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The objective of this study is to develop an ordering policy

which will minimize the total cost associated with maintaining an

inventory under active constraints. Previous work in this area has

concentrated on the application of either the Lagrangian multiplier

technique or the exchange curve which allows non-linear trades-offs

between cost elements. However, if the constraint depends on the

total inventory level such as warehouse space limitation or maximum

investment in inventory, we can obtain the optimum level for

operating the system at its minimum cost.

The methodology presented herein is based on the composite



probability density function representing the total inventory level.

This function results from the additive combination of demand

rates for individual items in the inventory. Demand is assumed to

be compound Poisson for each item and thus the total inventory

level may be adequately represented by the normal distribution as

the number of items increases in the system. The optimum ordering

policy and the distribution of the total inventory level for the

system are obtained using simulation after considering Schaack and

Silver's algorithm.

In determining the optimum constraint level, the unit system

cost, the penalty cost, and demand process are found to be

important factors. The ratio of the unit system cost to the

penalty cost determines the optimum constraint level for the given

distribution of total inventory level. The distribution is also

affected by the demand process. That is, the higher the demand

the more variation which results. Thus increased savings result

while stocking high-demand items.

Development and implementation of this methodology is

illustrated through the use of several example problems.
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DETERMINATION OF MINIMUM OPERATING COST FOR

A MULTIPLE-ITEM CONSTRAINED INVENTORY

I. INTRODUCTION

1.1 Multi-Item Inventory systems

An inventory problem exists when it is necessary to stock physical

goods or commodities for the purpose of satisfying demand over a speci-

fied period of time. Almost every business must carry stocks of goods

in order to ensure smooth and efficient operation. Decisions regarding

how much should be ordered for stocking and when it should be ordered

are typical of every inventory situation. A high level of inventory

(overstocking) requires higher invested capital per unit time but fewer

shortages and placements of orders. A lower level of invenotry

(understocking) decreases the invested capital per unit time but

increases the frequency of ordering as well as the risk of running out

of stock. Obviously, both cases are costly. Therefore, decisions re-

garding the quantity ordered and the time at which orders are placed

should be based on the minimization of a cost function which balances

the total costs resulting from overstocking and understocking.

In developing decision models, it is necessary to first explore

the basic characteristics of an inventory system such as relevant costs

and demand patterns which may affect the development of such models.

As will be discussed later, inventory systems should be considered a

function of the number of items involved in the system:that is, the

single-item case or multi-item case. The problems of the single-item

case are considerably simpler than those of the multi-item cases because

we do not need to consider the interactions between items.

However, most organizations involved in the management of inventory

are faced with makine decisions for large number of individual items.
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The control of such large numbers of items presents many problems that

do not arise in considering just a single item. There is usually a

diverse collection of factors (e.g., the demand pattern, the mode of

shipment from supplier, and the methods of delivery to the customer,

etc.) and constraints (e.g., budget limitations, warehouse space limita-

tions, etc.). It is one thing to try to develop an optimal operating

policy for just a single item, but it is something quite different to

attempt to develop optimal operating policies for 1,000 or 10,000 items.

A number of studies have been performed on the topic of multi-

item inventory control, where joint order of several items may save

a part of the ordering cost. In an early work, Balintfy (1964) point-

ed out the interaction between items caused by the effect of certain

combinations of order and propoSed a random joint order policy as a

reasonable strategy.

Some of the reasons why multi-item inventory control can re-

duce costs were discussed by Silver (1974):

1) Several items are produced on the same equipment, in which

case coordination of run quantities may significantly re-

duce setup costs.

2) Several items are purchased from the same supplier, in which

case coordination may allow use of group quantity discounts.

3) Several items share the same transportation facilities, in

which case coordination may result in transportation eco-

nomies (full car load).

Also, when we are dealing with many items, the total inventory

level which affects the level of constraints, will not change cons-

tantly even though demand rate of each item is constant. Using this

property of total inventory level, we can reduce the required cons-

traint or reduce operating costs with the given constraint, which is a

main idea of this thesis. We will discuss this property in more

detail later.

Just as in the case of a single item, there are some basic deci-

sions which must be made in a multi-item inventory situation. Basically,

we need to know the following:
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1) When should a replenishment order be placed?

2) How large should the replenishment order be ?

3) How should the inventory status be determined and what are

the review intervals?

These variables affect the costs relevant to the inventory system

and are subject to the control of the system design. Therefore

the general inventory problem is to find the specific values of

these variables that minimize the cost.

1.2 Relevant Inventory Cost

The costs incurred in operating an inventory system should

play a major role in determining what the operating policy should

be. The costs which influence the operating policy are clearly

only those costs which vary as the operating policy is changed.

Fundamentally, there are four types of costs which may be important

in determining what the operating policy should be.. These are

1) the costs associated with replenishing the units stocked (re-

plenishment costs)

2) the costs of carrying the items in inventory (carryine costs)

3) the costs associated with demands occurring when the system is

out of stock (shortage cost)

4) the costs of operating the data gathering and control procedures

for the inventory system (system control costs)

These costs may be described in more detail as follows.

1.2.1 Replenishment costs

Replenishment costs are the costs incurred each time a replenish-

ment action is taken. This cost can be expressed as the sum of two

parts:

i) a fixed component often called the setup cost independent

of the size of replenishment (AF)



4.

ii) a component that depends on the size of .replenishment(AJ).

In this paper, we deal with a multi-item dependent inventory

system. The system is considered to be dependent because the re-

plenishment cost varies with the number of items ordered. That is,

the cost of placing an order is AF + AJi if item i is ordered. If

there are n items altogether, the replenishment cost is AF + (AJ1+

AJ
2
+ + AJ

n
). Thus we can save (n-1)*AF under joint replenish-

ment condition which we have to pay if we order individually.

1.2.2 Carrying costs

Having materials in stock incurs a number of costs. One of them

is the real cost. Real costs include insurance, taxes, breakage, pil-

ferage at the storage site, warehouse rental or ownership expense, and

the costs of operating the warehouse such as those for light, heat, and

security.

Frequently, the most important cost is one which is not a direct

expense but rather an opportunity cost which would never appear on an

accounting statement. This is the cost incurred by having capital tied

up in inventory rather than having it invested elsewhere, and it is

equal to the largest rate of return which the system could obtain from

alternative investments. By having funds invested in inventory, one

forgoes this rate of return, and hence it represents a cost of carrying

inventory.

We also need a kind of physical system cost to carry inventories.

For example, we need a warehouse to keep inventories. The space require-

ment of a warehouse depends on the total inventory level. There will

be a cost to build a warehouse of the proper size and a penalty cost

for the number of items exceeding the warehouse space. That is, we

have to lease or rent a warehouse thereby paying more than if we owned

it. We call these costs physical system costs in carrying inventory.
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1.2.3 Shortage costs

When inventory levels are not sufficient to satisfy customer demand,

costs are incurred, whether or not they can be explicitly measured.

Unsatisfied demand leads to immediate costs of backordering and/or lost

sales. However, shortage cost are inherently extremely difficult to

measure because they can include such factors as intangible losses of

customers' good will.

Since poor service can have a long-range cost impact through loss

of eood will, in the short run, many companies will take almost any

possible action to avoid shortages. In this paper, we do not attempt

to quantify this cost. The reasons are, as we mentioned before. that

(i) it is not easy to measure such a cost, and (ii) since most companies

keen a hieh level of customer service. the actual shortage cost may be

very small.

1.2.4 System control costs

In order to use any given operating policy, an inventory system

must gather the information required for its use. The'expense of

obtaining the information necessary for decision making will depend

on the type of operating policy used. This expense may include such

things as the costs associated with having a computer continuously

update the inventory records, the cost of making an actual inventory

count, the cost of making demand predictions, and the cost of generally

maintaining the system.

It is relatively easy to list the categories of costs as we have

done above. However, their measurement in practice is a different

story. Actually, it is quite difficult to represent mathematically all

the cost components with complete accuracy. Consequently, it is desir-

able to make some approximations when representing these costs in the

mathematical models to be developed. Sometimes surrogates or exchange
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curves can be used to portray aggregate tradeoffs between measures of

interest as we vary a policy variable.

1.3 Classification of Inventory Systems

Two ways of classifying inventory models are presented in this

section. In the first part, inventory models are divided according to

their characteristics ; in the latter section, they are classified

into two parts by the difference in implementation of ordering.

1.3.1 Classification by characteristics

Inventory control is quite broad and has a multitude of variations.

A method of classification by Silver (1981) is discussed to show the

variety of inventory problems. A number of the factors which may be

used to classify inventory systems are shown below.

A) Single item case vs. multiple item case

Single item cases are classified into Al while multi-item

problems can take on a variety e forms according to item

interactions, including

A2 - Overall crnstraint on budget or space used by a

group of items

A3 - Coordinated control to save on replenishment

costs

A4 - Substitutable items

A5 - Complementary demand

B) Deterministic vs. probabilistic demand

B1 - Deterministic demand

Where demand is not known with certainty, there are

several versions of the probabilistic representation.
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B2 - Known probability distribution

B3 - Special known distribution such as intermittent
demands

B4 - Known form of the distribution in a unit time

period but with parameters not assumed known
B5 - Unknown distribution of demand

C) Single (C1) vs. multiple period (C2)

In some situations, such as style goods and newspapers, there

is a relatively short selling season or period, and remaining

stock cannot be used to satisfy demand in the next season or

period. This decoupling effect simplifies the analysis compared

with the multiperiod case.

D) Stationary (D1) vs significantly time-varying (D2) parameters

We may find the common form of nonstationarity in the demand

process. However, potentially as important are changes in

other parameters such as costs, the effect of inflation or a

one-time opportunity to purchase at a reduced unit cost.

E) Procurement cost structure

The unit value of an item may depend on the size of the re-

plenishment. This replenishment may be a result of a supplier

discount, or it can come about through freight consideration.

In cases of multi-item inventory control with joint replenish-

ment, the fixed cost of replenishment will be reduced. This

is discussed in more detail in Chapter III.

F) Nature of supply process

A number of possibilities exist.

Fl - All of the material ordered is received after a known

lead time; this is the case most commonly assumed in

the literature.
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F2 - All of the material ordered is received after a random

lead time having known mean and variance

F3 - Only a random portion of the ordered material is re-

ceived

G) Backorders (G1) vs. lost sales (G2)

Demand when an item is out of stock can be either backorder-

ed or lost; in fact, a combination of the two is likely

in any specific context. From a mathematical standpoint,

the case of complete backordering is usually the easiest to

model. Moreover, because of the relatively low frequency

of stockout occasions under any reasonable policy, the use

of the simpler !'complete backorders model" normally leads to

a policy that produces a negligible cost increase over that

found by a more exact "lost sales model" even when all de-

mand in an out-of-stock situation are lost.

H) Shelf-life considerations

Most of the literature implicitly ignores the possibility

of obsolescence or deterioration of stock. Obsolescence

(H1) represents the situation where the stock is still in

appropriate physical condition but can no longer be sold at

anywhere near its original price( usually due to the appear-

ance of a new competing product). Deterioration or peri-

shability(H2) signifies that for legal and/or physical

reasons the stock cannot be used for its original purpose

after the passage of a certain time.

I) Single vs. multiple stocking point

In a significant number of companies, inventories are kept

at more than one location (I1). In multi-echelon situations

(I2), the orders generated by one location such as a branch

warehouse become part or all of the demand on another location
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or central warehouse. In addition, one can have horizontal

multiplicity (13), that is, several locations at the same

echelon level (e.g., several branch warehouse) with the

possibility of transshipments. A situation analogous to the

multi-echelon context exists in the production of an assem-

bly where the assembly schedule dictates the needs through

time of the various components.

1.3.2 Classification by ordering

There are two divisions in this classification.

A) Periodic ordering method

Orders are placed at fixed time intervals in this method.

Order interval and order quantity of each item are deter-

mined to minimize total cost.

B) Continuous review method

This method records the stock levels of all the items in

the system after each transaction, i.e., demand, receipt of

items, order placed, etc., and whenever the stock reaches

a certain predetermined level, an order is placed. There

are two methods used to determine order quantity. They are

i) to order the same quantity (Q
1
) every time that

item has to be ordered

ii) to order a certain quantity in order to bring the

inventory level of an item up to the predetermined

level (Si).

ThevaluesofQiors.are determined to minimize total cost.

The coordinated ordering policy which will be discussed in

Chapter III is a continuous review method.
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1.4 Some Models of Inventory Systems

We will consider some inventory problems, according to the pre-

vious classification, to which mathematically developed decision

rules have been widely applied or have substantial potential for

application with minor modifications. Cross reference numbering

to the classification scheme of the previous section is provided.

1.4.1 Single item with deterministic, stationary conditions

(Al-B1-D1) - The economic ordering quantity (EOQ)

Deterministic stationary conditions lead to the classic EOQ, which

has itself been directly used in practice but which, more importantly,

represents a key building block of decision rules that cope with more

complicated circumstances.

For example, if a quantity Q is ordered each time

orders replenishment stock, and D,H,A are the demand per unit period,

average holding cost, and ordering cost, respectively, then after

every Q demand, an order for Q units is placed. Thus, the time T

between the placement of order is T = Q/D. Consequently, the inventory

holding cost per unit time period is average stock in unit periods

times holding cost per unit.

The total cost(TC) per unit period is

D
2TC = A+ 2

7,H = A+ H2 2

Differentiating TC with respect to Q and setting the result to zero

allows us to determinate the optimum ordering quantity Q .
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aTC
aQ 2

A + 2 = 0

Q

Q
* 2DA
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This quantity Q is a well known economic ordering quantity(E0Q).

1.4.2 Multi-item with deterministic, stationary conditions

under budget, space, or replenishment workload constraints

(A2-B1-D1)

A Lagrangian multiplier approach leads to a decision rule where

the scarce resource is properly allocated among the group of items

involved. An exchange curve can be developed to show the benefit

of relaxing the constraints. When demands are probabilistic instead

of deterministic, decision rules have also been developed. These are

based on a Lagrangian multiplier approach to allocate a given total

safety stock among a group of items so as to minimize one of several

possible measures of aggregate disservices. These are discussed in

more detail in Chapter II.

1.4.3 Coordinated control of items under deterministic, stationary

demand (A2-B1-C2-D1)

In general, a policy for ordering multiple interactive items

will be called a coordinated replenishment policy. Several types

of such a policy will be considered in this subsection.

Sometimes the term "joint ordering policy" is used in the

literature to mean what is here called a coordinated ordering policy.

In this paper, joint ordering is defined as follows. Suppose that

whenever any item is ordered, every item in a group of family for
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which there has been any demand since the previous order is ordered.

That is, every time an order is placed, every stock item is brought

up to a specified inventory level. In this paper, the policy specify-

ing the levels up to which each item is ordered as well as when to

order is called "joint ordering policy".

In a sense, a joint ordering policy is at the end of a spectrum

of coordinated replenishment policies. At the opposite end is indepen-

dent ordering, under which each item is ordered according to its own

single-item policy.

At this point, we need to explain briefly the coordinated ordering

policy. When we are dealing with many items in the system, we are

frequently faced with occasions where the coordination of replenish-

ment orders for selected groups of items can lead to significant

savings in the cost of replenishment. This is because there is

dependency in the replenishment cost. In particular, if Al. and Al.

are the replenishment costs for item i and j, respectively, under

independent replenishment, then the cost involving both of the items

atthesamereplen.ishmentislessthanAI.+AI,. This type of cost

structure is particularly appropriate when a group of item is ordered

from the same supplier and/or uses the same means of transportation.

The ordering policy considered in such a case is defined as

(S, c, s) policy ;S stands for order-up-to level, c for coordinated

joint-order point (or can-order point), and s for must-order point.

This policy consists of bring up to its maximum inventory level Si

any item i below its coordinated joint-order point ci whenever any

item j (within the same family) hits its must-order point sj . A num-

ber of authors have discussed methods of obtaining optimal control

variables. This is briefly discussed in Chapter III.

And also, wP can explain the independent ordering policy as

follows:iftheinventorylevelofitemifallstox<s.,one orders

up to level Si ;i.e.., a quantity Si - x is ordered.

Nevertheless, no real world situation encompasses multiple items

having deterministic, stationary demand. However just as the EOQ is
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useful as a building block in single-item situations, useful models

have been developed for determining replenishment sizes of a family

of items that have interdependent costs for each family replenishment

regardless of which items are included in the replenishment.

Of course we can consider a number of different problems for each

specific case. However, it is not necessary to illustrate all kinds

of problems. Our discussion involves only three simple cases which

can provide some insight into developing real world problems which we

will consider in the next chapter.

1.5 Statement of Problem

Let us consider a company which is going to build a new ware-

house to store its raw material inventories. The company deals

with many items, and the management would like to know the proper

size of the warehouse while operating the system at minimum operating

costs.

