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PREFACE

Describing the historical background of the studies making

up this dissertation should help them stand together as a more

cohesive unit. My interest in competition and size structures

arose during my tenure on the research and development staff of

Champion International Corporation In western Montana. The

objective of one of my studies there was to describe how

competition from perennial grass altered the above-ground

structure of young ponderosa pine stands. To accomplish this,

frequency distributions of tree sizes were examined in stands

with and without competitors.

I found that interspecific competition had several effects

on stand structure (see Petersen 1988). Frequency distributions

were more positively skewed with competition (I.e. the tail of

the frequency distribution extended out to the right). More

Importantly, the increase in skewness could not simply be

explained by the slower average growth rate of trees when they

competed with grass. That is, when skewness of stands with and

without competitors was compared at equal mean sizes (at

different points in time), the differences in skewness

persisted. I thought this was significant because It Indicated

that competition models based on mean growth rates are not able

to describe aspects of stand structure that are of both

practical and theoretical importance.

I then asked what the biological basis might be for the



effects of competition on stand structure. One potential

explanation was based on the considerable genetic variation that

exists In ponderosa pine populations. Perhaps it was possible

that a few genotypes were less affected by competition than

others. If relatively infrequent genotypes were able to

maintain rapid growth rates in the face of competition, then the

skewed size distributions that were observed would be as

expected. This possibility was particularly interesting because

of the implications for progeny testing programs. Progeny

selected as having superior growth rates in competition-free

environments, as was the standard practice In tree Improvement

programs, may not be the most productive in the more realistic

conditions of operational plantations, where interspecific

competition is never completely eliminated.

I returned to graduate school with the goal of testing this

"genetic variation" explanation for the effects of competition

on stand structure. As I became more familiar with the

literature, my interests expanded to include alternative

hypotheses that have been suggested for size structure dynamics

in single-species stands. The one most often mentioned,

particularly in stands of trees, is asymmetric competition

(e.g. Ford 1975). I also became aware of the stochastic model

of size structure dynamics developed by the Japanese (Hara

1984). This suggested to me an alternative to asymmetric

competition for explaining skewed size structures. Rather than

competition causing a disproportionate suppression of small



individuals, neighborhood heterogeneity may cause variation in

growth of individuals of the same size, and this variation in

growth may lead to skewness.

With financial support provided by Mike Newton, I was able

to conduct several studies with Douglas-fir to evaluate the

above explanations for skewed size structures. Towards the

completion of these studies, the opportunity arose to spend a

year working at Northeast Forestry University in Harbin, China.

I was lucky enough to be able to work with Zhu Ning, a faculty

member at Northeast Forestry University. Professor Zhu is a

dedicated teacher of forest ecology who shares my interest in

studying plant competition. He arranged for resources to be

made available for a study with ash that further tested ideas

that arose from my work with Douglas-fir. The four studies

reported in this dissertation are the culmination of the above

events.
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DYNAMICS OF SIZE STRUCTURES: SIMULATION AND EXPERIMENTS IN

SEEDLING STANDS OF PSEUDOTSUGA MENZIESII AND FRAXINUS MANDSHURICA

I NTRODUCTI ON

Prior to the onset of self-thinning mortality, size

structures (frequency distributions of plant sizes) often become

positively skewed, with relatively few large Individuals and

many small ones. Koyama and Kira (1956) showed that variation

in relative growth rates can lead to skewed size structures. In

their work, skewness did not develop when all Individuals had

the same relative growth rate.

However, variation In relative growth rate does not always

cause skewing. In the special case of constant absolute growth

rate (i.e. relative growth rate decreases with size), skewness

will not change with time. Thus, there must not only be

variation in relative growth rate in the model of Koyama and

Kira (1956), but also variation in absolute growth rate, for

skewness to develop.

If variation in relative growth rate does exist in a

population, it may arise from one or both of two sources:

variation in the growth of plants with different sizes, or

variation in the growth of plants with the same size. The first

source of variation is described by the relationship between

initial size and growth rate (Har&s (1984) G(t,x) function).

The second source of variation in relative growth rate is
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described by the relationship between Initial size and

variance in growth rate ( Hara's (1984) D(t,x) function). Hara

(1984), Westoby (1982), and others have described what forms of

these relationships produce positive, negative, or no change in

skewness. The functions will be discussed in more detail later

in this thesis. They are the basis for the procedures I use to

test various hypotheses.

There are many possible biological causes for skewness, in

contrast to the above mathematical explanations for skewness.

Any factor that accentuates the variation in growth rates,

either of plants with the same Initial size or those with

different initial sizes, has the potential for contributing to

skewed size structures.

The objective of this thesis is to first determine to what

extent variation in relative growth rate is due to variation

among seedlings with the same or different sizes. Once this is

accomplished, it is possible to examine biological explanations

for the mathematical functions that are responsible for skewing.

It is not possible to determine the relative importance of

biological factors until it is known which of the two types of

variation in growth rates mathematically causes skewness. The

following "biological" explanations for skewness are evaluated

in this dissertation.

Asymmetric Competition. Competition is asymmetric when

large individuals suppress smaller ones but not vice versa.

Competition for light between individuals that have a vertical
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separation of their leaf area can most easily be visualized as

being asymmetric. In the models of Ford (1975), Schmitt et al.

(1987), and others, asymmetric competition leads to skewness

because mean relative growth rate is positively correlated with

size. The existence of this positive correlation has been used

as evidence that competition is asymmetric. Testing for the

existence of asymmetric competition by examining the

relationship between growth and size is a refinement of an

earlier test proposed by Turner and Rablnowltz (1983). They

suggested that if competition is asymmetric, maximum skewness

should occur at the highest stand densities.

ighborhood Heterogeneity. I propose that there are two

limitations to the above procedures for determining the causes

of skewed size structures: (1) factors other than asymmetric

competition may be density-dependent and therefore confounded

with any effects of such competition, and (2) skewness may

develop because of variation in the growth of individuals with

the same size even without a positive correlation between

relative growth rate and initial size. Hara (1984, 1988) has

mathematically described how variation in growth rates in

general can lead to skewness in size structures. Therefore,

examination of frequency distributions (as proposed by Turner

and Rabinowitz (1983)) or the relationship between relative

growth rate and size (as proposed by Schmitt et al. (1983)),

without considering the potential effects of variation among

individuals with the same size, may lead to erroneous
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conclusions about the importance of asymmetric competition.

Asymmetric competition may cause relative growth rates to be

positively correlated with size, but because variation among

individuals with the same size may also cause skewness, such

competition may be unimportant as a cause of skewness.

One of many possible sources of variation in the growth of

individuals with the same initial size is neighborhood

heterogeneity due to the spatial arrangement of competitors.

Particularly in young seedling stands, not all individuals of

the same size will have the same number neighbors that are

competitors. Therefore, such neighborhood heterogeneity may

cause variation in growth rates of individuals with the same

size, and thus lead to skewed size structures.

Maternal Heterogeneity. Individuals with different maternal

parents may have different growth rates, either because of

genotypic differences or because of environmental effects on the

seed produced by different parents. Maternal effects, either

genetic or environmental, could lead to skewness by two

processes: (1) siblings within some families may have greater

mean relative growth rates, leading to a positive correlation

between growth and size (just as in the case of asymmetric

competition models of Ford (1975) and Schmitt et al. (1987)), or

(2) maternal heterogeneity may cause variation in the growth of

individuals of the same size leading to skewness as described by

Hara (1984).

The study described in Chapter One simulates plant growth
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when the only sources of variation in rates are initial size

and the number of competitors. Competition between individuals

of different size is not asymmetric in this simulation. I

expected that neighborhood heterogeneity would be density

dependent. If density is so low that plants do not compete,

neighborhood heterogeneity will not be a source of variable

plant growth rates. I predicted that as density increases, so

would the variance in growth rate of Individuals with the same

Initial size. Therefore, skewness was expected to Increase with

density because of neighborhood heterogeneity, even though

competition was not asymmetric. If this were the case, It would

demonstrate the potential confounding between density-dependent

factors that can cause skewness in size structures.

Chapter Two compares growth functions and size structures in

Pseudotsuga menziesii seedling stands when spatial arrangement

is either uniform or random. Size structures were expected to

be more skewed when spatial arrangement was random because of

the greater neighborhood heterogeneity. Chapter Two also

includes an analysis of the Gini coefficient, a measure of size

inequality. Simulations are conducted to determine whether the

Gini coefficient responds to the growth variability in a manner

similar to the skewness coefficient.

Chapter Three compares size structures at different

densities in seedling stands of Fraxinus mandshurica. Growth

rates of individual seedlings were measured so that the growth

functions regulating the dynamics of size structures could be



quantified. Vertical distributions of leaf area and light are

described to determine whether there exists a physical basis for

asymmetric competition. The traditional model of asymmetric

competition, in which relative growth rates become correlated

with size, is evaluated as an explanation for the effects of

density on skewness and inequality.

Chapter Four attempts to accomplish two objectives. First,

the mathematical basis for skewness and inequality in

Pseudotsuga menziesii stands is determined. The goal was to

attribute increases in skewness and inequality during the second

growing season to either a positive correlation between relative

growth rate and initial size, or to variance In growth rate of

individuals of the the same size. The second objective was to

describe the underlying biological basis for the mathematical

functions that cause skewness. The relative importance of

maternal parent and available space are examined in stands in

which the exact location and maternal parent of each Individual

is known.



EVALUATING THE DEVELOPMENT OF SIZE HIERARCHIES IN

DENSITY-DEPENDENT PLANT GROWTH BY ANALYZING

NEI GHBORH000 HETEROGENEITY

SUMMARY

Although previous research has shown that one-sided

competition can cause positively skewed size distribution (many

small individuals and relatively few large ones) In density-

dependent plant growth, neighborhood heterogeneity can also

cause such skewness. In the model presented, competition is not

one-sided and the only source of variation in the growth of

plants with the same initial mass is the number of neighbors

competing for resources. Neighborhood heterogeneity caused

variation in the growth of these plants, changing distributions

from normal to positively skewed as the plants grew. Positive

skewness was highest at intermediate stand densities.

Experiments that test for one-sided competition by comparing

size distributions at different densities are Inconclusive

because of potential confounding between one-sided competition

and density-dependent neighborhood heterogeneity.

7



INTRODUCTION

In many plant species, the size of a plant relative to other

members of the stand determines its fecundity, probability of

mortality, and biomass production (Harper 1977). Thus,

frequency distributions of plant mass can be useful for studies

in plant demography and the culture of crop plants. Before

self-thinning mortality occurs, such frequency distributions in

even-aged, monospecific stands are often positively skewed, with

many small plants and relatively few large ones (Bazzaz &

Harper, 1976; Ford, 1975; Gates
.
nj., 1983; Naylor, 1976;

Obeid j., 1967; Wailer, 1985). Since the initial work of

Koyama and Kira (1956), there have been numerous studies that

show competition can cause positive skewness. One-sided

competition, in which large plants suppress small ones (but not

vice versa) has often been considered to be a primary cause of

positive skewness (Ford, 1975; Obeid
.
j., 1967; Schmitt

j., 1987; Firbank & Watkinson, 1985; Weiner, 1985).

Experimental methods for testing the one-sided competition

model, however, have not always been clearly defined. Turner

and Rabinowitz (1983) proposed that a critical test requires a

comparison of frequency distributions of plant mass in even-aged

monocultures grown at different densities. If one-sided

competition is important, stands at high density should have

greater skewness than low-density stands of the same mean mass.

