$\frac{\text { John Glllick Barbieri }}{\text { (Hame) }}$ for the $\frac{\text { M. F. }}{\text { (Degree) }}$ in Forest Engineering:

Date thesis is presented

Title FOZEST ROAD LOCATION AND DESIGN IN THE DOUGLAS -FIR REGION

Abstract approved

The purpose of this thesis is to outline the principies involved in the reconnaissance, survey, and design of forest roans in the jouelas-fir legion.

The reconnaissance survey is the nicest important alewent in road location. Poor reconnaissance of ten results in abandonment of the route at considerable expense.

The ground slope affects the type of reconnaissance employed. In level country alignment controls the location of the road and grade is adapted to the topography to balance excavation and embankment quantities. In sidehill country grade controls the location of the road and all enwent is adapted to the topography to balance excavation anu embankment quantities.

The reconnaissance survey may be separated into extentgive and intensive reconnaissance. The extensive survey is the study of an area or drainage to determine the general location of the route. The intensive reconnaissance is a study of the ground adjacent to the general location of the route. The final selection of a route of ten involves tine comparison of one or more alternatives.

A preliminary survey ia conducted along the final reconnaissance line to establish horizontal and vertical controll and the topography on either side of the line. The precision desired determines the method of survey employed. The staff comjass-tape-abney survey is the most wildly used method in the Douglas-fir Region.

The road is designed from the data obtained from the reconnaissance and preliminary surveys. These data are studied sEraphically using the plan, profile, and cross sections of the route or any combination of these graphic aide. Center line of the road will closely follow the final reconnaissance line if the intensive reconnaissance is thorough. Regardless of the method of design used, the final center line is a compromise between optimum alignmeat and minimum excavation.

FOREST ROAD LOCATION AND DESIUN IN THE DOUGLAS-FIB ELUION

by
JOHN GILLICK BAEITERI

A PHESIS
submitted to
OAEGON STATE COLLEGE

In partial fulfillment of
the requirecenta for the decree of

MASTEA OF POHESTAY
Juce 1958

Date thesis is presented December /6, 1957
Typed by liarjorie L. Bessett

TABLE OR CONTENTS
Subject
2 abe

IMTAOLUCMION 1
THE EECCNAISSANCE SURVEY 3
Sideh111 Reconnaissance 4
Extensive reconnalssance 4
Intensive reoonnaissance 12
Lovel Reconnaissance 20
Extensive reconnalsanace 21
Intensive reconnalssance 22
THE FRELIMINARY SUAVEY 24
Horizontal Control 24
'earincs 25
Distance 25
Tertical Control 26
hand level and rod elevations 26
Abney slevations 27
Toposraphy 29
Hand level tomograrhy 23
Abney topography . 30

- Ieference joints 30

Notes 32
THE ROAD LESIGN 34
Plotting Data 34
F-inne plan
F-line profile
Cross sections
35

- $\quad 36$

Center Line Design 37
Trial erade line 38
Trial offset points 43
Center Iine 44
Earthwork quantities . 53
Full Eerch Desisn 55
Grade Contour Desicn 68
IHE CONSTAUCTION SURVEY 71
SIBLIOGRAFHY 77
A3MENLIXES 79

LIST OF ILLUSTRATIOHS

Fieure race

1. Liwits of the Joadway 7
2. Adyusting the Tas Line 14
3. Cut and 3111 on Switchbacks 18
4. P-11no Plan 39
5. P-line Profile and Trial Grade 40
6. Cross jeotions 41
7. Cross Jections 42
8. Road Desicn Form 45
9. Trial Ealance Roadway 46
10. Trial Balance Randway 47
11. Trial Offset line 48
12. Conter Lino 52
13. EOadway of Desiuned Center IIne 54
14. Toadway of Designed Center Line 55
15. L-line Proíile and Pinal Grade 56
16. Jarthwork Cuantity Sheet 58
17. Tiass Dlaeram 64
18. Oifset for Full Rench Road 66
19. Offset to the Grade Contour 58
20. inilne neference 73

The Douglag-fir Begion is a narrow strip of land extending from the summit of the Cascade Mountains westward to the Paoifia Ocean. It is bounded on the south by the Calapooyo rountaine in southern Oregon, and it oxtends north into British Columbia. The total aoreage in Wash Ington and Oregon exceeds $35,000,000$ acres of wish approximately 80 percent is classified as forest land (13, p. 352). The timber is predominantly found in the mountainous areas, and to harvest this timber, roads have been pushed farther back into areas heretofore inaccessible. - In the sarly days of road building, IIttle if any thought was given to proper location, alignment, or grade. Today, logging engineering playm an important part in the formulation of forest management plans of government agenoles and private industry. Greater emphasis is placed on locating the road to serve tomorrow's needs, as well as today's. Higher road construction costs are aocepted if they result in lower hauling and maintenance costa.

The purpose of this thesis 1s to outline some of the basio principles for onoosing the beat route and for the survey and design of this route. The methods disousaed in the following pages are by no cieans the only methods in use today. Each engineer develops his own methode or
modifications through experience and experiment. The mothod used w 111 depend upon the standard of road desired and the terrain encountered.