Since there are many items and their inventory levels vary in-

dependently with time, the total inventory level will also vary

with time, and the distribution of the total inventory level may follow

some probability distribution. If we know the distribution of the

total inventory level, we Can also find out the proper size of the

warehouse and the operating policy by calculating the costs of build-

ing a warehouse and the penalty cost for the amount exceeding the

given warehouse space and operating cost under given warehouse space

constraint. The relationship between the total inventory level and

cost is shown in Figure 1-1.

The most important difference between this situation and the

model discussed previously is that the demand is uncertain and varies

stochastically. In such a case, no direct analytical solution is

available. However, we assume that the stochastic demand follows
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Carrying cost

Annual equivalency
of construction and
operation of
structure

Ordering cost

Warehouse size

Figure 1-1 The relationship between total inventory level

and cost

some probability property and that we can apply some probability dis-

tribution according to the collected data.

The ordering policy considered in muiti-item inventory control

is a coordinated ordering policy, as we mentioned in the previous

section. The fundamental reason for adopting the coordinated ordering

policy is that we can save costs in not only operating the system of

carrying and ordering inventories but also system cost resulting from

the interaction among items. In Chapter III, we will show the cost

savings achieved by the coordinated ordering policy over the joint

ordering policy and the independent ordering policy.

Briefly, the purpose of this study is to find the optimum control

variables for the coordinated ordering policy which gives the minimum
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of operating cost and system cost.

1.6 Summary

We have discussed the general problems involved in controlling

multi-item inventory systems. As was previously stated, when one

deals with a large number of items, there will be many problems that

do not arise in the single-item case. There will be interactions

between items resulting from costs, resources, and demands which make

the multi-item inventory control more difficult.

A number of authors have discussed methods of obtaining optimal

policy by considering cost interaction caused by joint ordering of

multiple items. But few have considered the system cost on the

constrained case. If we consider such a system cost, the operating

policy should be changed accordingly to represent the effect of such

a system cost.

The deterministic model with a space constraint is the subject

of Chapter II. We formulate a simple model of the multi-item case

with deterministic demands. We show the optimum size of warehouse and

operating policy which gives the minimum total cost, and we calculate

the savings over the total cost of the system with the maximum size

of the warehouse.

However, if the warehouse space is given as a constraint and

if it is less than the optimum size of the warehouse, it is necessary

to change the operating policy considering the given constraint. We

use the Lagrangian multiplier method to get the optimum value of the

control variable and update the value, considering the probability

distribution of the total inventory level.

Chapter III considers a multi-item inventory control in more

detail. A discussion of Schaack and Silver's work (1972) is followed

by an introduction of characteristics and a review of previous

research into obtaining optimum control variables for the multi-item
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inventory control.

The stochastic model with a space constraint is presented in

Chapter IV. There determine the optimum size of the warehouse and

test the operating policy using simulation. As in the case of

deterministic model, we use the Lagrangian multiplier method for

obtaining the optimum value of the control variables. FORTRAN is

used for this simulation and its program is given in the Appendices.

Chapter V gives conclusions and offers recommendations for

future areas of study.
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II. CONSTANT DEMAND MODEL

2.1 Introduction

The model in this chapter is based upon the assumption that de-
mands are constant and known. This is a significant simplification
since demands are not usually constant in real world problems.

Since demands can rarely be predicted with certainty in
practice, they must be described in probabilistic terms. However,
the deterministic models discussed in this section are still of int-
erest because they provide a simple framework for introducing the
methods of analysis that will be used for more complicated situations.
In addition, they are often useful in examining certain critical as-
pects of real world problems.

To provide uniformity throughout this paper, we use the follow-
ing notation:

D. : the demand of item j (units per period*)J

H. : the holding cost of item j ($ per unit per period )
A. : the ordering cost of item j ($ per order)
J

*TCI : the total inventory operating cost ($ per period )

* usually one year

2.2 Simple Model with a Space Constraint

We will first consider the case where there is an upper limit F
to available warehouse space. Suppose that n items are being stocked

andthatoneunitofitsuljtakesupf.square feet of floor space.
If Qj is the order quantity for item j, then the space constraint is
not violated at any time, and it must be true that
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( 1 )

We assume that all demands should be met from on-hand inventory.

So no backorders or lost sales are allowed. Then the average vari-

able cost for all items per unit period is

n D. H.Q.
TCI = --1 A. + --2-1 )

j=1 Qj 2

where n is the number of items being stocked

( 2 )

We want to find the absolute minimum of TCI in the region

0 < . < co , j = 1, 2, ..., n subject to the active constraint (1).Qj

The procedure is as follows;

First it is necessary to solve the problem ignoring the cons-

traint. Thus we minimize over each Q. separately. This yields

Qj

2D.A.

H.
j= 1, 2, ..., n ( 3 )

which is just the Economic Ordering Quantity (EOQ). If the Qj

of (3) satisfies the constraint, then these Q are optimal. In such

a case the constraint is not active, i.e., sufficient floor space is

available.

On the other hand, if the Q. of (3) exceed the given constraint,

then the constraint is active and the Q. of (3) are not optimal. To

find the optimal Q., the Lagrangian multiplier technique is used.

We form the function
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n D. H.Q.
L =

j 1

Q( A. + --2-2 ) + e ( E

1

f.Q. - F ) (4)2=j--2 3 j=

where the parameter 6 is a Lagrangian multiplier.

Then the set of Q., j = 1, 2, ..., n which yield the absolute mini-

mum of TCI subject to (1) are solutions to the set of equations.

9Q.

31,

30

o =
D. H.
a_ + e f.
2

Qi 2

n
0 = E f.Q. - F

j =1 3 3

These have the unique and hence optimal solution

j= 1, 2, ..., n

(5)

(6)

.
* i 2 D .A .

2 _1

Qj
H. + 26 f.
J J

where e. is the value of e such that the Qj
*

of (7) satisfy

(6)

The function

x

Ef.(2D.A.(11.4-26f.)-1 )

0/2

j=1 J J J

F (8)

is a monotone decreasing function of 0; consequently, there is a
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unique 6 > 0 such that (6) is satisfied.

Example 2-1

Consider a shop which produces and stocks three items. The maxi-

mum amount of storage space available equals 1,400 square feet. The

items are produced in lots. The demand rate for each item is cons-

tant and can be assumed to be deterministic with no backorders all-

owed. Pertinent data for the items are provided in Table 2-1.

Table 2-1 Data for example

Item 1 2 3

Demand rate( D. ) 50 100 200

Space requirement( fi ) 50 50 50

Setup cost( Ai ) 40 80 100

Holding cost( H. ) 40 160 100

The optimal lot sizes in the absence of the space constraint

Qjts

were used, the maximum space requirement would be

F = (10 * 50) + (10 * 50) + (20 * 50) = 2,000 ft2

This is greater than the maximum allowable warehouse space in

inventory. Hence,the constraint is active, and on introduction of

aLagrangianmultiplier6,weseebyanalogywithMthat Qj 's are

given by

\it 2 DA
3

Q. =
H. + 2e

*
f

j = 1, 2, 3

where Q. is the solution of the equation.Qj



If we put these values of Q .into equation (8), then

3 2 D.A.
E _____11 * f.

j=1 H.+26f.
J J

F

2(50)(4Cq +j 2(100)(80)
= + 2 6 (50) 160 + 2 e (5o)

* 5o
4o

/2(200)(100
100 + 2 e * 50

- 1400 0

Since this equation is a monotone decreasing function of 0, there

is a unique solution of 6. This is shown in Figure 2-1.

ft
2

Figure 2-1 monotonic decreasing function

6

21
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If we solve this equation numerically, we obtain the following

solutions:

Solution ; e = 0.9075

Q1 = 5.5310

Q,, = 7.9880
4*

Q
3

= 14.4810

Substitution of these Q. values into the constraint shows that it

indeed hold as a strict equality. That is

3 *

jI 1 3 3

Q. f. - F
=

= (5.5310)(50)+ (7.9880)(50) + (14.4810)(50) - 1400 = 0

Sincethevalueof.Qj should be an integer, we round these Q.

off to the nearest integer even though it may cause slight loss of

optimality. Then the solution will be

Ql = 6 units Q2 = 8 units Q3 = 14 units

and

F = 6 * 50 + 8 * 50 + 14 * 50 = 1400 ft
2

The minimum cost of setups and holding inventory for the three

items in the absence of any constraint on warehouse space in inven-

tory is as follows; if we put equation (3) into equation (2), total

cost is expressed

TCI = Ii2 D.J A.J H.

J

= $4,000.00

TCI $4
(with constraint)

,
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The cost in the presence of the constraint is thus $221.90 per

unit period higher than in the absence of such a constraint.

2.3 Optimum Level of Constraint

In the previous section, the system cost of building a ware-

house was not considered. We only included the operating cost of

holding and ordering inventories. We also assumed that the space

constraint was not violated at any time.

However, since the inventory level of all items varies with

time, it is necessary to see how this level changes with time. If

we know this variation of total inventory level, we may save either

system cost or operating cost, or both, in carrying inventories by

relaxing the given constraint.

Since demands are constant and known, the inventory level of

each item changes from zero inventory level assuming no safety

stock to its maximum inventory level, i.e., the order quantity Q .

The probability of each level of an item will be the same because de-

mand is constant. This means the inventory level of each item is

uniformlydistributedrangingfromzeroto.Qj , with the probability of

eachlevelequalto1./Qj A. graphical representation of this re-

lationship is shown in Figure 2-2.

Therefore the mean and variance of each item will be

Q
1

2
LI 2

Q2
*

2

Qn

2

*2 *2 *2

2
=

Q
1 2= 2

Q
n

. 00
1

0
2

=
Q2

12 , 12 , 12

(9)

(10)
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Let us now consider the total inventory level. Since the in-

ventory level of each item varies from zero to its maximum level

Q. , the level of all items will vary from zero to their sum of all
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items at its maximum level, i.e., E jn Q
j

(=MAX). Then the proba-

bility of each level of total inventory can be calculated as follows;

PT(0) = P1(0) * P2(0) * P3(0) * * Pn(0)

PT(1) = P1(1) * P2(0) * P3(0) * * Pn(0)

+ P1(0) * P2(1) * P3(0) * * Pn(0)

+ P1(0) * P
2
(0) * P

3
(0) * * P

n
(

1
)

PT(MAX) = P1(Q1 ) * P2(Q2 ) * P3(Q3 ) * * Pn(Qn*)

where P1(N) = the probability of item i at the inventory level

of N, and

PT(M) = the probability of total inventory level at M,

while 0 < M < E Q.*(=MAX)

Then the mean and variance of the total inventory level are

Mean = E M * PT(M) = u )
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Variance = E ( Mean - M )
2

* PT(M) ( = a2 )

However, as the number of items increases, we can use the nor-

mal probability distribution to approximate the true probability

distribution of the random variable because of the Central Limit

Theorem. If we assume that there is no dependency among items in

the inventory system, the distribution of the total inventory level

will be approximate to normal distribution with mean and variance of

(11) and (12), respectively. The distribution of the total inventory

level is shown in Figure 2-3.

Mean 41-
Total

Standard deviation

Total

Total P E Q3 Q.

Figure 2-3 Distribution of total inventory level
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Total

a
Total

2

u1

61

+ 112 +

2 2
+ 0

2

p3

2
+ 0

3

...

+

p
n

+0
n
2

( )

(12)

We showed the relationship between the total inventory level

and the cost in Figure 1-1. As shown in that figure, there are costs

that depend on the total inventory level, i.e., cost for the construc-

tion and operation of the structure and a penalty cost.

Since the costs for the construction and operation of the structure

increase while the penalty cost decreases as the total inventory

level increases, there is a point that minimizes the total cost as

shown in Figure 2-3 ( point P ). We define that point as the opti-

mum level of constraint.

If we apply this property to the inventory system we may save

the cost of building a warehouse and/or operating the inventory

system at this optimum level of the constraint.

Let us now calculate the savings obtained from using this pro-

perty of total inventory level. The following assumptions are made;

(i) The system cost of building a warehouse is proportional

to the size of the warehouse. The relationship between

system cost and the size of the warehouse can be linear,

quadratic, or polynomial. It will be determined in each

case according to the items to be stocked and how the

warehouse would be constructed. However we assumed that

the relationship is linear in this paper for the sake of

simplicity. Therefore,the cost of building a warehouse

can be expressed as follows;

COST(F) = U * F + V ,
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where F is the size of the warehouse, U is the unit

building cost and V is a constant which represent

the fixed cost in building a warehouse regardless

of the size of the warehouse

(ii) There is a penalty cost, PC, to the amount exceeding the

size of warehouse. This cost may include transportation

cost, extra handling cost, rent for additional warehouse

space, etc.

(iii) We operate the system for a long period.

(iv) The probability exceeding the given constraint is small,

which is often the case in practical application.

Then the total savings(Y) at the present time will be:

Savings = The cost for maintaining the system's maximum level

- The cost for maintaining its optimum level

- The penalty cost for the amount exceeding its

optimal level

Y = COST(F ) - COST(F) - {PC * (P/A,r,n)

fF
F
MAX(x F) *P(x) dx ) (13)

where COST(F) = the cost of building a warehouse of size F

(P/A,r,n) = the present worth factor, while r is the interest

rate and n is the number of the annual interest

period

P(x) = the probability density function of the total

inventory level
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As we see in the above equation, the distribution of the total in-

ventory is actually a truncated distribution. The range does not

need to be greater tha., FmAx of the maximum inventory level.

Nevertheless, we can use the normal distribution because the pro-

bability that inventory level will be greater than FmAx is negligible.

And with this assumption we get the advantage of the simple calcula-

tions associated with the distribution.

To obtain the maximum savings, we differentiate equation (13)

with respect to F and set the result equal to zero. Then,

aY
F
MAX

= - U - PC * (P/A,r,n) * (x - F)P(x) dx
DF DF F

= - U - PC * (P/A,r,n) * { - H(F)} = 0 (14)

where H(F) = the complementary cumulative distribution of P(F).

Therefore,

H(F) = U (15)

PC * (P/A,r,n)

The right hand side of equation (15) must be restricted to the

interval [0, 1] , since H(F) is a probability. Therefore, equation

(15) is only valid for suitable parameters of a particular problem.

This restriction is necessary because of our previous assumption

that the probability of exceeding the given constraint is small.

In general, it is not possible to solve equation(15) for F in

closed form. For practical purposes, it can be solved iteratively

for the desired value of F. However equation (15) is too complex

to allow for generalized conclusions about the original problem.

It will be necessary to further assume a particular type of density

function in order to get specific results.



30

To obtain a manageable analysis, it is useful to further appro-

ximate the normal distribution tail with a simple exponential func-

tion. We will assume that:

H(x) = a Exp( -b( 2S-7,J3 ) ) (16)

The constants a and b can be chosen to give a good fit for any par-

ticular problem. For example, if H(x), the probability of total

inventory level exceeding the given constraint, should be relatively

small,then the values of a and b can be chosen to give a good fit

for the extreme right tail of the distribution. Figure 2-4 shows

the standard normal distribution H(x) for 1 < x < 3 and the cor-

responding fit from equation (16). In this case, the least square

estimates for a and b were a = 2.88, b = 2.49. The fit achieved

over this range was excellent,as shown in Figure 2-4. Then using

this exponential approximation,P(x) can be obtained as follows:

P(x) =
cya

b
Exp(-( -c-7U- ) b ) (17)

Now P(x) and H(x) both have a simple exponential form. From

equation (15), the optimal level of the constraint(Fopt
) can be

calculated as follows:

F
opt

1 U
=

+ 0 ( _ b * ln(
* PC * (P /A,r,n) )

(18)

Therefore, the optimum level of the constraint is determined by
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the ratio of the unit system cost and the penalty cost. Using the

above results, we can make a useful table for determining the

optimum level of the space constraint according to the ratio of the unit

system cost(U) and penalty cost(PC) under the given an interest rate

and the number of years, as shown in Table 2-2.
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Table 2-2. Optimum level of constraint

Ratio

(U/P0)

x value in optimum level(= u + x a )

(P/ ,8,20)

= 9.5826

(P/A,8,50)

= 12.0026

(P/A,10,20)

= 8.2215

(P/A,10,50)

= 9.5079

_ 0.1 2.2572 2.3476 2.1956 2.2540
0.25 1.8891 1.9796 1.8276 1.8860

_ 0.5 1.6108 1.7012 1.5493 1.6088
1.0 1,3324 1.4228 1.2709 1.3293
1.5 1.1696 1.2600 1.1081 1.1664
2.0 1.0540 1.1445 ,.9925 1.0509
2.5 .9644 1.0549 - .9613
3.0 - .9816 - -

Ratio

(P/A,12,20)

= 7.1318

(P/A,12,50)

=7.8239

(P/A,15,20)

= 5.8715

(P/A,15,50)

= 6.1768
0.1 2.1386 2.1757 2.0604 2.0807
0.25 1.7706 1.8077 1.6924 1.7127
0.5 1.4922 1.5294 1.4141 1.4343
1.0 1.2138 1.2510 1.1357 1.1560
1.5 1.0510 1.0862; .9729 .9931

2.0 .9355 .9726 - -

Example 2-2

Let us consider the same example that was shown in section 2-2.