Weiner and Thomas (1986) reviewed 16 density experiments and

8



found that skewness increased with density In 14 of them. They

cited these findings as evidence to support the one-sided

competition model. Such density tests must assume, however,

that one-sided competition is not confounded with other factors

that are also density dependent and capable of causing skewness.

In this study, I examined an alternative to one-sided

competition as an explanation for the relationship between plant

density and skewness. If density is so low that ecological

neighborhoods (Antonovics & Levin, 1980) do not overlap,

variation in the number of neighbors will not cause plants with

the same mass to grow at different rates. As density increases,

and competition for limited resources occurs, not all plants

with the same mass will have identical neighborhoods and there

will be variance in growth caused by neighborhood heterogeneity.

Previous models have demonstrated that variance in growth of

Individuals with the same mass can generate positive skewness if

the variance in absolute growth rate is correlated with size

(Aikman & Watkinson, 1980; Ford & Diggle, 1981; Hara, 1984;

Koyama & Kira, 1956). Thus, differences in frequency

distributions of stands with different densities may be caused

by neighborhood heterogeneity, by one-sided competition, or

both.

I believe it is not just the variance in growth rates of

plants with the same sizes, but rather the distribution of such

growth rates, that determines the degree of skewing. That is,

two populations may have equal variance in relative growth rate,

9



but still have different size distributions at the end of the

growth period, if the populations vary in the skewness of the

relative growth rate distribution. It is possible to

demonstrate with simple simulations (not reported in this

thesis) that the skewness of the relative growth rate

distribution can influence the skewness of the resulting size

distributions. In particular, as relative growth rates became

more positively skewed, so did the size distributions in the

comparisons I made. Increasing skewness of size distributions

with increasing skewness of relative growth rate distributions

Intuitively makes sense because an Increasingly smaller

percentage of plants of each size would have fast growth rates,

and thus an increasingly smaller percentage of plants would be

of large size at the end of the growth period. However, the

generality of this prediction is not evaluated in this thesis.

Results from two studies of coniferous trees suggest that

neighborhood heterogeneity may be involved in causing skewness

of size distributions. First, in the absence of one-sided

competition, variance in the growth of ponderosa pines (Inus

ponderosa Dougi.) with the same mass caused skewed frequency

distributions to develop (Petersen, 1988). (A similar pattern

was observed in herbaceous plants (Hara, 1984)). Second, stands

of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), which

were planted in different spatial arrangements, but had the same

stand density, developed size distributions with different

degrees of skewness (see Chapter 2 of this dissertation). Thus,

10
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neighborhood heterogeneity can be sufficient to cause skewness,

even if one-sided competition does not exist.

This study simulates plant growth over a wide range of stand

densities with no mortality or one-sided competition. The only

source of variation in growth of plants with the same mass is

the number of neighbors with overlapping neighborhood areas. I

thereby examine the potential for neighborhood heterogeneity

that is density-dependent to cause skewed frequency

distributions.



MODEL FORMULATION

Assuptions and Hypotheses

Suppose there are N plants of the same genotype and age

growing in a uniform environment of unit area. Individuals are

randomly located within this area, and the only source of

variation in the growth of plants with the same mass is the

number of neighbors that compete for resources. There is no

mortality or recruitment of new Individuals.

Assume the ecological neighborhood of a plant Is circular

and a function of mass:

r = k w, (1)

where r is the radius of the neighborhood area, w is plant

mass, and k is a constant of proportionality. Growth is not

affected by other plants utilizing environmental resources from

outside the area defined by r.

Previous simulations have modeled neighborhood area as being

independent of plant size or, more commonly, as an exponential

function of size. I did not examine how these various forms of

Egn. (1) affects the outcome of the simulations. In my model,

with the number of neighbors being a constant proportion of

plant size, larger plants will have more neighbors on the

average than smaller ones. Other forms of Eqn. (1) could

produce the same number of neighbors for plants of all sizes

(e.g. when neighborhood area is constant), or even less

11



where g is relative growth rate, n is number of neighbors with

overlapping neighborhood areas, g is relative growth rate when

n = 0, and c is a decay constant. Because Equation (2) does not

include the relative size of target plants and competitors, one-

sided competition is not present in the model. Equation (2)

fits the concave form of data on plant mass and Indices of

crowding often observed in plant populations (Silander and

Pacala, 1985; Weiner, 1982). It is also analogous to models

developed to describe mean yield-density relationships as

suggested by the reciprocal yield law (Holllday, 1960; KIra et

al., 1953; Willey & Heath, 1969).

Because spatial arrangement is random, n is distributed as a

Poisson variable with = N1r2, where N is stand density. For a

given N, ij > if w1 > Wj, and the reduction in ' caused by

competition will be greater for plants with more mass.

Therefore, g does not become positively correlated with mass as

N increases, as when one-sided competition causes positive

skewness (Ford, 1975; Petersen & Newton, manuscript in review).

In the absence of both mortality and a positive correlation

between relative growth rate and mass, any positive skewness

that develops must be caused by the stochastic effects of

neighborhood heterogeneity on the growth of individuals with the

same mass.

12



Simulation

The simulation involved generating 1000 random deviates,

representing the mass of "target" plants at time t, from a

normal distribution with p. = 5 and a = 1. Target plants were

located at the center of a square of unit area. For each plant,

I randomly assigned coordinates for N potential neighbors per

unit area. The mass of each neighbor was generated from the

same distribution as the target plants. Parameter values In

Equations (1) and (2) were k = 0.05, c = 1, and g = 0.5, 1.0,

1.5, and 2. N ranged from 5 to 230 at Intervals of 25. The

small value of k eliminated the potential edge effect of the

square area. For each combination of parameters, the simulation

was repeated ten times.

Neighborhood area for each target plant and the N potential

neighbors using Equation (1) were calculated. The number of

competitors, n, for each plant was then determined based on the

intersection of neighborhood areas; g was calculated for each

target plant as In Equation (2). Wt and g were used to

calculate absolute growth rate and mass at the end of one growth

interval, Wt+i. Asymmetry of frequency distributions of Wt+1

was measured by the skewness coefficient, which was calculated

as the scaled third product moment about the mean. Other

statistics, such as the coefficient of variation and the Gini

coefficient, have been used to characterize size distributions

in plant populations (Weiner & Thomas, 1986). Under certain

13



conditions, these statistics may have more ecological

significance than the skewness coefficient (Weiner & Soibrig,

1984). However, In this study the analysis is restricted to the

skewness coefficient.

For g = 2, the mean, variance, and skewness of growth rates

of Individuals within class intervals of one unit mass were

calculated.

14



DEPENDENCE OF FREQUENCY DISTRIBUTIONS AND

PLANT GROWTH RATE ON DENSITY

As expected, the mean mass-density relationships (Fig.1.1A)

were concave to the axis of density. The skewness of frequency

distributions of plant mass at the end of the growth interval

depended on density and the maximum growth rate without

competition (Fig. 1.1B). At the lowest density, where N = 5,

the skewness coefficient remained near 0, as In the original

normal distribution. Positive skewness developed as density

Increased, and reached Its maximum at an Intermediate density.

It then declined to 0 as density continued to increase. When

maximum relative growth rate with no competition, g, was

greater, the skewness coefficient increased and the peak

occurred at a higher density. Maximum skewness roughly

corresponded to the inflection points of the mean mass-density

relationships.

Mean growth rate decreased with density as plants had more

neighbors with overlapping neighborhood areas (Fig. l.2A). The

relationship between growth rate and initial mass was linear or

slightly convex at all densities. Variance in growth rate of

plants with the same initial mass was also dependent on stand

density, with the maximum variance occurring at a relatively low

density (Fig. 1.2B). While variance Is often proportional to

size, the simulation produced an Interaction between the effects

of density and mass on variance (Fig. 1.2B). The maximum
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variance when g 2.0 occurred at a lower density (N = 30) than

that when skewness was greatest (N 105).

Density also influenced the skewness of growth rates of

plants with the same mass (Fig. 1.3). At the lowest stand

density (N = 5), frequency distributions of growth rates within

class intervals were negatively skewed because most plants of a

given mass had relatively few competitors and thus maintained

high growth rates. At higher densities, when most plants had

many competitors, the situation was reversed and the frequency

distributions of growth rates became positively skewed. As

pointed out In the Introduction, I believe such skewness in

relative growth rates contributed to the skewness in size

distributions, though I have not proven mathematically that this

will always be the case.



DISCUSSION

The simulations indicate that density has four effects on

size distributions when spatial pattern is random. These are as

follows: (1) Variance in growth of plants with the same mass, as

a result of neighborhood heterogeneity, declined after reaching

a peak at a low density. As the variance decreases, the

increase in skewness as plants grow is less, as shown by Hara

(1984). Thus, the results suggest that neighborhood

heterogeneity was a more important cause of skewness at lower

densities than at higher ones. (2) In the absence of one-sided

competition, the relationship between mass and growth rate was

linear or convex to the axis of mass. Linear and convex

functions increase the mean and variance with time, but do not

generate positive skewness (Hara, 1984; Westoby, 1982). (3) The

slope of the relationship between mass and growth rate decreased

with increasing density. A smaller slope indicates less of a

difference between small and large plants in their mean growth

rates. Therefore, a decrease in slope would tend to cause less

of an increase in skewness. (4) Growth rates of plants with the

same mass become positively skewed as density increases. In

contrast to the first three effects, this one would promote more

positive skewness at higher densities.

These results indicate that the coefficient of variation is

a key parameter in evaluating the mathematical basis for

skewness. The effects of density on both the mean and variance in
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growth rates of plants with the same size are reflected in the

coefficient of variation. Because the coefficient of variation

incorporates both a measure of the mean and variance, it may be

the most useful statistic for evaluating the dynamics of size

structures.

Density-dependent neighborhood heterogeneity had multiple

effects on growth functions that regulate the development of

size distributions. Some of these effects promote, and others

inhibit, skewness. Given the conditions of my model (e.g., no

one-sided competition or sources of variable plant growth other

than neighborhood heterogeneity), the net effect is maximum

skewness at intermediate densities.

The objective of this work was to answer a question with

computer simulations that I found impossible to answer with a

mathematical proof: "Does the variance In the number of

neighbors of plants with the same size change with density such

that skewed size distributions develop?". I wanted to answer

this question in general, and not specifically for a given age,

species, or environment. It is interesting, however, to note

that maximum skewness at intermediate densities, as in the

simulations, does not agree with experimental studies in which

the maximum occurs at highest stand densities (Ford, 1975;

Hawthorn and Cavers, 1982; Jack, 1971; Naylor, 1976; Obeid

et al., 1967). There are several possible explanations for this

result. First, the range of densities in experimental studies

may not have been sufficiently high that skewness decreases



19

after reaching a maximum (i.e. beyond the inflection point of

the mean mass-density relationship). This seems unlikely

because many studies have included very dense stands. A more

probable explanation is that other factors cause skewness at

high densities where the effects of neighborhood heterogeneity

become negligible. It is also possible that the high densities

used in this study are not biologically realistic.

Comparison of my simulation with those density experiments

cited In the previous paragraph therefore suggests that stand

structure is a product of several processes. The relative

importance of any one process likely depends on stand density.

