
' I 

AN ABSTRACT OF THE THESIS OF 

Dale Leroy Harmer 
(Name) 

for the M.S. in 
(Degree) 

Date thesis is presented May 15, 1963 

Statistics 
(Major) 

Title A MIXED VARIABLES-ATTRIBUTES DOUBLE SAMPLING 

PLAN 

Abstract approved 
------~r---~~~--~---------------------------(Major professor) 

This thesis presents a table of dependent, mixed variables 

and attributes double sampling plans, where the standard deviation 

of the quality characteristic is assumed to be known, and the ac-

ceptance number is zero for the attributes portion of the plans. 

The table gives sampling plans for ten ranges of lot sizes, each 

with ten LTPD levels, from one percent to 40 percent. Operating 

characteristic curves are presented for five representative plans 

from the table. 

In addition, a general discussion of acceptance inspection and 

lot-by-lot sampling inspection is given. Mixed variables and attri-

butes plans are discussed in some detail for the case of known 

standard deviation, and somewhat more briefly for the case of un-

known standard deviation. 



A MIXED VARIABLES-ATTRIBUTES DOUBLE SAMPLING 
PLAN 

by 

DALE LEROY HARMER 

A THESIS 

submitted to 

OREGON STATE UNIVERSITY 

in partial fulfillment of 
the requirements for the 

degree of 

MASTER OF SCIENCE 

June 1963 



APPROVED: 

Associate Professor of Statistics 

In Charge of Major 

Chair~ln of Department of Statistics 

, 

Dean of Graduate School 

Dat~ thesis is presented May 15, 1963 

Typed by Carol Baker 



TABLE OF CONTENTS 

Chapter 

1. INTRODUCTION 

2. ACCEPTANCE INSPECTION 

1. Introduction 
2. Types of Acceptance Inspection 

2. 1 Process Inspection 
2. 2 Screening 
2. 3 Lot-by-lot Sampling Inspection 

3. Description of Item Quality 
3. 1 Variables Inspection 
3. 2 Attributes Inspection 
3. 3 Counting Defects per Unit 

4. De scription of Lot Quality 
4. 1 Percentage Defective 
4. 2 The Average Number of Defects per 

Item of Product 
4. 3 The Arithmetic Mean of Item Qualities 

Page 

1 

3 

3 
4 
4 
4 
5 
6 
6 
6 
6 
7 
7 

7 

in a Lot 9 
4. 4 The Standard Deviation of Item Qualities 

in a Lot 9 

3. LOT-BY-LOT SAMPLING INSPECTION 11 

1. Introduction 11 
2. Attributes Plans versus Variable Plans 11 
3. Mixed Variables and Attributes Sampling Plans 14 
4. Operating Characteristic Curves 16 
5. Single, Double, and Multiple Sampling Plans 20 

4. MIXED VARIABLES AND ATTRIBUTES DOUBLE 
SAMPLING PLANS 23 

1. Introduction 23 
2. Known Sigma Plans 23 

2. 1 Introduction 23 
2. 2 Independent Plans 24 
2. 3 Dependent Plans 27 

2. 3.1 General Procedure 27 
2. 3. 2 Derivation of Equation for OC Curves 28 
2. 3. 3 Calculation of k- Values and OC Curves 32 

3. Unknown Sigma Plans 34 



5. RESULTS 35 

1. Sampling Plans and 0C Curves 3 5 
2. Sample Calculation of L (p) 41 
3. Example of the Use of the Mixed Variable and 

Attributes Sampling Plans 43 

BIBLIOGRAPHY 46 



Figure 

1 

2 

3 

4 

5 

Table 

1 

2 

LIST OF FIGURES 

The Operating Characteristic Curve 

Operating Characteristic Curve 

Operating Characteristic Curve 

Operating Characteristic Curve 

Operating Characteristic Curves 

LIST OF TABLES 

A Comparison of Average Sample .Sizes .for 
Single, Double, and Multiple Sampling Plans 

Variables - Attributes Double Sampling Plan 

Page 

18 

36 

37 

38 

39 

21 

40 



A MIXED VARIABLES-ATTRIBUTES DOUBLE SAMPLING .PLAN 

CHAPTER I 

INTRODUCTION 

Most of the acceptance sampling plans now in existence are based 

on either sampling inspection by variables or sampling inspection by 

attributes. In the present paper, these two types of sampling plans are 

combined into a double sampling plan where the first sample is in spec-

ted by a variables criterion and the second sample by an attributes 

criterion. A sampling table and five different OC curves are included 

for the special case where we assume that the standard deviation of 

the population being sampled is known and the acceptance number on 

the second sample is zero. The sampling table consists of sampling 

plans indexed on various LTPD levels from one percent defective to 

40 percent defective. 
/. 

In chapter two, a general discussion of the various possible types 

of acceptance inspection is presented. The particular kind of accept-
, ' 

ance inspection for which sampling plans are used - lot-by-lot sam-

pling inspection - is considered more closely in chapter three. Chap-

ter four includes a discussion of mbced variables and attributes sam-

pling plans in general and a derivation of the operating characteristic 

equations for independent and dependent mixed variables and attributes 

sampling plans. The details of the calculation of OC curves are 



2 

presented for the special case of a dependent plan with known standard 

deviation and acceptance number zero. In the concluding chapter, the 

results of this paper are discussed and a sample calculation of the OC 

function is given. Finally, an example of the use of a mixed variables 

and attributes sampling plan is given. 



3 

CHAPTER 2 

ACCEPTANCE INSPECTION 

1. Introduction 

When a business establishment or a government agency contracts 

to purchase a number of items of raw materials, parts, or finished 

products from some supplier the purchase con~ract will often indicate 

that the acceptance of the product is subject to having each item meet 

certain quality specifications. Items failing to meet one or more of 

these quality specifications are called defective, and each failure to 

meet a specification is called a defect. Items satisfying the quality 

specifications are called nondefective. Similarly, in the transfer of 

goods-in - process or of finished parts among different divisions of the 

same organization, established quality standards for individual items 

must be met. 

Both the supplier and the receiver of a product realize that, if 

the product is made by mass production methods, some of the items 

submitted to the receiver for acceptance will be classified as defective. 

