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ABSTRACT

Vector field analysis plays a crucial role in many engineering appli-
cations, such as weather prediction, tsunami and hurricane study,
and airplane and automotive design. Existing vector field analy-
sis techniques focus on individual trajectories such as fixed points,
periodic orbits and separatrices which are sensitive to noise and
errors introduced by simulation and interpolation. This can make
such vector field analysis unsuitable for rigorous interpretations. In
this paper, we advocate the use of Morse decompositions, which
are robust with respect to perturbations, to encode the topological
structures of the vector field in the form of a directed graph, called
a Morse decomposition connection graph (MCG). While an MCG
exists for every vector field, it need not be unique. We develop the
idea of a τ map, which decouples the MCG construction process
and the configuration of the underlying mesh. This, in general, re-
sults in finer MCGs than mesh-dependent approaches.

To compute MCGs effectively, we present an adaptive approach
in constructing better approximations of the images of triangles in
the meshes used for simulation. These techniques result in fast and
efficient MCG construction. We demonstrate the efficacy of our
technique on various examples in planar fields and on surfaces in-
cluding engine simulation data.

Keywords: Vector field topology, Morse decomposition, multi-
valued map, connection graph

1 INTRODUCTION

Detecting patterns of fluid flow, i.e., feature-extraction, is an impor-
tant topic in vector field visualization with many applications [17].
Extracting and visualizing vector field topology has important ap-
plications in Computational Fluid Dynamics (CFD) [13], weather
prediction, tsunami and hurricane study, and airplane design. In
particular, fixed points, recirculation zones or periodic orbits can be
both desirable [2] or undesirable [12] in engine simulation, depend-
ing on their location.

Past work, such as the extraction of the vector field topologi-
cal skeleton [7, 8] and Entity Connection Graph (ECG) [2], which
is a superset of the topological skeleton with periodic orbits being
considered, defines vector field topology as fixed points, periodic
orbits and the separatrices connecting them. However, analysis and
visualization of vector field topology based on individual trajec-
tories can raise questions with respect to interpretation. The dis-
crete nature of fluid flow data poses several challenges. Firstly, data
samples are given at discrete locations, e.g., only at cell vertices or
cell centers. Interpolation schemes are then used in order to recon-
struct the vector field at locations between the given samples. Also,
the given data samples themselves are numerical approximations,
e.g., approximate solutions to a set of partial differential equations.
Thirdly, the given flow data are often only a linear approximation
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of the underlying dynamics. Finally, the visualization algorithms
themselves, e.g., streamline integrators, have a certain amount of
inherent error associated with them. In short, how can we be sure
that what we see is authentic when extracting and visualizing the
topological skeleton of flow field? Could the error inherent to mul-
tiple numerical approximations produce misleading information?
Figures 1 and 2 provide examples in which proper interpretation
can be difficult when performing analysis based on individual tra-
jectories.

In Figure 1, a number of vector fields have similar appearances
(top) despite having rather different vector field topologies (bot-
tom). How can we be sure there is no periodic orbit, or only one
periodic orbit in the flow? Figure 2 (left) shows an example in
which one of the separatrices starting from the saddle in the bot-
tom of the flow connects to one of the sources in the upper right
corner of the flow. Due to the numerical errors of the streamline in-
tegrator, the separatrix can connect to either source. Figure 2 (right)
shows a field containing one saddle and two center-like fixed points.
A small perturbation can result in the incorrect extraction of these
fixed points. If they are detected as highly curled foci, the separatri-
ces starting from the center saddle are supposed to reach them in a
certain amount of time (or distance). However, this may not happen
due to the limit of the maximum distance of tracing allowed.

In order to address these important challenges, we present a
novel, robust algorithm for the representation, extraction and vi-
sualization of flow topology. In particular, we incorporates funda-
mental ideas from dynamical systems, the notion of Morse decom-
positions [3, 11], which can be represented by an acyclic directed
graph, given the spatial discretization of the phase space (a polyg-
onal domain). The nodes in the graph, referred to as Morse sets,
contain all the recurrent dynamics of the vector field. The edges
indicate how the flow moves from one polygon to the next. This
graph which encodes the global dynamics is called the Morse de-
composition connection graph (MCG). An MCG is stable with re-
spect to perturbation, which makes it possible to provide rigorous
interpretation of its meanings. In contrast, trajectory-based topol-
ogy representations are not.

Chen et al [2] construct Morse decompositions based on the be-
haviors of the vector field along edges of the triangles. Because
the triangulation is not adapted to the vector field, this can result in
coarse Morse sets (Figure 3, top). In this paper we exploit a tempo-
ral discretization, which we refer to as a τ-map, by integrating the
vector field for a finite amount of time, though we allow this time to
be spatially dependent. This results in finer MCGs (Figure 3, bot-
tom) from which we can extract additional information about the
topological structure of the dynamics of the flow.