THE RECONNAISSANCE SURVEY

Boad reconnalsaance begins whon the forest management and logging plans are evolved. At this time the atandards of roads that will serve the drainage ars established. Generally, there will be one or two primary or accose roads (depending upon the size of the drainage) and a network of eeoondary roads branching from the primary roads. Paotors that determine the tandard of a road are average annual haul based upon austained yield managem ment, maintenance costs, recreational potontial of the area, and additional industrias that may evolve with the development of the road syatem.

The primary road follows one of three general courses; along the stream botton, aloug the ridge top, or along the sidehill between the stream bottom and ridge top. The final choice must be determined from the field reconnalasance.

Most of the logging will be acoomplished from secondary roads and low standard spur roads. A reoent atudy on the W1llamette National Foreat (9, p. 82-85) Indicatea that the most effiolent road aystem for logging consists of nearly level, parallel routes spaced at the economic interval from the atream bottom to the ridge top. Those are conneoted by a road olimbing at the maximus grade.

Sldeh111 Beconnalssanos

There is a disticot differeace in the method of reconnaissance used in sidehill country and that used in flat country. In aidehill country, grade will control the low cation of center line, and alignment will be adjusted to fit the topography and balance excavation and embankent. The reverse is true in flat country. Alignment will con trol the location of center line, and grade will be adJusted to balance excaration and embankment. This seotion W11 cover the method of reconnaissance employed in 81deh111 country.

Extensive reconnaissance. The process of extensive reconnaissance begins in the office with maps, aerial photos, and any other available information fertaining to the proposed project and continues in the field until the ares through which the route will pass is selected.

Contour maps are useful for studylng the general topography, and with them, it is possible to determine whether the avorage grade ia greater or less than the maximum grade for the standard of the road deaired. To do this, the diffarence in elefation between the termiaals is divided by the distance between the terminals. It is best to be conserrative when calculating the distance. If the road can be built on the maximum grade uaing this shorter distanoe, it can be built on a grade
less than the maximum, depending upon the actual distance. The difference between maximum grade and the actual grade, called slack frade, is important in avoiding rock, swampa, and in utilizing the various controls looated during the reconnalssance survey. If the grade, as oomputed by using a conservative distance, is greater than the maximum grade authorized for the standard of road, an alternate route or switchbacks may have to be located. If neither of those solutions is feasiblo, the excess grade will have to be Justified.

With a pair of dividers and a contour map, it is possible to sketch a route at the average grade on the map. Divide the contour interval by the average grade. This gives the number of stations required to go from one contour to another. Using the map scale, th1s distance is set off on the dipiders. Set one leg of the dividers on the beginning of the project and swing the other leg of the dividers until it intersects the next contour. A fraction of this distance is used to locate the interseotion with the first contour if the begianing of the project lien between two contour lines. The intersection of the grade 1ine and each contour line ia located with the dividers, and a line 1 s drawn connocting these polnta. This does not represent the location of the road, but it does indicate the general area through which the route
may pass. Several routes can ususlly be sketched on the map giving some indioation as to which areas should be investigated in the field.

The ilmits of the roadway between any two control points may be computed after the average grade has been determined as shown below. Assum that the distance between controls is " $D^{\prime \prime}$ and the difference in elevation between the controls is "E" and the maximum grade for the standard of road is " G ". There are three basio routes which may followed betweon the controls. First, it may follow the average grade line between the two controls. A second possibility is to go along the maximum grade unEil the difference in elevation at " F " is equal to " E " and then continue on a level grade to the other control. The other possibility is to start out level and oontinue to " $B^{\prime \prime}$ from whion the other control may be reached on the maximum grade. The last two routes form a parallelogram. On long projects, the area bounded by this parallelocram 1s large and will iapolve considerable walking and studying before the final route may be selected. If the average grade route and the extremes are sisetohed on the contour map with dividers, the area to be studied can be more olearly defined.

Figure 1. Limits of the Ioadway
Aerlal photographs are another valuable aid in studying the topography of the area. With the aid of a atereoscope, it is possible to atudy ridges, draws, rook bluffs, timber density, and species. Although topographic features often stand out quite clearly, they should not be considered controls until they have been investigated in the fleld. Aerial photos are exageerated vertioally and tend to make the topography appear steeper tban it actually is.

With practice and experience, it is possible to obtain relative elevations of the prominent topographic features. With the elevations of these points, it is possible to compute the average grade between them. There will, undoubtediy, be other points located during the field reconnaissance.

The firat atep in the fiald work is to become acquainted with the area through which the road will pass. To do this, the ongineer should take advantage of any fire lookout towers or exposed vantage points which overlook the area. The process of orientation is relatively simple and iavolves compariag what is on the ground with what is on the maps and photos. Each ridge and draw seen on the map is located in its natural position as seen frow the vantage point. Locating the change in timber type is often easy even at a distanoe, and this also helpe in the orientation.

The next step in to walk through the area on the average grade to become familiar with the terrain. To follow the arerage grade line, it is necessary to carry a barometer to determine relative elevation and to record pacing. A barometer reading is taken at the beginning of the project, and based upon the average grade, the elevation of a point ten stations from the beginaing is computed. The difference in elevation is equal to the average grade times the distanoe paced, whioh in this case 1s ten stations. This value, added to or subtraoted from the original reading, gives the grade elevation ton stations fros the beginning. A barometer reading is taken every ten atations from the beginning, and the enginear moves up or down hill to the computed elevation.

