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In fuel pin fabrication, there is no assurance that a

fuel pellet will be loaded concentrically. Therefore,

azimuthal variations exist in the temperature field giving

rise to asymmetry in the neutron flux distribution and pin

stresses. Calculations must be made to determine the two

dimensional temperature profile which may then be used to

evaluate the resulting fuel pellet and cladding stresses

and deformations. It is most convenient, in these type

calculations, to utilize an existing general purpose finite

difference code. However, these codes can only treat con-

centric regions.

Two general approaches have been used to treat the

problem. The first is to approximate the outer boundary

by a ratchet. This results in an increase in the number

of radial node regions required and a subsequent loss of



economy. The second approach utilizes concentric regions

and defines a variable conductivity within the gas gap to

account for the eccentric condition. This reduces the

number of radial node regions and results in savings in

both computation time and core space.

The purpose of this paper is to evaluate these two

approaches for power reactor fuel pin calculations and

extend the methodology to general eccentric calculations.
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AN EVALUATION OF FINITE DIFFERENCE METHODS
FOR CALCULATING HEAT TRANSFER IN FUEL PINS

WITH ECCENTRICALLY PLACED PELLETS

I. INTRODUCTION

One of the foremost concepts of reactor safety is the

concept of multiple containment barriers for fission pro-

duct retention. In a power reactor fuel pin, the cladding

serves as the first and most important containment of

radioactive fission products. To assure the complete

integrity of the fuel pin cladding, it is necessary to have

a thorough understanding of the induced stresses within the

pin. One source of such stresses is asymmetry effects due

to eccentric loading of fuel pellets within the clad.

In fuel pin fabrication there is no assurance that a

fuel pellet will be loaded concentrically within the clad-

ding. Therefore, if the pellet is loaded eccentrically,

there will exist azimuthal variations in the temperature

field giving rise to asymmetry in both the neutron flux

distribution and pin stresses. Calculations must be made

to determine the two dimensional temperature profile which

may then be used to evaluate the resulting fuel pellet and

cladding stresses and deformations. The most convenient

method of calculation would utilize an existing standard

finite difference code; however, these codes are designed

to only treat concentric regions.
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Two general approaches have been used to model the

eccentrically loaded fuel pin within the confines of the

finite difference programs. The first is to approximate

the outer boundary of the fuel pellet by a ratchet bound-

ary while the second method utilizes a geometrically de-

pendent variable conductivity within the gas gap to account

for the eccentric conditions. These two approaches are

presented in Chapter II.

The temperature profiles as predicted by the two

codes for various cases are analyzed and compared. The

results are presented in Chapter III. At the time of

writing, no analytical solution exists to the eccentricity

problem. Without the availability of such a solution to

provide a benchmark for these studies, it is possible to

make only relative comparisons.

Chapter IV introduces modifications to the modeled

conductivity approach which result in, as shown in Chap-

ter v, a much more favorable comparison between the

temperatures prediced by the two numerical models.

Chapter VI briefly reviews the conclusions of this

paper.
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II. METHODS OF ANALYSIS

Ratchet Boundary Model

The ratchet boundary model utilizes a single coordi-

nate system to describe the fuel pin cladding. This coor-

dinate system is divided into equal angular regions.

Within each region, the distance from the origin of the

coordinate system to the midpoint of the fuel pellet sur-

face which bounds that region is determined. This distance,

obtained for each region, is then used to construct concen-

tric arcs for each region, which, in total, makes up the

fuel pellet's ratchet boundary (see Figure 1).

The length of the radius through the midpoint of each

angular section is found by utilizing a second coordinate

system centered within the fuel pellet (see Figure 2).

From a direct observation of the two coordinate systems,

the following relationships may be obtained:

p cos (I) d = R cos 0 2.1

p sin (I) = R sin 8 2.2

where p = radius of ratchet boundary segment

R = radius of fuel pellet

d = distance between origins of coordinate systems
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Figure 1. Ratchet boundary approximation.

intermedi ate region

cylinder \
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Figure 2. Determination of ratchet boundary radius.

intermediate region
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Solving the above equations for p as a function of R and (1)

gives the following:

P
2

2d cos(1) + [(2d cos (1)
2

4(d
2

- R
2
)]

1/2

which may be simplified to the following form

2.3

p = d cos (I) + [R 2
- d

2 (1 - cos W2 2.4

The ratchet boundary model, due to its geometry, re-

quires as many radial node regions as there are angular

regions to describe the fuel pellet surface alone. In

addition to the fuel pellet surface regions, there must be

radial node regions to describe the gas gap, the cladding,

and the core of the fuel pellet. There are no restrictions

placed on the number of angular regions required for the

ratchet boundary model.

Due to the single coordinate system centered within

the cladding, the ratchet boundary model also requires the

temperatures in the fuel pellet to be translated into a

coordinate system which has a coordinate axis at the center

of the fuel pellet.

A finite difference code, RAT, was written to perform

the operations required by the ratchet boundary model.

This code, along with a simple code, RFIND, to translate

the temperature profile as stated above, are described in

Appendix B.
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Modeled Conductivity Approach

The modeled conductivity approach utilizes concentric

regions and defines a geometrically dependent variable

conductivity within the gas gap to account for the eccen-

tric condition (1).

The modeled conductivity program assumes a fuel pin

which consists of a fuel pellet of radius Rf located

asymmetrically in a can of inner radius Rc and outer radius

R
o

(see Figure 3). The coordinate system (r,O) describes

the fuel pellet while the system (p,(p) defines the clad-

ding. The distance between the origins of the respective

coordinate systems is given as d (in centimeters). The

eccentricity, e, a number between zero and one, indicates

the amount which the pellet is shifted within the clad and

is related to d by the following equation:

d = e(Rc Rf) 2.5

At the interface between the two coordinate systems,

which is arbitrarily taken to be in the gap at some p =

R', it is required that the component of heat flux normal

to this boundary must be continuous. The vector normal

to this boundary is defined as n and is equal to the unit

vector in the p-direction (see Figure 4).

To calculate the component of heat flux normal to

this boundary, the normal vector must be dotted into the
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Figure 3. Modeled conductivity system.

Ro Rc R f I 4-d 01
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Figure 4. Unit vector normal to the p = R' boundary.
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heat flux vectors from the two coordinate systems. The

heat flux vectors are given as

q(r,O) = -k V T(r,O)

= -k(e
r 3/Dr T(r,e) + e

0
1/r 3/DO T(r,0)) 2.6

and

4(P,(P) = -k V T(),(1)

2.7

= -k(e
P

VDp T(p,(1) + e
(I)

1/p D/acp T(p,(p))

where k = conductivity of the fuel

e
p
,e

r'
e
0'

e
(1)

= unit vectors in their respective
directions

T(r,0),T(p,q)) = temperature for their respective
coordinate systems

To facilitate the dot product calculation, the unit

vectors describing the two coordinate systems are trans-

lated into a common (x,y) coordinate system.

. .

Y

.

e = e cos e
x

sin (1)

(I0

&
P
= 6

x cos (p + 6
Y

sin 4

.

er = ex cos 8 + e sin 0
Y

.

Y

.

e
0
= e cos 0 e

x sin 0

2.8

2.9

2.10

2.11

The dot products are then calculated as



P
e q(r,O)

r sin 0

= e q(10,40
R' sin (I)

P

p= R'

11

2.12

Using the relationships described above, the left hand

side becomes:

(e
x
cos 4 + 6

Y
sin (p)

-k[(e
x
cos 0 + e

Y
sin 0) D/Dr T(r,0) 2.13

+ 1/r (ey cos 0 ex sin 0) D/DO T(r,0)]

which when evaluated yields

-k[cos(q)-0)Vr T(r,O) + 1/r sin( -0) D/M T(r,0)] 2.14

The right hand side is easily determined to be:

-k B/Dp T(p,(P) 2.15

As the angles pass from zero to 7 along the boundary

R', the maximum difference between the two angles 4-0),

near 7/2, is found to be small. Using the following

approximations

sin(x) = 0 2.16

cos(x) = 1 2.17

where x = small angle

allows equation 2.14 to be simplified to the following:
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-k[cos(q)-0) Var. T(r,O) + 1/r sin(4 -0) D/30 T(r,0)]

2.18

= -k Vai T(r,O)

The introduction of a term describing the gap width

as a function of angle allows the following finite dif-

ference approximation of the eccentric conditions:

= -k
AT

G(q)

where T = temperature difference across gas gap

G(4)) = gap width as a function of angle

2.19

A standard finite difference code, restricted to con-

centric regions, utilizes the following approximation for

the eccentric conditions:

q = -k(4) AT
))

DR

where k(cp) = angular dependent conductivity

AT = temperature difference across gas gap

AR = width of gas gap (constant)

2.20

Equating these two approximations gives the equation which

describes the angular dependent conductivity within the

gas gap.

k((p) = k
AR

G(4))
2.21
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The term, G(q), which describes the width of the gas gap as

a function of angle is calculated by taking the following

difference

where P

P

R
c

R
f

G((p) = p

= distance to

= distance to

P
R
c

the outer

pellet

R
f

edge of gas gap

surface (see equation

2.22

2.4)

Combining these equations results in the gas gap as a func-

tion of angle being given by the following:

G(q) = R
c

- [d cos (1) + (R 2
d
2
[1 cos

2
(lb])

1-

2] 2.23

The modeled conductivity program, utilizing the re-

lationships derived in the above equations, results in the

finite difference geometry as shown in Figure 5. The fuel

pellet is centered within the cladding and the variable

conductivity within the gas gap now accounts for the

eccentricity of the problem. The modeled conductivity

geometry places no restrictions on the required amount of

radial or angular node regions to properly define the three

regions of the problem. In addition, the modeled conducti-

vity approach requires no translation of the generated fuel

pellet temperatures to a separate coordinate system.
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Figure 5. Modeled conductivity approximation.