Furthermore, the number and location of the defectives in any group of 

item~ which we shall call a lot, will seldom be known. To protect the 

receiver against acceptance of an undue proportion of defective items, 
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to help the supplier to improve the quality of his product, a nd t o a ssist 

in q uality control and the reduction of production costs when the s up ­

plier and the rece iver are both in the same organi zation, some fo rm 

of a ccepta nce inspection has been found desirable . 

2 . Types of Acceptance Inspecti on 

Acceptance inspection usually takes one of the thr ee followi ng 

forms. 

2. 1 . Process Inspection 

Under certain circumstances the receiver can run control 

charts on submitted products or can obtain copies of charts maintained 

by the supplier at various stages of the production processes . These 

charts can be of great value to an acceptance program bec au s e the y 

supply useful i nformation about the quality level of the produc t a n d 

about the degree of control at various stages i n the producti on process. 

2 . 2 . Screening 

Using thi s method of insl?ection, all the items in a l ot a re i n­

spec ted and individually accepted or rejected . This procedu r e is used 

when elimination of d efective items is essential. Ordinar i ly, how ­

ever , the cost of t e sti ng each item individually i s prohibi t i ve , and if 
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the test damages or destroys the item, screening is impossible. 

Screening is the only program of sampling inspection that can pos­

sibly guarantee the rejection of all the defective items and the accept­

ance of all the nondefective items that are submitted by a supplier. 

In practice, however, even screening will usually not eliminate all 

the defective items from a lot, because inspectors do not work with 

100 percent accuracy, especially when large numbers of items are In­

spected and defective items are not particularly obvious. In some 

cases sampling inspection with its lower costs may be able to give the 

same degree of quality assurance as screening. 

2. 3. Lot-by-lot Sampling Inspection 

Under lot-by-lot sampling inspection, the product is divided 

into appropriate inspection lots (which may be the number of items in 

a container, the number of items in a shipment, the number of items 

in a production run, or any other suitable grouping of items); one or 

several samples of items are drawn from a given lot, and from these 

samples a decision is made to accept or to reject the lot. For most 

applications, experience has shown lot-by-lot inspection to be the 

most satisfactory method of acceptance inspection. 
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3. Description of Item Quality 

In evaluating and describing the quality of an individual item, 

one of the following general types of inspection is u sually used, the 

choice depending on the quality characteristic being measured and on 

the device or method that is used in making such measurements. 

3. l. Variables Inspection 

When inspecting an item on a variable basis, the quality c har­

acteristic in question is measured along a continuous scale in terms 

of centimeters, volts, ohms, pounds, seconds or some such unit. 

3. 2. Attributes Inspection 

Under attribute inspection of an item, the quality character­

istic in question is observed or checked with an indicating device and 

simply classified as defective or nondefective. Use of go and not- go 

gauges for checking dimensional properties of parts is an example of 

a widely used method of attribute inspection. 

3. 3 Counting Defects Per Unit 

For certain products, quality characteristics of an item are 

evaluated by counting the number of a given type of defe ct in an item. 



For example, the quality of the enamel insulation on a copper wire 

can be measured by enumerating the number of bare spots on a 

specified length of wire. 

4. Description of Lot Quali ty 

7 

In describing the quality of a lot,the following measures a re 

generally used. The choice among these will depend o n the natu re of 

the product and on its ultimate use. 

4. 1. Percentage Defective 

The percentage of defective items in a lot is the most common­

ly used method of describing lot quality, and it is the basis on which 

most sampling plans have been constructed. The per c entage defec ­

tive is given by 

(2. 1) 100 p = 100 (d/N), 

where p is the proportion of defective items, and d is the number 

of defective items 1n a lot containi ng N items. 

4. 2 The Average Number of Defects Per Item of Product 

In this case the item quality is usually measured by counting 

the number of defects per unit for each quality charact eristic being 



inspected. The average number of defects per item, then, is 
N 

(2. 2) D = I (DJN), 

8 

i=1 
where D . is the number of defects in the ith item and N is the total 

1 

number of items in the lot being inspected. Using the number of de-

fects per unit as the measure of item quality, an item will be consid -

ered defective if it has more than M defects, where M is some 

positive integer or zero. Hence, the number of defective items in 

a lot is given by 

N 

(2. 3) d = I oi, where oi = 0 if D. < M 
1 

i=1 = 1 if D. > M. 
1 

The percentage of defective items, therefore, can be represented in 

terms of the number of defects per unit by 

N 

(2. 4) 100 p = 100 I oi/N ' where oi = 0 if D 
i 

< M 

i=1 = 1 if D 
i 

> M. 

4. 3 The Arithmetic Mean of Item Qualities in a Lot 

The use of this statistic assumes that the quality of a lot is 

adequately represented by the mean values of the quality character-

istics being inspected. The mean value of a particular quality 

characteristic is given by 
N 

(2. 5) 
X = L (x. /N), 

1 

i= 1 
where x. is a measurement of the quality characteristic of i th item 

1 

in a lot containing N items. Let us assume that the quality 
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characteristic being measured has a single upper specification 

limit U, so that the ith item of a lot is acceptable if x . is less than 
1 

or equal to U and defective if x. is greater than U. Then the per-
1 

centage of defective items in a lot can be represented in terms of the 

measurements of a quality characteristic by 

N 

(2. 6) lOOp = 100 l(oi/N) , where oi = 0 if X . < u 
1 

i=l = l i f X. > u 
1 

4. 4. The Standard Deviation of Item Qualities in a Lot 

The standard deviation is a measure of the amount of variation 

of a quality characteristic from item to item. It is given by 

N 

i=l 
(2. 7) s= 

- 2 
(x. - x ) 

1 

N-1 

where xis the mean of the ob servations, x . , from a lot of size N. 
1 

In this case, an item is considered defective if 

jx. - x I > L 
1 

and acceptable otherwise. Here, L is the limit on the variability 

of the quality characteristic being inspected. The percentage of 

defective items in a lot is then given by 
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N 

(2. 8) 100 p = 100 l (oi/N) , where oi = 0 if lx.-x I< L 
1 -

i=1 = 1 if lx.-x I > L. 
1 
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CHAPTER 3 

LOT-BY -LOT SAMPLING INSPECTION 

1, Introduction 

The present paper is concerned with a lot-by-lot sampling in­

spection plan, using both variables inspection and attributes inspec­

tion to measure item quality and percent defective to measure lot 

quality. There are many different lot-by-lot sampling inspection 

plans available. Some of the more prominent ones are: (a) Dodge 

and Romig sampling plans (5), which use attributes inspection for 

item quality and percent defective for lot quality; (b) Military Stand­

ard 105C sampling plans (14), which use attributes inspection for item 

quality and percent defective for lot quality; (c) Bowker and Goode 

sampling plans (2). which use variables inspection for item quality 

and percent defective for lot quality; and (d) Military Standard 414 

sampling plans, which use variables inspection for item quality 

and percent defective for lot quality. 

