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QUADRATIC INTEGRAL DOMAINS IN Ra ('J5) AND Ra ('J --13) 

I. INTRODUCTION 

An algebraic number is defined to be a complex number which 

satisfies a polynomial equation with rational coefficients. Every alge- 

braic number satisfies many such polynomial equations, but among 

these is one of least degree (3, p. 1 -2). The degree of this equation 

determines the degree of the number. A number which satisfies an 

irreducible quadratic equation is therefore called a quadratic number. 

Suppose p is a quadratic number. We are first interested 

in the set of numbers al + b1p, where al and b1 are rational 

numbers. For every p there exists some rational integer m, 

without a repeated prime factor, such that the set a + b'Im is 

identical to the set al + b1p (3, p. 280 -283). 

The purpose of this paper is to consider two such sets, one in 

which m = 5, the other in which m = -13. The paper will show 

that these sets are fields, and that in each field there is a particular 

subset which is an integral domain, and whose elements will be called 

integers. 1 In the first set unique factorization of these integers into 

prime factors will be demonstrated. In the second set this property 

is absent, so ideal numbers will be introduced, which will restore 

1 To avoid confusion, the term integer will be used in reference to 
a number of quadratic integral domain, while the ordinary integers 
of arithmetic will be called rational integers. 
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the unique factorization. 

In the development, the following definitions will be used: 

1. 1 A group is a mathematical system composed of a set of 
elements with a well defined binary operation and: 

1. The system is closed under the operation. 

2. The operation is associative. That is 

(a + b) + c = a + (b + c) 

for every element a, b and c of the set. 

3. There exists an identity element 0 such that 

a + 0= 0+ a = a 

for every element a of the set. 

4. Every element a has an inverse a such that 

a+ a= a + a = 0 

1. 2. An abelian group is one in which the operation is 
commutative. That is 

a + b = b + a 

for every element a,b of the group. 

1. 3. A ring is a mathematical system consisting of a set of 
elements closed under two well defined binary operations, 
addition ( +) and multiplication (X) and subject to the 
following: 
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1. The elements form an abelian group relative to 
addition. 

2. Multiplication is associative. 

3. Multiplication is distributive over addition. That 
is, for every element a,b and c in the system 

aX (b +c) =aX b +aX c. 

1. 4. An integral domain is a ring in which: 

1. The operation multiplication is commutative. 

2. There exists an identity element for multiplication. 

3. There are no proper divisors of zero. 

1. 5. A field is an integral domain in which every element 
except the additive identity has an inverse under multi- 
plication. 

It will be assumed that the complex number system has been 

developed and shown to be a field and that sufficient background to 

establish the following specific properties from number theory and 

algebra have been developed. 

1. 6a. The natural numbers are well ordered. 

1. 6b. Every composite rational integer has a unique factori- 
zation into a finite number of prime factors. 

1. 6c. If a is a rational integer, a2 is congruent to 0 

or 1 mod 4, and in particular for 



a= 1 mod 2, a2 = 1 mod 4 

a=0 mod 2, a2 FL- 0 mod 4 

and conversely. 

1. 6d. In an integral domain ab = ac and a 
b =c for all b and c. 

0 implies 

4 

# 
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II. THE NUMBERS Ra (N/5) 

Definition 2. 1. The set of numbers a + b'ß/5, where a 

and b range independently over the field of rational numbers, will 

be called Ra ('J5). 

Theorem 2. 1. Ra (45) is a field. 

Proof: a. The set is closed under addition and multiplication, 
for if we take a = a + b'J 5 and ß = c + dN/ 5 

we have 

a +ß = (a +c)+ (b +d)'ß/5 

a ß = (ac + 5bd) + (ad + bc) N/5 

and a, b, c and d are rational numbers. Then 
so are the coefficients a + c, b + d, and so on. 

b. Both operations are associative and commutative, 
and multiplication distributes over addition since 
Ra (q5) is a subset of the complex field. 

c. 0 = 0 + ON/ 5 and 1 = 1 + 0'x/ 5 are in R a (N/ 5) . 

d. If a + b N/ 5 is in Ra(N/ 5) so is -a - b^/ 5. 

e. Each element a + b'./ 5 with not both a and b 
equal to 0 has a multiplicative inverse in Ra(^/5). 
For 

1 a - bN/5 

a + bN/5 a2 5b2 - 
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If a2 - 5b2 = 0 either a2 = b2 = 0, which by 
hypothesis is impossible, or b2 

O. Then 
5 = a2 /b2 and ^/5 = a/b which is impossible 
since that would mean N/5 is rational. Therefore 
a2 - 5b2 0 and we have 

1 a b^/5 
a + b\/5 

a2 - 5b2 a2 - 5b2 

an element of Ra(I5). 

Definition 2. 2. The number á = a -b^/5 is called the 

conjugate of a = a +b'/5. The product a a = a2 - 5b2 is called 

the norm of a and is denoted N(a). 

From this definition the following properties are clearly true. 

a. á = a . 

b. Ti = a if a is a rational number. 

c. N(a) = N(a). 

Theorem 2. 2. a and á are the two roots of a unique 

monic quadratic equation with rational coefficients. 

Proof of existence: Let a = a + b^/5 

a= a -b^/5. 

Then a and á satisfy the equation 

(x - a)2 - 5b2 = x2 - 2ax + a2 - 5b2 = 0 

¡ 

¡ 

' 



and the coefficients 2a and a2 - 5b2 are rational since a and 

b are. 

Proof of uniqueness: Case I, b = O. Then a = a and 

= a. The equation must have equal rational roots and so it is of 

the form 

(x - r)2 = 0 

with r a rational integer. Since a satisfies this equation 

(a - r) 2 
= 0, r = a and the equation must be 

(x - a)2 = 0 

so the equation is unique. 

Case II, b # O. 

Lemma. a = a + b^/5, b 0 does not satisfy a rational 

linear equation of the form 

x -r =0, 

Suppose the contrary. Then 

a +bN/5 = r , 

N/5 = 
r - a 

b 

7 

á 

# 
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which cannot be since ^/5 is irrational. Hence the lemma. 

Suppose a satisfies two monic rational quadratic equations 

x2 + p lx + q 
1 

= 0 and x2 + p2x + q2 = O. 

Then a satisfies the equation formed by subtracting the second of 

these from the first ; 

(Pl - p2)x + ql - q2 = 0 . 

This equation must be identically zero, otherwise it contradicts the 

above lemma. Therefore pl = p2 and q1 = q2 and the two 

equations are identical. 

Definition 2. 3. The equation of theorem 2. 2 is called the 

principal equation of a. 

Corollary 2. 2. The constant term of the principal equation 

of a is N(a). 

Theorem 2. 3. The conjugate of the product (sum) of two 

numbers of Ra(^/5) is equal to the product (sum) of the conjugates. 

Proof: Let a = al + b1N/5 and ß = a2 + b2N/5. Then 
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aß = ala2 + 5b1b2 - (alb2 + a2b1)^/5 

= ala2 - alb2N/5 + 5bib2 - a2b1'J5 

= a1(a2 - b2q5) - b1'./5 (a2 - b2q5) 

_ (a1 - b1,45) (a2 - b2q5) 

= á ß . 

And a +ß = al + a2 - (bl + b2)N/5 

= al - b1'./5 +a2 -b2q5 

= a + ß. 

Theorem 2. 4. The norm of the product of two numbers of 

Ra(J5) is equal to the product of their norms. 

Proof: Let a and ß be two numbers of Ra('./5). Then 

N(aß) :_. aß artF 

= aß aß by theorem 2. 3 

= aá ß ß by theorem 2. 1 

= N(a)nT((3) 

Corollary 2. 4. If a, ß are two numbers of Ra('./5) and 

ß # 0, then 

N(a) N( a ) 
ß NW) 
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By definition 2. 2, if ß # 0, then N(ß) O. If 

N(ß) # N(R) 

N(a) and N(ß) are rational integers by definition 2. 2, so 

N() N(f3) N(a) 

N( ß f3) # N(a) 

N(a) N(a) . 

Definition 2. 4. A number of Ra('./5) is an integer of 

Ra(N/5) if its principle equation has rational integral coefficients. 

The set of integers of Ra('./5) will be denoted Ra[N/5] . 

Theorem 2. 5. Every rational integer is in Ra[ Ñ5] . 

Every number of Ra[ N/5] which is rational is a rational integer. 

Proof: If a is a rational integer, the principal equation 

of a is 

x2 - 2ax + a2 = 0 

and its coefficients are rational integers. 

If a = a + b'ß/5 is rational, b = 0 and a in Ra[N/5] 

implies the principal equation 

x2 - 2ax + a2 = 0 

# 
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2 
of a has rational integral coefficients. But if a is a rational 

integer so is a = a. 