This is continued over the entire route. Tags may be fastened to a tree every ton stations with the atationing and elevation noted for future reference. Taga should also be used at oritical stream orosalngs, passes, and other features that may be future interest. The stationint and elevation are also marked on each tag.

Major controls are often loated on the first trip through the area, dividing the projeot into smaller sactions. When a rook bluff is encountered, the elevation on top and at the base are recorded because the road, in wost cases, will go on top of the bluff or below it. There 1a no sharp distinction between a rook outorop and a rock blufi. The standara of the road, rather than the size of the outorop or bluff, determines whether it must be avolded. Thua, on a lower olass road the alignment and/or grade are ohanged to avold blasting rock, while on a higher standard road large volumes of rook may be blasted to aohieve the desired grade and allgnment.

When a prominent draw is encountered, it is desirable to take time to walk up and down the stream bed to locate several poasible orossings. Tlmber typen should be noted since the size, species, and location of the timber will affeot the clearing and grubbing costa and the location of the road. Possible rook quarry altes should be noted, and rook samples should be collected so
that an analysis may be made to determine their suitability for base and surface material. Each time an important topographio feature ia noted, it is helpful to locate the point on the map or photos. This gives an acourate location on a map of the route follored in the field, and it also aids in orientation. If funds permit, an aerial vien of the area is extremely helprul after the indtial field inspeotion.

Notes should be kept during this initial trip through the area describing what ia encountered. They should be as brief as possible without omitting any ima portant information. The notes will generally inolude stationing, elevation, and a brief desoription of the feature noted.

After walking through the area and taking general notes, the major topographio features may be plotted on a profile drawing of the route. With the features plotted at their relative elevations along the route, the ontire area may be studied to determine which sections or areas need further investigation. The topographic features are analyzed to detemine whioh will be oontrols and which will not. When the controls have been determined, the grade innes joining them may be drawn on the profile. A sample reonnnaissance profile is inoluded in the Appendix.

When there is doubt as to whioh route to follow, an estimate of construotion and hauling costs can be made from the reconnaissance notes. Construction costs are broken down into olearing and grubbing costs, excavation costs, and surfacing costs. Usually, the clearing and grubbing costs and the surfacing costs will not vary appreciably throughout the area so these wlll be proportional to the longth of the road. Excavation costa vary with the voluce of excavation, type of excavation, and ground slope.

Sauling coste vary with the distance, Erade, alignmeat, and sight distance. Hauling costs can be obtained from past experienoe and cost records, or an estirate may be made from oompiled tables and graphs (1, p. 40-j0). The oonstruction oost or total road cost may bo considered as the present value or a terminating series of regular payments. The regular payment may be considered as the annual road cost. On this assumption the anaual cost for construction may be computed by the following foriulag

$$
\begin{aligned}
& \text { Annual Zoad Cost }=\frac{\text { Total Road Cost }\left[p(1+p)^{n}\right]}{(1+p)^{2}-1} \\
& p=\text { interest rate } \\
& n=\text { number of years before abandonment } \\
& \quad \text { or major reconstruction is necessary }
\end{aligned}
$$

The sum of the annual hauling cost, annual mainm tenance cost, and annual road cost are added together to
give the total anmual cost of the route. The total anmal cost is computed for aach alternate route, and the route with the lowest total annual cost is the most economical route.

There are other factors that cannot be reduced to a cost basis. Each rout should be compared from the standpoint of the overall road syatem for the drainage or drainages. serving the logeing needs of the drainage, fire prom tection offered, snow removal and bubgrade drainage, soll orosion and stream siltation, and rightsmof-way transactions. Bights-of-way transaotions often involve wonetary compensation and commony reciprocal rights-of-way. Many companies will avoid suoh transactiong, if possible, by sesking an alternate route.

All these faotore will affect the final decision as to which route to follow. If a decision still oannot be reached, each route must be tagged and more detalled astimates based upon intensive reconnaissanoe must be made.

Intonsivo reconnaissanoe. Up to this point, the reconnalsaance has been concerned witb determinlay the area through which the route will pass. It is now necessary to adjust and fit the route to the topography of the area. This is known as the intensive reconnaissance. 'rhen performing thia reconnaissance, a tag ind is run between eelected control points. The tag line is atudied
and adjusted until it ropresents the desired route. The tag line 1E run at the selected grades using an abnoy and pacing and is marked with tags fastensd to a tree at a point eye level above grade. Althougt aye level variea with the individual, it generally is not an 1mportant discrepancy. The average ye height is 5 feet and this may be used as a constant for the job. Thus, a tag is considered 5 feet above grade. Any exceptiona should be noted on the tag. Stationing need not be placed on each tag but should be placed at least every two to four station and at overy prominent topographic feature. There 1a no speoific or optimum apacing of taga, but they should be close enougt on ourves to approximately define the curvature.

Ground slopes, in geceral, are steeper adjacent to crecks and treame. In some cases, this is not a major factor, but steep sidahill construotion should be avoided whenever it is praotioal. In order to reduce the leagth of steep sidehili construction, the road should descend into the oreek on a minus grade, crose the oreak, and then ascend on the other alde of the creek on a positive grade. Consider the altuation shown in the figure below. Suppose point A is on the point of the ridge where the side slopes are beginning to inorease. If point A is 150 feet above the oreek, and the grade of the oreek is -20 percent and
the srade of the road is +5 percent, the road will inter sect the oreek at point 3,10 stations from point A.