K(95) = Kgap AR

G(4))

G(4) = R [dcos + ( R2 d2(Icos24)))i/2]
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A finite difference code, MDL, was written to perform

the operations required by the modeled conductivity

approach. This code is described in Appendix B.
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III. COMPARISONS, RESULTS, AND CONCLUSIONS

Comparison Tests

The comparisons between the ratchet boundary model

and the modeled conductivity model utilized a set of six

eccentricities ranging from 5%-99%. Three gap width to

fuel diameter ratios, varying from 1.22% to 15.63% were

used. Each problem contained three separate regions;

fuel (conductivity = 0.025 W/cm°C), cladding (conducti-

vity = 0.15 W/cm°C), and gas gap (conductivity = 0.004

W/cm°C). Both models were divided into 15 azimuthal node

regions. The ratchet boundary model required 22 radial

node regions as compared to only seven radial node re-

gions for the modeled conductivity program.

The main points of interest in this comparison study

were the following:

1) Comparison of cladding temperatures as predicted

by the two models.

2) Comparison of fuel pellet temperatures as pre-

dicted by the two models.

3) Comparison of economics between the two models as

predicted by such factors as iterations and CPU

time required for convergence.



Results

2.1 Cladding Temperatures

The difference in maximum cladding temperatures as

predicted by the two models, for all cases, are shown in

Figures 6-8. The percent deviation is derived from the

following equation:

TMDL - T
RAT.

1 1% deviation x 100
T
MDL.

1

where TMDLi = the temperature predicted by the modeled
conductivity program for angle i

TRATi = the temperature predicted by the ratchet
boundary program for angle i

17

3.1

The results show that the cases utilizing a fuel pin

geometry similar to current light water reactor pin

geometries (Figure 6) show less than 0.1% deviation

in the maximum cladding temperatures as predicted by the

two models. In most cases the maximum deviation in clad-

ding temperature predictions, between the two models, is

less than 1.0% and is usually less than 0.67%.

The nodal points that lie on the small gas gap side

of the problem, for all cases of very high eccentricity,

show a deviation from the standard pattern, as shown by

the dotted lines in Figures 6-8. This deviation is

thought to be caused from the geometrical factors inherent
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Figure 6. Percent deviation in maximum cladding
temperatures (gap-width-to-fuel-diameter =
0.0122) .
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Figure 7. Percent deviation in maximum cladding

temperatures (gap-width-to-fuel-
diameter = 0 0676)
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Figure 8. Percent deviation in maximum cladding
temperatures (gap-width-to-fuel-
diameter = 0.1563).
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in the ratchet boundary method. The ratchet boundary

method, in essence, presents an averaged distance between

the fuel pellet surface and the cladding. This averaged

distance does not take into account the dominance that the

points lying nearest to the cladding play in the problem.

In the cases of high eccentricity, were large amounts of

heat are transferred azimuthally through the fuel pellet,

the points lying next to the cladding present a path of

very small resistance to heat transfer. As the gas gap

becomes larger and the eccentricity higher, these points

tend to completely dominate as the heat transfer path from

the fuel pellet surface to the cladding. This dominance,

as predicted by the modeled conductivity model, is re-

flected in the larger deviations of cladding temperatures

at these points.

2.2 Fuel Pellet Temperatures

The temperature profiles generated for the fuel pel-

let by the two models are shown in Figures 9-17. The iso-

therms for the cases utilizing a fuel pin geometry similar

to current light water reactor pin geometries

(Figures 9-11) shows excellent correspondence between the

two models. The deviation of temperature profiles, as

shown by the plotted isotherms, indicate good agreement

at low eccentricities and varies as a function of eccen-

tricity, with large eccentricities showing the maximum
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deviations in all cases. The temperature profiles are

also seen to vary as a function of gap-width-to-fuel-

diameter ratio with the cases utilizing a small ratio

showing a greater correspondence between temperature pro-

files than the cases utilizing a high ratio for the same

eccentricity.

2.3 Economics

The amount of iterations required to reach a satis-

factory convergence for the two models is shown in Figure

18.

The results show that in all cases the ratchet bound-

ary model required more iterations per run than the modeled

conductivity program. The ratio of iterations required for

convergence shows a minimum of approximately 2 to 1 at high

eccentricities to a maximum of 13 to 1 at low eccentrici-

ties for the two models. At low eccentricities the ratchet

boundary program was shown to require a stricter conver-

gence criteria than the modeled conductivity program to

avoid anomalous convergence.

The amount of CPU time required for the two

methods shows that it costs from 6 to 40 times as much to

run the ratchet boundary program as it does to run the

modeled conductivity program.



Figure 18. Required iterations to reach convergence.
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Comparison Conclusions

The results of the comparison test indicate that both

models are employing an effective means of transporting

heat generated by a fuel pellet through the gas gap and

into the cladding.

The modeled conductivity approach shows higher fuel

temperatures than the ratchet boundary method. This is

due, in large part, to the modeled conductivity approach

neglecting the angular component of the heat flux vector

from the fuel pellet surface. The negligence of this com-

ponent of the heat flux vector tends to impose a conserva-

tive resistance to heat flow within the gas gap. As the

eccentricity and gap-width-to-fuel-diameter ratio in-

creases, the angular heat flux vector becomes larger which

results in conservatively higher gas gap resistances. The

higher resistances result in higher fuel pellet tempera-

tures for the modeled conductivity approach.

In the cases where the angular heat flux vector may

be considered negligible, i.e. very low eccentricities or

small gap-width-to-fuel-diameter ratios (typical of light

water reactors), or the interest is mainly in cladding

temperatures, the modeled conductivity approach is shown

to have a marked advantage over the ratchet boundary

method due to the extra costs associated with the ratchet

boundary method.
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In the actual programming of these two methods, the

ratchet boundary method creates some difficulty due to the

geometry of the ratcheted fuel pellet surface. The very

small radial mesh spacing created by the ratcheted fuel

pellet boundary along with the overall number of node

points required, leads to the necessity for more iterations

and thus higher costs to reach convergence.
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IV. IMPROVED MODELED CONDUCTIVITY

The previous modeled conductivity approach was shown

to generate temperatures within the fuel pellet which are

higher, in most cases, than those generated by the ratchet

boundary model. This temperature difference was thought

to be due, in large part, to the negligence of the angular

heat flux vector from the fuel pellet surface. The improved

modeled conductivity takes this additional source of conduc-

tance into account and generates a total heat flux vector

from the fuel pellet surface which includes both the angu-

lar and radial components.

The radial component was found by dotting the normal

vector at the p = R' boundary into the total heat flux vec-

tor for the fuel pellet (see equation 2.12 and Figure 4).

In a like manner, the angular component is found by dotting

the normal vector at (I) = (pi boundary into the total heat

flux vector for the fuel pellet (see Figure 19). The nor-

mal vector to the (I) = (I)' boundary is given by n which is

equal to the unit vector in the 4- direction, eq). The heat

flux fectors for the two coordinate systems are given by

equations 2.6 and 2.7 which are listed below:

4(r,O) = -k V T(r,O)

2.6

= -k(er Mr-. T(r,O) + ee 1/r D/DO T(r,0))



36

Figure 19. Unit vector normal to the (I) = (Pi boundary.

1



and

4(p,(1)) = -k V T(p,0

= -k(e D/Bp T(p,(p) + e l/p 3/B(1) T(10,0)
(i)
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2.7

To facilitate the dot product calculation, the unit

vectors describing the two coordinate systems are once again

translated into

by equations 2.8-11

The dot products

A
e

(1)

q(r,0)

a common (x,y) coordinate

which are listed below:

= ey cos cp

x
sin

A
e = e

x cos (I) + e sin

er = ex cos 0 + es sin

ee = ey cos 0 - ex sin

are now calculated

=-1 p sin 4)1)
(

system as given

c 2.8

(I) 2.9

0 2.10

0 2.11

as:

(1 0),(P) 4.1
0=sin

Using the relationships in equations 2.8-11, the left

hand side becomes:

,^ A
le cos (I) e

x
sin q)

A
-k(e

x cos 8 + e sin 0) B/3r T(r,0) 4.2

+ 1/r(ey cos 0 ex sin 0) 3/30 T(r,0))
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which when evaluated yields:

-k(sin(0-0 3/Dr T(r,O) + l/r cos(0-p) B/DO T(r,8)) 4.3

The right hand side is easily determined to be:

-k(l/p V3(1) T(p,q)) 4.4

The total heat flux vector may now be found by an addi-

tion of the angular and radial components. The components

of the heat flux vector normal to the p = p' boundary are

given by equations 2.14 and 2.15.

-k[cos(cp-0) D/Dr T(r,8) + 1/r sin(b -e) D/DO T(r,0)]

2.14 and 2.15
= -k D/Dp T(P,0

Combining radial and angular components and utilizing

the following relationships:

cos(A-b) = cos(b-A) 4.5

sin(A-b) = -sin(b-A) 4.6

The total heat flux vector is found to be:

-k[rcos(0-(¢) + sine-01 2
(a /ar T(r,0))

2

4.7

+ (1/r) 2
[cos(8-0 sine-gb)] 2

(D/DO T(r,8)) 2
]2

The introduction of a term describing the gap width as

a function of angle, as given by equation 2.23, allows the



following finite difference approximation:

q = -k[[cos(0-0 + sin(e-W2 (Z))2

AT
- sin(e_m2 0)20-2 0+ (1/r) [cos(0-

AO

where G(cp) = gap width as a function of angle

A8 = angular distance between node points

AT
R = radial temperature difference

AT
0
= angular temperature difference
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4.8

Equating this approximation to the standard finite dif-

ference equation, as given by 2.20, leads to the equation

which describes the angular dependent conductivity within

the gas gap.

k(q)) = k[[cos(e+fl + sin(0-$) ]
2

[ G(cpAR
)

2

4.9

2 AR 2
AT

2+ (l/r) 2
[cos(0-0 sin(0-01 ( TT)- ) (T ) i-

R

Utilizing the fact that the radial temperature dif-

ference, between node points, across the gas gap width,

ATR, is very much larger than the angular temperature

difference, between node points on the fuel pellet surface,

AT0, leads to the following approximations:

AT
R

>> AT0 4.10
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[cos (0 - (p) + sin (0 -q)
2

( G(cpAR
)

)

2

AT
4.11

AR
>> (l/r)

2 [cos(0-0 sin(8- 2

( )

2

( TT )

2

k(q)) = -k[cos(0-(p) + sin(0-0] AR
G() 4.12

The improved modeled conductivity approach utilizes

the same geometry as the modeled conductivity method. The

difference in the two methods occurs in the angular depen-

dent conductivity within the gas gap. The conductivity is

slightly larger in the improved method due to the additional

angular heat flux component from the fuel pellet surface.