Theorem 2. 6. If a is in Ra[ 45] , then so is á. 

This is so since both have the same principal equation. 

Theorem 2.7. A number of Ra(J5) is in Ra[45] if and 

only if it is of the form a +b'ß/5 where a and b are rational 

integers, or where both a and b are halves of odd rational 

integers. 

Proof: Let a be a number of Ra(g5). Then 

a - 
a1 + 111 ^/5 

cl 

where al, b 
1 

and c1 are rational integers with no common factor 

and b1 # 0 to avoid the previous case where a is rational. Now 

c may be considered positive without loss of generality. The prin- 

cipal equation of a is 

2 
2 al -5b1 2a1 

x - x+ 
1 c1 

If in addition a is in Ra['45] , 

(1) 
2a1 

c1 

- U . 

is a rational integer; 

2 



(2) 

12 

2 - 5b1 
2 

a 

2 cl 
is a rational integer . 

Then one of the following is true: 

(i) c 1 1 or 2 (ii) c = 2 (iii) c = 1 . 

If c # 1 or 2, then by (1) al and c have a common 

factor and by (2) this factor is also a factor of b1 contrary to the 

hypothesis that al, bl and c are relatively prime. 

If c = 2, c 1 = 4 and from (2) 

a12 - 5b12 = 0 mod 4, 

a 12 5b 12 mod 4, 

If b 
1 

0 mod 2, b12 :I- 0 mod 4 and a12 = 0 mod 4 by property 

1. 6c. So al = 0 mod 2, which makes al, b1 and c1 even in 

contradiction to hypothesis. If b1 = 1 mod 2, b12 = 1 mod 4, so 

a12 1 mod 4. Then al = 1 mod 2. Thus, for this case, for 

a + b ./5 to be an integer a and b must be halves of odd rational 

integers. 

If c = 1, a = al + b1 .i5 is an integer since 2a1 and 

alt - 5b1 are rational integers for all rational integral values of 

al and bl. 

= 

w 
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Thus it follows that any number a +1345 of Ra['/5] must 

have a and b rational integers or both a and b halves of 

rational integers. 

Conversely any number of this form is in Ra['/5] for the 

equation 

x2 - 2ax + a2 2 
- 5b2 

2 
= 0 

has rational integral coefficients if a and b are rational integers, 

and if a and b are halves of odd integers 2a is a rational 

integer and 

2- n2-5m2 a2-5b 
4 

where n = m ° 1 mod 2. So n2 ° m2 = 5m2 _ 1 mod 4, and 

n2 - 5m2 ° 0 mod 4. Thus a2 - 5b2 is a rational integer. 

Definition 2. 5. Two linearly independent numbers 01 and 

02 form a basis for Ra[ J/5] if every member of Ra['./5] is 

given in the form a01 + be2 where a and b range independ- 

ently over the rational integers. 

Theorem 2. 8. The numbers 1 and 0 = 2 + 2 N/5 form 

a basis for Ra[ 45] . 

Proof: Consider the sets S1 = al + b1N/5 and 

+ 
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S2 = a2 + b2( -1 + 2 1 

'/5) where al and bl are rational integers 
2 

or halves of odd rational integers and a2 and b2 are rational 

integers. By theorem 2.7, S1 is Ra[N/5] . 

If a number of S1 equals a number of 52, that is 

b b 
2,45 al + bl/5 = a2 + 2 + 

2 
, 

tal + 2y5 = 2a2 + b2 + b2,45 ; 

2a2 + b2 , (i) 

2b , 
1 

(ii) 

al - b1 . (iii) 

If al and b 
1 

are rational integers or halves of odd rational 

2a1 = 

b2 = 

a2 = 

integers, then by (ii) and (iii), a2 and b2 are rational integers. 

So 51 S2. 

If a2 and b2 are rational integers and b2 is even, 

al and b1 are rational integers by (i) and (ii). If b2 is odd, 

2a1 and 2b1 are odd rational integers so al and b1 are 

halves of odd integers and S2C Si. Therefore S1 = S2 and 

(1, 0) is a basis for Ra[ q5] . 

Theorem 2. 9. Ra[q5] is closed under addition, subtrac- 

tion and multiplication. 



Proof: Let a = al + b10, and ß = a2 + b20 be two 

numbers of Ra[ ^/5] . 

And 

So 

±ß = (al }a2)+ (b1 f b2)e 

aß = a1a2 + b1b202 + (alb2 + a2b1)0 . 

82 = (2+ 2^/5)2 = z+ 2 = 1 +2 +2N5 =0 +1. 

aß = a la2 + b lb2 + (a lb2 + a2b + b lb2)0. 

15 

From theorems 2. 1, 2. 5 and 2. 9 and the fact that we are 

using complex number multiplication so can have no proper divisors 

of zero it follows that Ra[ 45] is an integral domain. 

Theorem 2. 10. If 01, 02 is a basis of Ra[ 45] , the 

necessary and sufficient condition that 

01 = a1101 + a1202 

02 a2101 + a2202 

with a11, a12, a21 and a22 rational integers be a basis also is 

all a12 

a21 a22 

. 

= 

= f1 
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Proof: If 01, 02 is a basis, 

01 = b1101 + b1202 

02 = b21 01 22 + b02 

where the b..'s are rational integers. Then 
'J 

01 - (alibi]. + a21b1201 + 
(a (a12b11 b 

+ a22b1202' 

02 = (allb21 + a21b22)01 + 
(a12b21 

+ a22b22)02. 

So, since 01 and 02 are linearly independent, 

allbll + a21b12 
= 

1 a12b11 
+ a22b12 = 0 

a 
11 

b 
21 + a21b22 = 

0 a b 
12 21 + a22b22 1. 

From these four equations, it follows 

(bul b12 1 0 

b21 22 a21 22 

Henc e 

all a12 

b a 0 1 

b11 b12 all a12 
1 

b21 b22 a21 a22 

and the determinant of each matrix on the left divides 1 so is 

= 

) 

- 



either +1 or -1. Thus 

all a12 

a21 a22 

= t 1 

17 

is a necessary condition for el, 02 to be a basis. 

Since 01'02 is a basis, if e and e2 are in Ra[ ^/5] , 

we have 

ei = all l + 
a 

1202 

e2 = a21e1 + 
a 2202 

where the a..'s are rational integers. Then 

e 

el 

e2 

a12 

a22 

02 

all 

a21 

el 

e 2 

1 

all 

a21 

a12 

a a22 

all 

a21 

a12 

a22 

all a12 

= f 1 , 

a21 a22 

'3 

- 
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both 01 and e2 and thus all numbers of Ra[ 45] can be expres- 

sed as linear combinations of 0i and 02 with rational integral 

coefficients. This establishes the sufficiency condition of the theorem. 

Definition 2.6. If el and 02 form a basis for Ra[45] 

and a and ß are any two numbers of the domain, the discrimi- 

nant of the numbers a and ß is 

a101 + b102 a201 + b202 

a 
1-U 1 

+ b 102 a201 + b202 

2 

Theorem 2. 11. 0(01, 02) where 01, 02 is a basis is 

invariant under change of basis. 

Proof: From definition 2. 6 

2 2 

01 02 a2 

0(a,ß)= 

81 02 b1 b2 

and 2 

01 02 

el e2 

By theorem 2. 10, if a, ß is a basis 0i, 02, then a1b2 -a2b1 = f1. 

So 

o(ei,e2)= 

2 

_ .(3s 102) 

A(a,ß) = 

al 

G(01 0) 



Definition 2. 7. A(01,02) 

Ra[ ^/5] and denoted L1[ N/5] . 

19 

will be called the discriminant of 

Theorem 2. 12. A[ N/5] = 5 . 

1 1 Proof: Take (1, 
2 

+ 2 .Í5) 

L1 [ Nl 5 ] = 

2 

1 2 + 2,45 

as a basis. Then 

2 2 
(2 -2í5 -2- 2^/5) =( -45) = 5. 

Theorem 2. 13. A necessary and sufficient condition that 

61, 82 be a basis for Ra[ '45] is that A(01,02) = 5. 

Proof: That this is a necessary condition follows immedi- 

ately from the last two theorems. 

To prove it also sufficient, let a and 3 be two linearly 

independent numbers of Ra[ X15 ] which do not form a basis. Then 

a = a 
101 

+ a 202; 

ß =b161+b262 

where 0 is a basis and 

± 1. 

1 2 - 2^/5 

62 

2 I 

al 

all 1,l b2 



Since al, a2, b1 and b2 are rational integers and a and ß 

are linearly independent it follows that 

a 
1 

a2 

bl b2 

2 

al a2 

bl b2 

2 

01 02 

0l 02 

> 1 

> 1 

2 

a2 

bl b2 
> 5.1 . 

