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It has been held that heuristic training alone is not enough for developing

one's mathematical thinking. One missing component is a mathematical point of

view. Many educational researchers have proposed problem-based curricula to

improve students' views of mathematical thinking. The present study reports

findings regarding effects of a problem-based calculus course, using historical

problems, to foster Taiwanese college students' views of mathematical thinking.

The present study consisted of three stages. During the initial phase, 44

engineering majors' views on mathematical thinking were tabulated by a six-item,

open-ended questionnaire and nine randomly selected students were invited to

participate follow-up interviews. Students then received an I 8-week problem-based

calculus course in which mathematical concepts were problematized in order to

challenge their personally expressed empirical beliefs in doing mathematics.

Several tasks and instructional approaches served to reach the goal.

Near the end of the semester, all participants answered the same

questionnaire and the same students were interviewed to pinpoint their shift in

views on mathematical thinking. It was found that participants were more likely to
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value logical sense, creativity, and imagination in doing mathematics. Further,

students leaned toward a conservative attitude in the certainty of mathematical

knowledge. Participants focus seemingly shifted from mathematics as a product to

mathematics as a process.
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THE RELATIONSHIP OF A PROBLEM-BASED CALCULUS COURSE
AND

STUDENTS' VIEWS OF MATHEMATICAL THINKING

CHAPTER 1
THE PROBLEM

Knowing mathematics is doing mathematics and, in its broadest sense,

mathematical problem solving is nearly synonymous with doing mathematics

(National Council of Teachers of Mathematics [NCTM], 1989). The mathematical

problem, according to Halmos (1980), is 'the heart of mathematics." which means

the desire for solving problems initiates the progress of mathematical knowledge.

The central doctrine of mathematical problem solving is thinking about the

mathematical problems. As such, the teaching and learning of problem solving to a

great extent reflects the value of thinking' in mathematics. Though the publication

of the well-known book How To Solve It (Polya. 1945) began to draw public

attention to problem solving in mathematics, An Agenda for Action (NCTM, 1980),

advocating problem solving as the central flicus of school niatheniatics [italics

added], actually initiated the decade of problem solving" of the 1980s. The

Curriculum and Evaluation Standards fbr School Mathematics (NCTM. 1989). one

of the most influential NCTM publications in the l980s. further argued that

problem solving is apriniari'goal [italics added] of mathematics instruction and

an integral part [italics added] of all mathematical activity" (p. 23). While in the

recent book Principles and Standards fhr School Mathematics (NCTM, 2000),

though still regarded as an integral part of all mathematical learning, the role of

problem solving has turned to the cornerstone [italics added] of school

mathematics" (p. 182). The central role of problem solving in mathematics

education has seemingly shifted to support holistic teaching and learning.



From Problem Solving to Mathematical Thinkiii

Polya's four-phase theory sketches a blueprint for mathematical problem

solving, and heuristic strategies serve as fuel for problem-solving actions.

According to Polya, heuristics suggest the methods frequently used by

mathematicians in solving mathematical problems, and the study of heuristics has

practical' aims: a better understanding of the mental operations typically useful in

solviiig problems could exert some good influence on teaching, especially on the

teaching of mathematics" (Polya, 1945, p. 130). In the 1970s and 1980s. heuristics

were considered essential for teaching and studying mathematical problem solving.

Statistical analysis was the dominant methodology in which control and

experimental groups' behavior in employing heuristic strategies were analyzed and

compared. With few exceptions (e.g., Post & Brennan, 1976). most studies of

heuristics concurrently suggested that teaching heuristics would significantly

improve students' ability in employing heuristics to solve non-routine mathematical

problems. Though seemingly effective in a laboratory setting, study along this line

nevertheless has long been criticized by many scholars for its limited power to

prepare students to transfer the ability to new contexts (Lester. 1994: Owen &

Sweller. l989 Sweller, 1990). In addition to knowing heuristics, it has been well-

recognized that the student has to learn when" to use heuristics, a holistic view of

monitoring the problem-solving processes.

Given the insufficiency of improving students' problem-solving ability by

training them to apply heuristics, mathematics education researchers have revisited

the ultimate goals of mathematics instruction amid how problem solving fits within

the goals. NCTM (1991) contends the goals of teaching mathematics are 'to help

all students develop mathematical power" and "all students can learn to think

mathematically" (p. 21). However, problem solving alone is not enough for

developing one's mathematical thinking: metacognitive behavior and a



mathematical point of view. a view of thinking mathematically, are two missing

parts in the traditional training of problem solving (Schoenfeld, 1992). Defining the

meaning of learning to think mathematically or developing mathematical thinking

is not easy. Schoenfeld (1992) interpreted the meaning from epistemological.

ontological. and pedagogical aspects. He further indicated learning to think

mathematically means (a) developing a mathematical point of viewvaluing the

processes of mathematization and abstraction and having the predilection to apply

them, and (b) developing competence with the tools of the trade and using those

tools in the service of the goal of understanding structuremathematical sense-

making' (1994b. p. 60). Burton (1984) outlined mathematical thinking in terms of

operations. processes. and dynamics in which both inductive and deductive learning

are involved. Mason. Burton, and Stacey (1982) sketched the dynamics of

mathematical thinking as a helical model constituted of manipulating, getting a

sense of pattern, and articulating that pattern symbolically. Yet mathematical

thinking should not be mistakenly interpreted as thinking like a mathematician

because mathematicians think about mathematics in different ways. Rather.

mathematical thinking is a way of seeing the world through the perspectives of

mathematicians (Schoenfeld, 1992).

Students acquire their sense of mathematics through the experience of doing

mathematics. The major merit of developing students' mathematical thinking is

helping them to become mathematical thinkers, not merely doers or solvers. A

mathematics thinker, as compared to a doer or solver, is more likely to have a

mathematical disposition. an inductive attitude of looking for and exploring

patterns to understand mathematical structures. For a mathematical thinker, the joy

of solving problems lies in a STUCK! and AHA!' process as Mason, Burton, and

Stacey (1982) indicated rather than obtaining the correct answer. As such, a

mathematics thinker shifts knowledge acquisition to knowledge construction. acting

as an active member of the mathematics community.
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Problem Solvers' Views of Mathematical Thinkin2

The relationship between students' views or beliefs about doing

mathematics and their learning behaviors has increasingly attracted considerable

attention in recent years (Carlson, 1999; Franke & Carey, 1997; Higgins. 1 997;

Kloosterman & Cougan. 1994: Kloosterman and Stage. 1992: Schoenfeld, 1988.

1989). Studying beliefs or views of doing mathematics is based upon the

assumption that beliefs or views are potential indicators of the decision individuals

make and act as a sort of filter of strategies or approaches they would adopt while

engaging in mathematical tasks. As aforementioned, in addition to metacognitive

behavior, having an appropriate view of thinking mathematically is another

important component for developing the capacity in mathematical thinking.

Students develop their world views of doing mathematics from practical experience

which in turn may exert an impact on their subsequent learning.

On the basis of empirical investigations, some studies indicated that if

students view doing mathematics as a rigid process by following fixed and

predetermined procedures, they may be more reluctant to engage in creative

mathematical activities. On the contrary, an active view of mathematical thinking

and reasoning would potentially promote an individual's desire of being involved in

challenging tasks (Bransford, Zech. Schwartz. Barron, and Vye. 1996: Carlson,

1999: Franke & Carey, 1997: Henningsen, & Stein, 1997; Higgins, 1997,

Schoenfeld, 1983a, 1989, 1992). In a project-based study. Bransford et al. (1996)

found that middle school students' limited views of mathematical thinking were

quite similar to their teachers' views. prohibiting their selections of mathematical

operations to resolve mathematical tasks. After experiencing a SMART program in

which students' views of mathematical thinking were challenged in various ways,

students had a much greater appreciation of mathematical thinking and began to

understand how to employ mathematical tools more effectively. Moreover. through



investigating the relationship between college and graduate students' mathematical

behavior and views of doing mathematics, Carlson (1999) reported that

mathematics graduate students usually hold more expert views of mathematical

thinking (e.g.. more persistent and flexible while thinking about mathematics) than

their undergraduate peers and are more likely to attempt generic problem-solving

approaches. Franke and Carey (1997) and Higgins (1997) both found that, after

experiencing problem-solving instruction, students perceived doing mathematics

more as a problem-solving endeavor involving communicating mathematical

thinking, which exerted an impact on their subsequent learning. While locating

factors supporting and inhibiting mathematical thinking. Henningsen and Stein

(1997) contended students' mechanical views of thinking prevent them from

engaging in high-level cognitive process. By observing two students' behavior in

solving geometric construction problems before and after a problem-solving course,

Schoenfeld (1983a) suggested that beliefs about doing geometly problems

contributed to students' failure or success.

A basic understanding of the intrinsic essence of mathematical knowledge is

requisite for mathematical literacy. To reach the goal, students need to comprehend

the nature of mathematical thinking (American Association for the Advancement of

Science [AAAS], 1990). On the basis of afore-cited empirical evidence,

investigating and developing problem solvers' views of mathematical thinking are

noteworthy issues to receive further investigation.

Problem-Based Learning

The main idea of problem-based learning is to problematize mathematical

conceptsleading students to resolve problematic situations. As defined by Boud

and Feletti (1991), problem-based learning is a way of constructing and teaching

content using problems as the stimulus for student activity. But they further
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emphasized that problem-based learning is not 'simply the addition of problem-

solving activities to otherwise discipline-centered curricula, but a way of

conceiving of the curriculum which is centered around key problems in professional

practice" (p. 14). Several groups of researchers have suggested that the problem-

centered approach or research-based model, similar to the problem-based

instruction. may facilitate learners' views and capability of mathematical thinking

(Cobb. Wood, Yackel. Nicholls, Wheatly. Trigatti. & Perlwitz. 1991: Cobb, Wood.

Yackel, & Perlwitz. 1992: Fennema, Carpenter. Franke, Levi, Jacobs, & Empson,

1996: Wood & Sweller, 1996). For instance. Fennema et al. (1996) found that by

engaging 1 8 teachers in a variety of problem-solving situations and encouraging

them to talk about their mathematical thinking, fundamental changes were

identified in their beliefs about doiiig and thinking about mathematics, which in

turn helped them understand the importance of developing students' mathematical

thinking. Henningsen and Stein (1997) and Stein, Grover. and Henningsen (1996)

also reported student capacity for high-level mathematical thinking may be

achieved by using various mathematical tasks as vehicles to build student capacity

for mathematical thinking and reasoning. According to Henningsen and Stein

(1997), the nature of problems "can potentially influence and structure the way

students think [about mathematics] and can serve to limit or broaden their views of

the subject matter with which they are engaged" (p. 525). On the basis of protocol

analysis. Schoenfeld (1983a) also attributed his students' progress in problem-

solving ability to their belief change rather than gaining more knowledge. The

aforementioned findings suggest that in a problem-based learning setting. not only

learners' mathematical thinking ability, hut their views about thinking

mathematically, can be improved.

The influence of problem-based learning on students' views of mathematical

thinking may be understood in terms of Piaget's concepts of assimilation and

accommodation. Thinking mathematically is experiencing a process of struggling



for meaning (Burton, 1984), which is a place for problem-based learning. Problem-

based learning is treating mathematics topics as problematic situations, providing

students a different vantage point from which to look at doing mathematics (1-liebert,

Carpenter, Fennema, Fuson, 1-luman, Murray. Oliver, & Wearne, 1996),

encouraging students to integrate and connect their existing, but possibly isolated,

conceptions about doing mathematics. Namely, problem-based learning provides

students a variety of opportunities for assimilation and accommodation. In this

manner, a view of mathematical thinking may become an important residue of

solving problems and acquiring knowledge.

Mathematics Education in Taiwan Technological College

Though Taiwanese high school students perform well in international

mathematics contests (e.g.. International Association for the Evaluation of

Educational Achievement [lEA], 2000). the teaching of mathematics in Taiwan has

long been criticized by its exam-driven approach. Students are able to score high on

tests but a deep understanding of mathematics is lacking. The researcher of the

present study conducted a pilot study of technological college students in Taiwan

and found that they tended to consider mathematics as a matter of calculation and

view mathematical thinking as simply an act of solving mathematics problems. It

was also found that these rooted misconceptions hindered their learning in

mathematics at the college level requiring more sophisticated thinking. Their

inappropriate views of doing mathematics and mathematical knowledge proper may

have been formed by the precollege discipline in which they were largely trained to

solve multiple-choice items. Memorization and rote calculation were the major

learning modes. On the basis of the classroom teaching experience of the researcher

of the present study, students were able to get answers quickly by following short-

cut methods but were totally unaware of the structure of problems. A plausible



explanation is this behavior could he largely shaped by the college entrance

examination in which they were required to sol\/e 20 mathematics problems in 90

minutes.

The technological college graduates in Taiwan are typically expected to

meet technical and practical needs of industrial enterprises: thinking and creativity

are not emphasized in their curricula. Whereas, along with the upgrade of Taiwan's

enterprises, rote learning of this sort no longer matches the societal demand for

improving college students' capability of thinking and creativity. An educational

reform call thus has arisen in Taiwan (Chang. 1999: Kuo. 1999).

Statement of the Problem

The chief aims of this research were to investigate whether Taiwanese

technological college engineering-major freshmen's initial views of mathematical

thinking are consistent with the current view of mathematical thinking and explore

the interrelationship between a problem-based calculus course and students' views

of mathematical thinking. The major research questions of interest were:

1. What are Taiwanese technological college freshmen engineering-majors'

views of mathematical thinking?

2. In what aspects and to what extent. if any. do Taiwanese technological

college freshmen engineering majors' views on mathematical thinking change

during a problem-based calculus course?

3. What is the relationship, if any, between a problem-based calculus course

features and the development of students' views on mathematical thinking?



Significance of the Study

The present study was designed to assess college students' views on

mathematical thinking and investigate the development of students' views of

mathematical thinking during a problem-based calculus course. Students' views of

thinking about mathematics may act as a filter of doing mathematics which in turn

exert an influence on their evaluation of ability. on their desire to engage in

mathematical activities, and on their ultimate mathematical disposition (NCTM,

1989). Further, teachers' instruction may exert a certain degree of influence on

students' views of doing and thinking about mathematics by challenging their

existing belief systems (Bransford. et al.. 1996; Ford, 1994: Franke & Carey. 1997;

Higgins. 1997: Schoenfeld. 1985c, 1988. 1989). In this notion, assessing students'

views about mathematical thinking and probing how their views evolve within a

problem-based context are important components of the overall assessment of

students' mathematical knowledge.

Regardless of the outcome, the present study brings together several

significant implications to the study of mathematics education. The relationship

between beliefs about abilities in mathematics and doing and learning mathematical

problem solving has been well-documented even though there is a lack of a specific

working definition of beliefs. Although the global construct makes beliefs difficult

to measure. when specific beliefs are carefully operationalized, appropriate

methodology chosen, and design thoughtfully constructed, their study becomes

viable and rewarding" (Pajares, 1992, p. 308). Compared to beliefs about holistic

ability in mathematics, an individual's views of mathematical thinking is a niore

specific way of looking at the construct, with more reflection on an individual's

spontaneous conceptions; this perspective may be more precise and feasible to

investigate. Investigating students' views of mathematical thinking therefore is

more likely to sketch the ideal modality rooted in their mindswhat mathematical

thinking should be or should not be: yet this effort has rarely been studied.
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Secondly, a considerable amount of effort has been devoted to improving

elementary and high school students' problem-solving ability or mathematical

thinking through problem-centered or research-based learning. Few studies, if any.

have paid attention to the college level. College mathematics curricula usually

require a more advanced level of thinking. yet college teachers often find college

freshmen's mathematical thinking ability ill-prepared (Cohen, Knoebel, Kurtz, &

Pengelley. 1994). Relevant scholars (Schoenfeld, 1994a: Tall. 1991) have called for

improving college students' mathematical thinking and developing a mathematical

point of view. However, mathematical problem solving has been conducted in a

way of distinction between acquiring background knowledge and applying it to

solve non-routine problems, which is inappropriate for mathematics education

(Hiebert. et al., 1996). On the contrary, problem-based learning distinguishes it

from traditional problem solving by problematizing mathematical concepts which

means Thllowing students to wonder why things are, to search for solutions, and to

resolve incongruities. It means that both curriculum and instruction should begin

with problems. dilemmas, and questions for students" (Hiebert. et al.. 1996. p. 12).

As such, both students' problem-solving ability and their views on thinking about

mathematics may be enhanced interactively. Therefore, the present study. exploring

college students' views on mathematical thinking in a problem-based learning

setting. is a practical action exploring the interactive relationship between

curriculum and instruction at the college level.

Thirdly, the mathematics teaching in Taiwan is usually exam-driven,

emphasizing memorization and rote learning, at the cost of a moderate view of

mathematical thinking. The present study is an attempt to investigate Taiwan

college students' views about mathematical thinking and challenge their views on

mathematical thinking by problematizing mathematics, a different instructional

approach in Taiwan. The findings hopefully can generate productive thought on this

issue and draw research interest in Taiwanese mathematics education community.



CHAPTER II
REVIEW OF THE LITERATURE

Problem-based learning is a learning paradigm confronting students with ill-

structured, problematic situations in which students assume the role of the

stakeholder of these situations and teachers stimulate students' critical thinking via

probing, questioning, and challenging student thoughts (Torp & Sage, 1998).

Students' conceptual change, in this manner, can be an important residue after

engaging problem-solving activities (Heibert. et al. 1996). The purpose of the

present study is to explore in what way and to what extent a problem-based calculus

course may influence college freshmen's views of mathematical thinking, involving

relevant problem-solving aspects of mathematics. hi this chapter, recent relevant

literature is consulted on these fields in order to reveal the significant role of

individuals' views on mathematical thinking.

Heuristic Training Through the Ages

Early studies on mathematical problem solving mainly paid attention to the

effect of heuristics in learning problem solving. Heuristics, according to Polya

(1945), are means that lead to discovery. The purpose of heuristic training is to

explore the rules of discovery or invention. Such attempts can be traced back to

Descartes and Leibnitz. who dreamed of establishing universal laws for finding

certainty through building up a system of heuristics. Evidence for the validity of

Polya's heuristic rules came from early work on computer simulations of human

behavior in 1960s. Programmers found that the incorporation of general heuristic

rules not only facilitated problem solving by the computer, but closely resembled

human behavior while struggling with similar problems (Kilpatrick, 1969). At the

time, a good share of the research regarding heuristics was being done by doctoral

students (Wills. l967 Wilson, 1967, cited in Kilpatrick, 1969).
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Wilson (1967) explored to what extent subjects taught heuristics were able

to successfully implement heuristics on other domains. Subjects were given two

tasks and taught to use one of three kinds of heuristics for each: task-specific

(applicable to the training task only), means-end (shortening the gap between the

given situation and the goal), and planning (omitting details in the given situation

and working toward a proposed solution in general terms). Results showed task-

specific heuristics did not facilitate performance on the training task as Wilson

predicted on dissimilar tasks, planning heuristics were superior to the other two.

Wills (1967) investigated the effect of a two-week lesson in which two groups of

eight intermediate algebra classes were given a series of simpler problems and

encouraged to search for patterns in the problems. then further generalize the

problems. In the experimental group, students were guided by heuristic rules the

control group received no such guidance. On the posttest both groups doubled their

pretest performance, except one class in the control group who made little progress.

The outcome suggested that the heuristic methods contributed only a minor gain.

Though the findings were not as optimistic as researchers expected. the

success of these training programs in specific situations (such as in Wilson's study

planning heuristics was effective on dissimilar tasks) encouraged future effort of

research on heuristics. Further, the birth of Journal/or Research in Mathematics

Education in 1970 no doubt did provide a more public and convenient forum for

discussing relevant educational issues in mathematics. During the 1970s and 1980s,

much effort was made to test the power of heuristics by comparing subjects'

problem-solving performance between experimental and control groups (Charles &

Lester, 1984 Lee. 1982 Lucas, 1974: Post & Brennan, 1976: Vos. 1976).

Lucas (1974) reported an exploratory study attempting to investigate

heuristic usage and to analyze the influence of heuristic-oriented teaching on 30

first-year calculus students. Subjects were divided into four groups to correspond

with two experimental conditions (exposure to heuristic instruction versus no



exposure) and two testing conditions (exposure to both pre- and posttests versus

exposure to posttest only). The study was executed in three phases lasting 13 weeks

and a comparison between control group (receiving general treatment) and

experimental group (receiving heuristics) was made. The statistical outcome

showed significant differences favoring the instructional treatment in several

respects (e.g.. using mnemonic notation more frequently, separating and

summarizing data, lower frequencies of reading problem. higher scores on all four

aspects). However, data regarding students pre-instructional status were lacking.

Because intact classes were used. whether heuristic students' outperformance can

be attributed to treatment is unknown. Further, as a quantitative study, the small

sample size also limited the scope of generalization.

Aside from the above concerns, the most critical issue of Lucas' study is the

employment of the system of behavioral analysis. Subjects' problem-solving

performance in this study was coded and analyzed according to several visible

phenomena: yet this procedure may fail to reflect an individual's inner thinking

process as well as distort it. For instance, the frequency of drawing diagrams, which

is task-dependent, is not appropriate to be considered as an index of successful

implementation of heuristics. The quality of diagrams ought to be far more

important than the quantity. Moreover, it is also arguable that a subject's frequency

of re-reading problems and time of hesitation were regarded as two indicators of

difficulty. Spending less time in re-reading and hesitating was a sign of

outperformance in Lucas's study. In this manner, a slow reader might be

categorized as a poor solver. which should be inappropriate.

Within the assumption that heuristic training does enhance students'

problem solving ability is valid. some researchers asked "Are heuristics good for

all?" (Lee. 1982: Vos, 1976). Vos (1976) conducted a study to investigate the effect

of heuristic teaching by comparing three instructional modes for promoting five

heuristic strategies (drawing a diagram. approximating and verifying, constructing
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an algebra equation. classifying data. and constructing a chart). The 133 high school

students from six mathematics classes across three grade levels were randomly

assigned to one of three experimental groups: repetition treatment group (R), list

treatment group (L). and behavior instruction group (B). All students were given 20

problems over a 15-week period of time. The R-treatment group was given training

problems only without any instruction. The L-treatment group was asked to solve

assigned problems. then received extra written instructions. The student then was

allowed to retLirn to work on the original tasks after reading these written

instructions. The B-treatment group first received individual written instruction in

which a specific strategy for solving the training problem was given, then were

asked to do the same problem as the R-and L-treatment groups. ANOVA results

showed that the B-treatment group though, on the problem-solving test, exhibited

the highest proportion of occurrences of the five problem-solving strategies and

other strategies in three classes, the score was not significant higher than other

others in Algebra II class. The finding suggests that the desire to use heuristics may

not guarantee higher performance.

On the other hand, Polya's heuristics were seldom discussed on the basis of

Piagetian theory. Lee (1982) hence aimed to answer the following questions: (a) can

fourth graders at a concrete operational stage acquire and appropriately use

heuristics and (b) are there differences between early and late concrete operational

stage children while using heuristics? Through several Piagetian interviews in

which students were asked to solve balance and pendulum problems, eight fourth-

grade students were classified at early concrete operational stage, denoted by Il-A.

another eight fourth-grade students at late concrete operational stage. denoted by 11-

B. All 16 students were then randomly assigned to instruction and no-instruction

groups of four students each. The former received extra 20 problem-solving lessons

in which four heuristic strategies (understanding the problem, making a plan,

carrying out the plan. and looking back) were taught. Nine-week later, differences
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between instruction and no-instruction students heuristic behavior were analyzed.

It was found that instruction students were more likely to select appropriate

heuristics and use them effectively in more cases than their counterparts. yet this

did not guarantee their obtaining correct answers. Further, Il-B instruction students

(late concrete operational stage) were able to employ heuristics more efficiently

than Il-A instruction students (early concrete operational stage). On the basis of Vos

(1976) and Lee (1982). it therefore can be seen that heuristic training may not

significantly improve one's problem-solving ability. The issue of idiosyncrasy must

be taken into account.

Around 1980. major contributions to the research of heuristics were made

by Schoenfeld. who not only devoted himself to exploring effects of heuristics but

frankly pointed out the shortage of heuristic training. He argued that, owing to

many uncontrolled variables in experimentation, use of artificial instructional

environments may be appropriate to test the effect of heuristics (Schoenfeld. I 979b).

In his study. seven upper-division science and mathematics majors were recruited

as volunteers to participate in the study, four randomly assigned to the experimental

group and three to the control group. All subjects were asked to work on five

mathematical problems, either in the pre- or posttest, and talk out loud procedure

while solving problems. Between the pretest and posttest, five instruction sessions

were administered to all students over a two-week period; instruction was mostly

carried out through written materials and tape-recorded lectures. In each instruction

session, each student was given a tape recorder and booklet containing four practice

problems. After solving the problems, students were allowed to turn to the next

page in the booklet in which the solutions were shown and turned on the tape

recorder to listen to solutions parallel to the written solution. Thus, both groups

spent the same amount of time in solving the same problems. The heuristics group.

however, received explicit heuristics treatments. At the outset of the practice

sessions, heuristics students were given a list of five strategies and told that the
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experiment was designed try to see how the strategies assisted them in solving the

problems. Heuristics students also listened to a ten-minute tape describing the

strategies. In each written solution, the strategy used was highlighted for heuristics

students only. Further, the heuristics students practiced one specific strategy only in

each session: for non-heuristics students. the order of problems was mixed. While

solving problems, heuristics students were reminded to refer to the list of strategies

at five-minute intervals, non-heuristics students to look back at their work only. It

was found that all heuristics students did improve from pre- to posttest, whereas

only one nonheuristics student gained similar progress. The present study further

looked at protocol data on the posttest: data indicated performance of the heuristics

group was substantially different from its counterpart. For instance, on a problem

best solved by using the strategy consider a similar problem with fewer variables,"

none of the three nonheuristics students solved it. whereas three of four heuristics

students successfully solved the problem by using the strategy mentioned above.

According to quantitative data and qualitative observation on their solution, the

investigator was convinced that 'conscious application of some problem-solving

strategy does make a difference" (pp.1 82-83). Nevertheless, an issue of greater

concern is whether heuristics students' problem-solving ability really improved

after the two-week heuristics training. The present study at most suggested that the

experimental group could do better within a similar artificial setting. Regardless of

several optimistic findings, noteworthy questions remain: (a) will they do so in

unconstrained circumstances: (b) more importantly, can they transfer their training

from a laboratory to a regular classroom? For instance, as noted earlier, a student's

knowing how to use a strategy is no guarantee that the student will indeed use it.

This behavior was frequently observed in heuristics students' problem-solving

behavior during the posttest and 'the implication of this kind of behavior is

serious," Schoenfeld emphasized, 'for they point to major difficulties in taking

work like this experiment from the laboratory to the classroom" (p. 1 84).
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Rethinking Heuristics Teaching

In another article Schoenfeld (1979a) scrutinized the influence of teaching

heuristics. At the outset he confessed the existence of little evidence that general

problem-solving skills can be taught, despite the fact that mathematicians do

employ heuristics. The background for the above pessimistic statement is not clear.

It is possible that, on the basis of his personal experience in teaching heuristics and

relevant studies (e.g.. Post, 1976), Schoenfeld perceived the equivocal effect of

heuristics. However, Schoenfeld after all is an optimist about heuristics. He tried to

clarify some issues through exploring positive and negative facets of heuristics

teaching. As noted, Polya regards heuristics as a means for discovery. Schoenfeld

elaborated more thoroughly: A heuristics [italics added] is a general suggestion or

strategy. independent of subject matter, that helps problem solvers approach,

understand, and/or efficiently marshal their resources in solving problems" (p. 315).

Schoenfeld added the rationale for studying and teaching of heuristics as

follows:

1. Through the course of his career, a problem solver develops an
idiosyncratic style and method of problem solving. A systematic use
of these strategies may take years to develop fully.
2. In spite of these idiosyncracies, there is a surprising degree of
homogeneity in the approaches of expert problem solvers.
3. One could possibly extract a global problem-solving strategy,
using first the introspections of experts and then incorporating
systematic techniques of artificial intelligence.
4. This strategy can serve as a guide to the problem-solving process.
Students instructed according to this plan could shorten the long and
arduous task of arriving at these general principles themselves. (pp.
3 15-16)

The last one is the most speculative and merits further concern.
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While employing heuristics, a problem solver has to face at least three

obstacles: understanding the application of heuristics, sufficient knowledge of

subject matter involved, and ability and opportunity to think how to apply the

appropriate heuristics. It can be seen that the bulk of instruction in heuristics has

largely focused on the first one insufficient attention to the third barrier may

account for the failure of heuristic instruction. Students not only need to know

heuristics, but also must learn when to use it. This is what Schoenfeld called

"managerial strategy," a means of assessing and allocating an individual's resources.

With proper training. Schoenfeld was convinced students are able to learn to apply

heuristics in rather sophisticated ways. To elaborate on this idea further, he

established a schematic flow chart of problem-solving strategy in which the

students were considered as 'information processors" and the heuristic strategy as

an 'executive program" for the information processors. After a problem is given.

the first stage for the problem solver is Anah'sis. attempting to understand the

statement. After Analysis, hopefully one can sense the nature of the problem and

proceed to the Design stage. Design. as defined by Schoenfeld, is a master control,

monitoring the whole process and allocating problem-solving resources

efficiently" (p. 325). Once difficulty in making a plan occurs, the problem solver

steps into the phase of Exploration, which may provide new insights into the

problem and seiid the problem solver back to Anali'sis. In Exploration, the majority

of heuristics may come into play. Design is followed by Iinplenientation. a step-by-

step execution, and lastly by Verification, which may help a problem solver catch

silly mistakes or find alternative approaches. It can be readily seen that the above

framework is an extended version of Polya's four-stage theory (understanding the

problem. making a plan, carrying out the plan. and looking back).

In Schoenfeld's problem-solving class, the aforementioned flow chart was

provided for students serving as a means to approach problems: the outcome

showed students can learn essential ingredients of a managerial strategy and
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develop skills in determining appropriate heuristics. Several supportive cases were

reported, yet one should bear in mind that the class was experimental (enrollment of

eight students) only and relevant data lacking. Hence this perspective proposed by

Schoenfeld is suggestive but not conclusive, no more than establishing a rationale

and framework for teaching heuristics. The question of whether heuristics can help

students transfer their training from a laboratory to a regular classroom remained

unanswered. Many mathematics educators hold that heuristics alone can not resolve

the transfer issue" (Lester, 1 994 Owen & Sweller, 1989: Sweller. 1990).

Regardless of its inability to resolve the transfer issue, the present

theoretical article pointed out several prospective directions for further study on

problem solving. First, Schoenfeld postulated that 'How successfully one employs

a heuristic depends significantly on the way he encodes information and the

perspective he brings to the subject matter [italics added]" (p. 330). Though what

lie meant by perspective" here is not clear, based on his subsequent arguments, it

is a reasonable guess that Schoenfeld began to sense the critical role of students'

beliefs about mathematics and doing mathematics at the time. Second, Schoenfeld

also expressed a concern for the teacher. A successful problem-solving course, he

pointed out. depends on more than the compilation of the strategies which serve as

its theoretical foundation. For example. the role of affective considerations ...... (p.

333). The foresight in some sense initiated the study on teachers' beliefs about

teaching mathematical problem solving from the mid-1980s to 1990s. Thirdly.

Schoenfeld indicated that the degree of the problem solvers' confidence in solving

particular problems may affect performance. Work in this respect has mostly been

done by Pajares and Miller (1994, 1995, 1997), on the basis of Bandura's self-

efficacy theory (Bandura, 1997). Nevertheless, only quantitative methodology was

employed in this area so far. A qualitative approach may play a complementary role

in revealing how an individual's confidence relates to his or her problem-solving

performance.
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Comparison Between Experts arid Novices

Given the inability to resolve the transfer' issue, tile rationale of teaching

heuristics strategies seems to be descriptive but not prescriptive. The focus of

research in this respect then shifted to survey how expert problem solvers

successfully executed heuristics. The major question asked was What makes a

good problem solver?" If behaviors of an expert problem solver can be codified.

they might be taught to novices. As noted earlier, evidence of the validity of Polya's

heuristics came from work on computer simulation of human behavior in the I 960s.

Early work ill this area was partly done by artificial intelligence programmers (e.g..

Newell & Simon. 1972) who tried to duplicate human expertise. but the effort of

this kind was announced as a failure (Schoenfeld, 1985).

On tile other hand, studies on the issue of expert-novice differences in

various fields suggested that mental representation of problems may influence how

a problem solver interprets problems (e.g.. Silver, 1979). Yet the evidence, though

strong. is speculative, since some of these studies paid little attention to subjects'

existing differences prior to entering the studies. For example, experts in these

studies were older, more trained, more experienced, and more likely possessed a

better aptitude for the subject domain. Schoenfeld and Herrmann (1982), therefore,

conducted a study seeking to investigate experts' perception of problems in a

design avoiding the drawbacks aforementioned. Nineteen college freshmen and

sophomores participated all had similar experiences in mathematics prior to the

experiment. Eleven enrolled in a month-long problem-solving course serving as the

experimental group, while eight (control group) were paid to attend a computer

programming course which also lasted one month. In addition, nine mathematics

professors whose perceptions of the problem were treated as a model of expertise

were invited to participate in the study.
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Before the courses began, both groups performed the card sort and took a

mathematics test. One month later, they repeated the card sort and took another

mathematics test. In the card sort activities, after reading through 32 problems. all

students were asked to decide which problems. if any. were similar mathematically

in that they would be solved the same way. Between the two sortings, the

experimental group received intensive heuristics training, which stressed a

systematic, organized approach to solving problems. Problems studied in this class

were similar, but not identical, to those used in the card sort. The experimental

students were encouraged to get a feel for the problem, whereas the control group

was taught a structured, hierarchical, and orderly way to solve problems using the

computer.

According to the scores on posttest mathematical tests. the experimental

group showed considerable progress in problem-solving performance, whereas

students in the control group did not (p < .00 1). Moreover, the result also indicated

a strong change towards perception of problem structure on the part of the

experimental group. The experimental group showed a higher degree of

homogeneity with regard to deep structure of problems than that of one month

before, while the control group showed little change from pre-instruction perception.

The investigators therefore were convinced that the dramatic shift was attributed to

the instructional treatment focused on understanding and performance. Further, the

findings suggested that students' problem perception changed as they acquired

problem-solving expertise. After receiving a short period of training, both their

performance and perception became more like that of experts.

Note that the use of models of expertise in this study needs more attention.

The issue here is what an expert really means. Too often an expert is thought of as a

domain-expert who knows the subject matter thoroughly and can solve problems in

an automatic way. However. Defranco (1996) challenged this view. While studying

problem-solving behavior of eight Ph. D. mathematicians. Defranco found some of
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desired self-regulative behavior. Thus a domain-expert is not necessarily a process-

expert. As such, nine mathematics professors' perceptions of the problem in this

study being treated as a model of expertise is arguable. The definition of the expert

and types of mathematical problems posed then became an important issue for this

line of study.

in addition to individual perceptions of problems. Cooper and Sweller (1987)

also pointed out another critical factor, rule automation of problem-solving operator.

for explaining a problem solver's success or failure. Sweller and his partners (Owen

& Sweller. 1985: Cooper and Sweller. 1987; Sweller, 1989) conducted a series of

quantitative experiments to examine differences between experts' and novices'

mathematical problem solving behavior and performance. in these studies, high-

achievement high school students or successful problem solvers were seen as

experts. Those studies concurrently suggested that working memory load is an

important differentiating factor in solving problems and that this load can be

reduced by automating the problem rules. Cooper and Sweller (1987) employed the

explanation sheet, in which the significant steps for solving the problem were

explicitly demonstrated, to upgrade students' ability in applying problem-solving

operators. Results suggested students instructed in this way displayed superior

performance on the transfer problem and spent less time solving problems. though

automation occurred relatively slowly. So automation of problem-solving operators

provided another explanatory mechanism for the issue of transfer. The study proved

expert problem solvers more likely to work forward while solving problems.

whereas novices appeared to use a means-end strategy, which may have imposed a

heavy cognitive load and hence resulted in novices' failure.

Note that the mathematical problenis used in Owen and Sweller (1985) were

routine algebra problems similar to those in the textbook (e.g.. solving the algebra

problem a + h g = s, expressing a in terms of the other variables). Use of routine
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problems may have failed to glean deep insight into students' thinking process,

since students probably executed standard algebra operations soon after reading a

problem. Non-routine problems. for triggering a problem solver's invisible thought

process. therefore were needed. Schoenfeld conducted several studies to test the

power of heuristics, yet around the early 1980s, his research agenda turned to

probing students' problem-solving processes and locating factors contributing to

their failure. What Schoenfeld aimed to do was to get a microscopic view of

students' decision-making while attacking a non-routine problem. In doing so, two

students in Schoenfeld's problem-solving class (Schoenfeld, 1983b) were asked to

solve the problem below in less than 20 minutes:

Three points are chosen on the circumference of a circle of radius R.
and the triangle containing them is drawn. What choice of points
results in the triangle with the largest possible area? Justify your
answer as well as you can. (p. 371)

During the whole 20-minute session, students mostly embarked on calculation and

rarely made any significant plan. Consequently, they were not able to solve the

problem directly. Besides, progress and strategies used were not assessed and

monitored, frequently resulting in the termination after the exploratory actions

became impossible. For instance, several potential approaches did arise throughout,

any of which might have led to success, but the nature of their rejection cost them

time. Upon encountering an obstacle, they decided to explore another method in a

casual way. They could not ask themselves what can be learned from those

unsuccessful attempts. Although some correct assumptions were made (e.g., the

final answer is symmetric). they were not justified mathematically. Instead.

intuition-based empirical investigation was employed. In sum, though the students

were aware of a number of clever ideas and had access to a variety of heuristics and

algorithmic techniques, their local assessment was working well, whereas their

global assessment was poor.
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Schoenfeld attributed failure to absence of assessments and strategic

decision making. Namely. a poor managerial strategy could be seen in their

executive behavior. On the other hand, for building up a model of reasonable

problem-solving behavior (the existence of such a model could he debatable), in the

same document Schoenfeld investigated a mathematician's problem-solving

process in a similar context. The mathematician was a number theorist with a broad

mathematical background but had not dealt with geometric problems for years. He

was asked to solve a geometric problem below:

You are given a fixed triangle with base B. Show that it is always
possible to construct, with straightedge and compass, a straight line
parallel to B and dividing T into two parts of equal area. Can you
similarly divide T into five parts of equal area? (pp. 389-90)

Though he began working the problem with less domain-specific knowledge than

did Schoenfeld's students, the mathematician marshaled his cognitive resources and

ultimately was able to solve the problem. He began by making certain that the

problem was fully understood and was soon aware of other information necessary

for a solution. The plan was then made and assessed. After entering the

implementation phase, two refinements were made showing that the mathematician

was still attentive to clarification and simplification. Further, he continued to assess

the difficulty of his approaches. According to Schoenfeld. such estimation of

problem difficulty could be a major factor in an expert's decisions to pursue or

curtail various lines of exploration during the process, with one important element

the experts metacognitive behavior. Subject-matter knowledge was important in

the mathematician's success, but metacognitive or control skills provided the keys.