2. Attributes Plans Versus Variables Plans 

It can be observed from the preceding paragraph that the most 

commonly used sampling plans use percent defective as the measure 

of lot quality, but differ in the use of attributes or variables 



12 

inspection to measure item quality. There are advantages and dis­

advantages to both variables inspection plans and attributes inspec­

tion plans. The principal advantages to the use of attributeB samp­

ling plans are: 

(1) Inspection by attributes usually requires less skill, less 

time and less expensive equipment to inspect each item; less 

record keeping to record the results of inspection; and less 

arithmetic to determine from the sample whether or not to ac ~ 

cept a given lot. 

(2) Variables inspection plans are based on the assumption of 

normality of the quality characteristic being measured, while 

attributes plans require no such assumption. However, the 

quality characteristics of most raw materials used by indus­

try and of most manufactured products seem to be distributed 

in forms that are close enough to the normal distribution for 

the practical use of variables plans. 

(3) At the present time, attributes sampling is more widely 

known than variables sampling and therefore may require 

less training of inspectors. 

The m 'ain advantages to the use of variables sampling plans are: 

(l) A smaller sample is required for variables sampling than 

for attributes sampling to obtain the same dis c rimination 



13 

between good and bad lots. Or, conversely, decisions about a 

given lot are more reliable if based on a sample inspected by 

variables than if based on a sample of the same size inspected 

by attributes. Therefore, variables inspection is preferred if 

sample items are expensive and inspection is damaging or 

destructive. 

(2) In using variables inspection, the data are accumulatedfor 

the most useful forms of control charts - control charts for 

the mean and control ch;;trts for the standard deviation. The 

receiver is able to give the supplier valuable information that 

may assist him in improving his manufacturing processes. 

One of the main purposes of acceptance inspection is to in­

duce the supplier to improve the quality of his product when 

necessary. The data collected using variables inspection may 

b e very useful in attaining this end. 

(3) A m inor adv antage of variables inspection is that i t ems 

of borderline quality for a particula:F- characteristic present 

no problem to the inspector. The inspector 1 s decision as to 

whether some particular borderline item is defective or not 

will often decide the disposition of the lot; hence, a decision 

is difficult to make. Under variables inspection, he has no 

such decision to make; he simply records some measurement. 



It makes little difference in the disposition of the lot if his 

reading is just under the specification limit, at the limit, 

14 

or just above it. For this reason, also, the inspector 1 s per­

sonal bias through giving borderline items 11 the benefit of the 

doubt" is practically eliminated. 

3. Mixed Variables and Attributes Sampling Plans 

When using mixed variables and attributes sampling plans, a 

sample is drawn from the lot under consideration and is inspected 

using a variables criterion. If the lot is acceptable by the variables 

criterion, sampling is curtailed. If not, a second sample is drawn 

and is inspected by an attributes criterion. 

Mixed variables and attributes plans can be very useful if 

there is a possibility that the assumption of normality of the distri­

bution of quality characteristics will sometimes be violated. This 

assumption of normality is commonly viQlated in one of the follow­

ing two ways: (1) when the population of quality characteristics is 

non-homogeneous or (2) when the inspection lot has been screened, 

resulting in a truncated distribution of qua-lity characteristics. 

In the first case, suppose we have a distribution of quality 

characteristics in which 95 percent of the lot is of acceptable qual­

ity, but five percent of the lot is of very bad quality. Let us further 
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assume that a lot containing ten percent defectives is acceptable so 

that this lot is of acceptable quality. Using a pure variables sam­

pling plan, if any of the extremely bad items is inspected, it is very 

likely that the lot will be rejected, because the sample mean will be 

greatly influenced by the extreme values of the quality character­

istic. This l'ot would probabl'y be,accepted by a pure attributes sampling 

plan, but the average sample size would be much larger for the at­

tributes plan than for a mixed variables and attributes plan. By a 

mixed variables and attributes plan, the lot would probably not be 

accepted by the variables portion of the plan, but it would have a 

very good chance of being accepted by the attributes portion of the 

plan. 

Referring to the first case again, let us assume that the dis­

tribution of quality characteristics is non-homogeneous in such a 

way that 95 percent of the lot is of poor enough quality that it should 

be rejected, but that five percent of the lot is of excellent quality. 

In this case, it is quite possible that the sample mean will be in­

fluenced to such an extent by the extremely good items that the lot 

would be accepted, although it is of very poor quality. The lot would 

almost certainly be rejected by a pure attributes plan or by a mixed 

variables and attributes plan. 

In the second case, if a lot has been screened by the producer 
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and all the defective items have been removed, the assumption of 

normality of the distribution of quality characteristics is a false 

one. By a pure variables sampling plan; a screened lot will often 

be rejected if the sample observations are sufficiently close to the 

limit of the quality characteristics being measured. But a screened 

lot would never be rejected by an attributes sampling plan, because 

it contains no defective items. Likewise, it would never be re­

jected by a mixed variables and attributes sampling plan, because 

it would always be accepted by the attributes portion of the plan. 