The bracketed term in equation 4.12 is now greater than

unity in all nodal regions. As in the original modeled

conductivity method, there are no restrictions on the re-

quired amount of radial or angular node points required.

A finite difference code, MDL - 2, was written to per-

form the operations required by the improved modeled con-

ductivity model. This code is described in Appendix B.
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Comparison Test
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As in the previous comparison test, the study between

the improved modeled conductivity model and the previous

models utilized the same set of six eccentricities, ranging

from 5% to 99%, for each of three gap-width-to-fuel-diameter

ratios, varying from 1.22% to 15.62%. The fuel pin con-

tained three separate regions; fuel (conductivity = 0.025

W/cm-°C), cladding (conductivity = 0.15 W/cm-°C), and gas

gap (conductivity = 0.004 W/c -°C). The fuel pin was once

again divided into 15 azimuthal and 7 radial node regions.

The main points of interest were:

1) Comparison of cladding temperatures as predicted

by the separate models.

2) Comparison of fuel pellet temperatures as pre-

dicted by the separate models.

3) Comparison of economics between the separate

models as predicted by such factors as iterations

and CPU time required for convergence.
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Results

5.1 Cladding Temperatures

The differences in maximum cladding temperatures be-

tween the improved modeled conductivity approach and the

ratchet boundary approach, for all cases, are shown in

Figures 20-22. The percent deviation is once again given

by:

% Deviation =

T
MDL-2.

T
RAT.

1 1

T
MDL -2.

i

x 100 5.1

where TMDL-2i = the temperature predicted by the improved
modeled conductivity program for angle i

TRT. = the temperature predicted by the ratchet
1 boundary program for angle i

The results show no significant change in the maximum

cladding temperatures as predicted by the improved modeled

conductivity approach over those generated by the original

modeled conductivity approach. In the cases utilizing a

fuel pin geometry similar to current light water reactor

geometries (case 1, Figure 20), there is less than 0.1%

deviation in the maximum cladding temperatures as predicted

by the separate models. In most cases the maximum devia-

tion in cladding temperature predictions is less than 1.0%.

The deviations in cladding temperature predictions

for very high eccentricities shows, once again, the
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dominance of those points lying very near the cladding as

discussed in section 3.1 and predicted by both modeled con-

ductivity methods.

5.2 Fuel Pellet Temperatures

The temperature profiles generated within the fuel

pellet by the separate models are shown in Figures 9-17.

The plotted isotherms for the cases utilizing a fuel

pin geometry most similar to current light water reactor

pin geometries (case 1, Figures 9-11) shows excellent cor-

respondence between all models. The deviation of tempera-

ture profiles, as shown by the plotted isotherms, indicate

good agreement at low eccentricities and varies as a func-

tion of eccentricity, with large eccentricities showing

the maximum deviations in all cases. The temperature pro-

files are seen to vary as a function of gap-width-to-fuel-

diameter ratio. The cases utilizing a low gap-width-to-

fuel-diameter ratio show a greater correspondence between

temperature profiles than the cases utilizing a higher ratio

for the same eccentricity.

The fuel pellet temperatures generated by the improved

modeled conductivity approach are shown to correspond

closer to the temperatures predicted by the ratchet bound-

ary model than those of the original modeled conductivity

model.



Figure 20. Percent deviation in maximum cladding
temperatures (gap-width-to-fuel-
diameter = 0.0122).
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Figure 21. Percent deviation in maximum cladding
temperatures (gap-width-to-fuel-
diameter = 0.0676).
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Figure 22. Percent deviation in maximum cladding
temperatures (gap-width-to-fuel-
diameter = 0.1563).
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The lowered resistance within the gas gap for the

improved modeled conductivity model has, in some cases,

resulted in the temperatures predicted by the modeled

approach being lower than those predicted by the ratchet

boundary model.

5.3 Economics

The improved modeled conductivity model requires the

same amount of iterations to converge as the original

modeled conductivity model. This results in the ratchet

boundary model requiring from 2 to 13 times as many itera-

tions to converge than either of the other two models.

Taking into account that each iteration of the ratchet

boundary model requires approximately 3 times the amount

of CPU time as the modeled conductivity approaches, results

in the running time of the ratchet boundary model being

from 6 to 40 times as long as either of the modeled con-

ductivity approaches.
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VI. CONCLUSIONS

The results of the comparison tests indicate that all

three models represent an effective means of calculating clad-

ding temperatures for most cases. The few cases that employ

a very high eccentricity have shown the pellet surface

averaging by the ratchet boundary method to under predict

the temperatures within the cladding nearest the fuel pel-

let. In most cases the deviations in the maximum cladding

temperatures, as predicted by the three models, was seen

to be very small.

The main difference between the three models lies in

the resistance to heat flow that is imposed within the gas

gap. The ratchet boundary model and the improved modeled

conductivity model make an attempt to describe the total

heat flux vector leaving the fuel pellet while the original

modeled conductivity model takes only the radial component

into account. The ratchet boundary model and the improved

modeled conductivity model can therefore be expected to

generate lower resistances within the gas gap and lower

temperatures within the fuel pellet than the original

modeled conductivity model. As the comparison test indi-

cate, this is indeed the case.

Until such a time that an analytical solution is

available to provide a bench-mark for comparison with the
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numerical solutions, it will be impossible to determine

the method which generates temperature profiles most simi-

lar to the true solution.

At the present time, due to the small deviation be-

tween the temperatures predicted by the ratchet boundary

model and the improved modeled conductivity model and the

large difference in the economics of the two models, the

improved modeled conductivity model has a distinct marked

advantage as the finite difference method best suited to

predicting the temperatures within an eccentrically loaded

fuel element.
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APPENDIX A

NUMERICAL TECHNIQUES FOR STEADY-STATE
HEAT CONDUCTION (2)

The equation which describes steady-state heat conduc-

tion in an isotropic material may be written in vector nota-

tion as

V k O T + q = 0 (A-1)

where 0 = gradient operator

T = temperature

k = thermal conductivity

q = heat-generation rate per unit volume

Integrating the above equation over a nodal volume,

Vk, results in

f k T dV + f q dV = 0 (A-2)
V
k V

k

Using Green's first identity the equation may be re-

written as:

f k DT/M dA + f q dV = 0 (A-3)
A
k

V
k

where the integration now takes place over the nodal sur-

face, Ak. The DTPN represents the partial derivative of T
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with respect to the outward normal to the surface of the

kth node. Assuming that k does not vary as we integrate

over the surface area, and assuming that q does not vary as

we integrate over the nodal volume, we obtain:

k
k

f 3T/3N dA + qk Vk = 0
A
k

(A-4)

A thin portion of one of the nodes in the mesh is shown

in Figure 23. The four surfaces over which the surface

integral is taken are numbered as shown. Assuming that

3T/3N does not vary over each surface of integration, equa-

tion (A-4) may be rewritten as:

4
3Tkk Ak

s
+ qk Vk = 0

S=1 ' k,S

where A
k,s = the area of side S, for node k

(A-5)

The evaluation of 3T/3N
k,S on each of the four sides

will depend upon whether a given side is touching (1) a

node in the same region, (2) a node in a different region,

or (3) the outside boundary. In all cases, the DT/3Nk,s

may be approximated by an equation of the form

3T
T
k,S

T
k

71
=

k,S Bk,S

where T
k,S = neighboring temperature

T
k = temperature of the node itself

Bk,S = internodal distance.

(A-6)
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Figure 23. Surface areas for typical nodal volume.
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T
k,S

and B
k,S depend upon the type of neighboring node (or

boundary) touching each side of the given node, k. Tk,S

and B
k,S for the three cases given above are shown in Figure

24 for the side, S = 2.

Substituting equation (A-6) into equation (A-5) results

in:

4

(

Tk S - Tkkk Ak
S B

Tk)

+ qk Vk 0S=1 ' k,S
(A-7)

Solving equation (A-7) for Tk results in the final

equation for the temperature at node, k.

4 A T

k VL

k
1;

S Tk,S
qkVk +

S=1 k,ST
k

v k,S
k

4 A

k L B
S=1 k,S

(A-8)

The temperature of node k is expressed in terms of

Tk,S ,
the temperature of its four surrounding neighbors.

An initial guess for the temperatures at each node is made

at the beginning of the problem. An iterative solution is

then carried out in which new temperatures are calculated

from old temperatures using equation (A-8).

An "overrelaxation" of the temperatures is often

desirable to increase the convergence of the iterative

procedure. This is done by using the constant, 8, in the

following manner:



1.

2.

Figure 24. Calculation of Tk S and B
k S for three

,given cases. ,

TK

RJ

TK

1(.1( kK

Rj
!

Rj
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K41
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k

BK2 = (rJ Rj)+ (R r
J.1 J

)
1((.1

T T
K,2 KA

Neighbor = Outside boundary with fixed
boundary temperature.
Tb given

BK,2 =

TK,2 Tb
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New N-1T
k

T
k

+ (1 - (3)Tk

where T
k = temperatures calculated during the Nth

iteration using equation (A-8)
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(A-9)

T
k
-1

= final "overrelaxed, extrapolated" temperatures
resulting from the (N-1)th iteration

T
Nk ew

= the "overrelaxed" temperatures being cal-
culated during this Nth iteration

= input factor between 1 and 2

After the overrelaxation is finished, another accelera-

tion technique, "dominant-error-mode extrapolation", is

applied. At each iteration an error term is calculated for

the mesh as a whole.

kmax
eN =

k=1

T
N-1

TNk -

k

1 (A-10)

A ratio of these error terms gives an extrapolation

factor, f,

e
Nf=

eN -1

which is used to calculate a better estimate of the

temperatures.

final New New N-1T
k = T

k
+

1 -f
(T
k

-
f

)

(A-11)

(A-12)
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New N-1 finalT
k

and T
k are defined above and T

k is now referred

to as the final "overrelaxed, extrapolated" temperature,
N

T
k' for the Nth iteration. This extrapolation is not done

if the factor, f, in equation (A-11) is greater than one.