20 

Example: a + bß/5, c + dß/5 is a basis for Ra[ N/5] if and only 

if 

or 

2 

a+bN/5 c+dq5 2 
= [ ac-5bd+(bc-ad)^/5-ac+5bd-(ad-bc)/5] 

a-bN/5 c-d^/5 

= [ 2(bc-ad)q5] 2 

= 20(bc-ad)2 = 5 

(bc - ad)2 = 4 

The pair a and b must be rational integers or both halves of odd 

rational integers and likewise for the pair c and d. So any of an 

infinite number of values will do, in particular the values 

, 

A(a,(3) _ 

aI 

, 



5 2+ ZN/5 2 +ZN/5. 
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Definition 2. 8. For a, ß in Ra[N/5] , a is divisible by 

(3, denoted 131a, when there exists y in Ra[ ./5] such that 

a =ßY 

13 and y are called divisors or factors of a, and a is called 

a multiple of ß and y. 

Theorem 2. 14. 

a. If a is a multiple of ß and ß is a multiple of y, 
then a is a multiple of y. 

b. If each integer of a sequence al, a2, , an of integers 
is a multiple of the one that succeeds it, each integer is 
a multiple of every integer which follows it for any 
rational integer n > 2. 

c. If two integers a and (3, are multiples of a third 
integer y, then a + ßrß is a multiple of y where 

and ri are any integers of Ra['./5] . 

Proof: 

a. (31a and YIP implies a = ß and ß = r1y where 
and r) are integers. So a = r)Y and the integers 

being closed under multiplication, a is a multiple of y. 

b. For n = 2 the theorem is obviously true . Assume the 
theorem is true for sequences with k terms, k> 2. 
Let al, a2, , ak, ak +l be a sequence where 
a i+ l l 

ai' i = 1 .k. Then 

ai iak i = 1...k-1 (1) = 

f 



c. 

by the induction hypothesis. Also by hypothesis 

ak X kak+ 1 

So from (1) and (2) 

ai = Xi (Xkak +1) 
for i = 1 k-1, 

or ai Fliak 
+1 

for i = 1 k -1 

and taking µk = Xk in (2) 

ak = µkak +l 
So 

ai = k+1 
for i= 1k. 

(2) 

(3) 

22 

Also by induction hypothesis, each a. is a multiple 
of each ai +j where i = 1. k- 1 and i +j < k so 
from this and (3) each aj is a multiple of ai 

+j 
where i = 1 k and i+ j < k +l . 

Since the theorem is true for n = 2 and is true for 
n = k+ 1 whenever it is true for n = k, then it is true 
for all n > 2 . 

a = P1Y, ß = P2Y, P1'P2 integers ; 

a + ß r) = p 
1 
a + p2ar 

= (Pl + P2r1)Y 

and a + 131 is a multiple of y. 

- 
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Theorem 2. 15. If a is divisible by 13, N(a) is divisible 

by NW), 

Proof: a = V!, 

N(a) N(I3)N(y) by theorem 2. 4. 

and N(a), N(ß)N(y) being rational integers it follows that N(ß )I N(c). 

Definition 2. 9. An integer which divides 1 is called a 

unit of Ra[ N/5] . 

Theorem 2. 16. A necessary and sufficient condition that an 

integer be a unit is that its norm be ±1. 

Proof: If E is a unit it divides 1 so by theorem 2.15, 

N(E) divides N(1) = 1. Therefore N(E) = ± 1. 

Conversely, if E is an integer and N(E) = ±1, then 

Er = 1 or EE = -1. In the first case E is a unit by definition. 

In the second case 

and E is a unit. 

( -1) and -111 so by theorem 2. 14a E 1 

Corollary 2. 16. The product of two units and the quotient of 

two units are units. 

Theorem 2. 17. There are an infinite number of units of 

RaP./5] . 

= 

E I 
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1 1 Proof: Consider E = 2 + -2,45 which is an integer of Ra[45]. 

N(E) = 
4 
- 4 = -1 so E is a unit. Every positive power of E is a 

unit for 

N(En) _ [N(E )] n = (-1)n = +1 or -1 

according as n is even or odd. 

Now, E , E 2, E 3, ' are all different or for some n > m 

we have E n = E m. In the latter case E n -m =1 which is impossible 

since E > 1. Therefore every positive integral power of E is a 

unique unit. 

Theorem 2. 18. A number of Ra[^/5] is a unit if and only 

if it is of the form ±E n where E = -1 (1 + 1/5) and n is any 

rational integer. 

Proof: Theorem 2. 17 establishes the proof that En is a 

unit for n > O. If n = 0, En= 1, a unit. If n < 0, then n 1 
E _ m 

E 

where m _ -n > 0 and is thus a unit since the quotient of two units 

is a unit. 

To show that all units are of the form ±E n, let E be a 

unit. Then - E and -T1 are units. If E = a +b^/5 

where a and b are rational integers or halves of odd rational 

integers, 

- 

1 
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- E 
1 

= -a-bq5, 

T = 

-E 
1 

= --a+bq 5. 

One of the above four units has both coefficients positive and so is 

positive and greater than 1. There will be no lack of generality if 

we suppose that one to be a +bß/5 and designate it E The The The The other 

three units will be -E 
1, 

and - 
1 

respectively. 

Either E = E n or E n< E 1< E 
n +1 where n is a non 

negative rational integer. If the latter case is true, then 

E1 

1 < -- 
n 

E 

< E . (1) 

Since the quotient of two units is a unit we may write 

E1 

n 
E 

- =x +yq5 

where x and y are rational integers or halves of odd rational 

integers. Then 

(x+ yg5)(x- y"./5) t 1 by theorem 2. 16. 

Since by (1) 

or 

x + yq5 > 1 

Ix-yÑSI<1 

-1< x-yq5 <1. (2) 

a-b^I5, 

E 

- 

, 



From (1) and (2) 0 <2x<2+ 25 

26 

To satisfy this, since x is a rational integer or half an odd rational 

integer, its value must be 
L 

or 1. But from (1), if x = 2, y 

must be positive and half an odd rational integer. No such value will 

satisfy (1). If x = 1, y must be positive and a rational integer and 

again no such value will satisfy (1). 

Thus it is impossible that 

holds. So 

Then 

E < E 

En+1 

n 
E = E . 

-E = -E 

And since E E 1_± 1, 

Finally 

Hence the theorem. 

n 

E 
1 1 -n 

E1 E 

- -n 
-E _ -E 

Definition 2. 10. An integer of Ra[45] which differs from 

a by only a unit factor is called an associate of a. If an integer is 

not a unit nor zero and has no factors except units or its associates, 

n 
< E 

_: -: - f 
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it is called a prime. An integer is composite if it has factors other 

than units and its associates. 

Theorem 2. 19. If a and ß 0 are integers of Ra[J5] 

there exist integers µ and p of the domain such that 

a =pµ+ P IN(P)I < IN(P)I 

Proof: Let 
ß 

a + IA where 0 = 2 (1 +b5) and 

a = r+ r1, b s + sl, r and s being rational integers nearest to 

a and b so that 

Set µ -r + se, then 

a 

ß 
µ- r1 + s10, 

Isil < 2 

I N(á - 11)1 =- Ir2 +r s - s 21 < 1< 1. 
1 2 

Then multiplying by I N(f3 ) I which is not zero since 3 0 

INT(ß)IIN( - µ)I N( 

and setting a ._. µ p we have 

P µI < N(ß) 

a = RN+ P IN(P)I < IN(R)I 

Ir11 

1 

# 

= 

= 

# 

= 
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Definition 2.11. If a, ß and 6 are integers of Ra[g5] 

and 5 I a, 51 ß then 5 is a common divisor of a and ß . If in 

addition every common divisor of a and ß divides 5, 5 is 

called the greatest common divisor of a and ß and denoted 

(a, ß ). 

Theroem 2. 20. If a and ß are any two integers of Ra[45] 

not both zero there exists a greatest common divisor 5 of a and 

P such that 

a µ + ßr) = 6 

where p. and ri are integers. 5 is unique up to associates. 

Proof: If a = 0, ß 0 then 5 = ß . If a = ß, then 

5 = a = P. If a L ß and neither one is zero we may, without loss 

of generality, assume I N(a) I > I N(ß ) I . Then by theorem 2. 19 

there exists integers p and o such that 

a =ßp + a-, where IN(o-)I < IN(ß)I 

and by continuing the process 

ß =c-p1+c1 

0 = 0-1p2+0 

I NO- 1)I < IN(ß)I 

IN(a-2)I < IN(cr1)I, 

(rk-3 = c'k 2pk-1+`rk-1 ' I N(crk-1) II N(°rk-2) I' 

6k-2 (rk -1pk + Gk IN(0-k)I`IN(crk-1)I' ' 

# 

, 
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IN(a) I is a non negative integer when a is an integer, so 

in a finite number of steps the process will result in a Crk such that 

N(6k)1 = O. Then 6k = 0 and we may eliminate from these equa- 

tions successively 
crk -2 ' k -3 ' , 6 to obtain 

b 
= 6k-1 = aµ + 

ßrl 

If crk = 0, 6k-2 = bpk, so b divides 

k-3 b pkpk-1 + ó' 

= 8(PkPk-1 + 1) , 

6k -2' and 

so b divides 6k Continuing, we see that the left member of 

each of the above series of equations is a multiple of S. Therefore 

b is a common divisor of a and P. 