Figure 2. Adjusting the Tag Lino

Suppose at poiat A the grade of the road $18-5$ percent. Then the road will intersect the creak at point $C, s i x$ stations from point A. It is evident that the descending grade will intersect the creek in the shortest distance. In order to go from point C to foint D (not shown), which lies along the point of the ridie on the other side of the oreek, an ascending arade is used. This wethod can only be used when there is sufficlent slack Erade between point A and the noxt control. This can be deconstrated by continuing the +5 percent grade from point B for four stations to point in which is directly uphill from point C. The difference in elevation between pointe M and $C 18$ equal to $(5 \times 10)+(5 \times 4)$ - (-5×6), or 100 seet. In order to have the road pass through point $C, a+5$ peroent inne between point A and the
next oontrol must oither have 100 feet of slack elevation, or a grade in excess of +5 percent must be used.

Sometimes the arerage grace line goes through rough, undesirable terrain. When it becomes apparent that this 1ine is not praotioal, the route is abandoned by rodding up or down hill to by-pass the rough terrain. The point at which the route is abandoned is reforenced on the ground indioating the etationing, grade of the line us to the referenced paint, and the vertical distance up or down to the now lies. The point where the grade line resumes is also referenced indieating the stationing, the vertical distance set up or down, add the grade of the oew line. Grade changes are also raferenced to indioste the station at whioh the grade obanges, the grade up to the reforence, and the new grade. The most common form of reference is a tag fastencd to a tree. The information on the tag should also be reoorded in the notes.

Notes taken along the tag Ine should inolude all topographio features abore and below the ine that may affeot the loastion of the road. Other features that should be noted are the location of possible quarry sites, timber types, and average ground slopes above and below. These notes will dupilcate, to an extent, the notes taken durinu the extensive reoonnalssano but they ahould be more detalled.

When the tag inse is completed, a profile is drawn and the topographio teatures above and belon the line are plotted in their respective position. The profile is etucied and any necesgary grade ohanges oan be detorsined and drawn on the profile. If it mas neceasary to set up or down alons the route, a nom grade line mithe bomputed or soaled from the profile and sun in the fleld. A sample abnoy profile is included in the Appendix.

Any changes in the grace line dram on the profile mugt be aheoked in the fiold to dotermice if they fit the topagraphy better than the origimal line. Thia la one phase of adjustiag the tag ilne. another phase consiats of adjuating the tag $11 n$ in drawi and at the point of cidgen so that the 1100 more olosely followe the ourvature desired at these points. It may be noted that the first case involves adjusting grade, while the second lavolves adjusting allemmont.

31000 there will usually be two or more tag lines run before the final route is acoopted, each line should have a soparate markiag. Tage aloag the first line may be marked "A" and those on the next line "B", and so on for as many linal as are neoseasyry. The 11nea can then be referred to as the "A" line or the " B " $11 n 01$ and when a tag line in enoountered in the fleld, it oan be 1dentifled by the letter on the tagm. Other markers that are
oomanily used are colored tage, falnt, blazes, strips of sloth, and colored plastio tape.

When the average grede line between two wajor controls is greater than the maximum for the standard of the road, additional distance may be gained by taking advantage of spus ridges and slde canyons or by locating switchbacks. A awitonback it a ohange in direction on the same slope with a corresponding change of sidehill. Thus, if the uph111 slofe is to the right of the 11ne at the PC, it will be to the left of the line at the PT. Although switchbacks are best suited for slopes below 30 percent, it 18 up to the engineer to datermine whether it is practioal to attempt a switchback on steeper slopes.

The most comion form of switohback has a central angle very olose to 180 degrees. Assuming that the central angle is 180 degrees, the difference in elevation between the PC and FT may be ecrauted in the following manner. If the average ground slope in percent is " $\mathrm{g}^{\prime \prime}$ and the radius of the switohback in stations is "r" and the grade of the road around the switohback in percent is " E^{\prime} and the length of the switahback in stations 1s "1", the followine relations may be computed. The difference In eround elevation between the $\overline{F C}$ and $F T=2 r 8$. The difFerence in elevation between the PC and the PT along the switchback equals si. The sum of out and fill at the PC
and IT 1s equal to 2rs - gl. This means that if the center line cut at the PC is zero and the grade of the road is (plus, minus), the (out, fill) at the PT will be 2rs51. In actual practice there would be cut at one of the points and fill at the other. The diagram below shows the roadway cross sections of the PC and PT of a switchback. The central angle is 180 degrees.

Tigure 3. Cut and Pill on Switchbacks
$r=$ radius of awitohback in stations
$1=$ length of switchosok in stations
$3=$ grade of $s w i t a h b a c k$ in percent
$s=$ slope of ground in percent
$C=$ cut at $\underset{L}{ } 10$ feet
$P=f 111$ at \mathcal{L} in feet
Then:

$$
C+\bar{F}=2 \mathrm{rs}-\mathrm{gl}
$$

Since the length of the switchback "1" corresponds to the lenith of a semicircle with a radius "r", the term "il"
may be replaced by "tres". Por rapid field caloulations, "T" may be considered equal to 3 and the terif becones "3rg". Factoring out "r" leavess

$$
C+F=r(2 s-3 s)
$$

If the central anyle varies considerably irom 180 decrees, tie term " $2 r^{n}$ aust be raplaced by the long chord of the curve. The long chord of a curve equals $2 r$ times (siae $\frac{I}{2}$), where "I" is the central angle of the curve. The formula may be rewrittens