The unit system cost to build one unit of warehouse is $450.00,and

the penalty cost is $300.00. The optimum ordering quantities in the

absence of the space constraint are

Q = 10 units Q
2

= 10 units Q
3

= 20 units
1
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Then the mean and variance of each item will be

"1
= = 5, 0

2 2
=

10
= 5,

3
=

20
- = 10 (units)

2

10

2 10
2

2 10
2

2 20
2

61 = = 8.33, 0
2

= = 8.33, 0
3

= = 33.33
12 12 12

Thus, the mean and variance of total inventory are

LI Total
= w

1

+ w
2

+ 0
3

= 20 units

0
Total

2

01

2

02

2

03

2
49.99

Since each item requires 50 square feet, the mean and standard

deviation of total inventory distribution will be

Mean = 20 units * 50 ft
2
/unit = 1,000 ft

2

Standard deviation = 7.071 units * 50 ft
2
/unit = 353.55 ft

2

Then the optimum level of warehouse space constraint will be

F
opt

= 1,000 ft
2
+ 353.55 ft

2
* 1.0862 = 1,384.03 ft

2
,

where the interest rate is 12% and the building is assumed

to last 50 years.
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This optimum level is less than the given constraint. So we

can operate the system without considering the constraint and save

the operating cost $221.90 per year which we had to pay under the

given constraint.

2.4 Summary

In this chapter, we have discussed the constant demand model

with a warehouse space constraint. As we saw in section 2-2, we us-

ually solve the problem of the constrainted case using the Lagrangian

multiplier technique. In such a case we got the optimum policy

which satisfied the given constraint all the time. But we had a

higher total cost than without an active constraint. However, as

shown in section 2-3, the probability that maximum or near maxi-

mum inventory level would happen was very small. Thus, if we con-

sider the probability distribution for the variation of total in-

ventory level, we could save either system cost or operating cost

by relaxing the given constraint.
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III. MULTI-ITEM INVENTORY CONTROL

3.1 Characteristics

The effective control of a multi-item inventory does not neces-

sarily require a procedure different from those in the single-item.

case. All items in the system can be considered individually, as-

suming that demand for each item is unaffected by demand for the others.

Each of the items can therefore be controlled separately. It is

only true when there are no interactions among the stocked items.

However, when organizations deal with many items, there are quite

often interactions among items.

In this paper, we consider such interactions and a policy

for controlling multiple items. Multiple-item ordering decision

models ("multi-item model," for short) are necessary because they

recognize interactions among the items involved.

As mentioned in the previous chapter, item interactions can

be considered to be of three type: (1) interactions resulting from

costs, (2) interactions resulting from resources, and (3) inter-

actions resulting from demands. An example of a cost interaction

is a reduction in ordering costs because of simultaneous ordering of

multiple items. Another example is a material cost savings as a

result of a quantity discount applied to the total dollar amount

purchased in one order.

Resource interaction occurs when stock items compete for

scarce resource. For example, the total size of an order may be

limited by the capacity of a transport vehicle. A similar limita-

tion may apply to the total quantities of materials stored (e.g.,

by warehouse capacity).

Demand interaction exists whenever the demand for one item

can be affected by the demand for one or more other items being

stocked.



36

In this paper, we consider cost interactions resulting from

multiple ordering and resource interaction (constraint case). We

will assume independence in demand from item to item.

In the following sections, we discuss the cost interaction

between items and the controlling policy for such a problem. In

general, we call a policy for ordering multiple interactive items

a coordinated replenishment policy. Among several types of such

policies, we discuss the (S, c, s) policy.

We talk briefly about the previous research in section 3-2.

the algorithm of Schaack and Silver (1972) is presented in section

3-3. They developed a procedure for selecting the control variables

of the (s, c, s) policy. The procedure, iterative in nature, is a

combination of mathematical optimization and simulation.

3.2 Previous Studies

At this point we need to mention a few of the previous inves-

tigations in this area. A number of authors have developed methods

of coordinating items for replenishment purposes.

Recognizing probabilistic demand, Balintfy (1964) was the first

to advocate the use of an (S, c, s) system. However, he did not

propose a practical means of obtaining the values of the control

variables. Other references relevant to this type of policy include

Silver (1965) and Curry (1970).

Ignall (1969) used Markov renewal programming to determine

an optimal joint policy for the two-item inventory system. His

results indicated that the (S, c, s) policy is not necessarily

optimal. However, the loss of "optimality" may be more than justi-

fied by the simplicity of the (S, c, s) policy when compared with

the supposed "optimal" policy.

Chern (1974) represented the multi-product inventory system

by a Markov process. She determined the can-order point level by
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balancing the reduced cost of time-weighted backorders with the extra

carrying cost. Her analysis involved certain approximations that

allowed determination of the steady state probabilities of the

associated Markov process. Furthermore, she used a fixed order

quantity, Q., for item j rather than a prescribed order-up-to level

S..

Silver (1974) presented an algorithm for selecting the control

variables for an (S, c, s) policy for items under unit-sized Poisson

demand and replenishment lead time greater than or equal to zero.

Thompstone and Silver (1975) demenstrated how control vari-

ables may be selected for the (S, c, s) policy when demand is com-

pound Poisson, and not restricted to unit sized transactions with

a lead time of negligible length.

Curry and Hartfiel (1975) proposed solving the problem of the

joint setup cost inventory with constrained warehouse space avail-

ability. They assumed that the storage space could be segmented

into fixed areas of equal size with the number of units which can be

stored in each area varying by product and that different products

could not share storage facility. Their solution method is an

iterative optimization-simulation procedure. They used dynamic

programming for optimizing the constraint on the allocation of

storage space and simulated the system for obtaining control vari-

ables.

A number of other references are relevant to the general pro-

blem area of the multi-item inventory system. Johnson (1967) pre-

sented a reordering policy for a multi-item inventory system with

periodic review. It consists of ordering an item i up to some

level S. if its stock level is within a reorder region. Veinott

(1965) considered a multi-product, dynamic, nonstationary inventory

problem in which the system is reviewed at the beginning of each of

a sequence of periods of equal length. He chose an ordering policy

that minimizes the expected discount costs over an infinite time

horizon.
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Ignall and Veinott (1969) studied certain inventory systems for

which they obtained conditions under which a myopic ordering policy

(i.e., a policy of minimizing the expected cost in the current period

alone) is optimal for a sequence of periods.

As Ignall has shown, the (S, c, s) policy does not necessarily

minimize the sum of replenishment, inventory carrying, and shortage

costs. Therefore, we may not need to calculate the exact optimal

control variables because the policy that would minimize these costs

would be considerably more complex than the (S, c, s) policy. If

one properly takes account of these costs, it is felt that the (S, c, s)

policy achieves a solution to the coordinated replenishment problem

which is close to the best attainable.

3.3 Schaack and Silver's Algorithm

In this section, we demonstrate the procedure for selecting

the control variables of the (S, c, s) coordinated ordering policy

as developed by Schaack and Silver (1972).

3.3.1 Assumption and notation

We consider the replenishment cost to consist of a fixed com-

ponent AF and a variable component AJ. depending on the item i.

The independent replenishment cost of item i is AI. = AF + AJ.1 ,

whereas the joint replenishment cost of both item i and j is AF +

AJ. + AJ..
1

We assume compound Poisson demand; i.e., the arrivals of trans-

actions are according to a Poisson process and the size of the

transactions satisfy some prescribed probability distribution. It

is also assumed that item i has a deterministic lead time L.. The
1

portion of the demand which is not satisfied directly out of stock

is completely backordered.

The notation used in the analytical description of the problem

is shown in Table 3-1.
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Table 3-1. Notation

AF : fixed component of the setup cost

AJ.
I

: variable component of the setup cost for item i

AI1.
:indeperldentsetupcostforitemi(AI.,-0

+ AJ.)
1

D. : expected demand for item i per period

m.
1

: mean transaction size for item i

G.
1 : standard deviation of the transaction size for item i

HI. : carrying cost for item i per piece per period

NII. : expected number of replenishment of item i where i is

ordered alone

NJN.
I

expected number of joint replenishment of item i not

triggered by i

NJT.
1

expected number of joint replenishments triggered by

item i during.the period

N. expected total number of replenishments of item i per

period (Ni = NIi + NJTi + NJNi)

R.
1

average remnant stock of item i just before ordering,

when item i is involved in a joint replenishment

triggered by some other item

C.
].

average remnant stock of item i when order is trigger-

ed by item i

EC. total expected cost for item i

TEC total expected cost for the system

L.
1

lead time of item i

71-.

1
desired service level of item i

Si order-up-to level for item i

c.
1

can-order level for item i

s.
1

must-order point for item i
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3.3.2 Total inventory cost equation

Under these assumptions and with this notation, the total re-

plenishment cost for the system for a unit time period is :

n

1 ( ) 11,3-( DUN. 4.)) (19)
1=1

Since the transactions are not assumed to be unit-sized,

each time item i triggers an order, its inventory level is at or

belows.and has an average value of O.. Then the following

equation must be satisfied:

D.
1
= (NI. + NJT.)(S. - 0.) + NJN1 .* (Si - R.) (20)

1 1

By setting P. = NJN. /N., i.e., the probability that replenishment

involving item i is the result of another item hitting its reorder

point,wecallexpressIUNiaminn.as follows:

NJN.
1

= P.D. / (S. - O. - P.(R.
1

- 0.) (21)
1 1 1 1 1

NI. + NJT. = (1 - P.)*D. / (S. - O. - P.(R. - O.))
1 1 1 1 1 1 1 1 1

Then the total replenishment cost is

(22)

n D.
1

* ( ( P.*AJ. ) + ( ( 1-P. )*AI. ) (23).z Si-0i-Pi(Ri-0i ) 1 2 2. 21=1
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If we make the approximation that the average duration of both

independent and joint replenishment cycles are the same, then the

carrying cost of the system for a unit time period is:

n S. + R. S. + 0.
( ( 1 1 ) (1 ( 1 1)

) - E.H.-
1 2

)
1 2 ' a a.

i=1

whereE.is the expected demand of item i over the lead time

1 1
D.L.

Thus, the total cost is as follows:

n n AI -D S. + 0.
a. a.

TEC=EEC.=E{(1-T) ( S. .-0-P.(R.-0.)

a_

2

i=1 1 i=1 1 1 1 1

Setting,

AJ.D. . .S + R
1 1 +

2 i/Pi ( S.1
1 1 1

-0.-P.(R.-0.)
1

- D.L.H. )
1 1 1

= Si - O. , p. = R. - O.

the total cost equation above can be formulated as follows:

(24)

(25)

(26)



n n AI.D. .H.
TEC = E EC. = E f (1-P.)*( E.-. 2i=1 i=1 1

AJ.D.
( p. ) H.1 1 1 1 1

) + 0.H.1 -Pip
3_

2 1 1

- D.L.H. }1 1 1
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(27)

However, backorder costs are not included in the above equa-

tion. Rather than explicitly costing backorders, we determine the

safety stock by service level consideration of the maximum proba-

bility of running out of stock per unit time period.

Therefore, the problem is now to minimize the total cost with

respect to S, c, and s, satisfying the service constraint.

However, it is impossible to get the optimal value of the

control variables analytically because we do not know the functional

relationships of the variables involved in the total cost equation,

i.e., the ff.'s, is, p. Is, and O. is.
1 1 1

The solution method is to update for each S, c, and s, using

simulation. That is, for the given value of S, c, and s, we observe

the behavior of the system through simulation and then make appro-

priate changes in the values of the control variables according to

observations.

3.3.3 Updating the parameters

We assume that the system is in a given state of (Si, c., si ),

i=192,,n,ahcIthatthel).and R. are known. The following sec-
t 1

tion shows how separate optimizations on Si, ci, and si are reali-

zed.
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i) Updating si

Using the normal approximation to the compound Poisson over

the lead time demand, we come up with the following result.

An approximation of the probability of not running out of

item i before the end of the lead time when item i has triggered

the order is

and,

01. - u4
J-

Vi

. = (

where, ui = DiLi , v m.

D.L.
1 3.

(z) =
1 e-t

2
/2

dt

2 2
)

,1/2
( 0. na. )

1

This is an approximation since Oi is the average value of the

available stock before ordering.

Similarily an approximation of the probability of not running

out of item i when the order has been triggered by some other item

is

R. -

( 1
/11

V.
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Then the probability of not running out of stock per unit time

period is

(NI.+NJT.
0. - W. 1 1

)
R. - u. NJN.

{ ( 1
v.
1 » * { m ( )

v. (28)
1

If the allowed probability of running out of stock is 7i, the

above equation must be greater than or equal to ( 1 - 7i ).

0.-u. (NI.+NJT.) R. -p. NJN.
( 1 1 1 1 1 1) 1

vi /
1

Using equation (21), (22), and (26), we can reformulate the

last equation as follow t

0.-u. (1-P.) 0.+p.-u. P.
, 1 1 \ 1 * 1 1 1 } 1

/

( E. - P.p. )/ D.
1 1 1

> ( 1 - 71 . ) (30)

ThenweselectthesmallestO.that satisfies the inequality. The

valueofs.ie given by

1

1 1

a
2

+ m.
2

,

m.
s. = 0. +

Si where Si 2
l

1 )

(31)
,

1

if Si.
1
>> m., under Karlin's assumption (1958)
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ii) Updating Si

Differenciating the equation (27) with respect to and sett-

ing the result equal to zero gives

H. ( (1-P.)*AI. + P.*AJ. ) * D.
1 1 1 1 1 1

2
( . - P P. )

2

1 i 1

Solving for Ei gives

= P.p.
1 1

From Equation (26)

Si = E. + 0.1 1

iii) Updating ci

0

2D.
1

H.
1

* ( ( 1-P.1 )*AI.
1
+ P.*AJ. ) (32)

1 1

(33)

Differentiating equation (27) with respect to ci and setting

the result equal to zero lead to

H. D.
(STEC 1 1

+
2 "111;*(1-Pi) + A"p* ) }Sc. 1 1 1

1 ( Ei-PiPi )

6(P.1p.) SP. AF * D..

*1 1
* Sc. dc. C.-P.P.

1 1 1 1



By using equation (32), we can reduce this equation to

STEC
6(P.1 p.1 ) 6P. AF * D.

1
- H

i
*

Sc.
*

Sc. Sc.
1 1 1 PiPi

Then, the optimal value of ci must satisfy

STEC
6c.

1

= 0

(34)

Since we do not know the functional relationships between Pi,

p1 .,andc.1 ,we cannot obtain a closed-form solution for the opti-

mal c..Lasteadviefinditbymakingsmallchangesinc.until the
1 1

derivative approaches zero. So,if (STEC/Sci > 0, i.e., TEC increa-

ses
1 1 1

3.3.4 Iteration method

We start the algorithm with the following initial values

i) s. = 0i0 + Si, where 0. 0
is the safety stock of item

i in an independent system, in which case, using equ-

stionMwithip.1 .0, it satisfies the inequality

u
0i, - P.1 ) 1

D./E0Q.
1 ,

v.
1

ii) Si = 010 + E0Qi

iii) ci = Oio + ( E0Qi/10 )

1 - TT.

46
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After each complete updating of all Si's, cits, and sits, a

simulation is done in order to find the corresponding values of the

P.1 IsancIP-1 Isrlecessaryfortherlextupdating.Thevalueofc-is

corrected at each iteration by an amount of STEPi. If the value

ofSTEP.1 is too large, the approximations in equation (34)

SP. AP.
1 - 1

6c. Ac.
1 1

and
6(Pipi) A(Pipi)

Lc. Lc.
1 1

are no longer valid. If STEPi is too small, the algorithm will

require too many iterations to reach the optimal region. The

startingvalues proven a reasonable

balance in several numerical examples. In order to obtain the

convergence of the values of ci, we cut the value of STEPi by two

each time TEC increases after having first decreased. More de-

tails are given in the flowchart of Figure 3-1.

For the simulation language, we used FORTRAN, a general

purpose language, rather than a simulation language such as GPSS

or GASP. Some advantages of FORTRAN simulation are mentioned by

Law and Kelton (1982). A flowchart and a simulation program

listing are presented in Appendices II and III.