In actual practice, this extrapolation should only be used

every 40th or 50th iteration, depending on the problem, so

that the temperatures have a chance to settle down before

being kicked again. The frequency of extrapolation is an

input quantity which is used for the whole machine run.

Successive iterations are carried out until

MAX
k

N-1
T
k
N

Tk
1 < E

where e = specified convergence criterion

(A-13)

The error term is calculated for every node in the

mesh, but only the maximum is used in equation (A-13).
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APPENDIX B

COMPUTER PROGRAMS

B.1 RAT, MDL, and MDL-2

RAT, MDL, and MDL-2 are finite difference programs

developed to calculate the temperatures generated within an

eccentrically loaded fuel pin. All three codes use the

equations and techniques derived in Appendix A for a

standard steady-state heat conduction problem. The dif-

ference in the three programs is found in their treatment of

the gas gap region.

RAT assigns a constant conductivity for the gas gap

region and accounts for the eccentricity by a ratchet bound-

ary on the fuel pellet surface. The ratchet boundary acts

to average the distance between the fuel pellet and the

cladding for each angular region. The radius of each of

the ratchet boundary arcs is given by equation 2.4.

p = d cos (I) + [R2 - d 2
(1 - cos 2 4)]2

MDL accounts for the eccentricity of the problem by

defining a geometrically dependent variable conductivity

within the gas gap. The conductivity within the gas gap

is given by equation 2.21.

k(0 = k AR
GO)

2.4

2.21



59

MDL-2 uses the same method as MDL, but makes a better

approximation of the geometrically dependent conductivity

within the gas gap. The conductivity within the gas gap

is now given by equation 4.9.

k(c) = kicos(0-0 + sin(e-4)
AR

1 4.9

All three codes use tape 5 for an input. A detailed

description of the input requirements is presented here

and followed by a listing of the programs.

CARD 1: NTHREG FORMAT(1X,I4)
NTHREG THE NUMBER OF ANGULAR REGIONS

CARD 2: NDFUEL FORMAT(1X,I4)
NDFUEL THE NUMBER OF RADIAL NODE REGIONS IN THE

FUEL

CARD 3: NDCLAD FORMAT(1X,I4)
NDCLAD - THE NUMBER OF RADIAL NODE REGIONS IN THE

CLAD

CARD 4: BETA FORMAT(1X, F12.8)
BETA THE SUCCESSIVE OVER-RELAXATION FACTOR (OPTIMUM =

1.84)

CARD 5: EPS FORMAT(1X, F12.8)
EPS THE CONVERGENCE CRITERION FOR TEMPERATURES

CARD 6: CONDCLA FORMAT(1X, F12.8)
CONDCLA THE CONDUCTIVITY OF THE CLADDING (W/cm°C)

CARD 7: CONDGAS FORMAT(1X, F12.8)
CONDGAS - THE CONDUCTIVITY OF THE GAS WITHIN THE GAS

GAP (W/cm°C)

CARD 8: TEMP1ST FORMAT(1X, F12.8)
TEMP1ST - INITIAL GUESS AT NODAL TEMPERATURES (°C)

CARD 9: TEMPBLK FORMAT(1X, F12.8)
TEMPBLK - OUTSIDE CLADDING TEMPERATURE (°C)



CARD 10: NALLOWD
NALLOWD MAXIMUM NUMBER OF

FORMAT(1X, 14)
ITERATIONS ALLOWED

CARD 11: RCLAD
RCLAD OUTSIDE RADIUS OF CLAD (cm)
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FORMAT(1X, F12.8)

CARD 12: CONDFUE FORMAT(1X, F12.8)
CONDFUE CONDUCTIVITY OF FUEL MATERIAL (W/cm°C)

CARD 13: SHIFT FORMAT(1X, F12.8)
SHIFT ECCENTRICITY OF PROBLEM AS A FRACTION

CARD 14: RFUELA
RFUELA RADIUS OF FUEL PELLET (cm)

CARD 15: GASWDTH
GASWDTH GAS GAP WIDTH (cm)

FORMAT(1X, F12.8)

FORMAT(1X, F12.8)

CARD 16: SOURCE FORMAT(1X, F12.8)
SOURCE - HEAT GENERATION RATE FOR FUEL (W/cm3)
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PROGRAM LISTING FOR RAT
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(INPUT,OUTnUT,TAPE-5,TAPEE)
LIME NSION AQt-74(4j04,4),-9S(40,40,4)
F.T1FrS7ON 40LWIL:(40,43),T(41,4^), OLOTEMF(4C,40)
CI4EN.;r)14 -RArLIN(50).RALNCD(40),THELIN(50),THENCF(40)
CI1ENSTAN TOIFF(?)
CI"ENSION '',CN1(40,4C),QKf40,411
CCAMON/1-1.:ATFC/FOuRcE
CC1"CNIT,I1PCLfl, CL9TEMP(4J,40)
CC''IMCN/TEAP/ T.Em.P(40143),TEmP9LK,AREA(40,40,4)
CCY.MON/17TA/ AS(40.40,4),OK(40,40),VOLUMF(40,40),1ET4
CC"mCN/NO1PNTS/NCFUEL,INNO)ES,1COENDOTHPFG
rC1MCN/F,013UGT/CCN1(40.40)
CCCN/F;DACING/RAONOC(40),q111LIN(53),THFSPAC
PI=3.141512F:5536

IWIUT
C

PF.V)(5,20jJ) NTHREG
gEAC(5,230I) NCFUEL
FEAr(5.?319) WIICLA)
EAr)(5,2.00t) 1ETA
PFA0(5.230t) EPS
f;EA0(5,2Cal) CONCCLA
gEAF(5,2001) UONCGAS
gFAn(5,2001) TFMP1ST
CFA0(5,2001) TTMF1LK
I;EA0(5,2101) NALLOWD
;EAr!(5,200t) -RCLArl

1AF(5,2001) CONCFUE
PFAU(5,2901) SHIFT
PEAO(5,2001) rFuELA
FE-A[1(5.2301) GAEkflTH
PEA0(5.2001) SOURCE_

20IC FC73,""AT(1X,I4)
201 FCPMAT(1X,F12.A)

C

C flETERINATICN CF NOCaL LINE SPACINr'S
C

INNCOES=N)FUEL4NTHPEG41
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C

C
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LINLNU=NOFUtLfN0CLA04-NTHPEq4?
NC3F'ID=N)R.ULL4NOCLAOFNTF-0;,EG41
THESPACI=I/NTW)EG
CIFFcR=SHIPT*(-,ASiNTTH
FOELD=RF.UHLA-OTEFF
1:'EAP0-7-PI*7Flic.L041:17UELrl/NOPUEL

SINCLAO=PFUELA+GASWOTH
fPF_ACA-7(RCLAO*GCLAO-kINCLAO"INCLA0)*PI/NOCLAO
;AOLIN(1)=0.
EC I J=2,LINEN1
Ic(J.GT.NUEL4-1.ANO.J.LE.NCL+NTHPEG4-1) GO TO 2
I(J.GT.INNOCES) GO TO 7
rAflLTN(1)=SORT((J-1)*A.)FAPO/PI1
cr TO 4

2 Pr9LE=CI-N1FUEL-1)*THESPAC-TF-ESPAC/2.
;AOLIN(1)=(091.(("OIFFE24CCS(ANGLE))**24-4*(RFUFLA*

wPFUELA-3IFFE*OIFFEc3))-?*DIFFER*COS(AN34E1)/2.
CC TO 4

3 FAnIN())=SOkT(PINC,LA0**24(J*INNOOES.-114APEACA/PI)
;AlNICON-1.1=(,ODLIN(J)+PAqLIN(J-1))/2.
CCNTINUE
THELIN(1)=0.
CC 5 J=1,NTH9Er;
THELIN(J+1)=THELIN(J)+THESPAC
TFE00(/).7:(THELIN(1)+THELIN(J+1))/2.
CCNTIWk:

INITIALI7E NCJAL TEW-ATURES
AN] ASSIGN ket VALUES

CC '30 I=1,NTHR'7G
[C 50 J=1,NU3ENC
IF1P(IIII=TEMP1ST
CK(I,J)=0.
TF(J.LF.W3PUEL4I) OK(I,J)=SCURCE

ASSIGN CONjUCTIVITY VALLES

CCN(I,J)=ONOU
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r

C

C

64

IF(J.GT.N)F1JEL+I.ANC.J.LE.I1`NU)ES) CON1(I,J)=CON5GAS
TF(J.GT.IN'40O=5,2) CONE(I,J)=CON1CLA
CCNTINUE

CALCULATE NO2AL VOLUMES ANO SURFACE APEAS

CC 6 I=1.NTHP.Eq
CO 6 J=1,NOON1
VCLUAE(T,J)=(PACLIN(J+1)**?-PA)LIN(J)**2)*THESPAC/2.
IC t
CC TO (7,9,9,10),K

7 AktEA(I,J,K)=RAlLIN(J4-1)*THSPAC
CO TO 12
I(I.E9.11 GO TO 11
P R E A ( I , J, K) =PAOL IN ( J+1 ) IN ( J)

CC TO 12
tP,TA(I,J,<)=PAT)LIN(J)*THESPAC
CC TO 1?