When the assumption of normally distributed quality charac­

teristics is justified, a mixed variables and attributes plan re­

quires less sampling on the average than a double sample, pure 

attributes plan, but more than a double sample , pure variables 

plan for the same degree of protection. But when the normal as­

sumption is not justified, the mixed plan rejects fewer lots of ac­

ceptable quality and accepts fewer lots of bad quality than a pure 

variable plan does. Hence, a mixed plan is appropriate when the 

assumption of normality is usually justified, but may sometimes be 

violated. 

4. Operating Characteristics Curves 

The behavior of any particular sampling plan is described by 
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its operating characteristic function, L (p ). This function gives the 

probability that the sampling plan will accept a submitted lot which 

contains a proportion p defective items. The graph of the operating 

characteristic function is called the operating characteristic curve 

(OC curve). The OC curve shows, for each possible percentage of 

defective items in a submitted lot, the probability of accepting a lot 

of that quality. The ideal sampling plan would have an OC curve like 

the dotted line in Figure 1. Given that the receiver is willing to ac­

cept lots containing a percentage of defective items p' or smaller 

and wants to reject all other lots, this plan will discriminate perfect­

ly between good and bad lots. That is, it will accept all lots con­

taining a percentage defective of p' or smaller and reject all lots 

with a percentage defective greater than p'. There is only one pos­

sible way to obtain this OC curve, and that -is to do l 00 percent in­

spection. However, this OC curve is closely approached when the 

sample size is close to the lot size. Such a close approach often re­

quires an unjustifiable amount of inspection. 

A more typical OC curve for sampling inspec tion plans is 

represented by the solid curved line in Figure 1. Sampling plans 

are commonly classified by one or two key points on their OC curves. 

One commonly used point is (AQL, 1-a), where AQL is the per­

centage defective called the 11 acceptable quality level 11 and a is 
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called the 11 producer 1 s risk 11 • For an AQL specified by the sam-

p1ing plan being used, there is a probability a. that the sampling 

plan will reject the lot or a probability 1-a. that it will accept the 

lot. A commonly used value of a. is 0, 05. 

Another point on the OC curve that is often used to index sam-

pling plans is the point (LTPD, 13 ). LTPD stands for 11 lot tolerance 

percent defective" and is the percentage of defective items in a sub-

mitted lot for which the chosen sampling plan will reject a lot of this 

quality with probability 1-13 or accept it with probability 13. A value 

commonly used for 13 is 0. 10. 13 is called the 11 consumer 1 s risk 11 
• 

A third method of indexing sampling plans, that is commonly 

used, is by average outgoing quality limit, AOQL. The AOQL is 

defined as the maximum average proportion of defective items in a 

product that is finally accepted, if all rejected lots are screened and 

resubmitted. It is the maximum of the average outgoing quality, 

AOQ, of a product over all possible values of the proportion defective, 

p, where 

(3. 1 ) A OQ ~ p L (p ) + 0 [ 1 - L ( p) ) = p L (p ) . 

Hence, the AOQL is given by 

(3. 2) AOQL =max AOQ ~ max pL(p). 
p p 
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Using plans indexed on the AOQL, definite assurance can be obtained 

about the lowest quality of the accepted product, assurance that the 

average quality of the product finally accepted, regardless of the 

quality of the product originally submitted, can never be worse than 

a stated proportion defective, the AOQL. 

The sampling plans contained in this paper are indexed on 

values of the LTPD from one percent through 40 percent. 

5. Single, Double and Multiple Sampling Plans 

Sampling plans can be based on single, double or multiple 

sampling. Using a single sampling plan, one sample is drawn from a 

submitted lot, and a decision is made from this sample either to 

accept it or reject it. Using a double sampling plan, a sample is 

drawn and a decision to accept the lot, reject the lot, or take a sec­

ond sample is made. If a second sample is drawn, the lot is either 

accepted or rejected on the results of the second sample alone, or on 

the results of the first and second sample combined. Using a mul­

tiple sampling plan, this procedure is repeated until a decision to 

accept or to reject the lot can be reachedr 

In general, double sampling plans require a smaller average 

sample size than single sampling plans, and multiple sampling plans 

require a smaller average sample size than double sampling plans for 
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the same degree of protection. For example, the average sample 

sizes for single, double, and multiple attributes sampling plans 

which have nearly identical OC curves are given. in Table 1 for dif-

ferent lot qualities (8, p. 31 ). For these plans, the first sample 

was completely inspected. 

Table 1. A Comparison of Average Sample Sizes for Single, Double, 
and Multiple Sampling Plans 

Type of Sampling . Sample .Size 
Percentage of Defectives 

1 3 5 8 11 

Single n = 225 225 225 225 225 225 

Double n = 
1 

150 152 162 203 246 214 

n = 450 
2 

Multiple nl = 50 58 84 151 142 86 

n = 100 
2 

n3 = 150 

n4 = 200 

n5 = 250 

n6 = 300 

n = 350 
7 

n8 = 400 

It can be seen from the preceding table that, for lots of either 

high or low quality, double and multiple plans give significant savings 

in average sample size. For lots of intermediate quality, these 
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savings are considerably reduced and, in the case of the double 

sampling plan in Table l, a larger average sample size is actually 

required than for a single sampling plan, when the lot contains eight 

percent defective items. 

The benefits one derives from using sampling plans requiring 

a larger and larger number of samples are subject to a law of dimin­

ishing returns, however. For,although the average sample size gets 

smaller the larger the number of samples the plan requires, the plan 

becomes very difficult to administer. In practice, therefore, single 

and double sampling plans are most commonly used. 
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CHAPTER 4 

MIXED VARIABLES AND ATTRIBUTES DOUBLE SAMPLING PLANS 

1. Introduction 

There are two main types of mixed variables and attributes 

sampling plans: (1) Plans where we assume that the standard devia-

tion of the population of quality characteristics being sampled is 

known, and (2) plans where this population standard deviation is 

estimated by an appropriate statistic. The sampling plans presented 

in this paper are of the former type, and they shall be referred to as 

II known sigma plans II. Unknown standard deviation plans or II un-

known sigma plans" will be discus sed briefly in section three of this 

chapter. 