3.3.5 Cost savings

One important practical point to know before introducing the

(S, c, s) policy in a particular context is whether or not the

savings accomplished by the change will offset the cost of imple-

mentation. This section provides an approximation of the cost sav-

ings realized by a coordinated ordering over the continuous review

independent ordering policy and the joint ordering policy.
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Initial conditions

0. with P. = 0
1

= EO.
Qi

s. = O. + .

c = STEP. + 0.
2. 1

S. = E. + 0.
1 1 1

Simulation

Get new P1 ., R.1 , and

p. = R. - 0.
1 1 1

TEC

* *

Calculate new 0.,
1 1

STEP., s., c., and Si
1 1 1 1

Simulation

Get P., R., and p.

Figure 3-1 Flowchart
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Figure 3-1 Flowchart

( continued )
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As mentioned in Chapter I, under the independent ordering policy,

each item is ordered according to its own single-item policy. Under

the joint ordering policy, whenever any item is ordered, every item

for which there has been any demand since the previous order is also

ordered up to a specified inventory level. The relevant costs of

each policy are expressed as TECI and TECJ, respectively. Then the

savings are given by the expression ( TECI - TEC ) / TECI and ( TECJ

- TEC ) / TECJ, where these values of total costs are calculated

using simulation.

In the next example, we demonstrate the procedure for getting

optimum control variables of the (S, c, s) policy and compare it with

the joint ordering policy and the independent ordering policy.

Example 3-1

The example deals with a 30-item dependent system. The input

data are given in Appendices 4.1 and 4.2. The input data consist

of the mean interdemand time, required floor space, carrying cost,

setup cost, lead time, and number of transactions. The data also

show the transaction size and their probabilities.

The simulation results after each iteration are shown in Appen-

dix 4.3, and the results of independent ordering and the joint order-

ing policy are shown in Appendix 4.4. The summary for the simulation

are given in Table 3-2.

We can see the considerable cost savings of coordinated ordering

policy over the independent ordering policy and the joint ordering

policy. The simulation results for the independent ordering policy

and the joint ordering policy show the total cost of $5,734.89 and

$5,E58.00, respectively. The cost obtained by the coordinated

ordering policy after eight iterations is $5,133.88. This result

shows a cost savings of 10.5 percent over the independent ordering

policy and 12.4 percent over the joint ordering policy.
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Table 3-2 Summary of simulation results

Iteration Simulation cost

Holding Ordering

Calculated cost

Holding Ordering

1 5382.61 1120.35 5062.83 1239.60

6502.51 6302.43

2 4712.35 899.25 4365.44 985.35

5611.60 5350.79

3 4086.23 1195.90 3823.76 1259.59

5282.13 5083.75

4 4071.79 1159.95 3835.25 1229.96

5231.74 5065.21

5 4031.02 1162.45 3842.00 1188.32

5193.47 5030.32

6 4002.68 1143.40 3766.64 1177.35

5146.08 4943.99

7 3887.91 1250.80 3732.27 1296.38

5138.71 5028.65

8 3849.28 1284.60 3668.18 1365.39

5133.88 5033.57 .

Independent 3242.89 2492.00

Ordering 5734.89

Joint 4057.45 1800.55

Ordering 5858.00
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IV. STOCHASTIC MODEL WITH CONSTRAINTS

4.1 Demand Characteristics

As discussed in the introduction, the model differs from actual

application in that demand is not known with certainty. However,

we assumed that the demand followed some identifiable probabilistic

property and that we could determine the appropriate probability

distribution based on collected data.

In developing realistic inventory control policies, one can

use a probabilistic description of demand. A variety of statistical

distributions is available to describe the demand distribution.

For example, assumptions on the unit-sized transaction or normally

distributed demand are used in most usable inventory control. The

Poisson distribution also generally seems appropriate, but frequently

provides a poor fit to the data, owing to having a coefficient of

variation significantly greater than a Poisson distribution of

appropriate mean.

When the demand pattern cannot be fit by the normal distribu-

tion or Poisson distribution, it is useful to view the demand pat-

tern in a time period as having two components :

i) the number of transactions during the period and

ii) the magnitudes of the individual transactions.

Each component may have its own probability distribution. Empiri-

cal evidence suggests the pattern of arrival of transactions can

be adequately represented by a Poisson process:

x

P

,

( ) u exp( - At )

x )
x

(
0

0

t > 0, 2,x = 0, 1 2 . .

where P
x
( x

0
) is the probability that there are x0 arrivals
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in the time t and A is the expected number of arrivals per

unit time period

If arrivals of transactions are thus described and the trans-

action sizes have some specified probability mass function(PMF),

the total demand in a time period is described by a compound Pois-

son PMF. The probability mass function of transaction sizes for

such an item is illustrated in Figure 4-1. We shall treat the case

of a general distribution of transaction sizes, letting

P.( t
0

) = the probability that the transaction is of magnitude

t
0'

t
0

1,= 1 2, ... t
max

, where t
max

is the larg-

est transaction size of item i

Pi(to)

1 2 3 4 5 ... tmax

Figure 4-1 Probability mass function of transaction size
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The variance of the compound Poisson distribution equals or

exceeds its mean, a characteristics often exhibited by demand data.

Empirically, this compound Poisson distribution has been shown to

adequately fit many observed demand distributions as discussed by

Silver (1970).

4.2 Inventory Level Distribution Assuming

Compound Poisson Demand

In Chapter II, we showed the inventory distribution of each item

under constant demand, assuming that there was no dependency between

items in ordering. The inventory level of each item was a uniform

distribution and in the multi-item case with constant demands, the

total inventory level approximated the normal distribution as the

number of items increased.

However, if there is dependency between items in ordering and

if the demand is not constant, the inventory level distribution of

each item will not be uniform, and the mean and variance of that dis-

tribution will differ from the constant demand case.

In this section we demonstrate how the mean and variance of the

inventory level distribution may be calculated for the (S, c, s)

policy when demand is compound Poisson i.e., not restricted to unit-

sized transactions but the lead time is of negligible length.

Let us consider a single-item system. The problem consists

of a single item faced with Poisson opportunities of rate 11 to re-

plenish at reduced cost. Opportunities may be viewed as being

caused by another item triggering a replenishment and the rate w

is effectively the expected number of orders per year triggered

by all other items in the family.

In the demand process, the time until the next transaction

does not depend on the current level of the available stock. The
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probability distribution of the available stock immediately after

a transaction is therefore equivalent to the probability distribu-

tion at a random point in time. The available inventory starts

a cycle at the order-up-to level S, and as transactions occur, it

moves in jumps downward until a replenishment is made. Then the

available inventory instantaneously jumps back to S, starting a

new cycle.

Since opportunities for reduced replenishment cost and demand

transaction occur according to Poisson process with rate u and

A, respectively, the probability at any random point in time that

the next event is a demand transaction is p = A / + u),and the

probability that the next event is a replenishment is 1 - p =

/ ( A + u ). When the available stock is in the range c+1, c+2,

..., S-1, S, all opportunities for reduced replenishment cost will

be ignored. Thus the following equations govern probabilities of

various inventory levels immediately after a transaction.

p.1 (s-1) = P.1 (S)P.1 (1)

P.1 (S-2) = P.1 (S)P.1 (2) + Pi(S-1)P.(1)
1

Pi(S-3) = Pi(S)Pi(3) +
Pi(S-1)pi(2) + pi(s-2)pi(1)

Pi(c+1) = Pi(S)Pi(S-c-1) + Pi(S-1)Pi(S-c-2) + + Pi(c+2)Pi(1)

Pi(c) = Pi(S)Pi(S-c) Pi(S-1)Pi(S-c-1" Pi(c+1)P. (1)
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Pi(c-1) = Pi(S)Pi(S-c+1) + Pi(S-1)Pi(S-c) + + Pi(c=1)Pi(2)

+ ( Pi(c)P (1) ) P

Pi(c-2) = Pi(S)Pi(S-c+2) + Pi(S-1)Pi(S-c+1) + + Pi(c+1)*

Pi(3) + ( Pi(c)Pi(2) + Pi(c-1)Pi(1) ) p

Pi(s+1) = Pi(S)Pi(S-s-1) + Pi(S-1)Pi(S-s-2) + + Pi(c+1)*

P.1 (c-s) + ( P.(c)P.(c-s-1) + P.1 (c-1)Pi(c-s-2) +
1 1

... + P.1 (S+2)Pi(1) ) P

The probability distribution of the available stock immediate-

ly after a transaction is not equivalent to the probability dis-

tribution at a random point in time. For inventory levels c+1, c+2,

S, the expected time until the next event is the expected time until

the next demand transaction; that is 1/X. For levels at or below

c, the expected time until the next event is the expected time until

either the next demand transaction or the next opportunity to reple-

nish at a reduced setup cost, that is,1/( A + u ). To calculate

E(I), the mean of the available stock, we first weigh each level by

the expected duration, add,and normalize:



Then,

P.(1
0
)*

3.

P.,(I )
3. 0

I P.

I
o
=s+1

(I ) + I p.(1 ) 1

I
o
=c+1

0 A 1 0 A +

where, I
0

= s+1, s+2,

1

+u

1

I P.(' ) + I P.(' )
+1 0 X 1 0 A u

I
0
=c+1 I

0
=s+1

where, I
0

= s+1, s+2,

S

E(I) = E PiT(I0) * I0
I
0
=s+1

S

Var(I) = E P.I(I
0

) * (I
o

- E(I) )

2

I
o
=s+1
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Once we calculate the probability mass function of the avail-

able stock, we can calculate the expected mean inventory level and

variance, Thus, it is possible to calculate the mean and variance

of each item given (S, c, s) values and a known Poisson rate of

opportunities to replenishment at a reduced cost. However, it is

generally computationally intractable to calculate the mean and

variance of all items for compound Poisson demand model.
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4.3 Optimum Level of Constraint

In the previous sections, we showed the appropriateness of the

compound Poisson distribution to the stochastic demand and considered

the method to obtain the mean and variance of the inventory level

under the compound Poisson demand distribution.

To obtain an optimal level of constraint, e.g., the optimum

size of the warehouse, we must determine the distribution of all

items. However, if we know the optimal control variables of (S, c, s)

and the opportunity rate of replenishing at a reduced cost, we may

easily compute this distribution.

However, since we are using the simulation method to obtain

the optimal control variables and the opportunity rate, we may

also determine the distribution of the total inventory level, the

mean, and the variance of that distribution as by-products of

simulation. The algorithm of the simulation is presented in Appendix

As in Chapter II, the distribution of the total inventory level

of all items will be approximately normal with the mean and variance

which are obtained by simulation as the number of items increases.

With the given data of demands, lead times, holding and replenish-

ment costs for each item, system cost to carry inventories, and

penalty cost, we can determine the optimal control policy and

the level of constraint. The procedure is as follows:

i) Solve the problem ignoring the constraint; i.e., calculate

the optimal control variables of (S, c, s) which minimize

the operating cost of holding and replenishing items.

ii) Under the obtained policy, calculate the optimum level of

constraint using equations (14) and (15) in Chapter II.

iii) If the given constraint level is less than the above

optimum level, reduce the mean total inventory level by

the amount of difference between the optimum level of
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the previous distribution and the given constraint to

get the maximum allowable level of constraint ( FAX in

Figure 4-2). Otherwise, the calculated level is optimal.

In such a case, the constraint is inactive.

iv) Set this maximum allowable level of constraint (FAX) as

the new constraint, and calculate new optimum control

variables. The individual values of s and c will also

be changed to keep the same customer service level as

the previous one. Since the value of S should be smaller

to satisfy the given constraint, the reorder cycle will

be shorter than the unconstraint case. There will be

more reorder cycle periods per year. Accordingly, the

customer service level will be less with the same values

as s's and c's of the unconstrained case. Therefore, we

have to increase the levels of s and c to meet the same

customer service level.

1)

F
1

FO
0

op
F
MAX opt

F
MAX

constraint

Figure 4-2 Distribution of total inventory level
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graph (1) - distribution of total inventory level without

constraint

graph (2) - moved distribution by the amount of ( F
opt

F
constraint

The superscripts, 0, 1, and ..., mean the order of simula-

tion, and F° , F
opt

, and ..., are the optimum levels of
opt

constraint after each simulation..

v) Simulate the system using new values of control variables,

and determine the distribution of the total inventory

level, mean and variance of this distribution.

vi) Calculate the optimum level of constraint. If this level

is the same as the given constraint level, or if the

difference between these two levels is small enough to

be considered negligible, the obtained control variables

and constraint level are optimal.

vii) If not, move the distribution to the left (if the given

constraint is still smaller than the optimum level) or

the right (if greater) and repeat from step (iii) to step

(vi) until the distribution reaches the optimal conditions.

Example 4-1

Let us consider the same example as that in Chapter III. The

input data are the same as in Example 3-1. We considered the simu-

lation results in Table 3-2 after eight iterations as the optimum

result. During the simulation, we reviewed the total inventory level

every day for ten years and counted the number of days that how many

days occupied each level of warehouse space. The results are shown

in Table 4-1.

As shown in Table 4-1, the maximum required level is 137 units

(one unit is 30 square feet). The mean and standard deviation of

the total inventory level obtained by simulation are 92.025 and

6.392 units, respectively.
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Table 4-1 Inventory level distribution

*
Level count probability Level count probability

71 2 .001 92 216 .059

72 2 .001 93 204 .056

73 3 .001 94 200 .055

74 3 .001 95 186 .051

75 9 .002 96 157 .043

76 9 .002 97 146 .040

77 17 .005 98 143 .039

78 17 .005 99 121 .033

79 26 .007 100 132 .036

80 26 .007 101 90 .025

81 58 .016 102 71 .019

82 77 .021 103 39 .011

83 77 .021 104 40 .011

84 83 .023 105 32 .009

85 100 .027 106 29 .008

86 155 .042 107 25 .007

87 190 .052 108 11 .003

88 203 .056 109 8 .002

89 236 .065 110 5 .001

90 238 .065 111 1 .000

91 262 .072

30

Maximum required level = E S(i) * RFS(i) = 137 units
i=1

where RFS(i) means the required floor space for item i and

S(i) means order-up-to level for item i.

Mean inventory level = 92.025 units

Standard deviation = 6.392 units

* one unit = 30 square feet
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We will show the cost savings achieved by operating the system

at its optimum level when the system unit cost is $150.00 and the

penalty costs are $50.00, $75.00,and $150.00.

The optimum levels of constraint will be

F
opt

(PC=$50.00) = 92.025 + 6.329 * (.9816) = 98.30 units

F
opt

(PC=$75.00) = 92.025 + 6.329 * (1.1445) = 99.34 units

F
opt

(PC=$150.00) = 92.025+ 6.329 * (1.A228) = 101.12 units ,

where the values of .9816, 1.1445, and 1.4228 are those of

(P/A,i,n) in Table 2-1 when the ratio of unit system cost

and penalty cost is 3.0,2.0 and 1.0,respectively.

Then the cost savings in system cost using same operating policy

are given as follows .

First, if we operate the inventory system at its maximum level,

the system cost will be

System cost(at maximum level of 137 units)

= 137 units * $150.00 = $20,550.00

The system costs at the optimum level when the ratios are 3.0,

2.0,and 1.0 are

System cost(at optimum level when ratio=3.0)

= 99 units * $150.00 + 13.534 units * $50.00 * (.9816)

= $15,514.25

System cost(at optimum level when ratio=2.0)

= 100 units * $150.00 + 9.96 units * $75.00 * (1.1445)

= $15,854.94
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System cost (at optimum level when ratio = 1.0 )

= 102 units * $150.00 + 7.44 units * $150.00 * (1.4228)

= $16,887.84

Therefore, the savings in the system csot are 24.5 percent, 22.8

percent, and 17.8 percent when the ratios of the unit system cost and

the penalty cost are 3.0, 2.0, and 1.0, respectively. We can see

from this example that the savings are directly dependent upon the

size of the ratio.

In the above example, we showed the savings in the system cost

when there are no constraints. However, if the constraints of the

warehouse space are given and are less than the obtained optimum

level of constraint, we have to change the operating policy of the

control variables, i.e., S, c, and s. We will illustrate such a case

in Example 4-2.

Example 4-2

We consider the same example in Example except that the demand

rate is increased by a factor of four. The other input data remain

the same. The ratio of unit system cost and penalty cost is 2.0,

and the value of (P/A,r,n) is 1.1445 with a given constraint of ware-

house space of 165 units. The simulation results after ten iterations

are shown in Table 4-2. The maximum required level of warehouse

space is 326 units, and the mean and standard deviation of the total

inventory level are 151.379 and 20.024 units, respectively. The

optimum level of the constraint is obtained as follows :

F
opt

= 151.379 + 20.024 * ( 1.1445 ) = 174.296 units

Since the given constraint is smaller than the optimum level,

we have to change the operating policy of S, c, and s. The value

of S can be obtained using the Lagrangian multiplier technique, as

shown in Chapter II, to satisfy the given constraint. The values of
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s.1 andc.1 are adjusted to keep the same customer service level.

Then the simulation results with the constraint case are shown in

Table 4-3.