Since b = aµ + VI, any common divisor of a and ß 

divides b, so b is a greatest common divisor of a and P. 

That 6 is the only greatest common divisor may be seen 

by assuming bl is also a greatest common divisor of a and P. 

T hen 

b =K ló1 51 = K2ó 

by definition 2. 11, and 

ó = K2ö. K1 

_ 



Then N(5) = N(kl)N(K2)N(6) and N(S) so 

1 =" N( kl)N(K2), 

hl and 
K2 

are units and 6 and 81 are associates. 

Example: To find the g. c. d. of -2 + 2N/5 and 13 - 7^/5, note 

that 

and 

or 

and 

so 

IN(-2 + 2N/5) = 16, IN(13 - 7N/51 = 76 

13 - 7N/5 -11 + 3N/5 
_ -3 + N/5 + 

1 - ^/ 5 

-2 + 2N/5 4 4 

13 - 7,45 = (-2 + 2N/5) (-3 +N/5) + (-3 + N/5) 

IN(-3 4-N/5)1 = 4 

IN(-3+ ^/5) I < IN(-2 + 2N/5) I 
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In the same manner 

-2+ 2N/5 = ( -1 -./5)( -3 + N/5) 

So -3 + N/5 is the g. c. d.. We may write 

(1) (13 - 7N/5) + (3 - N/5)( -2 + 2N/5) = -3 + N/5. 

Definition 2. 12. Two integers are said to be relatively prime 

if every common divisor is a unit. 

Corollary 2. 20. If a and ß are relatively prime, there 

0 



exist integers µ and T1 such that 

[La +TIP = 1. 

Proof: By definition 2. 12 and theorem 2. 20 there exist 

integers µl and rll such that 

E a unit. Then 

µ1a + TIlß = E 

la + Tlß E 
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and the units being closed under division and the integers closed under 

multiplication it follows that 

Theorem 2.21. If a prime rr of Ra [45] divides a prod- 

uct aß of two integers of the domain, then Tr divides at least one 

of the integers. 

Proof: Suppose Tr does not divide a. Then by corollary 

2. 20 there exist integers µ and ri such that 

+Tri= 1. 

Multiplying by ß we have 

fl 

+rlß = 1. 

1 

E E E 

µ¢ 



or since Tr I aß 

and Tr I ß . 

ßaN- +ßTr =ß 

Tr(X µ+ßTl)=ß 
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Corollary 2. 21. If a prime Tr divides a product of several 

integers a1a2 a 
n 

it divides some one of them. 

Proof: By theorem 2. 21, if Tr I a1a2, then Trial or 

Tr I a2. So the corollary is true for the case n = 2. Suppose it is 

true for n = k. Then if Tr divides the product of k + 1 integers 

we may write without loss of generality 

Tr I 

(ala2 ak) 
ak+1 

and either Tr I (ala2 ak) or Tr i ak +l or both. If Tr does not 

divide 
ak+ l' then by the induction hypothesis it divides some one 

of the integers al, a2, , ak. k. Thus the theorem is true for the 

product of any n integers, n > 2 . 

Theorem 2. 22. Every composite number of Ra[N/5] can be 

factored into a finite number of primes, and this factorization is 

unique up to associates. 

Lemma 1. Every composite number of Ra [4-5] can be 

factored into a finite number of primes. 
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Proof: Let P(n) be the proposition that every integer 

a 0 of Ra[.5] where I N(a) I = n (a natural number) is either 

a unit or a prime or can be factored into a finite number of primes. 

If n = 1, a is a unit and P(1) is true. 

If a is a prime, then P(n) is true for all n. 

If a is composite, then a = ßy where neither ß nor y 

is a unit nor an associate of a . So I N(ß) 11, I N(y) I 1 and 

both I N(ß) I and I N(y) I are less than 
I 
N(a) I since 

IN(a)I = I N(ß) I I 
N(y) 

I 
and the norms are rational integers. 

Now suppose that every composite integer K with 

N(K)I < IMO 

would then be 

= n has a finite prime decomposition. ß 

ß 
= ß1ß2...ßr ' Y=lY2...Ys' 

products of finite numbers of primes and 

a = ßrViY2... Ys 

and Y 

a product of a finite number of primes. Thus by the second principle 

of mathematical induction, P(n) is true for all n > 1. 

Lemma 2. The decomposition of a composite integer into 

primes is unique. 

Proof: Suppose there are two prime decompositions of a, 

# 

I 

ß1ß2... 

# 



say 

a = = X1X2...Xs . 

So Tr 
1(Tr 2. . 

Tr 
r ) _ 

X1X2. Xs 

and by corollary 2. 21, rrl divides some X say X1. Then 

1711 
E is a unit and X1 - E 

1 

Tr2Tr3. 
zrr = 

1X2X3. 
. 

Xs 

Then ir2 divides some X., say X2, and 

7317 
4. 

TTr 
= E 

1 
2X 3X 4. . . 

Xs 

If r < s, after r steps we have 

This implies 

1= E .. E rs-r 

1 = N(X ) N(X s-r s 
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and this is impossible as each X. is a prime and hence N(X.) is 

a rational integer not equal to ±1. Similarly the case r > s is 

impossible. Then r = s and 

1 

and the prime factorization of a composite integer of Ra[45] is 

unique up to associates. 

. 

where 

1E2...ES 

er 

= 

E . 

Xs 

= 
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III. THE NUMBERS Ra(N/ -13) 

Theorem 3. 1. The set Ra(.- 13) = a + b'J -13 where a and 

b range independently over the field of rational numbers is a field. 1 

Theorem 3.2. The numbers a and a of Ra(N/-13) satis- 

fy a unique monic quadratic equation with rational coefficients. 

as does 

Proof: a = a + b^/ -13 satisfies 

(x-a)2 + 13b2 = x2 - 2ax + a2 + 13b2 = 0 

d. 

Definition 3. 1. N(a) = a a . 

Theorem 3.3. For every number a 0 of Ra('J- 13), 

N(a) is a positive rational number. 

Proof: Let a = a + b'J -13 where a and b are rational 

numbers. Then 

N(a) = a d = a2 + 13b2 

1 The proof of this theorem as well as those of a number of others 
in this chapter are essentially no different from the proofs of the 
corresponding theorems of Ra(^/5) and will be omitted for sake of 
brevity. For the same reason, only major theorems and definitions 
will be restated in this chapter. 

# 
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which is a rational number since a and b are, and positive 

since a2 and b2 are squares of real numbers not both zero. 

Theorem 3. 4. aß = a ß for a, ß numbers of Ra("/- 13). 

Theorem 3. 5. N(aß) = N(a)N(ß) . 

Definition 3.2. a is an integer of Ra(^/ -13) if its principal . . 

equation has rational integral coefficients. The set of integers will 

be denoted Ra ['J- 13] . 

Theorem 3 . 6. Every rational integer is in Ra[g-13] . 

Every number of Ra[g-13] which is rational is a rational integer. 

Theorem 3.7. If a is in Ra[g-13] , so is a . 

Theorem 3. 8. A number of Ra('J- 13) is in Ra[ \/ -13] if 

and only if it is of the form a + bq-13 where a and b are 

rational integers. 
a1 + b1'J -13 

Proof: Let a - be a number of Ra('J- 13) 
c 

with al, bl and c1 relatively prime rational integers and b1 O. 

Then the principal equation of a is 

2a1 a12 + 13b12 
x - x + 

1 cl 

and if a is in Ra[ N/-13] 

= 0 
2 - 
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(1) 

(2) 

2a1 

cl 

a12 + 13b12 

2 cl 

are rational integers. One of the following cases must hold. 

(i) c 1 or 2, (ii) c 1= 2, (iii) c 1= 1. 

Case (i) may be eliminated by exactly the reasoning which 

disposed of the similar case of theorem 2. 7. 

If case (ii) should hold, then c 12 = 4 and from (2) 

a12 + 13b12 s 0 mod 4. Then a12 - -13b12 mod 4. If b1 - 0 mod 2 

b2 O mod 4, 
1 

a 12 = 0 mod 4 

al ° O mod 2 

and we have al, b1 and c all with factor 2 contrary to 

hypothesis. If b1 E 1 mod 2 

b 12 ° 1 mod 4 

a 12 ° 3 mod 4 

which is impossible by principle 1. 6e. 