2. Known Sigma Plans 

2. 1. Introduction 

There seems to be a real need for known sigma plans. Ac-

cording to Bowker and Goode (2, p. 72 ): 

For many industrial products, the mean of the 
measurements of item characteristics changes from 
lot to lot while the dispersion of the measurements 
about the means do not change appreciably, so that the 
standard deviations remain practically constant. This 



occurs be-cause, for many manufacturing processes, 
the relatively important or assignable causes of item 
variation that enter to produce noticeable changes af ­
fect only the average diameter, average length, the 
average hardness or the average of other properties. 
For example, this is commonly the effect of such as­
signable causes as the slippage of machine adjustments, 
incorrect tool or machine settings, or pronounced tool 
wear. The dispersions of measurements about their 
mean value, on the other hand, will be produc ed by the 
constantly present system of minor chance-acting causes 
inherent in the process - a system that will remain ap­
proximately the same regardless of any change in the 
mean and so will keep the standard deviation almost con­
stant. Under such circumstances, the value for the 
standard deviation can be accurately estimated from 
sample data and used in quality control procedures . 
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There are two significant advantages to using known sigma 

plans. First, for the same degree of protection, a known sigma 

sampling plan requires smaller sample sizes than an unknown sigma 

plan. Secondly, the fact that the sample standard deviation or some 

other estimate of the population standard deviation does not have to 

be computed for each sample reduces the necessary clerical work 

considerably. Once the product standard deviation has been deter-

mined, the principal calculations remaining are the relatively sim-

ple ones for finding the mean of the measurements for each sample. 

2. 2 Independent Plans 

Let the measurements x , x
2

, ..• , x . be a random sample 
1 n 1 

of size n
1 

from a normal population with unknown mean f.1 and known 
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standard deviation o- • An item is considered defective if its 

measurement exceeds U, the upper limit of the quality character-

istic. (We could just as easily have chosen to consider the case 

where there is a lower limit, L, for the quality characteristic 

being measured. This would result in only slight changes . in the 

following derivations. ) The lot from which the sample is drawn is 

accepted if x < U - ko-, where x is the mean of the sample, o-

is the known population standard deviation, and k is a constant 

taken from an appropriate table (2, p. 141 ), If x > U - ko-, a 

second sample of maximum size n
2 

is drawn. If d
2

, the number of 

defectives in the second sample, is less than or equal to the accept-

ance number, a, of the sampling plan, the lot is accepted. If d
2 

exceeds a, the lot is rejected, sampling being curtailed as soon as 

a is exceeded. This type of plan is called an independent plan, be-

cause only the results of the second sample are considered when ap-

plying the second (attributes) portion of the plan. 

The probability of acceptance, L (p ), of a submitted lot by 

this plan is given by: 

(4. 1) L (p ) = Pr (x _::: U - k o- I p) + Pr \x > U - k <T I P) Pr( d 
2 
< a I p ) 

= Pr [ z ~ fll (Kp - k)] 

a 

+ Pr [ z > fi1 (Kp - k ) ] 2 
i=O 
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where z = rlx ' p is the proportion of defective items in the lot, 

q = 1- p, N is the lot size, and K is defined by 
p 

2 
X 

00 

s 
2 

(4. 2) e 
dx = 

J2ir K 
p 

Since L(p) is a function of p with K = 
p 

P· 

U-fJ. 
, we may assume 

() 

for purposes of computation that the observations are drawn from a 

normal population with zero mean and unit standard deviation. Hence, 

the z defined above is a standardized normal deviate, and the prob-

abilities given by the first term and the first factor of the second 

term in equation (4. 1) can be evaluated by looking them up in a table 

of the cumulative normal probability distribution, such as (13 ). The 

remaining factor of the second term can be found in a table of the 

hypergeometric probability distribution, (12). For large lot sizes, 

the binomial probability distribution can be used as an approximation 

to the hypergeometric probability distribution (7, p. 370}. 

In using an independent mixed variables and attributes 

sampling plan, information is lost by failing to take into account the 

first sample for attributes analysis. For this reason a sampling 

table , Table 2, was calculated for dependent plans rather than for 

independent plans. 
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2. 3 Dependent Plans 

2. 3. 1. General Procedure. The procedure to be followed 

in the use of dependent plans is as follows: 

(a) A sample of n
1 

items is selected at random from a 

lot of size N. 

(b) The quality characteristic being inspected is measured 

and recorded for each item in the sample. 

(c) The sample mean x is computed from the n
1 

measure­

ments. 

(d) U - ko- is computed, where U is the upper limit of 

the quality characteristic being inspected, k is the appro­

priate value selected from Table 2, and o- is the standard 

deviation of the quality characteristic of the product, which 

has been predetermined. 

(e) If x < U - ko-, the lot is accepted. 

(f) If x > U - ko-, the items of the first sample are inspec-

ted by an attributes criterion. This involves no reinspection, 

since those items which are found to have measurements 

exceeding U are classified as defective. If d
1

, the num­

ber of defectives in the first sample, is greater than a, the 

acceptance number, the lot is rejected. 
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(g) If x > U - ko- and d
1 

_::: a, a second sample of up to 

n
2 

items is taken, sampling being curtailed and the lot 

rejected as soon as the total number of defectives in the 

first and second samples exceeds a. 

(h) If the total number of defectives in the first and second 

samples, d = d
1 

+ d
2

, is smaller than or equal to the 

acceptance nu._m.ber, a , the lot is accepted. 

2. 3. 2. Derivation of Equation for OC Curves. As in the 

case of independent plans, since the probability of acceptance, L(p ), 

is a function of p, and K = 
p 

U-fl 
o-

, we may assume for purposes 

of computation that the observations are drawn from a normal popu-

lation with zero mean and unit variance. Then the probability of 

acceptance is given by: 

(4. 3) L (p) = Pr (X < K - k) + Pr (X > K -k, d < a) 
- p p 

= Pr [ fil x < In (K - k)] + Pr ~ > K - k, d < a) 
" --1 - \} --1 p p 

= Pr [ z < ln (K - k ) ] + Pr (X > K - k , d < a ) • -Vu1 p p -

Since z =~ x is a standardized normal deviate, the probability 

given by the first term above may be evaluated by looking i n a table 

of the cumulative normal probability distribution (13 ). The second 

term in equation (4. 3) may be writte n as: 
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(4. 4) 

The values of the hypergeometric probabilities above can be found in 

tables of the hypergeometric probability distribution (12). The con-

ditional probabilities Pr(X·>K -k jd =i) for i=O, 1, 2, ... , a are 
p 1 

much more difficult to compute. In the present paper we will con-

sider only the case where a = 0 . A discussion of the problems 

involved in evaluating these conditional probabilities for larger 

values of the acceptance number, a, can be found in Gregory and 

Resnikoff (9, p. 1 0). 