Table 4-2 Simulation result without constraint

Item

Holding Ordering

s c S cost cost Item s c S

Holding Ordering

cost cost

1 27 37 66 112.88 43.33 16 42 58 68 127.72 65.33

2 24 32 44 144.31 68.33 17 20 26 36 132.89 98.67

3 40 51 58 253.67 121.33 18 28 35 41 231.02 112.00

4 46 53 57 145.80 55.00 19 11 17 21 112.17 69.33

5 27 40 52 219.97 121.67 20 41 52 69 535.74 112.00

6 31 45 56 108.57 52.00 21 25 36 45 423.16 120.00

7 24 35 56 30.89 15.83 22 24 32 45 406.23 121.67

8 63 81 103 118.32 94.67 23 123 140 160 937.47 70.00

9 60 71 87 262.35 98.17 24 93 100 111 145.97 90.33

10 12 17 25 197.29 52.00 25 78 95 107 222.49 91.50

11 73 87 .107 469.17 133.33 26 30 48 65 65.41 30.00

12 58 78 90 516.63 130.00 27 21 28 38 249.60 85.67

13 76 85 101 209.37 77.83 28 23 40 44 65.91 41.00

14 77 77 81 85.86 42.83 29 35 52 60 71.94 76.33

15 41 55 62 85.03 60.07 30 21 30 45 211.86 60.00

Sub-total

Total cost

6899.79 2410.84

9310.63

30

Maximum required level = E S(i) *RFS (i) = 326 units
i=1

Mean inventory level = 151.379 units

Standard deviation = 20.024 units

* one unit = 30 square feet
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Then the optimum level with constraint is obtained as follows ;

F
opt

= 135.839 + 24.717 * ( 1.1445 ) = 164.128 units

Table 4-3 Simulation results with constraint

Item

Item

s c S Holding Ordering

s c S cost cost Item c S

Holding Ordering

cost cost

1 50 56 62 120.46 146.80 16 60 62 64 128.07 99.20

2 38 40 42 126.34 149.40 17 31 33 34 126.63 128.80

3 52 54 55 202.49 86.40 18 43 45 /,7 253.20 128.40,

4 50 54 56 102.32 82.00 19 19 22 24 131.53 116.40

5 44 46 48 187.79 224.00 20 58 61 63 449.54 192.80

6 47 50 53 91.36 146.40 21 38 40 42 353.25 204.00

7 47 50 53 29.14 51.50 22 37 39 42 390.97 210.00

8 89 95 97 99.05 91.50 23 145 150 152 799.00 73.00

9 78 80 82 249.63 94.30 24 101 103 106 102.56 23.20

10 19 21 23 185.62 152.60 25 95 99 101 213.67 95.40

11 95 97 101 376.50 146.40 26 65 69 72 75.33 89.60

12 80 82 84 433.58 145.00 27 31 33 36 226.98 167.00

13 91 93 95 204.45 61.40 28 42 45 47 65.65 47.80,

14 80 82 84 99.61 45.30 29 50 54 56 60.77 37.90

15 55 57 59 83.22 76.90 30 29 35 40 191.29 130.40

Sub-total

Total cost

6160.01 3443.80

9603.81

30
Maximum required level = E S(i) * RFS(i) = 312 units

1=1

Mean inventory level = 135.830 units

Standard deviation = 24.717 units
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Since this optimum value satisfies the given constraint, the F
opt

is the optimum level of constraint. As we can see in Table 4-3, the

cost in the presence of the constraint is thus $9603.81 per year

higher than in the absence of such a constraint.

4.4 Cost Savings Under Different

Demand Process

It is often convenient and economical to treat different items

separately depending on the nature of the cost and stochastic pro-

cesses involved. It is usually a poor policy to treat broad

categories of items in the same way. However, it can become im-

possibly expensive if one attempts to develop and use sophisticated

operating doctrines on each of thousands or more items. The answer

to this problem lies in dividing the items up into a number of

groups, with items in the different groups being treated differently.

Since the distribution of the total inventory level which affects

the optimum level of constraint depends on the demand processes,

we nay break down the items into several categories, usually three.

Iten in different categories are treated differently. In this paper,

the items in the three different categories are referred to as high,

medium, and low-demand items.

We will illustrate the cost savings achieved in each category

in Example 4-3.

Example 4-3

We will consider the same example as that in Chapter IV. The

input data given in Example 4-1 are categorized as low-demand items.

The data given in Example 4-2, in which we increased the demand

rates higher than those in Example 4-1, are categorized into high-

demand items. And last, the data which has a demand rate twice

that in Example 4-1 are categorized as medium-demand items.
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The simulation results after eight iterations for the low-

demand items and ten iterations for the medium and high-demand

items are shown in Table 4-4.

If the unit system cost and the penalty cost are $150.00 and

$75.00, respectively, and the value of (P/A,r,n) is 1.1445, then

the cost savings achieved in the system can be calculated as follows.

First, if we operate the inventory system at its maximum level,

the required system cost will be

System cost(low demanded item) = 137 units * $150.00 = $20,550.00

System cost(medium demanded item) = 211 units * $150.00

= $31,650.00

System cost(high demanded item) = 326 units * $150.00

= $48,900.00

And the optimum level of constraint at each category will be

F
opt

(low-demand items ) = 92.025 units + 6.329 units * 1.1445

= 99.34 units

F
opt (medium-demand items ) = 119.593 units + 11.461 units * 1.1445

= 132.71 units

F
opt

(high4emand items ) = 151.379 units + 20.024 units * 1.1445

= 174.30 units
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Table 4-4 Simulation results

Category Total cost

Holdin Orderin

Maximum required

inventor level

Mean Standard

deviation

Low deman- 3849.28

ded item

1284.60

5133.88

137 92.025 6.392

Medium 5275.43 1691.60 211 119.593 11.461

demanded 6967.03

High 6899.79 2410.63 326 151.379 20.024

demanded 9310.42

Then the system costs at the optimum level are

System cost
opt

(low-demand items )

= 100 units * $150.00 + 9.96 units * $75.00 * 1.1445 = $15,854.94

System cost
opt

(medium-demand items )

= 133 units * $150.00 + 14.35 units * $75.00 * 1.1445 = $21,181.77

System cost
opt

(high-demand items )

= 175 units * $150.00 + 15.96 units * $75.00 * 1.1445 = $27,619.97

Therefore, the cost savings achieved in each category are 22.85

percent, 33.07 percent, and 43.52 percent respectively. We can see

in this example that we can get more savings as the demand increases.



69

4.5 Summary

In this chapter, we have developed an algorithm to determine

the optimum level of constraint, using the probability distribution

of the total inventory level. As shown in Table 4-1, the probability

that maximum or near maximum inventory levels would occur was very

small. Using this property, we found the optimum level of constraint

and showed the savings in the system cost. The cost savings may

vary in each case, depending on the unit system cost, the penalty

cost, and the distribution of the total inventory level which varied

according to the demand process.

As shown in Examples 4-1 and 4-3, it is evident that more cost

savings are incurred in the system cost as the ratio of the unit

system cost and the penalty cost and demand increase.
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V. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The objective of this thesis is to develop a method to minimize

the total inventory cost in a multi-item inventory system with con-

straint by determining the optimum level of constrain-, and operating

policies.

Many authors have studied methods of obtaining the minimum

operating cost of multi-item inventory systems. Among them were

Schaack and Silver (1972), whose algorithm we use to obtain the

minimum operating cost. However, if there is a constraint in the

system, we generally apply either the Lagrangian multiplier tech-

nique, as in Chapter II, or the exchange curve to satisfy the

given constraint.

If we use the Lagrangian multiplier technique, we can obtain

the solution that always satisfies the given constraint, but we

must pay higher operating costs. And with the exchange curve, we

cannot get the exact solution. Instead we may get the relative

comparative solution only enough to know that we may improve the

present operating system if the present operating system is not

optimal.

However, if the constraint-such as warehouse space limitation

and maximum investment in inventory-depend on the total inventory

level, we can get the exact optimum level of the constraint while

operating the system at the minimum operating cost. That is, since

the variation of the total inventory level follows the normal pro-

bability distribution as the number of items increases in the sys-

tem, we can obtain the optimum level of constraint using a

probabilistic property such as that shown in Chapter IV.

In Chapter II, we showed how to calculate the optimum level

of constraint when demand was constant. In that case, we found

that the unit system cost and the penalty cost were important
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factors. The optimum level was determined by the ratio of unit sys-

tem cost and the penalty cost under the given interest rate and

period of time. We have shown the relationship between the unit

system cost and the penalty cost in Table 2-2.

In Chapter III, the coordinated ordering policy is used to

study the multi-item dependent inventory system when demand is

compound Poisson. Comparisions are given involving simulation

results for the coordinated ordering policy, the joint ordering

policy, and the independent ordering policy. The cost savings

of the coordinated ordering policy with respect to the joint order-

ing policy and the independent ordering policy were 12.4 and 10.5

percent, respectively.

In Chapter IV, the extension of the multi-item dependent

inventory system to a constrained warehouse space problem is

handled using the iterative optimization-simulation technique.

In the mathematical model of examples 4-1 and 4-3, we show

that we can get more savings in the system cost as the ratio of

the unit system cost and the penalty cost increases.

Also, since the demand process affects the total inventory

level, we consider the inventory system according to the demand

process. We break down the items into three categories ;i.e.,

low-, medium-, and high-demand items, and calculate the cost

savings achieved in each category. The brief result is shown in

Table 5-1.

Table 5-1. Cost savings

ratio 1.0 2.0 3.0

cost saving 17.8% 22.8% 24.5%

demand rate low medium high

cost saving 22.85% 33.07% 43.52%
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Therefore, we can see that the cost savings advantage is

increasingly better as the ratio of the unit system cost and the

penalty cost, and demand increase.

5.2 Recommendations

Three specific fields for future research are

(1) Implementing a continuous review method is more expensive

than a periodic ordering one because every transaction must

be recorded. Even though such a system control cost is not

considered in this paper, obtaining the optimal control

variables using periodic ordering policy when inventory

problem is constrained are desired. Because of the comp-

lexity, little work has been published in this area.

(2) In Chapter II, we assumed that the system cost of building

a warehouse is linear to the size of warehouse for the sake

of simplicity. However it is desired to use more exact

system cost function for that relationship between the sys-

tem cost and the size of a warehouse.

(3) In this paper, we considered the operating cost and the

system cost of inventory system separately. That is, we

first obtained the optimal control variables which gave

the minimum operating cost to the inventory system. And

next, we calculated the optimum level. of the constraint.

However it is also desired to consider an ordering policy

in which an order is triggered for a group of items as soon

as the total inventory level falls below a certain level.

In such a case, we may obtain the optimal control variables

in the inventory system and the optimum level of the

constraint simultaneously.
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Appendix I. Glossary of symbols used in

simulation program

AMOUNT = Ordering quantity

BIGS = Order-up-to level

INITIL = Initial inventory level

INVLEV = Inventory level

NEVNTS = Number of event types for model

NEXT = Event type of next event to occur

NYEARS = Number of years for simulation

SMALLS = Must-order point

NITEMS = Number of items in the inventory system

NVALUE = Number of demand sizes

CAN = Coordinated joint order point

AMINUS = Area under inventory level when inventory level is

less than zero

APLUS = Area under inventory level when inventory level is

greater than zero

H = Average holding cost

RFS = Required floor space

PI = Penalty cost

TIME = Simulation clock

TLEVNT = Time of last event which changed the inventory level

MDEMDT = Mean interdemanded time

TNE(I) = Time of occurrence of event type I

TSLE = Time -ince last event

.TOTHLD = Total inventory holding cost

TOTORD = Total ordering cost

TOTCOST= Total operating cost

FIXSET = Setup cost of placing an order

VARSET = Variable ordering cost depending on the number of item

LEADT = Lead time
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Appendix II. Flow chart for the simulation program

Start

Read Input data

Determine the next event

( Subroutine TIMING )

Order

arrival

(Subroutine

ORDARV)

Demand

(Sub-

routine

DEMAND)

If simulation is

done, print the

output and calcu-

late new variables

(Subroutine REPORT)

V

Check the

inventory

level

(Subroutine

REVIEW)

Stop
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( Subroutine TIMING

Determine the next item and

its event

Set the time to that event

( Return )

(Subroutine ORDARV )

Update areas under inventory

level curve

V
Increment the inventory level

by the amount ordered

V
Set the time of the next order

arrival to infinity

V
Return :)
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Subroutine DEMAND )

Update areas under inventory level

curve

V
Determine the demand size for this

demand

V
Decrement the inventory level by

this demand size

Is inventory level less

than the must-order point?

Yes

Place an order(Subroutine EVALU8)

Schedule the next demand event

( Return )
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Subroutine EVALU8

Determine the order amount

Are the inventory levels of

the other items less than

Can-order point ?

V
Place an order and determine the

order amount

Gather statistics on ordering

cost

Return 2

Subroutine REVIEW

Calculate the total inventory

level each day
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Gather statistics on the probability

of inventory level

Set the time to the next day

(Subroutine REPORT )

Calculate the total average holding

cost and ordering cost

Calculate the mean and standard devia-

tion of total inventory level

Calculate the total cost using the

equation in Chapter III

Calculate the new control variables
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Appendix III. Simulaiton Program

PROGRAM INVENT(INPUT,OUTPUT)

PARAMETER (NUM=30)
INTEGER ANOUNT(NUM),BIGS(NUM),INITIL(NUM),INVLEV(NUM),NEVNTS(NUM)

I ,NEXT(NUM),NYEARS(NUM),SMALLS(NUM),I,J,NITENS,NVALUE(NUM)

,BACKLOG(NUN),ITEM,CAN(NUM)
REAL AMINUS(NUM),APLUS(NUM),H(NUM),RFS(NUM),MDENDT(NUM),PI(NUM)

I , TINE(NUM),TLEVNT(NUM),TNE(NUM,4),TORDC(NUM)
& ,TSLE(NUM),TCOST,TOTCOST,FIXSET,VARSET(NUM)

& ,LEADT(NUM)

COMMON/MODEL/AMINUS,AMOUNT,APLUS,BIGS,H,RFS,INITIL
I ,INVLEV,MDENDT,NEVNTS,NEXT,NYEARS,PI,LEADT,

SMALLS,TIME,TLEVNT,TNE,TORDC,NITEMS,TSLE,CAN,TOTCOST
COMMON/RANDON/NVALUE,PROBD(NUM,25),NVAL(NUM,25),U
COMMON/ITEMS/ITEN,BACKLOG
COMMON/COST/FIXSET,VARSET
NITEMS=30
DO 10 I=1,NITEMS
NEVNTS(I)=4
NYEARS(I)=3

10 CONTINUE

C

C*****READ INPUT PARAMETERS

DO 20 I=1,NITEMS
READ*,NVALUE(I),MDEMDT(I) RFS(I),H(I),VARSET(I),LEADT(I)

PI(I)=2.0*H(I)
20 CONTINUE

DO 30 I=1,NITEMS

READ*,SMALLS(I),CAN(I),BIGS(I)
INITIL(I)=CAN(I)+0.2*(BI6S(I)-CAN(I))

30 CONTINUE
DO 40 I=1,NITEMS
NV=NVALUE(I)

READ*, (NVAL(I,J) 0=1 ,NV)

READ*,(PROBD(I,J),J=1,NV)
40 CONTINUE

READs,SEED,FIXSET

CALL RANSET(SEED)
C

Css ** *INITIALIZE THE SIMULATION

CALL INIT

C*****DETERMINE THE NEXT EVENT

50 CALL TIMING
60 TO (60,70,8000),NEXT(ITEM)

60 CALL ORDARV
GO TO 50

70 CALL DEMAND

60 TO 50
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80 CALL REPORT
GO TO 100

90 CALL REVIEU

GO TO 50
100 STOP

ENO

SUBROUTINE ICI
PARAMETER (NUM=30)

INTEGER AMOUNT(NUM),BIGS(NUM),INITIL(NUM),INVLEV(NUM),NEVNTS(NUM)

& ,NEXT(NUM),NYEARS(NUM),SMALLS(NUM),I,J,NITEMS

A ,BACKLOG(NUM),ITEM,CAN(NUM)

& ,N(NUM),NJN(NUM),NJT(NUM),OMEGA(NUM),STOCK(NUM)
REAL AMINUS(NUM),APLUS(NUM),N(NUM),RFS(NUM),MDEMDT(NUM),PI(NUM)

& , TIME(NUM),TLEVNT(NUM),TNE(NUM,4),TORDC(NUM)

& ,TSLE(NUM),FIXSET,VARSET(NUM),TCOST,TOTCOST
& ,LEADT(NUM)

COMMON/MODEL/AMINUS,AMOUNT,APLUS,BIGS,H,RFS,INITIL

& ,INVLEV,MDEMDT,NEVNTS,NEXT,NYEARS,PI,LEADT,

& SMALLS,TIME,TLEVNT,TNE,TORDC,NITEMS,TSLE,CAN,TOTCOST
COMMON/ITENS/ITEM,BACKLOG
LOGICAL ORDER(NUM)
COMMON/LOG/ORDER
COMMON/STAT/N,UN,NJT,OMEGA,STOCK
INTEGER IGAP(1000),COUNT(1000)
COMMON/ST/IGAP,COUNT
TOTCOST=0.