Aside from some potential bias (e.g., (a) students were asked to solve

problems in a short 20 minutes, working under time pressure. which may prevent

them from elaborating strategies more freely and deeply: (b) students and the
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the difference between experts and novices' problem-solving behavior.

In addition to the control skill, in another study. Schoenfeld (1983a)

explored other possible factors affecting individual problem-solving performance.

Two protocols were introduced to show two students' behavior change before and

after a problem-solving course. hi the first, two students. LS and TI-I, were given

two intersecting straight lines and a point P marked on one of them. They were

asked to show how to construct, using a straightedge and compass. a circle tangent

to both lines and having P as its point of tangency to one of the lines. It appeared

that the students had only weak background in the relevant geometric facts and

procedures. Nevertheless, the study indicated their domain-specific knowledge was

quite adequate to solve the assigned task (for instance, after videotaping, they were

given two other proof problems providing information needed to solve the above

construction problem and solved both in less than five minutes). After their initial

attempts had failed. LS and TH discussed fitting the circle in," an indication that

they did not grasp the essence of the problem. As compared to the previous study

(Schoenfeld. I 983b). the students showed better managerial behavior (analyzing a

problem before entering the exploration phase) Schoenfeld attributed their failure

not to poor control but to intuition-based empirical beliefs with respect to geometry

problems. Roughly two-thirds of the allotted time was spent with straightedge and

compass in hand and their ideas were largely generated from carefully performed

constructions.

After a one-month-long intensive problem-solving course, the same students

were asked to solve another geometry problem. They were given three points. A. B,

and C, and asked to construct two circles with the same radius, with centers A and

B. respectively, such that the common internal tangent to both circles passed

through point C. During this second problem session, a significant shift had taken

place. The two students recalled more relevant and more accurate information than
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in the first. Relevant facts were called into play when needed. Even though these

students used good sketches for generating ideas and hypotheses, they no longer

merely depended on careful constructions. According to Schoenfeld, their intuition-

based empirical beliefs had been removed: success in the latter session rested on

changes in their beliefs regarding doing geometry construction problems.

One comparative model of expertise in the third protocol, a professional

mathematician who had not done any plane geometry for years. was asked to use a

straightedge and compass to inscribe a circle in a triangle. Not surprisingly, he

solved the problem in a few steps without much struggle; his approach for deriving

information used proof-like procedures and was non-empirical in nature.

Schoenfeld (1979a) contended the student's perspective with respect to

particular problems may exert a certain degree of impact on problem-solving

behavior. This viewpoint was not elaborated further in that article, whereas it

became clearer that what he meant by perspective" is an individual's belief about

doing mathematics. Intuition-based, empirical beliefs might put a problem solver in

danger of random actions, while metacognition-based, non-empirical beliefs

(approaching the problem reasonably, though testing intuitively, and assessing

progress frequently) would send the problem solver along an avenue leading to

success.

A Framework for the Analysis of Mathematical Behavior

Learning behavior in general. mathematical behavior in particular, is a hard-

to-predict consequence of interactions alnong various cognitive and non-cognitive

factors. Exploring individuals' invisible thinking processes to the degree that

scientists pursue the laws of the universe can only be achieved from visible and

tangible phenomena. Thus, as the lesson learned from the scientific revolution, any

attempt to establish a universal rule for interpreting complicated learning behavior
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may be doomed to failure. Without a generally accepted and workable framework,

any engagement in clarifying relevant issues is likely fruitless.

Though mathematical problem solving has been explored for decades, most

of the research focused on discrete events rather than holistic, systematic

investigation. To gain insight into individual problem-solving behavior and to

locate potential variables, a long-term study involving a series of qualitative

observations and hypotheses-testing process is indispensable. Most work in this

field should be credited to Schoenfeld. As a practicing mathematician producing

theorems in topology and measure theory. Schoenfeld was deeply impressed by

Polya's ideas, yet his pleasure was lessened by his colleague who coached the team

for the Putnam exam and labeled Polya's books worthless. From then on two major

questions preoccupied his mind: (a) What does it mean to think mathematically and

(b) How can students be helped to think mathematically? Through investigating

college students and mathematicians' problem-solving behavior over several years,

Schoenfeld recognized that complicated problem-solving is not totally explained by

Polya's ideas of heuristics (descriptive but not prescriptive). Knowing heuristics

gave iio guarantee to successfully employing them. A variety of factors may be in

action while doing mathematics.

To establish a theoretical background for future analysis in problem solving

that accounts for success or failure of students' problem-solving attempts,

Schoenfeld (1985b) mapped out an explanatory framework through summarizing a

decade of efforts to understand and teach problem-solving skills. This framework

consisted of four major categories: resources, heuristics, control. and belief systems.

Performance was first subject to the richness of mathematical knowledge.

Resources contained a myriad of facts, non/routine procedures, and skills the

individual is capable of bringing to bear on a particular problem. This category

served as the database at the individual's disposal, yet the knowledge database was

static. No matter how rich the database is, the problem solver can never access it
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without some knowledge. Heuristics, according to Polya. was considered as means

to discovery. To Schoenfeld. heuristics was the tools for resourcefulness and

efficiency, strategies for students to make progress. Tints, to be resourceful.

students needed to be familiar with a broad range of heuristic techniques. To be

efficient. however, the control issue must be carefully dealt with through explicit

instruction. Any ideal control behavior included 'making plans, selecting goals and

subgoals. monitoring and assessing solutions as they evolve, and revising or

abandoning plans when assessments indicate such action should be taken" (p. 27).

Since metacognition" was widely used to describe the control issue and its related

phenomena like self-regulation. managerial behavior, and decision-making

processes. the term control" was substituted by metacognition while discussing

relevant issues thereafter.

Belief systems, the final category. were considered as subtlest. Students

failed in solving problems too often not because of a sterile knowledge base, but

because of a lack of perception of the usefulness of their mathematical knowledge,

and consequently they failed to call upon that knowledge. An invisible factor may

prevent students from accessing necessary information available in their mind.

Schoenfeld blamed this phenomenon on individual belief systems. 'Even the more

successful students often held perspectives that were deeply anti-mathematical in

fundamental ways and that had clearly negative effects on their problem-solving

behavior" (p. 13). Perception of their mathematical knowledge was shaped by their

experiences with mathematics. Therefore, their beliefs about mathematics

consciously held or notestablish the psychological context within which they do

mathematics" (p. 14). As such, belief systems are one's mathematical world views

shaping the way one does mathematics, which determine how one selects to

approach a problem, what strategies are useful, how long and how hard one will

work on it, and so on.
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Some limitations may be noted in Schoenfeld's framework. Data for

building that framework were mostly derived from talented college students in his

problem-solving class or from professional mathematicians. How this framework

can he extended to general subjects deserves more attention. Also. students'

emotional or affective factors occupied little position within the framework (belief

can only be partly classified as affective domain). This may be due to younger

students, whose performance might be significantly influenced by non-cognitive

factors, something not discussed by Schoenfeld. Even so, as noted earlier, his

framework does show a holistic, albeit not exhaustive, picture regarding what

problem solving is about.

Metacognition

Knowing mathematics is doing mathematics" has been a slogan proposed

by the mathematics community for years. whereas a gap exists between the two

extremes. Knowing a large amount of mathematical facts and procedures may not

lead students in desired directions, as noted above. In addition to facts and

procedure. to reach the destination, students need to, based on their self-perceptions

and the problem, ferret out and connect relevant knowledge. The journey should be

guided by an invisible mind-map, which monitors one's cognitive progress tightly.

This mind-map could be called self-regulation, executive control, or managerial

behavior. Or it could be designated by a psychological term. metacognition." a

subspecies ofnietamemory," one's awareness of the storage and retrieval of

information. Metacognition refers to one's knowledge concerning one's own

cognitive processes and products or anything related to them" (Flavel. 1976, p. 232).

Flavell added that metacognition referred to Thctive monitoring and consequent

regulation and orchestration of these processes in relation to the cognitive objects or

data on which they bear, usually in the service of some concrete goal or objective"

(p. 232). Over past decades researchers in various fields have been paying attention
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to individual metacognitive aspects of learning. The research on metacognition

impacted mathematics education (Flavel, 1976; GarofaJo & Lester, 1985;

Schoenfeld, 1 985c; Schoenfeld, 1 987). but there has been some confusion about the

term. One such widespread misconception is about how to distinguish cognition

from metacognition. While it may be hard to separate the two constructs, one way

to differentiate the two is that cognition is involved in doing, metacognition in

planning. choosing. and monitoring what one does (Garofalo & Lester. 1985).

Schoenfeld (1987), for sake of simplicity and precision. translated the term into

everyday language as reflections on cognition' or thinking about your own

thinking' (p. 189).

Teaching Metacognition

Good metacognitive skill may prevent students from randomly approaching

problems while doing mathematics, but can these skills be taught? The answer to

this question is far more important than the previous question: Can heuristics be

taughtT' Schoenfeld (1987) proposed a kitchen sink" approach to developing the

students' metacognitive skills, constituted by four techniques: (a) using videotapes;

(b) teachers as role models; (c) whole-class discussions of problems with teacher

serving as control": (d) problem solving in small groups. Since most students are

largely unaware of their thinking processes, and self-awareness is a crucial aspect of

metacognition, Schoenfeld suggested showing students videotapes of other students

working problems in his problem-solving class. Their reactions were intriguing:

they first pointed out stupid steps of what students in the videotapes had done, but

soon recognized that that could be themselves. According to Schoenfeld, it is easy

to analyze someone else's behavior and then to see that the analysis applies to self.

While teaching, teachers usually present the solution in a neat and clean way.

However, this produces an unexpected byproduct: students' are likely to think the
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problem should be solved in the same way if they are able to do the problem.

Consequently, the struggling processes are typically hidden from students. In the

second techniques, therefore, Schoenfeld suggested teachers work on a problem

like a novice doing the problem from scratch. gradually conducting each stage of

the solution process. During the whole process. teachers test the hypotheses and

assess the approaches frequently until the problem is done, followed by a review of

the whole solution. The primary purpose is to focus students' attention on

metacognitive behaviors. To increase students' awareness, teachers have to

minimize their intervention. When students work as a group on problems, teachers

must be a moderator encouraging them to propose suggestions and leading students

to verify all possible approaches on their own, rather than directly guiding students

to correct solutions. This whole-class activity is aimed at raising students' self-

regulation.

The fourth technique Schoenfeld proposed was dividing the whole class into

groups of three or four to work on problems. At this stage. the teacher acts like an

'intellectual coach," as Schoenfeld called it, answering questions and providing a

variety of problem-solving techniques. Teachers move around groups to investigate

and inquire about students' work by "What are you doing?" or "Why are you doing

it?" or How does it help you?" and so on. These actions force students to defend

themselves, hopefully eliciting their self-awareness and self-regulation.

For a course using these methods. Schoenfeld found clear evidence of a

marked shift in the students' problem-solving behavior. particularly in the

metacognitive aspect. Still, these theoretical ideas were offered without supportive

data. Further, the whole methodology has not been adopted by any researcher true

effect of this approach on increasing students' metacognition hence is speculative.
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Promoting Metacognitive Skills Through Pair-Work

As Schoenfeld noted, problem solving in small groups is good for

strengthening students' metacognitive skills. Although the merits of group learning

have been well documented, the effect on metacognition is little known. Goos and

Galbraith (1996) conducted a study to explore the nature of secondary' students'

metacognitive strategy use, plus how these strategies are applied when pairs of

students work together on problems. The focus was on the quality of the interaction

between two students working collaboratively on applied mathematical problems.

Use of pairs of students has its own merit in several aspects, as Schoenfeld (1985h)

indicated. First, two students working together produce more verbalization than one

because both must explain and defend their own decisions. Second, the double

check of mutual ignorance may reduce the pressure of working under observation.

Third. the requirement to produce mutually acceptable solutions could provoke

considerable reflection on their thinking.

Based on a two-week classroom observation, two senior high school

students were selected to participate in the study because they demonstrated a

capacity for verbalizing and reflecting on their thinking. According to answers on a

questionnaire probing metacognitive awareness, one student. David, perceived

himself as a student usually making mechanical errors, though he was clever and

good at mathematics. He was aware of his ability and weakness, whereas unable to

describe in detail his actions when stuck on a problem. The other student, Rick, was

also capable, slightly behind David in his speed in grasping nev ideas. He disliked

writing down ideas and calculation. but could solve many difficult textbook

examples almost entirely in his head. Their metacognitive behaviors were analyzed

through two think-aloud videotapes in which they were asked to solve four applied

mathematical problems. The protocol was analyzed under a scheme which was an

integration of Mason, Burton, and Stacey's (1985) problem solving model with
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Schoenfeld's (I 985a) episode analysis. Among the four protocols. the CRlCKET'

problem was typical and was chosen to be the research sample.

At the outset of the solving process. both boys ignored how given

conditions might be used to reach the goal, which resulted in blocks to the solution.

Prior to the stage of implementation. they failed to assess the state of their

knowledge with respect to the problem. While Rick employed an inappropriate

formula, David's monitoring skill was evident as he reminded Rick that this

formula was useless. However, Rick ignored his partner's warning and directed him

toward an unsuccessful path. During the first implementation stage, David made

several local assessments of Rick's flawed procedure and played the role of a

skeptic. Nevertheless, while entering the exploration phase, Rick became the major

source of new ideas and questioned the rationality of David's approaches. The stage

was well-structured. aiid the pair's monitoring and assessment prevented their

straying from the right track, though not thoroughly enough to grasp the key point.

After sometime. David recognized that necessary information was

overlooked, prompting him to re-read the problem statement and drew a new

diagram. This time the pair carefully checked each other's understanding of the

problem. With the discovery of new information, under Rick's investigation, David

cautiously made and carried out the plan. After David successfully performed the

calculation, Rick assessed the reasonableness of the result.

This protocol showed that Rick and David had differing, yet complementary.

metacognitive strengths: Rick as the idea generator and checker of David's

calculation, David as a plan maker and executor. Both shared the responsibility for

evaluating the accuracy and reasonableness of their result. In sum, the pair

effectively played complementary roles in this task, and the resulting control

decision led to success. The finding in some sense supported Schoenfeld's

suggestion of improving students' metacognition through group work, but one

should bear in mind that subjects in this study were carefully selected; whether
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these findings can be generalized to general subjects continues as an open question.

The study also noted that. owing to several personal insistences on wrong

procedures, David made poor decisions that guaranteed failure. This result raised a

vital issue of the role of the individual's personality in group work, a point merits

further investigation.

A Cognitive-Metacognitive Framework

In spite of the importance of recognizing metacognition in mathematical

problem solving, no systematic, holistic study has yet been done. Polya initiated the

study of heuristics in problem solving; his perception of metacognition can only be

considered implicit. In order to devise a tool for analyzing metacognitive aspects of

individual problem-solving behavior, Garofalo and Lester (1985) proposed their

cognitive-metacognitive framework for studying mathematical performance. The

framework, extended from Polya's four-phase description, comprised four

categories of activities involved in performing a mathematical task: orientation,

organization, execution, and verification. The framework distinguished itself from

Polya's four phases (understanding, planning, carrying out the plan. and looking

back) by adding assessment activities to each category. For instance, in the category

of orientation. assessment of familiarity with the problem and level of difficulty. as

well as understanding the problem, were involved. This early estimate of problem

difficulty was seen in Schoenfeld's(1983h) study of a mathematician's problem-

solving behavior. In the realm of organization. both local and global planning were

required to help a problem solver identif the main goal and subgoals. Verification

was a holistic evaluation of the previous three steps. checking their accuracy and

consistency.

Occurrence of metacognitive behavior is task-dependent it is therefore not

possible to expect these four aspects of metacognition as always involved during
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solving various kinds of problems. However, as (iarofalo and Lester indicated, the

framework can he used as a guide in selection of research tasks or design of

interview procedures. It can also be employed to organize data and interpret

findings.

Even though the role of metacognition in mathematics education has

received much attention and evoked extensive discussion. most research is

theoretical. Empirical study of this construct is fairly sparse. For instance,

Schoenfeld's "kitchen sink" approach for developing metacognitive skills and

Garofalo and Lester's framework have rarely if ever been empirically tested. To

shed more light on students' invisible thinking processes, sophisticated influence of

metacognition cannot be discontinued.

Belief Systeins

The last and perhaps the most important category in Schoenfeld's

framework is belief systems. These systems contain one's beliefs about self, the

environment, the topic. and mathematics. According to Schoenfeld, individual

belief systems are world views shaping the way of doing mathematics. Schoenfeld's

original concern about one's belief largely is on a practical facet, namely, beliefs

about solving problems, not a philosophical facet, the epistemology and ontology

issues. He was also aware that the term belief' is controversial, but the point of

departure, however, should not be controversial" (Schoenfeld, 1985b, p. 44).

Metacognitive behavior has been identified as one of main driving forces

throughout the whole problem-solving process. Schoenfeld (1987) even proposed

that the study of metacognition is the key for resolving the complicated issue of

transfer." A group of researchers (Garofalo & Lester. 1985: Lester, Garofalo. &

Kroll. 1989 Schoenfeld, 1985b, c Schoenfeld, 1987) suggested that metacognition

not only was a force driving cognitive behavior, but also connected to an
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individual's beliefs. Accordingly. the study on the relation between beliefs and

mathematical problem solving soon attracted considerable interest among relevant

researchers. On the other hand, it is hard to believe that teaching of problem solving

has any chance of success unless the teacher's role in problem solving is clearly and

unambiguously defined. Based on studies of teachers' thinking and decision-making,

it is now widely recognized that how teachers interpret and implement curriculum

is significantly, but not exclusively, influenced by their knowledge and beliefs

(Thompson, 1992). Since 1980, many studies have paid attention to teachers'

beliefs about mathematics itself and mathematics teaching and learning. The

premise underlying this endeavor was that to understand teaching from teachers'

perspectives we have to understand the beliefs with which they define their work"

(Nespor. 1987, p.323). Therefore, Thwareness of the significant role beliefs play in

cognitive behavior and ensuing interest in belief system as a topic of study appear

to have developed concurrently, yet independently, among mathematics education

researchers interested in teachers' cognitions and those interested in students'

cognition. For both groups, the study of beliefs has emerged in recent years as an

important, legitimate line of research" (Thompson, 1992, p.131).

Because of the influential role of beliefs in learning and teaching

mathematical problem solving, the relevant literature is reviewed in two dimensions:

the relationship (a) between students' beliefs about mathematics and learning

behaviors in problem solving and (b) between teachers' beliefs about mathematics

and their instructional behaviors in problem solving. Since individual views on

mathematics are one of the main themes of this thesis, the first dimension is

discussed at full length. It should be cautioned again that the term "belief is

controversial. The terms beliefs, i'ieus, perceptions, conceptions and values have

been freely used to describe the same concept. Though distinction among those

terms has not been clearly identified, for sake of the conventional usage, belief' is

adopted as the general term while discussing relevant phenomena hereafter.
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Origins of Students' Beliefs about Mathematics and Their Impact on Learning

While receiving mathematics instruction, some students might show

changes in thinking, some might not. Though factors hidden in the phenomenon

have not yet been totally coordinated, it is generally held that students' beliefs of

mathematics as a discipline and school subject matter are potential keys. How

students' beliefs impact problem-solving behavior has received much attention.

It would be naïve to think good teaching necessarily leads to good learning.

Any study on the effect of problem solving in mathematics cannot ignore students'

reactions to problem-solving environments. Individual behavior may be consciously

or unconsciously guided by existing personal beliefs. Students' beliefs of doiiig and

knowing mathematics are acquired through years of experiences at school (Lampert,

1990). Teachers' instructions not only influence students' recognition of subject

matter knowledge. but meanwhile convey particular kinds of beliefs of interpreting

and implementing that knowledge.

On the basis of previous studies of college students' problem-solving

behavior, Schoenfeld (1988) found four common but improper beliefs held by

students: (a) the processes of formal mathematics have little or nothing to do with

discovery or inventiom (b) students who understand the subject matter can solve

assigned mathematics problems in five minutes or less; (c) only geniuses are

capable of discovering. creating, or really understanding mathematics: (d) one

succeeds in school by performing tasks to the letter, as described by the teacher. To

pinpoint the origins of such fallacious beliefs. Schoenfeld conducted a whole-year

classroom observation of 12 classes. He then selected one typical class, which he

observed once a week or more for an entire school year. Two weeks of instruction

on geometry were videotaped and analyzed in detail. An 80-item questionnaire

(whose validity and reliability were not reported) was filled out by 20 students in

the target class and by 210 other students in 11 other classes. The target class scored
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well on standardized examinations, and the relationship between teacher and

students was cordial and respectful. Observation, however, revealed that the

primary goal of instruction was largely to have students do well on the statewide

exam. Doing proof problems was central to the curriculum. One construction

problem appeared on the year-end exam, but approximately 90% of classroom time

during the unit on constructions was spent with straightedge and compass.

practicing constructions. The objectives of instruction were accuracy and speed

with limited emphasis in conceptual understanding. No opportunity was given for

discussing why the constructions worked. With the stress on accuracy, students

learned to rely on empirical standards to assess the correctness of the construction.

In this manner, students were guided to perceive proofs merely as confirmations of

known facts; no creativity was considered. Students were requested to follow

strictly a two-column protocol format. In both the target class and the other 11

classes, a great deal of time was spent in the consideration of whether the form was

acceptable. As a result, students likely believed the form of expression was

paramount.

Over the full school year. it was found that students worked exercises that

could be done in a short amount of time and thus cannot be called real problems.

For example, students were expected to work 60 or more problems during a 54-

minute session. Moreover, their teacher advised: "You 'ii have to knou all your

constructions cold so you don '1 spend a lot of lime Ihinking about them [italics

added]." Students' responses therefore were not convincing. For example, one

open-ended item on the questionnaire was: If you understand the material, how

long should it take to answer a typical homework problem? What is a reasonable

amount of time to work on a problem before you know it's impossible?" Means for

the two pans of the question were only 2.2 minutes (ii = 221) and 11.7 minutes (n =

227), respectively. Students' learning of mathematics would likely be seriously

harmed by incorrect beliefs. In addition, an inconsistency was found in students'
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responses. Students were asked to respond to the statement: The math that I learn

in school is mostly facts and procedures that have to be memorized." With a scale

ranging from very true (1 point) to not at all true (4 points), this item received an

average score of 1.75the third strongest agree rating" of all questions. Yet, the

statement When I do a geometry prooL I get a better understanding of

mathematical thinking" received an average score of 1 .99, also a very strong

agreement. The seemingly conflicting responses, according to Schoenfeld. could be

interpreted to mean the former refers to mathematics inside a classroom, the latter

outside. Interviewing students' to reveal the contradiction should be an appropriate

way. yet it was lacking. Throughout the article, students' interview data were not

cited to support the researcher's arguments. weakening the strength of inferences

made.

In a companion study. Schoenfeld (1989) further explored aspects of the

relationship between students' beliefs about mathematics and their performance

with the intention of supplying quantitative data to supplement qualitative

observations reported earlier. Subjects in this study were 230 high school students

(112 females, 118 males), all enrolled in the classes of teachers who agreed to

participate and all on the academic, college-bound track. Yet selection of the

participating class was not discussed.

A questionnaire with 70 Likert-type, 4-point items and 11 open-ended

questions was developed for the study. Multiple-choice questions asked about: (a)

attributions of success or failure (b) students' perceptions of mathematics and

school practice; (c) their views of school mathematics, English, and social studies;

(d) nature of geometric proof, reasoning, and constructions (e) personal and

scholastic performance and motivation. Open questions were designed to give

students an opportunity to present more extended answers to issues of interest.

Questionnaires were administered to subjects at their teachers' convenience during

the last two weeks.
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Though the questionnaire covers various areas, only items related to belief

are discussed below. Most students considered mathematics an objective discipline

that can be mastered. They believed work. not luck. accounted for good grades and

placed much more emphasis on work than on inherent talent. The study also found

students were expected to memorize subject matter. When asked how important

memorizing was in learning mathematics, some typical answers were:

You must know certain rules, which are a part of all mathematics:
Without knowing these rules, you cannot successfully solve a
problem; Memorizing is very important, and in geometry, especially
for the final exam, because I am required to write proofs from
memory (p.344).

It is worth noting that an inconsistency between students' views of doing

geometry problems and problem-solving behavior was found. Students disagreed

with the statement: Constructions have little to do with other things in geometry

like proofs and theorems," indicating they were aware of connections between

deductive and constructive mathematics. Still, in interviews conducted concurrently

with this study, each of the 21 students in the target class attacked a geometric

construction problem using trial-and-error to verify an intuition-based conjecture,

regardless of proof-related knowledge.

Students responses to items concerning classroom practice were consistent

with classroom observations, revealing a byproduct of drill exercises. Average time

expressed by the 206 respondents to the question: How long should it take to solve

a typical homework problem?" was just under two minutes. The longest of the 215

responses to: What is a reasonable amount of time to work on a problem before

you know it's impossible?" was 20 minutes and the average of 12 minutes

manifested students' shortage of patience in doing mathematics.

The results of statistical analysis also showed students' perceptions of

mathematics differed significantly from English and social studies. Students
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believed that solving problems depended on knowing rules"mathernatics is

presumed more rule-bound than English and social studies. Yet, when asked

questions about certainty" of the three subject matters, students gave unexpected

results. Mathematics received the strongest disagreement: students held that

mathematics is the least certain subject among the three. The most likely reason for

this result is that, as Schoenfeld indicated, in school partial credit is frequently

givem hence, mathematics work is not simply right or wrong. If this result is the

case, it supports the afore-cited conjecture that students might hold two distinct

images of mathematicsone in school, concerned with rules and format only;

another (real mathematics) involving reasoning and creativity. The former could be

driven much more by students' long-term school experience, whereas the latter is

merely an image verbally conveyed by teachers or public, but which they have

never experienced. These incompatible images seem rooted in students' minds

without connection and reflection. As a result, students may fail to comprehend the

value of mathematics in daily life and human culture, one goal of education

(NCTM. 1989). A good deal of work is necessary to convert those rhetorical

advances into substantive ones.

Effort to Change Students' Views of Mathematics

Views on the nature of mathematics are shifting. For over two thousand

years. it has been seen as a body of infallible and objective knowledge, far removed

from the values of humanity. Currently, this view is being challenged (Ernest, 1991;

Hersh, I 986: Tyrnoczko. 1986) a shift that calls for corresponding action in

classrooms. As seen earlier. children normally perceive mathematics as a set of

rules and procedures in which problems are solved by applying computational

algorithms explicitly taught by the teacher. Students expect these algorithms to be

fairly routine tasks without elaborate thinking, an experience that shapes children's
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perception of mathematics as a static body of knowledge not created but replicated

in particular ways. The vision of mathematics portrayed in reform documents (e.g..

NCTM. 1989. 2000) requires students to think differently from the way they

currently do about the nature of mathematical knowledge. However, the above

traditional view of mathematics may influence their eagerness and willingness to

participate in active and meaningful leaning, essentially inhibiting them from

engaging in problem-solving tasks envisioned by current reform movements

(Garofalo. 1989: Lampert. 1990; Schoenfeld, 1983a, 1992).

Students' views of mathematics are typically described as shaped or affected, at

least in part, by their classroom teacher (Cobb. I 987: Ford. 1994: Schoenfeld,

1983a, 1988). The nature of the classroom environment strongly influences how

students view a subject, the way they believe mathematics would be done, and what

they consider appropriate responses to mathematical questions (Garofalo. 1 989).

Students' beliefs also may differ among classrooms and school systems: classrooms

with variant demographic characteristics may be influenced by similar principles

about teaching and learning. Thus Franke and Carey (1997) investigated how CGI

(Cognition Guided Instruction) affected elementary students' perceptions of

mathematics in problem-solving environments. The study summarized major

positive effects of CG! teaching as follows:

1. Children recognized and accepted a variety of solutions, as well as

assuming a shared responsibility with the teacher for learning;

2. Children's perceptions of what it meant to succeed in mathematics were

not determined for these children by speed and accuracy:

3. The children's focus on strategy and answers provided a way to determine

success, communicate mathematically. and resolve a problem-solving conflict.
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In their study. Franke and Carey defined a problem-solving classroom as

one where students have opportunities to engage consistently in problem solving.

discuss their solution strategies and build their own informal strategies for solving

problems. Problem solving has been interpreted in many different ways. Compared

with other relevant research. Franke and Carey showed a clearer picture of what

problem solving was about in their study. Yet their study heavily emphasized the

use of strategies in problem solving rather than developing students' thinking

ability to resolve new, unfamiliar problems.

Similarly, Higgins (1997) conducted a one-year investigation of the effects

of a systematic. heuristic instruction on middle-school students' attitudes and

beliefs about problem solving and on problem-solving ability. Two 6th-grade

teachers, four 7th-grade teachers and their students (11 = 137) participated. One 6th-

grade teacher and two 7th-grade teachers had received training in the teaching of

mathematical problem solving at least five years before the study. They received a

three-week problem-solving training one more time and were provided specific

coaching on the nature of problem-solving instruction. The (heuristic) students of

these (heuristic) teachers received problem-solving instruction, thus serving as an

experimental group.

Heuristic students were taught skills through explicit problem-solving

teaching. This phase of instruction was completed in five weeks. After the initial

five-week instructional phase. teachers engaged students in weekly challenge

problems involving a situation or task for which there was no immediately obvious

solution. This explicit teaching is akin to Schoenfeld's (1979b. 1980. 1982)

proposed method. whose purpose was to keep reminding students to employ

problem-solving skills. One major drawback is that while solving a problem,

students were all aware of the possible tools. Consequently, the opportunity for

developing personal, informal approaches. a quite important goal for teaching

problem solving, was precluded.
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Further, a 39-item Likert-type questionnaire. adapted from Schoenfeld

(1989). was administered to all students near the end of the school year and used to

explore relationships between students' beliefs about mathematics and their

problem-solving instruction. Three students per teacher were chosen by randomly

selecting one questionnaire. Thus a group of nine heuristic and nine non-heuristic

students were selected for follow-up individual interviewing. During these

interviews, students were asked to solve four non-routine problems by using a

"think aloud" strategy and also requested not to erase answers on the papers.

Among the 39 questionnaire items, the study found some statistically significant

differences between heuristic and non-heuristic students. The former typically saw

mathematics as more than facts and procedures to be memorized and considered it

more important to do well in mathematics than non-heuristic students did. Besides,

non-heuristic students were more dependent on textbooks or teachers to justify their

answers. While some optimistic signs were found from heuristic students'

responses. since pre-measurernent of students' initial views was lacking, it can not

be ascertained that different views between groups were solely created by the

treatment.

lii interviews, while asked for the definition of mathematical problem

solving, heuristic students usually associated it with skills learned in class, but none

had clear ideas of what was meant by problem solving, likely resulting from explicit

teaching of problem-solving skills. On the other hand, not surprisingly, "solving a

problem" or finding an answer" were identified as problem solving by non-

heuristic students.

Students' views of school mathematics were also investigated. Every

heuristic student claimed mathematics was useful and gave examples of daily

applications, but perception of mathematics' utility declined with the proficiency

level of non-heuristic students. The three high-ability non-heuristic students gave

answers similar to those given by heuristic students; low-ability non-heuristic
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students indicated they did not find mathematics useful. Students' responses to the

role of memorization in learning mathematics were quite different between groups.

Six of nine heuristic students claimed memorization was important only in some

areas: three did not believe it at all important. On the other hand, eight non-heuristic

students found memorization very important in learning, similar to the finding in

the afore-cited relevant research.

Assessment of students' views of understanding iii mathematics revealed

one difference between groups. When asked: 'How can you tell if you understand

something in mathematics?", heuristic students tended to focus on different

solutions to problems, along with ability to make generalizations and convey one's

thoughts. Six non-heuristic students usually associated understanding with speed.

Further, it is interesting to note that the two groups did not differ in the responses

on beliefs about mathematical discovery. All but two perceived mathematics as a

discipline in which one could be creative and make personal discoveries. Five from

each group claimed they had actually made discoveries on their own, but supportive

evidence was lacking and no further attempt was made to validate students'

professed statements.

The two groups differed in the length of time they said they would work on

a problem before they would believe it was impossible. The responses of heuristic

students ranged from four hours to one week: the non-heuristic students ranged

from five to 80 minutes. Heuristic students recalled the longest time they had

worked on a problem, mostly ranging from one hour to two weeks. By contrast, the

majority of non-heuristic students answered in terms of minutes. which echoes

Schoenfeld's (1989) finding.

In regard to students' ability to solve four non-routine problems, average

scores of heuristic students were generally higher than those of non-heuristic ones

on all dimensions of the four problems. Despite the optimistic outcomes, as noted

earlier, validity of problems and extent to which they related to students' curricula
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is unknown: heuristic students' performance might be boosted by familiarity with

these types of problems. As such, the conclusion that heuristic students' problem-

solving ability had been improved should be carefully made.

In addition to numerical ratings, the study also employed verbal protocols

for insight into students' thought processes aiid showed qualitative differences in

favor of heuristics students in four aspects: they tended to (a) make generalized

statements about solutions. (b) use estimation to verify reasonableness of results, (c)

verbalize solution strategies using vocabulary had learned in problem-solving

instruction, and (d) approach problems through reasoning and logic. These

qualitative differences to some extent can be regarded as one optimistic effect of

problem-solving instruction further supportive data were unreported.

Regardless of several positive findings, it should be cautioned that the

narrow perspective held by the study may be responsible for failure of heuristic

students to recognizing the real nature of problem solviiig. As noted earlier,

heuristic students were unable to characterize problem solving but associated it

with skills. Such beliefs about problem solving were cast into students' minds, as

seen in Franke and Carey (1997). This misconception may engender a belief that all

problems can and should be resolved by following extant skills or strategies.

Accordingly, students' creativity was sacrificed and developing students'

mathematical thinking through problem solving became impossible.

Teachers' Beliefs and Mathematical Problem Solving

As noted previously, students' views of mathematical thinking play a

fundamental role in involving problem-solving activities, to a great extent shaped

by teachers' instruction. As mediators of mathematical concepts. teachers must

convey contemporary views toward mathematics in order to help students

comprehend the nature of mathematical thinking. Whereas the goal cannot be
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achieved without teachers' enriched understanding and appropriate belief about this

subject. teachers' beliefs about mathematics and their potential effect on instruction

consequently have received much study. Though the main theme of this thesis

focuses on the student side, as the dual role of the researcher/instructor played in

this study, it would be a sad mistake to omit the teachers part.

Mathematics Teachers' Beliefs about Mathematics

Teachers from time to time have to face a variety of dilemmas while making

decisions in myriad situations. Even when a decision is made, their unconscious

beliefs can affect the final implementation. To explore the issue, Raymond (1997)

studied beginning elementary teachers' beliefs about the nature, learning, and

teaching of mathematics through interviewing teachers and classroom observations.

The results showed that although their beliefs were diverse, from traditional to non-

traditional, all six participating teachers expressed 'primarily non-traditional" or

non-traditional" beliefs about learning and teaching mathematics. More precisely,

they concurrently held that mathematics is best learned and taught through problem

solving, despite some of their views of it as a rigid and static body of knowledge.

Consistent with Raymonds finding, the informant in Cooney (1985), a

beginning high school teacher, professed that mathematics is useful, logical.

axiomatic and hard, which is more like a mixture of Platonist and instrumentalist

views. Conversely, his views about teaching and learning it were quite active,

repeatedly emphasizing mathematics as essentially problem solving. Raymond and

Cooney' s findings seemingly suggested that beginning teachers are likely to

espouse non-parallel, if not inconsistent, beliefs between the nature of mathematics

and teaching and learning of this subject.

On the other hand. Thompson's (1984) study of experienced teachers tells a

different story. Three participating teachers expressed consistent beliefs about the
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nature, teaching. and learning of mathematics. For example, two junior high school

mathematics teachers viewed it as an exact discipline and professed that the

teacher's role is to present the content in a clear, logical, and precise manner. On the

contrary, another participant regarded it as a challenging and rigorous subject

whose study provides the opportunity for a wide spectrum of high-level mental

activities and expressed a dynamic view that a teacher should create an open

classroom atmosphere and encourage students to guess. conjecture. and reason on

their own. From these findings it could be said that, as compared to beginning

teachers, experienced teachers' beliefs about the nature, teaching, and learning of

mathematics are more consistent.

The Relationshin Between Beliefs and Instructional Practice

In addition to investigating teachers' beliefs, researchers were also

concerned with the impact of these beliefs on instructional practice, especially

focusing on the issue of inconsistency. The three case studies in Thompson (1984)

concurrently showed that teachers' instructional behaviors were intimately related

to their professed beliefs about mathematics. The two who viewed mathematics as

an organized and exact subject tended to convey mathematical ideas in a formal,

prescriptive approach the teacher claiming mathematics is a challenging discipline

did employ a variety of problem-solving approaches to arouse students' interest. It

appears teachers' beliefs about mathematics, along with those about learning and

teaching. were the best indicators of instructional behavior. However, this is not the

case in Cooney (1985) and Raymond (1997). Fred, a beginning teacher in Cooney

(1985), while professing that problem solving was central to teaching mathematics,

expressed frustration after ten weeks of teaching and wondered whether a teacher

could actually teach problem solving. He tended to see problem solving as added-

on activities in which problems used were recreational, less tied to curricula. His
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failure in implementing problem-solving instruction may be attributed to

misunderstanding one key feature of problem solving: it should be incorporated into

ordinary academics rather than treated as extra.

Among the original six participating beginning teachers, Raymond (1997)

selected Joanna as the study target because she was a dramatic case. Her beliefs

about the nature of mathematics were fairly traditional, a predictable, certain,

absolute, and fixed subject matter having no aesthetic value: whereas beliefs about

the learning and teaching of mathematics were primarily non-traditional, professing

that problem solving is a big part of mathematics and that teachers should

demonstrate a variety of ways to look at the same question. Yet in class she

maintained a controlled, disciplined atmosphere where students were quiet and on

task. Joanna conducted a considerable amount of teacher-directed, teacher-student

dialogue during her lessons. in sharp contrast to her professed beliefs about learning

and teaching mathematics, but consistent with beliefs about its nature.