This approach yields the following advantages. First, rather than
extracting discrete, singular streamline-based segmentations of the
flow, this approach detects regions of segmented flow that are less
misleading with respect to their interpretation. Second, more rig-
orous statements about the dynamics of the underlying flow can be
made because Morse decomposition accounts for the numerical er-
ror inherent in the vector field data [11]. In other words, a well
defined error, ε > 0, can be bounded and included into the map
of the flow domain. We point out that addressing such uncertainty
in visualization was identified as one of the most important future
challenges by Johnson [9].

The key challenges with this approach are choosing an appropri-
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Figure 1: Noise and piecewise linear representations of vector fields
can cause difficulties when extracting the nodes in vector field topol-
ogy, such as fixed points and periodic orbits. The three fields look
alike (top), yet their vector field topologies are very different (bottom).
(a) a center; (b) a repelling focus; (c) a fixed point and a periodic
orbit. We make use of the periodic orbit extraction algorithm of Chen
et al. [2] to detect periodic orbits in the example fields shown in this
paper.

ate spatial discretization of the flow and constructing a good multi-
valued map, which is the discrete outer approximation of a τ map,
from which we extract the Morse sets–two topics addressed in this
paper. The work presented here yields the following benefits and
contributions:

• A sound, theoretical framework based on Morse decomposi-
tions from which more certain and rigorous statements can be
made with respect to the extraction of flow topology.

• A means to get finer Morse decompositions of a given vector
field using the idea of a τ map.

• A heuristic implementation on the efficient construction of
the multi-valued maps and consequent fine Morse decompo-
sitions.

• The application of the proposed topological analysis tech-
nique to both analytical planar data and application-oriented
data sets including engine simulation data from CFD on 3D
surfaces.

The rest of this paper is organized as follows. Section 2 provides
a brief review of related work on vector field topology. Section 3
introduces the Morse decompositions and multi-valued maps. Sec-
tion 4 describes an algorithm to compute the multi-valued maps.
Section 5 presents the algorithm for MCG construction. Section 6
shows the utility of our approach to the engine simulation data fol-
lowed by a summary and discussion of possible future work in Sec-
tion 7.

2 RELATED WORK

Helman and Hesselink introduced the visualization community to
the notion of flow topology in 1989 [7] and 1991 [8], respectively.
Their analysis included the detection, classification, and visualiza-
tion of fixed points in planar flows. They applied their algorithms
to both steady-state and unsteady flow. They represented time as a
third spatial dimension for the case of time-dependent, planar flow.

Extraction of Fixed Points: Most fixed point detection algo-
rithms are based on piecewise linear or bilinear approximation.
Tricoche et al. [25] and Polthier and Preuß[16] give efficient meth-
ods to locate fixed points in a vector field. These methods do not
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Figure 2: Noise, piecewise linear approximation and discretiza-
tion can cause difficulties when extracting the connections between
nodes in a vector field topology, such as separatrices. In (a), it is not
clear which of the three fixed points in the top is connected to the
bottom saddle. In (b), it is difficult to determine whether the saddle is
connected to the fixed points even after a long integration.

properly represent local topology if nonlinear behavior is present.
Scheuermann et al. [18, 20] choose a polynomial approximation in
areas with nonlinear behavior and apply a suitable visualization–
streamlines seeded at the fixed points with additional annotations.

Extraction of Periodic Orbits: Wischgoll and Scheuer-
mann [28] present an algorithm for detecting periodic orbits in
planar flows, which are of interest because they may indicate re-
gions of recirculating flow. It is based on monitoring streamlines
as they enter, exit, and re-enter cells of the vector field domain.
We urge the reader to use caution when interpreting the visualiza-
tion results. This is because a spatial dimension inherent to the
applied domain has been left out of the analysis. Wischgoll and
Scheuermann [29] extend their previous work [28] of detecting pe-
riodic orbits to 3D vector fields. The algorithm is based on prevent-
ing infinite cycling during streamline integration. This approach
has also been extended to time-dependent flows by Wischgoll et
al. [30]. At each time step, periodic orbits are extracted. Afterward,
a time-dependent correspondence between individual streamlines
is computed. Theisel et al. [23] present an alternative approach to
compute periodic orbits. A 2D vector field is transformed into a
3D vector field, which can be done by representing time as a third
spatial dimension. Then streamsurfaces are seeded in the 3D do-
main. Finally, periodic orbits are detected by intersecting stream-
surfaces. The difference to previous work [28] is that this approach
avoids mesh-based dependency, e.g., examining and testing indi-
vidual mesh polygons. Chen et al. [2] propose a novel periodic
orbit extraction algorithm based on Morse decomposition, which
can detect periodic orbits that do not connect with any fixed points
efficiently.