As the effect of neighborhood heterogeneity becomes increasingly

less important at high densities, other processes such as one-

sided competition, might become relatively more important. The

net effect could then be a monotonic increase in skewness with

density, as previously observed (Ford, 1985; Hawthorn and Cavers

1982; Jack, 1971; Naylor, 1976; Obeid et al., 1967). To evaluate

this prediction, it would be useful to calibrate the simulation

such that distances among neighbors, neighborhood areas, and the

number of neighbors match known empirical data for a species of

a given age.

The simulation only examined changes in skewness during one

growth interval. Until mortality begins, the patterns observed

would continue in future growth intervals, as long as the growth

functions determined by Equation (2) are stable.

This simulation has several implications for experimental
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studies designed to evaluate the relative importance of one-

sided competition in determining stand structure. The

simulations suggest that comparing skewness of stands at

different densities is inconclusive because factors other than

one-sided competition may also be density-dependent. If spatial

arrangement is not uniform, neighborhood heterogeneity may cause

skewness to increase with density by affecting the growth of

plants with the same initial mass. If this is the case,

positive skewness may be attributed to one-sided competition

when variation in the spatial arrangement of neighbors is the

primary cause.

Schmitt et al. (1987) pointed out that analyzing the

relationship between growth rate and initial mass provides a

less ambiguous test for the existence of one-sided competition

than does analysis of skewness of size distributions. On the

basis of the simulation results, I suggest that analysis of

the variance In plant growth will also help clarify the relative

importance of processes determining stand structure.
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DENSITY PER UNIT AREA

Figure 1.1. Mean (A) and skewness coefficient (B) for plant mass
in computer-simulated stands at the end of one growth interval,
time t+l, in relation to the density of plants per unit area.
Data points are means of ten simulations, each with 1000
observations. Frequency distribution of mass at the beginning
of the interval was normal with p = 5 and a = 1. Data are for
four values of maximum relative growth rate without competition,
gm, in the equation g = g / (1 + n), where g is relative growth
rate with competition and n is the number of neighbors with
overlapping neighborhood areas.
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Figure 1.2. Mean absolute growth rate (A) and variance in
absolute growth rate (B) in relation to initial mass at time t
and the density of plants per unit area. Data points are means
of ten simulations, each with 1000 observations. Data are for a
maximum relative growth rate without competition, g, of 2 in
the equation g = g I (1 + n), where g is relative growth rate
with competition and n is the number of neighbors with
overlapping neighborhood areas.
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GENESIS OF SIZE HIERARCHIES IN

DOUGLAS-FIR (PSEUDOTSUGA MENZIESII) BY ONE-SIDED COMPETITION:

EFFECT OF SEEDLING SPACING

SUMMARY

Two explanations for the development of size hierarchies in

stands of Pseudotsuga menzieii seedlings were evaluated: (1)

one-sided competition causes absolute growth rates to be

disproportionate to initial mass, and (2) variation in available

space per seedling causes Individuals with the same mass to have

different growth rates. Seedlings were established in random or

hexagonal arrangements at a total density of 400 m2. Mean

growth from 46 wks to 58 wks after planting was directly

proportional to initial mass at 46 wks in the random

arrangement. In the hexagonal arrangement, the relationship

between growth and mass was nonlinear and could be described by

a second-order polynomial concave to the axis of initial mass.

Skewness and Inequality of frequency distributions of seedling

mass in both arrangements were accentuated by variance in growth

of seedlings with the same initial mass. Analysis of

individual-plant growth provides a less ambiguous test of the

one-sided competition model of size hierarchies than analysis

based solely on frequency distributions of plant sizes.

Keywords: frequency distributions--stand structure--

skewness--mass inequality.
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I NTRODIJCTI ON

Before self-thinning begins, frequency distributions of

plant mass often increase in asymmetry with time (Koyama and

Kira 1956; Obeid et al. 1967; Ford 1975; Bazzaz and Harper 1976;

Naylor 1976; Gates et al. 1983; Wailer 1985). One factor often

suggested as causing, or at least accentuating, asymmetry is

competition described as asymmetric (Naylor 1976; Begon 1984;

Huston and DeAngelis 1987), one-sided (Ford 1975; Ford and

Diggle 1981; Cannell et al. 1984; Firbank and Watkinson 1985),

dominance and suppression (Turner and Rabinowitz 1983; Weiner

1985; Schmitt et al. 1986), or resource pre-ernption (Weiner and

Thomas 1986). Larger individuals are thought to suppress small

neighbors by preempting a disproportionate share of resources.

Absolute growth rates become disproportionate to mass, and

relative growth rates become positively correlated with mass.

Asymmetric frequency distributions of plant mass result that

reflect a hierarchy of dominance and suppression (White and

Harper 1970).

Begon (1984) has suggested that size hierarchies result from

a more general phenomenon: individuals that are fittest (as

measured by ize) before intraspecific competition are least

affected by it, and the least fit plants are most affected. A

plant has longer to accumulate mass before competing for

resources if it emerges earlier or is more distant from its

neighbors. The one-sided competition model predicts that
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variation in spatial arrangement or time of emergence will

accentuate differences in mass that are established early,

producing a more hierarchical stand structure (Watkinson et al.

1983).

Theoretical and empirical evidence indicate that variation

in growth of plants with the same initial mass can also

accentuate asymmetry (Koyama and Kira 1956; Ford and Diggle

1981; Hara 1984). Hara (1984) developed a model of stand

dynamics that included a mortality function and two

"distribution-modifying" growth functions: (1) a deterministic

function describing the relation between growth and initial

mass, and (2) a stochastic function describing the relation

between variance in growth and initial mass.

This study evaluates spatial arrangement as a determinant of

intensity of one-sided competition and, consequently, the

asymmetry and inequality of frequency distributions of plant

mass. I first model one-sided competition using Hara's (1984)

distribution-modifying functions. I then compare predictions

from these simulations to results from experimental stands of

seedlings of Pseudotsuga menziesii (Mirb.) Franco with constant

total density but different spatial arrangements.

The hypothesis I test in this study has two parts: (1)

frequency distributions of plant mass are more hierarchical when

spatial pattern is random, and (2) greater asymmetric

suppression of small plants by large ones is the reason for

more skewness in random arrangements. The criterion for testing

29



these predictions are described in detail in the following

sections.

Distribution-modifying functions and size hierarchies

Westoby (1982) and Hara (1984) have shown that asymmetry of

size distributions changes with time and distributions remain

unimodal when the relationship between Initial mass (w1) and

absolute growth rate (dw/dt) is described by a second-order

polynomial with respect to w1:

dw/dt = 1 + 02w1 + 03w12 (1)

or, in terms of relative growth rates, when

(1/w1)s(dw/dt) = 131/wi + 2 + 133w. (2)

These distribution-modifying functions are deterministic, since

they do not account for variation in growth of plants with the

same initial mass. If and 133 are positive, Eq. (1) is

concave to the axis of w1, and positive skewness is generated as

the relative frequency of small plants increases with time. If

133 = 0, dw/dt is a linear function of wj. When such a linear

relationship exists, and if there is no variance in the growth

of plants with the same mass, the mean and variance of the

distribution increase but the degree of asymmetry remains

constant (Westoby 1982).

The stochastic function that modifies distributions
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describes the relationship between the variance in growth rate

and initial mass. If the variance in absolute growth rate is

proportional to w1, such that

cr2 (dw/dt) = k w1, (3)

skewness will increase as plants grow, even if 133 = 0 and dw/dt

Is a linear function of w (Hara 1984). Equation (3) can be

restated in terms of relative growth rates as

a2 (1/wi dw/dt) = k (1/w1), (4)

since a2(cx) = c2a2(x), where c Is a constant (Neter and

Wasserman 1974). Differences among populations in the asymmetry

of their frequency distributions can be attributed to the value

of k if Eqs. (1) and (2) are the same for each population

(assuming mortality functions are the same and distributions are

identical at the beginning of the growth period).

Different combinations of the deterministic and stochastic

functions may generate Identical frequency distributions of

plant mass. However, the functions probably represent quite

different ecological processes. One-sided competition generates

size hierarchies by making mean absolute growth rate

disproportionate to mass and mean relative growth rate

positively correlated with mass (Ford 1975). Relative growth

rate of large plants may also be reduced by competition, but the

traditional model of one-sided competition (Ford 1975) states

that the reduction is less for large plants than for small ones.



One-sided competition is therefore expressed in the

deterministic function (Eqs. (1) and (2)). In contrast, size

hierarchies generated by variance in growth of plants with the

same mass at the beginning of a growth period (Eqs (3) and (4))

result from environmental or genetic heterogeneity. Such size

hierarchies cannot be considered evidence for one-sided

suppression of small plants by large ones causing a positive

correlation between relative growth rate and mass. It is

impossible to infer which process has operated within a

population from frequency distributions of plant mass.

Conclusive demonstration that the Intensity of one-sided

competition causes differences in size hierarchies requires two

conditions: (.1) a difference in the deterministic function,

reflecting greater suppression of small plants in populations

with more asymmetric distributions and (2) constant stochastic

effects of the second distribution-modifying function (as

measured by the value of k in Eq. (3)). The Importance of one-

sided competition may be estimated incorrectly if evaluated on

the basis of frequency distributions or a single distribution-

modifying function.
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METHODS

Experimental Design

Seedlings of . menziesii were grown in an outdoor frame at

the Forestry Sciences Laboratory of the U.S. Forest Service at

Oregon STate University, Corvallis. The frame (0.8 m x 1.6 m x

15 m) was filled with a local forest soil. Seedlings were grown

from seed from four mature trees in a stand of Douglas-fir 50 km

west of Corvallis. Progeny from each tree were at least half-

siblings (only the maternal parent In common), but since the

pollen source was unknown, some individuals from each family may

have been full siblings. Eight hundred seed (200 from each

family) were dried and individually weighed to the nearest 0.01

mg to determine the frequency distribution of seed mass.

Seeds were sown In two spatial arrangements on May 24and

25, 1986: (1) random, in which planting spots corresponded to

Cartesian coordinates selected with a random number generator,

or (2) hexagonal, in which each Individual had six equidistant

first-order neighbors 5 cm away, 12 second-order neighbors 10 cm

away, and so on. Planting spots (400 m2) were marked using a

template with the proper coordinates. An equal proportion of

the planting spots within each replication was assigned to each

of the four families.

Each arrangement was randomly assigned to six 75- x 140-cm

plots. Seeds were stratified before planting by soaking in
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water for 24 hrs and cold storage at 20C for 4 wks. Three seeds

were sown at each spot to increase the probability that at least

one seedling would emerge. If more than one seedling emerged,

those further from the marked spot were removed within three

days of emergence. Most seedlings emerged within 2 weeks of

planting, but some emerged up to 5 weeks later. At 1.3% of the

planting spots, no seedling emerged within 6 weeks of planting.

Seedlings planted adjacent to the experimental plots and from

the same family as the missing ones were transplanted where

seedlings failed to emerge. Transplanted seedlings and those in

a 10-cm border of each plot were excluded from analysis. Plots

were watered during dry periods throughout the experiment;

seedlings were fertilized with a complete nutrient solution

every 10 to 14 days during spring and summer.