What lesson is learned from the above diverse findings? The three teachers

in Thompson (1984). whose teaching behavior were consistent with their professed

beliefs, were all mathematics teachers who had at least three years experience;

participants in Cooney (1985) and Raymond (1997), whose practice may not always

reflect their professed beliefs, were beginning mathematics teachers. Do these

results suggest that the experienced teachers' behavior is more consistent with their

beliefs, whereas the beginning teachers' behavior is not? Thompson (1992) pointed

out that A search of the literature in mathematics education revealed no single

study specific to the topic of beliefs involving both pre- and in-service teachers, or a

mix of teachers from elementaiy. middle, and high school levels" (p.131). Similarly,

it is also evident that few, if any, studies have simultaneously investigated the issue

of beginiiing and experienced teachers' consistency between their professed beliefs

and teaching behavior. A single study involving the two groups may help to verify

the above conjecture.
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In addition, two methodological issues in the research of this type are the

procedure for conducting interviews and/or classroom observations. To avoid

unexpected bias, interviews and observations need to be conducted by different

persons, or observations need to be followed by interviews. Among the afore-cited

studies, only Thompson (1984) conducted the study in this way. Also, to reveal the

actual relationship between teachers beliefs and instructional practice, adequate

observation time is necessary. Classroom observations in those studies ranged from

nine consecutive classes to a whole school year. Once methodological issues are

clarified, it no doubt would provide more clues to reconcile diverse findings.

Furthermore, differing from the afore-cited studies aiming to compare

teachers' professed beliefs to instructional practice, Chapman (1997) investigated

three teachers' metaphors in teaching problem solving and hoped to capture how

teachers experienced the teaching of problem solving in a holistic context

representative of their perspectives (i.e., their personal meanings, their personal

contexts of making sense of what they actually did in the classroom, what they

considered meaningful and important in characterizing their teaching). It was found

that participants interpreted problem solving in different ways and showed a variety

of approaches. Through interviewing and classroom observation over two-year

period, the three participants' problem-solving teaching was categorized as

'community' (developing ability to resolve conflicts through communication),

"adventure"(involving struggle, perseverance, and risk taking), and game"

(involving fun, gratification, personal skills, and challenge), respectively. The

position held by Chapman was that a metaphor is a possible interpretation of how

teachers may make sense of their teaching of problem solving. However, in what

way and to what extent the study of metaphor can be supplemented to the study of

teachers' beliefs and applied to practical mathematical teaching were not clearly

addressed.
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The Correlation Between Teachers' and Students' Beliefs about Mathematics

As noted, it is suggested that teachers' beliefs play a profound and

sophisticated role in their instructional behavior and subsequently exert a certain

degree of impact on students. Schoenfeld (1988, 1989) explored the issue, but

without direct attention to the correlation between teachers and students' beliefs.

Ford (1994) aimed to probe what beliefs teachers hold about problem solving in

mathematics and to what extent the beliefs of teachers are reflected in the beliefs of

students in their classroom. The study first found that participating teachers held

inaccurate understandings of problem solving, believing it is primarily the

application of computational skills in everyday life. Through administration of

questionnaire and interviews, it was also found that their students' beliefs about the

nature of problem solving were for the most part consistent with the views held by

their teachers. Yet a methodological drawback that may weaken the inference made

by the study is that students' pre-instruction views were not investigated at the

outset hence to what degree teachers' inappropriate views had been conveyed to

students remains unknown.

The Effect of Problem-Solving Training on Teachers' Beliefs

According to NCTM (1989. 2000), mathematics teachers are expected to

involve students in problem-solving activities. However, as seen in Ford (1994),

maiiy teachers lack appropriate understanding of problem solving. Prior to

conducting these kinds of learning activities, teachers have to experience problem-

solving training as well. How teachers perceive this kind of training is a vital issue.

If problem-solving training does not affect school teachers too much, then it is a

naive assumption that these teachers would likely view problem solving as a central

role in school mathematics. Raymond and Santos (1995) conducted a study to
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investigate how pre-service elementary teachers struggled and changed their beliefs

about mathematics in a problem-solving class. After receiving one semester of

problem-solving training in which a variety of approaches were designed to shaking

existing beliefs of doing mathematics and eliciting intrinsic reflection, the study

found that participating teachers views of learning and teaching mathematics had

been challenged, if not changed. Raymond and Santos consequently suggested this

kind of problem-solving course may help pre-service teachers to question their

belief systems. Yet, beginning teachers more often demonstrate inconsistency

between professed beliefs and practical behaviors. As such, a more important issue

is in what way and to what extent their belief shifts may contribute to their

beginning years of teaching practice. A subsequent tracing investigation therefore is

necessary.

Though not totally consistent and perhaps even controversial, the afore-cited

findings to some extent support the philosophical argument proposed by

mathematician Rene Thom: whether one wishes it or not, all mathematical

pedagogy. even if scarcely coherent, rests on a philosophy of mathematics" (cited in

Steiner, 1987, p.'7). A teacher's sense of mathematical enterprise may determine the

nature of classroom environment a teacher creates (Schoenfeld, 1992), which

subsequently exerts certain impact on students' belief about knowing and doing

mathematics. Hersh (1986) also contended that the teacher's view of how

classroom teaching should take place is strongly based on a teacher's understanding

of the nature of mathematics, not on what he or she sees as the best way to teach.

Accordingly, integrating relevant findings regarding both learning and teaching of

problem solving, by minor paraphrasing Hersh's argument (Hersh. 1986, p. 13), it

may be said the issue is not What is the best way to teach and learn?" but What is

mathematics really all about?". It seems that mathematical problem solving is more

complicated than people once thought.
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Investigation of Mathematical Thinking

The aforementioned discussion explores relationships between

mathematical problem solving and individual beliefs about mathematics. This

section specifically focuses on the issue of mathematical thinking. For all students

to learn how to think mathematically is one of major goals of teaching mathematics

(NCTM. 1991). yet the goal has not been achieved in ordinary school mathematics

instruction. Schoenfeld (1992) even indicated problem solving alone is not enough

for developing learners' mathematical thinking because two critical parts,

metacognition and a mathematical point of view. are missing. In the 1990s, several

studies thus paid additional attention to probing one's mathematical thinking, not

just to performance.

Groups of researchers (Clark & Peterson. 1986: Fennema & Franke, 1992:

Putnam, Lampert. & Peterson. 1990) suggested as teachers' knowledge of students'

thinking grew, their beliefs about instruction were modified and instructional

change occurred. It is therefore noteworthy to identify what knowledge enables

teachers to modifj instruction so that students learn mathematics with conceptual

understanding. Fennema. Carpenter. Franke, Levi. Jacob, and Empson (1996)

conducted a four-year study of changes in beliefs and instruction of2l elementary

teachers. These teachers' baseline data were gathered in the first year by classroom

observation, semi-structured interviews, and field notes. The CGI Belief Scale, a

paper-and-pencil Likert-type instrument, investigated teachers' beliefs. On the other

hand, students' baseline data (problem-solving ability, conceptual understanding,

and computational skill) were collected via project-constructed tests.

For the next three years. the 21 teachers were invited to participate in a

teacher development program (Cognitively Guided Instruction, CGI) focused on (a)

boosting their knowledge of children's mathematical thinking and (b) how students'

thinking could form a basis for development of more advanced mathematical ideas.
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In the late spring of Year 0. teachers with little or no previous exposure to CGI

participated in a 21/2-day workshop. Over the following three years, all teachers

participated in several CGI workshops with various time spans, from 21/2 hours to

two days. All content was covered by the end of Year 1 during succeeding years,

workshops focused on helping teachers review and reflect on content and students'

thinking, as well as encouraging teachers to reorganize lesson plan by referring to

students' thinking.

To survey the teachers' change during CGI, their instruction and beliefs

about mathematics teaching were both categorized into four levels and contrasted.

Despite a relation between levels of instruction and beliefs appearing obvious, no

overall pattern emerged because teachers' beliefs and instruction were not always

categorized at the same levels. Also, there was no consistency of change in belief

preceding a change in instruction or vice versa. Among the 1 7 teachers whose final

ratings were higher than their initial rating on both beliefs and instruction, six

teachers' beliefs changed before their instruction changed: five teachers' instruction

changed before beliefs, and six changed simultaneously. Consequently, it seems the

relation between alteration of instruction and beliefs is a complex issue and left

unexplored in this study.

Another important concern was whether changes in teachers' instruction

were reflected in changes in their students' learning. This study examined the issue

from two aspects. First, in the case of a teacher gaining an instructional level, it was

then investigated whether the change was followed by increase in students'

achievement. Next, for the instances in which there were increases in students'

achievement, the study subsequently considered whether those increases were

preceded by changes in the given teachers' level of instruction. Overall, among the

11 teachers whose data were completely collected over the four years, it was

reported that change in teacher's level of instruction was reflected in students'

achievement. Nevertheless, the reason why only 11 of the 21 participating teachers
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data were completely collected and the significant level of students' changes in

achievement were not addressed.

The present longitudinal study suggested the CGI program helped teachers

develop alternative beliefs in which they tended to understand and appreciate the

variety of students' thinking and strategies. Shift in belief, meanwhile, changed

their concept of their role as teachers; they came to believe their job is not to tell

students how to think, but to create an environment in which students' knowledge

and thinking grows as they engage in problem-solving activities. While correlation

between gain of beliefs and instruction was not linear, increases of both generally

contributed to their students' academic progress. One of the main purposes of this

study was to examine what outcome may occur when teachers came to understand

and appreciate students' thinking. Nonetheless, though quantitative data

demonstrated progress in achievement, they failed to reveal in what aspects

students' thinking evolved along with teachers' change in instruction and beliefs.

Follow-up qualitative investigation may shed more light on this concern.

More researchers (Cobb, Wood, Yackel, Nicholls, Wheatly. Trigatti. &

Perwitz, 1991; Wood & Sellers, 1996) conducted longitudinal investigations to

gauge effect of reform-based curriculum carried out on 2nd- and 3rd-grade students,

respectively. To echo with current mathematics education reform movement, they

developed problem-centered instruction built on a social constructivist point of

view wherein learning was seen as both acculturation and individual construction;

teacher and students mutually constructed taken-to-be-shared mathematical

interpretation and understanding. Cobb et al. (1991) had 10 second-grade classes

participating in a yearlong project situating students in a problem-centered

instruction environment. Ten volunteering teachers were invited to participate in a

one-week summer institute designed to help teachers understand aspects of their

current practice as problematic. At the end of the institute, all participants received

a complete set of instructional activities together with notes to guide their use of
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activities in classroom, along with extensive support throughout that school year.

On the other hand, eight non-project teachers participated, bypassing the summer

institute. A 33-item instrument (Cronbach alpha reliability was .96) was utilized to

assess the 1 8 teachers' beliefs about teaching arithmetic in 2nd grade and found that

beliefs of project teachers were more consistent with socioconstructivism than were

those of lion-project teachers (1 [1 7]=3 6.66. p <.0001).

Two standardized arithmetic tests (ISTEP and Project Arithmetic Test).

composed by several subscales, were administered in the 18 teachers' classrooms to

evaluate students' computational ability and conceptual understanding. According

to ANOVA analysis, project students significantly outdid non-project ones on the

ISTEP Concepts & Applications scale (F[l,332]=6.83.p <.01) and on the

Relational Scale of Project Arithmetic Test (F[l,332]67.42,p <.0001). As for the

Computation Scale of ITTEP and Instrumental Scale of Project Arithmetic Test, no

significant difference was found. in addition to students' achievement, a five-point-

scale questionnaire also assessed students' own goals and beliefs about the reasons

for success in nîathematics. indicating project students (a) were less motivated to be

superior to peers (F[1,332]= I l.07,p <.001). (b) valued attempting to understand

and collaborate more than non- project students (F[1.332]=1 l.55,p <.001). and (c)

saw less value in conforming to others' solution methods (F[ 1 ,332J=59.32, p

<.000 1).

Within the identical theoretical framework and carried out in similar manner,

Wood and Sellers (1996) compared 2nd and 3rd-grade students in problem-centered

classes for two years (project students) with those in problem-centered classrooms

for one year only (non-project students), and with students in conventional

classrooms for two years (textbook students). Result indicated project students

achieved significantly higher on the Computational Scale (F=4.48. p <.05) than

non-project and textbook students: no significant difference was found between any

of the groups on the Concepts and Applications Scale; project students significantly
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outperformed both non-project and textbook students on total test (F8. 11, p <.05).

No significant differences were found between non-project and textbook classes.

Further, project and non-project students were compared by arithmetic test,

showing insignificant disparity on the Instrumental Scale but project classes scored

significantly higher than non-project classes on the Relational Scale (1=8.86. p

<.00 1). On the Belief Scale, project students more strongly believed success in

mathematics relates to finding their own or different ways to solve problems rather

than conforming to methods shown by the teacher (/=S.20,p <.0001).

Findings reported by Cobb etal. (1991). along with Wood and Sellers

(1996), concurrently suggested a reform curriculum centered on the investigation of

problem resolution via social interaction between teacher and students may create a

microcosm of mathematical culture in which students' conceptual understanding

and thinking can be enhanced without sacrificing computational ability. Meanwhile.

project students' beliefs about doing mathematics also improved. Regardless of

optimistic outcomes, similar to a study by Fennema et al. (1996), use of

standardized achievement test and reported quantitative data failed to reveal in what

particular aspects students' thinking strategies were upgraded, a major goal of

problem-centered curriculum. Furthermore, teachers' previous experience is one

critical factor affecting the degree of success in implementing curriculum. In both

studies, however, whether the project teachers had received similar training in

problem-centered curriculum was unknown. Particularly, Cobb et al. (1991)

provided no students' baseline data. perhaps weakening credibility.

Contrary to above-cited quantitative studies probing conceptual

understanding or thinking, Henningsen and Stein (1997) employed qualitative

investigation to identify classroom-based factors shaping students' engagement in

mathematical tasks that were set up to encourage high-level mathematical thinking

and reasoning. Data in the present study were drawn from four primary school

teachers' classrooms over three years. Trained observers took detailed field notes
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on mathematics instruction and students' reactions to it. All classroom episodes

were videotaped and, following their observations, those observers created

Classroom Observation Instrument (COl) including 144 samples by referring to

field notes and videotaped lessons. The COl sketched the physical setting of

classrooms, instructional events, nature of tasks used in classrooms, behavior of the

students as they engaged in these tasks. Among the 144 samples. 58 were identified

as being set up to encourage doing mathematics and promote thinking. Based on

these COl samples, an effort was made to examine factors associated with

maintenance or decline of doing-mathematics tasks. Analysis indicated five

influential factors in maintaining student engagement at a high level of thinking and

reasoning in mathematics: (a) tasks built on prior knowledge. (b) scaffolding, (c)

appropriate time frame, (d) modeling of high level performance, and (e) sustained

press for explaining and meaning. The findings show teachers' dominant role in

proactively supporting students' high-level engagement.

Factors leading to the decline of students' engagement were also identified.

It was found that the removal of challenging aspects of the tasks, shifts in focus

from understanding to colTectness or completeness of answers, and inappropriate

amounts of time allotted to the tasks were three major factors resulting in students'

thinking processes declining into the use of procedures without connection to

meaning and understanding. Among the three, the first one is particularly

noteworthy. Teachers and students perceived demanding tasks as ambiguous and

risky; hence it was often seen that teachers reduced complexity of tasks so as to

manage the accompanying anxiety. All the same. when this was done, cognitive

demands were weakened and students' cognitive processes fell into predictable and

mechanical thinking. Inappropriateness of tasks likewise caused both a decline from

doing mathematics into unsystematic exploration and to almost no mathematical

activity. Plus, lack of motivation. prior knowledge. or suitably specific expectations

were categorized as reasons for inappropriate tasks.
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Despite their detailed analysis and description. Henningsen and Stein (1996)

failed to provide a satisfactory account in several respects. First, the four teachers in

their study were selected from an initial twelve teachers at four sites. Criteria for the

choice, however, were not addressed, nor was the background of these teachers.

such that insight into correlation between their training and instruction fails to

materialize. Second. interpretation demonstrated in the present study solely based

upon the COl samples and no interviews were conducted with teachers. In this

manner, prejudiced analysis might occur for lack of a two-way communication.

Third, students responses were totally lacking in this report. which may lead to a

biased situation inclined toward the teachers' side. As seen above, the present study

suggested teachers' dominated role in influencing students' engagement in higher-

level thinking (either in teaching approach or selecting of the problems). It is

generally held that students are also responsible for their learning, and learners can

never really learn without active participation. The implication made in this study to

some degree ignored the role of students play in classroom. Though the chief

purpose of this study was to provide a detailed qualitative portrait to illustrate

factors associated with tasks set up to engage students in cognitive processes and

high-level thinking, it at most provided a qualitative description rather than

interpretation. For achieving insightful qualitative understanding, both out- and

insiders' responses are indispensable.

The Use of Historical Problems to Develop Students' Mathematical Thinking

The merit of incorporating history in mathematics education has received

considerable attention and discussion for decades. Whenever the place of the

history of mathematics in the teaching of mathematics is debated, two questions are

always asked (Heiede, 1996). First, why should history of mathematics have a place

in mathematics teaching and learning? Second, what could be done to gain this
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place for integrating history into school mathematics? Among the benefits

advocated by relevant scholars, the idea of using historical problems in

mathematics teaching has received increasing attention (Avital, 1995: Barbin. 1996:

Furinghetti, 1997 Katz, 1997 Rickey, 1995: Siu. 1995a, 1995b Swetz, l995a,

1995b). In contrast to telling mathematical stories to draw interest and improve

attitudes (both are merely related to affective domain), using historical problems in

classroom is an advance of iiot only being able to benefit students' affective domain

but also to cognitive domain. The noted Norwegian mathematician Niels Henrick

Abel once said that if one wants to inake progress in mathematics, oiie should study

the masters. Mathematical concepts have continually evolved and been revised

through ages. The wisdom behind these great endeavors may provide deep iiisight

into mathematical thinking. As Ernest (1998) put it. "Mathematicians in history

struggled to create mathematical processes and strategies which are still valuable in

learning and doing mathematics" (p. 25).

Mathematical thinking is a combination of complicated processes involving

guessing, induction, deduction, specification, generalization, analogy, formal and

informal reasoning, and verification. Yet modem mathematicians and most

mathematical texts, influenced by contemporary deductivist doctrine, present the

final product in a neat and polished format, which hides the struggle. hides the

adventure. The whole story vanishes" (Lakatos, 1976. p.142). Unlike others, the

great mathematician Leonhard Euler in the 18th century was not reluctant to

demonstrate his process of discovery. As Polya (1954) applauded:

Yet Euler seems to me almost unique in one respect: lie takes pains
to present the relevant inductive evidence carefully, in detail, in good
order. 1-Je presents it convincingly but honestly, as a genuine scientist
should do. His presentation is the candid exposition of the ideas that
led him to those discoveries' and has a distinctive charm. Naturally
enough. as any other author, lie tries to impress his readers, but as a
really good author, he tries to impress his readers only by such things
as have genuinely impressed himself. (vol. 1, p. 90)
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Thus. through analyzing Euler's problem-solving process. one may shed more light

on the nature of mathematical thinking. Siu (1995a. 1995b) discussed numerous

examples of Euler's approaches to solving mathematical problems to explicate how

Euler's mathematical mind worked. For instance, in the solution of the problem of

Seven Bridges of Konigsberg, Euler illustrated how generalization and

specialization complement each other, introduced good notation, broke down the

problem into subproblems and assembled these to give a solution to the probleim

These procedures are quite typical in the work of mathematicians and worth

pointing out to students.

In addition to presenting single typical solutions, demonstrating multiple

methods for a particular problem provides an effective way to teach problem

solving and develop mathematical insights (Swetz, 1995b). Alternative solutions

for a particular historical problem from different persons. time periods, and cultures

can be assembled and assigned as exercise for students to compare. Students can be

advanced in this manner from knowing to appreciating the solutions. For instance,

prior to Newton and Leibniz, several mathematicians were devoted to studying the

tangent to a curve. Reñe Descartes and Pierre Dc Fermat. two contemporaries,

developed distinct techniques in this regard. the former geometrically, the latter in

an analytic fashion, neater and more concise. Despite the considerable criticism his

method aroused, Fermat's idea of infinitesimal and analytic style not only brought

about the birth of calculus but also ushered in the analytic era of mathematics.

Calculation of the sum of harmonic series 1+ 1/2 + 1/3 + 1/4 +..., a

common sight in modem textbooks. may also serve as a good example along this

line. The above sum is equal to infinity, usually surprising to students. Prior to

revealing the secret, students had better be encouraged to explore and discover the

fact on their own, followed by demonstration of approaches employed by ancient

mathematicians such as Johann Bernoulli. Nicole Oresme. and Pietro Mengoli,

(Dunham, 1990). As Dunham indicated. BernoullIs approach is trickier Oresme's
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idea clear and concise; the beauty of Mengolis method is its self-replicating nature.

When witnessing three different methods given by three great mathematicians,

students may learn to appreciate the intrinsic nature of each approach. In this

fashion, stereotyped thinking that mathematical problems always have only one

rigid and strict method can be eliminated and students will be convinced that

mathematics may involve creative work.

The solutions from different cultures may also serve the purpose very well.

In the Chinese mathematics classic flu Zhang Suan Shu (Nine Chapters on the

MatheniaticalArt). the area of a circle equals half the perimeter times half the

diameter without any proof or interpretation: in Archimedes's Measurement ota

Circle. the area of any circle is equal to a right-angle triangle in which one of the

sides about the right angle is equal to the radius, and the other to the circumference,

of the circle, proved by double reductio ad adsurcium. The two different styles

feature the chief distinction between ancient Chinese and Greek mathematical ways

of thinking. Ancient problems were typically empirically based and task oriented;

some early mathematics texts. Eastern or Western, only provided a solution for a

specific problem without any general approach or rationale. Students may be

encouraged to resolve the puzzle and led on a journey of discovery (Swetz. 1995b).

More important, multiple approaches and proofs collected from history serve not

merely to convince students but to enlighten" them and further broaden their

perspectives of mathematical thinking (Siu, 1993). Nonetheless, the aforementioned

theoretical arguments have yet been empirically investigated.

Summary and Conclusion

Early teaching and study of mathematical problem solving were preoccupied

with the effect of Polya's heuristic strategiesmeans leading to discovery. Yet an

overemphasis on heuristics resulted in another kind of rote learning, having only
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short-term effects. It was found that students tended to have difficulty transferring

these strategies to a new context. Oii the basis of his systematic investigation on

college and senior students, and comparison between expert and novice problem

solvers, Schoenfeld (1 985a) mapped out an explanatory framework for analyzing

students' problem-solving behavior, comprising four major categories: resources.

heuristics, control, and belief systems. Among the four, beliefs systemsbelief

about self, doing mathematics, and contextare an individual's mathematical

world view shaping the way one does mathematics, permeating through the whole

process of doing mathematics. Students typically view mathematics as a set of rules

and procedures in which each problem is supposed to be resolved by following

specific algorithms. This misconception. largely shaped by ordinary school

mathematics, contributed to students' perceptions of mathematics as a static body

of knowledge with no place for creativity, that in turn may profoundly influence

students' participation in meaningful problem-solving activities (Franke & Carey.

1997; Lampert, 1990; Schoenfeld, 1983a, 1992).

Some basic understanding of the nature of mathematical thinking is

requisite for scientific literacy (AAAS, 1990), and one of the main goals of teaching

mathematics is to help all students learn to think mathematically NCTM, 1991).

Schoenfeld (1992.1994) indicated that problem solving alone is not enough for

developing an individual's mathematical thinking. Several problem-based reform

curricula (e.g., CGI and problem-centered instruction) thus were developed to

promote one's conceptual understanding and thinking strategies. Theses studies

usually adopted a quantitative approach and measured students' achievement by

staiidardized tests. Students' intrinsic thinking processes, in this manner, were

undetectable. hi contrast, Henningsen and Stein (1997) conducted qualitative

survey to identify classroom-based factors that support and inhibit students' high-

level thinking and demonstrated the influential role a teacher plays in the classroom.

Nevertheless. most studies of this line focused on elementary level: relevant
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information regarding high school and college students are lefi unexplored. A

qualitative investigation beyond primary level paying attention to how students'

mathematical thinking and views on mathematical thinking evolve in a course

should merit further examination. Moreover, despite the numerous discussions on

the issue of using historical problems to foster students' ability and conceptions of

mathematical thinking, empirical research designed to examine tile effect is rare.

An investigation of how these ideas can be integrated into the problem-based

curriculum may generate precious information for future study on the area of

mathematical thinking.
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CHAPTER lii
DESIGN AND METHOD

The main purposes of the present thesis were, through an exploratory study.

to investigate Taiwanese technological college engineering-major freshmen's initial

views about mathematical thinking and explore the interrelationship between the

problem-based calculus course (that used historical problems) and these students'

views on mathematical thinking. The major research questions were:

I. What are Taiwanese technological college freshmen engineering majors' views

of mathematical thinking?

2. In what aspects and to what extent, if any. do Taiwanese technological college

freshmen engineering majors' views on mathematical thinking change during a

problem-based calculus course?

3. What is the relationship. if any, between a problem-based calculus course

features and students' views on mathematical thinking?

Participants

Of the fifty-three students in the class, forty-four engineering-major

freshmen, enrolled at a mid-size four-year technological college in central Taiwan

during the fall semester of 2001, participated in the present study. The calculus

course is required, serving as a basic course of their professional training. The goal

of technological and vocational education in Taiwan is to inculcate students with

practical skills that fulfill industrial and business demand, rather than focus on the

typical educational goals of research colleges. The Taiwanese student in

technological and vocational institutes traditionally receives more professional

training with less general education. In this manner, mathematics, as an academic

subject in technological and vocational institutes, is usually regarded as a

knowledge source for a profession, rather than a discipline for training one's
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mathematical thinking. For example. prior to entering college, all vocational high

school students must pass a multiple-choice entrance examination in mathematics

on the basis of colleagues' observation, these students are usually trained to pick

the correct answer but fail to demonstrate the process correctly and precisely.

Memorization then is a dominant way of learning mathematics.

The Course Curriculum and Instruction

Calculus is required for all engineering-majors, serving as a basic discipline

for taking advanced mathematics courses such as engineering mathematics.

Typically, the course is processed in a rather traditional way in which teachers are

expected to cover a considerable amount of content and students are required to do

many rote exercises in textbooks. The calculus course in this study was reorganized

in order to match the purpose of the present thesis.

The Curriculum

The textbook used was Calculus (Bradly & Smith, 1999). Course goals and

schedule, along with scope and sequences, are listed in Appendices A. B, and C

respectively. To enrich students' understanding of the importance of the topic.

several handouts collected from various sources were assigned to students as

supplemental materials. All handouts. written in Chinese, (see Appendix C, only

titles are shown) related to instructional topics or classroom activities. Topics

without adequate Chinese materials were developed by the researcher/instructor.

Weekly problems (in Appendix D), differing from ordinary exercises in

nature, were adopted from various sources (including the textbook) and served as

challenging tasks to motivate mathematical thinking and put students in stressful

situations. Schoenfeld (1983a) indicated that students are more prone to think a
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mathematical problem should be solved in minutes and otherwise cannot be solved.

The weekly problems were designed to challenge this misconception as well as

highlight the importance of the topic. Although the problems were considered

challenging. they were not problems beyond the students' capability. With few

exceptions, all problems were assigned closely related to the mathematics taught at

the time the problem was presented.

Problem-Based Learnin

The central doctrine of the problem-based learning is to problematize the

topics. The meaning of problem-based" in the present study thus was twofold.

First, at the outset of each topic, the researcher/instructor proposed to elicit

students' interest and curiosity by questioning them why they thought the topic was

important. what the key concepts were, and how to resolve the problem, followed

by a background introduction aimed at showing students the origins and importance

of the mathematics concept. Second. students were assigned several problems as

weekly homework. With few exceptions. the problems were closely related to the

current class topic students then applied known mathematics to solve the assigned

problems all non-routine tasks were of various difficulty levels gleaned from

various sources. Students solved the problems through either individual work or

group cooperation, depending on the difficulty level and characteristics of the

problem assigned.

Collaborative Learning

In order to focus on problem-based learning and elicit higher-order thinking.

some weekly problems required group collaboration. The design of the group work

was to help students experience the social interaction of solving mathematical
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problems and enhance their communication ability while verbalizing mathematical

ideas. Prior to group discussion, each student was asked to work the assigned

problem alone and submit the draft solution. either complete or incomplete. The

purpose was to emphasize the importance of individual learning in group tasks, to

ensure that each student thoroughly understood the problem. and to constructively

cooperate in the group. Students were asked to work in the groups outside

classroom sharing their own ideas with others. When the group work was done,

each student was required to hand in the revised solution. The two versions of the

solution occupied equal weight of the final grade for the problem. In addition,

students from each group were randomly selected to present their solution before

the whole class.

Interaction in the Classroom

Given the traditional authority of the teacher's role in Taiwan, the typical

classroom climate in Taiwan was reserved. Teachers are expected to impart material

in a clear and concise way; students have learned to be as passive knowledge

receivers rather than active constructors, severely hampering learning and

opportunities for developing mathematical thinking. The researcher/instructor

established a classroom enviromnent that encouraged students to think about

mathematics and make plausible guesses. For instance, as answers for weekly

problems were collected, students demonstrating elaborative thinking were invited

to share their ideas on the board, followed by a whole-class discussion. All students

were encouraged to question, even challenge, other students' presentations; this

activity was designed to engaging student involvement, eliciting higher-order

thinking, and creating an open interactive environment.
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Metacognitive Teaching

An important key feature of this course was that, the researcher/instructor

served as a role model for metacognitive behavior. Teachers in a mathematics class

commonly tend to present the solution to a problem in a clear format. Yet the

byproduct of this approach is that the struggle of doing mathematics is diminished,

giving students an inaccurate impression that eveiy problem should be done in this

way. "In consequence, the give-and-take of real problem-solving--the false starts,

the recoveries from them, the interesting insights, and the ways we capitalize on

them, and so onare all hidden from students" (Schoenfeld, 1987, p. 200).

Therefore, the researcher/instructor in the present study acted as a novice working

problems from scratch, demonstrating various plausible approaches, and asking

students to evaluate the possibility and difficulty of each approach. The students

had opportunities to witness and experience the cost of an incorrect approach.

The Researcher/Instructor

The researcher was the instructor of this problem-based calculus course. The

benefit for the study conducted by the researcher/instructor was that it allows the

researcher/instructor a role in creating the setting to be investigated, to examine

phenomenon from the inside, to learn that which is less visible by outsiders (Ball,

2000). With central issues in mind, the researcher/instructor was able to design the

context and methods, probe the issues, try new approaches or materials, and

examine the findings systematically. As Lampert (1990) indicated, the aim of this

line of research is not to determine whether general propositions about learning or

teaching are true or false. Rather, it is to further the understanding of the

characteristics of particular kinds of human thought and to build an empirical link

between theoretical analysis and practice. Nevertheless, this kind of work faces
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challenges in convincing others that findings are unbiased and worthwhile. Some

concerns should be noted; one of which is whether the researcher/instructor is well

equipped to be a designer, developer, and enactor of the practice. Therefore, the

following sections regarding the researcher/instructor's background, views on

mathematical thinking, and dilemmas are provided to clarifi the role the

researcher/instructor plays in the present study.

Academic Background

The researcher/instructor earned B.S. and M.S. degrees in Mathematics at

the same university in Taiwan. Most college- and graduate-level courses taken by

the researcher were within the pure mathematics domain. As such, the

researcher/instructor received traditional and formal training in which axiomatic

and deductive approaches constituted the chief mode of learning, with all subject

matter treated hierarchically. The researcher/instructor was not satisfied with the

course design of the program then, since in this manner, the intrinsic thinking

process and developmental background of mathematical knowledge were all hidden

from learners and the mathematics as a discipline was distorted.

After years of teaching mathematics at a technological college in Taiwan,

the researcher/instructor further pursued a doctoral degree in mathematics education

at a mid-size public university in the United States. His main interest was

mathematical problem solving. Through studying relevant theoretical and empirical

literature, the researcher/instructor gradually comprehended the importance of

eliciting students' mathematical thinking and interest in learning mathematics.

Since then, providing students opportunities to look at mathematics in a different

way through various problem-solving activities has been the researcher/instructor's

main instructional goal.
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Views About Mathematical Thinking

The researcher/instructor developed his mathematical thinking mostly from

reading history of mathematics. His interest in the history of mathematics began

around the second year as a master graduate student. Only when immersing himself

in the study of history did the researcher/instructor view the whole body of

mathematical knowledge as an enriched organism, such as why certain

mathematical concepts are important and how a mathematical idea evolves over the

course of time. in this manner, the research/instructor's views on mathematical

thinking have been influenced. For instance, from the mathematician's struggle and

patience while doing mathematics, the research/instructor learned the importance of

persistence in mathematical thinking. Considering the illogical development of

some mathematical concepts, the researcher/instructor recognized the potentially

fallible aspects of mathematical thinking and the necessity of rigor. More important,

from reading history, the researcher/instructor was convinced that an inductive

attitude toward mathematical thinking is imperative in mathematics; deduction and

logic do not describe the whole domain of doing mathematics.

The researcher/instructor's overall views depicted mathematics as more than

a school subject, a tool used by laypersons and scientists, or a thought product of

mathematicians. Rather mathematics is a treasure encompassing the value of

thinking and a precious heritage intimately tied to human culture. As a whole, the

researcher/instructor's mathematical point of view delineated doing mathematics as

a multi-dimensional interactive process between inductive thinking and deductive

reasoning, concrete objects and abstract concepts, specification and generalization.
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Dilemmas

The researcher/instructor regarded his role in the present thesis more as a

researcher, which is theory-laden, than as an instructor, which is practice-laden. As

a researcher/instructor, it was expected that several dilemmas would challenge his

decision-making ability on various occasions.

The first dilemma the researcher/instructor faced prior to the study was the

adoption of a textbook for the course. The researcher/instructor hoped to pick a

Chinese edition of a calculus textbook, serving the goal of this study as well as

being easily understood by participants. However, after an extensive search, no

texts met both conditions. The researcher/instructor then searched for English

versions and considered several editions. Among them, Calculus (Bradley & Smith,

1999) attracted the researcher/instructor's interest for its problem-based approach to

guide the students' development of the mathematical concepts.

One of the major dilemmas for the researcher/instructor was to balance the

extensive textbook content and create an open classroom climate to promote

students' higher-order thinking. Calculus in a technological institute is usually

viewed as a knowledge resource to support students in taking advanced

mathematical or professional courses like engineering mathematics. Subsequently,

related courses generally use a traditional teaching approach, heavily relying on

memorization and rote calculation. Consequently, the researcher/instructor, a

practicing teacher working within such an environment, was required to cover a

certain amount of content while at the same time creating a problem-based learning

environment.

Another difficulty laid in the validity of the present study. It was possible

the researcher/instructor, either consciously or unconsciously, allotted a great

amount of time to augment students' grasp of views on mathematical thinking and

deviate from the mathematics content to be taught. An external observer or
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videotape recording of classroom episodes may serve to monitor but at the same

time make the environment too artificial, defeating the researcher/instructor's

purpose. Hence audiotapes provided a partial check of the researcher/instructor's

classroom action. In doing so. the researcher/instructor created a checklist

(Appendix E) including aforementioned important features of the course such as

problematizing mathematical concepts. metacognitive teaching, increasing student

involvement through questioning. whole-class discussion and so on. For each week,

an invited reviewer, one of researcher/instructor s colleagues, then randomly

listened to one-hour classroom episode and commented on the

researcher/instructor's instruction on the basis of the checklist. The reviewer's

comment, to some degree, was designed to help the researcher/instructor focus on

the planned instructional approach.

Data Sources

The purpose of the study was to investigate the influence of a problem-

based calculus course on students' mathematical thinking. Four instruments were

designed to gather relevant data for addressing the research questions: the

mathematics biography for collecting information about students' past learning

experience in mathematics, open-ended questionnaire for investigating students

pre- and post- instruction views of mathematical thinking, follow-up interviews for

validating students' written responses, and students' in-class reflection for

collecting students' spontaneous thinking toward the classroom activity. Further,

since the researcher was the instructor in the present study, unexpected bias might

occur and result in misinterpreted findings. To minimize aiiy potential bias, a

researcher's diary functioned as a guide keeping the researcher/instructor on track.
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The Mathematics Biography

All participants were asked to complete their mathematics biographies

(Appendix F) at the outset of the semester describing their experiences in learning

mathematics, any significant events or people influencing their disposition or

attitude toward learning mathematics, how important mathematics is in their minds,

and how they evaluated their capability and performance in such learning. Students'

mathematics biographies served as auxiliary data in interpreting students' initial

views of doing mathematics.

Open-Ended Questionnaire

An open-ended questionnaire was used to investigate participating students'

views about mathematical thinking, before and after the instructional session. Use

of open-ended items allowed respondents to express more freely their opinions on

issues of interest, as compared to the closed format, Likert-scale questionnaire.

Nevertheless, it is also possible that the respondent might miss the point if the

scope of the question asked was too broad. For this reason, a brief background

introduction of certain items was appropriate. In addition to encouraging

respondents to elaborate more on their intrinsic thinking, asking them to justify the

answer by giving examples may give the researcher a better position to interpret

their responses.

On the basis of the goals of the present study and taking into account the

above concerns, the researcher developed a questionnaire in a four-stage process. A

draft questionnaire consisting of 16 open-ended items (Appendix G) was created

and administered to around 100 college students with the background similar to the

participants in the present study. This stage was aimed to test the researcher's

personal ideas and collect students' opinions in a broad sense. In the second stage,
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by considering the main purpose of the present study and the vagueness or semantic

overlap of the statements, nine items in the draft version were removed; four items

were merged to two items: two items were revised: three new items were added.

The second version, consisting of eight items, was then sent to a panel consisting of

a mathematician, a mathematics education researcher, and a psychologist, to check

its validity. Each panel member was told the purpose of the study and the goal of

each item. The mathematician suggested a minor modification of the third question

("Is there any difference between a mathematician's way of thinking and a

layperson's?" rather than 'What's the difference between a mathematician's way of

thinking and layperson's?"). The mathematics educator reminded the

researcher/instructor that some questions might be hard to answer and whether the

designed curriculum may help students to rethink the questions. The psychologist

found no ambiguous wording. The third version was then formed according to the

panel's comments and administered to 40 students with a background similar to the

future participants in the present study. Five respondents selected at random were

invited to interview to check the reliability of their responses. Though sometimes

students exhibited difficulty in explaining their views or held conflicting

conceptions with respect to certain items, generally speaking. their oral and written

responses were satisfactorily consistent. Lastly, upon further consideration of the

purpose of the present study. a revised version was developed by removing two

additional items. The resulting questionnaire is presented in Appendix H.