See Laramee et al. for a complete overview of topology-based
flow visualization research [13]. In general, previous topology ex-
traction techniques rely on linear algebra in order to detect topolog-
ical features of vector fields without regard to the numerical uncer-
tainty described in the introduction.

3 BACKGROUND

In this section, we present a compact summary of the dynamical
systems theory upon which our work is built.

3.1 Morse Decompositions
We are interested in describing the topological structures of the flow
generated by a vector field ẋ = f (x) defined on a triangular surface
X .

However, the information we are given consists of a finite set of
vectors

{ fd(vi) | vi a vertex of X} (1)



Figure 3: A comparison of the obtained Morse sets of gas engine
simulation data with the geometry-based map (top) and a multi-
valued map with dτ = 0.5 (bottom), respectively, where dτ is the spa-
tial discretization of the trajectory integral. The colored regions in-
dicate the Morse sets. The triangles in the same Morse set are
displayed in the same color. The gray shaded regions indicate the
gradient-like flow. Observe that using the τ map results in smaller
isolated regions in which we can further extract and identify topolog-
ical structures of the flow.

obtained either by a large numerical simulation or from experimen-
tal data. This means that at best we can assume that we have a
uniform bound on the errors of the observed vector field versus the
true vector field, that is for each vi,

|| f (vi)− fd(vi)|| ≤ ε. (2)

In addition, since we are only given the data (Eq.1) we extend fd to
a vector field on X by some means of interpolation (typically linear
interpolation). Assuming that f is well approximated by fd it is
reasonable to assume that the bounds of (Eq.2) are global, that is
|| f (x)− fd(x)|| ≤ ε for all x ∈ X .

The easiest way to encode the aforementioned information is to
consider a family of vector fields F defined on the surface X and
parameterized by some abstract parameter space Λ. We assume
that for each λ ∈ Λ, the vector field ẋ = F(x,λ ) gives rise to a flow
ϕλ : R×X → X .

In this setting we assume that there exists parameter values
λ0,λ1 ∈Λ such that f (x) = F(x,λ0) and fd(x) = F(x,λ1). Bifurca-
tion theory tells us that even if λ0 ≈ λ1, the orbits, i.e. fixed points,
periodic orbits, separatrices, of ϕλ0

and ϕλ1
need not agree. The im-

plication is that computing such orbits for the vector field fd does

not imply that these orbits exist for the true vector field f (Figure 1
(c)).

This leads us to weaken the topological structures which we use
to classify the dynamics. A Morse decomposition of X for a flow
ϕλ is a finite collection of disjoint compact invariant sets, called
Morse sets [11]

M(X ,ϕ) := {Mλ (p) | p ∈ (Pλ ,�λ )} ,

where �λ is a strict partial order on the indexing set Pλ , such that
for every x ∈ X \∪p∈PMλ (p) there exist indices p� q such that

ω(x)⊂Mλ (q) and α(x)⊂Mλ (p).

It is easy to check that any structures that are associated with re-
current dynamics of ϕλ , i.e. fixed points, periodic orbits, chaotic
dynamics, must lie in the Morse sets. The dynamics outside the
Morse sets is gradient-like. Morse decompositions of invariant sets
always exist, though they may be trivial, i.e. consisting of a single
Morse set X .

Observe that since Pλ is a strictly partially ordered set a Morse
decomposition can be represented as an acyclic directed graph. The
nodes of the graph correspond to the Morse sets and the edges of
the graph are the minimal order relations which through transitivity
generate �λ . This graph is called the Morse decomposition con-
nection graph and denoted by MCGλ .

Multivalued Map 
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Figure 4: The pipeline of computing the Morse decomposition of a
vector field. The input is a vector field V defined on a triangle mesh X .
The output is the Morse decomposition of the vector field represented
as the Morse decomposition connection graph (MCG).

3.2 Computing Morse Decompositions
We now turn to the question of how to compute MCGs. The first
step is to move from the continuous time of a flow to discrete time
of a map. This leads to the following definition.

Definition 3.1 Let τ : X → (0,∞) be a continuous map. A τ-time
discretization of the flow ϕ is a map fτ : X → X defined by

fτ (x) := ϕ(τ(x),x).

Kalies, Mischaikow, and Mrozek (work in progress) have proven
that S is an isolated invariant set for ϕ if and only if S is an isolated
invariant set for a τ-time discretization fτ . Thus, finding Morse
decompositions for the flow ϕ is equivalent to finding Morse de-
compositions for fτ .