Let us consider the distribution of x, a random variable 

from a normal population with zero mean and unit variance truncated 

from above at Kp, where Kp is defined by equation (4. 2 ). 

(4. 5) 

The probability density function of x is: 

1 
- <P (x) for x < K 
q p 

0 for 

1 2 
- -x 

X > K 
p 

where <P (x) = 1 

v2rr 
2 

e is the ordinate of the normal distri-

bution. Denoting the k th moment of this density function by ak, 

we have 



(4. 6) 

00 

ak = S xkf 1 (x}dx = ~ 
-00 

In par tic u1ar, 

K 

S 
p k 

x <P (x)dx. 

-00 

us consider the distribution of the random variable 

(4. 7) z = 
x-a 

. 1 
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Now let 

where x is the mean of a sample of n
1 

observations from the 

density function (4. 5). According to the central limit theorem (7, 

p. 121 ), the distribution of z approaches the normal distribution 

with zero mean and unit standard deviation as n 1~ oo. That is, 

z is asymptotically normally distributed with zero mean and unit 

standard deviation. Hence, the probability density function of z, 

f (z), can be represented by the following asymptotic expansion, 
n1 

called an Edgeworth series (3, p. 228}: 

(4. 8} f (z} = <j>(z} -
n 

1 

2 

+ ~I [ :~ q,(4)(z) + 1:~1 4>(6) (z)] tO ( n)/z) 
where 0 ( n~/2) means that the neglected terms of this expansion 

1 
-3/2 

are of order n
1 

The symbols y 
1 

and y 
2 

above are the coef-

ficients of skewness and excess, respectively, given by 
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(4. 9) and '{ 
2 

= -3, 

where the central moments, of f 
1 

(x) are given by 

K 

S 
p k 

(4. 1 0} flk = (x-a
1

) f
1 

(x}dx. 
- 00 

The symbol ~) th 
¢ (z) represents the k derivative of the norma l 

density function. Therefore, letting 

(4. 11) 

where a-t~ is the standard dev iation off 
1 

(x}, we have 

(4. 12) 

Hence we 

fn (z}dz = 
1 

00 

r fn (z }dz 

X:= K -k 
Jz 1 

0 
p 

loo '{1 '{ 

<P (3) (z 0) ¢ (x}dx + <P (2 ) ( ) __ 2_ = zO 24n
1 zo 6J"iS 

2 
'{1 

<P (5 ) (z ) +0 ( 
1 \ 

72n
1 

0 - 3/2} 
n1 

obtain the approximation, 
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zo 

where F (z
0

) = S cp(x)dx is the cumulative normal distribution 
- 00 

function. 

2. 3. 3. Calculation of k- Values and OC Curves. For the 

case under consideration in this paper - where the acceptance 

number, a, for the attributes portion of the sampling plan i s zero-

equations (4. 3) and (4. 4) are somewhat simplified , and we have 

(4. 14) 

For computation purposes ,let 

(4. 15) p 1 =F[~(Kp-k)], 

where F (x) is the cumulative normal distribution function defined 

above, 

(4. 16) 

(~;) (N~~n1) 

( n7) ( N~:l) 
and 

( 4. 1 7 ) p 
3 

= Pr (X > K p - k I d 
1 

= 0 ) , 

which is a pproximated by (4. 13) above . Then the equation for the 

OC function is given by 

(4. 18) 



The value of p can be determined by looking in a table of the 
1 

cumulative nor mal distribution function (13 }, p
2 

can be found in 

tables of the hypergeometric probability distribution (12}, and 

p
3 

can be evaluated using equation (4. 13 ). The constants K , 
p 
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'{ 
1

, '{ 
2

, a
1 

and cr 
1 

can be found in Tables IV and V of Gregory 

and Resnikoff (9). The derivatives of the normal density function 

can be found in (11 ). 

For large lot sizes, N, the hypergeometric distribution 

can be approximated by the binomial distribution (7, p. 370). This 

approximation is necessary because the hypergeometric distribution 

is not well tabulated for large values of N. When the binomial ap-

proximation is used, equation (3. 16) becomes 

(4. 1 9) 
n1 

= Pr (d = 0, d = 0) ? q 
1 2 

To calculate the k-values of Table 2, indexed on the LTPD 

levels indicated, equation (4. 18) was solved by an iterative proce-

dure for the k - value which gave an L (p) = 0. 100. This calculation 

was done on an IBM 7090 computer, while the author was with the 

Boeing Company in the summer of 1962. The program for this 

calculation was written by Mr. John Elliott. For a sample calcula-

tion of L (p }, see section 2 of chapter 5. Chapter 5 also contains 

the OC curves for five representative sampling plans from Table 2. 
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3. Unknown Sigma Plans 

Gregory and Resnikoff (9, p. 20-24) discuss the cases 

where the standard dev-..ation of the quality characteristic being 

inspected is estimated by the sample standard deviation, 

n 

(4. 20) s = 1 2 (x. -x )2 
1 

i:: l 

and by the extreme deviation from the mean, 

(4. 21) v = 

In the above two equations, x is the mean of a sample of size n 

and x(n) is the largest observation in the sample. 

In the former case, no practical way has yet been devised 

to calculate the OC curves for such plans. In the latter case, 

ease of computation is limited to the case where the acceptance 

number, a, is zero for the attributes portion of the plan. 
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CHAPTER 5 

RESULTS 

1. Sampling Plans and OC Curves 

A table of mixed variables and attributes sampling plans is pre­

sented in Table 2, and five representative OC curves are given in 

Figures 2, 3, 4, and 5. The table is indexed horizontally by LTPD 

level and vertically by inspection lot size. For a specified LTPD 

and lot size, the table gives the first sample size, second sample 

size, and k-value. For example, if we have a lot containing 300 

items, and we want a LTPD of five percent, our first sample should 

contain eight items, and our second sample should contain 34 items. 