Stem height and diameter of all seedlings were measured

approximately 46 wks after planting. At this time, seedlings in

one plot of each arrangement were harvested at ground level,

dried at 65°C for 72 h, and individually weighed. Data from

these seedlings were used to determine the allometric

relationship between above-ground dry mass, seedling height, and

basal stem diameter. The arrangements did not differ

significantly (P > 0.50) in estimated coefficients of the

allometric equations, so the data were pooled and seedling mass

at 46 weeks (w1) was predicted from height (h) and stem diameter

(d) by the following equation (r2 = 0.88):
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ln(w1) = -5.79 + 1.14 ln(h) + 0.88 ln(d). (5)

Approximately 58 weeks after planting, the seedlings in the

remaining five plots of each arrangement were harvested, dried,

and individually weighed. This was at the end of the period of

active height growth, but earlier than originally planned. Some

seedlings (<1%) were beginning to show symptoms of disease at 58

wks, and the decision was made to terminate the study early,

rather than risk the potential for widespread disease. Absolute

and relative growth rates of individual seedlings were

calculated using predicted mass at 46 weeks from Eq. (5) and

measured mass at 58 weeks. The final data set contained data

from 1335 seedlings in the random arrangement and 1305 in the

hexagonal.

To determine whether competition had reduced growth, I

compared mean mass at 58 weeks to the mean mass of 120 seedlings

(30 per family) that had been planted next to the plots at a 10-

x 10-cm spacing. While not low enough to ensure total lack of

competition, stand density was considerably lower than in the

experimental plots.

Simulation

To simulate plant growth and evaluate the effects of the

distribution-modifying functions on statistics describing

frequency distributions of plant mass, random deviates

(representing wj) were generated from a normal distribution with
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= 5 and = 1. Relative growth rates for each w were then

generated from a normal distribution, with mean and variance as

in Eqs. (2) and (4). Absence of one-sided competition was

simulated by setting = 0, 62 = 2.0, and 63 = 0 (i.e., all

individuals had a relative growth rate of 2.0). One-sided

competition was simulated by making relative growth rate a

positive linear function of initial mass (i.e., only 6i 0 in

Eq. (2)). The slope of the relationship, l3, was calculated for

each intercept value, I2 such that relative growth rate for the

largest individual was constant at 2.0. The simulation

therefore represented extreme one-sided competition, In which

the growth rates of the largest plants are unaffected by

competition.

I modeled one-sided competition in this manner because my

objective was to compare the relative importance of two causes

of skewness: (1) one-sided competition that increases the slope

of the RGR*SIZe relationship, and (2) variation In growth of

plants with the same size. By maintaining a constant RGR for

the largest plants, the simulation maximized the effect of one-

sided competition on skewing because the slope of the RGR*size

relationship would be the maximum possible. In real stands, it

is likely that the mean growth rates of large plants would also

be reduced by competition and, therefore, the slope of the

RGR*size relationship would be less than in the simulations.

Thus, if increasing the intensity of one-sided competition in

the simulations (i.e. increasing the slope of the RGR*size
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relationship) has relatively little effect on the degree of

skewing, the effect of such competition would be expected to be

even less in real stands.

Values of 82 ranged from 2.0 (absence of one-sided

competition) to 0.75 (most intense one-sided competition).

Values of k were 0, 0.3, and 0.6. When k = 0, growth rate is

completely determined by the initial mass of an individual. As

k increases, variance in growth of individuals with the same

initial mass increases. For each combination of 82, 83, and k,

the simulation was repeated ten time with distributions

containing 1000 values.

Skewness and Gini coefficients were calculated for

distributions generated by the functions at the end of one

growth interval. The skewness coefficient, g3, was calculated

as the scaled third product moment about the mean:

n
g3 = n/(n - 1)(n - 2) ! -

m=1 (6)

where n is the number of plants, Wm is mass of plant m at the

end of the growth interval, w is mean mass, and s is the

standard deviation. Weiner and Solbrig (1984) criticized use of

the skewness coefficient for ecological studies of frequency

distributions because of its insensitivity to absolute plant

mass. They suggested instead using the Gini coefficient, G, a

measure of mass inequality. I calculated G as

G 1 ! (21 - n - 1)
2 n (n - 1) m=1

n

(7)
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where the Wm are sorted from smallest to largest, and i is the

ordered rank (Glasser 1962; Dixon et al. 1987). The theoretical

range of G is 0 (complete equality of mass) to 1 (all mass

concentrated in one individual).

Analysis

The Weibull distribution (Weibull 1951) was fitted to the

seed and seedling data by the formula

-c c-i c
f(w) cb w exp(-(w/b) ),

where f(w) is the frequency of individuals with mass w, and b

and c are parameters defining the shape and scale of the

distribution. The Weibull approximates a normal distribution

when c = 3.6 (Bailey and Dell 1973). Distributions are

positively skewed when c < 3.6 and negatively skewed when c >

3.6. The Weibull function cannot describe the bimodal

distributions that occur in some plant populations (Ford and

Newbould 1970; Ford 1975; Mohier et al. 1978; West and Borough

1983). However, there was no indication of bimodality in my

data (as judged by visual inspection of frequency

distributions). The Kolmogorov-Smirnov one-sample test for

goodness-of-fit was conducted using estimated Weibull

parameters. Other distributions fit the data, but the Weibull

distribution consistently provided the best fit.

(8)

38



The Gini and skewness coefficients for seed and seedling

mass were calculated, and confidence intervals for each

coefficient were determined by the bootstrap technique (Diaconis

and Efron 1983). In this technique, each statistic is

calculated for 1000 samples randomly taken from the original

data with replacement, with sample size equal to the original

number of seedlings in each arrangement. Confidence intervals

are based on the distribution of the statistic calculated for

each of the 1000 bootstrapped samples. Dixon et al. (1987)

concluded that this method gives confidence levels for the Gini

coefficient very close to stated values when sample sizes are

large (n > 100).

The distribution-modifying functions describing the relation

between growth and mass (Eqs. (1) and (2)) were fitted to the

individual seedling growth data. Weighted least-squares

regression was used to correct for heteroscedasticity (Neter and

Wasserman 1974), as previously done with tree growth data by

West (1980). The stochastic functions (Eqs. (3) and (4))

describing the relationship between mass and variance in growth

at 46 weeks were estimated by calculating the variance in growth

among seedlings within 0.5 g class intervals. Before estimating

regression coefficients, I weighted the variance estimates by

the frequency of seedlings within each class interval.
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RESULTS

Simulation plant Growth

Plant growth did not change skewness when 83 = 0 (relative

growth rate independent of mass, absolute growth rate a linear

function of Initial mass) and k = 0 (no variance in the growth

of individuals with the same initial mass) (Fig. 2.la).

Skewness became more positive when k or 8 increased; variance

in growth could generate size hierarchies even if all plants had

the same mean relative growth rate (k > 0 and 83 = 0). The Gini

coefficient (Fig. 2.lb) responded in a manner similar to

skewness (Fig. 2.i.a); as variance in growth increased, the

effect of one-sided competition, as measured by 83, on skewness

and inequality was reduced. Frequency distributions with equal

values of inequality and skewness may be produced with different

combinations of coefficients for the deterministic and

stochastic distribution-modifying functions.

Comparison Qj Fxperlmenta]. Predicted Values

The frequency distribution of seed mass was asymmetric, with

relatively more large than small seeds (Fig 2.2a). However,

seedling mass 46 weeks after planting was asymmetric in the

other direction, with relatively more small seedlings than large

(Figs. 2.2b and 2.2c). The Weibull function provided a good fit
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to the frequency distributions of both seed and seedling mass

(Kolmogorov-Smirnov test, P > 0.99). The skewness coefficient

of seed mass was negative (Table 2.1). seedling mass was

positively skewed after 46 weeks and became more so after 58

weeks. Inequality of mass, as measured by the Gini coefficient,

also increased with time in both arrangements. Inequality and

skewness of seedling mass did not differ (P > 0.05) between the

two arrangements at 46 weeks but did differ after 58 weeks, when

both coefficients were greater in the hexagonal arrangement.

Competition significantly reduced the mean biomass of seedlings

in both high-density spatial patterns, as shown by the larger

mean mass of seedlings planted at low density (Table 2.1).

In the random arrangement, the quadratic term in Eq. (1) was

not significant (P = 0.86) and growth and mass were related

linearly (Fig 2.3a). Because absolute growth rate was

proportional to mass, the deterministic function did not cause

skewness or inequality to increase with time. In the hexagonal

arrangement, in contrast, the quadratic term was significant (P

= 0.007) and the function was concave to the axis of initial

mass (Fig. 2.3a). The significant quadratic term indicates that

mean growth was disproportionate to initial mass. Therefore,

the relationship between growth and mass at 46 weeks contributed

to the increase in skewness and inequality in the hexagonal

arrangement.

Relative growth rate was inversely related to mass in the

random arrangement (Fig. 2.3b). In the hexagonal arrangement,
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there was relatively little variation in relative growth rate

among seedlings with different mass. The primary difference

between the arrangements was attributable to the higher relative

growth rate in the random arrangement of seedlings with mass

less than about 0.5 g.

In both arrangements, variance in absolute growth rate was

directly proportional to initial mass (Fig. 2.4a), and variance

in relative growth rate was inversely related to mass (Fig.

2.4b). Growth was more variable in seedlings of a given initial

mass in the random arrangement than in the hexagonal. In both

arrangements, the relationship between variance in growth and

mass accentuated skewness and inequality.

42



DISCUSSION

SDatial Pattern and Stand Structure

I expected to find more intense one-sided competition and,

since one-sided competition reduces the relative growth rate of

small plants more than large ones, a more hierarchical stand

structure when seedlings were arranged randomly. Neither

prediction was supported by the experiment with P. menziesii.

Three results suggest that one-sided competition was more

intense and a more important cause of hierarchical stand

structure when the spacing was uniform: (1) the relationship

between absolute growth rate and initial mass was nonlinear in

the hexagonal arrangement but linear in the random; (2) relative

growth rates of small seedlings in the hexagonal arrangement

were less than those of seedlings of the same initial mass in

the random; (3) stand structure became more hierarchical in the

hexagonal arrangement, as measured by the skewness and

inequality of seedling mass.

The prediction that one-sided competition makes stand

structure more hierarchical when spacing is random assumes that

mass is determined by available space, as measured by indices

such as Thiessen polygons (Mead 1966). Such predictors of plant

performance do not consider factors such as seed mass, emergence

time, and genotype that also cause variability in plant mass

(Ross and Harper 1972; Gross 1984; Hendrix 1984; Stanton 1984;

Winn 1985; Wulff 1986; Kromer and Gross 1987). One or more of
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these factors may have caused some seedlings with large amounts

of space to be small and vice versa. This would have two

effects on the distribution-modifying functions and the stand

structure that they generate: growth of plants with the same

mass would be more variable than if space and mass were related

exactly, and mean growth of small plants would be increased by

the greater growth of small plants with large amounts of space.

Both possibilities are consistent with the results (Figs. 2.3

and 2.4). In the random arrangement, there may have been one-

sided competition between large seedlings with lots of space and

small neighbors with little space. But because of size

variability caused by factors other than space, stand-level

responses, i.e. skewness and inequality, evidently were not

affected by such competition, if it did exist.

The Influence of spatial arrangement on development of size

hierarchies has previously been evaluated by examining frequency

distributions of plant mass. Skewness, kurtosis, and the

coefficient of variation differed in stands of Lolium perenne

sown at the same total density but In different spatial

arrangements (Naylor 1976). Weiner (1985) established

monocultures of Trifoijum incarnatum and Lolium multiflorum in

random and hexagonal arrangements under low- and high-nutrient

conditions. He found no consistent difference in the Gini

coefficient between the two arrangements and concluded that

spatial pattern was not as important as other factors in

determining inequality of plant mass. In my stands of ..
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menziesii, distance to neighbors was important in determining

the intensity of competition, as indicated by the differences in

the distribution-modifying functions between the spatial

patterns. But when variation in available space was combined

with other factors causing size variability, the consequence for

stand structure was opposite to what was expected.