The fact that X is a triangulated surface provides us with an ap-
propriate discretization in space. Let X be the triangulation of X .
We will approximate fτ using a combinatorial multi-valued map
F : X −→→X , that is a map such that for each triangle T ∈X , its
image is a set of triangles, i.e. F (T )⊂X . From the point of view
of computation it is useful to view F as a directed graph, we de-
note the equivalent directed graph by DGτ . The vertices of DGτ
are the triangles and the edges indicate the images of the triangles.
Notice while DGτ is not the same as the Morse decompositions, de-
spite the fact that both are directed graphs (Figure 5). In fact, Morse
decomposition is derived from DGτ .

The correct notion of approximation is given by the following
definition. Consider fτ : X → X . The combinatorial multi-valued
map F : X −→→X is an outer approximation of fτ if
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Figure 5: This figure illustrates an example of a multi-valued map
(left) and the derived MCG (right). The flow is defined in the shaded
region only. The edges in the multi-valued map demonstrate the
mapping relations of the polygons. The multi-valued map forms a
directed graph (not shown in this figure), which we use to compute
the Morse decomposition and construct the MCG (right).

fτ (T )⊂ int(|F (T )|)

for every T ∈X where |F (T )| := ∪R∈F (T )R.
Observe that the definition of an outer approximation requires

a lower bound on the set of triangles in F (T ), but not an up-
per bound. In general larger images of F are easier to compute.
For example, one can obtain an outer approximation, by declaring
F (T ) = X for all T ∈ X . However, the larger the image the
poorer the approximation of the dynamical system of interest, fτ .

Using this machinery we can describe the pipeline for our
method for computing an MCG. First, we choose a τ-map, fτ . Sec-
ond, we compute a combinatorial multi-valued map F which is an
outer approximation of fτ to get DGτ . Next, we extract the strongly
connected components of DGτ . It is shown in [1] that the union of
the triangles in the strongly connected components form isolating
neighborhoods for Morse sets. Finally, we form an acyclic directed
graph, the MCGτ whose vertices consist of the strongly connected
components of DGτ and whose edges inherit the path ordering from
DGτ . Figure 4 illustrates the pipeline.

Figure 6 shows an example MCG from an analytical vector field
generated by Eq. 3.

V (x,y) =

(

y
−x+ ycos(x)

)

(3)

The definition of an outer approximation and the fact that the tri-
angles in the strongly connected components of F form isolating
neighborhoods for the Morse sets demonstrate why the MCG re-
mains constant under small perturbations of the vector field. Since
fτ is a continuous map and each triangle T is compact, the image
fτ (T ) is a compact set. If F is an outer approximation, then by de-
finition fτ (T ) is contained in the interior of the set |F (T )|. Thus,
this property will also hold for any sufficiently small perturbation
of fτ , which means that given a DGτ for fτ we have the same DGτ
for any sufficiently small perturbation of fτ . Of course, we can go
one step further and insist that an ε-neighborhood of fτ (T ) be con-
tained in |F (T )|. We will in general get a coarser DGτ , but the
resulting Morse decompositions will be valid for any vector field
whose τ map lies within ε of fτ .

Among the module of the pipeline, computing strongly con-
nected components of a directed graph can be implemented using a
standard graph algorithm [4], and the MCG construction can be im-
plemented using the algorithm proposed in [10]. We will describe
how to construct the multi-valued map efficiently in Section 4.

4 COMPUTING THE MULTI-VALUED MAP

We now describe the computational model of our system. In this
model, the underlying domain is represented by a triangular mesh.
Vector values are defined at the vertices, and interpolation is used
to obtain values on the edges and inside the triangles. For the pla-
nar case, we use the popular piecewise linear interpolation method
of Tricoche et al. [25]. On curved surfaces, we borrow the inter-
polation scheme of Zhang et al. [32] which guarantees vector field

(a)

(b) T he MCG (c) T he ECG

Figure 6: This figure illustrates the Morse decomposition of an ana-
lytical vector field defined by Eq.3 over the region {(x,y)|max(|x|, |y|) <
11π} (a). There is one source in the region enclosed by five periodic
orbits [31]. The colored regions indicate the isolating neighborhood
of the extracted Morse sets. Different colored regions refer to differ-
ent Morse sets. The gray shaded region indicate the regions with
gradient-like flow. (b) shows the MCG derived from a multi-valued
map of this field with dτ = 40. The nodes of the MCGs are the isolat-
ing neighborhoods of the Morse sets, which are triangulated regions.
The green dots indicate the source Morse sets, red dots refer to sink
Morse sets and blue dots represent saddle Morse sets. (c) shows
the ECG of the vector field. The nodes of the ECG consists of the
individual fixed points or periodic orbits.

continuity across the vertices and edges of the mesh. These inter-
polation schemes support efficient flow analysis operations on both
planes and surfaces.

A multi-valued map encodes the dynamic behavior of a vector
field. Accurately constructing the combinatorial multi-valued map,
i.e. a directed graph DGτ , of a vector field is crucial for computing
the Morse decomposition of the vector field.