$$
C+F=2 \operatorname{se}\left(\sin \theta-\frac{I}{2}\right)-g
$$

- Some proposed roads may lio adjacent to trails. This is a distinct advantase booause the trail can be used as the sontrol line. An sbney traverse is made over the trail and the yrofile 19 drawn. Working from this profile, controls above and below the trall can be noted and tied in accurately. In running a trall traverse, abney shots are taken evory 100 feet. The abney reading then gives the dirference in elevation between the stations. This traverse can be run almost as fast as the men can walk, and several miles may be covered in a day. An inspection of the profile will enable the engineer to eliminate certain sections of the trail. Additional tag lines must be run to cover the discarded
sections of the trail. The main disadvantage of a trail oontrol line 13 that the engineer may rely too heavily on the trail and overiook important controls.

A eipslar method can be used when an existing road is to be improved or when the proposed road follows part of an old road. An abney travorse is mun in the samo manner as with the trall traverse, and a profile is drawn. Most changes in alignment can readily be seen by walking or driving along the road. Grade ohanges are not as apParent and must bo determinod from the prefile. By driving along the road and studying the profile, the ongineer can decide what seotions of the road can be retained and whioh sec̄tions are to be sbandoned. Agaln, with an exiating road, the eneineer may tend to overlook important controls.

Level Zeconnaissance

Flat fround poses many more problems than exist on sidehill reconnaissance. Alignment controla the final selection of the route, and grade is adjustol to fit this looation. There are usually no promineat topographio features. Visibility is poor, making it difficult to get oriented even with maps and aerial photos. It in diffioult to locate pointa on elther mapa or aerial photos. With no prominent topographic features, there are no major controls. The road may 110 anyware within the limita of
the waximim srade, and on flat ground this oovera a wide area. Grade IInes are maningless, as they meander aism leasly over the area. All these factors make it neoessary to employ another method of field reconnaiseanoe to looste the most desirable routee

Extensive reconnaissance. Extensive reoonnalasance In leyel terrain is conoaraed vith establishiag horizontal control. rather than vertical control as in the sase of sidebill recoanalsmance. This is accomplished by daterminiag from a map the bearing of the tangent joining the two terminais and running this line in the field with a band compass and pacing. Tags are placed along this line 80^{-7} that the line $x a y$ be referred to in the future. fotes will usually be trief because there is 11 thle to note excopt timber types and possibly awampa. Sometimes it is 1mpractical to run a ingle tangent between the terminals. Such 1s the case if a lake or mwamp 11es aloge the 1100 joining tho terminala. When an obstacle ia encountered. the inne 18 mun around it ising mearused bearings rather than following contours. when the bearing of the control 1ine 18 changed, a reference point is get indicating the etationing, the bearing up to the reference, and the new bearinge Inis information is also rocorded in the noteg. Any long sections of excessive crade should be included In the notes. Small, smany areas neod not be arolded
with the control ine, but it is important to record the distance left and richt of the line to the edge of the swamp.

When the control line is completed, a plan is drawa and any features noted in the fiold are located on the plan. This plan is the base map or control map for the intensive reconcalssance.

Intensive reconnaissance. The next step is to study the area on either side of the control line to looate possible control points. This involves considerable walking and can be accomplished by walifing parallel routes on sither side of the control inne or by meandering back and Porth on eltier sile of the line. In either case, any control points looated should be tied to the control line. Shen the area has been thoroughly studied in the field, the control points are plotted on the plan. The plan is studied and the desired route is selected. This route is then located and tageed in the field, using a compass and paoing. Grade readings may be taken when exoessive erade is encountered. This route is adjusted to oliminato any excessite grade and to improve aliemment. If the route mests the desired specifications and appears to be the most economical, the preliminary suryey may commence. If there are two widely separated routen of seemingly equal desirability: each should be surveyed and perhaps designed
to determine the final route. If there are two or more routes olose together, it would be best to survey the most direct route and measure the topography 300 feet on either side of the inne. This will give ample room to move center line while designine.

Before spending too much time on the field reconnalsaance, the ensineer should give serious thoutht to making a topographio map of the area with two or five foot contours. The added time spont on the mapping may nore than pay for itself in time saved in the iatensive reconnaissance and preliminary survey.

The purpose of the preliminary survey is to establish acourats horizontal and vertical control over the seleoted tag line. This may be accoaplished either by using a transit, tape, level, and level rod, or by usine a staff compass, taps, fercent abney, hand level, and level rod. The transit survey 1s more accurate (1/3000 to $1 / 5000$), but it $1 s$ wuch slower than the compass survey. For surveys involving numerous rights-of-way problens and surveys in flat ground where it is desirable to erploy long tanjents, the transit is more practical. yowever, on-ordinary logeing roads where there are few or no rights-of-way involved and an accuraoy of $1 / 300$ is sufficient, the compass survey is aore practical since it is faster and requires fewer personnel than the transit aurvey. For a discussion of the transit survey, the reader 1a referred to any standard surveying text.