DO 10 I=1,NITEMS
TIME(I)=0.

INVLEV(I)=IIITIL(I)

TLEVNT(I)=0.

TSLE(I)=0.

TORDC(I)=0.

APLUS(I)=0.

AMINUS(I)=0.

AMOUNT(I)=0
BACKLOG(I)=0

ORDER(I)=.FALSE.
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N(I)=0
NJN(I)=0

NJT(I)=0

OMEGA(I)=0

STOCK(I)=0
TNE(I,1)=1.E+20
TNE(I,2)=EXPON(MDENDT(I))
TNE(I,3)=NYEARS(I)

TNE(I,4)=0.002740

10 CONTINUE
DO 20 M=1,1000
IGAP(M)=0

COUNT(M)=0

20 CONTINUE
RETUR1

END

SUBROUTINE TIMING
PARAMETER (NUM=30)

INTEGER AMOUNT(NUM),BIGS(NUM),INITIL(NUM),INVLEV(NUM),NEVNTS(NUM)
I ,NEXT(NUM),NYEARS(NUM),SMALLS(NUM),I,J,NITEMS

I ,BACKLOG(NUM),ITEM,CAN(NUM)

REAL AMINUS(NUM),APLUS(NUM),H(NUM),RFS(NUM),MDEMDT(NUM),PI(NUM)
A , TIME(NUM),TLEVNT(NUM),TNE(NUM,4),TORDC(NUM),RMIN

I ,TSLE(NUM),FIXSET,VARSET(NUM),TCOST,TOTCOST
I ,LEADT(NUM)

COMMON/MODEL/AMINUS,AMOUNT,APLUS,BIGS,H,RFS,INITIL
& ,INVLEV,MDEMDT,NEVNTS,NEXT,NYEARS,PI,LEADT,
1 SMALLS,TIME,TLEVNT,TNE,TORDC,NITEMS,TSLE,CAN,TOTCOST
COMMON/ITEMS/ITEM,BACKLOG
REAL TOTINV
DO 10 I=1,NITEMS
RMIN=1.E+29
NEXT(I)=0

10 CONTINUE
******DETERMINE THE NEXT EVENT******

DO 30 I=1,NITEMS

DO 20 J=1,NEVNTS(I)
IF (TNE(I,J).GE.RMIN) GO TO 20

RMIN=TNE(I,J)
ITEM=I
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NEXT(I)=J
20 CONTINUE
30 CONTINUE

IF (J.E0.4) THEN
DO 40 I=1,NITEMS
TNE(I,4)=RMIN

40 CONTINUE

ENDIF
IF (NEXT(ITEM).6T.0) GO TO 50

PRINT*," EVENT LIST EMPTY"

RETURN
50 TIME(ITEM)=TNE(ITEM,VEXT(ITEM))

RETURN

END

SUBROUTINE ORDARV

PARAMETER (NUM=30)

INTEGER AMOUNT(NUM),BIGS(NUM),INITIL(NUM),INVLEV(NUM),NEVNTS(NUM)
,NEXT(NUM),NYEARS(NUM),SMALLS(NUM),I,J,NITEMS
,BACKLOG(NUM),ITEN,CAN(NUM)

REAL ANINUS(NUM),APLUS(NUM),H(NUM),RFS(NUM),MDEMDT(NUM),PI(NUM)
, TINE(NUM),TLEVNT(NUM),TNE(NUM,4),TORDC(NUM)
,TSLE(NUM),FIXSET,VARSET(NUM),TCOST,TOTCOST

,LEADT(NUM)

COMMON/MODEL/AMINUS,AMOUNT,APLUS,BIGS,N,RFS,INITIL

4 ,INVLEV,MDEMDT,NEVNTS,NEXT,NYEARS,PI,LEADT,
SMALLS,TIME,TLEVNT,TNE,TORDC,NITEMS,TSLE,CAN,TOTCDST

COMMON/ITEMS/ITEM,BACKLOG
LOGICAL ORDER(NUM)
COMMON/LOG/ORDER
INTEGER N(NUM),NJN(NUM),NJT(NUM),OMEGA(NUM),STOCK(NUM)
COMMON/STAT/N,NJN,NJT,ONEGA,STOCK
CALL UPDATE
INVLEV(ITEM)=INVLEV(ITEM)+AMOUNT(ITEM)
N(ITEM)=N(ITEM)+1
TNE(ITEM,1)=1.E+20

BACKLOG(ITEM) =0

ORDER(ITEN)=.FALSE.

RETURN
END
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SUBROUTINE DEMAND
PARAMETER (NUM=30)

INTEGER AMOUNT(NUM),BIGS(NUM),INITIL(NUM),INVLEV(NUM),NEVNTS(NUM)

,NEXT(NUM),NYEARS(NUM),SMALLS(NUM),DSIZE(NUM),I,J,NITEMS
I ,BACKLOG(NUM),ITEM,CAN(NUM)
REAL AMINUS(NUM),APLUS(NUM),H(NUM),RFS(NUM),KDEMDT(NUM),PI(NUM)

& , TIME(NUM),TLEVNT(NUM),TNE(NUM,4),TORDC(NUM)
& ,TSLE(NUM),FIXSET,VARSET(NUM),TCOST,TOTCOST
1 ,LEADT(NUM)

COMMON/MODEL/AMINUS,AMOUNT,APLUS,BIGS,H,RFS,INITIL

,INVLEVODENDT,NEVNTS,NEXT,NYEARS,PI,LEADT,
1 SMALLS,TIME,TLEVNT,TNE,TORDC,NITEMS,TSLE,CAN,TOTCOST
COMMON/ITEMS/ITEM,BACKLOG
LOGICAL ORDER(NUM)
COMMON/LOG/ORDER
CALL UPDATE

DSIZE(ITEM)=RANDI(ITEM)
INVLEV(ITEM)=INVLEV(ITEM)-DSIZE(ITEM)
IF (INVLEV(ITEM).LT.0) THEN

BACKLOG(ITEM)=BACKLOG(ITEM)-DSIZE(ITEM)
ENDIF

* *****IF INVENTORY LEVEL IS LESS THAN SMALLS, PLACE AN ORDER******
JITEM=ITEM

IF(INVLEV(ITEM).LT.SMALLS(ITEM)) THEN
IF(.NOT. ORDER(JITEM)) THEN
CALL EVALU8(JITEM)
ENDIF

ENDIF

TNE(ITEM,2)=TIME(ITEM)+EXPON(MDEMDT(ITEM))
RETURN

END

SUBROUTINE EVALU8(JITEM)
PARAMETER (NUM=30)

INTEGER AMOUNT(NUM),BIGB(NUM),INITIL(NUM),INVLEV(NUM),NEVNTS(NUM)
& ,NEXT(NUM),NYEARS(NUM),SMALLS(NUM),I,J,NITEMS

,BACKLOG(NUM),ITEM,CAN(NUM)
REAL AMINUS(NUM),APLUS(NUM),H(NUM),RFS(NUM),MDENDT(NUM),PI(NUM)

& , TIME(NUM),TLEVNT(NUM),TNE(NUM,4),TORDC(NUM)

,TSLE(NUM),FIXSET,VARSET(NUM),TCOST,TOTCOST
3 ,LEADT(NUM)
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COMMON/MODEL/AMINUS,AMOUNT,APLUS,BI6S,H,RFS,INITIL
,INVLEV,MDEMDT,NEVNTS,NEXT,NYEARS,PI,LEADT,
SMALLS,TIME,TLEVNT,TNE,TORDC,NITEMS,TSLE,CAN,TOTCOST

COMMON/COST/FIXSET,VARSET
REAL MCOST(NUM),TMCOST
COMMON/ITEMS/ITEM,BACKLOG
LOGICAL ORDER(NUM)

COMMON/LOG/ORDER
INTEGER N(NUM),NJN(NUM),NJT(NUM),OMEGA(NUM),STOCK(NUM)
COMMON/STAT/N,NJN,NJT,OMEGA,STOCK
TCOST=0.

AMOUNT(JITEM)=BIGS(JITEM)-INVLEV(JITEM)
TNE(JITEM,1)=TIME(JITEM)+LEADT(JITEM)

ORDER(JITEM)=.TRUE.

OMEGA(JITEM)=OMEGA(JITEM)+INVLEV(JITEM)

NJT(JITEM)=NJT(JITEM)+1
TEMP=JITEM

******IF THE INVENTORY LEVEL IS LESS THAN CAN-ORDER POINT, PLACE AN ORDER******

DO 20 I=1,NITEMS
IF(.NOT. ORDER(I)) THEN
IF(I.NE.TEMP) THEN
IF(INVLEV(I).LE.CAN(I)) THEN

AMOUNT(I)=BIGS(I)-INVLEV(I)
TNE(I,1)=TIME(I)+LEADT(I)

ORDER(I)=.TRUE.
STOCK(I)=STOCK(I)+INVLEV(I)

NJN(I)=MJN(I)+1
ENDIF

ENDIF

ENDIF

20 CONTINUE
DO 30 I=1,NITEMS
IF (ITEMC(I).GT.0.0) THEN
TCOST=TCOST+VARSET(I)

ENDIF

30 CONTINUE

IF (TCOST.GT.0.0) THEM
TOTCOST=TOTCOST+FIXSET+TCOST

ENDIF

RETURN
END

SUBROUTINE REVIEW

PARAMETER(NUM=30)
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INTEGER AMOUNT(NUM),BIGS(NUM),INITIL(NUM),INVLEV(NUM),NEVNTS(NUM)
,NEXT(NUM),NYEARS(NUM),SMALLS(NUM),I,J,NITEMS
,BACKLOG(NUM),ITEM,CAN(NUM)

REAL AMINUS(NUM),APLUS(NUM),N(NUM),RFS(NUM),MDEMDT(NUM),PI(NUM)
, TIME(NUM),TLEVNT(NUM),TNE(NUM,4),TORDC(NUM)

a ,AORDC(NUM),ANLDC(NUM),ASNRC(NUM),ACOST(NUM),TSLE(NUM)
,FIXSET,VARSET(NUM),TCOST,TOTCOST,AUGORDC

,LEADT(NUM)
COMMON/MODEL/AMINUS,AMOUNT,APLUS,BIGS,N,RFS,INITIL

,INVLEV,MDEMDT,NEVNTS,NEXT,NYEARS,PI,LEADT,
SMALLS,TIME,TLEVNT,TNE,TORDC,NITEMS,TSLE,CAN,TOTCDST

REAL TOTINV
INTEGER IGAP(1000),COUNT(1000),JGAP
COMMON/ST/IGAP,COUNT
COMMON/ITEMS/ITEM,BACKLOG
TOTINV=0.0

DO 10 L=1,NITEMS
TOTINV=TOTINV+RFS(L)*INVLEV(L)

10 CONTINUE

JGAP=INT(TOTINV/30.0)+1

DO 20 K=1,JGAP

IF ( JGAP.GE.K .AND. JGAP.LT.K+1 ) THEN

COUNT(K)=COUNT(K)+1
ENDIF

20 CONTINUE
DO 30 I=1,NITEMS
TNE(I,4)=TNE(I,4)+0.002740

30 CONTINUE
RETURN
END

SUBROUTINE REPORT
PARAMETER (NUM=30)
INTEGER AMOUNT(NUM),BISS(NUM),INITIL(NUM),INYLEV(NUM),NEVNTS(NUM)

,NEXT(NUM),NYEARS(NUM),SMALLS(NUM),I,J,NITEMS
,BACKLOG(NUM),ITEM,NVALUE(NUM),CAN(NUM)

REAL AMINUS(NUM),APLUS(NUM),N(NUM),RFS(NUM),MDEMDT(NUM),PI(NUM)

& , TIME(NUM),TLEVNT(NUM),TNE(NUM,4),TORDC(NUM)

a ,AORDC(NUM),ANLDC(NUM),ASNRC(NUM),ACOST(NUM),TSLE(NUM)

a ,FIXSET, VARSET (NUM),TCOST,TOTCOST,AVGORDC

,TOTORC(NUN),AVGORC(NUM),LEADT(NUM)

,TOTCN,MINVL,STDINV,PCOUNT(1000)
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COMMON/MODEL/AMINUS,AMOUNT,APLUS,BIGS,H,RFS,INITIL

,INVLEV,MDEMDT,NEVNTS,NEXT,NYEARS,PI,LEADT,

SMALLSITIME,TLEVNT,TNE,TORDC,NITEMS,TSLE,CAN,TOTCOST
COMMON/COST/FIXSET,VARSET
INTEGER N(NUM),NJN( NUM),NJT(NUM),OMEGA(NUM),STOCX(NUM)

REAL P(NUM),CALOR(NUM),CALHUNUM),TCALOR,TCALHL,PROX(NUM)
COMMON/STAT/N,UN,CIT,OMEGA,STOCK
INTEGER IGAP(1000),COUNT(1000),MAX
REAL TOTHLD,TOTSHR,TOTORD,U,FLAG(NUM,2)
COMMON/ST/IGAP,COUNT

COMMON/RANDOM/NVALUE,PROBD(NUM,25),NVAL(NUM,25),U
REAL MSIZE(NUM),DPYR(NUM),TAU(NUM),CAL(NUM),TCAL,

VSIZE(NUM),SSIZE(NUM),XI(NUM),BIGA(NUM)
REAL CDF(400,2),X1(NUM),X2(NUM),IX1(NUM),U2(NUM),MU(NUM),

& NU(NUM),O(NUM),R(NUM),PS(NUM),YA(NUM),11(NUM)
REAL XA(NUM),XB(NUM),IXA(NUM),ZXB(NUM),PX(NUM),PY(NUM),PZ(NUM)
CALL UPDATE
TOTHLD=0.0

TOTSHR=0.0
TOTORD=0.0

******CALCULATE THE AVERAGE HOLDING AND ORDERING COST******
DO 10 I=1,NITEMS

AHLDC(I)=H(I)*(APLUS(I)/NYEARS(I))
ASHRC(I)=PI(I)*(AMINUS(I)/NYEARS(I))
PROX(I)=AMINUS(I)/(APLUS(I)+AMINUS(I))
TOTHLD=TOTHLD+AHLDC(I)
TOTSHR=TOTSHR+ASHRC(I)
TMCOST=TMCOST+MCOST(I)

10 CONTINUE

AVGORDC=TOTCOST/NYEARS(1)
PRINT*," I SS C BS AHLD ASHR PROX
DO 20 I=1,NITEMS

PRINT"(1X,I3,3I4,2X,2F7.2,F8.4)",I,SMALLS(I)

,CAN(I),BIGS(I),AHLDC(I),ASHRC(I),PROX(I)
20 CONTINUE

DO 30 I=1,NUM

TOTORC(I)=NJN(I)*VARSET(I)+NJT(I)*FIXSET
AVGORC(I)=TOTORC(I)/NYEARS(I)
TOTORD=TOTORD+AVGORC(I)

30 CONTINUE

DO 40 I=1,NUM

OMEGA(I)=OMEGA(I)/NJT(I)

STOCK(I)=STOCX(I)/NJW(I)

P(I)=(FLOAT(NA(I))/FLDAT(V(I)))
40 CONTINUE

PRINT*," I 0 R P TORD AORD N NJN MJT "
DO 50 I=1,NITEMS

PRINT"(1X,314,F6.2,2F9.2,3I4)",I,OMEGA(I),STOCK(I),P(Ii,
TOTORC( I),AV6ORC(I),N(I),NJN(I),NJT(I)

50 CONTINUE



89

******CALCULATE THE MEAN AND STANDARD DEVIATION OF TOTAL INVENTORY LEVEL******
MAX=0

DO 60 I=1,NITEMS

MAX=MAX+INT(RFS(I)*BIGS(I)+0.5)
60 CONTINUE

MAX=MAX/30
PRINT*," MAX=",MAX
TOTCN=0.

MINVL=0.
STDINV=0.