Chen et al. [2] describe an approach to compute the DGτ of a
given vector field V by considering the flow behavior across the
edges of each triangle and add the directed edges to and from neigh-
boring triangles accordingly (Figure 7, left). We refer to this ap-
proach as the geometry-based map, which differs from a multi-
valued map based on a given τ map. In the remainder of this paper,
we will refer to the directed graph obtained using this method as
DGg.

DGg often results in a rather coarse outer approximation of the
underlying dynamics, i.e., Morse sets that contain multiple fixed
points and periodic orbits or no structures at all. For instance, the
Morse sets extracted using DGg of the gas engine simulation data
set are shown in Figure 3. The colored regions indicate the isolat-
ing neighborhoods of the Morse sets. Different color regions in-
dicate different Morse sets. The gray shaded regions indicate the
regions of gradient-like flow. We observe that with the geometry-
based method (first row) there are two Morse sets in the cylinder
and intake port of the engine covering a large portion of the surface
geometry. This makes subsequent analysis, such as ECG computa-
tion [2], more difficult and computationally expensive.

In order to obtain finer Morse sets, we make use of the idea of
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Figure 7: This figure illustrates the difference between two MCGs
that are constructed either based on behaviors on the edges (left)
or according to a multi-valued map (right). Each node corresponds
to a triangle of the mesh. The left column shows the construction
of DGg using the geometry-based map. The right column shows the
construction of DGτ of a multi-valued map with τ > 0. The red triangle
T = T1 is the starting triangle, the light brown curved closure is the
real image of T , the blue dash triangle is the approximation of the
real image, the light brown dashed lines show the mapping of the
vertices of T .

multi-valued maps introduced in Section 3.2 to compute the di-
rected edges of the DGτ . A three-step procedure of this idea is
described as follows (Figure 7, right).

• First, trace from random samples of each triangle T of the
surface X with τ time.

• Second, reconstruct the advected triangle IT based on the
new positions of the samples.IT will intersect with a set of
triangles Ti of the surface X .

• Third, add the directed edges from the node of T to the nodes
of Ti in the directed graph DGτ .

To implement the idea of a multi-valued map, we extend the time
discretization τ into a spatial discretization dτ . That is, for each
sample of the triangle T in X , we keep track of the integral length
of the sample following the flow until the integral length is larger
than dτ . Due to the continuity of the vector fields in 2D planes
and on 3D surfaces discussed in this paper, using the constant dτ to
perform the tracing is equivalent to a continuous τ inside the vector
field.

4.1 τ Map Guided Outer Approximation
The most difficult step of the three step procedure is how to com-
pute the approximate advected triangle, IT , of a triangle T ⊂ X
and obtain the directed edges associated with the node representing
T in the DGτ efficiently. From Section 3.2, it means to compute
the outer approximation of IT under X . We now describe several
methods to solve this problem.

The first approach is to sample a number of points inside a tri-
angle T and keep track of their images under the flow after a dis-
tance dτ . The set of the triangles containing the ending positions of
these samples form an approximation of the advected triangle IT .
However, it is difficult to determine the number and location of the
samples necessary for each triangle to obtain an accurate approxi-
mation of the image of the triangle with respect to the flow. And it
is rather computationally expensive.

The second method is derived in Section 3.2. We approximate
the convex hull of the image IT through reconstructing an advected
triangle T ′ using the three advected vertices of the original triangle
T . More specifically, we trace the three vertices v1,v2,v3 of T with
dτ distance and obtain v′1,v

′
2,v
′
3. Then, we compute the approxi-

mate IT by connecting v′1,v
′
2,v
′
3 sequentially to form T ′. T ′ will
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Figure 8: This figure demonstrates a case of a distorted image of
a triangle T consisting of v1, v2 and v3 using a large dτ . The red
closed curve represents a periodic orbit. The colored dash lines in
the left figure show the trajectories of the two vertices. The light
brown curved closure in the right figure shows the real image IT of
the original triangle T , while the dash triangle T ′ is the approximate
image.

intersect with a set of triangles Ti, which is the outer approximation
of IT . Figure 7 (right) illustrates this approach. The blue dash
triangle is the approximate convex hull T ′, while the light brown
curved closure is the actual advected triangle IT . Although this
method can avoid placing dense samples inside a triangle, it poses
challenges. First, the approximation using the convex hull may lead
to smaller image than desired. For instance, in Figure 7 (right), IT
intersects with triangle T4,T5,T7, but T ′ does not. Second, it may
fail to produce an outer approximation when using a large τ under
a highly curled field. In Figure 8, the vertices (v1, v2 and v3) of a
triangle have been advected according to the underlying flow whose
images are v′1, v′2 and v′3, respectively. Using the convex hull, we
will obtain a triangle T ′ (the black dash triangle) while the real im-
age should be the light brown curved closure IT . In this case, the
approach leads to an incorrect approximation. Adding more sam-
ples on the boundary edges may solve these two problems, but will
also increase the computational time. Furthermore, when applied
to surface vector fields, this method requires geodesic maps to get
the closure of T ′, which can be computationally expensive.