10 IF(I.E.O.NTAPFG) GO TO 11
tREA(I,J,K)=RAflLINI(J+1)RAOLIN(J)
CC TO 12

11 A7.7.A(I,J,K) =O.

C CALCULATE iNTERNOOAL DISTANCES
C

12 F5(I.J,K)=r;c7T9S(I,J,K)
CCNTIN1

C INTTIALI7E ITERATION COUNTERS
C

2q

C

C

tEqCNT=103
NSTOP=0
TICOUNT=0
NSPECO=0
1r( ITr,OONT.GT. NALLOWD) GO TO 30
1F(NSPEEi.SE. 49) GO TO 25

ITERATION CALCUIJTION OF TEMPERATURFS



C

C

C

c

C

C

27 CC 21 J=1,NOJENC
CC 21 I=1,1THRCC
CLOTE49(I,J)=TEMP(I,J)
1L1P(I,J)=TEWNE6(I,J)

21 rc\ITINIF

CH7.C FOR CONPTRGENCE

75 CC ?4 I=1,NTHREG
CC 24 17-1,A01:-Ac,

IF(NLWCNT.LT.190) GO TO 22
IF(ARS(T:4P(I,A)/OLCTE4P(I,J)-1).GT.EPS) 50 TO 22
CC TO 24

2? ITOCUNT=ITOOUNTfl
t\FW0NT=N=TWONT+1
t\EPFE01=N3PEF0+1
CC TC 23

24 CCNTINUE
CC TO 30

00IIUANTE9R..CRMGOiE ACCELE RATION

?5 ICSUM=1.
CO 26 '=1,ATHRFG
CC 26 J=1000ENC
1PATIO=A1SCOLOTEVP(I,J)/TEMc(I,J1-1.)
ICSVI=TOSUA+TRATIO

26 CONTINUE
1OIFF(NSPEE5-49)=TOSUM
IF(NSPEFO.NE.50) GO TO 27
APATIO=T)IFF(21/T1IFF(1)
4L0HA=0.)
TF(ARATIO.NE.1.0) ALPHA=1.0/(1.ARATI0)
IF(ARATIO.1E.1.0) 50 TO 29
rc, 28 I=1,UTHREG
CC 29 1=1,NOOENO

29 7E`IP(I,J)=ALF1-18*TE'lF(I.J)4-(1.AL9HAI*OLDTEHR(I,J)
CC TO 29

65



C OUTPUT

C

C

66

33 4FITE(6,40) 1-<FUELA,RCLAO,GASWOTHISHIFT,SOUPCE,CONIFUE
,CCNOCLA,CON1GAS,EPS

40 FCRmAT(6?X.tINPUT OATAt,//,55X,RAOIUS OF FU'LL=t,F10.7
,/,55X,tRA0IUS CF CLAO=1,F10.7,/,55X,tGAS WIDTH=t,F10.

v7,/,55X,tFUEL SHIFT=t,r10.7,/,59X,tHLAT GENERATION=t,
c12.7,/,53X,tCONOUCTIIITY OF FUEL=t,F11.7,/.5EX,
..CONOUCTIVITY OF CLAO=t,F10.79/.55X,
IfCNOUCTT4ITY OF GAS=.t,F10.7,/,S5X,tEPSILON=7,F10.7,

v///)
PITE(6,41) ITCOUNT

41 FORmAT(45X,FINAL TEMPERATURE IFTE!,2Y4I4.2)(,
v/ITEFATIONSt,/)
Nr?Pv=1
NCOUNT=10

31 t.PITE(P,42)
42 FORMAT(5X,125U*t) )

CC 37 I=1,NTHP7G
IF(NCOUNT.r-,T.NOOENO) NCOUNT=NOOENO
1.PITE(6,32) (T;:mP(T,J), J=NPREVOCOUNT)

3? FORMAT(54,t*I,?X,1J(F3.3,4X1,2X,t*2 )

11 CCNTINUE
tPITE(6,42)
t4PITE(P,43) (RAON00(J),J=NPREV,NCOUNT)

43 FCRMk+T(1X,tSPACINGt,10(F9.3,4X),//)
NFRFV=NCOUAT41
1\rOUNT=NC0UNT+10
IF(MCOUNTNCOEND.LT.10) GO TO 31
NEWONT=)
NFTOP=NSTOP+1
IF(NTOP.E0.11 GC TO 23
ENO
FUNCTION GETBS(L,A,N)

FUNCTION TC CETERmINE INTERNCOAL OTFTANCES FOR
c.ACH NODE TO EACH OF 4 NEIGH11CPS (OP, n(1uNoAzY)

CCMMON/CON/UCT/CCNO(40,40)



67

(C.IMON/NODPNTS/NCFULL,INNODES,NCOFND,NTH.7EG
CONAMON/7PACING/RAINOL(4C),P4OLIN(50),THESPAC
CC TO (1,20,4),N

C OUTSIDE ACE OF NOCE
C

1 TF(^4.El.N1FUEL*L) GO TO ?O
IFtmLO.INNOO:S1 GO TO ?0
IFMEO.NODEND) (C) TO 30
(Frps=4DNO0(M+11-P,A0N00(M)
FETU0N

C

C

RIGHT SICE FACE OF NOOF

2 IF(L.E9.1) GO TO 50
IF(M.EO.NOFUEL+L) GO TO 40
GETOS=040N00(M)*THESPAC
PE7UPN

C

C INSIDE FACE CF NODE
C

3 1F(M.E0.1) GO TO 50
TF(H.EO.NOFUEL+L+1) GO TO 60
IF(m.E1.INNO3ES+1) GO TO 60
GETPS=AOMOD(M)-RAONCO(M-1)
cETUPN

C. LEFT SIT= FACE CF NODE
C

4 IF(L.E9. NTHREGI GO TO 50
IF(M.c.n.N)FUEL+L+1) GO TO 70
rETPS=49N00(MI*THESPAC
PFTURN

20 GETOS=?ADLIN(H+1)-RADNOP(M)+(RAON00(44-1)-RAOLIN(M+11)
ivCONO(L,H)/OONO(L01+1)
FETURN

31 LET9S=RADLIN(M+1) -A0N10(M1
1:FTUPN

40 CFrqS=0A3N00(1)*THFSPAC/2.*(1.4.00NO(L0)/OOND(L-1,1))



C

C

C

68

:-,ETUEN

50 rETr3S=1.
EETUkN

50 CETBS=;RA1N00(M1-qAOLIN(M)+(;ADLIN(Y)-PIONOO(m-1)1
I4CONO(L,1)/CONO(L,M-1)
kEITURN

70 GETn.S=4A3N10(M)*THESPAC/2.*(1.4CONO(L,M)/CONJ(L+1,A))
+=El-URN

FUNCTION TEmPNEW(IOUM,JOUm)

FUNCTION TO CALCULATE NEW NCOAL TEMPERATURES

CC^1MCN /TF'1 TEME(40,40),TEr4PFILK,AREA(40,40,4)
CC"mON/CON1UCT/ CONO(40,40)
CC1MON/TE1POLO/ OLOTEmP(40,40)
CCm!,10N/3-7.TA/ 3.5(49,40,41,0K(40,40),VOLUME(40,40),37TA
CCAON/NOOPNTS/ NIFUEL,INNOOES,NOCENO,NTHPEG
SUMTOP=0.
SUA90T=1.

SELECT TEMFEE.ATURE OF NEIGH9ORING NODE

CO 20 K=1,4 .

CC T0(14,15,16,17) ,K

14 IF(JOU'4,7O.NOOF.N) GO TO 11
1LAPN3?=TE1P(IrLY,JOUM*1)
CC TO lq

15 IFtIOUl.E0.1) GC TO 20
TEIFNB9=TEN1P(FlUN-1,JDUfr)
CC TO 19

15 IF(JCUM.E0.1) CO TO 20
TEME'NETEIP(IIUM,JCUm-1)
CO TO 19

17 IF(ICUm.EO.NTHREG) GO TO 20
IF1PNBR=TEIP(IOUv+1,J1UM)
CC TO 19

ti TP4PN3-?=TE1PALK
19 CCNTINUE



20

C

C

C

C

LITOP=S01TCP+COND(IOU1,11W,)*AREAtIOU1,JO(1M,K)4
IIPIPN6'.?/3S(ICUm,J1WI,K)
SL1POT=SW.16OT+CCNC(TOLM,JOUfr)*APEA(IOWI,JOUt.',K)/

vES(ICUM,J1JM,!.0
CCNTINUE

CALCULATION CF TEmPEATLPE

TPIP(InUl.JOUfl=(OK(IOUV,JOUm)*VCLUMElIOUM,JOUfl
..,+umToPl/SUMIOT

OV-RP,ELAKATICN OF TuMPERATUPES

TEAFAI0(J 1,10UM)=BETA*T;:t."0(ICU4,JOUM)4(1-BETA)*
v(LITEmP(19JM,JOUto)
TEAPNEW=TEAP(IOUN',JDUM)
;FTURN
EN'2
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70

PROGRAM LISTING FOR MDL



C

C

C

71

ppoG.:1A,4 (INFUT,OUTPuT,TAcE5,TAPE6)
CFAENSION ARLA(40,40,4), 9S(40,40,4)
CIvErS:ON vOLUmE(4304J),TE4P(41,40), CLOTEmP(40,401
CIMENSION ?ACLIN(50),;AON00(40),THELIN(50),THENC0(40)
CI4ENSION TOIPP(2
CI1ENSION CON9(41,4C),1K(40,40)
CC4N1CN/HFATSPC/SOUPTE
celmnNIT:::10oLO/ CLOTEmP(40,40)
CC'110N/TE4P/ TEmP(4C,4(7),TEmPBLK,AREA(40,40,4)
rrmmoNrIFTA/ 1S(40,40,4),OK(40,40),VOLUME(40,491,3ETA
CC4mcN/NOOPNTS/NCFUEL,INNODES,NCOEND,NTHPEG
CCPAON/CONOUCT/CCNO(40,40)
COMmON,SPACING/PAIN00(40),PAJLIN(50),THESPAC
F1m-i.1417,1?6553

INPUT

cEAO(5,,003) NTHREG
cEAQ(5,7001) NCFUEL
-;f7A0(5,?001) ACCLA1
,:iFAC(5,20011 9-7TA

FE 410(512001) EPS
PEAn(5,2001) CONnCLA
PEA0(5,2101) CCNCGAS
EAP(5,?0J1) TEmPisT

PFA71(5,:'001) TFPP3LK
cFA0(5,2000) NALLow71
FEAO(,/_001) P.CLAO
pEAc(5,2111) CONCPUE
FEA1(5,?091) SHIFT
cEAD(5.2001) RFUEL
PEA0(5,2(701) GASwOTH
PEA0(5,?001) SOU4OE