.... 

, 
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Therefore case (iii), c = 1 holds and a and b are 

rational integers. 

Conversely, if a = a + bel- 13, and a and b are 

rational integers, then 2a and a2 + 13b2 are rational integers 

and the principal equation of a has rational coefficients. 

Theorem 3. 9. The numbers 1 and J -13 forma basis 

for Ra [ N/-131 . 

This theorem is an immediate consequence of theorem 3. 8. 

Clearly Ra P4-13] is closed under addition, subtraction 

and multiplication and this, with theorems 3. 1 and 3. 6, and the 

fact that multiplication is complex number multiplication and allows 

no proper divisors of zero, show that Ra [ q-13] is an integral 

domain. 

Theorem 3. 10. If 01 and 02 form a basis of Ra[ N/ -13], 

the necessary and sufficient condition that 

01 = a1101 + a1202 

02 = a2101 + a2202 

where the a..'s are rational integers, is also a basis is 

all a12 

a21 a22 
= ±1 

ij 



Theorem 3. 11. The discriminant of a pair of integers 0 

and 02 which forma basis of Ra [ N/-13] 

° (A1, 62) = 

2 

01 02 

e1 e2 

is invariant under change of basis. 

Theorem 3. 12. AN-13] _ - 52 . 

Proof: By theorems 3. 9 and 3. 11, 

1 N/ -13 
AN-13] = A(1, N/-13) = 

1 -N/-13 

2 

= - 52 

Theorem 3. 13. A necessary and sufficient condition that 

01, 92 form a basis for Ra [N/-13] is that A(01,02) = - 52. 

1 
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Theorem 3. 14. If a and ß are members of Ra[ "./ -13] 

and aIß then N(a)IN((3). 

Definition 3.3. A number of Ra[N/ -13] is a unit if and 

only if it divides 1. 

Theorem 3. 15. a is a unit if and only if N(a) = 1. 

Theorem 3. 16. The product and quotient of two units are 

units. 

- 



-1. 
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Theorem 3. 17. The only units of Ra[ 4-13] are +1 and 

Proof: Let E = x + y q-13 be a unit. Then 

N(E) = x2 + 13y2 = 1 

and x and y are rational integers so x = ±1, y = 0. 

It was at this point in the development of Ra[ ^/5] that 

theorems leading to the proof of unique factorization were introduced. 

It can be shown that the analogous theorems are not true in Ra[ Nl -13], 

but it will suffice to show that there is at least one composite integer 

in Ra[ .J -13] which does not have a unique prime factorization. 

First let us observe that 2, an integer of the domain, is 

prime. For if not we would have 

2 = (x + y'J -13) (u + v4-13) 

with x, y, u and v rational integers, and since N(0)=N(a)N(13), 

4 = (x2 + 13y2) (u2 + 13v2) 

and either 

x2 + 13y2 = 4 x2 + 13y2 = 2 

or 

u2 + 13v2 = 1 u2 + 13v2 = 2 
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But the case on the right is impossible and that on the left has rational 

integer solutions only if x = ±2, y = 0, u = ±1, y = O. So 2 is 

prime. 

In the same manner it can be shown that 7, 1+ NI -13, and 

1 - q-13 are prime. 

Now consider 

14 = 2-7 = (1+N/-13)(1-4-13). 

By theorem 3. 17 it is clear that neither factor in the first pair is an 

associate of a number in the second pair. Thus 14 has two distinct 

prime factorizations. 
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IV. THE IDEALS OF Ra [4- 13] 

In Chapter III, it was shown that the unique factorization law 

does not apply to the composite integers of Ra[J -13] . In this chap- 

ter the concept of ideal numbers will be introduced, and it will be 

shown that unique factorization of an ideal into prime ideals exists. 

Definition 4. 1. An ideal of Ra[ i- 13] is an additive sub- 

group of integers, which is closed under multiplication by all the 

integers of the domain. 

If al, a2, ,an is a set of n integers of Ra[Nl- 13] , 

then the set of integers X a + X2a2 + + Xnan, where X ,X 
2, ,X n 

range independently over the integers of Ra [N/-13] , is clearly an 

ideal. We denote such an ideal A = (al' a2, , a). An ideal which 

consists of all multiplicities of a single integer a by integers of the 

domain is called a principal ideal and denoted (a). 

Definition 4. 2. Two ideals A and B are equal, and we 

write A = B, when every number of one is a number of the other. 

It follows that A = B if and only if every integer defining A 

is a linear combination of the integers defining B and every integer 

defining B is a linear combination of the integers defining A using 

integers of Ra[4-13] as coefficients in both cases. 
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Example: (2,3 - ^/ -13) = (2,3 - ^Í -13, 1 - '/ -13). Obviously both 

numbers in the left hand ideal are expressible as linear combinations 

of the integers in the ideal on the right. And since 

1 - N/ -13 = 2X- 1 + 3 - q-13, it is equally clear that all three integers 

in the right ideal are linear combinations of those defining the left 

hand ideal. 

Theorem 4.1. If (al, a2, , an) is an ideal, any one of the 

es may be eliminated from the symbol of the ideal provided it is a 

linear combination of the remaining integers in the symbol. Likewise 

an integer may be placed in the symbol for the ideal if it is any num- 

ber of the ideal. 

Proof: 

of RaN/-13] , 

Let al = µ2a2 + µ3a3 + +µnap, ... 

and a be any number of the ideal. Then 

a = X lal + X 2a2 + + Xnan 

where X 1, X 2, X n 
are integers of Ra[4-13] . Then 

a = X 1(µ2a2 + + µnan) + X + . + X flan, 

_ 
X 

1µ2a2 + + 
X lµnan + 2a2 

X 
+ + 

Xnan, 

= x 
2)a2+ + 

X 
n)an 

Since the integers of Ra[4-13] are closed under addition and 

N.2, µ3, µn 

, 

(X1µ2 
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multiplication, it follows that 

(al'a2'...,an) = ,an) 

Similarly, any number of the ideal is a linear combination of 

the integers in the symbol for the ideal and including it among them 

will not change the ideal. 

Theorem 4. 2. In every ideal there exist two integers wl' w2 

such that the numbers of the ideal are given by kiwi + k2w2 where 

kl and k2 are rational integers. 

Proof: Every number of an ideal A of Ra['4-13] is of 

the form c + c2'ß/ -13 with c and c2 rational integers. If 

a is in A, -a is in A. Let w2 be a number of A with 

c2 A 0 in which c2 is positive and minimal. Then for any number 

a = al + a2^/ -13 of A we can write 

a2= k2c2 +r2 0 <r2 <c2. 

Then a - k2w2 = al +a2^/ -13 - k2(cl +c2'./ -13), 

= al +(k2c2 + r2)ß/ -13 - k2(c1 
2(c 1 

+ c 
2 

N/- 13) 

= al - k2c + r2^/ -13 

is in A and r2 = 0 otherwise the definition of w2 would be 

' 
. . 

(a2 
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violated. So a - k2w2 = b is a rational integer. 

Since for any a in A, a-a is in A, A contains posi- 

tive rational integers. Let col be one of these which is least. 

Then 

b = w1k1+r1, 0 < r1 < wl. 

So a- k2w2 - k10)1 = b 
k1w1 r1 

is in A and r = 0 or else wl is not the least positive rational 

integer in A. Hence 

a +k2w2. =klw1 

Definition 4. 3. A pair of numbers col, w2 derived as in 

theorem 4. 2 form a minimal basis for the ideal. 

Example 1: To show that 2, 1 + ^/ -13 is a basis for 

(7 - i -13, -10 + 2,4-13) one observes that any number of the ideal 

is of the form 

X 
1 

(7 -,4-13) + A2(-10 + 2,4-13) 

where X X are integers of Ra['/ -13] , and if 2,1+,4-13 

is to be a basis for the ideal it must be possible to find rational 

integers k1 and k2 which satisfy the equation 

k1(2)+k2(1+^/-13) =(a+b,4-13)(2)+(c+d,4-13)(-10+24-13) 

- = 

2 
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for all rational integral values of a, b, c, and d. Expanding and 

equating coefficients of powers of '.i -13 one obtains the system 

2k1 + k2 = 7a + 13b - lOc - 26d 

k2 - -a + 7b + 2c - 10d 

and this is equivalent to the system 

k = 4a + 3b - 6c - 8d 

k2 = -a + 7b + 2c -10d 

which satisfies the requirments. 

Example 2: 3, 1 +4-13 is not a basis for (3, 1 + í -13). If it was 

there would be a rational integral value for k1 and k2 for every 

rational integer a, b, c, and d in 

3k1 + (1 + Nf-13)k2 = (a +b'\1- 13)(3) + (c +d./- 13)(1 +'.1 -13). 