4.2 An Adaptive Approach for Computing the Outer Ap-
proximation

In this section, we describe a method that can obtain enough infor-
mation about the image IT through the tracing of vertices without
having to compute the convex hull. We start the discussion of our
approach using the following observations. First, we trace the three
vertices v1,v2,v3 of a triangle T under the vector field V . After dτ
distance, we obtain the three advected vertices falling in three tri-
angles Ti1 ,Ti2 ,Ti3 , respectively. They form an approximation of the
image IT of T . If V is convergent, Ti1 ,Ti2 ,Ti3 either are the same
triangle (Figure 9, the first row) or share common edges. Therefore,
they are a good approximation of IT (Figure 9, T ′ in the figure of
the first row). But if V is divergent, the set of Ti1 ,Ti2 ,Ti3 may not
give rise of a continuous set of triangles of IT (Figure 9, second
row). Second, if we reverse the vector field V and obtain −V , then
the convergent flow becomes divergent and vice versa. Therefore,
in Figure 9, if we trace the vertices inside the approximate closure
(the shaded triangles in the second row) of the image IT of T fol-
lowing −V , they will gradually reach T after a distance dτ .

These observations motivate us to introduce the backward map-
ping as the complement of forward mapping when computing the
image of a triangle. Our approach then can be described as follows.
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lines in the figure of the first and the second row indicate the direction
of the forward mapping, while the dash ones in the figure of the third
row represent the direction of the backward mapping.

We first trace each vertex v of a triangle T backward with dτ , if it
falls in triangle Ti, we add the edges from Ti to the triangles of the
one-ring neighbors of v in the directed graph DGτ . Secondly, we
trace each vertex v of T following the flow and find the triangle T ′i
containing the advected vertex of v. Then, we add the edges from
the triangles of the one-ring neighbors of v to T ′i . If the advected
vertex is on an edge, we add edges from (backward) or to (forward)
the two triangles sharing this edge. If the advected vertex ends at a
vertex v′, we add edges from (backward) or to (forward) the trian-
gles of the one-ring neighbors of v′.

Although this approach tends to work well for flows when little
stretching is introduced, it may have difficulty when large stretch-
ing is present. For instance, consider a flow containing an attracting
periodic orbit. A triangle in this flow may be mapped to a narrow
tube in the triangle strip containing the periodic orbit. Figure 10
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Figure 10: This figure illustrates the stretching of a triangle T (left)
and the notion of adaptive sampling on an edge E(v1v2) (right). T is
the original triangle. The image of edge v1v2 is v′1v′2 . The dash lines
show the mapping of the samples to the points on the image.

(left) demonstrates this with an example. In Figure 10 (left) the for-
ward mapping will map a triangle T to IT contained by a triangle
strip ST . According to the aforementioned procedure, the backward
tracing will start from the vertices of ST . Observe that no advected
vertices will fall in T due to the divergence of the reversed flow.
Therefore, we can obtain at most three edges starting from T and
will miss other edges. This will result in discontinuous Morse sets.
The reason is we can not compute any sample inside the advected
triangle IT (the tube in Figure 10, left) using vertex-based advec-
tion in this case. But we also notice that in these very distorted
cases, the advected triangle IT will either intersect with the inner
edges of the triangle strip ST or situate inside a particular triangle
(Figure 9, the first row). For the latter case, the forward map will
compute the directed edges completely. For the former case, if we
can sample the intersections of IT and the inner edges of ST , then,
we can compute the missing edges by calculating the backward map
from the intersections. We thus introduce the algorithm of adaptive
sampling along an edge to calculate such intersections.

Algorithm 1: Adaptive sampling on an edge
Routine: adaptive edge sampling(v1, v2, T1, original T ,
neighbor T , V , X , dτ , L)
Input: two vertices v1 and v2, triangle T1, original T
and neighbor T , vector field V , surface X , recursion level L,
a user specified integral distance dτ
Output: edges in DGτ
Local variables: triangle t2, stack s
Begin
L← L+1;
if (L > maximum recursion level ||
||v1− v2||2 < minimum distance)
v1← v2; T1← T2;
new edge(original T , T1); new edge(neighbor T , T1);
return v1, T1;