In-Class Reflection Reports

The present study lasted 1 8 weeks. It was not possible for students to

memorize all major events occurring in the classroom and their ideas while

involved in the problem-based activities. In-class reflection reports (Appendix I).

therefore, were designed to motivate critical thinking and help students reflect on
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classroom events. The activities were administered monthly (Week 2, Week 5,

Week 10. and Week 16). If any significant difference occurred between

participants' pre- and post-instruction responses. data collected by this instrument

served as supplementary evidence for pursuing potential factors.

Follow-Up Interviews

To avoid misinterpreting students' written responses and to elaborate on

their intrinsic thinking, a 20% representative random sample (nine students) was

selected and invited to participate in the follow-up, one-on-one interview soon after

the pre-instruction questionnaire was administered. In the semi-structured

interviews, students were asked to read and explain their written responses to each

item on the open-ended questionnaire. The researcher asked probing questions to

elicit the interviewee's conscious or unconscious conceptions regarding issues of

interest, such as identifying the most important components in mathematical

thinking. The same procedure was conducted on the same random sample after the

post-instruction questionnaire was administered.

The Researcher's Diary

The researcher's diary functioned not only as the researcher's self-reflection

document but also as a guide throughout the class, an opportunity to keep a

narrative account of the researcher's perspectives of actions in the classroom.

Audiotapes recording classroom events constituted the main source for writing the

diary. In this manner, the researcher's diary assisted the researcher in capturing the

essence of classroom activities and interpreted their meaning for future teaching

episodes. Major items in the researcher's diary were the researcher's self-reflection

on classroom episodes, evaluation of teaching strategies, reassessment of
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subsequent lesson plans. and reactions to students' responses. both on

questionnaires and in the follow-up interviews. As noted, several dilemmas could

challenge the researcher's decision-making in various occasions. Resolution of such

a dilemma was mainly on the basis of the purpose of the study and classroom

episodes of the day. Episodes recorded oti audiotape helped the researcher recall

how he employed instruments and conducted relevant activities so as to prevent the

teaching deviating from the goal of the present study or being distorted by some

personal bias. All these considerations were included in the researcher's diary, in an

ongoing attempt to portray his practice systematically and secure the descriptive,

interpretive, and theoretical validity (Maxwell. 1992) of future findings.

Data Collection

The entire data collection procedure proceeded in three stages: (a) initial

instruction stage. (b) instruction stage, and (c) late instruction stage, in which the

instruction stage was throughout the 18-week-long session and overlapped with the

initial and late instruction stages. A timetable of data collection is shown in

Appendix K.

Initial Instruction Stage

Three types of data (pre-instruction questionnaire, mathematics biography,

and pre-instruction interview transcripts) were collected during this stage, the first

three weeks of the seniester. The questionnaire investigating pre-instruction views

was administered to all participants at the first class meeting soon after the process

of human subjects was completed. To obtain the students' responses, students were

asked to answer the questionnaire in class. The researcher also reminded students

that their responses would not affect their class standing and that no correct or
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definite answers were sought. The questionnaire, comprising six open-ended items.

was finished in fifty minutes. In addition to responding to tile questionnaire, all

students were requested to hand in their mathematics biographies at the next class

meeting. Students' mathematics biographies served as auxiliary data for interpreting

pre-instruction views. A random sample of 20% of participating students (9 students)

were generated and invited to participate in the follow-up one-on-one interviews.

Their written responses on the questionnaire and mathematics biography were read

to generate questions to be asked in the follow-up interview. All interviews were

audio-taped and transcribed.

Instruction Stage

In addition to questionnaires and interview transcripts, three sorts of data

were gathered during this stage: (a) students' in-class reflection reports, (b)

students' solutions to weekly problems, and (c) the researcher's diary.

As noted, for investigating their instant reactions and to encourage them to

reflect their own thinking while involved in classroom activities, students were

asked to submit their reflection reports. These data served as supplementary

evidence for interpreting post-instruction responses in contrast to pre-instruction

responses on the questionnaire.

The instructor assigned students several problems as weekly homework.

The problems were aimed at problematizing mathematical topics as well as

developing students' mathematical thinking. Students, therefore, were reminded not

only that the correct answer was required but also that all approaches used,

successful or not, should be included. Further. writing a research dairy was an

ongoing process throughout the session. Major events occurring in the classroom.

highlights of students' reflection reports and resolutions of weekly assignment, and

the researchers' reactions constituted the content of the research dairy. This
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document was self-dialectic in nature; the researcher kept asking himself whether

the instructional objectives had been achieved. If the answer was yes, he considered

the next step. If the answer was no, he considered what caused the failure, how the

situation could be remedied. By referring to the audiotape recording of daily

classroom episodes and students' in-class reflection reports. a search was made for

the solution.

Late Instruction Stage

Post-instruction questionnaire and follow-up interview transcripts were

collected during the last three weeks of the semester. The post-instruction

questionnaires, comprising those same items as the pre-instruction questionnaire,

were administered to all participating students in class during the 16th week (two

weeks before the end of the semester). As previously indicated, students were

reminded that responses had no bearing on their class standing and that no correct

or definite answers were sought. The researcher stressed, in class, that the point was

to explain their current thinking; therefore a recall of previous responses was not

necessary. More importantly, to minimize potential bias, the researcher cautiously

avoided mentioning that difference in written responses was his main concern.

During the 16th and 17th weeks of the semester, several follow-up

interviews were conducted with the same nine randomly selected students

participating in pre-instruction interviews. Prior to the post-instruction interviews,

these students' in-class reflection reports and responses to post-instruction

questionnaires were analyzed to pinpoint special features or inconsistencies and

thereby generate questions for post-instruction interviews. The context of the post-

instruction interview was identical to that of the pre-instruction interview. All

interviews were audio-taped and transcribed.
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Data Analysis

Though the research problem was clear at the outset of the present study and

the context was defined, to prevent the researcher from unfocused data, an ongoing

analysis was necessary. The entire data analysis process consisted of three major

phases: (a) validating and interpreting participants' pre-instruction views, (b)

validating and interpreting participants' post-instruction views, and (c) answering

questions of interest.

Phase I: Validating and Interpreting Pre-lnstruction Views

This phase aimed to interpret all 44 participating students' pre-instruction

views about mathematical thinking. After the first day of administration of pre-

instruction questionnaires, each participating student's responses were read.

analyzed, and treated as independent objects to identify their initial views on

mathematical thinking. For the nine students in the random sample, a triangulation

was adopted to reach this goal. Three documents (pre-instruction questionnaires,

mathematics biography, and pre-instruction interview transcripts) were used to

provide more detailed insight into their conceptions. These students' responses to

items on the questiormaire were read and analyzed, then their mathematics

biographies were compared and contrasted to seek corroborating or conflicting

evidence. By meticulously analyzing the two documents, the researcher generated

questions to be asked in the pre-instruction interviews, during which an effort was

made to elicit the interviewees' conscious or unconscious, consistent or inconsistent

views by asking probing questions. If any discrepancies appeared, the researcher

consulted with the interviewees to determine which profiles more appropriately

represented their views.
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Responses to post-instruction questionnaires were validated on a basis

similar to that of Phase I. For the nine students in the random sample, three

documents (post-instruction questionnaires, in-class reflection reports, and post-

instruction interview transcripts) provided insight into their views on mathematical

thinking. One difference from Phase I was the use of students' in-class reflection

reports. These documents were alternative information to shed light on students'

thinking and feeling throughout, hopefully to help interpret the post-instruction

views in many ways. If students' professed views shifted near the end of the

semester, the reflection reports perhaps could provide clues. For instance, if a

studenfs view on mathematical thinking shifted from deductive to inductive, the

researcher asked the student to defend his or her answer by giving examples, and

further consult to in-class reflection reports to identify the possible factors. If

supportive evidence was not found, either in interview transcripts or reflection

reports, then the assertion that their views had been upgraded would not be made.

Phase III: Answering Questions of Interest

The ultimate aim of analyzing various data was to answer questions guiding

the present study via looking for special patterns or features of participants' views

about mathematical thinking before and after instruction. Since the present research

is an exploratory study through practical action, a certain degree of subjectivity is

unavoidable. To minimize potential bias stemming from dual roles of

researcher/instructor, answering questions of interest was on a conservative basis.

With the lack of a control group, the influence, if any, of the problem-based course

on students' views of mathematical thinking was not expected to be interpreted in a

causal way.
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By exploring and analyzing participating students' mathematics biographies,

pre-instruction questionnaires, and follow-up interview transcripts, a holistic profile

was mapped for interpreting the participants' initial views. An investigation was

made of whether students' views reflected current views of mathematical thinking.

In either case, on the basis of mathematics biographies and interview transcripts,

underlying causes were sought to reveal the relationship between the formation of

students' current views and their past learning experiences.

The present study explored the relationship, if any. between a problem-

based course and students' views of mathematical thinking. It was not expected that

students' views were enriched in all aspects. Therefore, data analysis was on an

aspect-by-aspect basis. Namely, if a student's views of mathematical thinking

shifted for certain aspects, it was not boldly reported that the student's holistic

understanding of mathematical thinking had been enriched. For instance, after

taking a one-semester course of this kind, students might develop an appreciation of

the importance of persistence in doing mathematics yet still show poor thought on

the complementary relationship between induction and deduction in mathematical

thinking, in this case, factors contributing to or hampering progress in their

professed claims were located.

The problem-based calculus course contained various features such as

problematizing mathematical topics, cooperative group activity, using weekly

problems, and metacognitive teaching. If the course did exert a certain degree of

influence on students' views of mathematical thinking, a further analysis was made

to investigate what aspects of the course were related to the participating students'

conception on certain facets. For instance, if a student's post-instruction responses

showed a more enriched view on mathematicians' thinking processes, the analysis

then aimed to establish any potential link between the course feature and students'

view shift. The link though can not be interpreted as a causal-effect inference,

further investigation focusing on clarifying the interactive relationship is imperative.
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The present thesis is an exploratory study investigating the relationship of a

problem-based calculus course, using historical problems, on Taiwanese college

students' views of mathematical thinking. As cited above, through gathering and

analyzing independent but complementary data sources, an attempt was made to

secure the findings and identify any potential links between any students' shift in

their views of mathematical thinking and the designed course features.
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CHAPTER IV
RESULTS

The chief aim of the present study was to explore the interrelationship

between a problem-based calculus course, using historical problems, and Taiwanese

technological college engineering-maj or freshmen's views of mathematical

thinking. To achieve this goal, the study explored students' initial views of

mathematical thinking at the outset of the course and probed their post-instruction

views on mathematical thinking near the end of the semester. The ultimate goals

were (a) to depict how students' conceptions regarding thinking mathematically

evolved during the investigated course, and (b) to identify any potential course

features which may have played a role in fostering the learners' views of

mathematical thinking.

The chapter consists of three sections: demonstrating pre-instruction views,

characterizing post-instruction views, and answering questions of interest. The first

section analyzes past learning experiences and initial views of mathematical

thinking on the basis of various data sources: mathematics biographies, open-ended

pre-instruction questionnaires, and semi-structured follow-up interviews. The

second section plots changes in participants' views of mathematical thinking after

an 18-week-long problem-based course. The third section explores potential

interrelationships between the course features and participants' view-shifting.

Special heed is paid to which aspects and to what extent this problem-based

curriculum builds learners' conceptual frameworks associated with thinking on

mathematics.

Pre-instruction Views

This two-part section focus on the relationship of participants' perspectives

to their past learning experiences in mathematics and current views of mathematics.
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Students' mathematics biographies were analyzed to describe past experiences in

learning mathematics, including any significant events or people influencing their

dispositions or attitudes toward this field, importance of the subject, and self-

evaluation of capability and performance in doing mathematics. Their pre-

instruction views regarding various aspects of mathematical thinking (persistence

and creativity, for instance) were then investigated to set the stage for the discussion,

comparing and contrasting learning experiences and initial views.

Participants' Learning Experiences

Mathematics biographies provided the chief source for interpreting past

learning experiences. Follow-up individual interviews conducted with the nine

randomly selected students, nonetheless. served to establish the validity and

reliability of the self-reports. Written responses were found congruent with oral

answers expressed during interviews. A coding system was developed to identify

individual participants. Each code began with one or two letters followed by a two-

digit number. Students not interviewed were coded from SOl to S35; nine students

in the random sample were coded from RSO 1 to RSO9. Although 44 students

consented to participate, 10 did not return their mathematics biographies. Thus the

report in this section was based on 34 students' written responses and the nine

random sample students' oral responses. The list of students who did not return

mathematics biography is provided in Appendix L.

The most prominent finding gleaned from the mathematics biographies was

the teachers' dominant role in the participants' learning of mathematics. With

regard to the most important people or events influencing past learning in

mathematics, 21 of the 34 respondents (62%) mentioned style of teaching as

exerting significant impact on their dispositions or attitudes toward mathematics.

S 13's response was a typical one:
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But I formed a passive habit of learning [math]. The class tutor
during the 5th and 6th grade was a math teacher; I began to
understand math from that time on. In the eighth grade, the math
teacher's teaching was so vivid and vigorous that my math record
progressed rapidly... such a pity that the 12th grade math teacher did
not do his duty well, such that my record fell off a little bit. Hence
the teacher's instruction is extremely important to me. (S 13.
mathematics biography)

Among them, several had been affected by the teacher's encouragement or

enlightenment while learning, as shown by the following quotes:

I did poorly in elementary school math. I remember I was unable to
memorize timetables until 5th grade. Just after entering senior high, I
did not think that my math can be remedied.. .whereas, unexpectedly,
the math teacher told us in the first class that despite how bad you
guys' math is, you are going to have a new beginning as long as you
study hard from now on. I was thinking this could be my turning
point.., it turned out that the more I learn [math], the more I got
fulfillment. (SO4, mathematics biography)

Math is fun for me. I can always score high as long as I learn
diligently. I had a cool math teacher in the 11th grade. His homework
cudgeled my brain. Assigned problems were so flexible that deeper
comprehension was required. No matter how difficult a problem, he
said, nothing is too hard if you understand basic definitions. Math
makes me quick-witted. (S 16, mathematics biography)

On the other hand, two students described unhappy memories ofjunior high school

teachers:

My performance at the elementary level was none too good, whereas
a junior high math teacher was quite strict. You got paddled if you
failed to pass exams. To avoid punishment, the best thing to do is to
study math obediently. (S34. mathematics biography)
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My math record was about average and not extremely outstanding. In
the 9th grade, the teacher kept a close watch, such that learning was
partly forced, more or less dampening my interest in math. (S35.
mathematics biography)

Five participants. instead of referring to the teacher's influence, exhibited a

tendency of self-recognition while studying mathematics. They appeared to

acknowledge the problems of mechanical learning:

I used to focus on applying formulas while learning math. instead of
the rationale for those formulas. Not until the 12th grade did I
recognize that memorizing is not enough for employing knowledge
learned. (S06. mathematics biography)

My parents sent me to learn mental calculation in kindergarten.
Calculation was easy as pie for me then. but my thinking changed
soon after attending elementary school. Good in mental calculation
may not guarantee good math. What is important is the thought of
concepts. (S09, mathematics biography)

Four of these five students were confident of their capability in doing mathematics.

On the other hand, those who reported past learning of mathematics as significantly

affected by teachers were less likely to demonstrate this sort of self-recognition,

while considering themselves good at mathematics. The finding suggests that, on

the basis of mathematics biographies, a majority of these students manifested a

passive habit of studying the subject. An initiative spirit of learning was hardly seen

in their professed claims, even for students reporting high self-evaluation.

The effect of passive learning habits also was reflected by their views. The

random sample students were asked to propose the best way to learn mathematics.

Several respondents. including their enthusiasm about doing mathematics,

mentioning more practice as the key:
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In my case, I'll read first and go to solve problems. I feel that
examples are used to applied theorems. If merely paying attention to
definition, some stuff would be hard to understand. Just doing
problems. Doing niore, understanding ill Jo/iou [italics addedi.
(RSO3, pre-instruction interview)

These responses endorsed a common view that practice makes perfect in

mathematics.

In addition, participants were asked about the importance of mathematics.

There were only 15 students responding to the question and all acknowledged that

mathematics was an influential subject. with their reasons falling into three main

categories. First, five students regarded mathematics as a significant subject

because of its importance in school records or exams.

In junior high, my i-nath record was the top ten in class. This was still
the case in senior high. Mathematics is rather important because it is
a subject making me outperform others. (SOS. mathematics
biography)

Mathematics, as a subject. occupies much weight at all school levels.
Therefore it is very important to me. (S08, mathematics biography)

Mathematics is quite important for me. My English is so poor that I
gave it up before taking the college entrance examination and busied
myself preparing for mathematics. It should be credited to
mathematics that I can attend this college. (S34. mathematics
biography)

These quotes mirror a shared conception regarding mathematics held by students

and the reality of Taiwanese mathematics education. In Taiwan, mathematical

achievement has long been viewed as an index for assessing an individual's

capability of learning in general, especially for engineering majors, and exam scores
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were equated with individual achievement. As such. pursuing high scores was the

students' ultimate goal of learning, sacrificing practical and intellectual values of

mathernaics. As S09 professed:

Though I always earn high scores in mathematics after attending
high school, I can never realize what mathematics is for. (S09.
mathematics biography)

Four students concurred with the role of significance of mathematics in

professional training; three mentioned the importance of mathematics in daily life.

They were more likely to relate the practical use of mathematics in daily life:

I understood the importance of mathematics while learning
electricity. Mathematics sustains various theories and
experiments.. .1 am quite interested in mathematics. I myself feel that
advanced mathematics is only useful for advanced theories. Just like
when going shopping on street. it is impossible to say to the store
keeper: 'Hi, boss, give me the square root of 2 pounds of stuffr'
(S27. mathematics biography)

The aforementioned quote conveyed a pragmatist view in which mathematics is

treated less as a discipline and more as a tool; the value of mathematics relied on its

utility of application rather than intellectual function. Of all the respondents. only

one associated mathematics with thinking in the mathematics biography:

I study and think on my own while learning mathematics. Not until
12th grade. because of its difficulty, did I begin to listeii to teachers'
explanation. I feel that learning mathematics is a good way for
training one's thinking ability. The more difficult problems I solved,
the more sense of fulfiUment I got. (S20. mathematics biography)

The statement also reveals S20's active tendency in doing mathematics.
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On the basis of the mathematics biographies, participants generally showed

some degree of confidence in their capability of doing mathematics. Among 25

students reporting their self-evaluation of mathematical ability, only six

considered themselves bad at mathematics four demonstrated a positive attitude

toward the subject:

My evaluation for current mathematical ability is that, despite those
requiring memorizing formulas, I can use logical reasoning to look at
a problem from various angles. I am not a high achiever in
mathematics, but I am convinced that I can get what I want as long as
I study hard. (S 18, mathematics biography)

I have learned mathematics since the I St grade and been quite
interested in it. Mathematics attracts me via processes of discovering
and solving problems. I don't see myself as smart, yet I am willing to
give it my best try because I am always interested in calculus, though
also feel that it is hard. (S25. mathematics biography)

Based on the mathematics biographies, three common features of

participants emerged.

I. The teacher played an influential role in learning of mathematics at

various levels. Appropriate or suitable styles of instruction led them to gain better

understanding of mathematical concepts and helped develop good habits for doing

mathematics. Contrarily, the exam-driven, cramming method of teaching placed a

negative impact on their disposition for doing mathematics.

2. With few exceptions, students tended to hold that more practice is the

best way to learn mathematics, though a majority of them considered themselves to

be good at mathematics. This view may be related to the previous characteristic.

Moreover, some identified the importance of basic definitions and principles.
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whereas the significance of a holistic conceptual understanding of and a persistence

in doing mathematics were not emphasized.

3. In spite of exhibiting a positive disposition and enthusiasm toward the

subject. an appreciation for the value of mathematics was lacking in the

respondents' statements. They either associated the importance of mathematics with

professional training or with utility in daily life, a pragmatist point of view. The

merit of mathematics as an intellectual discipline was scarcely addressed.

Pre-Instruction Views of Mathematical Thinking

The students responded to a six-item, open-ended questionnaire (Appendix

H) at the first class meeting of this calculus course in which they were asked to

describe their thinking about the questions of interest in a few sentences. The

purpose of this pre-instruction questionnaire was to generate a profile of the

participants' pre-instruction views regarding mathematical thinking in particular

and mathematics in general in order to further validate and elaborate on the

individual interviews conducted with nine students in the random sample.

Questions posed during these semi-structured interviews served not only to elicit

the interviewees' intrinsic thought but also help them reflect on extant concepts,

consistent or inconsistent. An attempt was made to pursue the interviewee's line of

thought to a satisfactory level of clearness and explicitness. Some conflicting ideas

or misunderstandings of problems surfaced while they further explicated their

thinking yet generally speaking, the participants' written and oral responses

showed acceptable consistency.

The six-item questionnaire investigated the participants' macro- and micro-

views about mathematical thinking prior to entering the course. Its scope

encompassed various dimensions of mathematical thinking. The main foci were (a)

the essence of mathematical thinking. (b) distinguished features of mathematics, (e)
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development of mathematical knowledge. (d) persistence of doing mathematics, (e)

creativity and flexibility of deriving solutions, and (0 a mathematician's way of

thinking. During analysis, each item was treated as an independent entity and

followed by contrasting relevant data sources to seek patterns or interrelationships

among items, if any.

The first item asked students to define mathematical thinking on the basis of

their understanding, with the intent of profiling the essence of the construct in their

minds. As shown in the Table 1,45% (20 of 44 respondents) associated

mathematical thinking with ways of solving problems or deriving answers. For all

tables, the number &f responses identifies the numbers of students who pronounced

the specific conirnent. Some students pronounced more than one comment.

Table I

Major Pre-Instruction Responses Regarding Mathematical Thinking

What is mathematical thinking Number of Percentage
responses

Ways of solving problems or achieving answers 20 45%

A process of logical thinking or reasoning 12 27%

Calculation and operation 4 9%

Recall of formulas 4 9%

No responses 4 9%

The outcome revealed that the participants were inore likely to perceive thinking of

mathematics as a solution-oriented process. in which executing mathematical

operations is the means and reaching final answers is the end:

[Mathematical thinking] should be the thinking of solving
mathematical problems. (S 18, pre-instruction questionnaire)
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[Mathematical thinking is] figuring out how to calculate on the basis
of demands of problems and identify rules, or pondering the methods
to find answers. (RSO6. pre-instruclion questionnaire)

My understanding to mathematical thinking' is multiple
solutions." For instance, when a teacher poses a question like 2x ±1'

= 6, students may give a variety of answers such as equations," x =
a certain number, i = a certain number." or someone else would
answer a line" (all quotation marks original). Therefore, the
question is fixed but perspectives may vary. (S05, pre-instruction
questionnaire)

Further, participants tended to relate solving problems to deriving answers by

following predetermined routes. Thinking processes were referred to as recalling

fixed formulas:

[Mathematical thinking is when] you are given a problem to figure
out how to do and then to search for a rule to work it out. . . [that is] to
identifi' a preset method to solve it [italics added]. (RSO6, pre-
instruction interview)

Mathematical thinking should be so-called recalling mathematical
formulas in order to apply them on problem solving... [1 was] always
pondering [italics added] when taking math tests. While pondering. I
often can get solutions by means of applying a series of formulas.
(S06, pre-instruction questionnaire)

It seems students interpreted thinking of mathematics as ways of recalling and

applying formulas. Student S24 confessed in the pre-instruction questionnaire that

his way of mathematical thinking was doing problems and using formulas rather

than anything to do with thinking. This finding highlights a widespread

phenomenon in Taiwan: students are usually trained to do routine mathematical

tasks, and the use of formulas or rules becomes the dominant way.
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Twelve respondents (27%) referred to mathematical thinking as a process of

logical think ing or reasoning: doing mathematics trains a persons logical reasoning:

Mathematical thinking is pondering one thing by means of
integrating logical concepts. We cannot merely rely on memorizing
while solving mathematical problems. For bringing [skills] into full
play. considering fundamental concepts is required. (S28. pre-
instruction questionnaire)

[Mathematical thinking is] thinking on problems via learned
mathematical principles and logic. Just like if you want to find the
volume of an object. you have to evaluate it by using various
methods for deriving volumes. (RSO5. pre-instruction questionnaire)

As compared to previous responses, associating mathematical thinking with

deriving answers by means of formulas and following routine procedures, the

statements of this sort no doubt demonstrated a thoughtful insight: nevertheless, a

concern soon emerged after carefully investigating their personally expressed

thinking. Asked to elaborate further the meaning of mathematical thinking, student

RSO5 gave an unexpected answer:

[Mathematical thinking] means that you are given a direction and
you have to do it by following the direction... [logic] is a
mathematical concept. a fixed procedure frequently employed. (RSO5.
pre-instruction interview)

RSO5s statements seemingly did not differ much from the previous ones in which

following predetermined routes was demanding. Logic. in RSO5s mind, was

merely the rule on which all operational steps underlie. Plus, participant RSO2

endorsed the view that mathematics is for fostering ones concept of logical

thinking, whereas confessed that he had never experienced the merit. This fact also

manifested itself in the following quotes professed by RSO8:
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I have never felt that so far [mathematical thinking is one way of
training one's logical reasoning]. Teachers told me so... I was told
that mathematics is for training my brain and thinking, yet I have
never had a feeling of this kind. (RSO8. pre-instruction interview)

Thus, the participants' association of mathematical thinking with logic could be

merely rhetorical and superficial.

Four participants did not respond to the item, perhaps demonstrating that

some had rarely reflected upon their own thinking while doing mathematics. An

individual's views about something are generally shaped by years of working in this

field. This inability to answer the question could be attributed to the way they were

taught to launch into deriving a solution by executing a calculation soon after

reading problems. In their minds, the position for mathematical thinking had been

taken by mathematical operations. This case was not limited to passive learners.

Participant RSO3. an active student exhibiting an extremely positive disposition

toward doing mathematics, also confessed that:

[Mathematical thinking] is the thinking on solving mathematical
problems... [I] never paid attention to and heard of the issue.
Therefore, I never thought of it. (RSO3, pre-instruction interview)

Though mathematical thinking is hard to define as a set of features that are

necessary and sufficient (Sternberg & Ben-Zeev, 1996). the finding clearly reveals

that, as a rule, these students focused primarily on answers rather than the processes

of obtaining the answers. A holistic perspective of what it means to do mathematics

was lacking in participants' views of problem solving.

Problem solving is a process of applying knowledge to unknown fields. The

second questionnaire item aimed at exploring how students reacted to difficult

situations. The primary strategies adopted by the participants are shown in Table 2.



96

Table2

Major Pre- Instruction Responses Regardiig_Strategies to Unfamiliar Situations

Instant strategies to unfamiliar situations Number of Percentage
responses

Seeking assistance (looking for materials, asking for help) 12 27%

Thinking for a while then asking for help 8 18%

Going back to basic concepts 5 11 %

Testing alternative approaches 4 9%

Recall similar problems or formulas 4 9%

Skipping it 2 5%

Other 9 20%

When asked to point out the quick strategies they would use to solve a

difficult position. 12 (27%) respondents reported that the first thing they would do

is seek external assistance, such as asking for someone else's help or referring to

relevant material:

[My] instant reaction is looking for books. I'll skip it first while
taking the exam and, when the rest of the problems are done, go back
to see if I can think of related problems in order to associate it with
methods of resolving. (S06. pre- instruction questionnaire)

The first thing to do is searching for similar type of problems. If it
does not work, [1 would] ask for classmates' assistance or, if they
cannot do anything helpful, ask the teacher to solve. (S24, pre-
instruction questionnaire)

[I would] think on it for a while, but that would not endure too long.
Probably I would try similar methods two or three times: otherwise
I'll go ask someone. It would not last too long. (RSO5. pre-
instruction interview)
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Moreover, two respondents professed that they would skip it directly. The

responses demonstrated that almost one third of the participants lacked personal

perseverance while doing mathematics. One reason for this shortage could be that

they were generally solving problems under time or exam pressure. As the student

RSO7 confessed in the questionnaire and interview:

I would follow the feeling and think of it randomly. If still no clue at
all, skip it. But for record and responsibility, I guess I will ask for
help from people whose math better than me. (RSO7, pre-instruction
questionnaire)

It would be exciting if I got the problems solved. ff1 failed. I would
ask someone or give up.. .lt was probably short of time [of thinking
or referring to relevant material]. There were a lot of mathematics
problems... for responsibility, seeking for help from people quite
strong on math. I don't have confidence in insisting to solve a
problem. (RSO7, pre-instruction interview)

With the participants' concern for solving a large number of problems

hurriedly, some of them tended to quickly quit thinking with a challenging task.

Several respondents. though not deciding to ask for outside assistance immediately,

adopted conservative strategies to deal with difficult positions, such as recalling

formulas, similar problems. or what teachers taught.

Conversely, some others expressed alternative views while facing

predicaments. Eight students claimed that they would think on their own for a while

before asking for help: four expressed a more active disposition---testing all

approaches:

[My] instant reactions are I. thinking on the content first; 2.
pondering why I feel it difficult; 3. searching for key concepts; 4
discussing with classmates; 5. inquiring of teachers. (S09, pre-
instruction questionnaire)
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I usually try to think on it for a while. If there are some clues, I
would make a try to solve otherwise I would go back to fundamental
concepts instead.., and seek assistance from able people if I cannot
understand. (RSO9, pre-instruction questionnaire)

A student, RSO3, exhibited more persistence toward doing mathematics:

Just pick up the problem and do it. Then keep thinking. . . because any
problems more or less can be classified as certain kinds.. .then go
figure it out and derive a reasonable explanation. If it is still not
working, look at it again in different ways...! am normally quite
persistent. As a rule, I would not give up until exhausted. (RSO3, pre-
instruction interview)

it is interesting to know what creates RSO3's persistence. One plausible explanation

is that he was rather confident of his mathematical ability. However, when asked to

explain, he responded:

There is little to do with confidence. This is 'hai mathematics is a/I
cibout [italics added]: you have to think. Mathematics is not so hard
as it appears. You would feel it easy when you achieve a
breakthrough in your thinking. (RSO3. pre-instruction interview)

RSO3 not only gave a thoughtful account of mathematical thinking, but also showed

extreme persistence in doing mathematics. He mentioned that he had thought about

problems for weeks.

Previous results indicated several participants generally showed a traditional

disposition while stuck. Nonetheless. S03 responded on the pre-instruction

questionnaire that he would imagine what he could do if he were a high achiever in

mathematics, suggesting that a model of mathematical behavior could exist in his

mind.
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The mathematician is typically regarded as the outstanding mathematical

problem solver. Though this may or may not be the case (Defranco, 1996).

laypersons usually conceptualize mathematicians' ways of thinking as an archetype.

On the basis of this notion, students were asked to propose, in their imagination.

how mathematicians think of a mathematical problem and any differences in their

thinking from laypersons. Respondents' thought on models of mathematical

thinking was elicited.

Table 3

Major Pre-Instruction Responses Regarding How Mathematicians Think

How Mathematicians Think Number of Percentage
responses

Thinking from diverse angles/alternative approaches 8 1 8%

Being able to find a quickest (best) way 18%

Starting from basic concepts/fundamental principles 5 11 %

Thinking hard

No answer

4 9%

6 14%

As demonstrated in Table 3. eight of the forty-four respondents (18%)

considered mathematicians as usually able to attack problems from diverse angles

or apply alternative approaches, flexible thinkers less likely tied down by fixed

procedures:

I guess they are able to think of the most basic ideas and then solve a
problem by integrating various basic ideas. (S09. pre-instruction
questionnaire)
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They mull over problems from diverse aspects and try to derive
solutions by using all kinds of approaches. (S14. pre-instruction
questionnaire)

On the questionnaire, the participant RSOI indicated that a mathematician's

thinking should be multi-faceted. He elaborated further in the follow-up interview:

Just like me.. .1 can only use extant methods invented by someone
else to solve a problem. Real thinkers probably would think of varied
aspects and compare different items to attain more convenient
solutions belonging to themselves. They are more flexible. (RSO 1.
pre-instruction interview)

An intriguing question following this finding concerns what enables

mathematicians to do so. Two students perceived mathematicians as owning solid

knowledge background:

Mathematicians probably know more content than laypersons.
Therefore they can solve a problem in multiple ways. Laypersons can
only apply known knowledge. (S08, pre-instruction questionnaire)

They [mathematicians] own a solid foundation and thus are abler to
work things out. Especially when a problem can be solved in
multiple ways, they are capable of deriving different solutions.
(RSO6. pre-instruction interview)

In addition to characterizing mathematicians as more knowledgeable. another two

participants attributed mathematicians' flex i bi I ity to more practice:

I guess mathematicians can be mathematicians because thei
detìrnieI' do more problems thou Iaipersons [italics added]. Their
thoughts and ways of thinking form a nerve network able to access
anywhere, whereas laypersons' thinking is like a water pipe: only one
route. (SI 8. pre-instruction questionnaire)



The result endorses a view that content knowledge and practice are keys to

performing well in mathematics, as SO4 and S16 indicated:

A bunch qtniatheniaticcil equations Hill surface in [niatheniaticians ']
brains [italics added], and then they pick one according to the
problem. (SO4, pre-instruction questionnaire)

Mathematicians' brains must be filled with various kinds of
definitions and solutions for solving problems. In this manner, they
are able to solve problems b using veii' simple, quick and precise
approaches [italics added]. (S 1 6, pre-instruction questionnaire)

Similar to the above vision, eight participants claimed that mathematicians

usually can solve problems in the quickest ways:

They derive the solution to a problem by using the most basic
concept, then extend it to attain the quickest method. (RSO7, pre-
instruction questionnaire)

This impression could be shaped by past teachers' instructional approaches. as

evident in RSO7's responses:

Teachers used to solve problems via some basic but trifling methods,
then introduced a rather fast approach. It could be very simple to
employ fundamental ways, but we all felt tired; it remained unsolved
after 20 more minutes. Mathematicians are more familiar with
methods. (RSO7. pre-instruction interview)

The view of mathematicians as effective solvers may lead students to

believe there is always a shortcut for deriving answers and only expert solvers

recognize. Students as such would be reluctant to devote themselves to thinking

hard about problems if they do not consider themselves capable.
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Although mathematicians' persistence in doing mathematics was not

considered by most participants, four respondents cited hard thinking as critical to a

mathematician's vocation. S07 professed that mathematicians devote their whole

lives to mathematics and so are able to draw an analogy while tackling problems:

S24 claimed. mathematicians' way of thinking is beating their brains." Ideas of

this kind can be characterized by S28's statement:

I guess mathematicians normally think hard day and night while
solving a mathematical problem. They will try to derive solutions by
any means. no matter how long, how difficult. (S28, pre-instruction
questionnaire)

It is noteworthy that S25 and S27 proposed specific descriptions regarding

mathematicians' work. S27 submitted four stages of their thinking process:

I. Locating where [hel gets stuck. 2. searching for applicable
equations. 3. testing by experimental ways. 4. discussing with friends.
(S27. pre-instruction questionnaire)

While S27 provided a comprehensive picture of mathematicians' ways of thinking,

S25 plotted a more clear understanding of the process for solving problems:

Mathematicians usually carry out a survey with respect to problems,
boldly make a conjecture, testing it repeatedly by using known and
unknown, then constantly verify result when all done. (S25, pre-
instruction questionnaire)

The statement to some extent revealed the empirical aspect of mathematics. S25's

perspective regarding mathematical thinking also appeared in his math biography,

where he professed that the process of discovering and solving problems is what

attracts him to mathematics.



103

In addition, participants were asked to outline, based on their understanding,

differences between mathematicians' and laypersons' modes of thinking. This item

attempted to elicit the archetype of thinking in mathematics, which may be implicit

in their minds, by contrasting distinctions of both sides. Further, students' responses

to this question function as aLixiliary evidence of the previous question.

Seven of the forty-four (16%) respondents held that the major difference

between mathematicians and laypersons is mathematicians' greater ability to attack

problems from various angles and employ alternative approaches, whereas the

laypersons' thinking is more rigid:

Mathematicians are likely to think and prove from a variety of facets,
but laypersons usually limit themselves within the scope of what they
learned. (S23, pre-instruction questionnaire)

Laypersons normally focus all their attention to the same point, such
that few methods can be thought out. Mathematicians tend to
approach [the problem] from multiple facets, less likely to confine
[themselves] to a fixed area. (RSO4, pre-instruction questionnaire)

One student clearly accounted for niathematicians' flexibility:

Mathematicians: intuitional reaction but solutions and approaches
may not be the easiest and quickest. [They] also attack from
alternative angles and are less likely to use particular methods too
often to solve problems.
Laypersons: directly associate to formulas or rapid ways and
constantly use one fixed method to derive answers. (RSO9. pre-
instruction questionnaire)

Still, four respondents also asserted that laypeople tend to think using

formulas and mathematicians using theories. Note S 10's alternative perspective

regarding mathematicians' thinking:
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ivJathematicians are inclined to look tbr problems [italics addedi and
take a further step to think on the basis of theories developed by
themselves. Laypersons typically focus on the solution to a problem
and consider types of' problems. (SI 0. pre-instruction questionnaire)

The view that the mathematician is a problem discoverer as well as a problem

solver was not voiced by others.

Another chief distinction proposed by the respondents was logical reasoning.

Five of the forty-four (11%) participants claimed mathematicians, as a rule, think of

the problem based on logical reasoning and hence are more methodical and

rigorous:

Because mathematicians own a solid base of concepts, [theyj must
be thinking by logic on the basis of concepts: laypersons normally
think by experiences or intuition. (RSO5, pre-instruction
questionnaire)

This response seemingly conveyed a belief that experiences and intuition are

more unreliable. Nevertheless, some other participants (S 13, S31, RSO3) regarded

experiences and intuition as keys that help mathematicians to think about problems.

It is therefore noteworthy to further investigate participants' conceptions of

experiences and intuition in mathematical thinking.

Mathematics is generally seen as a discipline requiring creativity.

Schoenfeld (1989) reported a conflicting finding that high schoolers regarded

mathematics as a subject involving creativity yet at the same time they viewed

memorization as the best way to learn mathematics. In this study, while responding

to the previous question (distinctions between mathematicians' and laypersons'

thinking), only one participant associated mathematics with creativity. Hence it is

noteworthy to scrutinize participating college freshmen's view on the issue.