Spatial pattern and Distribution-Modifying Functions

Frequency distributions by themselves do not indicate to

what extent the deterministic and stochastic functions are

responsible for skewness and inequality. The effect of spatial

pattern on one-sided competition needs to be evaluated in terms

of the functions that cause size hierarchies to develop as

plants grow. Relatively few studies have quantified both

distribution-modifying functions associated with plant growth.

I know of none done specifically to evaluate the relative

importance of one-sided competition as a cause of hierarchical

stand structure. Thus it Is difficult to generalize about the

growth functions observed in my stands of P. menziesii. The

linear relationship between growth and initial mass in the

random arrangement agrees with functions reported for young

Pinus adiata (West and Borough 1983), Pinus pnderosa (Petersen

1988), and Pinus contorta (Cannell et a].. 1984). Hara (1984)

also found mean growth to be a linear function of mass in

seedling populations of Helianthus annuus. In contrast, the
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relationship I found in the hexagonal arrangement agree with

work by Yoda et al. (1957), in which relative growth rate in a

stand of Hibiscus moscheutos was positively correlated with a

plant's initial size relative to neighbors. They attributed the

correlation to competitive interactions among neighboring

plants. A concave quadratic polynomial also represented the

relationship between increment In basal stem diameter and

initial diameter in 56-year-old stands of Eucalyptus spp.(West

1980). Relative growth rate was positively correlated with

initial size in dense stands, but negatively correlated in

artificially thinned stands of Jmpatiens capensis (Schmitt et

al. 1987) and 20-yr-old
.
menziesii (Perry 1985). The linear

relationship between absolute growth rate and initial mass

observed in young plants often becomes nonlinear as they age,

presumably because of more Intense competition (West and Borough

1983; Cannell et al. 1984; Hara 1984). These previous studies

demonstrate that the form of the deterministic distribution-

modifying function depends on stand density and age. My results

indicate that spatial arrangement also will Influence the

relationship.

The stochastic distribution-modifying function has been

quantified less often than the deterministic function. Hara

(1984) found that variance in growth rates of Individuals with

the same initial mass in experimental populations of }felianthus

annuus was a more important cause of skewness in the seedling

stage than were size-dependent relative growth rates. Petersen
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(1988) also attributed the development of skewed frequency

distributions in stands of Pinus ponderosa to variation in

growth rate of trees with the same initial size, rather than to

a nonlinear relationship between absolute growth rate and

initial size. Ford (1975) found that variation in relative

growth rate was greater among large individuals of Picea

sitchensis than among small ones, which may have contributed to

the differences in skewness he observed among stands grown at

different densities, Variance in absolute stem-diameter

increment was correlated with initial diameter in stand of

Eucalyptus spp. (West 1980), inus jadiata (West and Borough

1983), and multi-species temperate rain forests (Kohyama 1987).

In my experiment, the development of size hierarchies was

accentuated by variance in growth of seedlings with the same

mass.

The simulation of plant growth in monocultures by Aikman and

Watkinson (1980) also demonstrated that more intense one-sided

competition accentuates skewness of frequency distributions

through time. Their model, however, included only a single

level of variance in the growth rate of individuals with the

same initial mass. My simulation results are also similar to

those of Ford and Diggle (1981), except the they used a

deterministic growth function that results in birnodality

(Westoby 1982). My results and theirs demonstrate that

increasing variation in the growth of individuals with the same

mass increases skewing. Ford and Diggle (1981) assumed that
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variance in relative growth rate was constant among individuals

of different mass, which is equivalent to a positive correlation

between variance in absolute growth rate and initial mass.

Therefore, variance in growth rate may provide an alternative

explanation to one-sided competition for establishment and

maintenance of size hierarchies in populations of many plant

species.

An apparent anomaly exists among data presented in Table 2.1

and Fig. 2.4. Variation in mass relative to the mean mass (as

measured by the Gini coefficient and the C.V.) was greater in

the hexagonal arrangement by the end of the study (58 wks). But

as shown in Fig. 2.4, growth rates of seedlings with the same

size were more variable in the random arrangement. This

greater variation, by itself, would cause the C.V. and the Gini

coefficient to be greater in the random arrangement. The fact

that this did not happen is further evidence that size

structures are a product of both the deterministic (Fig. 2.3)

and stochastic (Fig. 2.4) functions. Skewing due to variable

growth rates (Fig. 2.4) was accentuated by the concave RGR*size

relationship that existed in the hexagonal arrangement, but not

in the random arrangement (Fig. 2.3). Apparently, the concavity

of the RGR*size relationship more than compensated for less

variation in growth of plants with the same size. The net

effect was a greater C.V. and Gini coefficient in the hexagonal

arrangement.



Tests Q.f. One-Sided Competition

Turner and Rabinowitz (1983) proposed that a critical test

of the one-side competition hypothesis of size hierarchies

requires a comparison of frequency distributions of plant mass

in even-aged monocultures grown at different densities. If one-

sided competition is important, stands at high density should

have greater skewness (and inequality) than low-density stands

of the same mean mass. Many tests of one-sided competition

using this approach have appeared recently (Turner and

Rabinowitz 1983; Waller 1985; Weiner 1985, 1986; Schmitt et al.

1986). Weiner and Thomas (1986) reviewed 16 experiments in

which size inequality at different densities could be measured;

fourteen showed increased inequality at higher densities, which

they cited as evidence for one-sided competition. Similarly,

studies in which inequality or skewness were consistently

correlated with density have been cited to support other

explanations (Turner and Rabinowitz 1983; Waller 1985).

While a change in skewness and inequality with density would

be consistent with the one-sided competition model, I consider

it to be inconclusive evidence. The same reasoning used in my

study can be applied to the density test proposed by Turner and

Rabinowitz (1983). Tests based on frequency distributions

cannot re3ect alternative hypotheses the the structure of stands

grown at different densities varies for reasons other than one-

sided competition. If spacing is irregular, variance in growth
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of plants with the same mass may change with stand density. If

density is so low that zones of influence do not overlap,

interference from neighbors will not add to variance in growth

of plants with the same initial mass. As density increases,

however, different plants with the same mass will have different

numbers and arrangements of neighbors. Such increase

neighborhood heterogeneity could increase variance in growth,

Just as I observed with random spacing. More hierarchical stand

structure at higher densities could mistakenly be attributed to

one-sided competition, when variation in neighborhood conditions

is actually the primary cause.

Schmitt et al. (1987) pointed that analyzing the

relationship between growth rate and initial mass provides a

less ambiguous test for the existence of one-sided competition

than does analysis of frequency distributions. Such analysis of

the deterministic distribution-modifying function may be

sufficient to test for the existence of one-sided competition,

but determining its importance relative to other processes

requires quantification of both distribution-modifying

functions.
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Table 2.1. Mass, skewness, and GInI coefficient for a.
menziesii seed and seedlings. High-density seedlings were
measured 46 and 58 weeks after planting in either a hexagonal or
random arrangement; low-density seedlings were measured 58 weeks
after planting. Bootstrapped 95% confidence intervals for the
Gini and Skewness coefficients are in parentheses.

P < 0.05; **, P < 0.01; NS, nonsignificant difference between
spatial arrangements.
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Mass

Skewness

(g3)

Gini

(G)Mean S.D.

Seed (mg) 11.8 2.14 -.376(-.523- -.207) .051(.048-.053)

Seedlings--46 wks (g)

Random 1.41 .63 .469(.388-.545) .126(.122-.130)
NS NS

Hexagonal 1.61 .74 .587(.463-.684) .129(.125-.134)

Seedlings--58 wks (g)

Random 3.45 1.72 .763(.656-.857) .139(.135-.142)
* **

Hexagonal 3.53 1.94 .899(.774-.880) .152(.147-.156)

Low density 5.68 5.10
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Figure 2.1. Skewness coefficient (A) and Cmi coefficient (B) of
frequency distributions produced when the two distribution-
modifying functions are applied to an Initially normal
distribution. The x-axjs is 03 in the deterministic function
(Eq. 2); k is the constant of proportionality in the stochastic
function (Eq. 4). Each point is the mean of ten simulations,
each with 1000 values. Vertical bars are standard errors.
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Figure 2.2. Frequency distribution of a. jnenziesij (A) seed
mass, (B) mass of seedlings planted In a random design (Bi) 46
and (B2) 58 weeks, and (C) mass of seedlings planted in a
regular hexagonal design after (Cl) 46 and (C2) 58 weeks.
Predicted values (smooth curves) are from the Weibull function
(Eq. 8) using estimated coefficients; b = scale parameter, c =
shape parameter.
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.

Figure 2.3. Relationship between seedling mass at 46 weeks and
(A) absolute growth rate (AGR) and (B) relative growth rate
(RGR) to 58 weeks, for a. menziesj.j seedlings arranged in a
random or a regular hexagonal pattern. Curves showing predicted
values are from regression equations using individual seedling
data weighted by the variance in growth, as described in the
text. Points are means within 0.5 g class intervals. Vertical
bars are standard errors.

55

('J

rr0
'

2.5 -

'.5-

1.0-

0.5-

0-

'

OQQ
0

1

0 2 3
MASS (g)

4 5



PATTERN:
---0 RANDOM

S H EX AGO NAL

Figure 2.4. Relationship between seedling mass at 46 weeks and
(A) variance in absolute growth rate (AGR) and (B) relative
growth rate (ROR) to 58 weeks, for P. menziesii seedlings in a
random or a regular hexagonal pattern. Variance estimates are
based on seedlings within O.5-g class intervals. Curves showing
predicted values are from regression equations weighted by the
frequency of seedlings within each interval.
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DYNAMICS OF SIZE STRUCTURES IN FRAXINUS MANDSHURICA

STANDS OF NORTHEAST CHINA

SUMMARY

Dynamics of size structures In seedling stands of Fraxinus

mandshurica were examined by observing growth rates of

individual seedlings. Experimental stands with varying

densities were established from seed on an abandoned field in

northeast China. In most stands, inequality and skewness in

frequency distributions of mass increased with density and age.

Vertical distributions of leaf area, light attenuation curves,

and specific leaf areas indicated that competition between large

and small seedlings was asymmetric, particularly at higher

densities. Differences in size structures among density classes

were attributed to variation in the growth of individuals with

the same mass, rather than a positive correlation between

relative growth rate and mass. A stochastic model describing

asymmetric competition in heterogeneous neighborhoods are

more appropriate for the size structure of these stands than

are deterministic models that do not account for variance in

growth rates of plants with the same size.

Keywords: asymmetric competition, density, mass inequality, Gini

coefficient, skewness.
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I NTRODTJCPI ON

The linear relationship between the reciprocal of mean

plant weight and stand density is often considered to be one of

the few "laws" of plant population ecology (Harper 1977, p.

156). Though less well studied than the mean, other

characteristics of size structures (defined here as frequency

distributions of plant mass) are also density-dependent. For

example, inequality of plant mass increases with density of many

species that have been studied (Weiner and Soibrig 1986).

Because stands may have equal mean size, yet differ In traits

such as inequality (Schmitt et al. 1986) and skewness (Petersen

1988), mean plant size is of limited value for describing size

structures.

Hara (1984, 1988) has described how the dynamics of size

structures can be modeled with three functions: (1) G(t,x), the

mean growth rate of individuals of mass x at time t, (2) D(t,x),

the variance in growth rate of plants with mass x at time t, and

(3) M(t,x), the mortality of plants with mass x at time t.