T1←trace(v1, dτ );
T2←trace(v2, dτ );
if( T1 == T2 || share edge(T1, T2) )

v1← v2; T1← T2;
new edge(original T , T1); new edge(neighbor T ,T1);
return v1, T1;

else
push(s,v2);
v2← (v1 + v2)/2;
call adaptive edge sampling(v1, v2, T1, original T ,

neighbor T , V , X , dτ , L);
if (s 6= NULL)
v2← s
call adaptive edge sampling(v1, v2, T1, original T ,

neighbor T , V , X , dτ , L);
End

The idea of adaptive sampling on edges is explained as follows.
We first trace from the two vertices of an edge E(v1,v2) (Figure 10,
right). If the two triangles T1 and T2 containing the two advected
vertices are the same triangle or they share a common edge, then we
need not process E further. If they are not, it means that we need to
place more samples on E. We compute more samples until we get
a connected triangle strip containing the image of E. The reasoning
behind this method is based on the fact that the result of a contin-
uous object under a continuous map should be continuous. More
specifically, the image of an edge (v1v2 in Figure 10, right) under
the τ map, a continuous map, should be a continuous curve (v′1v′2 in
Figure 10, right) which is contained by a connected triangle strip.
We use a binary search along the edge to compute the intersection.
We compute more samples if the two triangles T1, T2 containing
the two advected vertices v′1, v′2 do not share a common edge and



T1 6= T2. Figure 10 (right) demonstrates the idea of this algorithm.
After combining this algorithm with the previous approach, we can
compute a more accurate multi-valued map for a given flow. We
wish to point out that due to a discrete representation, there is no
guarantee of finding a continuous map under a highly divergent flow
with a large dτ , even though we sample densely along the edges.
However, we have not experienced with this issue.

Figure 11 indicates the difference in the MCGs obtained using
the geometry-based map [2] and the method based on a τ map.
Both methods produce combinatorial multivalued maps that are
outer approximations and hence produce valid Morse decomposi-
tions. However, as is indicated in Figure 7, the τ-map approach
leads to a combinatorial multivalued map F with smaller images
and hence a finer Morse decomposition. An extremely important
point that can easily be overlooked is the freedom of choice in the
construction of F . We have chosen an approach that is a compro-
mise between accuracy of images and speed of computation. For
problems in which computational time is not a concern one can ex-
pand on the adaptive sampling technique and the choice of τ (or dτ )
to refine the images. Alternatively, if one knows that the original
vector field contains significant errors, then since the multi-valued
map need only be an outer approximation, these errors can be in-
corporated into the construction of the images of F . Thus, even
in the presence of considerable noise one can guarantee that the re-
sulting MCG is valid. Clearly, in this setting this need not be the
case for any particular trajectory such as a periodic orbit or even a
fixed point.

5 CONSTRUCTING AND VISUALIZING THE MCG
After obtaining the Morse decomposition M(X ,V ) of a vector field
V , we compute the MCG of M(X ,V ) (Figure 4). Our implementa-
tion of Kalies and Ban’s algorithm for MCG construction [10] is a
two step process. In the first step, we represent the isolating neigh-
borhood of each Morse set in M(X ,V ) as a node nM in DGτ (or
DGg for geometry-based mapping). Then, we perform a breadth
first search (BFS) starting from each of the compact nodes nMi . For
each reachable node nM j , where i 6= j, we add an edge from nMi to
nM j in MCG. In the second step, we minimize the MCG by remov-
ing all the redundant edges. For instance, if there are edges e1 =(n1,
n2), e2 =(n2, n3) and e3 =(n1, n3), then the edge e3 is a redundant
edge. We remove it from the MCG.

To visualize MCG, we need to classify the nodes. Source Morse
sets, Ri, are nodes absent of incoming edges in the MCG. Sink
Morse sets, Ai, are nodes with no outgoing edges in the MCG. Sad-
dle Morse sets, Si, are neither source Morse sets nor sink Morse
sets. The Ri’s are colored green, the Ai’s are colored red and the
Si’s are colored blue. According to the partial order determined by
the edges in MCG, we lay out the nodes such that the source Morse
sets appear at the top of graph, the sink Morse sets are placed at the
bottom of the graph and the saddle Morse sets are placed between
the source and sink Morse sets. Figure 11 (a) and (b) display the
MCGs of an analytical vector field. As a result, topological analysis
and visualization can benefit from both graph theory and traditional
geometric approaches.

Observe that some graphics applications may pursue the individ-
ual trajectory-based vector field topology without being concerned
with the fact that the obtained ECGs may not be reliable, for in-
stance, the applications in texture synthesis [26, 27] and fluid sim-
ulation [21]. As an additional step of our pipeline of vector field
analysis using Morse decomposition, an ECG [2] can be computed
based on the obtained MCG (Figure 11 (c) and Figure 12 (c)).