Then 3k1 + k2 = 3a + c - 13d 

which is equivalent to 

k2=3b+c+ d 

3k1= 3a -3b- 14d 

k2=3b+ c+ d 

and it is impossible to find a k1 which is a rational integer for 
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every rational integral value of a, b, c, and d. 

Corollary 4. 2a. Every rational integer of ideal A is 

divisible by col . 

If not there is a rational integer a in A such that 

a=co1k+r 0<r<col 

with k and r rational integers. But then a - w1k = r would be 

in A and this contradicts the hypothesis that col is the smallest 

positive rational integer in A. 

Corollary 4. 2. b. If col' w2 is a minimal basis for A, then 

x 
1w1 + 2w2 

x 

gives a number of A for X 
1 

and X any integers of Ra['J -13] . 

Let A' = {X 
lwl + X 2w2, X X integers of Ra[ .J -13] }, 

A = {kiwi + k2w2 , k1,k2 rational integers} 

Then AG A' since any rational integer is an integer of Ra[s/ -13] 

and wl and w2 are integers of A, so X lwl, X 2w2, and 

X 
1w1 

+ X 2w2 are integers of A for all X X from Ra[s/ -13] . 

So A' GA. Then A =A'. 

In exactly the same way as was done for theorem 2. 10, one 

can prove 

2 
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Theorem 4. 3. A necessary and sufficient condition that any 

two numbers of A 

ul a 
11 1 

0.) 
+ a12w2 

w2 = a 
21(01 + a22w2 

with the a..'s rational integers and col, w2 a basis of ideal A, 

be also a basis of A is 

form 

all a12 

a21 a22 

= f1 

Theorem 4. 4. Every ideal A has a minimal basis of the 

k,p + r^/-13 

where k is the smallest positive rational integer in A and 

0 <p<k. 

Proof: Let col = k, w2 = m + r^/ -13 be a basis as deter- 

mined by theorem 4. 2. Then 

m =qk +p, 0 < p < k 

and wl = col = k, w2 = w2 - q col = p + r'./ -13 

are numbers of A and 

. 

= 
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1 0 

-q 1 

=1 

So by theorem 4. 3, w, w2 is a basis of A 

Theorem 4. 5. Every ideal A of Ra[s/ -13] has a minimal 

basis of the form 

co* = ra, w2 = r(b + N/-13), 0<b<a, b2+ 13-0 mod a, 

where r and a are positive rational integers. 

Proof: By theorem 4. 4, A has a basis k = wl, 

p + r'/ -13 = w2 with k the smallest positive rational integer in A, 

and 0 < p < k. Set 

Then 

k = ar + t, 0 < t < r . 

kN/-13 - aw2 = kN/-13 - ap - arq-13, 

= -ap + (k - arN-13 , 

= -ap + tN/-13 

is in A, which by theorem 4. 2 is impossible unless t = 0, in 

which case r I k. Then 

w1 = ra w2 = p + r^/ -13 

and since p + r^/ -13 is in A, so is p^/ -13 - 13r. 
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p=br+t1, 0<tl<r, 

b and tl rational integers. Then 

-13r + pq-13 -bw2 = -13r + pq-13 -bp-brq-13, 

_ -13r - bp + (p-br)^/-13, 

= (-13r - pb) + tl,4-13 

is in A and t1 =0 for the same reason t= 0 above. Then r i p 

and 
w ' 1 = wl = ra, w* = w2 = r (b + /-13 ) 

is a basis for A. Since r and wl are positive by theorem 4. 2, 

a is positive and of course a rational integer. Since by theorem 4. 4 

0<p <k, 0<rb <ra and 0 <b <a. 

Since w24-13 - bw2 = r(b + ^/- 13)( -b + v -13) = rb2 - 13 r 

is a rational integer in A, it is divisible by wl = ra, according 

to corollary 4. 2a. So 

b2 + 13 = 0 mod a. 

Definition 4. 4. The basis defined in theorem 4. 5 is called a 

canonical basis. 

Example: 2, 1 +^/ -13 is clearly a canonical basis for the ideal 

A = (2, 1 + ^/ -13) since the coefficient of s/ -13 is one and so surely 

is the least positive coefficient of ^/ -13 in any number a + b i -13 
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of A, and 2 is the least positive rational integer of A. For 

if not then 1 is in A and so 

1 = 2(x +y'./ -13) + (1 +^/ -13)(u + vN/ -13) 

where x, y, u and v are rational integers. So 

1 = 2x + u - 13v 

0 = 2y+ u+ v. 

When the second equation is subtracted from the first 

1= 2x -2y- 14v 

is obtained, a relation which has no integral solutions since the left 

number is odd and the right is even. 

Definition 4. 5. If A and B are ideals, the product AB 

is the set formed by multiplying every number of A by every number of 

B and then taking all possible linear combinations of these products, 

using as coefficients integers of Ra [ N/-13] 

If A =(wl, w), B = (4J1,142), then AB is the set of all 

numbers given by 

klwll + k2w1412 + k3w2th. + k4w2142 

where, by corollary 4. 2b, kl, k2, k3 and k4 may be either rational 

integers or integers of Ra[ .i -13] . 

. 
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It is evident that the product of ideals is an ideal of the same 

domain, and that ideal multiplication is both commutative and associ- 

ative. 

Example: (1 +N/ -13, 2 -4 -13) (2,3 -i -13, 1- N/ -13) = (2 +2q -13, 

16 + 24 -13, 14,4 - 24-13, -7, - 5'./ -13, -11 -34-13). 

Theorem 4. 6. If every number of an ideal A of Ra["./ -13] 

is replaced by its conjugate, the resulting set is an ideal of Ra[4-13]. 

Proof: If (al, a2, , an) is an ideal, then any number a 

of the ideal is given by 

a =X1a1 +X a2 + +Xnan 

with the A .'s integers of Ra[4-13] and 

= X 
1 1 

a +'2a2 + . . . + Xnan 

and since the X .'s range over Ra['./ -13] so do the .'s and 

(1,2,...,an) 

is an ideal of Ra[ q-13] . 

Definition 4. 6. The ideal defined by theorem 4. 6 is called 

the conjugate ideal. The conjugate of A is denoted A. 

- 

J 

-X 
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Corollary 4. 6. If w w2 is a basis for A, then w1, w2 

is a basis for A. 

Let á be any number of 7i.. Then a is in A and 

since A = (col, w2) 

a = klwl + k2w2 

for k1 and k2 some rational integers. Then 

á = k1w1 + k2w2 

and A = (wl, w2). 

Theorem 4.7. If A and B are ideals of Ra[' -13] , 

AB = A B. 

and 

Proof: Let A = (col, w2), B = (q1, 442). Then 

AB = (w141, w142, w241, w2w2) 

AB = (w1,1, w142, w2441, w242) 

_ (wl`P1'w14 ,w2`í1'w2 ) 

_ (w1w2)(4j1442) 

=A B. 
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Theorem 4. 8. If A = (ar, r(b + N/ -13)) is an ideal of 

Ra[ ^/ -13] , then 

A A = (r2a) . 

Proof: Any number of AÁ. is given by 

ka2r2 + Aar2(b+\/-13) + µar2(b-q-13)+ v r2(b2+ 13) 

where .k , X , µ and v range over Ra[ \/ -13] . By theorem 4. 5, 

b2 + 13 = 0 mod a. Set b2 + 13 = ac, c a rational integer, and let 

= k1, x 
=x1+v1, µ=x 1, v=µ1 

Then the set of numbers AA is given by 

k1 a2r2+X 1ar2(b+q-13)+v1 ar2(b+N1-13)+X lar2(b-^/-13)+µlr2ac 

= I(1a2r2 + 2X 1abr2+µ1ar2c+v1ar2(b+q-13). 

Conversely every number in this second set is a number of AA. 

so 

but 

b2 = 0 or 1 mod 4 and 13 - 1 mod 4 

b2 + 13 = 1 or 2 mod 4 

b2+ 13 =ac 

so it is impossible for both a and c to be even. Let d be the 

3W 



55 

g. c. d. of a, 2b, and c. Then d is odd since a and c are not 

both even, and di b. 

Then b2 + 13 ° ac = 0 mod d 
2. 

So - 13 ° 0 mod d2 

and d = 1, since 13 has no square factors other than 1. Then 

any number of the set K1r2a2 + X 1(2r2ab) + µ1r2ac is a multiple 

2 
of r2a by some integer of Ra[NI -13] . 

Since a, 2b and c are relatively prime rational integers, 

there exist rational integers x,y and z such that 

xa + 2yb + z c = 1. 

Then xr2a2 + 2ybr2a +zcr2a = r2a, 

So every number which is a multiple of r2a by an integer of 

2 2 2 2 Ra[/ -13] is a number in the set k1r2a2 + X 12r ab +µ1r ac and 

we have 

(r2a2, 2r2ab, r2ac, r2a(b+ q-13)) = (r2a, r2a ( b+ q-13)) . 