These functions are used in this study to test alternative

hypotheses for explaining differences in size structures among

stands with varying densities. These alternative hypotheses

are: (1) a positive correlation between relative growth rate and

mass (the G(t,x) function), suggesting that asymmetric

competition is important (Ford 1975, Schmitt et al. 1987), and

(2) if variation in growth of plants with the same mass (the
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D(t,x) function) is primarily responsible for skewing, then

genetic, environmental, or neighborhood heterogeneity is

suggested (Flara 1988). Because identical size structures may

result from different combinations of the functions, analysis of

the functions, rather than size structures themselves, provides

more conclusive tests the alternative hypotheses.

This study describes how size structures in seedling stands

of the tree, Fraxinus mandshurica, change with time and density

prior to the onset of self-thinning mortality. Growth of

individuals is analyzed to determine whether a positive

correlation between relative growth rate and mass is responsible

for these changes. Asymmetric competition for light is

evaluated as an explanation for size structure dynamics by

comparing growth functions, vertical distributions of leaf area,

and light attenuation curves.
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METHODS

Study Site and Experimental Design

The study was conducted at the Maoershan Experimental Forest

(127° 34'E, 45°20'N) located about 90 km southeast of Harbin,

China, in the Changbai Mountains. Forests of the region are

mostly mixed conifer/broadleaf stands established after

extensive cutting in the early part of this century. The

experimental site was an abandoned field previously cleared of

trees in order to produce food crops. The site had an extensive

cover of herbaceous vegetation and a few young trees invading

from adjacent stands. All plants were removed from the site

before establishment of the study, and hand weeding was

conducted as needed during the course of the study.

Four densities were each randomly assigned to two plots (50

cm x 50 cm) within each of four rows (a total of 32 plots). The

rows were parallel to one another and separated by 75 cm. Seeds

of F. mandshurica were sown in these plots at rates of 34, 79,

228, and 760 g m2. With a predicted germination rate of 60%

(based on previous observations in a nearby tree seedling

nursery) and a mean of 10.9 seeds g' fresh weight, I expected

the seed sown to produce seedling densities of 225, 500, 1500,

and 5000 seedlings m2. Seeds for the lower three densities

were sown over the entire plot. In order to conserve a limited

supply of seed, the highest density was sown over a 35 cm x 35
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cm area centered within each plot. Seeds were evenly

distributed by hand in a random pattern on the soil surface and

then covered with 2-3 mm of soil. 200 seeds (with wings

removed) were dried and weighed so that frequency distributions

of seed mass could be described.

Because of variation in actual germination rates and seed

weight, the quantity of seeds sown in each plot did not result

in exactly the nominal densities of seedlings. I did not thin

or transplant seedlings to exact densities because of the

difficulties of doing so without changing the relative

frequencies of individuals with different sizes. Instead, I

conducted the analyses within density classes after determining

the actual density for each plot.

Measurements

Frequency distributions of mass were estimated at 57, 78,

85, and 97 days after sowing. Each row was randomly assigned to

one of the sample dates. Because plots within each row were

measured on only one of the four dates, the frequency

distributions on different dates were independent of one

another. One of the two plots of each density within each row

wcLe randomly selected for measurement of stem diameter at the

base of the cotyledons. Abscission scars were visible on stems

that had shed cotyledons. All seedlings more than 7.5 cm from

the edge of the area sown with seed were measured. Actual stand
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density was calculated based on the number of seedlings

measured. I observed no mortality after emergence and the

density at time of measurement was assumed to have existed

throughout the study.

The second plot of each density within each row was used for

quantifying the allometric relationship between stem diameter

and above-ground dry mass. On the date the first plot was

measured as described above, 20 seedlings from the second plot

were measured for diameter, cut at ground level, dried at 105°C

to constant weight, and weighed to the nearest .01 mg. Linear

regression models were then fit to the logarithms of diameter

and mass. The intercept of the models differed among the sample

dates but there were no significant differences among densities

within each date. I therefore pooled the data across densities

and used a single equation for each sample date. These data are

shown in Fig 3.1 and the allometric equations are given in Table

3.1.

Leaf area and light were measured in the stands sampled 85

days after sowing. Illuminance (flux) was measured with a hand-

held light meter at 5-cm height intervals from the ground to the

top of the canopies. At each height, the light probe was placed

vertically in 5 positions spaced at 2-cm intervals along a

transect running through the center of the stand. All densities

were measured once and then the sampling sequence was repeated.

All measurements were completed between 1200 and 1400 hrs. Mean

light availability (% full sunlight at the top of the canopy)
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was calculated for each height. The meter measured all

wavelengths, not just photosynthetically active radiation.

Afte. light measurements were completed, the same stands

were destructively harvested so that vertical distribution of

leaf area could be described. Foliage within 5-cm height

intervals was separated from woody tissue, dried to constant

weight, and weighed. Specific leaf area (Evans 1972, p. 215)

was calculated so that leaf area could be predicted from leaf

mass. Within each 5-cm height interval, 5 leaves were collected

and their dry weight and area determined. To avoid shrinkage of

leaves prior to measurement, I drew outlines of the leaves on

paper and the area of the outlines was determined several days

later with a Licor area meter. Specific leaf area varied with

height and density as shown in Fig. 3.2. Leaf area within each

5-cm height interval was estimated by multiplying the leaf mass

times the specific leaf area for that interval. Leaf area index

was calculated by dividing leaf area by ground area. Five

seedlings within each 5-cm height interval were individually

harvested so that the vertical distributions of leaf area for

seedlings with different mass could be described. For each

density, I compared the distributions of leaf area of large

seedlings >
90th

percentile) to that of small ones (mass <

th
10 percentile).

Four weeks after sowing, 20 seedlings were marked with

toothpicks in all stands except those in the row to be

destructively sampled. Two transects were placed through the
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stands and the nearest individual at 2-cm Intervals along these

transects was marked. Stem diameter of marked seedlings was

measured at 57, 78, 85, and 97 days after sowing. For the three

growth intervals defined by the four sample dates, relative and

absolute growth rates in above-ground mass were predicted using

the allometric equations of Table 3.1.

Analysis

The Gini coefficient, a measure of mass inequality, was

calculated using the formula of Dixon et al. (1987) for the

frequency distributions of seed and seedling mass. The Gini

coefficient ranges from 0 (absolute equality in plant mass) to 1

(absolute inequality). As suggested by Weiner and Soibrig

(1984), the Gini coefficient Is now the most widely used

statistic in studies of size structures. I also calculated the

skewness coefficient (scaled third product moment) so that

results could be directly compared to earlier work. Confidence

intervals for both coefficients were determined using the

bootstrap technique (Efron 1981, Diaconis and Efron 1983).

Spearmanvs rank correlation coefficient was used to examine the

relationship between relative growth rate and mass.
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RESULTS

Size Structures

Frequency distributions of seedling mass at the first

sampling date (57 days) were slightly skewed and the variability

in mass was low in all densities (Table 3.2). Distributions

tended to become more positively skewed and have higher

inequality with increasing age and density. For example, all

stands sampled at the end of the study (97 days) had

significantly greater inequality than stands sampled at the

beginning (57 days), based on the bootstrapped confidence

intervals. For stands sampled at 78, 85, and 97 days, the

skewness of the highest density stand was significantly greater

than the lowest density stand. The trend of greater skewness

and inequality with age and density, however, was not entirely

consistent. For example, the Gini coefficient was not

significantly different among densities in the stands sampled 85

days after sowing. Taken as a data set, however, I conclude that

there is a trend of increasing skewness and inequality with

density and time.

For a given mean mass, skewness and inequality were greater in

stands with higher density (Fig. 3.3). Competition caused seedlings

to not only grow slower on the average, it also changed the relative

frequency of seedlings with different mass. Higher density stands

took longer to obtain the same mean mass, but when they did, they
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still had different size structures.

Growth Functions

Spearman's rank correlation between relative growth rate and

mass was significantly different from zero (p<.05) only during

the last growth interval (Table 3.3). Increasing density did

not cause relative growth rate to become positively correlated

with mass. There was no evidence that a positive correlation in

the G(t,x) function is responsible for the greater inequality

and skewness observed at higher densities.

Variance in absolute growth rate increased with mass (Fig.

3.4). Thus, the type of D(t,x) function that causes skewness to

increase with time (Hara 1984) existed in all stands. Negative

growth rates were predicted for some seedlings, perhaps due to

either error in allometric predictions or abscission of leaves

without compensating new growth.

Ljght Availability

The highest density had the largest leaf area index (Fig.

3.5). Vertical distribution of leaf area in this stand, however,

was restricted to a smaller space than in lower density stands.

As a result, light attenuation occurred over a shorter vertical

distance (Fig 3.5). As leaf area index increased with density,

light became less available for most leaves.
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Large seedlings (mass > 90 percentile) in the lowest

density had most of their leaf area distributed above 15 cm,

where light was at least 50% of full light at the top of the

th
canopy (Fig. 3.5). The smallest seedlings (mass < 10

percentile) in this density also had much of their leaf area in

relatively high light. In contrast, leaves of small seedlings

in the highest density were exposed to much lower light (< 5% of

full light). Because most of the leaf area of large seedlings

was above that of small seedlings, shading by large seedlings

made light less available for small ones, but not vice versa.
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DISCUSSION

Size structures of F. mandshurica are consistent with those

studies that have reported greater inequality or skewness at

higher densities or in older stands (Koyama and Kira 1956; Obeid

et al. 1967; Bazzaz and Harper 1976; Ford 1975; Naylor 1976;

Wailer 1985). One factor often suggested as causing, or at

least accentuating, such patterns is asymmetric competition

between plants with different sizes (Naylor 1976, Huston and

DeAngelis 1987, Ford 1975, Firbank and Watkinson 1985, Schmitt

et al 1986, Weiner and Thomas 1986). Larger individuals are

thought to suppress small neighbors by pre-empting a

disproportionate share of resources. As competition intensifies

at higher densities, small plants are suppressed and relative

growth rates become positively correlated with mass (I.e. the

C(t,x) function is density-dependent).

Size structures and growth functions of F. mandshurica are

not entirely consistent with such a model. As predicted,

inequality and skewness did tend to be greater at higher

densities and in older stands. But relative growth rate was

independent of mass during most growth intervals. Size

structures in the high density stands demonstrate that a

positive correlation between relative growth rate and mass was

not necessary for inequality and skewness to develop. This

result refutes previous studies that have stated that a positive

correlation in necessary for skewness to develop. Also, stands
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in which the correlation was positive (primarily the two lowest

densities) did not develop the greatest inequality and skewness.

Both results highlight the fact that the G(t,x) function is not

the sole cause of inequality and skewness in frequency

distributions of seedling mass.

It is possible that relative growth rates were not

positively correlated with mass at higher densities because

competition was not asymmetric or that light was not a limiting

resource. I believe both possibilities are unlikely. The

vertical distributions of leaf area, light attenuation curves,

and gradients In specific leaf area suggest large seedlings

preempted light sufficiently to suppress smaller neighbors. In

contrast, large seedlings, with most of their leaf area above

smaller neighbors, competed only with other large seedlings for

light. Photosynthetic studies have not been conducted with E.

mandshurica that would allow light availability to be

interpreted in terms of expected rates of carbon fixation.

