so rapidly and simply
that it is greatly superior to the Long Formula Process using the
Three, Five, and Nine Ordinate Formulas. The tabular form taken by the
Short Formula Process is short, compact, and easily duplicated.

Accuracy in both processes is brought about by reducing h to a
value small enough to meke nearly zero the terms neglected in the
Maclaurin expansions of the formulas used. In ordinary cases where
h becomes at least one-tenth by the seventh operation, a satisfactory
solution is reached in the eighth.

No rigorous attempt has been made to determine the requirements
for the existence of a solution. Each of the examples presented dis-
plays special characteristics which may serve as predictors of a
successful solution. Problems to be solved may be classified as (a)
those for which the Short Formula Process gives a perfect solution,

(b) those for which no solution is possible with the assigned end points,
and (e¢) those capable of solution but to which the Short Formula Process
is inapplicable. A perfect solution would appear to be indicated by

(a) repetition of values for several operations, (b) steady approach of
a value to a definite limit as operations proceed, and (¢) in the para-
metric form, the tendency of k to remain constant throughout the

interval and from one operation to the next. That these conditions

will insure a correct solution has not been examined. From the examples

no distinction can be made between the failure of the process and
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non-existence of a solution. In both instances, the indication that the

ordinates are not going to become stationary in value after a few oper-
ations is taken as sufficient evidence that the continuance of the
process will be unprofitable.
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