Respondents were asked to express their opinions on two contrasting viewpoints:
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problem solving in mathematics as a thinking process involving creativity or as one

that requires following predetermined procedures for deriving correct answers.

Table 4

Major Pre-instruction Responses Regarding Creativity in Mathematics

Creativity/Following Preset Procedures Number of Percentage
responses

Involving creativity 26 59%

Following preset procedures 3 7%

Both 5 11%

Depends (on doers or occasions) 8 1 8%

No answer 2 5%

As in Table 4, over half of the participants (26 of the 44. 59%) thought

problem solving in mathematics was much like a creative activity, but their reasons

varied. Twelve claimed that solving problems involves personal creativity because

there are always various ways to do mathematics:

I think that many problems may not be solved in only one way.
Sometimes the point is not the answer but the thinking process. If
thinking processes go awry, it will be worthless, even if correct
answers are obtained. (S08, pre-instruction questionnaire)

Individuals' ways of thinking differ, and methods or principles used
are also distinct. I consider it unnecessary to follow rigid procedures
while answering as long as problems can be worked out. Many
mathematics problems could be solved not only in one way:
processes and speed are not the same, but answers can be obtained in
the long run. (SI 0, pre-instruction questionnaire)
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Some people are able to work out effortlessly problems which could
he solved in several steps. Formulas are created by people too. Thus
[solving problems] is more related to personal creativity. We
probably can create our own formulas. (RSO2, pre-instruction
interview)

Participants concept of this issue (associating creativity in mathematics

with multiple approaches to solving problems) was largely congruent with the

aforementioned finding that mathematicians are likely to attack problems from

diverse approaches. Some interpreted mathematical creativity from other aspects:

I consider solving problems as a thinking process involving personal
creativity, not for deriving answers. Mathematics is the niother ot
science. Mathematics ii'oiild no longer he mathematics i/obtaining
correct answers were the main p11/pose [italics added]. In that human
progress relies on innovation in science, it would be in vain if [wel
only seek correct answers without creative thinking. (S09. pre-
instruction questionnaire)

S09 exhibited an understanding of mathematics as a creative discipline. His

thoughtful statement about mathematical thinking was also manifested by his claim

regarding the definition of mathematical thinking:

Mathematical thinking can be applied to many things. such as (1)
counting money.. .(2) architecture particularly requires it.. .(3)
writing computer programs is also mathematical thinking, thinking
of logic, thinking of the application of calculus. (S09. pre-instruction
questionnaire)

As compared to other participants' interpretation of mathematical thinking.

restricted to the field of doing mathematics. S09 demonstrated a wider vision

pertinent to the construct.
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Five (11%) respondents held a neutral position: both creativity and preset

procedures are required for doing mathematics. Some arguments presented a two-

level concept of following a preset procedure at the bottom, creativity at the top:

For superficial learning, obtaining answers is paramount. so
following known predetermined procedures is necessary. Going
deeper. [you] would feel the process of creative thinking is more
likely to achieve fulfillment than merely pursuing answers. (S06. pre-
instruction questionnaire)

I consider it okay to follow known predetermined procedures at first,
yet after getting more comprehension. personal creativity is needed.
We can learn how to make a cake at the outset, for instance, but how
to make your product attractive hinges on your own ideas (S28, pre-
instruction questionnaire)

In addition, eight (18%) respondents perceived the issue as doer- or

occasion-dependent:

If you are more stupid, you will think step by step. Smart guys are
more likely to use formulas and then find a common pattern. That
will come sooner if one solves it in this way. (RSO5. pre-instruction
interview)

The former [creativity] is for people good at thinking; they are able
to locate ways for realizing problems more easily.. .the latter
[following known preset procedure] is for people good at calculating;
they are able to derive correct answers without further breakthrough.
(S 15. pre-instruction questionnaire)

This individual-dependent outlook mentioned suggested these students

typically were limited by self-recognition of capability. S06, who previously

claimed following a preset procedure as essential for superficial learning, further
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confessed in the questionnaire that he is a superficial learner and hence merely able

to go after fixed steps. Similar to the doer-dependent view, an occasion-dependent

perspective was evidenced in S29s and S3 I s statements:

On exams. [following preset procedure] can lead to correct answers
and gain high score; on ordinary occasions, personal creative
[mathematical] thinking is not limited to predetermined processes.
(S29, pre-instruction questionnaire)

When time is limited, following predetermined procedure should be
the fastest way to derive answers. Conversely, unexpected outcomes
could occur through personal thinking. (S3 1, pre-instruction
questionnaire)

These statements represented a split view in which mathematics was divided into

two distinct subjects rather than a whole one, a view that could be shaped by the

exam-driven educational climate in Taiwan. As RSO7 claimed, students were

normally trained to stick to known prearranged routes to obtain accurate answers.

though she seemingly felt that mathematics should contain a lively component.

On the basis of written responses. though few participants thought

mathematics ought to proceed in a lockstep fashion, the case may not be as clear as

it appeared. When asked to elaborate further. RSO1 held a rigid position:

Why does 1 + I = 2? Can't it be 3? This is defined by
ancestors... Our current thought could see it as 0 if I + I was
previously defined as 0. I think [doing mathematics] is following
known procedure. (RSO 1. pre-instruction interview)

It seems that RSO I associated doing mathematics with arithmetic. RSO6 took a

neutral stance in the questionnaire but confessed in the follow-up interview she

tended to regard solving problems more as predetermined activities. An image of

mathematics as inflexible seemingly looms large in many participants' minds.



Participants in the present study have formally studied mathematics for at

least 12 years. It is therefore presumed that they have impressions regarding the

discipline. The findings revealed the participating students, in general.

demonstrated a wide range of diversity regarding doing and thinking about

mathematics. The fourth questionnaire item was designed to investigate

participants' conceptual frameworks about ho! i stic mathematical knowledge.

As shown in Table 5, eight participants (18%) were silent on this concern.

RSO8 made no comment to the issue, but explained further in the interview:

Feeling about mathematics is just like that . . .it has little to do with
life.. .the abstraction of math is quite abstract. (RSO8, pre-instruction
interview)

RSO8 still had difficulty explicitly illustrating his mental image regarding

mathematics during the interview, suggesting a certain portion of participants

lacked an understanding of the subject, even a superficial one.

Table S

Major Pre-Instruction Responses Regarding The Essence of Mathematics

What Mathematics Is Number of Percentage
responses

A subject of studying nuinbers 9 20%

No answer 8 18%

A tool of daily life 7 16%

A subject possessing infallible knowledge 5 11 %

A subject for studying science and nature 5 11%



Nine participants (20%). the largest portion, associated mathematics with

numbers and symbols in which the main subjects in mathematics are numbers and

mathematics is the subject dealing with the relationships of numbers:

[Mathematics isi the philosophy of numbers. (SO!. pre-instruction
questionnaire)

Mathematics is the game constituted by a pile of numbers and
symbols. (S24. pre-instruction questionnaire)

Mathematics is the study of numbers and their changes, looking for
something wonderful, like Pascal's triangle. It's so cool. (RSO6. pre-
instruction interview)

Connection between numbers and mathematics made by these respondents could be

attributed to their past learning in which they were mostly trained to do calculation.

Another account given by participants was that mathematical outcomes are

absolute and unchangeable. Five respondents (11%) professed that results in

mathematics must be the same, regardless of time and procedure:

Mathematics always has a fixed outcome in spite of evolving over
complicated and lengthy time. (S 17. pre-instruction questionnaire)

[Mathematics isj the most natural study and is an absolute certainty.
(S32. pre-instruction questionnaire)

Mathematics is a result-oriented study. It is correct as long as
answers can be acquired. (RSO5. pre-instruction questionnaire)

RSO5's description is particularly noteworthy because he expressed an outcome-

determinate point of view. Asked to make a interpretation, he claimed:



Teachers reminded us that, unless asked to use a particular method.
you would attain scores if you can write down the answers... From
childhood, you always get scores as long as answers are correct.
(RSO5. pre-instruction interview)

RSO5's version fully illustrated a significant impact of school mathematics on

individual concepts about this discipline. Students were generally taught to believe

there is always a fixed, unchangeable answer, and what students need to learn is

identifying a route leading to the preset outcome.

Seven participants (16%) interpreted mathematics in a pragmatic wayi.e.,

that it should function as a practical tool in daily lifeas manifested by S37's claim:

It is enough [for me] as long as I can do addition and subtraction and
make no mistake while shopping. Do we really need calculus for
shopping? (S37, pre- instruction questionnaire)

Another participant complained:

Mathematics is felt like a virtual stuff... [II don't know how to apply
it in daily life, even after long-term learning. (S 13, pre-instruction
questionnaire)

Still others distinguished mathematics from arithmetic:

Mathematics is [only] for doing research. Day-to-day needs do not
go beyond operations like addition, subtraction, multiplication and
division. (SO4. pre- instruction questionnaire)

Several interviewees, though not addressing this opinion on the questionnaire, also

endorsed the aforementioned pragmatic view of mathematics, showing this sort of

vision could be prevalent.
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Contrary to the concepts mentioned above, some respondents saw

mathematics from an alternative window. Five (I! ?/o) professed mathematics as

fundamental to science and inextricably related to the study of reality:

Mathematics is the mother of science. For embodying all science.
being or have been studied, scientists should fit scientific data into
mathematics. (S07. pre-instruction questionnaire)

All phenomena in daily life, such as nature, physics. astronomy and
geography, really involve mathematical components. (S35, pre-
instruction questionnaire)

Moreover, participant S09, showing thoughtful views on several previous items,

portrayed mathematics as the heart of human beings and even drew a picture

putting it in the middle, central to various scientific disciplines.

For eliciting more information, participants were further asked to compare

essential differences between mathematics and other subjects like science and art,

proposed to evince respondents' intrinsic thought by comparing and contrasting

mathematics with these two human endeavors. Twelve participants (37%) did not

explicitly delineate mathematics from other disciplines, including five above-cited

respondents unable to illustrate the essence of mathematics. Furthermore.

participants' responses were divergent: the most distinguishing feature of

mathematics voiced by the participants was its abstraction. Seven indicated, in

contrast with science and art, the objects studied by mathematics are invisible and

thus more abstract:

Mathematics is a subject exploring principles, distinct from others in
that its theories are quite abstract. (RSO3. pre-instruction
questionnaire)
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Mathematics is a more metaphysical discipline. With some
exceptions (such as geometry, numbers) in which observable objects
are available, others are not: art and science have concrete objects.
Most require mental calculation, more likely belonging to thought
aspect. (S25, pre-instruction questionnaire)

RSO3 further elaborated his vision during interview:

Some stuff is visible. You may refer to data. As for mathematics,
assume you are given a principle like formulas of Fibonacci sequence.
You have to figure out what makes this so. Someone is able to
appreciate art it [art] is supposed to be more concrete. If you are
given a mathematical result without background introduction, you
would wonder why. Memorizing is iiecessary if you don't get it.
(RSO3, pre- instruction interview)

RSO3 was also asked to compare abstractions in mathematics and in paintings:

It takes a genius to appreciate abstract painting. . . Abstract painting is
understandable for those who know principles. (RSO3. pre-
instruction interview)

Since RSO3 previously professed that mathematics is a subject exploring principles,

he was questioned again to clarify his position. He defended:

Scope of art is quite broad. For instance, a well-made cup is an art
too. Scope of art is rather extensive, which cannot be limited to
painting. Scope of [the abstraction of] mathematics is smaller. (RSO3,
pre-instruction interview)

Consequently, RSO3s perspective about the abstraction in mathematics remained

unclear. A reasonable interpretation could be that, in RSO3's mind, abstraction in

art is visible, in mathematics invisible: artistic abstractions can be appreciated
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through eyes. yet mathematical ones cannot. Actually the scope of mathematical

abstraction is also wide-ranging. Another reasonable explanation might be that he

had more experiences with art than lie did with mathematics in this respect.

Though most students held that mathematics is more akin to science in

nature, some pointed out distinctions:

Science has to rely on observatiom results alone are not sufficient.
During the processes, you normally can find a certain phenomenon, a
kind of regular law, benefiting future science. [As compared to
mathematics] science requires more observation. (R505, pre-
instruction interview)

Mathematics always has a fixed outcome in spite of evolving over
complicated and lengthy time... in my view, the major difference
between math and science is that science may not always attain
identical outcome over a lengthy process (S 17. pre-instruction
questionnaire)

The two statements seemingly hint mathematics goes after preset routes in which

surveying. testing. and guessing play no role in the making of mathematics.

Progress and validity of mathematical knowledge is closely related to ways

of mathematical thinking. Participants were asked to address how mathematical

knowledge developed and whether there was a rule for the development of

mathematics. As seen in Table 6, 13 of the 44 respondents (30%) considered that

growth of mathematics is subject to human demand, as evidenced in the following

quotation:

Mathematics was developed when people pursued a more convenient
life. The more human demanded, the more mathematics progressed.
(S03. pre-instruction questionnaire)
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Demand is the mother of invention." (quotation original) People
need math to make life more convenient, therefore math was
invented. (SI 5, pre-instruction questionnaire)

Table 6

Major Pre-Instruction Responses Regarding Mathematical Development

How Mathematical Knowledge Develops Number of Percentage
responses

Related to human demand 13 30%

Developed in proper order 7 16%

Developed by following certain rules 13 30%

No rule 8 18%

No answer 3 7%

RSOI also viewed the origins of mathematics to be caused by resolving daily

problems. During an interview, he interpreted it in the instance of nails and boats.

Taking nails as an example, in the beginning nails were made of
bamboo, weren't they? Then people had to seek a better substitute.
Boats were made of wood at the outset. How can we make it more
durable? A lot of problems were coming out. Then boats were made
of iron, iron is heavy. How can we make it float on the sea? People
began to think of these issues. (RSO1. pre-instruction interview)

These statements fully reflected the utility of mathematics that had occupied much

weight in their understanding of the development of mathematical knowledge. The

chief vision held by them was that mathematics mainly flourished along with

human progress. Given that abstract mathematics plays an increasingly significant

role in the field of niodern mathematics, it is important to know how participants

look at the rise of abstract mathematics. When exploring the issue, several



116

interviewees were asked to think about whether mathematics exists parallel to, or

has nothing to do with, human demand. Respoiidents in most cases showed a lack

of understanding of this concern.

I seemingly have heard about that, hut was not quite clear. It could be.
(RSO 1. pre-instruction interview)

You have to ask them [mathematiciansi about why they created
mathematics little to do with practical demand. It could be that each
mathematician has his or her own process. Newton could be thought
of in this way because of being hit by an apple. triggering fresh ideas.
It could be starting something. then coming up with an idea. (RSO6.
pre-instruction interview)

Certain developments of mathematics may not fit human demand.
This is probably because some mathematicians are more curious or
bored. (RSO8, pre-instruction interview)

The responses reveal that these respondents lacked an appreciation of pure

mathematical thinkiiig. In their minds, mathematical knowledge must serve

practical purposes only. Seemingly. abstract mathematics is a product of boredom

or unexpected events.

When asked if there is any rule for the development of mathematical

knowledge, eight (I 8%) responded that there should be no rule for it. Their reasons

were varied.

No rule. The more humans demanded, the more mathematics
progressed. (S03, pre-instruction questionnaire)

There should be no rule because it was thought out by the people.
(S24. pre-instruction questionnaire)



117

Mathematical knowledge may be developed, extended or innovated.
along with changing times and diverse human thought. There is no
rule for its development. It could be extending to a more general
scope. or tracing back to the most primitive origins, such as
trigonometric function. (SI I. pre-instruction questionnaire)

SI 1 demonstrated a relatively thoughtful comprehension about this concern, in

which mathematics seeks fundamental conceptions as well as generalization.

Nevertheless, he was not one of the selected interviewees, hence there was no way

to make further investigation.

On the other hand, there were thirteen participants (30%) claiming that the

development of mathematical knowledge should follow certain rules. Yet, many

students seemingly misunderstood the question. Some considered the rules for

development as addition, subtraction, multiplication, division, formulas, and

theorems: they tended to interpret mathematical knowledge as operations. Most did

not give precise explanations to defend their positions: nonetheless, two

respondents associated the development of mathematical knowledge with nature.

I guess it should follow the universal rule. Think about the
application of mathematics: it is around us and applied to the
universe. Why do mathematicians have opportunity for developing?
It is because nature is creating their curiosity. (S09, pre-instruction
questionnaire)

Development of mathematical knowledge is mainly coming from the
survey of nature. A system is developed when concepts of number
are built up. During the process of development. I feel it always
follows the rules of nature. (S25. pre-instruction questionnaire)

The two statements bridging a link between mathematics and nature convey a

widespread view that mathematics is the key to revealing secrets to the revolution

of the universe. The nine randomly sampled students were therefore asked to



118

address this issue: Is the revolution of the universe always following mathematics.

or is mathematics merely a tool invented for describing the universe? All

respondents supported the 1auer whereas only some optimistically held that

mathematical models could be applied to all natural phenomena.

Another chief vision expressed by respondents (7 or 16%) was that

mathematical knowledge always progressed in order, where new concepts were

built on old ones.

Development of mathematics should follow a fixed procedure. New
conceptions must be based upon old ideas. (RSO2, pre-instruction
interview)

Math is a defined item. You must define basic numbers first then
operate on them by four fundamental operations of arithmetic. It
slowly evolved to geometry in this way, deriving by definitions. I
guess it proceeds gradually because you must have a foundation first,
then slowly develop to higher level. (RSO5. pre-instruction interview)

It seems that in their minds, mathematics proceeds according to logical steps and

mathematical knowledge is firmly erected on an established foundation.

Nevertheless, a seemingly contradicted finding was that five of the nine randomly

selected interviewees professed that mathematical knowledge could be fallible:

[New mathematical knowledge could overthrow the old one.1 It
could be that previous researchers did not think of that much, or did
not absorb that much. It could be that new methods were thought out
through incorporating scientific things. (RSO6. pre-instruction
interview)

Even still, it should be noted that three of the five respondents were unable to

support their position. Even one respondent. when questioned to elaborate further,

soon changed his mind by saying:
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Overthrow is less likely possible. Old theorems must have their own
sense, their own examples. You cannot overthrow it unless the
original theorem is incorrect. (RSO I. pre-instruction interview)

The fact suggested that the participants in the present study normally held that

mathematical knowledge is reIiable it is created by following a logically proper

sequence and hence built upon a stable base. Though some of them claimed

mathematical knowledge is unsound, as a rule they were unable to confidently

defend themselves.

Main Features of Pre-Instruction Views

The purpose of the pre-instruction questionnaire was to create a profile of

the participants' pre-instruction views about mathematical thinking, in particular.

mathematics in general. Students' written responses were further validated and

elaborated upon with follow-up individual interviews, pursuing interviewees' lines

of thought and interpreting their thinking appropriately. Contrary to an analysis

with respect to each questionnaire item, the aim of this section is to provide an

overall comparison of all participants' responses to reveal the interrelationship

among all concerns and sketch their major characteristics of pre-instruction views.

By summarizing their accounts, the participants were more likely to:

I. Have a narrow understanding about mathematics and thinking.

2. Lack recognition of the importance of individual persistence in doing

mathematics.

3. Associate creativity with multiple approaches.

4. View mathematics as an abstract subject.

5. Believe mathematical knowledge is logically developed.



Though the participants had learned and thought about mathematics over

years. the findings indicated that they demonstrated a superficial knowledge about

the essence of mathematical thinking in particular, mathematics in general. In

response to the issue of mathematical thinking, most failed to achieve a

comprehensive insight. They tended to perceive thinking on mathematics merely as

a process for reaching answers. Despite their claim that mathematical thinking is

the process of logical thinking or reasoning. on the basis of the interview transcripts,

they tended to see logic as a fixed route that mathematical operations should follow

and some even confessed they never experienced any logical thinking during the

process of learning mathematics. The participants also showed incomplete

comprehension about how mathematicians think. A majority of students considered

that mathematicians' flexibility is due to solid knowledge background and more

problem-solving experiences. Only two exhibited insight into the mathematicians'

work in which the situations such as getting stuck, guessing. testing. and discussing

are typical. Note that eight respondents made no coniment on the essence of

mathematics, seemingly the most difficult item of all. For those responding to this

concern, they were more likely to see mathematics as a study of numbers by

employing mathematical operations. Moreover, participants counted mathematical

outcomes as absolute and unchangeable, which could be shaped by conventional

school mathematics training. Plus, some participants held a pragmatist view toward

the discipline, emphasizing the utility of mathematics in daily life. With few

exceptions. participants on the whole failed to illustrate mathematics appropriately.

Nearly one-third (14) of participants confessed they would directly seek

outer assistance or skip them when facing challenging mathematics problems. Such

a high ratio suggests participants lacked individual persistence while doing

mathematics. The phenomenon was also evident in the participants' views that

mathematicians are always able to solve problems in the easiest and quickest

manners and their successful is due to solid knowledge base or more practice.
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Mathematicians' endurance was rarely addressed. Only four claimed that

mathematicians are more likely to think hard on tasks. Participants' shortage of

recognizing the significance of persistence may be attributed to their past learning.

They mostly were trained to solve routine problems, which normally can be worked

out in few steps. In this manner, while facing predicaments. they tended to recall

formulas, similar problems and what teachers said rather than believe in their own

capability.

An overwhelming majority of the participants viewed doing mathematics as

an activity involving creativity. This claim though in a way can be seen as a proper

understanding, a slightly different vision emerged while investigating their

responses in more detail. Most respondents interpreted creativity in doing

mathematics as multiple ways for deriving answers. This view was also in line with

participants' responses that mathematicians are flexible problem solvers, capable of

demonstrating diverse approaches while attacking a problem. Interpretation in this

way, however, only reflected a one-dimensional view on this concern. It should be

noted that. in addition to generating multiple solutions, mathematical creativity also

applies to looking for valuable open problems. excavating hidden patterns, making

and testing plausible conjectures, specializing, generalizing and so on. Thus, unlike

the participants' static and single dimension vision, creativity in mathematics is

dynamic and multi-dimensional (Tall. 1991).

Participants did not address the abstraction of mathematics until they were

asked to compare it with other disciplines, such as art and science. In their minds.

abstraction is one special characteristic of mathematics different from other subjects

science and art possess observable objects upon which one can operate but

mathematics does not. The operational objects of mathematics are symbols, yet

seemingly not concrete enough to them. Moreover, one participant claimed that the

abstraction of art is visible and can be appreciated through eyes, not the case for

mathematics. On the other hand, however, it appears that the participants lacked an
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understanding of the significance of abstract thinking in mathematics. They neither

voiced the importance of abstract thinking ability nor demonstrated appropriate

recognition of the significance of abstract mathematics. The latter could be

influenced by their pragmatist view, stressing the utility of mathematics in daily life.

As a whole, the participants showed an incomplete comprehension of the abstract

components of the discipline.

A large portion of participants held that mathematical thinking is a way of

logical reasoning, based upon definition, proceeding deductively, toward a reliable

product. Thus, nearly one-third of the participants believed that the development of

mathematical knowledge should follow certain rules. Among them, many indicated

mathematical knowledge grows logically and progresses in proper sequence new

concepts are built upon old ones. A connection was made between thinking and

development of mathematics in their minds. Consequently, some regarded

mathematical knowledge as flawless, absolute truth, and unlike scientific

investigation. This perspective was also evident in their thoughts on

mathematicians' mathematical intuition. Many respondents claimed

mathematicians tend to think about problems rigorously and methodically.

Connection Between Earlier Learning and Current Views

In the present study, participants were asked to complete their mathematics

biographies. describing their learning experiences in the past. Though it is generally

held that an individual's views of doing mathematics is greatly shaped by their

experiences in earlier periods, empirical evidence concerning the case of Taiwanese

college students is sparse. This section therefore proposes to search for potential

links between the two respects by contrasting their professed views on mathematics

as expressed in their biographies and questionnaire. Since only 34 students returned

their mathematics biographies, the following analysis is merely based upon

available data sources.
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An investigation was made to check the degree of consistency between the

two data sources. For avoiding possible biases, each data source was independently

read and analyzed to highlight main traits. If professed responses on both data

sources mostly exhibited parallel views regarding issues of interest, it was marked

as moderate consistency (e.g., the respondent reported initiative learning behavior

in the mathematics biography and meanwhile demonstrated thoughtful

understanding of mathematical thinking on the questionnaire). Otherwise, it was

marked inconsistent. It was found that 17 of the 34 (50%) participants demonstrated

a moderate consistency between their claims to the two data sources and seven

(21%) showed inconsistency. Nevertheless, 10 (29%) were hard to categorize and

were unidentified as a result.

Of the 1 7 respondents considered as consistent, seven were more likely to

hold an active perspective of learning mathematics as well as express a vivid view

about mathematical thinking. For instance, S09's response on the mathematics

biography showed a thoughtful knowledge of the role of mathematics:

While attending to elementary school, my thought changed. Having a
good math may not rely upon strong ability of mental calculation, but
on thinking of the concept. Math not only is closely related to our
daily life, but occupies much weight in our professional learning.
Math is not for taking an exam in order to obtain high score, but for
application. If it is only for obtaining scores, it is worthless to learn
math. (S09, math biography)

Conversely, he expressed an active view on questiotmaire about the definition of

mathematical thinking and his strategies reacting to challenging tasks:

Mathematical thinking can be applied to many things, such as; (1)
counting money. (2) architecture particularly requires it, (3) writing
computer programs is also mathematical thinking. Thinking of logic.
thinking of the application of calculus. (S09, pre-instruction
questionnaire)



124

My instant reactions are: (I) thinking on the content first, (2)
pondering why! feel it difficult, (3) searching for key concepts. (4)
discussing with classmates. (5) inquiring to teachers. (S09. pre-
instruction questionnaire)

Another participant S25, confessing in the math biography that mathematics attracts

him by its processes of discovering and solving problems. displayed a

comprehensive understanding about mathematicians' work.

Mathematicians usually carry out a survey with respect to problems.
boldly make a conjecture. test it repeatedly by using known aiid
unknown, then constantly verify result when all done. (S25, pre-
instruction questionnaire)

S25's illustration in some way featured the empirical aspects of doing mathematics.

On the other hand. 10 respondents exhibited a relatively conventional vision either

on the mathematics biography or pre-instruction questionnaire. For instance. RSO5,

confessing a passive habit of learning mathematics in the mathematics biography,

claimed on the questionnaire:

Mathematics is a result-oriented study. It is correct as long as
answers can be acquired. (RSO5. pre-instruction questionnaire)

Mathematics is a way of leading to answers. . . as long as the direction
of doing mathematics] is correct. the path leading to answer would

he rather short. (RSO5. pre-instruction questionnaire)

RS05s main focus seemingly was always in the pursuit of answers.

In contrast, seven participants' responses to the mathematics biography were

found to be inconsistent with written responses on the questionnaire. S35 confessed

that his mathematical capability is just average and complained his interest was

depressed by a semi-forced means of school mathematics. He seemingly
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experienced a discontented period of learning mathematics. Whereas, when asked

whether solving problems is au activity involving creativity or a predetermined

procedure, he was in favor of the former saving:

Learning mathematics should be subject to means. The best way is
thinking and applying it with flexibility and ingenuity. I personally
hold that following predetermined procedure is a conservative
behavior. (S3 5. pre-instruction questionnaire)

Moreover, while responding to what mathematics is. he claimed that all natural

phenomena are implicated in mathematics, a vibrant perspective toward the

discipline. Conversely. RSO2 expressed a thoughtful vision about mathematics in

the mathematics biography but was found to be limited in the questionnaire. For

instance, he professed in the mathematics biography that.

I agree what people say, mathematics is for fostering one's concept
of logical thinking." (quotation original) This implies learning
mathematics is really to make one think on problems, rather than
memorizing alone. I read this sentence in a book, performing out
known stuff is knowledge applying it further to unknown stuff is
wisdom." (quotation original) I guess this is what mathematics is
about. (RSO2, math biography)

RSO2 appeared having an insight into the essence of mathematics. However, he

likely associated mathematics with a study of numbers and mathematical thinking

with dealing in relationships among numbers, a relatively conservative conception.

Furthermore, he acknowledged in the interview that he never experienced the merit

of improving logical thinking during the period of learning mathematics.

Consequently, RSO2's views of mathematics and thinking appeared to be

incongruent and disconnected.
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As a result of short and brief statements or contradicted descriptions. 10

participants' responses to the mathematics biography and the questionnaire were

unidentifiable as to congruence. With one exception, none of them were in the

random sample. therefore not interviewed. Thus, further investigation was not

possible to validate their written responses. Still many respondents were unable to

demonstrate their intrinsic thought clearly and concurrently through writing. As in

one case, RSO3 expressed inconsistent written responses on two data sources (lively

point of view in the mathematics biography, but lacked detail on the questionnaire).

yet displayed a highly dynamic and active vision of mathematical thinking during

the interview. To avoid a careless misinterpretation, such vague responses were left

unanalyzed.

Post-instruction Views

This section reports findings germane to the participants' post-instruction

views on mathematical thinking, after experiencing the I 8-week problem-based

course. First of all, the classroom setting is depicted to sketch a holistic picture of

the experiences in the calculus class, setting the stage for a better understanding of

the post-instructional results. The second section focuses on post-instruction views

of concerns. Analysis is on an aspect-by-aspect basis, wherein the respondents'

account of each post-questionnaire item will be parsed independently, followed by a

contrast of their pre- and post-instruction statements on the same subject. Lastly, an

overall investigation summarizes any noteworthy change in the participants' views

following the course.

The Classroom Context

The chief goal of the problem-based learning in this class was to

problernatize the topics in two different ways. First, to arouse curiosity and elicit
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interest, students were frequently questioned to consider the importance of a topic

and key concepts. Several handouts regarding the historical background and origins

of topics served as auxiliary material for increasing students' understanding.

Further, they were urged to propose credible approaches to solve the historical

problems, followed by public investigation of these ideas. All students were

encouraged to challenge and revise ideas proposed by someone else. During the

initial lessons, perhaps because of the unfamiliarity and traditional conservative

atmosphere in Taiwanese classrooms, students were less likely to take the initiative

in responding to questions. The researcher/instructor therefore called on specific

students or in random to increase their involvement. The situation gradually

improved in the following weeks until the end of sen-iester. When called on to

answer questions. students were more at ease: some even tended to actively respond

to the researcher/instructor's questions. Meanwhile, to avoid the case of active

students occupying too much class time, the researcher/instructor also created

opportunities for the silent students to participate in public discussion via calling on

them. Regardless of correctness. all students were asked to defend their answers.

When respondents were not able to give any answer, they would be further

encouraged to make plausible guessing in order to stimulate critical thinking.

While teaching, the instructor/researcher acted more like a leader than a

director at this point, establishing a problematic setting to promote students'

curiosity and involvement. Moderate wait time (at least 10 seconds) was used to

slow down the teaching pace in an effort to allow students more thinking time.

Rather than presenting material in a clear and organized fashion, the course was

also arranged to demonstrate the give-and--take struggle of problem solving in

which the researcher/instructor behaved like a novice working problems from

scratch, suggesting various plausible approaches, and asking students to evaluate

the possibility and validity of each approach. For instance, contrary to direct

instruction of the concept of a tangent line, students were first asked to propose
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their definition of the tangent line to a curve. They usually considered a tangent line

to a curve as a straight line touching" the curve at a specific point. According to

their descriptions, the researcher/instructor drew a figure and then asked the

students to decide whether the figure on board fit their criteria. Thereafter, the

researcher/instructor drew another curve with a sharp point on board and students

were asked to decide the tangent line at that sharp point. At that moment, they

would have difficulty deciding which straight line was desired because, as such,

there are an infinite number of straight lines satisfying their definition. They then

realized that a more complete definition was required and defining the tangent line

as the limit of secant lines is necessary and reasonable. All in all, as opposed to

serving as a content transferor, the instructor/researcher intended to function as a

multiple-role lecturer leading students to explore, investigate, and even interpret the

essence of mathematical thinking on their own.

Additionally. 12 historical problems gleaned from a variety of sources.

differing in routine text exercises in nature, were assigned to students as weekly

homework. All problems were related to and preceded the particular topic with the

intent of eliciting the students' thinking and laying the groundwork for the coming

topics. Students were asked to solve the problems or seek relevant information on

their own. Discussion with classmates was allowed, but copying of others work

without effort was strictly prohibited. Moreover, they were also asked to submit all

used approaches. regardless of appropriateness. Grading was based on their

elaboration as well as the correctness of answers. After collection of their answers,

several studeiits were invited to present their approaches and the class was

requested to evaluate the plausibility and validity of the approaches. For instance,

for the problem of deriving the area of a circle, students proposed various methods

such as cutting a circle into triangles, rectangles, and even more complex

geometrical shapes. The class then assessed the adequacy of each method and

decided which approaches might fully achieve the goal. In this manner, the class
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became a small mathematical community in which all members communicated

ideas with each other and attained a commonly accepted criterion as a result.

Because of their difficulty, two problems, Napier's logarithm and Perrault's

tractrix problem, were worked both individually and in groups. Prior to entering

group discussion, students were asked to hand in individual solutions to the two

assignments, either complete or incomplete. They then participated in group

discussion to share ideas with group members and have their thinking scrutinized in

public. The grouping was random and there were five or six persons in each group.

Following group work activities, all students handed in a final version of the

solution representing their overall effort. Aside from working together outside class,

participants were given 40 minutes in class to communicate with one another and to

better prepare their final work. Students were expected to work together with group

members outside class, but it appeared most were not doing so. As such, the two in-

class discussions were, in most cases, the only chance for interaction among

members. During in-class group discussion, students were requested to report their

current progress toward the probleni to members and work together to select one

method which was most likely to resolve the problem. The researcher/instructor

was then walking around the class to monitor the advancement of each group and

assure the group discussion was moving forward properly. Students got no hints

from the researcher/instructor. Rather, they had to explain the strategies that they

adopted and why they decided to do so. The researcher/instructor did not explicitly

pinpoint students' mistakes unless they were not on the right track at all. After

group discussion, students were asked to keep working on the problem and submit

their final work at the next class meeting on the basis of previous personal thinking

and the conclusion of group discussion. Similarly, when answers were collected,

students exhibiting elaborative thinking (whether correct or not) were invited to

share their approaches at the board with classmates and further questioned by others

or the researcher/instructor. According to students' instant responses in class,
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assignments were so tough that many were beyond their capacity they also

confessed that inviting students' insight provided alternative windows for thinking.

Though the entire course in most cases progressed on the basis of original

design, several unforeseen occasions and events affected execution of the designed

curriculum. During the initial class meetings. students' reactions to the teaching

style, materials. and assigned problems were not as expected. They seemingly

struggled to capture the main points of emphasis and were reluctant to respoiid to

the instructor/researcher's questioning. To avoid rushing and save time for students

to acclimate, the curriculum was presented more slowly. Plus, due to the influence

of two typhoons, four class meetings were cancelled. As a result, the course

schedule fell about a week behind the original plan. By taking the continuity and

completeness of curriculum into account, some topics (introduction to differential

equation. Mean Value Theorem for integrals, and the trapezoidal and Simpson's

rule) were removed.

On the other hand, students were supposed to hand in homework solutions

weekly, except for two problems worked through cooperative learning.

Nevertheless, because most students could not finish some assigned problems on

time, due dates were extended at times and. consequently, some planned tasks

(Leibniz's problem of refraction, L'Hopital's pulley problem, and the shroud of

Turin) had to be deleted. In addition, given students' curiosity about and interest in

historical misconceptions regarding infinite series. the instructor/researcher

accordingly decided to replace one problem (Newton's chain rule) by Euler's

mistakes on infinite series to show evidence of potential fallacy in mathematical

thinking.
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Post-instruction Views on Mathematical Th inking

As reported, at the outset of the course, the participants were likely to (a)

have a cursory understanding about mathematics and thinking. (b) lack recognition

of the importance of individual persistence in doing mathematics, (c) associate

creativity with multiple approaches, (d) view mathematics as an abstract subject.

and (e) believe mathematical knowledge as logically developed. This section

analyzes their post-instruction views about these issues.

Written responses on the post-instruction questionnaires were initially used

to categorize participants' views on each item. Special emphasis was placed on

overall differences as well as individual distinctions during the course. Both

respondents' written and oral statements served as evidentiary data for further

interpretation and demonstrating changes in their views of mathematical thinking

and mathematics.

Participants' post-instruction responses on mathematical thinking

demonstrated wide variety. Several key distinctions between participants' pre- and

post-instruction views of the definition of mathematical thinking are shown in

Table 7. Compared to previous responses. fewer subjects referred to mathematical

thinking as merely a process of solving problems or recalling formulas; none saw

mathematical thinking as involving calculations and/or operations alone; all were

able to propose definitions of mathematical thinking, whereas four had been silent

on this concern at the start of the course. On the contrary. some shifted to

emphasize the significance of understanding problems and rationale of theorems;

some instead perceived approaching problems in one's own ways or from diverse

facets as critical.
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Table 7

Comparison of Major Responses Regarding Mathematical Thinking

Mathematical Thinking Pre-nurnber of Post-number
responses of responses

A process of solving problems or deriving answers 9 3

Logical thinking and reasoning 12 6

Calculation and operation

Recalling formulas

No answer

Understanding the rationale

4 0

4 1

4 0

0 4

Thinking from multiple facets or angle. integrating 0 4
diverse thinking
Using one's own way 0 4

Understanding the problem 1 4

As noted, fewer students considered mathematical thinking as a route

leading to the solution of problems. For instance, participant S15 reworded:

I forget what I wrote last time. Seemingly no answer?! [but] I got
some ideas right now. I thiiik mathematical thinking could mean that
attaining reasonable answers through logic of making sense and
reasonable generalization. In sum, it is a process of solving problems
by means of reasonable ideas and procedure. (S 15, post-instruction
questionnaire)

S15 repeatedly stressed the role of reasonableness. By reasonableness. on the basis

of his footnote, he meant evidential and ineaningtiilticts; he was seemingly

inclined to value the importance of logical sense in doing mathematics. Still others

expressed this view. SOS previously defined mathematical thinking as multiple

solutions. yet afterward reworded it as:
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Mathematical thinking is a mode of thinking possessing
reasonableness, persuasion, and logic. When solving problems. either
processes or answers must have three features such as reasonable,
persuasive and logical [italics added]. (S 5. post- instruction
questionnaire)

Participant S22, who earlier claimed mathematical thinking was a process of

constantly pursuing the only true answer, changed his focus by saying:

I don't think there is a fixed pattern for mathematical thinking.
Sometimes [we] must jump out from subjective recognition and
measure itfronz objective angles [italics added] for attaining correct
results. (S22. post-instruction questionnaire)

S22's concern appeared to shift from mathematical product to process; S26 also

endorsed this view by declaring that human intuition is unreliable because

relationships among numbers may not fit one's logical thinking. The

aforementioned findings suggest, in addition to validity of answers, reliability of

procedures looms larger in these participants' minds.