2000 FORmAT(ix,I4)
23J1 FCNAT(1X,P12.3)

C

C OETE1INATICN OF NonAL LINE SPACINGS
C

INNOOES=NOPUEL+1



tINENO=N1FUEL+NOCLAF)+2
1\c1EN11-=LIN7:NO-1
11.-T-7,PArs,=0I/NTHREC

ClrF.7R=SHIFT*GASWOTH
;FUEL3=--crU:.LA-nIcFEP
r.LAF1)=LIT*RPUELE*RFUELD/NDFUE1
PINCLA1=FOELA+GLISWOTH
tREACA=(ROLATI-cCLA-1-RINCLAD4qINCLAD)*PI/NDCLA0
c41LIN(1)=0.
CC 1 J=?,LINEN9
IF(J.EQ. INNODFS4.1) GO TO ?
IF(J.GT. INNO9ES+1) GO TO 7
gAlLTN(J)=S02Ti(J-1)*AREAFO/PI)
CC TO

2 ;,ACLIN(J)=.2FUELA+GASWOTH
CC "0 4

3 ;AILIN(J)=SOPT((CPULA+CASWOTH)**2+(J-INNOOES-1)*
vtra-AOA/PI)

n,NUO(1-11=NAOLIN(AfFADLIh(J-1))/2.
CCNTINUE
TH,7LIN(1)=0.
CC 5 J=1,NTHREG
Th-ELIN(J4-11=THELIN(J)+THESPAC
IFENOD(J)=4THELIN(J)+THELIN(J+1))/2.

5 CCNTINUE
C

C INITI4LI7E NODAL T:MPERATUP.ES
C AVI ASSIGN tCt VALUES
C

C

C

72

CO 50 T=1,NTHREG
CO 50 J=1,400ENC
\iCLUME(I,J)=-(RADLIN(J+1)**?-RAILIN(J)."2)*THESPAC/?.
1F4P(I,1)=TEMP1ST
CK(I,J)=0.
IF(J.L7.N)P-UEL ) OK(I,J)=SCURCE

ASSIGN CONDUCTIVITY VALUES

CCNO(I,J)=CONDFUE



C.

C

C
r

TF(J.C),INN(1:1ES) GO TO 6000
IF(J.GT.INNCO:Th onNo(I,A)=coNorLA
CO TO 50

"01ELI CONDUCTIVITY AS A FUNCTION CF ANGLE

6303 IF(SHIFT.E0.0.0) GO TO 6901
cHI=TH7NOI(I)
CS=COS(PHI)
P=PFUELM-GASWOTH
C=R-(0IFFER*CS4-SCRT(PFUELA*4?-lirFER**2*(1-CS"?)))
CCNI(I,J)=CONOGAS*WSW1TH/G
CC TO 51

6001 CCNO(I,J)=CONOCAS
53 CCITIWAF

CC 6 I=1,NTHREG
CC 6 J=1,NIDENI

CALCULATE NODAL VOLUMES AN`) SURFACE' APE AS

73

VCLUME(I,J)=CRAILIN(J+1)**2-PADLINtJ1**21 *THESPAC/2.
c0 6 K=1,4
CC TO (7,8,9,10).K

7 APEA(I,J,K)=RAOLIN(J+1)*THESPAC
CO TO 12
THI.E0.1) GO TO 11
PP:A(I.J,K)=RAILIN(J+1)-RAOLIN(J)
CC TO 12
AkEA(I,J,<,=RACLIN(J)4THESPAC
CC TO 12

10 IF(I.El.NTHREG) GO TO 11
AFEA(I,J.K)=RAILIN(J+1)-RAOLIN(J)
CC TO 12

11 APEA(I.J,K) =0.
C

C CALCLJLATE TNTERNCC\L 9ISTA10ES
C

12 ES(I1J,K)=CiET1S(1,J,K)
6 CCNTIJE



74

C.

INITIALI7E ITERATION COUNTERS
C

ITCCUNT=11
29 NSPEEI=0
?3 IF( ITCOUNT.T. NALLOW0) GO TO 30

IF(NSPLO.GF. 49) GO Tl 25
C

C ITFRATION CALCULATION r)P 1.-MPER4TURES
C

27 CO 21 J=1,NOOEND
CC 21 I=1,NTNREG
II=NTHREG+1I
CL1TEMP(II,J)=TEMP(II,J)
TEIP(II,j)=TEIcNEW(II,J)

21 CCNTINUE
C

C CHEC FOR CCNVFFGENCE
r
75 CC 24 I=1,NTHRFG

CO 24 I=1,NODENO
IF(ABS(TE1 p(I.J) /OLPTEIF(I,J)1).GT.EPS) GO TO 2?
CC TO 24

22 ITCOUNT-=ITCOUNT+1
NS9EEO=NSPEE04-1
GC TO 23

24 CCNTINUE
CO TO 70

C

C 00"'INANT-ERRCR-.MOOE ACCELERATION

25 TCSUM=0.
CC ?t) I=1,\ITHRcG
CC 2b J=1,400ENC
1aTIO=A:3S(OLOTEP(I,i) /TEMP(IIJ)-1.)
10FUM=TCSU.4+T2ATIO

26 CCNTINIJE
1CIFF(NSPEE0-48)=TOSUM
IF(NSPEED.NE.50) GO TO 27



75

4PATIO=TOIFF(2)/TOIFF(1)
4131405=1.1

IF(AriATIO.NE.1.0) ALPHA=1.0/(1.-ARATIO)
IF(05PATTO.Gc..1.01 (O T) 29
CC 28 T=1,ATMEG
CC 28 1=1000ENr.
7EMP(I.1)=ALPHA*TEMP(I,J)4(1.-ALPHA)40LOTEMP(I,J)
CC TO 29

OUTPUT
C

71 t.RITF(E,40)PFUEL4,PCLAO,CASWOTH,SHIFT,SOUPCE,CON1FUE,
vCCNOCL5,G0040GAS,EPS

40 FOPMAT(62X.INFUT '115TAt,//,5X,tRADIUS OF FUEL=/,F10.7
,/,55X,tRA)IUS OF OLA)=1,F10.7,/,55X,tGAS wIrTH=t,Fic.
7,/.55X.tFUEL 7HIPT=F10.79/955X.tHEAT GENEi.-cATION=1,

vF12.7,/.55X,tCCNCUCTIVITY OF FUEL=t,F10.7,/,55X.
vICONOUCTI/ITY CF CLAD=4,F11.7,/,55X,
/rONOUr',TIVITY CF GAS=t,F10.7,/.55X,tEPSILON74,P'10.7,
///)
ITE(6,41) ITOCUNT

41 FCRMAT(45X,IFINAL TEMPERATURE AFTERtt2X,I4,2X,
;ITERATIONSi,/)
INPPEV=1
NCCUNT=10

71 1,FITE(t42)
CO 33 T=1,NTHFG
II=NTHREGfl-I
IF(NCOUAT.GT.NCOHNI)NCOUNT=NOJENO
VPI7( ,32)(TEMP(II.J).J=NPRE4,NCOUNT)

32 FCRMAT(fX,i*l.?X.10(PA.7,4X),?X,2,/)
33 CCNTINUE

tRITE(6,42)
4? FCPMAT(5X,126(14t) )

VPITE(P.47)(PAONCO(J),J=NPREV,NCOUNT)
43 FCMAT(1X...tSPACINGt,10(F8.3,4X),//)

NP'?,EV=.4COUNT4-1

NCOUNT=NCOUNT+10
IF(l\COUNT-NODENO.LT.10) GO TO 31



76

c
C

C

ENC)

Fl:NCTION G7T9S(L,M,N)

FWJCTION TO OETEPINF TNTERNOOAL OISTANCES FOR
EACH N1OF TC EACH OF 4 NEIGH1ORS (0i; OOUNDARY)

CC1mON/C1N1UCT/OCN1(40,40)
Cem.HON/NOOPNTS/NCFUEL,INNOOESINCOENO,NTHREG
(CON/SACING/RAONOC(40,PAOLIN(50),THES0AC
GC TO (1,2,3,4),N

C OUTSIOE FACE OF NODE
t.

1 JF(m.EO.NOFUPL ) GO TJ 21
IF(M.E0.INNOOES) GO TO 20
IF(M.F1.NO)ENO) GO TO 30
CFTP5=40110(Mf1)-R,AONCO(m)
"RETUf,N

C.

C RIGHT SIZE FACE OF NOBS
C

2 1F(L.L0.11 GO TC 50
CETPS=RAON00(m)*THESPAO
FE TURN

C

C INSTO FACE CF NO0=

1F(m.c.O.t) GO TO 50
TF(M.EQ.I1NOOES ) GO TO 60
IF(,..E0.INNOJPS+1) GO IC 60
rETBS=RAINJO(M)-AON00(M-1)
PETURN

C

C LIFT SIDE PACE OF 1COE
C

4 IF(L.E0. NTHREG) On TO Er,

CET9S=RA1NOO(m)*THE:PAC
ETORN

20 CET9S=PAOLIN(A+1)-RAONOC(1)+(RAONC1fM+i)-2,AOLIN(M+11)



C

C

77

CONO(L,1)/CONO(L,4+1)
4ETURN

70 (7ETtIS=AILIN(A4-11-:?.A0N00(4)
kETURN

51 CETqS=1.
FETURN

60 (FT3S=PAON00(1)-RA)LIN(V)f(RAOLIN(M)-RAON00(M-11)
$4CON0(L,M)/COWJ(L,M-1)
RETURN
ENO
rUACTICN TEMRW:TWCIOUM,JOU4)

FUNCTION TO CALCULATE NTW NCOAL TFMPEPATUkES

COMMON/TFIP/ TFMF(40,40),TEMP6LK,AREA(40,40,4)
COMmON/OOAOUr'T/ CON0(40,40)
CemMON/TFMROLO/ OLOTEMR(40,40)
COMMON/TETA/ 13S(40,40,41,0K(40,40),VOLUME(40,40),9 ETA
COMPCN/NOOPNT3/ NJFUEL,INNOCES,NOON0,NTHEG

SUMPOT=0.