But every number of the ideal on the right is clearly a number of 

(r2a) and conversely. So AA = (r2a). 

Definition 4. 7. The number r2a of theorem 4. 8 is called 

the norm of A and written N(A). 

. 
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Theorem 4. 9. The norm of the product of two ideals is equal 

to the product of their norms. 

Proof: (N(AB)) = AB AB = AA BB = (N(A))(N(B)) 

Then by definition 4. 5 any number of (N(A))(N(B)) is a multiple of 

N(A)N(B). The numbers of (N(AB)) are mult' pies of N(AB). Then 

it must be that N(AB) and N(A)N(B) divide each other, but since 

the norms in Ra[ N/ -13] are rational integers it follows that 

N(AB) = N(A)N(B). 

Theorem 4. 10. If A, B and S are ideals of Raki-13] and 

SA = SB , 

then A = B . 

Proof: Let col' w2 be a basis for A. Then any number of 

A is given by 

X, w l+ ,1 c,2 

where X X are integers of Ra[^/ -13] . Let N(S) _= s then 

the numbers of (s) are given by µs, where µ ranges over 

Ra[^/- 13] , Any number of (s)A is given by 

µsX lwl + µsX 2cä2 = r)saal + 112sw2 

where /I 112 are in Ra['/ -13] . So every number of (s)A is 

of the form s a where a is in A. If 
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then 

SA =SB, 

SSA = SS B , 

(s)A = (s)B 

and for every number a in A there is a number ß in B 

such that 

sa = sß 

and a = ß 

and conversely. Thus every a is in B and every ß is in A, 

so A = B. 

Definition 4. 8. If A, B, and C are ideals of Ra[ ^/ -13] 

and A = BC, we say that B divides A and C divides A, 

denoted B IA. and CIA. C and B are called factors of A. 

Theorem 4. 11. If A and C are ideals of Ra['J -13] , 

AI C if and only if every number of C is in A. 

Proof: If AI C, then there exists an ideal B of R.a['/ -13] 

such that 

AB=C. 

Let A = (w, w), B = (, 42). Then any number of C is given by 

Xlwlgl +X +4w24/2 
2w11142+X3w2g,1 

where the 's are in Ra[ N/ -13] . But this can be written 



or 

(X 
111'1 

+ 
X 2Vw1 + (X 34'1 + 

4442)w2 

(x lwl + x 3w2) 
'P1 

+ (A 
2wl 

+ 
x 4w2N2 
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so in the first arrangement every number of C is in A, and in 

the second arrangement every number of C is also in B. 

Now suppose every number of C is in A. Then every 

number of CA is in AA = (a) where a is some positive rational 

integer. Then all numbers of CA are given by 13a, where P 

ranges over Ra[ ./ -13] . CA is an ideal of Ra[ s/ -13] , so for 

every two numbers 131a and ß 2a of CA there are numbers 

133a, ß4a and ß 5a of CA such that 

ßla +ß2a = ß3a, 131a - ß2a = ß4a, XP la= ß5a 

for every X in Ra[ ^/ -13] . So 

ß1 +ß2 =ß3' ß1 ß2 -ß4' i`ß1 =ß5 

and so the set B of all the ß's is an ideal. Then 

AC = (a)B = AAB 

and by theorem 4. 10 CG = AB . 

Theorem 4. 12. A positive rational integer t occurs in only 

a finite number of ideals of Ra[ i -13] . 

X 
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Proof: Let A be an ideal cf Ra[ ^/ -13] which contains 

t and let ra, r(b + 'J -13) be a canonical basis of A. Then by 

corollary 4. 2a, rait and by theorem 4. 5, r and a are positive 

rational integers and b is positive or zero but less than a. 

So there are no more than t possibilities for each of a, b and r, 

thus no more than t3 ideals which can contain t. 

Theorem 4. 13. An ideal A of Ra['./ -13] is divisible by 

only a finite number of ideals of Ra[N/ -13] . 

Proof: AA. = (a) where a is a positive number, by theo- 

rem 4. 8. By theorem 4. 11, a is in A and in every ideal which 

divides A. But by theorem 4. 12, there are but a finite number of 

ideals which contain a. Hence the theorem. 

Definition 4. 9. An ideal which divides every ideal of the 

domain is called a unit ideal. 

Theorem 4. 14. The only unit ideal in Ra['./ -13] is (1). 

Proof: The ideal (1) is the set of all mutliples of 1 by 

numbers of Ra[N/ -13] and thus is the set Ra[ q-13] . Since any 

ideal of Ra[q-13] consists of numbers from Ra['.J -13] only, 

every ideal is divisible by (1). 

Let A be any ideal of Ra[ N/ -13] which divides all the 
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ideals of the domain. Then Al (1). But then, by theorem 4. 11, 

every number of (1) is in A and A = (1). 

Definition 4. 10. An ideal, different from the unit ideal, and 

divisible only by itself and the unit ideal is called a prime ideal. 

Every ideal not prime is said to be composite. 

Example: (2, 1 + N/ -13) is a prime ideal. If not there would be 

ideals A = (a a2, , an) and B = (ß l' 13 2' , 
ß such such that 

(2, 1 + N/ -13) = AB . 

But then A and B both divide (2, 1 + ^/ -13) so we may write 

A = (al, ... 
, an, 2, 1 + q-13), 

B = (ß1,ß2, ... 'Pm, 2, 1 + NI -13). 

Let ai = a + bN/ -13 be any integers al, a2, ' , an. Then 

a. = b(1 +N -13) +a - b 

and a - b is a rational integer so 

or 

a. = b(1 + q-13) + 2c 

a. = b(1 + N/-13) + 2c + 1; 

in the first case a. is a linear combination of 2, 1 + N/ -13 and 

) 
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so may be dropped from the symbol for A. In the second case we 

have 

a. - b(1 + Ni-13) - 2c = 1 

and 1 may be inserted in the symbol for A, in which case 

A = (1). Since ai was arbitrary we find that either A = (2, 1 + ,4- 13) 

or A = (1). Similarly for B. So either 

(2, 1+ .i -13) = (1)(1) = (1) 

or = (2, 1 + s/ -13)2 

or = (2, 1 + N1-13) (1) 

or = (1)(2, 1 + ^/ -13). 

But (2, 1 + NI -13) (1) for it was shown in the example following 

definition 4. 4, that the integer 1 is not in (2, 1 + q-13). Also 

(2, 1 + i -13) (2, 1 +I -13)2 since 

(2, 1 +q-13)2 = (4, 2 + 2v -13) - 12 + 2v -13) = (2) 

and (2, 1 +q-13) (2) since 1 + q-13 is prime. So only the last 

two equations can be true and (2, 1 + N/-13) is a prime ideal. 

An ideal G is the greatest common divisor of the ideals A 

and B if G IA and GIB and if every common divisor of A and B 

divides G. 

Theorem 4. 15. Every pair of ideals A and B of Ra[4- 13] 

have a unique greatest common divisor. It is composed of all num- 

bers a + 3 where a ranges over A and ß ranges over B 

Proof: Consider any two numbers and y2 of the 

# 

# 

# 

yt 



set G of numbers of the form a + 3 with a in A and 

B. Let Y1 =a1 +ß1 and y2 = a2 +ß2. 

Then Y1 y2 = (al ± a2) + (13 11 ß 2). So G is closed under 

ß 
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in 

addition and subtraction, and of course 0 is in G. Also for any 

X of RaN-13] and a + ß of G 

ñ.(a+ß)=Xa+Xß 

is in G. So G is an ideal of Ra[ ^/-13] . 

Every number of A is in G and every number of B is 

in G, so G is a common divisor of A and B. 

Let C be any common divisor of A and B. Then C 

contains all the numbers a of A and all the numbers (3 of B. 

C is closed under addition and so contains all the (a + ß )'s of G. 

Thus CI G and G is a g. c. d. of A and B. 

Suppose G and G' are two g. c. d's of A and B. Then 

G = K'G' and G' = KG where K and K' are ideals of the 

domain. So G = K'KG. By theorem 4. 14, G = (1)G so 

(1)G = K'KG and, by theorem 4. 10, (1) = K'K. But then K'(1) 

and K(1), so K = K' = (1) and G = G' . 

Definition 4. 12. Two ideals are relatively prime if their 

greatest common divisor is (1). 

Example 1: G the g. c. d of (2, 1 - ^/ -13) and (4, 3 + ^/ -13) is 

1 
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xi(2) +X2(1- './ -13) +X3(4) +X4(3+ J -13) 

where the X 's range over Ra[ -13] . So 

G = (2, 1-q-13, 4, 3 +'4-13), 

(2, 1 - q-13, 3 + q-13), 

= (2, 3 + J -13) 

since 1 - N/ -13 = 2 (2) - (3 + ^/ -13). 