DO 70 J=1,MAX

TOTCN=TOTCN+COUNT(J)
70 CONTINUE

DO 80 J=1,MAX

PCOUNT(J)=CDUNT(J)/TOTCN
MINVLOINVL+J*PCOUNT(J)

80 CONTINUE
DO 90 J=1,MAX

STDINV=STDINVWJ-NINVL)**2.0)*PCOUNT(J)
90 CONTINUE

STDINV=SORT(STDINU)

PRINT"(1X,A,F10.3,A,F10.3)","MEAN INV. LEVEL=",MINVL,
& " STD DEV OF INV LEVEL = ",STDINV
DO 100 I=1,NUM

NSIZE(I)=NVAL(I,1)*PROBD(I,1)
VSIZE(I)=0.0

SSIZE(I)=0.0
NV =NVALUE(I)

DO 110 J=2,NV

NSIZE(I)=MSIEE(I)+NVAL(I,J)*(PROBD(I,J)-PROBD(I,J-1))
VSIZE(I)=VSIZE(I)+( MSIZE(I)- NVAL(I,J) )**2.0*

( PROBD(I,J)- PROBD(I,J -1) )

SSIZE(I)=SORT(VSIZE(I))
110 CONTINUE

DPYR(I)=MSIZE(I)/MDENDT(I)

TAU(I)=BIGS(I)-ONEGAM-P(I)*(STOCK(I)-OMEGA(I))
100 CONTINUE

******CALCULATE THE TOTAL COST USING THE EQUATION IN CHAPTER III ******
TCAL=0.0

TCALOR=0.0
TCALHL=0.0

COMOR=0.0

COMHL =0.0

PRINT*," CALCULATED COST
PRINT*," I TOT ORD HLD ORA HLA ORD MSIZE
ASSIZE"
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DO 120 I=1,NUM

IF (P(I).GT.1.0) THEN
P(I)=1.0
ENDIF

CALOR(I)=DPYR(I)/TAU(I)*( P(I)*VARSET(I) + (1.0-P(I))*(FIXSET
+VARSET(I)) )

CALHL(I)=( P(I)*(BIGS(I)+STOCK(I))/2.0 + (1.0-P(I))*(DIGS(I)+
OMEGA(I))/2.0 - DPYR(I)*LEADT(I) ) * H(I)

CAL(I)=CALOR(I)+CALHL(I)

PRINT"(1X,I2,3F8.2,2F5.2)",I,CAL(I),CALOR(I),CALHL(I),MSIZE(I),
SSIZE

120 CONTINUE
DO 130 I=1,NUM

TCAL=TCAL+CAL(I)
TCALOR=TCALOR+CALOR(I)
TCALHL=TCALHL+CALHL(I)

XI(I)=P(I)*( STOCK(I)-OMEGA(I) ) +SQRT( 2.0*DPYR(I)/11(I)*
( (1.0-P(I) )*(FIXSET+VARSET(I)) + P(I)*VARSET(I)) )

BIGA(I)=XI(I)+OMEGA(I)

PRINT"(1X,I2,3F7.2,F6.4,2F7.2,3I4,2F7.2)°,1,P(I),DPYR(1),TAU(I),
& LEADT(I),H(I) ,VARSET(I),BIGS(I),OMEGA(I),STOCK(I)

,BIGA(I),XI(I)
130 CONTINUE

PRINT"(1X,A,F10.5)"," RANDOM NUMBER = ",U
******CLACULATE THE TOTAL OPERATING COST*** * **

PRINT*," "
PRINT*," SIMULATED COST CALCULATED

&COST"

PRINT*," ITEM SS CAN BIGS HOLDING ORDERING HOLDING
&ORDERING"
PRINT*,"

DO 140 I=1,NUM

PRINT"(1X,4I5,4F10.2)",I,SMALLS(I),CAN(I),BIGS(I),AHLDC(I),
AVGORC(I),CALHLA(I),CALOR(I)

140 CONTINUE
PRINTS," "

PRINT"(1X,A,4F10.2)"," SUB TOTAL ",TOTHLD TOTORD,
TCALHL,TCALOR

TX=TOTHLD+TOTORD
TY=TCALOR+TCALHL

PRINT"(1X,A,10X,F10.2,10X,F10.2)"," TOTAL COST ",TX,TY
******PRINT THE DISTRIBUTION OF TOTAL INVENTORY LEVEL******

DO 150 I=1,MAX

IF (COUNT(I).GT.0) THEN

PRINT"(1X,I5410,F10.4)",I,COUNT(I),PCOUNT(I)
ENDIF

150 CONTINUE

******CALCULATE NEU CONTROL VARIABLES******
DO 160 I=1,NUM
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MU(I)=DPIT(I)*LEADT(1)

NU(I)=SORT( MU(I)/MSIZE(I)c(VSIZE(I)+MSIZE(I)**2.0) )
160 CONTINUE

DO 170 I=1,NUM
IF (OMEGA(I).LE.0.0) THEN
OMEGA(I)=MU(I)
ENDIF

X1(I)=( OMEGA(I)MU(I) )/NU(I)
X2(I)=( STOCK(I)MU(I) )/NU(I)

170 CONTINUE

DO 180 1=1,328

BEAD*,(CDF(I,J),J=1,2)
180 CONTINUE

DO 190 I=1,NUM

DO 200 K=1,32B
IF (X1(I).8E. 0.0) THEN

IF(X1(I).GT.CDF(K,1) .AND. X1(I).LE.CDF(K+1,1) ) THEM
ZX1(I)=CDF(K,2)
ENDIF

ELSE

X1(I) =ABS(X1(I))

IF (X1(I).GT.CDF(K,1) .AND. X1(I).LE.CDF(K+1,1) ) THEN
ZX1(1)=1.0CDF(K,2)
ENDIF

ENDIF

IF (X2(I).GE. 0.0) THEN
IF (X2(I).GT.CDF(K,1) .AND. X2(I).LE.CDF(K+1,1) ) THEN
ZX2(I)=CDF(K,2)
ENDIF

ELSE

X2(I)=ABS(X2(I))
IF (X2(I).GT.CDF(K,1) .AND. X2(I).LE.CDF(K+1,1) ) THEN
ZX2(I)=1.0CDF(K,2)
ENDIF

ENDIF

200 CONTINUE
190 CONTINUE

DO 210 I=1,NUM
0(I)=(FLOAT(NJT(I))/FLOAT(NYEARS(I)))
B(I)=(FLOAT(NJN(I))/FLOAT(NYEARS(I)))

PS(I)=(ZX1(I)**0(I)) * (ZX2(I) * *R(I))

210 CONTINUE

DO 220 I=1,NUM
PRINTH(1X,4F8.3,2F5.2,3F7.3)",MU(I),NU(I),X1(I),X2(I),G(I),8(1),

I ZX1(I),ZX2(I),PS(I)

220 CONTINUE

PRINT*," XA(I) XD(I) ZXA(I) ZXB(I) PX(I) PY(I) 0 R SS"

DO 230 I=1,NUM

DO 240 J=1,2
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FLAG(I,J)=0.0

240 CONTINUE
PY(I)=(1.0-.20)**MBIGS(I)-OMEGA(I))-P(I)*(STOCK(I)-0MEGA(I)))

/DPYR(I))

250 XA(I)=COMEGA(I)-MU(I))/NU(I)

XB(I) =(STOCK(I)- NU(I)) /NU(I)

IF (XAM.LT.0.0) THEN
YA(I)=ABS(XA(I))

ENDIF

IF (XB(I).LT.0.0) THEN
YD(I)=ABS(XD(I))

ENDIF

DO 260 IX=1,328

IF(XA(I).GE.D.0) THEN
IF(XA(I).6T.CDF(IX,1) .AVD. XA(I).LE.CDF(IX+1,1)) THEN

ZXA(I)=CDF(IX,2)
ENDIF

ELSE
IF(YA(I).GT.CDF(IX,1) .AND. YA(I).LE.CDF(IX+1,1)) THEN
ZXA(I)=1.0-CDF(IX,2)

ENDIF

ENDIF
IF(XD(I).GE.0.0) THEN

IF(XB(I).GT.CDF(IX,1) .AND. XD(I).LE.CDF(IX+1,1)) THEN

ZXD(I)=CDF(IX,2)
ENDIF

ELSE
IF(YD(I).GT.CDF(IX,1) .AND. YB(I).LE.CDF(IX+1,1)) THEN

ZXD(I)=1.0-CDF(IX,2)
ENDIF

ENDIF

260 CONTINUE
PX(I)=( NA(I)**(1-P(I)) ) * ( ZXB(I)**P(I) )

PZ(I)=PX(I)-PY(I)
IF(FLAG(I,1).E0.1.0 .AND. FLAG(I,2).E0.1.0) 60 TO 270

IF (PZ(I).6T.0.0) THEN

OMEGA(I)=OMEGA(I)-1.0
STOCK(I)=STOCK(I)-1.0
FLAG(I,1)=1.0

ELSE

ONEGA(I)=OMEGA(I)+1.0
STOCK(I)=STOCK(I)+1.0

FLAG(I,2)=1.0
ENDIF

GO TO 250
270 SMALLS(I)=OMEBA(I)+0.5*( SSIZE(I)**2.0 + MSIZE(I)**2.0 )/MSIZE(I)

CAN(I)=SMALLS(I) +( STOCK(I)-OMEGA(I))

PRINT"(1X,7F7.3,41446)",XA(I),XD(I),ZXA(I),ZU(I),FX(I),PY(I),
FZ(I),OMEGA(I),STOCK(I),SMALLS(I),CAN(I),DIGA(I)
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230 CONTINUE
RETURN
END

SUBROUTINE UPDATE
PARAMETER (NUM=30)

INTEGER AMOUNT(NUM),BIGS(NUM),INITIL(NUM),INVLEV(NUM),NEVNTS(NUM)

& ,NEXT(NUM),NYEARS(NUM),SMALLS(NUM),I,J,NITEMS

& ,BACKLOG(NUM),ITEM,CAN(NUM)

REAL AMINUS(NUM),APLUS(NUM),H(NUM),RFS(NUM),MDEMDT(NUM),PI(NUM)

& , TIME(NUM),TLEVNT(NUM),TNE(NUM,4),TORDC(NUM)

& ,TSLE(NUM),FIXSET,VARSET(NUM),TCOST,TOTCOST

I ,LEADT(NUM)

COMMON/MODEL/AMINUS,AMOUNT,APLUS,BIGS,H,RFS,INITIL

I ,INVLEV,MDEMDT,NEVNTS,NEXT,NYEARS,PI,LEADT,

I SMALLS,TIME,TLEVNT,TNE,TORDC,NITEMS,TSLE,CAN,TOTCOST

COMMON/ITEMS/ITEM,BACKLOG
TSLE(ITEM)=TIME(ITEM)-TLEVNT(ITEM)
TLEVNT(ITEM)=TIME(ITEM)
IF(INVLEV(ITEM)) 10,20,30

10 AMINUS(ITEM)=AMINUS(ITEM)+(-INVLEV(ITEM)*TSLE(ITEM))
20 RETURN
30 APLUS(ITEM)=APLUS(ITEM) +(INVLEV(ITEM)*TSLE(ITEM))

RETURN

END

FUNCTION EXPON(RMEAN)
REAL RMEAN,U

U=RANF( )

EXPON=-RMEAN*ALOG(U)
RETURN
END

FUNCTION RAMDI(ITEM)

PARAMETER(NUM=30)

INTEGER I,NVALUE(NUM)

REAL U

COMMON/RANDOM/NVALUE,PROBD(NUM,25),NVAL(NUM,25),U
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U=RANF()
DO 10 J=1,NYALUE(ITEM)

IF (U.LE.PROBD(ITEM,J)) GO TO 30
10 CONTINUE

PRINT*," PROBD ARRAY IS NOT COMPLETE"
STOP

30 RANDI=NVAL(ITEM,J)
RETURN

END

FUNCTION UNIFRN(A,B)
REAL A,B,U
U=RANF()

UNIFRN=AHU*(B-h))
RETURN
END



Appendix IV. Program Input and Output

Appendix 4.1 Input data
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Item Mean inter-

demanded time

Required

floor space

Carrying Variable

cost setup cost

Lead

time

Number-of

transaction

1 .0417 2.0 3.0 2.0 .0417 8

2 .0458 3.0 6.0 2.0 .0625 5

3 .0500 4.0 9.0 4.0 .0833 7

4 .0583 2.5 7.2 5.0 .1250 7

5 .0458 5.0 7.2 5.0 .0417 8

6 .0542 6.0 3.6 2.0 .0625 7

7 .0667 4.0 1.2 2.5 .1250 5

8 .0542 3.5 2.4 3.5 .0833 13

9 .0750 8.0 6.0 4.5 .0833 15

10 .0708 6.0 12.0 3.0 .0417 4

11 .0375 1.0 9.0 4.0 .0625 10

12 .0400 5.0 12.0 5.0 .0625 11

13 .0567 5.5 6.0 5.5 .1250 10

14 .0600 6.0 4.2 1.5 .1250 11

15 .0700 4.0 3.0 1.5 .0833 11

16. .0650 4.0 4.2 2.0 .0833 10

17 .0550 3.0 7.8 2.0 .0625 5

18 .0625 2.5 9.6 3.0 .0625 8

19 .0708 6.5 10.2 3.0 .0625 3

20 .0642 7.5 12.0 4.0 .0417 14

21 .0525 8.0 15.0 4.0 .0417 7

22 .0608 8.0 15.0 5.0 .0417 9

23 .0433 7.0 15.6 5.0' .1250 13

24 .0483 7.5 3.6 1.0 .1250 10

25 .0450 6.0 4.8 1.5 .0833 13

26 .0558 5.0 1.8 2.0 .0625 10

27 .0608 3.0 10.2 3.0 .0417 8

28 .0692 4.0 4.2 3.0 .1250 7

29 .0733 2.0 3.0 3.5 .1250 6

30 .0633 2.0 7.2 4.0 .0417 9



Appendix 4.2 Transaction sizes and their probabilities

Item Transaction sizes

1 2 3 k 5 6 7 8 9 10 11 12 13 14 15

1 .467 .183 .150 .200 .133 .067 .050 .050

2 .150 .350 .250 .150 .100

3 .200 :200 .200 .100 .100 .100 .100

4 050 .250 .200 .150 .100 .100 .050

5 .100 .200 .200 .150 .100 .100 .100 .050

6 .100 .200 .200 .150 .150 .100 .100

7 .200 .300 .250 .150 .050

8 .075 .075 .100 .100 .150 .100 .075 .075 .075 .050 .050 .050 .025

9 .050 .050 .100 .150 .100 .100 .075 .075 .050 .050 .050 .050 .050 .025 .025

10 .200 .300 .300 .200

11 .050 .050 .100 .100 .150 .150 .150 .100 .100 .050

12 .100 .100 .150 .150 .100 .100 .075 .075 .050 .050 .050

13 .100 .100 .150 .150 .100 .100 .075 .075 .075 .075

14 .100 .150 .150 .150 .075 .075 .075 .075 .050 .050 .050

15 .100 .150 .200 .150 .100 .050 .050 .050 .050 .050 .050

16 .100 .100 .200 .150 .100 .100 .075 .075 .050 .050

17 .200 .300 .300 .100 .100

18 .150 .150 .200 .250 .100 .050 .050 .050

19 .300 .400 .300

20 .050 .050 ..100 .150 .150 .100 .075 .075 .050 .050 .050 .050 .025 .025



Item Transaction sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 .100 .150 .250 .200 .100 .100 .100

22 .100 .200 .200 .150 .100 .100 .075 .075 .025

23 .075 .075 .100 .150 .150 .075 .075 .050 .050 .050 .050 .050 .050

24 .100 .120 .140 .120 .120 .100 .100 .100 .050 .050

25 .085 .085 .080 .100 .150 .150 .075 .075 .050 .050 .050 .025 .025

26 .100 .150 .150 .150 .100 .100 .100 .050 .050 .050

27 .150 .200 .250 .150 .100 .075 .050 .025

28 .200 .300 .200 .100 .100 .050 .050

29 .100 .150 .250 .200 .200 .100

30 .150 .150 .200 .150 .150 .100 .050 .050



Appendix 4.3 Simulation Results

Appendix 4.3.1 Simulation 1
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Item s c S

Simulated cost
Holding Ordering

Calculated cost
Holding Ordering

1 13 18 45 83.15 14.00 82.20 17.15

2 12 15 30 119.07 27.80 110.39 28.28

3 18 21 33 208.42 47.60 186.85 47.80

4 25 28 41 205.94 32.50 196.94 38.98

5 15 19 35 177.35 42.50 164.60 47.08

6 15 19

19

40

47

94.19

35.04

25.40

5.00

87.80

33.41

27.32

5.147 14

8 23 35 68 107.34 20.40 99.60 22.27

9 27 32 47 192.91 42.85 187.78 42.98

10 8 10 16 147.56 33.60 135.49 35.39

11 31 36 53 324.34 83.20 302.67 92.36

12 27 31 44 376.11 88.50 341.39 112.75

13 30 35 51 200.23 36.00 189.68 37.50

14 28 33 51 133.54 24.35 130.83 23.32

15 18 22 44 82.47 23.15 80.46 20.37

16 20 24 42 114.19 33.80 109.73 34.37

17 11 13 24 129.40 28.00 119.16 27.19

18 14 17 27 190.09 33.90 172.80 37.50

19 7 9 16 115.00 23.00 107.56 22.37

20 22 26 35 351.02 59.20 339.02 82.00

21 14 16 24 268.11 72.40 249.23 31.47

22 13 15 24 270.17 74.50 243.56 85.48

23 47 53 62 594.48 70.50 609.51 83.37

24 32 39 61 142.06 14.80 132.53 14.99

25 32 38 59 182.31 32.45 178.17 29.33

26 17 23 57 62.61 13.60 61.74 12.14

27 11 13 23 174.61 39.50 155.83 48.10

28 14 17 32 86.19 19.90 78.50 25.40

29 17 21 40 74.49 15.35 72.38 14.99

30 12 15 28 145.23 37.60 133.03 41.82

Sub-total 5382.61 1120.35 5062.83 1239.60

Total cost 6502.51 6302.43



Appendix 4.3.2 Simulation 2
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Item s c S