SELECT TF42ERATURE OF NEIGHBORING NCOE

CO ?0 K=1,4
GO T0(14,15,16,17) ,K

1 IF(JOUm.El.NO0E(07) GO TO 1F,

1E1FN3R=TE1P(IOUY,JOUm+1 )
CC TO 19

15 1F(IOUM.-70.1) GC TO 23
TEMPVP=TE4P(IOUtd-1,JOUMI
GC TO 19

16 IF(JOUm.E0.1) GC TO 20
1EMPNL32,=TE1P(Infr,JOUM-1)
CO TO 19

17 IF(I001.EO.NTIAPEG) GO TO 20
IFIPN3?=T.E1P(IOLY+1,JOUM)
GO TO 19

18 Tf-IPN3 ?..=TE'1P9LK



19 CCNTINUE
.UATCP=SUMTOP+CCN3(IOU1,JOUVI*AREA(IOUIJOUM,K1*

ilE1FNIR/1S(ICO',,J,10m,K1
SUld0T=SUllrT+CON-)(ICL1,JCUNI*AREA(19Om,JOUM,K)/

vES(I001,TIUM,K1
20 CCATINUE

C CALCULATION OF TEMPERATURE

r.

C

C.

lEmP(IlUA,JDUM)=t0K(IDUM,JDUm)*40LUmE(IDUm,JDUM)4-
A,,1.'1I0P)/COAB0T

OVF.RRELAXATICN OF TEMPERATURE

IF4P(IOU1,JOU1)=.2;=TA*TEMP(IOU4,JOUM1+(1-BETA)*
vaLITEMP(IDUM,JOU")
TEMPNEW=TEAP(Into,jouM)
;ETURN
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PROGRAM LISTING FOR MDL-2



C

C

C.

C

80

PFOGRAm m1L2 (T(o-,UT,OCTPUT.TAPE5,TAPE6)
CIS=N` ION AP!7_4(4i,4G,4). 1S(4J,40,4)
CIANSTaN JOLUvE(40,40),TEP(4(3,40), OLOTEMP(40,40)
CI1ENSION RAOLIN(50),A6N00(43),THELIN(50),THENC0(40)
CImEINSION TOIFP(2)
CI1ENSION OOND(43,40),OK(40,40)
CCAMON/H.TATSC/SCUP1:
CCVION/TL1,30LC, CLOTt'AP(40,40)
CC4"10N/T7.1P/ T.I_MP(4C,40),TEr,P3LK,AR'EA(4C,40,4)
COm"ION/OF.TA/ 1S(40,40,41,0K(40,4G),40LUmE(43,40),3ETA
fClmON/NOJPNTS/NCPUEL,INNOOES,A0DEN0,NTH.:G
CCMmON/C0NOUCT/CCNO(4040)
COVIUN/SPACING/RAIN00 (4.0),RAlLIN(50),TqESPAC

INPUT

1;EAC(5.2)J1) NTHREG
RE10(5,20J0) NOFUEL
FEA0(2011) NOCLAO
;EAC(.),2001) 9ETA
E40(5,2j0t) EPS
E.AO(5,2001) CONOCLA
FEAD(1?001) CONaGAS
;LAr(5,?001) TEMPIST
i;EA0(5,2J01) TEMP3CK
;EA0(5,2j00) NALL0,40
;EAD(72101) RCLAO
;E40(5,9001) CON3PU;::
i-EAD(5,2001) SIFT
;EAU(5,2n01) RFLL.LA
E40(5,2011) GaSwOTH
;E40(5,?001) SOU4C:::

2.300 FORMAT (1.'<,I4)

2001 FONIAT(tx,F1?.,'1)

OF_TERqINATICN CF NOPAL LINE SPACINGS

INNUOES=TlFUEL+1



LTNENOmNOFUELfNCCLA0+2
tCOENO=LINEN0-1
THEPAC=PI/NTHREG
CIEFEc<=SHIF-T*GaSWOTH
o7,FOLLO=RFUFLA`)IFE,:k

:PFAFJ=PI*FJELA4,7FUE,A/NDFLEL
fINOLAO=RPULLA+GLSWOTH
41E.ACA=C?CLA) *CLAOINCLA0cRINCLA0)*PI/NOCLA0
;AlLIN(1)=,1.
CC 1 J=2,LINEN1
IF(J.E0. INNOOES+11 GO TO 2
IF(J.GT. INNCO;7S+1) GO TO 3
FAJLIN(J)=3ORT((J-1)*AqEAFO/PI)
CC TJ 4

JLIN(.1)=RFUcLA+GASw0TP
CC TO 4

CLIN()1=30P;jf(RFUELA+GASWOTH)**2*(JINNOOES-1)4
v4kEACA/PI1

4 ;A,INCDtJ-1)=(RAO,_INtJ)4-PAOLIN(J-1))/2.
1 CCNIIN,JE

THLIN(1)=1.
CC 5 J111,NTHEG
TH.7LIN(J+1)=THELIN(J)+TNSPAO
TH.--7N0)(J)=(THELIN(1)+THELIN(J+1))/2.

5 CCNTINUE
C.

NCJAL T:mPERATURES
C At1D ASSIGN srz VALUES
C

C

C

C

CC '30 T=1,NT,AREG
CO 5C 1=1,NOJEND
UMP(I,J)=TEmPIST
CK(I,J)=0.
IF(J.LE.NOPUEL ) OK(I,J)=SCUCE

AS;IGN CON1UCTIVITY VALUES

CCAO(I,J)=CONDFUL
IF(J.EQ.INNOCE) GO TO 6000
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c,

C

1F(J.GT.T1100ES) CONC(I,J)=CONT1CLA
Cr TO 50

MOTELEA CONCUCTIVITY AS A FUNCTION OF ANGLE

6103 IF(SmIFT.EO.1.0) '7,0 To 6001
FHI=TH':N11(I)
CS=COS(FHI)
SN=SIN(PHI)
Pl..-FUELA+7,AW)TH
C=1(DIFFEO'CS*SO9T(RFUELA**2-0IFFEt=.**9.4.(1CS"?)))
FHIOTH =ACOS(C-;*SO,U(1(0IFFERFUELA)**2*SN**2)

Y(CIFFER/RFUELA)***21
FCOS=COS(aHI01-!P,AI)
CSIN=SIN(RHICTHPHI)
CONO(I,J1=CONOGA7,*(0O0S+OSIN)*GASWOTH/G
CC TO 50

6101 CONO(I,J)=CONOGAS
50 CCNTINUE

C

C CALCULATE NCCAL VOLUMES AN) SURFACE APtAS
C

CC 6 I=1,NTHREG
CC 6 J=1,N10ENfl
JOLUMF(I,J)=(RAOLIN(J+1)**2-9AOLIN(J)**2)*THESPAC/2.
CC 6 <=l,4
(7C TO (7,,9,10),K

7 4v,-Ati,J,K)=k4OLIN(J+1)41HESRAC
CC TO 12
IF(I.E1.1) GO TO 11
4REA(I,J,;<)=,AOLIN(J+1)RAOLIN(J)
GO TO 12

9 4k.7A(I,J,K)=RAlLIN(J)*THESPAC
CO TO 12

10 1F(I.El.NTHR7Gl GO TO 11
AREA(I,J,K)=RAlLI(J+1)RADLIN(J)
CC TO 12

11 AREA(I,J,K) =0.
C.
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CALCULTc: INTEPNCCL DISTANCES

ES(I,J,K)=1;ETS(I,J,K)
6 CCATIWE

C

C INITIALIZE ITERATICN COUNTERS

ITCoUNT=3
f\SRELD=j

23 IF( ITCuJAT.GT. NALLOW0) GO TO :?!)

TF(NSPEfl.,;E. 491 GO TO 25
C

C IT7.RATICN cALCOLATION OF TEriPERATURES
C

21 CO 21 J=1,NODENO
CO 21 T=1,ATHREG

CL3TL'IP(II,J)=TEMP(II,J)

21

TE1r(II,J)=TE17;NEw(IIIll
rCNTINuE

C

C CHFCK FO'R CCNVEPGENCE
C

73 CO 24 I=1,ATHREG
CC 24 J=1,409END
IF(A9S(TEAR(I,J)/OLOTEAF(I,J)-1).GT.EPS) GO TO 22
CC TO 24

22 ITCOUNT=ITCOONT+1
NSPEEONSIREE0 +1
CC TO ?3

24 CONTIWIL
CC TO i0

C 001INA\IT-ER2CR-mOOL ACCELERATION

25 IOSUm=0.
CC 26 I=1,1TH-G
CC 26 1=1,"ICOENC
IPATIO=A9S(OL1TLr,P(I,J)/TE4(I,J)-1.)
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1CSUNI=TOSUl+TRATIO
26 CONTINUE

IF(NSFLEJ.1E.50) GO TO 2?
PATiO=TOIFF(2)/1-9IFF(1)

4LPHA=3.3
IF(AATIO.NE.1.0) ALPHA=1.0/(1.ARATIO)
1F(AT-?.ATIO.E.1.0) GO TO 29
CC 2a I=1,NTHREG
CO 28 )=1,A00ENO
1F1P(I.J)=4LPHA*TEAP(I,J)+(1.ALPHA)*OLOTEMP(I,J1
CC TO

r

C OUTPOT
0
13 t,RITE(6,40)RFUELA,CLA,GAS1CTH,SHIFT,SOUpCE.CONDFUE,

vCC1rCLA,CONOGA,L17)S
40 FcqmAT(62X.4TNPUT OATAt,//,55X,#RACIUS OF FUEL=t,F10.7

CF CLA3=,F10.7,/,55X,tGAS WTOTH=t,F10.
?,/,5Y,tFUEL SHIFT=.0710.7,/,5A,HEAT GENEkATION=t,

vF12.7,/,55X,ICONCUCTIVITY OF FUEL=t,F1).7,/t55X,
IC1NDUCTIVITY OF CLtp=t,F10.7,/,55A,

.,CONOUCTI4ITY OF GAS=,F10.7,/,55X,tEPSILON=;',F10.7,
v///)