Horizontsil Control

A compasa preliminary survey can be run by tiwo wen, but it is faster and more desirable to use three or four wen. If the surver is run by two isen, thay should set stalees and brush the line one hay and go baok and survey that portion of the line tine next day. vith a tiree or four wan party, the brushing and surveying may proceed
simultansously.
Stakes should be get along the tag line avery 100 feet along tangents and every 25 to 50 feet along curpes. These are arbitrary maximum distances between stakes. A more realistio wethod is to place a atake wherever it is needed to defina a change in allgnoent, topoerephy along the line, or topography to eithar side of the inne.

Bearings. A compass bearing is taken at each turning point. These readinga ahould be taken to the neareat one-fourth degree. since there is always a possibility of local attraction, baoksights should be read at aach stake. This fivas the ame offect as turning angles. Some engineers set the compase on an even degree and have the head ohainman move the stake in inne. This makes it easier to plot the traverse.

D1stance. Distances are measured with a tape 100 to 500 feat in leagth. The 200-foot tape 18 probably tine wost commonly used in the Douglasmif Redion. Level taping is slow and cumbersome with this type of survey because of the steep topography sncountered. The aloge distance and the percentage of slope are measured; and with the ald of slope correction tables, the true norizontal distance is determined. Calder's (2, p. 4-11) slope tables, or other similar tables, nay be used. To make plotting easior the atake may oe moved ahead or back to
the neareat eren root. Thus, if the slope distance is 57 feet and the correction due to slope 1 s 0.7 feet, the horizontal distance 1 s 56.3 feet. The stake can be sored ahead 0.7 feat, waking the horizontal distance 57.0 feet. Vertlcal Control

There are two common methods of securing vertical control. The difference in elevation between two stations can be computed from the slope distance and tio percent slope, or it can be determined by using a hand level and a level rod.
fland level and rod elevations. The hand level and rod method involves a separate trip over the inne but gives more accurate results than the abney elevations. The hand level may be steadied by supportlni it in the crotch of a sorked atick. Sod readings are taken at every p-stake and at any spot where topograpiny 18 needed. The rod should be read to the nearest 0.1 feet. It 18 not necessary to use every stake as a turning point. Instead, turning points way be selected so that after the helight of the instrument ($H I$) has been established, rod readines may be taken on several stakes before seleotins a new turning point. Dench marks should be set every five to ten stations to serve as cheok points during the location survey. Eefore rodding down 1nto a deep draw, a bench
mark may be set. When the other side of the draw 13 reached, a sight is made on the bench mark to eliminate the possibility of making an error in the draw. All banch marks should be referenced on the eround and recorded in the notes.

Abney elevations. This method is rapid and involves no adaitional time or effort since an abney readine 13 necessary to convert slope distance to horizontal distance.

To eliminate the possibility of errors in readirus both the head chainmain and the instrument man take abney reading3. It is inportant that each man sights on a part of the other pergon's body that is the sawe height above the ground as his own eye. To determine what spot to sight on, the two men should stand on level eround about 10 reet afart with their abneys on zero and sight on each other. This is the spot they will sient on when they are working together. Vhen measuring the distance between two stakes, it ia equally lmportant that the men hold the tape the same distance from the ground at each end so that the tape is rarallel to the abney sijht. Ioth men should keep notes and each night these notes should be compared. any discrepanoles may be cheoked in the field the next day. Discrepancies of 0.5 cercent are within the tolerance of an abney and may be icnored.

The abney reading girea tine rise in foet for 100 Eeet of horizontal distance. The ifference in elevation between two statlons can be found by aultiylyins the horizontal distance in stations by the rade in parcent. iost errors with this method involve the wrong numerical 31 gn, rather than an error in readine the abney. This is the reason for having the head chainman leep a separate z9t of notes.

Bince 0.25 percent 13 the appoximate linit of accuraoy for adiusting an aoney, ench 100-ioot sifhtins an result in an error of ± 0.25 reet. This error 18 cumulative. The abney may be read to the nearest 0.50 percent and can result in an error of ± 0.50 feet fer $100-f$ foot sighting. In a mile, the error due to adjustment is上0. 25 times 52.8 or ± 13.2 feet. If 53 readinjs are taken per wile (approximately 100 feet per sighting), an error of $\pm 0.50 \sqrt{53}$, or ± 3.6 feet maj be expectad. The sut of these two probable errors is ± 16.8 feet per mile. anen hand levels are run over a survey that already has a oney elevations, this foint is easily deronstrated. If a hand level is used and read to the nesrest 0.1 foot, the probable error w1ll be approximately $\pm 0.10 \sqrt{53}$, or ± 0.7 feet (7, p. 31).

The abney elevations also can be used as a check on the hard level elevations. As mentioned previousiy, the
turning points for the hand level survey are selected so that rod readings may be observed on several stakes from one turning point. If the rod was read incorrectly at one of the intermediate stakes, there would be no way to detect this error without the abney elevations until the location survey. Such an error will have adverse effects if the road is designed on maximum irgde, or if the ground sloges In the area are too steep to support iill.

Topoeraphy

The final center line will not exactiy follow the P-ilne. At some points it may be uphill and at others it way be downhill. Since there is no way of knowing the exact location of center line when the P-ilne survey is run, there mutt be sove information of the toposraphy above and below the F-line. This is gecomplished with a hand level. a level rod, and a tape, or by using an abney and tape or pacing.