Simulated cost

Holding Ordering

Calculated cost

Holding Ordering

1 8 14 33 59.31 18.00 55.70 16.74

2 8 11 25 95.50 21.30 84.64 20.92

3 14 19 30 184.55 31.60 164.81 37.00

4 15 20 38 162.72 18.50 154.98 22.31

5 10 15 32 158.67 38.50 138.20 5.45

6 11 16 35 82.69 16.60 74.63 17.61

7 8 11 32 20.79 11.25 19.50 10.91

8 21 29 57 87.33 22.75 72.78 . 25.88

9 21 29 43 187.56 26.00 169.34 22.70

10 5 8 15 134.15 15.00 118.69 18.35

11 26 33 51 303.51 54.40 282.89 61.57

12 23 27 44 340.36 61.50 322.44 70.00

13 24 30 47 164.38 35.80 161.59 36.77

14 21 30 44 110.74 21.70 109.58 18.60

15 14 20 37 73.46 23.30 66.09 23.53

16 16 22 39 114.37 17.80 99.54 23.77

17 7 10 21 104.99 23.00 94.76 25.00

18 11 14 24 164.30 36.40 143.04 41.76

19 4 7 14 97.98 10.20 89.09 9.42

20 17 22 36 326.15 49.20 288.31 53.75

21 10 14 24 263.52 40.00 230.99 55.13

22 10 14 24 260.91 60.50 233.84 56.76

23 40 47 56 487.06 68.50 515.26 75.36

24 24 32 49 101.69 25.40 96.72 25.43

25 25 33 51 164.17 24.60 146.85 26.99

26 11 18 41 45.14 23.80 41.65 25.50

27 8 12 21 153.23 32.60 140.89 32.01

28 12 16 29 73.71 19.20 70.82 18.33

29 12 16 33 18.65 53.90 1c.90

30 9 12 26 129.85 32.80 115.20 36.88

Sub-total 4712.35 899.25 4365.44 985.35

Total cost 5611.60 5350.79
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Appendix 4.3.3 Simulation 3
t

Item s c S

Simulated cost

Holding Ordering_

Calculated cost

Holding Ordering

1 9 15 26 51.06 25.20 49.70 24.67

2 9 12 23 89.1.2 29.40 81.17 29.66

3 14 18 25 148.63 47.60 139.03 48.85

4 12 20 27 121.79 29.00 117.69 27.36

5 10 15 25 128.77 42.50 115.91 47.84

6 10 15 24 56.25 35.60 52.83 31.93

7 9 12 23 16.00 19.75 14.67 19.36

8 20 30 48 77.39 18.70 70.74 20.94

9 23 29 41 160.67 56.65 158.70 51.42

10 4 8 11 103.18 42.20 93.73 33.59

11 24 32 43 256.74 65.20 244.13 69.38

12 22 27 37 302.15 75.00 280.33 86.28

13 26 31 42 155.22 53.25 147.96 61.40

14 23 29 37 84.31 35.50 93.12 30.16

15 13 20 28 61.66 18.60 54.14 21.66

16 16 21 33 92.60 31.60 85.88 28.55

17 8 11 17 91.61 29.80 84.17 29.95

18 10 15 20 146.33 42.70 128.41 46.88

19 2 7 9 66.80 32.10 63.02 23.69

20 17 23 30 285.65 66.80 256.73 81.05

21 10 14 20 233.80 56.40 204.40 63.17

22 9 15 19 234.51 55.50 207.16 66.93

23 40 44 56 503.64 68.50 497.52 80.40

24 25 35 40 74.12 41.10 84.75 36.28

25 25 35 45 137.18 42.85 135.39 41.44

26 9 19 31 38.79 16.00 43.91 18.72

27 8 13 16 131.58 48.00 120.79 47.15

28 12 15 23 64.03 20.40 56.69 25.56

29 14 17 28 57.43 18.40 48.56 24.90

30 8 13 21 114.49 31.60 101.55 40.42

Sub-total 4086.23 1195.90 3823.76 1259.59

Total cost 5282.13 5083.74
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Appendix 4.3.4 Simulation 4

Item s c S

Simulated cost

Holding ordering

Calculated cost

Holding Ordering

1 9 15 28 54.14 27.20 52.23 26.81

2 9 12 21 82.23 33.70 74.91 37.41

3 12 18 25 140.35 40.80 139.78 37.92

4 12 20 24 95.81- 47.50 104.02 42.01

5 10 16 27 133.20 51.00 125.63 46.92

6 10 16 27 69.60 15.60 60.80 18.66

7 8 12 26 18.12 16.00 16.19 18.49

8 21 30 48 73.58 31.65 - 69,26, 33.90

9 20 27 37 152.51 47.80 142.23 48.47

10 4 7 10 92.37 50.90 80.68 51.76

11 24 32 42 257.39 66.40 239.15 75.54

12 21 29 37 314.79 79.50 285.84 96.36

13 23 30 41 143.50 44.00 142.66 46.03

14 24 29 40 103.01 38.80 98.38 40.35

15 13 21 31 64.72 20.00 59.75 20.00

16 14 21 29 85.20 21.40 78.87 20.67

17 7 11 26 130.98 7.20 120.68 7.57

18 10 16 21 155.26 30.80 139.84 34.27

19 3 7 10 76.41 21.20 68.38 18.52

20 17 23 31 306.12 52.80 265.33 72.56

21 9 15 20 230.73 53.20 212.26 52.88

22 9 14 19 223.88 66.00 198.21 68.24

23 37 46 50 430.76 67.00 460.32 76:92

24 28 33 40 72.96 54.10 82.43 48.15

25 24 34 44 140.87 44.10 129.71 47.83

26 14 22 39 48.57 18.80 44.55 18.69

27 6 13 17 137.18 33.30 126.43 33.78

28 13 15 23 62.25 30.10 56.58 36.26

29 12 19 31 59.09 14.50 56.18 14.84

30 8 14 21 116.19 34.00 104.95 38.13

Sub-total 4071.79 1159.95 3835.25 1229.96

Total cost 5231.74 5065.21
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Appendix 1.3.5 Simulation 5

Item s c S

Simulated cost

Holding Ordering

Calculated cost

Holding Ordering

1 7 14 27 52.02 19.40 49.69 20.43

2 9 11 19 75.75 46.50 65.86 57.62

3 13 18 26 144.51 48.00 142.99 40.54

4 14 19 29 127.80 30.00 119.29 31.77

5 10 15 28 136.81 51.00 124.33 50.03

6 10 15 28 65.09 29.60 59.81 27.47

7 8 12 30 20.17 6.75 19.12 6.80

8 21 30 50 80.89 20.00 72.93 22.25

9 22 29 38 159.15 59.80 149.68 57.42

10 4 7 11 99.92 34.80 97.84 36.68

11 25 32 45 280.18 60.80 253.47 68.01

12 22 27 38 298.44 91.50 282.25 97.04

13 24 29 41 139.73 48.20 140.65 46.29

14 20 28 37 94.44 35.70 89.10 35.40

15 14 20 34 69.54 22.05 62.15 23.34

16 16 21 33 94.22 34.40 85.04 . 35.20

17 7 10 17 85.42 39.80 78.85 37.44

18 10 14 21 143.30 43.80 128.96 43.44

19 1 6 9 65.26 23.00 58.13 18.18

20 17 24 31 303.73 66.80 266.70 77.05

21 10 14 21 232.24 60.00 210.12 60.58

22 9 14 20 230.71 61.50 206.36 61.10

23 36 49 49 379.91 61.50 474.69 66.26

24 24 34 44 98.62 17.20 92.98 18.35

25 25 33 44 138.72 44.55 128.70 46.63

26 13 21 41 47.56 15.00 45.96 11.94

27 7 12 18 136.96 29.40 126.82 28.79

28 11 16 25 60.94 16.80 63.29 15.45

29 12 17 29 49.00 20.60 50.26 15.94

30 8 13 22 119.99 24.00 105.96 30.81

Sub-total 4031.02 1162.45 3842.00 1188.32

Total cost 5193.47 5030.32
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Appendix 4.3.6 Simulation 6

Item s c S

Simulated_ cost

Holdine Ordering

Calculated cost

Holding Orderine

1 7 14 27 52.06 26.40 48.85 27.98

2 9 11 19 77.18 42.00 66.26 50.76

3 13 18 26 145.64 52.80 141.98 47.57

4 13 18 29 120.23 30.50 115.11 33.82

5 10 15 28 138.89 55.50 123.39 55.17

6 10 15 28 65.23 29.60 59.81 27.10

7 8 12 30 20.53 8.25 18.99 8.50

8 21 30 50 80.33 22.95 72.40 26.18

9 20 27 38 160.76 49.15 145.47 48.13

10 4 7 11 100.15 32.00 88.45 33.17

11 24 31 45 272.72 61.60 247.24 72.50

12 22 27 38 299.70 90.00 282.62 97.91

13 24 29 41 139.93 51.10 140.11 50.05

14 20 28 37 94.09 34.00 89.50 32.77

15 14 20 34 69.54 12.95 63:43 13.78

16 15 20 33 89.81 25.20 84.04 25.38

17 7 10 17 84.95 39.80 78.85 37.44

18 10 14 21 141.96 43.80 128.96 40.39

19 1 6 9 65.73 23.00 58.13 18.18

20 15 22 31 294.21 62.00 253.56 74.33

21 10 14 21 229.18 65.60 208.24 70.02

22 9 14 20 230.65 64.50 205.75 61.42

23 31 44 49 379.62 55.00 438.75 57.27

24 22 32 44 96.12 16.70 89.51 16.39

25 25 33 44 139.39 39.15 129.52 41.33

26 11 19 41 45.90 19.60 43.29 18.46

27 7 12 18 136.41 29.40 126.82 28.79

28 10 15 25 60.81 16.20 61.15 15.61

29 12 17 29 50.27 22.25 50.07 18.27

30 8 13 22 120.70 22.40 106.41 28.67

Sub-total 4002.68 1143.40 3766.64 1177.35

Total cost 5146.80 4943.99
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Appendix 4.3.7 Simulation 7

Item s c S

Simulated cost

Holding Ordering

Calculated cost

Holding Ordering

1 8 14 26 50.16 28.60 47.50 30.90

2 9 12 20 77.32 39.90 72.23 37.38

3 13 19 26 150.45 38.40 149.62 35.29

4 11 19 25 103.26 33.50 105.97 32.80

5 10 15 27 140.62 44.50 120.79 56.18

6 11 16 27 68.58 19.60 60.61 23.67

7 8 12 29 18,07 11.25 18.43 8.70

8 20 30 47 71.28 30.45 68.53 29.36

9 20 29 39 161.51 40.05 154.83 40.05

10 3 7 11 101.36 23.10 89.13 22.97

11 23 31 41 241.85 82.80 226.28 90.64

12 21 28 36 295.85 86.00 274.51 101.84

13 24 31 42 148.30 47.65 148.58 48.45

14 24 29 40 106.02 31.85 99.55 33.39

15 13 21 30 63.18 20.30 58.19 23.02

16 14 21 30 89.98 22.00 79.75 25.50

17 7 11 17 92.64 30.60 83.68 28.33

18 10 15 31 155.60 34.90 133.35 44.18

19 2 7 9 66.68 31.10 62.33 26.84

20 17 23 30 282.37 83.30 254.50 87.88

21 9 14 19 216.47 68.80 194.67 71.80

22 9 15 17 202.14 86.50 191.40 80.58

23 39 45 50 377.88 73.00 455.61 76.09

24 25 33 40 65.86 43.00 82.03 34.78

25 24 35 44 140.53 35.30 133.53 38.22

26 13 19 30 36.48 34.40 33.55 34.90

27 7 13 17 135.79 43.40 125.74 37.82

28 12 15 22 58.88 26.50 54.65 25.69

29 14 18 32 57.25 23.35 55.18 24.36

30 8 13 20 110.56 36.80 97.55 45.78

Sub-total 3887.91 1250.80 3732.27 1296.38

Total cost 5138.71 5028.66
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Appendix 4.3.8 Simulation 8

Item s c S

Simulated cost

Holding Ordering

Calculated cost

Holding Ordering

1 8 15 27 53.61 22.60 51.29 20.72

2 8 11 21 80.17 34.00 72.09 32.75

3 13 18 25 152.99 48.00 137.18 57.05

4 11 19 25 112.55 33.50 106.45 34.00

5 10 15 25 130.16 49.00 114.79 58.62

6 11 16 26 64.37 31.20 58.30 29.03

7 10 13 30 21.16 10.75 19.60 10.63

8 18 29 45 73.25 26.00 64.76 30.57

9 21 30 39 171.38 40.25 157.11 46.83

10 4 8 11 106.94 30.70 94.71 29.15

11 22 30 42 236.11 72.00 228.65 73.01

12 21 27 36 290.76 88.50 270.70 97.01

13 25 32 44 172.97 34.55 159.58 40.37

14 23 29 37 92.32 42.00 91.81 43.25

15 13 21 29 64.90 18.25 56.40 24.08

16 15 21 32 94.06 25.60 83.95 25.89

17 7 10 17 91.39 34.00 79.55 35.05

18 10 14 20 141.44 47.20 123.29 52.57

19 2 7 9 66.80 27.80 63.59 21.19

20 17 23 30 285.98 62.80 260.45 68.74

21 9 14 20 225.90 55.20 204.65 57.29

22 8 11 11 115.99 169.50 138.96 181.10

23 40 45 49 355.04 90.50 436.02 97.53

24 26 35 41 93.00 19.80 89.72 21.17

25 25 34 45 145.29 38.25 133.48 40.59

26 11 20 33 41.28 10.00 38.43 9.70

27 7 12 17 131.63 41.20 120.67 40.83

28 12 16 24 67.02 17.40 61.38 16.67

29 14 17 29 53.81 29.35 49.39 31.52

30 8 13 21 117.00 33.60 101.24 38.46

Sub-total 3849.28 1284.60 3668.18 1365.39

Total cost 5133.88 5033.57
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Appendix 4.4 Simulation results for independent ordering

olicy and joint orderint polic

Item s S

i

1

Independent ordering

Holding Ordering

Joint ordering

Holding Ordering

1 8 27 43.80 80.00 41.70 86.33

2 8 21 j 63.88 80.00 64.89 84.74

3 13 25 134.19 82.00 120.02 102.00

4 11 25 82.68 66.00 78.66 83.24

5 10 25 109.74 88.00 100.27 119.03

6 11 26 51.02 84.00 51.03 80.11

7 10 30 18.41 38.00 18.04 40.63

8 18 45 59.87 62.00 53.28 81.97

9 21 39 151.06 70.00 135.02 91.87

10 4 11 83.05 74.00 72.33 90.24

11 22 42 206.83 130.00 210.75 141.54

12 21 36 264.38 128.00 246.84 158.59

13 25 44 151.82 66.00 140.86 93.69

14 23 37 80.68 86.00 83.13 87.79

15 13 29 54.92 54.00 46.40 68.01

16 15 32 75..97 68.00 73.54 75.35

17 7 17 75.73 78.00 70.55 86.67

18 10 20 i 116.70. 84.00 109.44 101.91

19 2 9 42.55 68.00 38.09 72.19

20 17 30 I 234.84 104.00 232.90 123.95

21 9 20 i 177.00 102.00 172,86 122.45

22 8 11 95.34 158.00 101.86 100.46

23 40 49 333.65 122.00 423.99 128.57

24 26 41 1 80.47 88.00 1 75.04 101.24

25 25 45 117.30 100.00 116.51 106.49

26 11 33 30.88 64.00 j 30.33 69.75

27 7 17 106.09 88.00 98.61 91.87

28 12 24 64.82 58.00 53.60 64.26

29 14 29 , 48.88 54.00 I 46.34 63.23

30 8 21 96.33 68.00 1 86.61 88.86

Sub-total 3242.89 2492.00 1 4057.45 1800.55

Total cost 5734.89 1 5858.00