Another main difference between pre- and post-instruction views was a

tendency to stress flexibility in doing mathematics. Four considered mathematical

thinking as attacking problems from manifold facets or integrating diverse thinking,

while four others emphasized individual creativity. S06 professed during the pre-

instruction stage that mathematical thinking is nothing but recalling formulas; he

later reworded it as understanding problems and looking for alternative ways to

derive answers. RSO3, initially interpreting mathematical thinking simply as

thinking of solving problems, gave a more detailed description of the construct:

Just like problems in assignments. many were never seen or heard
before. We were required to prove or guess why this is so. In the
process of answering these questions. [I] would employ a variety of
ideas to write or guess. These ideas are mathematical thinking.
(RSO3. post-instruction questionnaire)
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When asked to explain further, RSO3 claimed:

I spent much time thinking on those problems, thinking a lot.
Various methods are used to solve them. . . roughly like two persons
knowing how to do may use different approaches though their
starting point is the same. So a problem can be worked out in
multiple ways. (RSO3. post-instruction interview)

Respondent S32 was silent on this item at the outset, but highlighted two features of

mathematical thinking this time:

Thinking for solving problems. [Mathematical thinking is] thinking
in one 's olin iiai' and approaching from multiple facets fjitalics
added], identifying appropriate routes for achieving correct answers.
(S32, post-instruction questionnaire)

This perspective was also endorsed by others, such as S 10's claim:

[Mathematical thinking] is how you apply your own methods to
derive answers or prove and locate relevant formulas. For instance,
handouts tell us a lot of stories about mathematical discovery. How
did they [mathematicians] think of it, attain inspiration, and even
prove it? The process involved in their thinking should be
mathematical thinking. (S 10, post-instruction questionnaire)

Some class handouts, describing mathematicians' ideas of attacking problems.

seemed to make S32 re-conceptualize the essence of the construct. Sl7 had

formerly proposed mathematical thiiiking as solving a problem in the easiest way

he later held that mathematical thinking is solving problems by using unusual or

weird ideas. Note that in class several peculiar approaches employed by

Archimedes for deriving area and volume were introduced, and students were

seemingly impressed, as will be discussed later.
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Despite the noteworthy distinctions cited above, still others demonstrated

little or no difference in defining mathematical thinking. RSO2 insisted that

mathematical thinking is pondering the relationship among numbers: RSO5 and S25

firmly held that mathematical thinking is a mode of logical reasoning for achieving

answers: on pre- and post-instruction questionnaires, S26 concurrently addressed

three traits of mathematical thinking: changing. unchanging. and simplifying.

Following the analysis of the participants' definitions of mathematical

thinking, it is important to ascertain how they dealt with difficulties with the

problem. Table 8 compares pre- and post-instruction responses regarding instant

strategies to make progress toward a solution.

Table 8

Comparison of Major Responses Regarding Strategies To Unfamiliar Situations

Instant Strategies to Unfamiliar Situations Pre-number of Post-number
responses of responses

Keeping thinking on it for a while

Looking for relevant materials

Asking for help

Understanding the problems

Going back to basic concepts

Recalling similar problems or formulas

Testing alternative approaches to work out

Skipping it

8 11

9 6

3 1

3 6

5 1

4 5

4 4

2 2

A major distinction was that slightly more respondents expressed a willingness to

try other strategies (e.g., thinking on their own, understanding the problem) prior to

seeking outer assistance (looking for relevant materials or asking for help). For
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instance, when stymied, participant SOl 's previous first reaction was to check out

relevant materials or ask for help nonetheless. he instead declared:

Keep thinking on it for one or two dm's litalics added]. If you cannot
figure it out, then go check out relevant material. If unavailable, then
go ask someone else. If nobody could do it. leave it for a while and
then pick up and think again. (SO 1. post-instruction questionnaire)

Compared to his pre-response, SOl exhibited more individual persistence in

struggling with demanding tasks. S26. who claimed on the pre-questionnaire that he

would set up a fixed time limit for solving a problem, also showed more elaborative

thinking on this concern:

First of all, [I would] make a judgment to categorize the problem and
then review all relevant basic definitions or discussing with people
adept in this respect, proposing my opinion about this problem and
bottleneck that I encounter, and then absorbing others' point of views.
(S26, post-instruction questionnaire)

S26's situation was also seen in others' responses. With some exceptions, students

in this class were generally allowed to share ideas with classmates or group partners

and convey any information they had. Participants. as such, were able to witness

how others worked on or approached problems. In this manner, individuals may

adjust their strategies or perspectives of doing mathematics in certain ways.

Interviewee RSO7 used to skip difficult problems outright or simply do some

random thinking, yet affirmed on the post-questionnaire that she would no longer

skip any problem without effort because. as she further explained during the

interview:
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I can see that those guys have a lot of pleasure in doing mathematics.
Even though doing it wrong. they still quite enjoyed it. I have a high
regard for them... I feel they paid much attention. It could be that
they are so interested in it. They are willing to spend time on it.
(RSO7. post-instruction interview)

When interviewed. RSO7 admitted her conception of doing mathematics was

affected by some other participants' patience and professed that, while responding

to the post- questionnaire, she really wanted to exhibit her progress in this respect.

Students devised multifarious strategies to cope with predicaments. yet

neither written nor oral responses evinced any significant upgrading of individual

persistence in doing mathematics. Likewise, six of the nine chosen interviewees

displayed little change on this item: a potential hidden cause for this shortage merits

further investigation.

During instruction, the participants learned several ancient mathematicians'

approaches to specific problems: thus it was important to probe again their thoughts

on how mathematicians think about problems. A contrast of their responses to this

concern yielded one unchanging response: the mathematician is good at attacking a

problem from multiple facets and diverse angles, as shown in Table 9.

One typical viewpoint was interviewee RSO9's interpretation. She professed

on the post-questionnaire that mathematicians would not be simply satisfied by

achieving the answer. Upon further inquiry, she explained:

When mathematicians think, their approaches would not be rather
quick and may not be correct. Until encountering a mistake, they
began to know what could or could not be used. Laypersons would
stop at finding out the answer. But for mathematicians, even if they
obtain the answer, they still wonder: What other approaches can
achieve this answer? (RSO9. post-instruction interview)
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Table 9

Comparison of Major Responses Regarding How Mathematicians Think

How Mathematicians Think Pre-nuniber of Post-number
responses of responses

Thinking from diverse angles/alternative 8 7

approaches
Being able to find a quickest way 8

Possessing solid knowledge 3 1

Starting from basic concepts 5

No answer 6 2

Verifving their ideas 0 4

Doing thought experiments 2 5

Being creative and associated 4 10

Being imaginative I 5

On the contrary. several distinctions surfaced. As reported earlier, at the

outset, several participants tended to think the mathematician's brain was filled

with a variety of ready solutions for use, yet they paid little attention to

mathematicians' effort. On the basis of responses on post-instruction

questionnaires, however, some of them shifted their focus. For instance, two

participants, considering mathematicians might have some kind of intuition or

presentiment regarding problem solution, professed instead:

Mathematicians won't be stuck on a fixed method. [Theyl may think
from multiple facets, even try approaches that they have never
known. (S 13, post- instruction questionnaire)

Mathematicians' ways of thinking do not follow a preset rule. They
may employ their imagination, attack problems from multifarious
facets.. .they are able to approach from alternative angles. (S3 I, post-
instruction questionnaire)
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The participants were more likely to stress mathematicians' struggle for identifying

the solution. The assertion was also evident in the fact that, with two exceptions (S4

and S 16). far fewer participants viewed mathematicians as efficient problem solvers

always being able to find the quickest solution or possessing solid mathematical

background. For instance, S2 1 previously held that mathematicians could solve a

problem in a rather quick and neat way, whereas he reworded:

I feel mathematicians' ways of thinking should be like when seeing a
mathematical equation. [he] would analyze its association with other
formulas and decide whether to do calculation directly or reorganize
it first. (S2 I. post- instruction questionnaire)

Though S2 i 's current statement centered on formulas and calculation, compared to

his former point of view, he exhibited a more sophisticated thought in which

mathematicians' struggles were taken into account.

On the other hand, none of the participants recognized the role of

justification in mathematicians' work during pre-instruction: four identified the

concern after instruction. SI 7, who once saw mathematicians as efficient solvers,

shifted his focus:

Mathematicians may use some proofs to verify the answer and make
it be accepted by public. Laypersons. nevertheless, merely employ all
known methods to attain the answer and feel it should be right but
without further justification. (S 1 7. post-instruction questionnaire)

Participant S 15. aside from endorsing a similar view, added that mathematicians

tend to be more curious about problems. He recognized that not all problems can be

solved. but mathematicians' desire to try and see what they really can do is strong (a

perspective congruent with RSO9's statement).
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A contrast of their visions also revealed slightly more of the participants

were likely to realize the mathematician's thinking process. They tended to

recognize the importance of doing thought experiments when struggling for

answers. For example. S18, referring to mathematicians' capability of doing more

problems. turned to hold that a mathematician would break a problem into parts and

constantly dwell on it, in which guessing is required. Participant Sil. previously

referring to mathematicians as more associated and creative, delineated a more

comprehensive account on the post- instruction questionnaire:

When solving, the mathematician definitely identifies clues from
problems first, followed by focusing on plausible approaches. and
then finally achieves the answer. The mathematician's ways of
thought are more associated and careful than laypersonsbeing
able to locate clues by making oblique referencesto avoid
mistakes; [namely] making bold conjectures followed by cautious
verification [italics added]. (S 11. post-instruction questionnaire)

The conception of mathematicians as creative problem solvers also drew numerous

participants' attention. As shown in the Table 9. 10 participants (versus four at the

beginning) considered mathematicians as creative, able to develop individual

methods, and able to generate unusual ideas. It appears mathematicians are not only

regarded as flexible problem solvers, approaching problems from multiple angles.

but also as sophisticated thinkers, creating idiosyncratic thoughts for reaching

answers. Furthermore, interviewee R507 previously considered mathematicians as

people more able to think from the basic, then paid attention to the mathematicians'

creative thinking and associative ability:

Mathematicians' enthusiasm is like a mania. A series of common
numbers in laypersons' eyes could become numerous kinds of
varieties and logical combinations. It's incredible. (RSO7, post-
instruction questionnaire)
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Interviewed further, she explained:

I forget who [he or she is]. I was told a story about a mathematician
near death who could create a bunch of combinations when he saw
numbers on license plate. 1-ic was quite sick then and on the way to
hospital. but saw a four-digit number on a license plate. He could
organize it through calculation, permutation, and combination.. .1
feel they are so cool, super cool. You also mentioned that they would
do some things when seeing these stuffs and do some other things
when seeing those stuffs. (RSO7, post-instruction interview)

RSO7 seemed impressed by the mathematicians' persistence. Plus, RSO3 considered

the ability to make connection among mathematical ideas as culture issue:

Experience should be related to cultural background. His or her job
does matter. For example, if he or she is a physicist, he or she would
be more likely to employ physical concepts. As for our Chinese
mathematicians, they rarely approached [mathematical problemsi by
using physical concepts. I guess it is related to cultural background
and the engaging job. (RSO3, post-instruction interview)

RSO3's argument could be related to class events in which several Chiiiese and

Greek mathematicians' mathematical thoughts were introduced and compared.

Archimedes' peculiar approaches in deriving area and volume drew students'

attention and interest. As such, more participants were inclined to see

mathematicians as imaginative. For instance. RSO2, an interviewee initially

proposing that mathematicians tend to derive relationships of numbers through

logical reasoning. highlighted their capability of association and imagination

instead. In the interview, he cited Newton and Archimedes:

Just like capability of association, many figures had discovered
calculus but not specifically until Newton. I consider imagination
more important because of Archimedes. I feel he is so strange. He
derived the volume of a sphere by means of lever...How did he think
of it? Plus. he transferred a circle into a triangle. I feel his
imagination is quite strange. (RSO2, post-instruction interview)
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RSO2 was additionally asked whether Archimedes' idea was accessible through

deductive reasoning he labeled this sort of thinking as imaginative rather than

logical and confessed this (Archimedes' mathematical approaches) is the cause for

changing his mind.

These above findings suggest that. near the end of the course, students

perceived mathematicians as (a) ingenious thinkers, rather than skillful problem

solvers and (b) resourceful innovators, as opposed to erudite content experts. It is

therefore noteworthy to investigate if this view shift exerted any potential effect on

their conceptions of the processes of doing mathematics.

Having witnessed historical eastern and western mathematicians'

approaches, the participants tended to see mathematicians as imaginative and

creative figures. It is reasonable that, as such, the participants would be more

inclined to view doing mathematics as activities linked with individual originality

in contrast to pursuing fixed steps.

Table 10

Comparison of Major Responses Regardin2 Creativity in Mathematics

Involving Creativity/Following Preset Procedures Pre-number of Post-number
responses of responses

Involving creativity 26 15

Following preset procedures 3 1

Both 5 18

Depends (on individuals or occasions) 8 9

No answer 2 0

Still, as highlighted by Table I 0. the results differ. Though most participants

no longer considered doing mathematics as merely rigid, fewer believed creativity
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was the most essential element. Quite a portion of participants shifted to a neutral

position (requiring both creativity and following preset procedure).

Two respondents formerly viewing mathematics as fixed activities changed

their beliefs. For instance. interviewee RSO1 previously believed doing

mathematics as following predetermined steps by saying:

Why does 1 + I = 2? Can't it be 3? This is defined by
ancestors... Our current thought could see it as 0 if I + I was
previously defined as 0. 1 think Idoing mathematics] isfolloiiing
knoivn procedure [italics added]. (RSOI, pre-instruction interview)

RSOI apparently paid attention to arithmetic components of mathematics in the

beginning, but shifted to focus on another respect, on the post-instruction

questionnaire:

My point of view is both [creativity and following preset procedures]
are required. When seeing an unfamiliar problem, I may not
necessarily use formulas in the text. [1] could put my own creativity
into the thinking process to increase power of persuasion. (RSO I,
post-instruction questionnaire)

Asked the reason for the change, he explained:

The problems you gave us! [I] would make a guess to reach the
answer if I cannot figure it out. Then start to think again... creativity
is involved in the process of guessing. (RSOI. post-instruction
interview)

It appears RSO 1 found that the strategies like following preset procedures or fitting

formulas did not work when solving assigned tasks and began to value the role of

creativity.
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As noted, many participants took a neutral stance oii the issue of creativity.

an important phenomenon calling for further investigation. S19. who initially

considered the issue as dependent on individuals without explanation. gave a

thorough description on the post-instruction questionnaire:

Both have advantages and disadvantages. Thinking would become
more delicate if on the basis of personal creative thinking. The
disadvantage of doing so [solving problems by using creativity] is
several obstacles would occur during solving processes: yet
creativity is stronger. [On the other handi Thinking would be weaker
if solving the problem by going after predetermined procedures. The
advantage of doing so [following predetermined procedures] is the
extant problem can be solved neatly. (S 19, post-instruction
questionnaire)

SI 9 seemingly indicated that both approaches may lead to the answer; nevertheless,

while creative thinking is original yet challenging, following routine steps is rigid

but efficient. Another participant S12 also viewed the issue as individual-dependent

at the outset, but he subsequently interpreted creativity in another light:

Both have their own merit. Correct answers may be more safely
achieved if a routine approach is adopted. However, the result would
not be attained if stuck somewhere in the midst of solving
process.. .the result probably can be obtained if [we] work from
backward or approach it in unusual ways. (S 12. post-instruction
questionnaire)

Sl2 tended to see creativity as the key for escaping a predicament. Interviewee

RSO5 previously regarded doing mathematics mostly as activities for pursuing

answers. On the post-instruction questionnaire, however, he professed:
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I think both are required. Because every mathematics problem can
derive its answer in different angles and methods. But each angle has
a set of procedures that ought to be followed. (RSO5. post-instruction
interview)

RSO5 additionally claimed that his point of view was somewhat influenced by other

classmates' primitive ideas proposed in cIass as such, he became more aware of the

role of creativity. Yet, in the interview, he still insisted on the necessity of following

preset steps. To him, creativity functions more as an entry for approaching the task

predetermined rules follow. Moreover. some participants associated creativity with

the development of mathematical knowledge. For instance, S17 and RSO8. both

initially holding the view that doing mathematics mostly involves creativity, slightly

shifted their position to neutral and made a connection between creativity and

knowledge in the making, as evident from SI 7s claim on the post-instruction

questionnaire:

I think both arguments are reasonable, but personal creativity
occupies more weight. Where does mathematics begin if without
creativity? Where are current diverse [mathematicsl ideas from?
Following predetermined procedures is according to the
predecessor's methods, a more efficient way. (SI 7, post- instruction
questionnaire)

RSO8 also endorsed this view by saying:

Mathematics would not make any progress without creativity. New
stuff will be coming out when [youj think of something that others
have never thought. Mathematics is the stuff about thinking, It would
not make any progress if merely by fitting fixed formulas in. (RSO8.
post- instruction questionnaire)
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On the post-instruction questionnaire, RSO8 saw solving problems by following

preset steps as only for daily application. Aforementioned findings indicate that

though many participants shifted to holding that both creativity and routine

procedures are needed, the ways they interpreted creativity varied.

Furthermore, the number of participants seeing this concern as dependent

slightly increased. As seen earlier, some participants in this category shifted to hold

a neutral view: others remained unchanged. S34 and RSO3, either before or after the

instruction, firmly believed fixed steps were required for beginners, who may

thereafter develop individual strategies on the basis of experiences and ingenuity.

They appeared to consider the two counterparts as essential components of a

learning cycle. By contrast, four viewed the issue as doer-dependent. SlO

previously professed that doing mathematics should involve creativity, what with

the multiple approaches for solving a problem, yet shifted his focus to the solver:

I think it depends on the individual. Some people are born to be good
at logical thinking. His [or her] process of thinking and solving could
differ from others'. In this manner, it might be that certain special
ideas emerge and subsequently a simpler and easier understanding
method is created to solve mathematical problems. Everybody's
thinking processes would be not much different if all followed
known procedures. (S 10, post-instruction questionnaire)

Two participants (S7 and S8) split problems into two counterparts: those requiring

originality and those that should follow extant rules:

For certain problems. a little bit of personal creativity could be
required (for example, some problems about deriving area), but for
some other problems. thinking according to mathematical definitions
and rules is demanding. (S08. post-instruction questionnaire)
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As compared to the neutral argument mentioned earlier, participants viewing the

issue as doer- or occasion-dependent, as a whole, demonstrated a dichotomous

perspective in which mathematics learning processes, doers, or problems all can be

classified into distinct levels.

Analysis of these participating college students' pre-instruction account of

the essence of mathematics indicated that, as reported earlier, they heretofore paid

scant attention to this aspect. despite years of doing mathematics. This finding also

suggests the participants' vision regarding phases of mathematical thinking had

somehow shifted. Probing this theme again was reasonable to look for any potential

link between their images of mathematical thinking and mathematics as a whole.

Table 11 shows all respondents who addressed this concern. Note the number of

participants (nearly one-third) who still considered mathematics as a subject dealing

with relationships among numbers.

Table 11

Comparison of Major Responses Regarding The Essence of Mathematics

What Mathematics Is Pre-number of Post-number
responses of responses

A subject of studying numbers 9 12

Atool ofdaily life 7

A subject possessing infallible knowledge 5 0

No answer

A subject for studying science and nature

A discipline involving logic, thinking. and
reasoning
A subject involving operation (of equations)

8 0

5 10

1 8

5
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For instance. RSOI, originally claiming on the pre-instruction questionnaire that

mathematics is a thinking process of fitting iii appropriate formulas, professed that

mathematics is for resolving human's recognition of numbers via appointing the

length and area of objects." Upon further inquiry, he explained:

People are always interested in unknown stuff. When having an
object. how do you represent it in number? What is its quantity?
People will make a rule to work it out. (RSOI, post-instruction
interview)

RSO1 appeared to interpret the chief aim of mathematics as quantifying observable

objects. Likewise, three participants in this category also associated mathematics

with symbols. S21 exhibited a concurrent position, firmly believing mathematics is

a subject involving operations of numbers and symbols: S33 also expressed a

similar account on the post-instruction questionnaire. S29 tended to see

mathematics as a sort of logic combining words, numbers, and symbols. It seems

that numbers and symbols (especially the latter) loomed large in some participants'

minds in which mathematical activity is mostly executing operations involving

these two elements. Compared to numbers. the symbol is a more abstract and

puzzling element that confuses mathematics learners, as evident in another

participant's claim:

Mathematics is an abstruse and changeable game of si'mhols, but
without am' rules [italics added]. It's lovable but also hateful! (S30,
post-instruction questionnaire)

Nonetheless. it should be noted that though a large portion of participants

associated mathematics with numbers, their description could be a mere rhetorical

response rather than well thought out. Several interviewees expressed this point of

view on the post-instruction questionnaire yet interpreted the issue from other
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angles. The rhetorical meaning of mathematics in Chinese (as the scholarship of

numbers") might have directed their responses.

Moreover, several chief differences were found in the participants'

statements. Firstly, fewer participants claimed mathematics as a tool in daily life. In

the beginning, seven respondents interpreted mathematics from a pragmatic

standpoint in which the discipline functions as a practical tool for improving human

life; afterwards they changed their focus to various aspects. For instance, one of the

seven participants professed on the post-instruction questionnaire:

Mathematics is a kind of science as well. A variety of scientific
theories are derived from mathematics, and much stuff in daily life is
related to mathematics, such as the golden ratio for appreciating the
sense of beauty. (S03, post-instruction questionnaire)

Instead of mentioning practical utility of mathematics, S3 cited the example of the

golden ratio, one of topics in this course, to support his argument. While stressing

an intimate relationship between mathematics and ordinary life, he still seemingly

tended to view mathematics from alternative facets. Participant S33. originally

making a connection between mathematics and shopping, claimed mathematics is

the mother of science, involving numbers, symbols, and operations. S13 previously

described mathematics as a virtual subject hard to use in daily life; nevertheless. he

shifted his concern in the end when asked to define mathematics:

Mathematics cannot be entirely on the basis of imagination; certain
techniques and rules for problem-solving should be memorized. Not
everyone may have a sense regarding mathematics.. .ln addition to
memorizing, realizing rationale is necessary for generalizing known
knowledge. (S 13. post-instruction questionnaire)

Sl 3 was more likely to construe the discipline in terms of doing and thinking

aspects of mathematics. Secondly. similar to S 13's shift, more participants (eight as
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compared to one at the outset) stressed logic of thinking and reasoning in

mathematics when describing its essence. S25. formerly viewing mathematics from

a metaphysical aspect. regarded the discipline as a training of rationality and logic.

whose theorems are outcomes of reasoning. S15 responded vaguely oii the pre-

instruction questionnaire (mathematics is a concrete subject), yet showed a more

wide-ranging understanding:

Mathematics, I currently feel, consists of several parts: imagination
and creation of art, combining theory and practice of science, built
on ancestors' discovery and creation in history. further integrating
logical processes. The end product is mathematics. (SI 5. post-
instruction questionnaire)

S 15's extensive post-instruction vision is noteworthy; however, he was not one of

the selected interviewees, precluding further investigation. Of nine interviewees.

RSO9 was the only one who consistently viewed mathematics as a discipline of

thinking. She earlier claimed that mathematics is like a racing game in the brain and

professed on the post- instruction questionnaire:

Mathematics is an auxiliary tool helping me think. It is a tool that I
mostly rely upon in life because, by learning mathematics, I tend to
use 'mathematical fashion" [quotation original] to think when facing
problems... mathematics is a tool for resolving thought problems.
(RSO9, post-instruction questionnaire)

In the interview. RSO9 reconfirmed her written response and devalued the practical

utility of mathematics. As compared to other interviewees, she exhibited a more

thoughtful perspective regarding the issue. Asked about commonality and

distinction between mathematics and art, she described certain mathematical

approaches as an art of philosophical principle and took Archimedes as a supportive

example:
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Because I feel Archimedes' ideas are filled with philosophical
principles, like deriving volume by means of leverage principle. I
feel there is a philosophical principle behind it. Just like two
different figures yet with identical volume. I feel it makes me feel
that they are presented in different forms but possess the same nature.
So you may not look at the surface or a single facet: you can only
know holistic stuff after parsing and integrating it. So Archimedes'
stuff gives me a feeling of philosophical principle. (RSO9, post-
instruction interview)

RSO9 also stressed that when she worked on assigned problems, her thinking was

guided by the aforementioned philosophical feeling.

Furthermore, results indicated more participants tended to make a

connection between mathematics and other disciplines it is the key to studying

nature and other subjects. For instance, RSO3. initially viewing mathematics as a

scholarship exploring principles, expressed more delicate thinking on the post-

instruction questionnaire:

Mathematics is the root of everything. . . mathematics can be used to
explain certain physical phenomena and justify these phenomena.
Human civilization would therefore make more progress through
applying the data of these phenomena to technique or life. (RSO3.
post-instruction questionnaire)

In interview, RSO3 resolutely held that mathematics is the base of all things and the

value of mathematics is subject to its power and utility. Most participants in this

category espoused similar beliefs, whereas S09 interpreted the concern in terms of

learning respects rather than application:

Mathematics can improve mental power and even resolve a lot of
things. Mathematics is the root. Other subjects cannot be learned
very well without a good learning of mathematics. (S09, post-
instruction questionnaire)
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As on his pre-instruction view, S09 drew a picture locating mathematics in the

center connected with other disciplines (e.g.. science and art) to demonstrate its

vital role.

Another notable finding was that no participant claimed mathematical

knowledge as infallible. Five professed initially that such knowledge is time-

independent truth due to its rigorous nature, yet all reinterpreted the issue from

other aspects. For instance, SI 7 formerly opined: mathematics always has fixed

outcome in spite of evolving over complicated and lengthy time." then changed his

mind by saying:

Mathematics is solving problems by means of operations or peculiar
methods.. .a lot of mathematical methods and ideas are not ye!
justified [italics added] and there is no way to know [it is] right or
wrong or how" [quotation original] to solve problems. (S 17. post-
instruction questionnaire)

SI 7's change appeared quite drastic in that he later held a doubtful attitude toward

mathematical methods and ideas, with no supportive example on the questionnaire.

leaving the reason for the alteration unknown. Nevertheless, by referring to others'

account in this respect, a plausible guess can be made. Interviewee RSO5 initially

saw mathematical outcomes as fixed and the process as a predetermined route

leading to known results, yet on the post-instruction questionnaire he no longer

endorsed this perspective and emphasized the importance of objectivity instead.

Asked to clarify the distinction, he explained:

I think the major influence should be Euler's idiot approach to
infinite series. It is quite subjective. From our point of view, it is so
funny. Your subjectivity would ruin you if too subjective or without
similar experience.., you ought to be objective and objectivity is
subject to certain amount of experiences. Euler would not make that
ignorant mistake if he had more experiences in doing problems of
infinite series. (RSO5, post-instruction interview)
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RSO5 became more likely to value the role of thinking processes and confessed his

previous view was shaped by past school exams on which students always get

partial credit for valid answers. Note that several instances regarding past

mathematicians' fallible thinking and struggle to develop new ideas were

introduced in class, serving as supplementary material for drawing students

attention to rigor in mathematical thinking. In certain ways, some participants'

focus on mathematics had seemingly transformed from ultimate product to

intermediate process.

These findings suggest participants were likely to adjust their visions of

mathematics and its thinking in diverse ways. Examples they cited were mostly

from classroom episodes or auxiliary materials. As shown earlier, several

reevaluated the notion of mathematical knowledge as absolute truth and became

aware of potential fallibility of mathematical thinking; both could exert a certain

degree of influence on their conceptions of the development of mathematics. This

section thus investigates how participants interpreted the issue 1 8 weeks later.

Table 12

Comparison of Maj or Responses Regarding Mathematical Development

How Mathematical Knowledge Develops Pre-number of Post-number
responses of responses

Related to human demand 13 13

Developed in proper order 7 6

Developed by following certain rules 13 19

No rule 8 9

For solving problems 1 4
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The first two statistics shown in Table 1 2 display little distinction between

participants' pre- and post-visions of how mathematics evolved in history. In both

cases, there were 13 respondents considering development of mathematical

knowledge as subject to human demands almost as many held that mathematical

knowledge progressed in proper order. With few exceptions, those expressing this

sort of view maintained a similar stance throughout the course. Interviewees also

exhibited a belief that mathematical knowledge was inherited from ancestors'

creation and accumulated gradually.

Besides, the number of respondents believing there are rules for the

development of mathematical knowledge had considerably increased, interviewee

RSO5 did not explicitly respond to the issue to start, yet on post-instruction

questionnaire claimed:

Development of mathematics began from definitions. First of all.
numbers, units, and operational symbols were defined then these
tools were used to explain problems that occur in daily life.
Fundamental definitions are rules to befblloi'ed [italic added].
(RSO5, post-instruction questionnaire)

in the interview he further explained:

[For example,] you want to find an area, you probably need to define
the magnitude that you want, then you need numbers to do
operations, then the formula of area is derived by us. You use a
fundamental definition to derive, to extend. Following the definition,
we need to search out the method and then solve our problems by
means of the method. We have to go along with fundamental
definition because it would go extremely wrong if the definition is
incorrect. (RSO5, post-instruction i ntel.view)

For RSO5. definitions are the base of mathematical knowledge as well as the

grounds for formulas: the scope of mathematical fields is identified as soon as chief
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concepts are defined. Contrary to RSO5's interpretation of mathematics. S25

considered mathematics more pragmatically:

Mathematical knowledge is a system developed from people's desire
to solve certain problems; meanwhile, [it is] a descriptive language
of a lot of natural phenomena. Its developing processes follow some
natural rules, proven axioms, and formulas. (S25. post-instruction
questionnaire)

Either on pre- or post-instruction questionnaire, S25 concurrently manifested

identical views on this issue, suggesting his firm belief of mathematics as a

discipline for study of nature. Others responded to this item in terms of thinking

aspects. S09 claimed on the post-instruction questionnaire development of

mathematical knowledge should follow thinking rules" but without additional

explanation. His "thinking rules" could be manifested by S05's description:

Discovering Deriving Proving. A lot of mathematical knowledge
comes from discovering certain particular characteristics followed by
deriving and proving. (S05, post-instruction questionnaire)

Notice how S05 and S09 previously gave vague accounts of mathematical

knowledge following universal" or world" rules; both came to associate this

construct with elements of mathematical thinking. Plus, among participants

believing there is a rule for developing mathematical knowledge. SO4's response

was particularly notable. He formerly held that growth of mathematical knowledge

is subject to rules of formulas, yet reworded: the rule is constantly overthrowing

preceding incorrect theorems and creating fresh ideas." His vision regarding the

concern seemed to shift from a rigid status to a flexible one.

As shown above, nine participants professed that no rule exists for the

evolution of mathematics; nevertheless, most did not give an explicit description.
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Of the nine, two attributed this mo-rule" situation to mathematicians. As SlO

claimed:

There should be no rule! A lot of mathematics is dependent on
mathematicians' demands and thought out by sudden inspiration. Just
like many mathematical formulas and rationale, a lot of inspirations
are originated by problems in daily life. (S 10, post-instruction
questionnaire)

Another participant S32 also held a similar perspective:

Mathematicians notice a certain phenomenon or think of numerical
values of certain stuff, (area of a circle, volume of a sphere, parabola
and the like), then try to turn this stuff into understandable symbols.
Developing mathematical knowledge, I think, follows no rule it is
subject to mathematicians' creativity and imagination. (S32, post-
instruction questionnaire)

Compared to their counterparts (those believing there is a rule) viewing

mathematical knowledge as context-imbedded intellectual heritage across

generations, S 10's and S32's accounts seemingly conveyed a belief in which

mathematical thoughts are fortuitous ideas created by mathematicians' ingenuity. In

this problem-based course, the mathematician's role was often addressed. It appears

this class feature was recognized by some participants' minds.

Summary of Participants' Post-instruction Views

After exposure to an I 8-week problem-based calculus course, participating

students were better able to describe their perceptions of mathematical thinking in

particular, mathematics in general. Still, their responses were diverse. Major

findings about any change between these Taiwanese college students' pre- and post-
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instruction conceptions can be summarized as the participants: (a) were less likely

to perceive mathematical thinking merely as a process of solving problems, (b)

displayed little difference in individual persistence when encountering unfamiliar

situations (c) as a rule, saw mathematicians as creative figures. as opposed to

efficient problem solvers, (d) tended to consider doing mathematics as a mixed

activity involving creativity and preset steps (e) were less likely to consider

mathematics as a daily tool or a rigid subject (1) believed the development of

mathematical knowledge is mainly subject to human demand and following certain

rules.

The first concern of this study was how Taiwanese college students

interpreted the essence of mathematical thinking after an I 8-week problem-based

course. Contrast of their responses yielded an image of participants shifting their

focus of the process of mathematical thinking. In the beginning, they were inclined

to consider mathematical thinking as the route of identifiing solutions and deriving

answers: calculation, recalling, and fitting formulas are the main modes. However,

far fewer held this sort of view in the end. Participants normally shifted their

concern to other aspects, such as understanding a problem and the rationale it is

based on, thinking from diverse angles, and approaching the problem in one's own

way. They seemed to pay more attention to the nature of mathematical thinking

rather than emphasizing its superficial function of solving problems.

A somewhat unexpected result is that fewer respondents mentioned logical

thinking and reasoning on post-instruction questionnaires. As noted earlier, a large

portion of students tied mathematical thinking to logic at the outset: upon further

inquiry, none could defend their positions and meanwhile confessed they had never

experienced the merit. Namely, their pre-instruction responses probably were more

like an intuitive, rhetorical conception: they reevaluated their recognition regarding

the construct when answering post-instruction questionnaires and thus addressed it

in other ways.
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As Schoenfeld (1985) indicated, when stuck, an important feature of good

problem solvers is the ability to think straight, avoid 'wild goose chases" and figure

out a way to cope with a quandary. Thus successful problem solving in some sense

is subject to the degree of individual perseverance. Pre-instruction data showed that

when seeing an untried or demanding task, participants mainly tended to look for

external assistance (referring to relevant materials or asking someone else)

immediately or adopted conservative fashions (e.g., recalling similar problems or

formulas). Post-instruction responses demonstrated how slightly more of the

participants were willing to try on their own, while somewhat fewer would seek

external help directly. Nonetheless, neither written nor oral responses manifested

significant upgrading of individual persistence in doing mathematics, though

several interviewees confessed they would be more likely to discuss with others

instead of giving up quickly.

Two major images of the mathematician held by the participants in the

beginning were that mathematicians were: (a) good at attacking problems from

diverse angles and (b) usually able to find the quickest, easiest way. The former was

retained till the end of semester: the latter almost vanished (only' one respondent

endorsed this view), it appears the participants still saw mathematicians as flexible

mathematics thinkers but abandoned the conception that mathematicians are

efficient problem solvers. Several respondents previously held that mathematicians

should have ready tools in their brains at their disposal: these responses showed

little awareness of the mathematicians' struggle and effort. Whereas the participants

later began to notice thought experiments in mathematicians' minds.

The most prominent trait of the participants' post-instruction responses

regarding mathematicians was that mathematicians are creative, associative, and

imaginative, able to concoct individual approaches and generate unusual ideas.

Combining previous findings, mathematicians apparently were not only regarded by

participants as flexible problem solvers, solving problems from multifarious angles.
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but also as sophisticated thinkers, creating idiosyncratic strategies for deriving

answers. Moreover, the role ofjustification in mathematics seemingly loomed large

in some participants' minds as well. Four students (versus none at the outset)

expressed that, in addition to generating ideas, mathematicians would make an

effort to veri1' their ideas.

Nearly 60% of the participants initially professed that problem-solving in

mathematics mostly involves creativity. As noted, the students were impressed by

mathematicians' creative imagination; therefore it was expected that more

participants would be inclined to appreciate the role of creativity in mathematics.

Post-instruction results, however, indicated otherwise. Far fewer firmly saw

creativity as the most vital component in doing mathematics: on the contrary, far

more tended to believe that doing mathematics is a pursuit requiring fixed

procedures as well as originality. Likewise, a certain portion (20%) continued to

consider this concern as individual- or occasion-dependent. a complicated issue. It

appears the participants' reactions on this aspect merit further exploration, which

will be discussed later.

Similar to their pre-instruction views, participants' chief image regarding

mathematics was as a subject of studying numbers. Plus, mathematical symbols

seemingly occupied more weight in some respondents' minds; hence, more

participants viewed mathematics as a subject involving operations. However, on the

post-instruction questionnaire and iiiterviews, they hardly stressed mathematics'

practical function in day-to-day life. Instead, more addressed it as a discipline

exerting far-reaching influence on the study of science and nature. Participants

tended to view the utility of mathematics in a broader window.

They no longer professed mathematical knowledge as absolute truth.

According to interviewees' claims. mathematical knowledge could be fallible due to

immature development of the topic at the time or mathematicians' personal

subjective prejudice. Mistakes caused by mathematicians' subjective prejudice
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appeared to impress many participants. In the interview, examples about

mathematicians' mistakes were cited as supportive evidence. Few participants

linked mathematics to logical thinking at the pre-instructional stage (though many

associated mathematical thinking with logic at the tirne) on the post- instruction

questionnaire, many more viewed mathematics as a discipline pertinent to logic,

thinking, and reasoning.

While acknowledging how mathematical knowledge could be unsound,

most participants believed the development of mathematics is intimately related to

human demand and follows certain rules. This sort of view was coherent with the

aforementioned conception of mathematics as a discipline studying science and

nature. In their minds, mathematical knowledge is a heritage constantly

accumulated over the course of time and therefore must follow rules. Yet they

seemingly interpreted rules in different ways. Some saw mathematical operations as

the rules: others thought mathematics may not deviate from mathematical definition.

Still others deemed the development of mathematics is subject to rules of thinking.

One participant even claimed that the law of mathematical development is

continually overthrowing preceding incorrect theorems and creating fresh ideas.

Among those arguing that no rules govern the evolution of mathematics,

few gave specific examples. On the basis of limited evidence, these usually

attributed progress of the discipline to mathematicians' ingenuity and inspiration,

which is unpredictable.