Hand level toporraphy. The hand level method is best adapted to flat or moderately slopin terrain with numerous ohanges in slope. The distance is measured at right ancies to the P-line, or along the bisection of the ancle at the turning pointa to the important breaks in topography. Hod readings are taken using the hand level at these pointa. A strip 100 feet wide on either side of the p-inne is
usually sufficient. The $H I$ is subtracted from each rod reading to dive the difference in elevation betiveen the Pastake and the break in topography.

Abnsy topography. In steep country an abney and tape or pacing is more practical. One man stands at the F-stake with an abney, while the other man takes the end of the tape and walks out to the break in topokraphy. The man at the P-stake takes an abney reading and reads the alope distance. Ihe slope distance is reduced to horizontal distance, and it is recorded in the notes along with the percent of slope.

A more common method is to take abney sights and pace out to any major break in topograpty within 50 feet of the E-11ne. Topography beyond the first 50 feet is not usually critical if the reconnaissance was tiorough. when usiag this method, it 18 difficult to jet an accurate slope reading because there is no target to sioot at and eye level must be duessed. Howsver, evea an error of five Fercent in the slope resdinis will not affect the desicn or earthwork quantities appreciably. Tinis method 13 fast and requires only one man to measure and record the topograpiny.

Seference Points

In many cases the P-1ine survey is completed long bea fore the road is aesiened and constructed. In order to
relocate the line, permanent references should be set. The easiest reference is a metal tag stapled to a tree facing the F-stake with the station of the p-stake being referenced, the difference in elevation between the reference and the stake, and the diatance from the reference to the E-stake. A more permanent reference is a cench chopped into a tree with the exposed face facing the P atake. The information written on the reference point is also recorded in the notes slong with the size and apecies of the tree. Sinoe only one reference point is set at any stake, it is important that the reference be as close to the stake as possible to reduce the error in relocatiag a lost stake. References made on Douglas-fir, true ilr, spruce, and pine have a tendenoy to pitch over or milldew and make it difficult to read the reference data. :hen referencing on these trees, the information should also be scribed on a metal tag and fastened to the tree. Seferences should be set every three or four stations.

Small tress, up to six inches d.boh. g can be used as $E-s t a k e s$. The advantice of $181 \mathrm{~m}_{\mathrm{C}}$ trees 18 that they are permanent and references meed not bo set. ithe disadvantage of using trees is that the compass aust be set up along side of the tree, and in siohting back or ahead, the oross-hair wust aight on a point that is the same distance from the stake as the compass is from the tree. It
is difficult to fudge this distance sccurntely and errors may arise. Another disadvantace is that trees conot be neved back or ahend to an even foot, and a corroction mat be made on the noxt ntake. retal thin shoule de used on iny tree mhich is litely to fitch opor or iflldew.

Cn steep sidehills there is ofton consicerabie sifference in olevation between the urhill and dominizl alde or the atrife. In orier to relocate zribe when the slore stakes abs cet, wede must be referenced on the I-stike. rins can be rone by rikine a distinct ravik on the stake end rucordine, on the stike, the elevation of the rark above grails.

Notes

Fan individual ill lovise his onn cethod of rote Lespiri; but essertially, the latin recorded vill be the saie recardless or tie method used. This incl:das bearint ind distance jetieon stikes, tice stationinj of the stakes, the abney realitio hand level elovations if uses, ind sore tyou of topojrifily notes. The laft hand fise lu wisel for pecorilad the data, dad the rijht band raje is uasd to add any descriptive information to clarify or explain the data recordod. Finis information is quito useful when designint oenter IIne. Sesiles being accurats, the notes nust be neat so that any yerson can pick thom un ind intorpret

Sher, A buncie or tio noter wed by tie sifiord inechot dational Forest in includod lim the ipeendix.

THE ROAD DESIGN

Before the design work can begin, certain criteria aust be reviewed. Jaximum favorable and adverse jrade, width of road, and allgneent are determined durine tios formulation of the logindis and forest manasenent plans. Such factors as slash disposal and olearing specifications should be determinea during tise field reconnaissance or preliminary survey, since they deferd not only on the atandard of road, but also on the size and species of tinder. Two other factors of prime importance that ahould be considered before the design begins are the type of equipment to be used and the allowance to be made for shrinkage and loss in earthwork computations. Shrinkage factors will be discussed later in connection with earthwork computations.

plottina Data

When the field work is Einished, the survey data unst be interpreted so that it way be studied to determine the location of center line. Three rachio alda are used to interpret and atudy the data. These are the I-line plan, E-line profile, and cross sections. A fourth araphic aid, the mass diacram, will also be inciuded in this paper. This diacram is plotted and studied after the center ine has been located on the plan.

3-11ne plan. The P-1ine plan is a graphic representation of the horizontal control of the P-ilne. The scalo used for glotting the i-line plan is generally one inch equals 100 feet of horizontal distance. The P-IIne plan may be plotted by coordinates, with a drafting machine, or with a protractor. The use of coordinates usually results in plotting accuracy dreater than the accuracy of the field work, use of tio draftine machine or a protraotor often elve rise to a constant error. Inus, if one course is plotted wronf, all subsequent courses will be in the wrong position even though they will be correct relative to each other. On lons surveys drafting errors may be avoided by computine coordinates and plotting foints about every onerfourth inile alody the P-110e. Betreen these points, the traverse may be plotted with a draftine machine. Inis way no error can acoumulate for more than oce-fourth mile. The coordimates act as a cheok on the plottines and the plottins in turn acts as a check upon the coordinates. Lines at right ansles to the P-ilae or bisecting the ansles at the turning points may be drawn in 1ightly. These lines represent places Where topography was taken and are used as guides for measuring the offset from the p-stake. other features that should appear on the plan are streame, rock outcrops that wight affect the alicinsent, section corners,

A device used in connection with the cross sections is a roadway template. The template 1 s out from acetate or similar material and representa the roadway perpendicular to the oenter ilne. There are three roadway sections: the through cut, the through i111, and the sidehill section. Each of these may be further modified by chancine the base, the back slope, or the fill slope. If the template is cut to represent a sidehill section, it may also ve used for throuith aut and through fill sections by turam 1ns it over. A aeparate template must be cut for each roadway width and combination of back slopes and ifll slopes.