However, the light response curves for photosynthesis of many

tree species (Kramer and Kozlowski 1979, pp. 189-196) are such

that the small seedlings of F. mandshurica were in a light

environment (<5% full light) that was likely to have been

considerably less favorable for photosynthesis and growth.

Thus, conditions necessary for asymmetric competition appeared

to have existed within these stands, particularly at higher

densities.

The consequence of such competition, however, was not a
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positive correlation between relative growth rate and mass at

higher densities. Given this result, and because there was no

mortality, I attribute the differences in size structures to the

variance in growth of seedlings with the same mass (the D(t,x)

function). Variable growth of plants with the same mass is

sufficient to cause skewness to increase with time, if the

variance in absolute growth rate is positively correlated with

mass (Hara 1984). Simulations I have conducted indicate that

the Cmi coefficient responds similarly (unpublished data). Such

variance can cause skewness and inequality, even if mean

relative growth rate Is Independent of mass (or equivalently,

absolute growth rate is linearly related to mass as in Hara's

(1984) model or Westoby's (1983) distrIbution modifying

function).

The first two chapters of this thesis demonstrated that

spatial arrangement can influence the degree of skewing. In the

present study, spatial pattern was random and the locations of

seedlings was variable among replications of the same density.

Neighborhood heterogeneity could have therefore accentuated the

differences in skewing among replications of the same density,

and among stands of different densities.

Estimating parameters for the D(t,x) function would require

many more observations of plants with the same mass than

available in my study. However, It is clear that variance in

absolute growth rate increased with mass (FIg. 3.5). A

positive correlation between variance in absolute growth rate
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and initial size has been observed in many tree species (West

1980, West and Borough 1983, Kohyama 1987) and is probably a

fundamental property of tree growth. Because of this pattern

and the absence of positive correlations In the G(t,x) function,

I conclude that the D(t,x) function Is primarily responsible for

the observed differences in inequality and skewness.

These results suggest that an alternative model of

competition would be appropriate for seedling stands with random

spatial arrangements. In this model, asymmetric competition

influences size structures through the D(t,x) function, rather

than the G(t,x) function. With non-uniform spatial

arrangements, some large germinants will initially encounter

large neighbors, while in other localized neighborhoods, large

germinants may have only small neighbors. If competition were

asymmetric, large seedlings with small neighbors would grow free

of competition until their neighborhoods expand sufficiently to

encounter other large individuals. As a result, early growth of

seedlings with the same mass would be more variable and the

D(t,x) function would have a greater Influence on size structure

dynamics. Asymmetric competition may thereby contribute to the

development of skewness and inequality, without causing the mean

relative growth rate of small seedlings to be less than large

ones. Such a model would be consistent with the patterns

observed with F. mandshurica.
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Figure. 3.1. Allometric relationship between stem diameter at
the base of the cotyledons and the above-ground dry mass of
Fraxinus mandshurica seedlings at 57, 78, 85, and 97 days after
sowing.
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Figure. 3.3. Coefficient of skewness (left) and Cmi coefficient
(right) for the mass of Fraxinus mandshurica seedlings in
relation to mean mass in four density classes: (I) 188-319, (II)
514-808, (III) 1445-1967, and (IV) 2875-4275 seedlings in
Data are for (1) 57, (2) 78, (3) 85, and (4) 97 days after
sowing.
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Table 3.1. Aliometric equations used to predict dry mass (g)
from stem diameter (mm).

Days since
Sowing

Equation
2

r

57 in (mass) = -3.328 i- 3.035 in (diameter) .85

78 in (mass) = -3.493 + 3.104 in (diameter) .95

85 in (mass) = -3.879 + 3.178 in (diameter) .95

97 in (mass) = -3.810 + 3.078 in (diameter) .97
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Table 3.2. Mean, standard deviation, skewness, and the Gini
coefficient for the dry mass of Fraxinus mandshurica seed and
seedlings in stands of different ages and densities.
Bootstrapped 95% confidence intervals for the Gini and skewness
coefficients are in parentheses.

Mass

83

Age De9ity
(dy) (m )

Mean

(g)

S.D.

(g)

Skewness
Coefficient

Gini
Coefficient

57 237 0.176 0.055 -0.097 (-.828-.551) 0.089 (.061-.108)

808 0.158 0.056 0.348 (-.206--.807) 0.100 (.084-.112)

1445 0.130 0.053 0.652 (.278-1.006) 0.114 (.102-.124)

3500 0.130 0.051 0.611 (.367-.837) 0.110 (.097-.121)

78 237 0.848 0.326 0.019 (-.489-.573) 0.112 (.084-.139)

555 0.437 0.207 0.713 (.201-1.119) 0.131 (.109-.153)

1967 0.238 0.138 1.342 (.856-1.727) 0.155 (.141-.167)

3300 0.171 0.114 1.243 (.752-1.705) 0.180 (.159-.198)

85 188 1.275 0.752 0.185 (-.423--.839) 0.173 (.124-.213)

514 0.444 0.322 1.683 (.729-2.397) 0.187 (.153-.211)

1755 0.252 0.176 1.883 (.957-2.534) 0.179 (.163-.194)

2875 0.147 0.093 1.616 (.925-2.015) 0.164 (.141-.182)

97 310 0.898 0.605 0.826 (.317-1.385) 0.188 (.152-.220)

784 0.609 0.501 1.699 (.944-2.242) 0.212 (.185-.236)

1869 0.215 0.200 3.320 (1.448-4.394) 0.214 (.192-.235)

4275 0.130 0.157 3.215 (2.029-3.979) 0.256 (.226-.281)



Table 3.3. Rank correlation coefficients for the relationship
between relative growth rate during three time Intervals and
mass at the beginning of the interval for stands in four density
classes. Probabilities that the coefficients are zero are given
in parentheses (*, P<.10; *, PCO5)

Days Since Sowing

Density 57 - 78 78 - 85 85 - 97

84

Class I 310 .185 (.419) .105 (.646) .473 (.039)**

237 .043 (.868) .443 (.077)* .428 (.087)*

237 -.340 (.160) .282 (.244) .735 (.002)**

Class II 784 .153 (.505) .123 (.592) .551 (.016)**

808 .260 (.284) .096 (.692) .506 (.037)**

555 -.138 (.559) .318 (.166) .546 (.017)**

Class III 1869 -.174 (.515) .455 (.088)* .304 (.255)

1445 -.074 (.755) .433 (.066)* .511 (.030)**

1967 .290 (.219) .352 (.136) .128 (.586)

Class IV 4275 -.303 (.186) .141 (.549) -.082 (.728)

3500 .445 (.059)* .459 (.066)* -.005 (.984)

3300 .049 (.836) .204 (.387) .259 (.272)
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SIZE STRUCTURES OF PSEUDOTSUGA flENZIESII STANDS

WITH NEIGHBORHOOD AND MATERNAL HETEROGENEITY

SUMMARY

Growing space (measured by Thiessen polygons) and maternal

parent were evaluated as sources of variable growth rates in

experimental stands of Pseudotsuga menziesii seedlings.

Skewness and inequality of size structures increased during the

second growing season after germination. Variance in the growth

rate of individuals with the same mass was the cause of skewness

and inequality, not a positive correlation between relative

growth rate and initial size. Seedlings with the same mass grew

faster when they had more space. In contrast, maternal parent

was not a significant source of variation in growth of seedlings

with the same mass. These results suggest that spatial

arrangement of neighbors, but not maternal parent, influences

the development of skewed size structures.
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INTRODUCTION

Prior to the onset of self-thinning mortality, size

structures (defined here as frequency distributions of plant

sizes) often become increasingly skewed. In the absence of

mortality or recruitment of new individuals, skewness is the

consequence of individual plants having different growth rates.

Hara (1984, 1988) has described how the effects of variation in

growth on size structures can be modeled with two functions: (1)

G(t,x), mean growth rate of individuals of mass x at time t, and

(2) D(t,x), variance in growth rate of plants with mass x at

time t. Positive skewness develops when: (1) variance in

absolute growth is positively correlated with size, provided all

variation is random and normal, and/or (2) the relationship

between absolute growth and size is concave to the size axis

(equivalent to positive and linear correlation between relative

growth rate and size).

Before the biological basis for skewness can be explained,

it is necessary to determine the relative importance of Hara's

(1984) two functions as causes of skewness. If skewness

increases with time because of the D(t,x) function, biological

factors that cause variation in the growth of individuals with

the same size need to be identified. In contrast, if the G(t,x)

function is responsible, then variation in growth of individuals

with different sizes needs to be explained.

This study describes size structures in seedling stands of
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Douglas-fir (Pseudotsuga menziesii) in which the maternal parent and

spatial location of each individual is known. With this information,

it is possible to determine to what extent maternal and neighborhood

heterogeneity are sources of variable growth described by the G(t,x)

and D(t,x) functions. Their importance in causing skewed size

structures can then be described.



METHODS

Experimental Des jqri

Seedlings of .. menziesij were grown in an outdoor frame at

the Forestry Sciences Laboratory of the U.S. Forest Service at

Oregon State University, Corvallis. The frame (.8 m x 1.6 in x

15 m) was filled with a local forest soil. Seedlings were grown

from seed from four mature trees in a stand of Douglas-fir 50 km

west of Corvallis. Progeny from each tree were at least half-

siblings, but since the pollen source was unknown, some

individuals from each family may have been full-siblings. Eight

hundred seeds (200 from each family) were dried and individually

weighed to the nearest 0.01 mg to determine the frequency

distribution of seed mass.

Seeds were sown on May 24 and 25, 1986 in a random spatial

arrangement in which planting spots corresponded to Cartesian

coordinates selected with a random number generator. Six stands

were established with dimensions of 75- x 140-cm. Planting

spots (400 m2) were marked using a template with the proper

coordinates. An equal proportion of the planting spots within

each stand was assigned to each of the four families.

Seeds were stratified before planting by soaking in water

for 24 h and cold storage at 2°C for 4 wks. Three seeds were

sown at each spot to increase the probability that at least one

seedling would emerge. If more than one seedling emerged, those
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farther from the marked spot were removed within three days of

emergence. Most seedlings emerged within 2 wks of planting, but

some emerged up to 5 wks later. At 1.3% of the planting spots,

no seedling emerged within 6 wks of planting. Seedlings planted

adjacent to the experimental stands and from the same family as

the missing ones were transplanted where seedlings failed to

emerge. Transplanted seedlings and those In a 10-cm border of

each plot were excluded from analysis. The stands were watered

during dry periods throughout the experiment; seedlings were

fertilized with a complete nutrient solution every 10 to 14 days

during the spring and summer.

Measurements

Stem height and diameter of all seedlings were measured

approximately 46 wks after planting (the beginning of the second

season of active growth). At this time, seedlings in one stand

were harvested at ground level, dried at 65°C for 72 h, and

individually weighed. Data from these seedlings were used to

determine the allometric relationship between above-ground dry

mass, seedling height, and basal stem diameter. The families

did not differ significantly (p > 0.50) in estimated

coefficients of the allometric equations, so the data were

pooled and seedling mass at 46 wks (w1) was predicted from

height (h) and stem diameter (d) by the following equation (r2

0.88): in w = -5.79 + 1.14 ln h + 0.88 ln d. Approximately 58
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wks after planting (the end of active shoot elongation), the

seedlings in the remaining five stands were harvested, dried,

and individually weighed. Absolute and relative growth rates of

individual seedlings were calculated using predicted mass at 46

wks and measured mass at 58 wks. To determine whether

competition had reduced growth, I compared mean mass at 58 wks

to the mean mass of 120 seedlings (30 per family) that had been

planted next to the stands at a 10- x 10-cm spacing. While not

low enough to ensure total lack of competition, stand density

was considerably lower than in the experimental stands.