The Course Features And Participants' Post-Instruction Views

The purpose of the present study was to explore the interrelationships

between a problem-based calculus course and Taiwaiiese college students'

perspectives of mathematical thinking. The to previous sections investigated the

participants' pre- and post- instruction views respectively, on the basis of their
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written data sources (mathematics biographies. open-ended pre- and post-

instruction questionnaires and oral responses of nine randomly selected

interviewees). Some findings hint that the participants' account of mathematical

thinking in particular (and mathematics in general) had changed. Such alteration in

their conceptual framework of mathematical thinking may or may not be related to

designed course features. This section therefore delves into the potential link

between curriculum and participants' post- instruction views.

Post-instruction data sources indicated participants (a) were less likely to

perceive mathematical thinking merely as a process of solving problems, (b)

displayed little difference in individual persistence when encountering difficulties

with the problem. (c) as a rule, saw mathematicians as creative figures. as opposed

to efficient problems solvers, (d) tended to consider doing mathematics an activity

involving creativity and preset steps, (e) were less likely to consider mathematics

merely as a daily tool or a rigid subject, and (1) believed the development of

mathematical knowledge is mainly subject to human demand and follows rules.

Besides questionnaire responses and interview transcripts, discussion in this section

is additionally based on students' in-class reflection papers describing their intuitive

feeling and thoughts respect to certain topics taught at the time. Furthermore, for

demonstrating a holistic picture of the interviewees' notion, interview transcripts

are presented in the form of dialogue when necessary.

Weekly Problems

The main doctrine of this problem-based course was to problematize course

topics in an effort to elicit learners' intrinsic desire for knowing and thinking

mathematics. To reach that aim, doing and discussing assigned twelve weekly

problems during the instructional stage constituted a major classroom activity

throughout the course. Contrary to normal textbook exercises. the twelve tasks were
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demanding, differing from routine problems in nature, designed to situate students

in predicaments and let them experience blocking progress toward solutions.

Furthermore, unlike traditional homework with a purpose of helping the stLldents

review and practice knowledge and skills, several problems were done in reverse

order students received homework prior to instruction with planned topics. The

purpose of this method was to assist learners in building a basic conceptual

framework prior to entering the formal curricula. Depending on its difficulty. each

problem was allocated a moderate time period, from one to three weeks, for

participants to finish. Participants were allowed to communicate and discuss

relevant ideas out of class, yet copying others' work without effort was prohibited.

Post-responses indicated the challenging feature of these tasks seemingly

impressed participants in diverse ways. As noted, many participants initially tended

to conceptualize mathematical thinking as merely an action of solving problems:

they interpreted it otherwise afterward. RSO3's post-instruction account indicated:

Just like problems in assignments, many were never seen or heard
before. We were required to prove or guess why this is so. In the
process of answering these questions. [II would employ a variety of
ideas to write or guess. These ideas are mathematical thinking.
(RSO3, post-instruction interview)

He further added:

I spent much time thinking on those problems. Think a lot. Various
methods are used to solve them. ..kind of like two persons knowing
how to solve the problems] may use different approaches though
their starting point is the same. So a problem can he worked out in
multiple ways. (RSO3, post-instruction interview)

RSO3 usually demonstrated tremendous eagerness in attacking assigned problems.

lii the pre-instruction interview, he admitted having never thought about the essence
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of mathematical thinking. Nevertheless, as compared to his pre-instruction

statements, he showed more thoughtful thinking on this construct.

In addition, the physical feature of some assigned problems in a way

influenced RSO3's use of approaches for resolving a dilemma. Asked about

strategies for escaping from predicaments, he proposed physical conceptions and

geometrical methods as the keys. He also confessed his thinking was affected by

homework problems, some involving physics. Note that, of the 12 tasks, three

(N apier's logarithm, the tractrix problem, and volume of a sphere) were to some

extent relevant to physical ideas, leading students to build a link between

mathematics and other disciplines. The following dialogue with RSO2 can also

manifest the inference:

Researcher: You were more likely to see mathematics as a part of
culture?

RSO2: Mathematical development would influence science and
technology. A lot of tests need to be measured by mathematics.
Some jobs cannot be done without certain equations, like
deriving the slope of a tangent line a bunch of physical
phenomena could never be explained without it.

Researcher: Why do you have this sort of thinking for now?
RSO2: A lot of homework...the tractrix problem just like physics.
Researcher: You learned the closer relationship between

mathematics and science from homework?
RSO2: Yes! (RSO2, post-instruction interview)

interviewee RSO7 manifested similar thinking:

Researcher: In your opinion, how does a mathematician create a
mathematical theorem?

RSO7: Just keep calculating!
Researcher: Could calculation alone derive the theorem? How do

they come up with an idea at the beginning?
RSO7: I don't really know about this. It could be from physics. I do

feel physics involves lots of stuff. I had never thought in this
way, yet I do think so afterward. (RSO7. post-instruction
interview)
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These descriptions provide a probable answer of why many participants adjusted

the image of mathematics as a daily tool and took on the notion that it is the root of

other scientific disciplines. In the pre-instruction stage, as reported. a large portion

of participants believed doing mathematics mostly followed fixed procedures.

whereas their concept shifted to a neutral stance considering mathematical problem

solving as an activity implicating individual creativity and pursuing known steps.

By referring to interview transcripts, a potential connection could be identified

between students' view-shifting and homework problems. RSO7 originally

professed that, for attaining high scores, following routine processes is required and

students are always taught to do so. Nevertheless, he reworded creativity as more

critical in mathematical problem solving though going along with predetermined

procedures is also essential in certain spots, as evident in the dialogue below:

Researcher: Why do you like to think creativity is more important
now?

RSO7: How to say?. . . This (creativity is more important) should be
because of those problems you gave. Because those problems
have been done by original authors. But the teacher [the
instructor/researcher] gave them to us and did not worry we
might copy the solution down.. . [I] feel that you gave us
problems and asked us to think, to study. and to keep searching
for better methods than those of former people. (RSO7. post-
instruction interview)

In RSO7's mind, a need to complete appointed tasks compelled her to devise

individual strategies. In many cases a quick solution was inaccessible, forcing her to

think carefully about a problem. In a way. she re-evaluated her original thinking

that following routine procedures is the main key for achieving answers.

Another interviewee RSOI, who earlier held a rigid notion about

mathematical thinking, also showed a notable difference. In the pre-instruction

questionnaire. he professed:
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The correct answer is prescri bed by people. Methods consented by
public are also the norm for proving facts. (RSO I, pre-instruction
questionnaire)

When asked to elaborate further, RSOI confirmed this view by saying:

Why does I + 1 = 2? Can't it be 3? This is defined by
ancestors... Our current thought could see it as 0 if 1 + I was
previously defined as 0. I think [doing rnathematicsj is following
known procedure. (RSO I, pre-instruction interview)

However, he adjusted his idea indicating that both (creativity and preset steps) are

necessary:

Researcher: Your response is more neutral this time. is creativity
quite important? Why?

RSO 1: The problems you gave us! [I] would make a guess to reach
the answer if I cannot figure it out. Then start to think again.

Researcher: You would make a guess to reach the answer? Is
creativity involved in the process of guessing?

RSO1: Sure! (RSOI, post-instruction interview)

In the interview. RSO I also endorsed the view that guessing is a rather essential

entry when mathematicians establish some mathematical facL this is where

creativity comes into play. He seemingly reflected his experience of solving

assigned problems on mathematicians' work and further took this experience as a

basis for interpreting the role of creativity in problem solving. A similar perspective

can also be seen in RSO8's description. Like others, RSO8 once viewed doing

mathematics chiefly as following predetermined steps. yet afterward he saw

originality as critical:
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Researcher: You emphasized the former [following predetermined
procedures] last time but stressed both this time?

RSO8: Mathematics cannot be improved without creativity. New
stuff will be forthcoming if [we are] able to think of something
never thought by others. Mathematics is all about thinking stuff.
It would not make any progress if all were based upon planned
steps, such as identif'ing formulas and fitting them in.

Researcher: Did it take creativity to solve our problems?
RSO8: Sure! Our assignments were never seen before. They were so

difficult, which should involve creativity. Working them out
was somewhat like earning extra bonus.

Researcher: Which problems do you think employed your creativity?
Which one most impressed you?

RSO8: Probably that rabbit problem [Fihonacci sequence]. That was
derived by myself and came up with some numbers to reveal
the relationship (RSO8, post-instruction interview).

With their challenging nature, assigned problems appeared to compel participants

to discard conventional notions of mathematics as mainly recalling/installing

formulas. Meanwhile, participants established a concept that individual originality

was indispensable in problem-solving. Note that besides RSO8, who cited the

Fibonacci sequence as the most impressive problem. another five interviewees

endorsed this option as well. This problem was presented in a four-stage fashion in

which the first two are easy to access, the last two more demanding. Compared to

other harder tasks. Fibonacci sequence problem appeared to successfully draw upon

participants' eagerness.

The Curriculum

Aside from doing and discussing weekly problems in and out of the

classroom, the curriculuni sequence played a significant role in this problem-based

course. As shown in Appendix B and C. the arrangement of curriculum differed

from the conventional sort. A typical calculus curriculum is usually executed in
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such an order that limits of functions appear first. laying the groundwork for the

following topic, concept of derivatives. Soon after work with differentiation, the

indefinite integral is introduced as the inverse operation of the derivative. Lastly.

definite integrals are introduced and solved by techniques of indefinite integrals on

the basis of the fundamental calculus theorem. From a deductive standpoint, this

sequence is smooth and most convenient because all topics are connected and

carried out in a logical order, in which each theme functions as a stepping stone to

the next. All the same, such an arrangement may be inappropriate for a problem-

based curriculum. The aim of this problem-based course was to problematize

relevant concepts, eliciting learners' curiosity aiid desire to know and solve

problems. This problematization would play an insignificant role if the curriculum

progressed in the above-mentioned fashion. In a deductive mode, students get an

understanding of every topic as preliminary knowledge and accept it without doubt.

They have no need to question the whole curriculum structure because learning

preceding topics is the preparation for later ones, but not for resolving real

problems. Problematization is diminished in such a deductive way of instruction.

Curriculum design in this problem-based course was intended to help

students grasp the real need of studying the topic taughtfor mathematical

knowledge itself. not just for subsequent units. For instance, instead of introducing

the concept of limit in the early stage, derivation of the circular area was the first

task for students to explore. They were not allowed to employ the circular area

formula. Yet, they were asked to solve the problem by basic geometry, in order to

experience the historical struggle regarding the problem. The handout describing

how ancient mathematicians attacked the problem followed, and students were

asked to compare their approaches with past figures. It was assumed that, in this

manner, not only is the necessity of concept of limit naturally planted in students'

minds, but also they have the opportunity for contrasting diverse mathematical

approaches and thinking genres.
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Post-instruction responses indicated that their images of mathematicians

thinking had undergone a significant shift. A large portion of students considered

mathematicians as efficient problem solvers possessing solid background

knowledge and a number of ready solutions kept in mind at their disposal. This

impression, however, in a wa\ was altered near the end of semester. More

participants were likely to see mathematicians as creative, associative, and

imaginative thinkers post-instruction notions could be related to handouts showing

great eastern and western mathematicians' approaches in historye.g.. Liu Hui, Zu

Chongzhi. Archimedes, Fermat. The following dialogue with RSO5 may manifest

the inference:

Researcher: Among the handouts, which one impressed you most?
RSO5: Liu Hui's derivation of the area of a circle and Archimedes'

pursuit of the circular area. I feel it [Archimedes' approach]
was too incredible! Turning a circle into a triangle and
verif'ing by using double reductio ad absurdum. I am gonna
give you my head if I am able to do so. (RSO5. post-instruction
interview)

RSO5's exaggerated wording reflected a widespread point of view held by

participants. Following the first assignment (deriving the area of the circle without

using any circular area formula), Chinese mathematician Liu Huis approach

(partitioning a circle into triangles and rearranging them to form a parallelogram)

and Archimedes' proposition in the book, Measurement of a Circle, (area of a circle

equals a right-angle triangle with one of the sides about the right angle equal to the

radius and the other to the circumference) were presented in class. Liu Hui's

account is mostly intuitive, easily understood and accepted Archimedes' tack is

purely deductive and harder to understand. The thought of favoring Liu Hui's idea

was evident in RSO3's description on his in-class reflection report:
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Comparing Archimedes and Liu Hui. I like Liu's approach better
because it is expressed in an understandable way, yet Liu's method
relies on intuition very much. A persuasive fashion should make
readers feel it as a matter of course. (RSO3. 1s1 in-class reflection
paper)

The most unimaginable part of Archimedes' proposition is his transformation of a

circle into a right-angle triangle. Note that a participating student happened to

propose a plausible explanation of Archimedes' idea. He regarded a circle as a

combination of infinite numbers of concentric circles with varying radii. He then

straightened the circumferences of a!! concentric circles and piled them up (from

the longest to the shortest) to form a right triangle. Archimedes' approach thus

became attainable this account was demonstrated on the board and appeared to

attract the audience's impression and interest. On another handout. Archimedes

employs the leverage principle to derive the volume of a sphere. which is a peculiar

approach drawing students' attention also. Exposure to these diverse ways of

thinking seemingly led some participants to reevaluate their original views of

mathematicians. Asked how mathematicians think. RSO2 expressed an alternate

perspective in the post-instruction interview:

Researcher: How do mathematicians think? You mentioned logical
reasoning last time, but this time YOU refer to imagination and
association.

RSO2: Like association... several people discovered calculus, but it
did not become concrete until Newton. The reason that I think
imagination is more important is because of Archimedes. I feel
he is so strange. Just like the former problem requiring [us] to
find the volume of a sphere. he uses leverage principle to find
it. I still don't quite understand that problem. Then 1 feel he is
so strange. I-low could he think of that? Turn a circle to a
triangle?! I feel his imagination is so strange.

Researcher: Do you think these approaches are attainable by logical
reasoning?
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RSO2: Laypersons probably don't know how to attain [the solutions]
by logical reasoning. Even when you know the answer already,
you don't know how to associate with it. Using leverage
principles to derive volume is so odd to me. Besides, how did
he establish the whole idea, even he got this idea at the outset?
So I feel he needed imagination.

In addition to Archimedes' ideas, Zu Chongzhi's method of three-dimensional

partition for finding the volume of a sphere impressed others like RSO7. In general.

on the basis of instances cited, some course handouts, to some extent, urged

students to re-evaluate their notions of the mathematician's mode of thinking.

A significant finding in the post-instruction responses was that the

participants no longer claimed mathematical knowledge is infallible. Interviewees

were further questioiîed about the fallibility of mathematical knowledge, and all

gave a definite answer: new found facts can supersede old knowledge, except

fundamentals. Meanwhile. as shown in Table 12. a considerable portion of

participants considered that development of mathematical knowledge is in proper

order and follows certain rules; their seemingly inconsistent responses therefore

warranted further investigation. For increasing students' awareness of potential

fallibility of intuitive thinking, several instances were presented in class, such as

comparing the magnitude of 1 and 0.999...", Euler's mistake in computing infinite

series 1 + 2 + 4 + 8 + 16 + ..... . and multiple historical approaches to summing the

alternative series I I + I I + I I + ...... It appeared these examples had come

into play in students' conceptions. RSO5 formerly held that in mathematics the

result is the most critical and the rest is mere detail, yet he turned to stress the role

of objectivity on his post-instruction questionnaire:
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Researcher: Is there any difference in your description (about what
mathematics is)?

RSO5: I think the major influence should be Euler's idiotic approach
to infinite series. It is quite subjective. From our point of view.
it is so funny. Your subjectivity will ruin you it' too subjective
or without similar experience. You ought to be objective, and
objectivity is bound to a certain amount of experiences. Euler
would not make that ignorant mistake if he had more
experience in doing problems of infinite series.

Researcher: So from that example. you feel objectivity is very
important?

RSO5: You must have objectivity and a certain amount of experience
to attain objectivity. Euler would not make that error if he had a
lot of experience in doing problems of infinite series. (RSO5,
post-instruction interview)

In another dialogue. RSO5 talked about the evolution of mathematical knowledge:

Researcher: Do you think new mathematical facts could supersede
old ones?

RSO5: I feel it is possible, but current [mathematical] definitions are
getting more rigorous. It seems not to happen anymore.

Researcher: Like Euler's stuff, we currently consider it wrong. In
your opinion, is this because of the criteria in a different era?

RSO5: Criteria would be different over the course of time. Current
criteria are subject to the amount of knowledge. (RSO5, post-
instruction interview)

RSO5 attributed fallibility of mathematical knowledge and thinking to the change of

criteria in different time periods RSO9 also took this stance:

Researcher: Can new mathematical knowledge displace old, if it
develops in proper order?

RSO9: It could! Because mathematics is invented [italics added]. the
followers would create better tools. Thus, it may supplant [old
knowledge].

Researcher: For example?
RSO9 ...... (pondering)
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Researcher: Like Euler's mistake in infinite series, does it fit your
account?

RS()9: Roughly! And like the example: 1 1 + I I + 1
1 . . .(RSO9. post-instruction interview)

When interviewed. RSO9 repeatedly emphasized that mathematics per se is a

subject of thinking; thus the update of knowledge is normal. Non-interviewees'

concepts of this issue may be manifested by the in-class reflection papers describing

their feeling regarding three invalid historical approaches to summing the series "1

I + I 1 + 1 I ...... A typical response was that intuition is unreliable, as seen in

S 19's claim:

When knowing the answer, [II found that the series really can not be
calculated by number rules. . .Working problems can only continue
by following a set of rules; Otherwise, it is dangerous to think of
doing via human intuition. (SI 9, 2 ui-class paper)

Still others harbored doubts about mathematicians' work:

[1] had never expected well-known mathematicians could make
mistakes too! But the concepts of infinite series do easily confuse
people. I realize that the infinite series cannot be solved by using [the
concept of] finite terms. (RSO4. 2' in-class reflection paper)

Participant S34 expressed on the 2u1 in-class reflection paper that mathematicians

must search for correct answers by means of many invalid assumptions. This

perspective may explain why in the post-instruction stage participants tended to

abandon the image that mathematicians are efficient problem solvers.

One particular trait for this problem-based course, noted earlier, was that the

course sequence was generally arranged in chronologically historic order. Students

first learned concepts of definite integration and then the idea of derivative,
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followed by knowledge of limit. The fundamental theorem of calculus appeared

later to integrate two major branches: integration and differentiation. A handout

pertinent to developing the frmndamental theorem was also presented in class to

reveal how this theorem emerged over the course of time. The purpose of this

design was to help students experience and be aware of the processes of formation

of this human scientific discipline and remove the impression of mathematical

propositions as ready tools handed down from above. Despite nearly half of the

participants' claim that the development of mathematics should follow certain rules,

two interviewees expressed contrary views and defended their positions by citing

the handout of the fundamental theorem of calculus:

Researcher: Why does [the development of mathematicsl not follow
any rule?

RSO7: Because they tried to find the area of a land. Because nobody
thought of it, and the problem was handed to them [Newton
and Leibniz]. So it should be no rule.

Researcher: [repeating RSO7's statement on the post-instruction
questionnairej Successors would keep studying on the basis of
the teachers theory. If they did not make it, someone else
would study it again to see whether it could he invalidated.
What do you mean?

RSO7: This could be related to previous answers. [1] feel you gave us
problems. asked us to think and then study them. Keep
searching for better methods than those of former people. If we
do not make it, someone else will pick and do it. Just like the
fundamental theorem of calculus. At the outset, some people
only finished it partway. though they had nearly reached the
answer, but they didn't know [the truthi until a certain guy
[Newtonl. (RSO7, post-instruction interview)

RSO7 seemingly indicated the evolution of mathematical ideas was subject to

personal judgment and effort, lacking universal laws and further cited the handout

concerning the fundamental theorem of calculus as most impressive, whereas RSO2

interpreted the issue from another standpoint:
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Researcher: Does the development of mathematics have fixed
process? You said, Yes!" last time, but No!" this time.

RSO2: I am not sure for now. Like differentiation and integration.
limit is usually taught first, isn't it? But differentiation and
integration were invented before it [limit]. However, current
teaching is in reverse order. In terms of its theory, limit ought
to appear first, with differentiation and integration following.
Yet its development started from integration, so I feel it did not
follow a fixed process. (RSO2. post-instruction interview)

It appears the inconsistency between the historical development of calculus and

logical sequence of its theoretical rationale confused RSO2, compelling him to

reconsider the relevant epistemological issue.

Interaction In Class

Other than the aforementioned designed homework problems and

curriculum, for achieving this goal of problematizing, a dynamic two-way

classroom interaction was essential. By frequent questioning, the

instructor/researcher was more a leader than a director guiding students to think

about problems and evaluate approaches to solving them. Students were encouraged

to raise and/or answer questions. even challenge others' answers. Given the

conventional classroom culture in Taiwan. students normally act as passive content

receivers. The task was therefore not easy to accomplish not until two or three

weeks later did students become more comfortable with this method of instruction.

For avoiding potential bias. participants were not directly asked to voice

their feeling about the instructor/researcher's teaching. Hence relevant information

could only be attained from interviewees' responses to other questions. RSO7

previously had an aversion to study mathematics and expressed superficial thoughts

on related issues in the pre-instruction interview. Asked in post-instruction

interview to propose a good way to learn mathematics, she claimed:
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For now. I am willing to discuss and study with others because [I]
was very lazy before. During high school, you never studied
mathematics, because you were just given a problem and asked to do
it. If you could not work it out, teachers would explain, and you just
memorized it. Thats all processes. [This method] has advantages
and disadvantages. Sometimes it was good if you understood, yet
you were dead if you could not figure it out. But in current
mathematics, you get a chance to think hon inflection point can be
derived. You don '1 have to memori:e it...so realiing it becomes the
i;iosi important [italics added] (RSO7. post-instruction interview)

A similar reaction was seen in RSO5's response:

Researcher: For now, what do you think is the best way to learn
mathematics?

RSO5: Establish concepts and promote experiences.
Researcher: How to establish concepts and promote experiences?
RSO5: Pay attention to lecture! Lots of stuff cannot be accepted without

doubt, but I must think from multiple angles. More verification or
refutation... In the past, I always believed and memorized what
teachers said, later applying it to many problems... [I] used to do
exercises passively. Yet for non', [Ij am more like/v to stress thinking.
Sometimes iou pose sonic questions to us. and I ofien listen up and
ponder where the problem is. (RSO5, post-instruction interview)

RSO7 and RSO5 both seemed to begin comparing two contrary fashions of learning

mathematics and realizing that making sense of key concepts is critical. Besides

professing his feeling about the teaching approach in this course, in the post-

instruction interview, RSO5 further emphasized the influence of colleagues'

presentation:

If answers cannot be reached, [I'll] listen to classmates'
demonstration. [I] feel their thinking is so flexible. . .1 am not good at
thinking mathematically, unable to quickly identify conflicts or do
inverse thinking. (RSO5, post-instruction interview)
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Many classmates were able to create their own methods. So I am
more likely to comprehend the flexibility of mathematics.. .1 am so
curious how they attain this sort of method. How could this make it?
But [I] never tried. After experiencing careful verification, it seems
the degree of flexibility [in mathematics] gets higher. Self-creation is
possible. That sort of creativity is much more than I had ever known.
(RSO5, post-instruction interview)

RSO5 repeatedly acknowledged his own shortcomings in mathematics and

exhibited an appreciation for colleagues' creativity. He also confessed classmates'

presentation caused him to consider both creativity and fixed procedures as

essential.

Collaborative Learning

Of the twelve assigned problems. two (Napier's logarithm and tractrix

probleni) were carried out by means of cooperative learning. Students were

randomly divided into four- or five-member groups. For the two problems, each

student had to hand in individual work prior to entering group discussion.

Following the group activity, each student then submitted a solution again

representing a personal final record. Besides two 50-minute open discussions in

class, students were encouraged to share ideas out of class. It was hoped this

manner would foster their experiences of verbalizing and communicating

mathematical ideas (typically lacking in Taiwanese classrooms).

On the basis of most participants' responses, collaborative learning provided

them an opportunity to hear and consider colleagues thinking and approaches to

tasks. As such, they were more likely to see flexibility and pleasure in doing

mathematics. As RSO7 claimed:
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Researcher: [Repeat questionnaire responses] You were told that
mathematical thinking is interesting. What does that mean?

RSO7: Yes! I could fee! those guys having much fun in thinking
mathematics. Even though they did it wrong, they still enjoyed
it. I admire them... they were willing to spend time on it [doing
mathematics]. I am not that kind. (RSO7. post-instruction
interview)

With one exception (RSO9). interviewees expressed their liking for this activity.

Still, by referring to their solutions, the effect of cooperative learning was

seemingly not as significant as it appeared. Students were requested to submit final

manuscripts by integrating their own approaches as well as group members' ideas.

Yet a considerable number of students showed little meaningful work in the first

manuscript, while the second revealed a high degree of similarity. It appeared they

tended to rely on certain members' answers rather than thinking on their own prior

to group discussion. This phenomenon not only was manifested in the

instructor/researcher's in-class observation but also in RSO9s statement:

Researcher: What do you think about group discussion?
RSO9: It was not much fun for my team, because they did not make

any effort at all. I don't like that kind of feeling.
Researcher: People say you may get some feedback when explaining

to others.
RSO9: But it was not fun at all when everybody just listened to you

without any reaction. (RSO9. post-instruction interview)

RSO9's feeling to a great extent was in line with the instructor/researcher's survey,

in which several passive students were not aggressively engaged in the activity. As

a whole, the design of cooperative learning failed to accomplish its expected goal.

The reason could not be classified, as will be discussed in the next chapter.
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Summary

Post-instruction data indicated that, while responding to what mathematical

thinking is, participants still claimed that mathematical thinking means figuring out

a way to reach answers, with their wording differing in some way. They tended to

conceptualize mathematical thinking as solving problems in one's own way.

multiple approaches, or peculiar ideas. In addition, participants were more likely to

value logical sense in doing mathematics at this time. Several respondents also

cited mathematical thinking as a way of exploring rationale of formulas and

intuition alone as unreliable, suggesting justification began to loom larger in their

minds.

Participants' strategies reacting to difficult problems generally showed wide

diversity. In addition to looking for relevant material and asking for assistance,

more students emphasized they would try to understand a problem, identify all

knowns and unknowns, then make a plan. Moreover, several participants exhibited

more willingness to discuss with others, yet neither written nor oral responses

showed any significant improvement of individual persistence while doing

mathematics.

Contrasting the answers of how the mathematicians think yielded an

unchanged point of view: mathematicians are good at attacking a problem from

multiple facets and diverse angles. Nonetheless, at this point they emphasized the

mathematician's imagination and creativit). and were less conscious of the

mathematician's approach as most convenient and quickest. Note that, following a

recognition of mathematicians' imagination. though the majority of participants

held that doing mathematics involved individual creativity, most tended to take a

neutral stanceboth creativity and preset procedures are essential.

It was also found that the participants' epistemological belief regarding

mathematics had been affected in some way. By contrasting responses. several
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distinctions emerged. While a majority of the students continued to viewed

mathematics as a fundamental subjeci (involving numbers, operations and logic) for

exploring other disciplines, no participant claimed mathematical knowledge as

absolute truth. Asked about the possibility of new mathematical facts superseding

old ones, no interviewees were in doubt; all defended their answers by citing

examples given in class. According to them, mathematical criteria evolve over the

course of time, and validity of mathematical knowledge must be constantly

examined. The findings seemingly suggested that, after an 18-week problem-based

calculus course, some students' views of mathematical thinking in particular.

mathematics in general, had shifted in certain aspects.
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CHAPTER V
DISCUSSION AND IMPLICATION

The purpose of the present study was to explore relationships between a

problem-based calculus course, using historical problems. and Taiwanese

engineering majors' views of mathematical thinking. Particular foci include: (a)

how college freshmen interpreted mathematical thinking and to what extent their

notions in this respect related to previous learning experiences (b) in what aspects,

if any. participants' conceptual framework regarding mathematical thinking

changed, and (c) the interrelationships among course features and participants' shift

in their concepts of mathematical thinking.

This chapter consists of five sections aiming to interpret the findings to

answer the questions of interest. The first section analyzes students' pre-instruction

views of mathematical thinking, with additional focus on the influence of past

learning. The second investigates post-instruction viewsi.e. in what aspects and

to what extent, if any, those changes in views of mathematical thinking related to

pre-instruction views or any traits of this problem-based course. Implications and

limitations of the present study are explicated in the third and fourth sections.

respectively the last section proposes recommendations for prospective relevant

research.

Pre-instruction Views of Mathematical Thinking And Past Learning Experience

Students' pre-instruction views of mathematics in this study were in line

with Schoenfeld's report (1983a, 1983b. 1988. 1989). By comparing two protocol

analyses in a mathematical problem-solving class, Schoenfeld (1 983a) explored

how college students beliefs influenced their problem-solving behavior and further

indicated their empirical beliefs about mathematical problems as playing a more

significant role in learning mathematics than knowledge. To understand the origins
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of students' empirical beliefs, Schoenfeld conducted subsequent studies (1988.

1989) probing high school students' beliefs about mathematics, their learning of

mathematics, and how classroom teaching influenced their concepts in this respect.

It was found that the context of practice makes perfect" not only augmented

students' empiricism but also shaped inaccurate views of what mathematics should

be done because, according to Schoenfelds' observation, students were normally

asked to do routine exercises that can be completed in few steps and were expected

to reproduce a pre-existing solution. As such, they tended to assume mathematical

results as intact truths passed on from above." Students then typically viewed

mathematics as a set of rules and procedures in which each problem was supposed

to be resolved by following specific algorithms.

Despite cultural and educational differences between the two sites, on the

basis of mathematics biographies and pre-instruction interview transcripts.

Taiwanese college freshmen in the present study manifested a striking resemblance

to their American counterparts of years ago. They professed in the mathematics

biography that more practice is the most efficient way to learn, and they were more

likely to stress the significance of basic definitions and principles, yet they were

less prone to a holistic conceptual understanding. In spite of several participants

exhibiting an active disposition and enthusiasm toward the subject, a fitting

appreciation of the value of mathematics was lacking in their responses. As a rule,

they demonstrated a pragmatist point of view, associating the importance of

mathematics with professional training or with utility in daily life. The merit of

mathematics as an intellectual discipline was barely addressed in their mathematics

biographies.

The influence of past learning experiences was also evident in students'

accounts of mathematics and mathematical thinking. With an overwhelmingly

mechanical training, participants had hardly paid any attention to thinking about the

essence of mathematical thinking and mathematics, they typically associated such
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thinking with the process of deriving answers and mathematics with a subject of

dealing numbers by quantifying daily objects. Problem solving in mathematics, as

they saw it, was mostly a rigid activity that follows preset procedures creativity

thus plays a relatively minor role. While some respondents addressed mathematical

thinking as involving logical reasoning, they also confessed in the interview that

they scarcely experienced this advantage. To them, the conventional belief that

mathematics may promote capability in logical reasoning was seemingly a

rhetorical and superficial understanding. In the beginning, over half of the

participants (26. 59%) claimed that doing mathematics involved creativity. Further

referring to written and verbal responses, however, yielded meager supportive

evidence. They tended to interpret creativity as niultiple-solution" but failed to

demonstrate a more profound appreciation or give precise instances to defend their

positions. It is likely that they accepted this widespread public image of

mathematics without a second thought. As Schoenfeld (1989) indicated, students'

perception regarding mathematics may refer to that which takes place in classrooms

as well as to the mathematics that takes place outside them. Namely. they might

hold diverse beliefs about mathematics in school, in everyday life, and in the

abstract, thus contributing to varying views about mathematics in general,

mathematical thinking in particular, and even on learning of mathematics, as

Schoenfeld stressed.

Though initially several participants exhibited enthusiasm toward the

subject, it was found that appreciation of the value of mathematics was missing

from their responses in the mathematics biography: they normally referred to the

significance of mathematics for professional training or utility in daily life, a

pragmatist viewpoint. On their pre- instruction questionnaire, either in the

responses explicating mathematical thinking or mathematics, recognition of

mathematics as an intellectual discipline was absent and, on the basis of the

mathematics biographies. it was apparent that their teachers played a critical role in
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their learning. Several responderts cited a mathematics teacher as the most

influential figure during their past learning careers and confessed their performance

and disposition in mathematics to a great extent were subject to teachers'

instructional approaches. This finding was congruent with Ford's study (1994) that

aimed to identify to what extent the belief of teachers was reflected in the beliefs of

their students, reporting a high resemblance between the two. Teachers in Ford's

study believed that problem solving is primarily the application of computational

skills in everyday life, and their students' beliefs about the nature of problem

solving were for the most part consistent with the views held by their teachers.

Despite students' outstanding performance in the international test (e.g.. LEA, 2000),

mathematics education in Taiwan has long been criticized for its cramming method

and exam driven instruction. Participants' rigid notions were probably by-products

of this long-term affection while the present study paid little attention to this issue,

further investigation is merited.

Changes In Views of Mathematical Thinking

Post-instruction data sources hint, in certain aspects. the participants'

interpretation of mathematical thinking and mathematics differed from their

previous ones. The changes in their accounts may be affected by several conditions.

such as previously preexisting conceptual scheme, personal learning habits or

experiences, unexpected out-of-class events, and course features in the present

study. Some factors were beyond the investigation of the researcher, and since this

study is exploratory rather than causal, this section merely examines to what extent

and in what ways. if any, their changes in views were related to (a) pre-instruction

views and (b) the problem-based course. The following discussion is mainly based

on the nine selected interviewees' relevant data sources to avoid misinterpretation.



184

Interrelationship Between Pre- and Post-Instruction Views

It is assumed that, in such a problem-based course, initial notions would be

related to the participants' changes in their views. For instance, students holding a

vivid perception of concerned topics may be niore apt to improve their existing

thinking to accommodate other changes: on the other hand, those who exhibited

rigid thought are comparatively reluctant to make any alteration. Still, the data

suggest this appealing assumption should not be accepted without question. When

entering the course, the overwhelming majority of interviewees espoused cursory or

superficial beliefs about several issues on mathematical thinking and mathematics,

whereas it was found that in the post-instruction their views differed in some

respects demonstrating a variety of trends in their changes.

Among the nine interviewees, RSO9 alone expressed a positive disposition

toward mathematics as well as a thoughtful account about mathematical thinking at

the beginning. During the pre-instruction. she steadfastly believed that mathematics

is an intellectual subject challenging one's way of thinking and conceptual

understanding is the key element in mathematical thinking as such, mathematics

can be flexibly expressed in diverse forms. Near the end of the semester, she

became better able to convey her thinking by drawing a picture and flowchart on

the questionnaire to explain the essence of mathematical thinking and describe how

she copes with a predicament. in the post-instruction interview, RSO9 repeatedly

stressed flexibility, even associated mathematics and philosophy, claiming that in

some cases, mathematicians' approaches involved certain philosophical principles.

This sensation sometimes guided her ways of mathematical thinking. Afterward,

RSO9 professed a dynamic notion that mathematical knowledge is mainly a human

invention and thus unstable. As such, it could be superseded and updating

knowledge is a normal activity in mathematics. It appeared both RSO9's active pre-

instruction views and open mind contributed to her enriched conception.
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Three participants (RSO2, RSO5, and RSO7). who professed rigid, cursory

views of mathematical thinking and mathematics, changed to express more

thoughtful accounts oii several issues. Despite seemingly adequate recognition of

mathematical creativity, RSO2 originally espoused superficial and inconsistent

beliefs about logic and thinking. He afterward displayed an appreciation of

mathematical thinking in the post-instruction iiiterview: "A beautiful mathematical

equation is a kind of art too." He meanwhile proposed an interesting idea that a

powerful formula may not necessarily be a good tool because it will hamper further

progress. In his mind, an exceptional mathematical proposition ought to "sting but

not stun" mathematical development. Moreover, asked how mathematicians think,

RSO2 replaced the original response of mathematicians' logical reasoning by

stressing their imagination, interviewee RSO5 at the outset resolutely held a cursory

view of mathematics as a result-oriented subject in which outcomes are essential

and processes detail. He subsequently changed his mind and valued the significance

of objectivity in mathematical procedure. Similarly, RSO5 considered that, to

mathematicians, mathematics is an art. As for RSO7, she formerly confessed her

lack of patience in doing mathematics and demonstrated superficial conceptions in

both questionnaire and interview; yet she recognized the delight of mathematical

problem solving and appreciated its association with other disciplines.

In spite of holding inflexible views similar to those of above-cited

participants, four interviewees (RSOI, RSO4, RSO6, and RSO8) exhibited relatively

minor changes in their post-instruction responses. One shared notion was that they

began to perceive creativity as fundamental in mathematical thinking. Besides this

notion, their conceptual understanding of the research issues was as a rule

congruent with their former views; few noteworthy insights could be seen in their

accounts.

Of the nine interviewees, RSO3's case was peculiar because, similar to

RSO9. he demonstrated an extraordinary enthusiasm toward doing mathematics at
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the start yet showed a lack of understanding on several items. He confessed (in pre-

instruction interview) he had paid attention to these issues. hi the post-instruction

questionnaire and interview, he was better able to articulate his beliefs. Nonetheless,

unlike RSO9 professing considerate depiction of mathematical knowledge and

thinking, he still failed to plot a holistic picture of mathematics in general.

mathematical thinking in particular. For instance, with his outstanding

mathematical performance in solving assigned tasks. RSO3 was asked to imagine

how a mathematician develops theorems. He was unable to verbalize this issue

clearly, merely stressing constant doing and calculating. He further firmly espoused

a pragmatist belief that mathematics' value is totally subject to its utility and

mathematical knowledge without application doomed to be a mistake. Despite their

commonality of an active perspective regarding doing mathematics, RSO3 and

RSO9 expressed diametrically opposite views in this aspect.

The interrelationships between pre- and post-instruction views were by no

means straightforward. Those professing similar pre-instruction views on

mathematical thinking developed varied notions over time, some manifesting

noteworthy differences in perspective, others not. Individuals showing keen

disposition toward doing mathematics could hold contrary episternological beliefs

regarding mathematics in general, and mathematical thinking in particular (e.g..

RSO3 and RSO9). On the basis of interview transcripts, it was found that the

interviewees, originally exhibiting cursory views that ended with little change, were

those less likely to verbalize their thoughts clearly and completely. On the other

hand, most eloquent interviewees tended to gain productive insight into the essence

of mathematical knowledge and thinking. Thompson (1984) proposed the

conception ofreflectiveness" and 'integratedness" as potential causes of the

inconsistency between teachers' mathematical belief and instructional behavior.

This idea may also be applied to probing students' view-shift.
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Interrelationship Between Course Features and Post-Instruction Views

Participants were apt to grow individual views on mathematical thinking in

assorted ways. but several major trends emerged in post-instruction responses. They

generally tuned up the conventional image that mathematical thinking simply is a

computational process for deriving answers, yet tended to value the role of

creativity. As such. they seemingly had a better understanding of the

mathematicians' vocation. Participants also showed an appreciation for the

flexibility in doing mathematics, as opposed to following predetermined steps.