ITE(r,41) ITCOUNT
41 FC-RAT(45X,:FINAL TEMPEFATUriE AFTERA,2X,I4,2),

/ITEJ;ATIONS1,/)
t\f-EV=1
NCOUNT=10

31 t,PITE(6,.2)
CC 33 I=1,NTHR::G
II=NTHREGflI
IF(NCUUNT.GT.NCOLNO)NCOUNT=NODENO
lAPITE(6,32)(TLMF(II,J),J=NP;E4INCOUNT)

32 FORN4AT( 5A,t*t,2X,11(F8.3,4X)12X,14t,/)
33 CONTINUE

V4,ITE(E!,42)

4? l'OPIATF)(,126(t) )

V,C'ITE(1-;,43)(RA7NC1(J),J=NP2E4,NCCUNT)
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C
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47 FCRNAT(1,<,.tSPACINr,t,lj(F8.3,4X) ,//)
(NPEV=N0OU\04-1
rcOUNT7NCOJNT,10
IF(NCOUNT-107'END.LT.10) GO TO 11
EN1
rUNCTICN

FOACTIDN TO CETER'IINE INTERNODAL DISTANCES FOR EACH
NODE TJ EACH OF 4 AEIGH90 (C',? DOUNOARY)

CC4ION/CONDUCT/C0NO(400.01
Cc%I10N/NO) 0NTS/NCRUEL,INNOOES,NCOENO,NTHREG
CC; VON/SPACING/RADNOC(40),RADLIN(50),THESPAC
GC TO (1,2,3,4),N

C

C OUTSIDE FACE OF NUDE
C

IF(4.El.N3FUEL ) GO TI 20
1F(M.LD.INNO1ES) GO TO 20
IF(M.EQ.NOOLN0) GO TO 1C
CET9S=ATIJO(14-1)--2ADNOC('1)
cETURN

C

C ".3'IGHT SIDE FACE OF NCOF
C

2 IF(L.E1.1) GO TO 50
CiTdS=?4IN00(1)*THESPAC
4ETW;,'N

C

C INTO: FACE CF NODE
C

3 1F(m.EQ.1) GO TO 50
IF(m.E0.INNODES ) GO TO 60
IF(m.F.O.INNOOES+1) GO TO 60
GET9S=PA-Mo(Y1-:,,,AONCO(m-1)
;,ETU;7N

C

0

LEFT SIDE FACE OF RODE
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C
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4 NTH:='ES) GO TO 50

ar;?S=.?A'INOn(`.1)*THESPAC

29 CETS-mIOLIN(,14-1)-UCNOO(M)4ARACNOC(4+1)-PAOLIN(M+1))
f4CONI(L,4)/C314)(L,1+1)
FITU-TN

30 GET3S=?AOLIN(1+1)-ACNOC(1)
.;r-_TURA

50 (ITS=1.
;ETUr;'N

60 CETT3=q4)N10(M)-qA')Lik(M)+N'AOLIN(M1-ADNOO(M-1))
VCONO(L,)/CONCALO-1)
4FTUN
cNJ
FUNCTICN TEMPNEklIOUM,JCUM)

FUNCTION TO CALCULATE NC1AL TEMFERATURES

CC140N/TE1r3/ TEI;(40,43),TEF9LK,AREA(40,46,4)
CO'INION/01NOUOT/ CON0(40,40)
COAACN/TEAOLO/ CLOTEMP(40,40)
CC'lMON/,3ETA/ 1S(40,,,G,4),OK(40,40),VOLUME(40,40),BETA
COMMON/N093NTS/ NOFUEL,INNOOFS,NOCENOOTHRLG
EUITOP=7.

S':ILECT TEMPEATUP.: CF NEIGH9CRING NO07

CO 20 K=1,4
CC T1(1.4,1;,16,1?) ,K

14 IF(JOU1.c.O.N01:_NO) GO TO li
1P1PNB9=TEAP(IOL,JDUM41)
GC TO 19

15 IF(ICUM,E0.1) GO TO 2G
TEIPN30=1.."-.7AF(IlUM-1,JOUM)
rc TO 19

16 IF(VIU1sE0.1) GO TO 20
TE1FN9=TIP(IOUN,J00:1-1)
CC TO 19



17

1`1

20
C

C

C

IF(IDtPl.:Q.NTH.REG) GO TO 20
TEAPWIR=TE1Q(IDUN+1,JOUM)
CC TO lq

CCATINU
EW.ITLD=SUATCP+OONO(I0U1,JOUN)*AqEA(IuUM,JOU'l,K)*

ETE1PN6R/IS(IflUM,J7WM,K)
SUTIOT=3U130T+CCNO(TOU1,J)Um)*AREA(IOUNI,JOLPI,K)/

vES(IDUA,J)U4,K)
rONTINUE

CALCULATION CF TEMDEqATU?F

IP.IP(IOU1,10U11=(0K(L.Ait°,JflLM) -I'VOLUME(ICUm,JOU1)4
vSUATOP)/SU1POT

OVER ELAXATION OF TE1PEQATUkE

TE1F(19UA,JOU1)=ETA*Ti::MP(ICU1,JOLM)+(1-BETA)4
vaT3TE:NrI(ilUM,flUM)
IrMrNE14=TE:IP(IOUM,JOUM)
;ETU °N

ENO

87
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B.2 RFIND

RFIND is a simple geometrical program developed to

translate the points within the ratchet boundary coordinate

system, (p,(P), into the corresponding coordinate system for

the modeled conductivity systems, (r,0). The translation of

points is necessary to obtain a direct comparison of the

temperatures predicted by the different models.

Equations 2.1 and 2.2 from Chapter II are used to

generate the following radial and angular relationships

between the two coordinate systems:

2R = [p
2
+ d 2 2 pd cos4)]

A

0 = tan-1 [sin(1))/(cos(0 d/P)3

RFIND uses the same input as required by the other pro-

grams. A listing of RFIND is presented below.

3-1

B-2
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PROGRAM LISTING FOR RFIND



PF,OGRA1 PFINO (INPUT,OUTPUT,TAPE5,TAFE6)
Cr4;:NSION PAOLTN(0), ;',A3NCC(40), THELIN(5C),

vTHEN00(40)
CI1ENSIO9 R(-.O.4)),FhIOTH(4G,4L1
F1=3.14159265576

C

C INnUT

C

C

YEAD(5,26J3) NTHEG
PEr)(5,?001) NCFLEL
ACAD(5,1,j01) NrcL4n
;EAo(5,2001) A=Tia

cEA0(5,2131) EPS
PAP(5.?031) CONCOLL
PF4n(5,?001) CONOGAS
;FA3(5,23J1)
EIA9(::,2011) 7,7:MPULK

1.;CD(5,?300) AALLOWn
iFe40(5,?.0J1) l -3L;'4.)

PEAD(5,2)31) C9rCF'UE
FA:9(5,2391) SHIFT
;EArI(5t2j0t) ;-:FtIcLA

PE 47)(3,2101) GASw1TH
411(5,?j31) SOUr-J:E

2Jilj Fu,RHAT(1X,T4)
2001 PCMAT(1X,P12.R1

INNODES=NJFUNTHPFG*1
LINENO=N1PUPL+NOCLAO+NTHREG+?
NC3LNJ=N1PUEL.-NOCLAn+NTHRE54.1
1HE5PAC=PI/NTHEG
EIP=SHFT*GASh)TH
FtP,,LO=FIJEL4-1IFFE
4REAPO=PPRFUFLO*RFUELO/NOFUEL
;;INCLAr)=RPUELA+GaSWOTH
4RFACA,NCLA")*Pr7LAIRINCLAO*PINCLAD)*PI/NOCLAO
;A1LIN(1)=).

RAOIAL NO1F SDACINC;S

90



C

C
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rc 1. J=2,LINENIl
IF (J.GT.-'4)5U.L4-1.ANO.J.LE.NCPWEL+NTHREGI-1) GO TO 2
IF (.1.0 T. INUO,i'S) GO TO
hA (1)=3r1kT (J-1) 4AtE AF1/PI)
CC TO 4
ANGLE= ( JT1FUEL-1)"THESP AO THE3PAC/2.
riV)LIN (.1)=f S.:flT (2*DIFFECCS(ANGLE))"2441'(PFUELA*

)-24(DIFFER*COS (ANGLE) ) /2.
CC, TO

3 14A3LIN )1=30;;T( kINCLA.)**?#(JINNODES-1)4`AREACA/PI)
RA1NOO ( 1-1 )=NACLIN(J)fi;:ACLIN( 1-1 )1/2.

1 COATINUE
THE_LIN 111=J.

ANGULAR. NOCE. SPACINGS

CC 5 1=1,NTHPEC;
TF6:LIN(J4-1 )=THEL TN(J) + TI-E.SPAC
THENOO ( J) =(THELINC 11 +T'-if LIN (J+11 ) /2.

5 C CAT UE
C

C r-<A )IAL AN° ANGULAR COOROINATE TRANSLATIONS
C

1

C

C

C

CC 10 I=1 tNTHR7G
CO 10 1=1,101ENO
CS=COS THE10) (T ))
Sr=SIN ( THENOM) )
FNIOTH (I,J)=ATAN(Si4/(OSDIFFER/RACNOO )) ) )
ic (I, 1) =SQRT (RAJNCO(J) "24-)IFFER"2-241 ONOD (J)*

vCIFFE4C31
CC 41- INUE

OU TPtJT

NFREV= 1
I\ COUNT =10

31 CO 33 I=1 tNTHREG
IF ( NCOUNT .5T . NO ) NOOUNT=NODE.NO

( (R (I 1) .)=NPREV,NCOUNT)
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t,FITE:(6, 3?) (PHIOTHCI, Ji J=NPREV.NCCUNT)
3?_ FC?MAT(iX,10(FR.3,4X))
33 rCNTINIVi.

Nf-'),EV= NJCJIJNIT+ 1
NCCUNT=NCO'JNI#1.3
IF (NCOUNT-VU )ENO.LT.10 GO TO 31
EN1