Ana lys is

Neighborhood area was calculated for each seedlings using

Thiessen polygons (Head 1966). Spearman's rank correlation was

used to examine the relationship between neighborhood area and

seedling mass. Kruskal Wallis one-way analysis of ranks was

used to test for significant differences among families in their

mean mass at 46 and 58 wks.

The Gini coefficient, a measure of mass inequality, was

calculated using the formula of Dixon et al. (1987) for the

frequency distributions of seedling mass. The Gini coefficient

ranges from 0 (absolute equality in plant mass) to 1 (absolute

inequality). As recommended by Weiner and Solbrig (1984), the

Gini coefficient is now widely used in studies of size

structures. The skewness coefficient was calculated as the
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scaled third product moment so that the results could be

directly compared to earlier studies. Confidence intervals for

both coefficients were determined using the bootstrap technique

(Efron 1981, Diaconis and Efron 1983).

Spearman's rank correlations coefficient was used to examine

the relationship between relative growth rate and mass at 46

wks. The significance of these correlations provided the

criterion for testing whether the G(t,x) function contributed to

temporal changes in skewness and inequality. The variation in

growth rates of seedlings with the same mass due to neighborhood

area or maternal parent was analyzed using the rank regression

procedures described by Iman and Conover (1970). A regression

model with relative growth rate as the dependent variable and

mass at 46 wks, family, and neighborhood area as the independent

variables was fit to the ranked data. F values were then

calculated using standard procedures. Because variation in

relative growth rate due to initial mass was accounted for in

the model, a significant family or neighborhood effect indicates

that they contributed to variation in growth of individuals with

the same mass (the G(t,x) function).
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RESULTS

Size Structures

Frequency distributions of seedling mass were positively

skewed at 46 wks (Table 4.1). Skewness increased at 58 wks for

most families and stands. Inequality as measured by the Cmi

coefficient also increased from 46 to 58 wks. There were

significant differences among families in their mean mass at

both 46 and 58 wks (Kruska]. Wallis rank test, P < .05). The

ranking of mean mass was fairly consistent among stands, with

family 2 the smallest and family 3 the largest. Mass at 46 wks

was not significantly correlated with neighborhood area, as

measured by the Thiessen polygon (Table 4.2). Thus, differences

among seedlings in their mass at the beginning of the growth

interval (46 wks) are partly attributable to maternal parent,

but not neighborhood area.

G(t4x) function

The correlation between between relative growth rate and

mass at 46 wks was either not significant (one stand) or

negative (three stands) (Table 4.2). Mean relative growth rates

in relation to mean mass at 46 wks are shown in Fig. 4.1.

Because of the absence of a positive correlation between

relative growth rate and initial mass, the G(t,x) function did
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accentuate the development of positive skewness and inequality.

D(t,x) function

Neighborhood area was positively correlated with the growth

of seedlings with the same mass in three of the four stands

(Table 4.3). There was a negative relationship between RGR and

mass in all stands. Seedlings with different maternal parents

had different initial mass on the average, but maternal parent

had no effect on the D(t,x) function (variation in growth of

seedlings with the same initial mass).

The increase in skewness and inequality from 46 to 58 wks is

attributed to the D(t,x) function -- variance in growth of

seedlings with the same mass at 46 wks. Based on the F tests of

Table 4.3, neighborhood area, but not maternal parent, was a

significant source of such variation.
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DISCUSSION

The size structures of seedling stands of P. menziesii

demonstrate that Inequality and skewness can develop when RGR is

negatively correlated with initial mass. Hara (1984) has

demonstrated with theoretical models that variation in growth of

plants with the same mass is sufficient to cause the skewness

coefficient to increase with time, even If individuals with

different mass have the same mean relative growth rate (or

equivalently, a linear relationship exists between absolute

growth rate and mass). Simulations described In the second

chapter of this dissertation indicate that the Cmi coefficient

responds to changes in parameters of the G(t,x) and D(t,x)

functions in the same way as the skewness coefficient. Because

relative growth rate was negatively correlated with mass, I

attribute the positive skewness and inequality to the variation

in the growth of plants with the same mass.

Given this conclusion, maternal and neighborhood

heterogeneity contribute to skewness only to the extent that

they are a source of variation in the growth of seedlings with

the same mass. There was no evidence that seedlings from

different parents, but with the the same size at 46 wks, varied

in their subsequent growth rates. Therefore, maternal parent

was not a source of variance in plant growth that contributed to

skewness, even though it was a source of size variability. In
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contrast, some of the variation in growth of seedlings with the

same mass was caused by differences in neighborhood area. Thus,

neighborhood area did contribute to the development of skewed

size structures.

Indices of available growing space, such as the Thiessen

polygons used in this study, often explain relatively little

variation in tree size in older stands. This suggests that the

patterns observed in seedling stands of Douglas-fir may not

persist during later stages of growth. If seedlings with more

space continued to have greater growth rates, a positive

correlation between size and space would eventually develop.

The fact that such correlations are often low suggests that the

relative importance of factors such as neighborhood space and

maternal parent changes as stands develop. This is suggested by

Hara's (1984) observation that the relative importance of the

D(t,x) and G(t,x) functions depends on stand age. Biological

factors underlying these mathematical functions may also be age-

dependent.
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Table 4.1. Mean, skewness coefficient, and Cmi coefficient for
seedling mass 50 and 70 days after sowing and mean relative
growth rate during the Interval for four maternal families in
four stands. Standard errors are in parentheses for the means;
bootstrapped 95% confidence intervals are shown for the skewness
and Cmi coefficient.
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() ft S..) Cs.ffic).t
NPlaySI 1,770 11750 11yS 11770

$1.'.'
1 1 81 0.94 (.05) 2.80 (.16.1 0.fl (.34-1.20) 1.12 (44-1.55) 0.134 (.116.-.)4E 0.139 (.116-.15B 2.05 '.09

2 72 0.85 (.O5 2.51 (.18) 0.06 (.41-1.20; 1.40 (.70-1.96.) 0.146 (.124-.I6.S 0.163 (.137-.I8i 2.0 (.10
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Table 4.2. Rank correlation coefficients for neighborhood area
(a), mass at day 50 (m1) and 100 (m2), and relative growth rate
(rgr). Probability that the coefficient is significantly
different from zero are given in parentheses (*, P <= .05; **,
P<=.01).

100

family a vs. nì1 a vs. m2 rgr vs. rgr vs. a

Stand 1 .115 (.304) .182 (.103) -.159 (.154) .104 (.353)
1

2 -.130 (.273) -.100 (.397) -.072 (.541) .083 (.487)

3 .022 (.848) .127 (.271) -.273 (.0l8)* .249 (.031)*

4 -.023 (.836) -.068 (.539) -.320 (.004)** -.012 (.910)

all -.004 (.950) .030 (.591) -.205 (.001)** .094 (.096)

Stand 1 -.112 (.343) -.037 (.752) -.092 (.438) .043 (.715)
2

2 .181 (.148) .164 (.190) -.030 (.811) .063 (.612)

3 .146 (.210) .287 (.014)* -.105 (.365) .190 (.103)

4 -.127 (.279) .067 (.566) -.292 (.013)* .277 (.018)k

all .003 (.956) .115 (.052) -.111 (.060) .277 (.018)*

Stand 1 -.058 (.616) .059 (.606) -.294 (.0l0)** .109 (.343)
3

2 .356 (.002)** .293 (.012)* -.118 (.311) -.041 (.726)

3 -.174 (.140) -.060 (.608) -.106 (.369) .154 (.190)

4 .132 (.228) .311 (.004)** -.119 (.276) .258 (.018)*

all .032 (.572) .133 (.020)* -.173 (.002)** .121 (.033)*

Stand 1 .055 (.635) .017 (.886) -.162 (.164) -.046 (.694)
4

2 .096 (.436) .184 (.135) -.380 (.002)** .114 (.354)

3 .000 (.998) .104 (.386) -.034 (.775) .191 (.111)

4 -.012 (.914) .104 (.345) -.081 (.459) .177 (.106)

all .046 (.428) .102 (.079) -.184 (.002)** .114 (.050)*



Table 4.3. F values for testing the null hypothesis that
relative growth rates of seedlings with the same mass is
independent of family and neighborhood area. Probabilities of
obtaining a larger F value given that the null hypothesis is
true are given in parentheses (*, P <= .05; **, P < .01).

101

stand family neighborhood area

1 1.18 (.316) 3.18 (.075)

2 0.78 (.507) 6.89 (.009) **

3 1.17 (.321) 6.73 (.010) **

4 2.25 (.083) 4.09 (.044) *
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CON CTJUS ION

The simulations and experiments in this thesis suggest

the following process for the genesis of skewed size structures

in seedling stands. A range in sizes of germinants is initially

established because of density-independent factors such as time

of emergence, seed size, or local environmental conditions.

Size distributions of recent germinants are normal or only

slightly skewed (positive or negative). Positive skewness

quickly develops, however, as seedlings grow. The following

conclusions summarize the main points about this period of stand

growth in which skewness develops.

Variance La the growth j seedlings with the same sL

the primary cause of skewness (and inequality), not variation

in the qrowth j seedlings with different sizes. Both the form

and the amount of variation determines the degree of skewing.

Skewness was not the exclusive result of a positive correlation

between relative growth rate and size. Previous studies that

have failed to examine the contribution of variable growth rates

of plants with the same size (e.g. Ford 1975, Schmitt et al.

1987), may have overestimated the importance of a size-dependent

growth rates as a cause of skewness. In order to understand the

biological basis for skewed size structures, it is necessary to

determine the causes of variation in the growth of individuals

with the same size.

Deterministic models were limited in their ability to

model dynamics of size structures. Deterministic models

103



104

(e.g. Westoby 1980) predict positive skewness will develop only

when relative growth rate Is correlated with size. Even though

there was no such positive correlations in the Douglas-fir and

ash stands, their size structures developed considerable

positive skewness. If skewness and inequality of size

structures are of interest, then stochastic models that account

for variation in growth of plants with the same mass will be

needed.

As stands approach the beginning of mortality, the

correlation between relative growth rate and size will shift

from zero or negative to positive. The patterns observed in

stands of this thesis are those during very early periods of

stand establishment. The relative importance of mathematical

and biological causes of skewing will likely depend on stand

age.

(3) Asymmetric competition contributed to the development of

skewness accentuating the variance ja qrowth j individuals

with tJ same size. I found no evidence to support the model of

asymmetric competition that states that skewness develops

because of disproportionate suppression of small seedlings.

Increasing stand density did not cause relative growth rates to

be correlated with size. The leaf area and light data in the

third study of this dissertation suggests competition was

asymmetric in stands of Fraxinus mandshurica. However, such

competition contributed to skewness and inequality by

accentuating the variance in growth of individuals with the same
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mass, not by causing mean relative growth rate of small

individuals to be less than large ones.

(4) Size structures were consequence of interacting

factors. As shown in the second study of this dissertation,

variation in the spatial arrangement of competitors caused

greater variation in growth rates. Asymmetric competition

accentuates such variation because the growth of large plants

with small neighbors is unaffected by competition, while the

growth of large plants that have large neighbors is reduced. The

result is growth rates that are more variable. In this way,

factors such as neighborhood heterogeneity and asymmetric

competition interact to produce size structures with greater

skewness.
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