Moreover, they were convinced that mathematical knowledge progressed in proper

order, mainly subject to human demands, meanwhile claiming fallibility. Post-

instruction data imply these notions were to some extent related to two noteworthy

aspects of the designed curriculum: weekly problems and historical approach.

instead of direct presentation from the outset, students in this study were

situated in an ill-structured environment where target problems were assigned early

for exploration without hints. Required tools and concepts were no longer at their

ready disposal; they were forced to develop their own strategies, seek relevant

material, or discuss with peers. [n this way, problem solving involved not only

fitting formulas and theorems but also generating individual tactics for getting out

of predicaments; mathematics became a minds-on as well as hands-on activity.

According to interviewees' oral reports, this fashion of instruction, to a great extent,

differed from past learning in mathematics and likely urged them to reflect on the

meaning of doing mathematics. RSO6. initially considering herself proficient at

mathematics. complained homework problems were so strange that she barely had a

clue of beginning them and even began to doubt her own mathematical ability.

When seeing other colleagues' peculiar methods on the board. RSO6 tended to

better understand the subtleness of mathematical thinking.
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With the challenging nature, homework problems appeared to stimulate

particpants to create and test their naïve strategies. It was often seen that the

participants invited to present on the hoard demonstrated varied approaches (though

some were complicated or problematic), drawing the audiences' attention and

admiration. With miscellaneous modes of thinking, participants were inclined to

foster an appreciation of flexible thinking, as RSO5 claimed in the post-instruction

interview. Nevertheless, the difficulty of the tasks may also have created a by-

product. As reported, the effect of collaborative learning in the present study was

not as noteworthy as expected, and participants' recognition of the significance of

individual perseverance in mathematical thinking hardly improved. These undesired

outcomes could be attributed to a requirement for seeking entries or achieving

solutions of problems because less-confident participants might quickly ask for

assistance (e.g.. discussing with others or looking up relevant material). The

inference was evident in the six of nine interviewees' claim: of the twelve tasks, the

Fibonacci sequence was most impressive due to its ease of access. The issue of

problem posing deserves further investigation along this line.

Findings also suggested participants post-instruction notions were related

to a vital trait of this problem-based calculus course: history. For probleniatizing

mathematical topics, students were first urged to weigh the merits of studying a

topic. followed by a historical background introduction. All 12 weekly tasks were

relevant to origins of topics at the time. Ancient mathematicians' key ideas and

varied approaches were presented to reveal historical obstacles and struggles. in

order to foster and improve participants' appraisal ability, students were requested

to compare and contrast various mathematicians' modes of thinking as opposed to

merely learning them individually (e.g., Liu Hui's, Archimedes', and Seki Kowa's

derivation of the area of a circle; Fermat's, Descartes'. and Barrow's finding

tangents; Zu Chongzhi's and Archimedes' ways of computing the volume of a

sphere). Of the cited mathematicians, on the basis of their responses, participants
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were impressed by Archimedes' work. His peculiar ideas of deriving circular area

(turning a circle to a right triangle) and computing the volume of a sphere by using

leverage principles amazed these students. All interviewees mentioned how

Archimedes' unusual approaches attracted their attention and confessed they were

more likely to comprehend the role that originality plays in mathematical thinking.

RSO2 even replaced his previous idea that mathematicians reason logically,

contending they likely employ imagination because those weird ideas were

seemingly inaccessible merely by logic. Nevertheless, an unforeseen side-effect

emerged upon further examination. To probe more deeply interviewees' intrinsic

perception of mathematical ways of thinking, interviewees were asked to propose

conditions for good mathematical methods; all but one cited simple,precise, and

easiii' understood as essential components. In terms of the criteria, they claimed

Archimedes' idiosyncratic ideas. though impressive. may not have been good,

because of their instinctive inconceivability. On the contrary, they preferred the

Chinese mathematicians' concrete approaches that were more accessible. it was

assumed, by exposure to these contrary approaches, participants would recognize

the necessity of abstraction as well as the obviousness of concrete operations. This

outcome revealed one restriction of the present study with an attempt to promote

the participants' disposition of appreciating the esthetics of mathematical thinking.

This restriction could be due to cognitive obstacles or cultural barriers. Follow-up

investigation or cross-cultural study may help to resolve the question.

Post-instruction responses indicated that the majority of the participants

considered mathematical knowledge as increasing gradually and tied to human

demand. This notion may have referred to the handouts depicting the needs and

origins of calculus concepts in history, such as the construction of tangent lines.

logarithmic functions. Yet subjects also proposed that mathematical knowledge is

potentially unsound, a seemingly contradictory perspective. Upon additional inquiry,

all interviewees cited a historical impediment of understanding the concept of
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infinite series as supportive. AS reported, the participants were to a great extent

astonished by Euler and other mathematicians mistakes on summing up infinite

series by unconsciously using algebraic rules. Recognition of the latent fallibility of

mathematical thinking might have urged the participants to reevaluate their

widespread and rooted image that mathematics is the most infallible scientific

discipline. Interviewees instead contended the validity of mathematical knowledge

was time-dependent, subject to criteria at the time. It appears advanced realization

regarding the processes of mathematical thinking also increased individuals' insight

into epistemological facets of mathematics.

Limitations of the Study

As an exploratory investigation, the present study was limited in several

respects. First of all, extrapolation of the findings in this study to subjects beyond

its participants is speculative. The students were Taiwanese freshman engineering

majors in a public technological college. not representative of any larger population

of undergraduates. Extending suggestions made in the present study, even to a

limited population of Taiwanese college freshmen, could be problematic because,

in Taiwan, technological college learning experiences, especially in mathematics,

are quite dissimilar from those enrolled iii academic colleges. Thus, the two

counterparts may hold dissimilar visions of concerned issues. As a study examining

individual views on mathematical thinking. the effect of such a distinction should

be treated cautiously.

Second. the analysis was initially based on all students' written data

(mathematics biographies, questionnaires. ui-class reflection papers) to profile and

generate patterns of their views. To validate written responses and investigate

further, a second round of analysis was made by referring to oral data obtained from

nine randomly selected interviewees. To avoid misinterpretation caused by limited
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data source, the investigations therefore heavily relied on interview transcripts.

Though there was no evidence to suggest the 20% random sample was different

from all other participants in any particular respect, it is still improper to claim the

interviewees accounts can be unquestionably applied to non-interviewees. While

larger involvement may shed more light on participants' conceptions, by taking

practical possibility into account, the 20% sample should be a moderate sample

approximately representing the whole.

Third, the present study primarily probed the individual's views of

mathematical thinking. Given the intimate interrelationship between mathematical

thinking and knowledge, participants' notions regarding holistic mathematics were

examined as well to sketch a comprehensive picture of respondents' internal

thought. Note that factors contributing to shape one's conceptions by no means

were clear-cut: visions about other relevant subjects affected the formation of their

views of mathematical thought. Students' perspectives on other scientific

disciplines were not formally tabulated, but their images of science and art were

treated as supplementary evidence. Scope and strength of interpreting students'

accounts were thus restricted.

Fourth, it should be reminded that an alteration of an individual's views or

beliefs in such a limited period of time is unrealistic. Prior to this study,

participating students had been experienced at least 12 years of exam-driven

instruction and certain beliefs of doing mathematics had formed. The effort made in

this study at most challenged their existing thinking and motivated them to

accommodate alternative thoughts in learning mathematics. A permanent or a

radical change in students' views on mathematical thinking is unattainable without

subsequent examination.

Last and probably most critical, given the dual role the researcher/instructor

played in the present study, unforeseen biases were inevitable. As an instructor, on

the basis of personal belief and interest, he designed and implemented the problem-
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based curriculum throughout. Meanwhile, as a researcher, lie assessed the outcome

of the designed curriculum, based on identical belief and interest. The seemingly

conflicting positions might have hindered the researcher/instructor's insight into the

key issue and even lead him to a state of illusion, making a wholly impartial report

iii the present study nearly unattainable. Nonetheless, this drawback was to a certain

extent assuaged by avoiding excessive value judgment and reporting findings as

neutral as possible. Moreover, the researcher/instructor's researcher's diary and

tape-reviewers' checklist about practical teaching indicated from time to time the

designed curriculum was not fully implemented, especially at the start. The reported

outcome as such might not totally reflect the expected consequences of designed

curriculum. Strengths and weaknesses addressed here thus cannot directly be

inferred to relevant investigation.

Implications of the Study

As an exploratory investigation, the present problem-based study may hold

implications for developing college students' views on mathematical thinking. The

following discussions mainly center on several issues, including past learning

experience and pre-instruction views, the role problem-based courses play in

improving students' notions about mathematics in general and mathematical

thinking in particular, and the historical approach utilized in this problem-based

course.

Pre-instruction data concurrently indicated participants' conceptions

regarding mathematical knowledge and thinking mostly reflected earlier learning.

Despite some expression of a certain degree of dissatisfaction about prior

mathematical practice. most participants were less apt to resist extant inadequate

perspectives shaped by prior experience. The existing visions may have imposed an

effect on a subsequent mathematical career in general and this problem-based

course in particular.
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Experience modifies human beliefs... To make the best possible use of

experience is one of the great human tasks" (Polva, 1954. p. 3). This noteworthy

interconnection between preceding incidenis in mathematics and pre-instruction

views on mathematical ideas justifies using a problem-based course in building on

individLial concepts of mathematical thinking. Problem-based learning confronts

students with problematic, ill-structured situations and urges them to identify

required information for achieving a solution. Such a course may enable learners to

question extant beliefs and build their own mental network of experiences via

personal association or interpretation. Findings in the present study suggested

participants tended to derive their own conclusions regarding concerned issues.

Factors contributing to post-instruction accounts were neither straightforward nor

linear. As indicated, pre-instruction views functioned subtly in developing post-

instruction visions; students holding analogous notions may end with unparallel

perspectives. Individual cognitive schemes seemingly come into play in the midst

of forming new conceptual framework. It was found that the participants who had

formerly depicted considerations plainly (regardless of adequacy) would likely

demonstrate more thoughtful accounts afterward. On the other hand, those initially

giving short, vague responses as a rule exhibited minor change in their perceptions

subsequently. It is argued here that the degree of integratediiess and reflectiveness

of an individual's cognitive scheme may exert a significant influence on

accommodating and assimilating outward messages.

While challenging in nature, weekly problems used in the present study not

only positioned students in a problematic situation but also provided opportunities

to take varied perspectives. Findings indicated, via solving problems. students

acquired thoughtful insight into the intrinsic essence of mathematical thinking, yet

an appreciation of personal perseverance in doing mathematics was not evident in

their responses. This undesired outcome might relate to two aforementioned critical

components: problem design and problem implementation, interrelated processes in
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a problem-based course that balanced needs of students and curriculum (Torp &

Sage, 1998).

In terms of probleni design, though several weekly problems had been used

in a pilot study and found not totally inaccessible to college freshmen, participants

likely considered non-routine problems as demanding or ill-defined. As such,

individuals tended to identify with different formulations dependiiig on personal

interpretation, interest. aiid involvement. Namely, on the basis of past experience in

solving routine problems, some participants saw resolution of problems as

practically unfeasible and became reluctant to engage in time-consuming problem-

solving activities. Another critical issue regarding the problem design was use of

historical problems, which will be discussed later.

As for the implementation of the problems. one barrier was that the

participants were used to viewing the purpose of solving a problem merely as

seeking answers. With the final answer as the ultimate concern, any expectation of

recognizing the significance of persistence was impracticable. For productively

promoting perseverance in doing mathematics and eliciting thought. developing the

students' sense of "the solution is more than the answer, just as the problem is more

than the question" (Lampert, 1990, p. 40) is required. Torp and Sage (1998)

advocated problem-based learning and listed five benefits (increases motivation,

makes learning relevant to real world, promotes higher-order thinking, encourages

learning how to learn, and requires authenticity). However, these benefits may not

have emerged without paying attention to the context of implementation. In a

problem-based course aiming to improve individuals' conceptions, the context of

problem implementation is far more fundamental. For instance, criteria of

acceptability of solution must be clearly understood by students assessment should

reflect requirement. It is appropriate to say that the extent to which a problem-based

course succeeds is subject to the degree to which its context is established. The idea

of using historical problems in mathematics teaching has received increasing
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attention among relevant scho!ars (Avital. 1995: Barbin. 1996: Ernest. 1998:

Furinghetti, 1997: Horng, 2000: Katz. 1997; Rickey, 1995; Siu, 1995a, 1995b;

Swetz. 1995a. 1995b). In contrast to telling mathematical stories to draw interest

and improve attitudes (both are merely related to the affective domain), using

historical problems in the classroom is an advance in the ability to benefit not only

students' affective domain but also their cognitive one. Mathematical concepts have

continually evolved and been revised. Wisdom behind great endeavors may provide

insight into mathematical thought. As Ernest (1998) indicated. 'Mathematicians in

history struggled to create mathematical processes and strategies which are still

valuable in learning and doing mathematics" (p. 25). The outlook theoretically

justifies the appealing idea of incorporating history into mathematics teaching:

findings of this study suggest negative as well as positive effects of using history in

mathematics instruction. Being aware of ancient great figures' mathematical

approaches, participants fostered an admiring disposition toward mathematicians'

originality and broadened their vision of changeability and abundance in

mathematical thinking, In the meantime, they were also apprehensive about the

potential uncertainty of mathematical thinking from their recognition of well-

known mathematicians' obvious mistakes (from today's viewpoint). In this manner.

posing historical problems to students not only may prohlemati:e but also huniani:e

mathematical concepts. Philippou and Christou (1998), exploring the extent to

which mathematical history alters prospective teachers' attitudes or views of

mathematics, reported a pre-service teacher's claim similar to the findings in this

study:

History of mathematics provided me with a variety of interesting,
new, experience... The course showed me that mathematics is, at
least sometimes, a human activit'i'. I felt more confident when I
reali:ed that even great mathematicians did mistakes as I frequent/v
do [italics addedi (p. 202).
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Despite afore-cited inspiring outcomes. it should be iioted that participants'

responses also uncovered another perspective. On the basis of interviewees' claim,

it appeared mathematicians' ingenious thinking was barely reachable in these

college freshmen's eyes the ideas are inspiring but practically inapplicable. To

them, the ease of use and intuitive understanding are essential conditions for good

mathematical methods. They tended to distance themselves from those mathematics

masters, whose subtle thought is distant and unreachable. Attempts to empower

students to recognize intellectual delicacy of mathematical thinking seemingly did

not fulfill its aim. This defect may be an inevitable restriction of historical material,

learner-dependent issue. or even instructional challenge. Additional investigation

may shed light on this doubt.

Recommendations for Future Research

The importance of students' views of mathematics aiid learning

mathematics has been documented, yet a study of the interrelationships between a

problem-based course and subjects' views on mathematical thinking are rare. The

present study was intended to function as an initiator bringing forth relevant issues

and drawing researchers' attention to this respect. The recommendations are based

on critical concerns and findings.

For achieving a more precise knowledge about the influence of a problem-

based course on learnei's' views of mathematical thinking, an experimental design

involving control groups is suggested. Taking a purposeful sample (e.g., students

exhibiting significant or insignificant differences in their views) into account may

be shed more light on the issue of interest. Despite several optimistic outcomes

reported, findings in the present exploratory study cannot be interpreted from a

causal-effect angle. Since a control group was lacking and the dual character of the

researcher/instructor, potential biases were inescapable. In addition to using a
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control group. it is also advised that, if possible. the researcher/instructor' dual role

should be avoidedi.e.. the researcher is better as an objective observer monitoring

progress rather than an actual executorbut this expectation may not be reached

without a well-designed curriculum including appropriate guidance and prescription

of instruction.

This concern elicits a second important direction, the curriculum. Within the

framework of problem-based learning, as reported, the curriculum in the present

study mostly followed a historical approach. In spite of the use of history in

teaching mathematics as long being promulgated, experimental and systematical

examination of its effect is sparse. The present investigation may also be a

touchstone of this appeal. As discussed earlier, integrating historical material into

the course produced inspiring outcomes, along with undesirable side-effects.

Researcher must clarify whether this by-product is some inevitable restriction or an

improvable phenomenon. Other than establishing the curriculum on a historical

ground. a problem-based course might entail a plethora of approaches and generate

diverse consequences. in what ways and to what extent assorted curricula may exert

influence on learners' conceptions merits further investigation.

The third research issue is the employment of a questionnaire. Numerous

instruments have been developed and conducted to survey students' beliefs about

mathematics but, to the best of the researcher's knowledge, a single questionnaire

exclusively aimed to probing college students' views ofmathematical thinking is

nil. The open-ended type used in the present study was developed in reference to

relevant instruments and was used in a pilot study. However, as in several cases, the

instrument was still incapable of successfully and satisfactorily eliciting

respondents' internal thought regarding concerned issues. For better sketching of

respondents' conceptual framework, a revision of the current instrument is

mandatory.



198

Fourth, the present study found not only that some participants' notions of

mathematical thinking was enriched but also that their views of mathematical

knowledge became more thoughtful. This result seemingly suggests that individual

episternological views regarding mathematics as a whole can be somewhat

improved by a course of this kind. Given those inextricable relationships between

mathematical thinking and knowledge, it is thus prudent to increase the scope of

investigation to the interrelationship between a problem-based, historical approach

course and students' epistemological views of mathematics. The extension may

provide alternative angles that delineate students' ideas and thus shed more light on

their thoughts in a more holistic point of view.

Lastly. as indicated in the first chapter. the merit for studying and improving

students' views of mathematical thinking is built upon a potential influence of

students' inner conceptions on their learning behavior in mathematics. Though the

present study did not aim to investigate the effect of this problem-based course on

students' thinking skills, several instances suggested that students were able to

develop their own strategies to solve nonroutine problems. For instance, when

asked to derive the area of a circle without using formulas, one student proposed an

idea which may explain Archimedes' approach (equating the area of a circle to a

right-angle triangle). He regarded the area of a circle as a combination of infinitely

many concentric circles and then straightened the circumferences of all concentric

circles to form a right-angle triangle by piling them up, as shown in Figure 1.

Figure 1
One student's idea of converting the area of a circle to the area of a right triangle
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Consequently, one critical issue for future research is to consider in what ways and

to what extent students, whose views on mathematical thinking are enriched, alter

their learning modes in subsequent mathematical courses. If they do adjust

strategies to accommodate their shift iii view point, the outcome justifies the

purpose of this line of study and succeeding effort is required. Contrarily, if

expected effects do not appear, follow-up investigation should identify hidden

causes and in turn produce feedback to the relevant research. Though some

researchers see beliefs as major determinants and guides of one's behavior (e.g.,

Brown & Cooney, I 982 Harvey, 1986), not all researchers endorse the view that

beliefs offer greater insight into human behavior than other construct, such as

knowledge, as Pajares (1992) indicated. The aforementioned cyclic manner

expectantly may enrich the knowledge of the perplexing impact of individuals'

internal conceptions on their external performance in doing and thinking

mathematics.

Developing students' mathematical thinking ability is one of the major goals

of mathematics education (NCTM. 1991). However, with the potential effect of an

individual's own beliefs, this goal cannot be reached without a moderate

understanding of the nature of mathematical thinking. Any theory of the psychology

of mathematical thinking must be studied in the wider context of human mental and

cultural activity (Tall, 1991). Thus, as no one absolute way of thinking about

mathematics exists, there are alternative ways for investigating and improving one's

views on mathematical thinking. The present study hopefully can bring forth

valuable issues for public discussion to gain extensive attention to the study of this

construct.
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Appendix A
Course Goals

I. Purpose: The purpose of this course is. through a problem-based fashion, to

provide each student with opportunities to learn first semester of calculus including

the concepts of definite integral, limits of function. differential and their

applications. In addition to strengthening students' ability to manipulate

mathematical concepts and formulas to solve relevant problems, a special emphasis

is placed upon mathematical thinking through problem solving.

Il. Goals: On completing the course, it is expected that each student will be able to:

1. develop a holistic understanding of calculus including the origins and

growth of concepts of integral calculus, differential calculus, and limit.

2. apply learned knowledge to more open-ended problem-solving activities,

such as finding the area of a circle without the formula as well as solve routine

problems, such as finding the area of a bounded area by definite integral.

3. use high order thinking in doing mathematics through solving diverse

levels of problems and comparing the alternative approaches to resolving a problem.

4. foster an appreciation of mathematical knowledge is a crystallization of

human thoughts and its quasi-empirical, social construction aspects of thinking.
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Appendix B

Course Schedule

(This schedule presents the topics as they were taught.)

Week Topics Weekly Problems
I. Mon. What is calculus? I. Finding the

Thu. Alternative historical approaches to area of a circle

finding the area of a circle.

2. Mon. The bounded area under a curve 2. Fibonacci

sequence
Thu. Riemann sum and definite integral. 3. Computing the

sum of

1-1+1-1+1-1+...
3. Mon. Sequences and their limits, Infinite series 4. Euler's

Thu. Infinite series (cont) mistake on

infinite series
4. Mon. Tangents to a curve 5. Descartes and

Fermat's
Thu. The limit of a function approaches to

finding the

tangent line to a

curve

5. Mon. The limit of a function (cont.) 6. Compare the
Properties of limits magnitude

Thu. Continuity between I and

0.999...
6. Mon. Techniques of differentiation 7. Napier's

Thu. Derivatives of trigonometric, exponential, logarithm *

and logarithmic functions

7. Mon. Rates of change 7. Napier's
Thu. The chain rule logarithm*

(cont.)
8. Mon. Implicit differentiation 8. Fermat's

Thu. Related change and applications approach to find

extreme values
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9. Midterm exam

10. Mon. Extreme values of a continuous function

Thu. The Mean Value Theorem (MVT)

II. Mon. First-derivative test 9. The curve of

Thu. Concavity and the second-derivative test "witch of

Agnesi"

12. Mon. Curve sketching

Thu. Optimization in the physical sciences and

engineering

13. Mon. L'Hopital nile 10. The Tractrix

Thu. Antidifferentiation, the Fundamental problem*

Theorem of Calculus (FTC)

14. Mon. FTC (cont.) 10. The Tractrix

Thu. problem (cont)*

15. Mon. Integration by substitution

Thu.

16. Mon. Area between two curves II. Finding the

Thu. Finding the volume of a solid volume of a

sphere inscribed

in a cylinder

17. Mon. Volume by disks and washers II. Finding the

Thu. Volume by shells volume of a

sphere inscribed

in a cylinder

18. Final exam 12. Finding the

volume of a

sphere

* The problem was solved in cooperative group activity.
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Appendix C

Scope and Sequence

(The scope and sequence present the content as they were taught.)

Scopes Sequences

Titles of topics List of subtopics

What is calculus? The origins of calculus; the area of a bounded

region; the instant velocity; the tangent to a

curve; Zeno's paradox: intuitive concept of limit

(handout: the story of calculus)

Alternative approaches to Archimedes, Liii Hui, and Seki's methods

finding the area of a circle (handout: the story of pi)

The bounded area under a Calvalieri's (Zu's) indivisible principle;

curve infinitesimal; area as a limit of sum

Riemann sum and definite Riemann sum; definite integral; area as an

integral integral; properties of the definite integral;

distance asan integral

Sequences and their limits Sequences; Fihonacci sequences; the limit of a

sequences; bounded, monotonic sequences

(handout: Fibonacci number and golden ratio)

Infinite series Definition of infinite series; historical obstacles

of infinite series; general properties of infinite

series

(handout: historical obstacles of infinite series)

Tangents to a curve The rise of the concept of a tangent line;

Descartes and Fermat's approaches to finding

the tangent line to a curve

(handout: Barrow, Descartes, and Fermat's

methods of finding the tangent)

The limit of a function The intuitive notion of limit; one-sided limit;

formal definition of limit (handout: the idea of

infinite small)

Properties of limits Computations with limits; using algebra to find

limits; special limits involving sine and cosine
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Continuity The intuitive notion of continuity; definition and

properties of continuity; the relationship

between derivative and continuity; intermediate

value theorem

Techniques of Derivative of a constant and power function;

differentiation basic rules for finding a derivative; higher

derivative

Derivatives of Derivative of trigonometric function: definition

trigonometric, exponential, and derivative of exponential; logarithmic

and logarithmic functions functions; Napier's logarithm; Euler's derivation

of e

(handout: Napier's logarithm; story of e)

Rates of change Rate of change; average and instant rate of

change; relative rates of change

The chain rule Introduction to the chain rule; extended

derivative formulas; justification of chain rule

Implicit differentiation General procedure for implicit differentiation;

derivative formula for the inverse trigonometric

function; logarithmic differentiation

Related rate and Applications of related rate

applications

Extreme values of a Extreme value theorem; relative and absolute

continuous function extrema; optimization; max-ruin methods by

Fermat and Leibniz

(handout: max-mm methods by Fermat and

Leibniz)

Mean value theorem Mean Value Theorem (Cauchy), Rolle's

Theorem

First-derivative test Increasing and decreasing functions; the

first-derivative test

Concavity and the Concavity; inflection points; second-derivative

second-derivative test test

Curve sketching Curve sketching by the first-derivative test and

second-derivative test
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Optimization in the Optimization procedure; Fermat's principle of

physical sciences and optics, Snell's law

engineering (handout: Fermat's principle of optics and

Snell's law)

L'Hôpital rule Indeterminate form; L'Hôpital rule; Bernoulli

families

Antidifferentiation, The Barrow, Newton, and Leibniz's approaches to

Fundamental Theorem of FTC; antiderivative of a function; indefinite

Calculus (FTC) integral; the first and second FTC

(handout: Barrow, Newton, and Leibniz's

approaches to FTC)

Integration by substitution Newton's use of integration by substitution;

substitution with indefinite and definite integral

Area between two curves Calvalieri's (Zu's) indivisible principle; area by

vertical and horizontal strips

the volume of a Method of cross section; volume of double vault

solid (handout: Archimedes and Liu Hui's approaches

to finding the volume of a solid)

Volume by disks and Archimedes' method for finding the volume of

washers paraboloid, volume of revolution; disk method,

washer method

Volume by shells Method of cylinder shells
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Appendix D
Weekly Problem

1. (Week I) Design a method showing that the area of a circle with radius r

2. (Week 2) Leonardo de Pisa, also was known as Fibonacci, was one of the

best mathematicians of the Middle Ages. His book, LiberAbaci, published in 1202,

introduced the famous rabbit problem:

The first month after birth, the rabbits are adolescents and produce no

offspring. However, beginning with the second month, the rabbits are

adults, and each pair produces a pair of offspring every month. The

sequence of number describing the number of rabbits is called the

Fibonacci sequence.

(a) Please fill in the table below the number of pairs of rabbits in the 5th1, 6th

and 7 month.

2
3rd 4th 5th 6th 7th 8th 9th

1
0th 11th

1
2thlI23H H H H

(b) Can you derive the number of pairs of rabbits in the l2 month?

(c) Let a11 denote the number of pairs of rabbits at the end of nth months, a11?

(d) Calculate the value of a11+1/a1. Do you discover any pattern?

3. (Week 2) Answer the following two questions.

(a) Calculate the value of the infinite series I I + 1 1 + 1 1 + 1

(b) What follows are three different approaches to deriving the sum ofl 1 +

I + I 1 + I ...... However, they reach different answers. Which one is the

correct one? Why? Defend your answer.
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4. (Week 3) Leonard Euler was the greatest mathematician of the

century. He derived several sums of infinite series by his excellent algebraic

computation ability. Nonetheless, he once derived an odd result as shown below:

Since x+x2 +x3 +...+x +..= and 1+I+I+...++...=
x x 2

x
H

Summing up the two series, we then have

1 1 x x x x+++1+x+x
y V 1i x-1 1x 1x

If x is positive, the above result shows an infinite sum of positive numbers equal to

0. How could this happen? Can you identif the mistake that Euler made?

5. (Week 4) Please find the slope of the tangent of the curve f(x) = at the

point (1,1) by using Fermat. Descartes, and Barrow's approaches, respectively.

6. (Week 5) Compare the magnitude between I and .9999.... Which one is

larger? Why?

7. (Week 6, 7) John Napier (1550-1617). a Scotsman. is credited with being

the inventor of logarithm. His idea can be illustrated as follows: Let a line segment

AB be of fixed length and the line DE be of infinite extent. Consider a point C to

move on AB with a velocity numerically equal to the distance CB and a point F to

move on DE with a coiistant velocity equal to the initial velocity of C, as in Figure

1. Napier defined the logarithm of CB to be the length of DF. Namely. let DF = v

and CB = x , then

= nog x (iiog x = Nap log x)



220

A ':j. B

I I I

F E

Figure 2 Napier' s logarithm

According to the above definition, it can be seen that the value of v increases as x

decreases. Please show that (a) the value of x decreases in a geometric progression

while the value of i' increases in an arithmetic progression; (b)v = nogx" = a flog

xo

8. (Week 8) Fermat's method of finding the extreme value of functions was

most similar to the modem approach. Please use his idea to find the absolute value

of the function fix) 3x x2 on [0.3].

9. (Week 11) Let v=
X +U

(a) Derive critical points, extreme values, inflection points, and asymptotes of i'.

(b) Sketching the graph of v on the basis of results in (a).

(c) There is a dynamic" method for sketching the graph of v. Can you derive it?

10. (Week 13. 14) When Leibniz was inventing the calculus in Paris in 1676,

Claude Perrault placed his watch in the middle of a table and pulled the end of its

watchchain along with the edge of the table. Perrault asked: What is the shape of

the curve traced by the watch'?

(a) Please sketch this curve.

(b) How do you derive the equation of this curve? Show your work in detail.

11. (Week 1 6. 1 7) Among his mathematical discoveries (or inventions).

Archimedes was proudest of the finding that the ratio between a circular cylinder's

volume and its inscribed sphere and the ratio between the surface area of a circular
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cylinder and its inscribed sphere are both 3:2. This beautiful relationship was

carved on his tombstone. To comprehend his enjoyment further, please show that

the ratio between the volume of a circular cylinder and its inscribed sphere is 3:2

without applying formulas.

12. (Week 18) Derive the volume of a sphere without using Zu Chongzhi

and Archimedes' methods.



Appendix E
Audiotape Reviewef s Checklist

Directions

I. Purpose of the checklist

The checklist asks you to describe various aspects of my teaching recorded in the

selected audiotape. Your answers will enable me to keep the instruction and study

on the right track. There are no right or wrong answers. Please fee! free to let me

know your opinion.

II. How to answer each item

There will be 10 questions below. For each question. circle only one number

corresponding to your answer. For example

[asked students to think the Always Often Sometimes Seldom Nevei

mportance of mathematical concepts.

5 4 3 2

If you think that I always asked the students to think the importance of

mathematical concepts, please circle 5.' Contrarily, if you think that I never asked

the students to think the importance of mathematical concepts. please circle I.'

You may also choose the number 2. 3. 4 if one of these seems like a more

appropriate answer.
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Body of the checklist

Basic information of the tape

Date:_________________ Topic:

Problematizing mathematical Always Often Sometimes Seldom Never

concepts

1. I asked the students to think why 5 4 3 2

the topics are important.

2. I asked the students to think the key 5 4 3 2

concepts of the problem.

3. 1 encouraged the students to 5 4 3 2

propose the plausible approaches for

solving the problem.

Metacognitive teaching

4. I acted as a novice working

problems from scratch.

5. I asked the students to evaluate the

possibility and difficulty of

approaches.

6. The students witnessed and

experienced the cost of an incorrect

approach.

Always Often Sometimes Seldom Never

5 4 3 2 1

5 4 3 2 1

5 4 3 2 1
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interaction in the classroom Always Often Sometimes Seldom Never

7. 1 encouraged the students to make 5 4 3 2

plausible guessing.

8. The students were invited to share 5 4 3 2 1

their ideas with class on board.

9. 1 encouraged the students to 5 4 3 2 1

question and challenge other students'

presentations.

10. I established a student to student 5 4 3 2 1

interaction environment.
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Appendix F
Mathematics Biography

Please describe your past experiences in learning mathematics in 300 words,

including any significant events or people influencing your dispositions or attitudes

toward learning mathematics, how important mathematics is to you, and how you

evaluate your own capability and performance in doing mathematics.
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Appendix G
The Pilot Study Ouestionnaire

(The following questions present as they were used in the pilot study.)

I. What is your instant strategy when facing unfamiliar mathematics

problems?

2. How do you proceed when stuck on a mathematical problem?

3. Some mathematics education researchers argue that students can be

guided to discover mathematical properties on their own with little instruction.

Nevertheless, still others consider this approach suitable only for students good at

mathematics. What is your viewpoint about this?

4. In your opinion, what is the best way for learning mathematics?

5. How do you correctly judge your approach when doing mathematics?

6. In your understanding, what is mathematical thinking? Please explain

your answer with examples.

7. Some hold that solving mathematical problems is a thinking activity

involving personal creativity; others argue that getting correct answer requires

following predetermined, known procedures. What is your opinion about this? Why?

Please defend your answer with examples.

8. It is widely believed that one can correctly answer mathematical problems

only when appropriate understanding is reached. Is it possible for you to do a

problem right, yet without adequate understanding? Why?

9. in your understanding and imagination, is there any difference between a

mathematician' way of thinking and a layperson's?

10. In your understanding and imagination, how do mathematicians conduct

their research? Do they solve problems alone or discuss with others? Which way do

you think is better? Why?
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11. How much time do you spend obtaining the correct answer if you

understand a mathematics problem rightly and are confident of solving it? How

soon would you give up when you think yourself incapable?

12. What are necessary conditions for a person to be mathematically capable?

13. Some consider the purpose of mathematical knowledge as pursuing

absolute truth. Nevertheless, others argue that mathematical knowledge is a

symbolic operation system following particular rules. Still others see mathematical

knowledge as a product constructed by mathematicians. What is your viewpoint

about this?

14. People usually distance themselves from mathematics because following

fixed rules is required for producing mathematical knowledge. Nonetheless, some

hold that the establishment of mathematical knowledge is a highly creative activity.

the most fantastic part. What is your viewpoint about this?

15. Mathematics is usually seen as the mother (or servant) of science

because it can afford the nutrition for development of science. Some even argue

that mathematics is a perfect science. Its theories, unlike other natural science, are

not superseded by new discoveryi.e.. mathematical truths are infallible once its

theories are established. What is your viewpoint about this? In your opinion, is

there any difference between the nature of mathematics and that of science?

16. Some consider mathematical knowledge as discovered" (existing in

Nature). Nevertheless, still others hold that mathematical knowledge is invented"

(a tool created by humans to describe Nature). What is your opinion about this?
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Appendix H
The Study Questionnaire

(The following questions present as they were used in the present study.)

1. In your understanding. what is mathematical thinking? Please explain

your answer with examples.

2. When you are stuck on an unfamiliar mathematics problem, what is your

instant reaction to and strategy for this?

3. In your understanding and imagination, how do mathematicians think

while solving a problem? Is there any difference between a mathematician's way of

thinking and a layperson's?

4. Some hold that solving mathematical problems is a thinking activity

involving personal creativity; others argue that getting correct answers requires

following predetermined, known procedures. What is your opinion about this? Why?

Please defend your answer with examples.

5. In your opinion, what is mathematics? What makes mathematics differ

from other disciplines (e.g., science, art)?

6. In your opinion, how does mathematical knowledge develop? Does the

development of mathematical knowledge follow any rule? Please defend your

answer with examples.
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Appendix I
In-Class Reflection Reports

1. (Week 2) Of the alternative approaches proposed by Liu Hui. Seki Kowa.

and Archimedes to deriving the area of a circle, in your point of view. which is the

best? Do you think Liii Hui's idea is a rigorous proof?

2. (Week 5) What is your thinking about the mistakes made by past

mathernaticians approaches to deriving the sum of infinite series (e.g., 1-1+1-1+1-

1+1... and 1+2 +4+ 8+ 16+ 32 +...)?

3. (Week 10) What is your thinking about the deficiency in Ferrnats method

for finding the tangent line to a curve?

4. (Week 16) Please compare and contrast ancient Chinese (Liu Hui and Zu

Chongzhi) and Archimedes' approaches to deriving the area of a circle and the

volume of a sphere to sketch the distinct features of mathematical thoughts between

the both sites.
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Appendix J
Samnie Interview Protocols

1. What do you mean by ...... ?

2. Could you he more specific?

3. In your opinion, is mathematical thinking equivalent to thinking on solving

mathematics problems?

4. Do you think mathematicians are smarter than laypersons?

5. Are mathematicians born to be good at mathematics?

6. What makes a good problem solver?

7. Are you a good problem solver? Why?

8. What are important factors in mathematical thinking?

9. Is the development of mathematical knowledge logical? Why? Could you give

me an example?

10. In your imagination, how mathematicians generate ideas?

11. In your opinion, is mathematical knowledge infallible? Why?

12. Have your views of mathematical thinking changed during the course? In what

aspect?

13. Why did you change your responses?
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Appendix K
Time Schedule for Data Collection

Month Week Data of Collection

2001,

September

1 Pre-instruction questionnaire

Mathematics biography

2 Pre-instruction interview transcripts (20% random sample)

Weekly problem 1 In-class reflection report I

3 Pre-instruction interview transcripts (20% randoni sample)

Weekly problem 2 and 3

4 Weekly problem 4

October 5 Weekly problem 5 In-class reflection report II

6 Weekly problem 6

7

8 Weekly problem 7

November 9 (Mid term)

10 Weekly problem 8 In-class reflection report III

11

12

13 Weekly problem 9

December 14

15 Weekly problem 10

16 Post-instruction questionnaire; In-class reflection report IV

1 7 Post-instruction interview transcripts (20% random sample)

Weekly problem 11

January 1 8 Post-instruction interview transcripts (20% random sample);

Weekly problem 12; Final
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Appendix L
Participants Data Source Information

Code Sex Mathematics Biography Pre-Questionnaire Post-Questionnaire

SOl M 4'

S02 M X

S03 M X

SO4 M

S05 M

S06 M

S07 M

S08 F

S09 M

SlO M

Sit M

S12 M

S13 M

S14 F

S15 M X

S16 M

S17 M X

S18 M

S19 M X

S20 M

S21 M
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S22 M X

S23 M

S24 M X

S25 M

S26 M

S27 M

S28 F

S29 M X

S30 M

S31 M X

S32 M X

S33 M X '#4

S34 M

S35 M '#4

RSO1M

RSO2M

RSO3M

RSO4M

RSO5M

RSO6F

RSO7F

RSO8M

RSO9F

*The mark ' "means the data source was collected and X" represents the data

source was not submitted.