The k-value for the required plan in 2. 523. 

The OC curves presented are for sampling plans (8, 1), (5, 5), 

(2, 7), (1, 10), and (10, 10), where sampling plan (i,j) is the plan 

given by the ith row andjth column of Table 2. The OC curves for 

plans ( 1, 1 0) and ( 10, 1 O) are plotted on the same graph to show the 

similarity of OC curves within the same LTPD level. The AOQL is 

easily calculated for each of five plans for which OC curves are 

given, using equations (3 . 1) and (3. 2). The AOQL's are given on 

their respective OC curves. 
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1. 00 

Sampling Plan ( 8, 1) 

. 90 N = 801-1300 
LTPD = lo/o 

nl = 20 n2 = 191 
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Figure 2. Operating Characteristic Curve 
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Figure 3. Ope r ating Charact eristic Curv e 
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Figure 5. Operating Characteristic Curves 
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Table 2, Variables -Attributes Double Sampling Plan (Known Sigma) 

LOT SIZE 

15-25 

26-50 

51-100 

101-200 

201-300 

301 - 500 

501-800 

801-1300 

1301-3200 

3200 & Up 

.010 .O?S oso .1175 

' sl11 7110 

r--- ~ 2.210 2.050 

--·--
f--8129 ~=sl 25-~GI!.L 

2,481 2,132 ~}.?_8_ 

10(64 sl6o sl 29 7119 
2,819 2, 430 2. 308 2,215 

~o_ll_21__ _§J§§ __ _ §13_L __7121 

-~EQ._ _b_§_1_L _ _ 2.571.. ___b_282_ 

~1151 1Q 69 8[34= ~L. 
2,932 2. 684 2, 523 2,299 

!.<lhJj -1--· lQl,Jj sl 35 7122 

-~~.1- .-b..IQ~- __ .?!.?21 _ J .. j04 

10h9o 101 76 8136 -7123-

~--''' 054 __ 2,803 2,580 2, 312 

~Qb.21__ _1QUl.9 81-37 7123 

~'!.JEL r--b-Z.!L __ 2.!.?.?1.. _]..:}47 

201200 10[ 85 81 38 7124 
2,945 2,636 2,479 2, 265 

201210 10190 8139 7124 
2.882 2,581 2. 432 2,276 

LTPD LEVELS 

100 _._150___...200_ 

61to 41 7 3 I 6 
1. 877 1,973 1. 875 

:=_6 112._ ~ 41 9:__ --~Ji: ----
2,063 1,981 __ .1..:928 

6!14 jliL ~-;-r 7 

2,150 2,032 2.163 

6j15 4110 31 8 

--~._237 2,_19§ __ 1. 964 

==.611~= f--JJ---_.111 __ ~=~1-L 
2, 178 2.037 _ _?._. 000 

_6116 4111 3 I s 
2,238 2,065 2. 02_3 _ 

-=-6]12= -m=-___.1 1-_2_ --~-LL 
2. 292 1,960 2. 039_ 

6117 4112 3 I s 
2, 153 1.965 2.049 

---6l17- ---4112- - --3T8 
2,168 1,972 2,058 

·-
6118 4 h2 3 I s 
2,087 1.975 2,063 

250 300 400 - ~T -- 2T4 d 2 5 4 
2,128 1. 890 1. 240 

- 2 r~ 2 r 5 21 4 
_2. 015 1.z1o 1. 286 

- -r-- 1--

---~ .!L --~D- 21 4 
2,212 __ 1 ~_§}L __ _l!}jl_ _ 

2 17 2 I 5 2f4 
1,953 1,889 1,330 

--~17 2 I 5 21 4 

.!.·Y-~~ 1--!'!.!U§_ _ _ _l..:}}L_ 

2 L 7 
--

2 I 5 2-[1= 

1.992 1,932 1, 34_9_ 

--~_l_z._ 215 214 

--~._Q.Q.~ __ _h~g_ ~-1,J42 __ 

2 I 7 

__ ,_ __ 
2 I 5 --2-r4-·= 

2,008 1. 949 1.~~ 

217 2ls -2T4 

2,013 1.955 1,346 

f-· iT7- 2 I 5 2·14- -

2.016 1,958 1. 347 
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2. Sample Calculation of L(p) 

Let us consider the calculation of L (p) for the case of an 

inspection lot of size 20, containing five percent defective items 

with a LTPD of 40 percent. This corresponds to sampling plan 

(1, 10) and the L(p) is given by equation (4. 18) as 

where p
1 =F[~(Kp-k)], 

(~~ ) (N~~n 1 ) 
P2 = 

( ~1) (N,;;~L 
<P (2) (zo) -

'¥2 
<P {3) (z 0) and 1 

p3 "' _1-F(z ) + --
"' 0 6./n: 24 n

1 nl 

The value of z 
0 

is calculated by 

(

K -k-a1 ) 
z ={'il; p . 

0 1 o- 1 

For sampling plan (1, 1 0), 

N = 20 k= l. 240 

nl = 2 rn = l. 414214 
l 

n = 
2 

4 
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In addition, for the case we are considering, 

p = 0.05 K = 1.644854 a = -0.108564 
p 

-0 . 33 7588 
1 

0.899801 '{1 = o- = 
-0.227324 

1 

"z = 
'{2 = 0 . 113966 

1 

where K , -y 1 , -y
2

, a , and o- were taken from Table IV and 
p 1 1 

Table V of Gregory and Resnikoff (9). Then, 

vn; (Kp -k) = 0 . 572550 

p = F(.5726) = 0.716542 
1 

P2 = 

zo = 

(~9) ( ~7) 
0. 700000 -- -- = 

( 220) ( 1:) 

0.806938 

-0.337588 
l-F(. 8069 ) + 6(1. 414214) 

.113966 <1>(5) ( 807) 
72 (2) . 