Example 2; (2, 1 +q-13) and (3, 4 + N/ -13) are relatively prime 

since 

G = (2, 1 + N/-13, 3, 4 + N/-13), 

= (2, 1 +N/-13, 3, 4 + q-13, 1 ) , 

= (1). 

Corollary 4. 15. If A and B are two ideals of Ra[^/ -13] 

which are relatively prime, there is an a in A and a 

such that 

a + ß = 1 

in B 

By theorem 4. 15, A and B have a g. c. d composed of all 

numbers a + ß where a is in A and ß is in B. By defini- 

tion 4. 12 this g. c. d is (1), so 1 is a number of the g. c. d. 

R 
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Theorem 4. 16. If AI BC, then A divides at least one of 

B or C. 

Proof: Suppose A is prime to B. Then a + ß = 1 

for some a in A and some ß in B. So for every 

Ya+Yß =Y. 

Y in C 

Since A I BC, the numbers Yß of BC are in A and of course 

Ya is in A so ya + Yß is in A. Then y is in A and A IC. 

Corollary 4. 16. If a prime ideal divides a product of ideals, 

then it divides at least one of the ideals making up the product. 

The proof is similar to that of corollary 2. 21. 

Theorem 4. 17. Every composite ideal of Ra[ 4-13] can be 

factored into a finite number of prime ideals, and the factorization 

is unique except for the arrangement of the factors. 

Proof: If C is any composite ideal of Ra[ NI- 13] , there 

are ideals A and B of the domain, neither equal to (1), such that 

C = AB. 

Either A is prime or it can be decomposed into factors Al and 

A2. Then each of these is prime or it can be decomposed. The 

process is finite by theorem 4. 13. The factor B can be treated 
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similarly. Thus the ideal C has a finite prime factorization. 

The proof that there is a unique factorization into primes rests 

on corollary 4. 16, and is similar to that of theorem 2.22. 

Example: In Chapter III it was shown that, in Ra[ './ -13] , the integer 

14 factors into two sets of prime integers, 2.7 and 

(1 + N/ -13)(1 - 

New consider (14) = (2)(7) = (1 + i -13)(1 - q-13). The ideal 

(2) is not prime for 

Similarly 

(2) = (2, 1 + N/-13)2. 

(7) = (7, 1 + N/-13)(7, 1 - N/-13), 

(1 + N/-13 ) = (7, 1 + N/-13)(2, 1 + 

(1 - N/-13) = (7, 1 - ^/-13)(2, 1 + 

It was shown in the example after definition 4. 10 that (2, 1 + i -13) 

is a prime ideal. In the same manner (7, 1 + I -13) and 

(7, 1 - '/ -13) can be shown to be primes. So 

(2)(7) = (2, 1 + N/-13)2 (7, 1 + ti/-13)(7, 1 - N/-13) 

and 

(1 + N/ -13)(1 - n/-13) = (7, 1 +./- 13)(2, 1 + ./- 13)(7, 1 4- 13)(2, 1 + '/ -13). 

Thus (14) has this decomposition into prime ideal factors which by 

Theorem 4. 17 is unique. 

J -13). 

^/-13), 

4-13), 
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V. A NECESSARY AND SUFFICIENT CONDITION 
FOR UNIQUE FACTORIZATION 

It has been shown that the introduction of ideal numbers into 

the domain Ra[',/ -13] restored the property of unique prime factor- 

ization of the integers of the domain. 1 

In much the same way, the ideals of the domain Ra['.f5] may 

be discussed and theorems analagous to theorems 4. 1 through 4. 17 

derived. In addition we have 

Theorem 5.1. Any ideal A of RaN5] is principal. 

Proof: Let (wl, be be be be a basis for any ideal of Ra[45] . 

Then wl and w2 are integers of Ra[45] and, by theorem 

2. 20, w1 and w2 have a g. c. d 6 and there are integers µ 

and of Ra[45] such that 

Then 

p.wl + w2 = 6' 

(w1, w2) 
= 

(w1, w2, s ) 
= 

(s ) 

by theorem 4. 1. Thus every ideal of Ra[45] is principal. 

That a similar theorem does not hold in Ra['J/ -13] can be 

shown by considering the ideal (2, 1 + ^/ -13). If this ideal is 

1 Actually, it is the principal ideal generated by the integer which 
has this property. 

71 

02) 
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principal, there must be an integer a of Ra[./ -13] such that, for 

any X1, X of Ra[A./ -13] , there is a p of the domain such that 

and in particular a 

X1(2) + X2(1 + ^/-13) = pa 

pl 
and p2 such that 

2 = pla, 1 +^/- 13 =p2a. 

Then a divides both 2 and 1 + ./ -13. But each of these is prime 

so their g. c. d b can only be *1 and it must be that 

(2, 1 + 1/ -13) =(1). This contradicts the fact that it has already been 

shown in a previous example the ideal (2, 1 + ^/ -13) does not con- 

tain the integer 1. 

The foregoing theorem and example suggest a possible con- 

nection between the existence of a unique factorization law and the 

form of the ideals of an integral domain. It can be shown, in fact, 

that any quadratic domain Ra['/m] has a unique prime factoriza- 

tion law if and only if every ideal of the domain is principal. 

Lemma. 1. A necessary and sufficient condition that two num- 

bers a and ß of Ra[ qm] have a greatest common divisor 

6 such that 

6 = Aa + µß 

X , p. in Ra[ ^/m] is that the ideal (a, 3 ) be principal. 
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Proof: If a and p have a g. c. d. 6, it follows as in 

theorem 5. 1, that (a, ß) = (6) is principal. 

Conversely, if (a, ß) = (6), then for any given X , µ of 

Ra[ s/m] there exists a p of the domain; and for any p of the 

domain there is a X and a µ of the domain such that 

Xa + µß = p6 . 

Then in particular there exist p 

So 6 a and 6Iß. 

1 
and p such that 

a=p16, ß =p26. 

Also there is a X and a µ1 so that 

X a+µ1ß 
1 

= 6. 

Therefore 6 is a g. c. d of a and ß . 

It can be shown in a manner similar to that used for lemma 1 

theorem 2. 22 that any integer of any quadratic integral domain has a 

finite decomposition into prime factors. 

Lemma 2. Prime factorization in Rai ^/m] is unique, 

up to associates, if and only if for TT , ß ,y in Ra[ qm] , Tr a 

prime, TT I ß y implies Tr 
I P or Tr k. y. 

Proof: If Tr I ß y implies Tr 
I ß or or Tr I y then uniqueness 
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of prime factorization follows as in Chapter II as demonstrated by 

corollary 2. 21 and theorem 2. 22. 

If factorization into primes is unique and Tr 
I 
ß y, then 

y 1 3 1 ° 2. 
.. RnY12. Ym .. 

where the ßß's and Y's are primes. Since Tr is a prime and 

prime factorization is unique, Tr is one of the ßß's or one of the 

.' s. So Tr 
I 

[3 or Tr k. 

Theorem 5. 2. A necessary and sufficient condition that fac- 

torization into primes of integers of RaN/m] be unique is that 

every ideal shall be principal. 

Proof: Let a, ß be any pair of relatively prime integers 

of Ra[qm] and suppose every ideal of the domain is principal. 

Then by lemma 1, there exist X and p. in Ra['./m] such that 

Xa + µß = 1 . 

Then yX.a +Yµ13 = Y 

for any y in Ra['/m] . If al ß y then a ly, and there is 

unique factorization by lemma 2. 

If Ra[\/m] has unique factorization: 

By lemma 2, if Tr is a prime and 

TrI Y 

Tr 
I RY, TO or 

13 

v 
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If Tr is a prime (Tr) is a prime ideal, otherwise (Tr) =AB 

where neither A nor B is (Tr). Then for any a in A and 

any ß in B a (3 is a multiple of Tr which means Tr I a or Tr 

But if Tr I a every number of A is a multiple of Tr so A = (Tr). 

Similarly for B. So one of A or B is Tr , a contradiction. 

Let P be any prime ideal of Ra[gm] . Then any number 

a of P may be written 

e 

1 

e en 
a = Tr Tr2 . . . Trn 

the Tr' s being primes of Ra['/m] and the e's natural numbers. 

Then 
e 

1 
2 (a) = (Tr ) ... n 

and each (Tr.) is a prime ideal. But every number of (a) is a 

number of P so PI (a). Then P is one of the (Tr .)'s since 

for ideals there is unique factorization, and P is principal. 

Also, any ideal A of Ra NIm factors 

A = P1P2 Pn 

the P's being prime ideals and thus principal ideals. Clearly the 

product of principal ideals is itself a principal ideal, so A is 

principal. 

I ß . 

(Tr 2) (Tr n) 

. 
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