6 RESULTS

In this section, we provide a number of vector field analysis results
using the efficient Morse decomposition framework we introduced
previously for both planar flow and surface-based flow. The vector

(a) T he MCG using the (b) T he MCG using
geometry−based mapping a τ map

(c) T he ECG

Figure 11: This figure shows the Morse decompositions of an analyt-
ical data set. (a) The Morse decomposition of the vector field using
the geometry-based map. (b) The Morse decomposition of the vec-
tor field using a multi-valued map with dτ = 0.8. The corresponding
MCGs of the Morse decompositions are shown under the flow im-
ages. The greed dots indicate the source Morse sets, red dots refer
to sink Morse sets and blue dots represent saddle Morse sets. (c) is
the ECG of the vector field. In the ECG, the greed dots indicate the
source or repelling periodic orbits, red dots refer to sink or attracting
periodic orbits and blue dots represent saddles. We can see how the
Morse sets are refined by using the idea of τ map.

fields we show here are an experimental vector field created using
the vector field design system introduced in [2], and two engine
simulation data sets [14].

6.1 An Experimental Field
Figure 11 shows the Morse decomposition of a designed vector
field. Ten Morse sets have been extracted using dτ = 0.8. The ex-
traction takes 10.37 seconds on a 3.6 GHz PC with 3.0 GB RAM.
The triangular mesh consists of 6144 triangles. Figure 11 (a) shows
the MCG of the field using the geometry-based mapping, while (b)
shows the MCG obtained using a τ map. Both of these two MCGs
can be used to compute the ECG of the flow (Figure 11, (c)). Com-
pared to the three-layer structure of the ECG, an MCG is compu-
tational stable and has a multiple layer structure ,which provides
more information than the ECG. For instance, the MCG allows sad-
dle to saddle connections, but an ECG does not. From the result,
we observe that the geometry-based mapping approach is easy to
compute, but tends to result in coarser Morse sets, while the MCG
derived from a τ map has finer Morse sets. Furthermore, if com-
puted correctly, an ECG indicates the finest MCG, when the vector
field has a finite number of fixed points and periodic orbits, all of
which have an isolating neighborhood of their own [2].

6.2 The Engine Simulation Data Sets
The datasets we experiment on are the extrapolated boundary veloc-
ity fields and are obtained through simulation of in-cylinder flow.
What engineers expect to observe is whether the flows on the sur-



face follow the ideal patterns or not [14]. To investigate vector field
analysis and visualization techniques can provide the critical insight
that would have been difficult to obtain otherwise.

The results are shown in Figures 3 (bottom), 12 and 13, respec-
tively. In Figure 12, we observe a Morse set that has been extracted
at the back of the in-cylinder of the chamber. It shows a recur-
rent pattern there which indicates the flow starting to approximate
the ideal tumble motion. The Morse sets obtained based on a τ
map capture more desired regions with important features, while
the approach using the geometry-based map could give rise of large
Morse sets which will be difficult for engineers to identify the cru-
cial features of the flow with certainty.

Figure 12 (a) shows two viewpoints of the Morse decomposition
result from the gas engine simulation data with dτ = 1. (b) shows
the MCG of the data, while (c) shows the ECG derived from the
MCG. The gas engine surface geometry consists of 26298 trian-
gles. There are a total of 57 Morse sets. The total time to perform
Morse decomposition of this data is 220.48 seconds on a 3.6 GHz
PC with 3.0 GB RAM. The number of the edges in DGτ is 244497.
The result shown in Figure 13 is from the diesel engine simulation
with dτ = 1. The number of triangles of the diesel engine surface
geometry is 221574. There are 162 Morse sets being extracted. The
time for the Morse decomposition computation for this data set is
252.67 seconds. The number of the edges in the DGτ is 1968629.

7 CONCLUSION

In this paper, we have described an efficient computational frame-
work for computing Morse decompositions of vector fields. Our
approach makes use of a multi-valued map, an outer approximation
of a τ map, which encodes the dynamics of the vector field. Com-
pared to individual trajectory-based vector field analysis, Morse de-
composition and the associated MCG accounts for the numerical
errors inherent in the vector field data, which makes it more suit-
able for a rigorous interpretation of vector field topology. In order
to compute the multi-valued map efficiently, we make use of the
idea of backward mapping as the complement of forward mapping,
and introduce an adaptive sampling along the edges to account for
the discontinuity problem while computing the approximate image.
We show the utility of our approach in a number of applications
including an analytical data in 2D plane and two engine simulation
data sets on surfaces.

There are a number of future directions. First, the MCGs can
be used to guide the pair wise cancellation based on Conley the-
ory [2, 32]. Second, through the adaptive framework of computing
multi-valued map proposed in this paper, a series of hierarchical
MCGs can be computed. These hierarchical MCGs can be used
to guide vector field clustering, vector field compression and auto-
matic simplification. Finally, there is a need to extend the work to
time-dependent vector fields for keeping track of the features of the
flow and the applications of 3D vector fields as well.
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