Finally, 

<1>(2)(. 807)- -0.227324 <1>(3)(. 807) 
24 (2) 

0.218059 

L(p) = 0. 716542 + (0 . 700000)(. 218059) = 0. 8 69183 

According to Cramer (3, p. 229), the error in the 

above Edgeworth series approximation to p
3 

is of the same order 

of magnitude as the first neglected term. The first neglected term 

is 



(5. 1 ) 

where '1
3 

- 1 0'{ 
1 

(9, p. 1 7). 

For the preceding approximation to p
3

, E ::: 0. 000407. Since 

p
3 

is multiplied by p
2 

in the calculation of the L(p), this means 

the error in L (p) is of the order of 0. 7 (0. 000407) ::: . 0002.85. 

This error is of no consequence in the calculation of OC curves 

and k-values. For most calculations of L(p), the error would be 

smaller than this, since n
1 

is always greater than or equal to two 

and p
2 

is usually smaller than 0. 7. 

To construct the OC curves in Figures 2, 3, 4, and 5, L(p) 

was calculated for seven or eight values of p, for each of the five sam-

pling plans represented, and a smooth curve was drawn through 

the points thus obtained. 

To calculate the k-value for a given LTPD level and 

lot size and somewhat arbitrarily chosen first and second sample 

sizes, different k-values were tried in equation (4. 18) by an iter-

ative procedure until one was found which gave a L (p) of 0. 100. 

This computation was done on an IBM 7090 computer. 

3. Example of the Use of the Mixed Variables and 
Attributes Sampling Plans 

Let us consider an example illustrating how a mixed 
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variables and attributes plan from Table 2 on page 40 might 

be used. Suppose we have received a lot containing 75 steel 

castings which have a specified minimum yield point of 53, 000 

p. s. i. The standard de v iation cr is known to be 2000 p. s. i. 

We want to use a m ixed variables and attributes plan to determine 

whether or not we should accept this lot if we specify a LTPD of 

25 percent. 

From Tabl e 2 we look for the entries corre-

sponding to a lot size of 75 items and a LTPD level of 25 

percent. We find that if we take a first sample of two items and a 

second sample of s ix items (if necessary), the k-value is 2. 212. 

This example is a case of a single lower limit L, rather than a 

single upper limit for which the OC equation was derived. 

However, the derivation goes through the same for this case, ex­

cept for slight modifi cations, and the results are identical for 

both cases. In thi s case , we will accept the lot on the first sam­

ple if x > L + k cr and take a second sample if x < L + kcr and 

there are no d e fective items in the first sample. We calculate 

L + kcr = 53, 000 + 2. 212 (2, 000) = 57,424. 

Let us suppose that we draw a sample of two items from the lot 

and find 

x
1 

= 55, 496 x
2 

= 53, 052 
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We calculate x = 54, 2 74 and, since neither of these items is 

defective, we take a second sample of six items. Suppose we find 

that 

x
3 

= 56, 491 

x
4 

= 59, 907 

x
5 

= 53, 789 

X = 54, 476 
6 

= 54, 032 

= 55, 091 

Since none of these items is defective, we will accept the lot. 

Let us suppose that the preceeding lo t had been s c reened, 

unknown to us, and that we had decided to use a single-sample 

variables acceptance plan. We can find such a plan in Bowker and 

Goode (2, p. 199). Using this plan, we find that the k-value is 

l. 177 and the s a mple size is seven. We will accept the lot if 

x > L + ko-, and re ject it if x < L + ko-. We find that 

L + ko- = 53, 000 + l. 17 7 (2, 000) = 55, 354, 

and from the first seven sampl ed items above, x = 55, 320. 

' 
Therefore, we would erroneously re j ect the lot using a pure 

variables plan, although we found no defective items in the sample. 



' 

46 

BIBLIOGRAPHY 

1. American Statistical Association. Acceptance sampling, a 
symposium. Washington, 1950. 155 p. 

2. Bowker, Albert H. and Henry P. Goode. Sampling inspection 
by variables. New York, McGraw-Hill, 1952. 216 p. 

3. Cramer, Harald. Mathematicalmethodsof statistics. 
Princeton, Princeton University Press. 1961. 574 p. 

4. Crow, Edwin L., Frances A. Davis and Margaret W. Maxfield 
Statistics manual. New York, Dover, 1960. 288 p. 

5. Dodge, Harold F. and Harry G. Romig. Sampling inspection 
tables. 2d ed. New York, Wiley, 1959. 224 p. 

6. Eisenhart, Churchill, Millard W. Hastay and W. Allen Wallis. 
Techniques of statistical analysis. New York, McGraw-Hill, 
1947. 473 p. 

7. Fraser, D. A. S. Statistics: An Introduction. New York, 
Wiley, 1958. 398 p. 

8. 

9. 

1 o. 

11. 

Freeman, H. A. et al. 
McGraw-Hill, 1948. 

Sampling inspection. 
395 p. 

New York, 

Gregory, Geoffrey and George J. Reskinoff. Some notes on 
mixed variables and attributes sampling plans. Stanford, 
California, Applied Mathematics and Statistics Laboratory, 
March 15, 1955. 39 p. (Office of Naval Research. Con­
tract N6bnr-25126, vol. 10) 

Hald, A. The compound hypergeometric distribution and a 
system of single sampling inspection plans based on prior 
distributions and costs. Technometrics 2:275-340. 1960. 

Harvard University. Computation Laboratory. Tables of the 
error function and its first twenty derivatives. Vol. 23. 
Cambridge, Massachusetts, Harvard University Press, 
1952. 276p. 



47 

12. Lieberman, Gerald J. and Donald B. Owen. Tables of the 
hypergeometric probability distribution. Stanford, California. 
Stanford University Press, 1961. 726 p. 

13. National Bureau of Standards. 
functions. Washington, 1 953. 
Series. vol. 23) 

Tables of normal probability 
344 p. (Applied Mathematics 

14. U.S. Dept. of Defense. Military standard 1 05C, sampling 
procedures and tables for inspection by attributes. 
Washington, 1961. 70p .. 

15. U.S. Dept. of Defense , Military standard 414, sampling 
procedures and tables for inspection by variables for per­
cent defective. Washington , 1957. 110 p. 