Center Line Design

In order to explain the procedure of center line lesirn, a short section of road will be desicned based upon the p-11ne notes in the Appendix.

The road used as an example in this paper has a suberade width of 20 feet with three additional feet allowed for a ditch. This is, for all prgotical purposes, ecuivalent to the U. S. Porest service IE standard romu. ishloh is considered a one lane rond. Dack slopes and fill slopes will ba 1:1 and 1 1/2:1 respeotively unless otherwise indicated. A shrinkage factor of 25 percent w111 be used for esrthwork computations, and the road will
be built witin a bulldozer hiviny a freehaul distance of 200 feet. The tinier ia beine izuled ughill to tiae road junction at etation 0 - 00 .

Foe f-ilue plan, $x-12 n e$ profile, and croas sections
 turnout 1 s iculred on the rictit side of the roid in the vicinity of $P 2+21$ und $13+30$. antative alaceo

 Torest jexvice Cefion ix forme they iere ased becuuse they were beadily avislable. Cther forms could bave been used to doliteve tide same resulte.

G1al riue 1ino. ister the plottine is completed, tiae next step la to iniw the trial whie line on tio groFile. It is ingurtant to revien in sajortant zoint insousised in tin issat saotion on tinf ajer.

On steep alopes, erabe is the controlllij fictor, and centar 1 lia 10 ajustea to ith the topojogig. Fre Lae lide das run iu tha ilelu jutweon controls ind the
 should us drawn on the r-line rrofilo between thoss anme controlis. It da iot iacesaury to balanos ezavotion and
 adjustins center ine to fit the tuporapiay and irnis line.

42
CROSS SECTIONS

$$
\underbrace{\text { P4.58 }}_{\text {scole: } 10.20^{\circ}}
$$

On flat slonss allanent is the controlling factor, and crade is adjusted to inlance excovation and erbankwent. It ls important to lonste the culverts on the profils at this tire. Culverts often become controls because rade wist be hieh enoukt to clear the culverts. Trial arade is oftan dremn between oulverts. Tolume of excavation is a function of cat of fill at center line, back slopa, flll slope, and zorcert of ground slope, As the round slope aproiches zero, tolure becomes zore and more a alrect function of cut or flll. Therefors, excapation and sim bankient juantities ray ie rouchly balnoed in flat country ky balencing cut and elll ordinates with the trial jrade 11ne on the E-IIne profile.

The trial arade drawn on Fiéure 5 was determined by drawing a straligh lire to the base of the rock bluff at station $\bar{z} 80+00$ (see soney froflle in frenaly). It is Interestine to rote that the trial prie line was not drawn throuch station $20+C O$, because two divercing roads cust remain on the rade of the exicting road until the rosducys re entirely indeperdent of each other.

Trisi offset roirts. The trial erade elevation for each section 1 s recorded on the design form in Figure 8 , and iso on the oross sections. The roadway teaglate is woved korizontally alont the trial crade on the cross section until a visual balance of cut and fill aren is
determined. The area of out should exceed the araa of fill to aocount for shrinkage and loss. In this examgle the area of cut should exceed the $f 111$ area by $\frac{1}{1-0.25}$, $02 \frac{1}{0.75}$

The center line of the balanced section 13 sarked on each oross seotion as shown in Figures 9 and 10. The trial offset left or right of the P-stake is recorded on the design shoet. After this operation is conpleted for each stake, the offsets sre transferred to the plan.

Sometimen it is impossibie to obtain a calance between cut and fill areas. When it is no longer isasible to fill beoause of steep slopes, the center inn muat be moved into the hill at leagt one-half the suograde width from the point where grade intersects the surface of the ground. An asterisk is marked on the plan indioating that center line must pass through this point or be farther into the in11.

Center ling. A line on the plan joining these trial offset points representa the center line of a completaly balanced road. The dashed Iine on the plan in Figure 11 represents the balanced road for the trial grade. Such a road is impractioal beoause it would have very poor alignment. Tangents and curves are drawn to fit these points as olosely as possible.
Form R6-E9
ROAD DESIGN FORM

TRIAL BALANCE ROADWAY

${ }^{0_{4}}$
\leqslant
0

ro determine the cesired cowbinations of tancents and curves reculres consideribie study on the part of the desifning oncineer. One invortant point to recenker is to maintain adequete sieht distance on curves. The aistance required for a vehiole to stop is expreesed by the formula (1, F. 85):

$$
\begin{aligned}
d= & 4.4 \eta+\frac{\gamma^{2}}{\partial 0 f} \\
d= & \text { distance required to stop in feet } \\
\nabla= & \text { speed of the venicle in miles per hour } \\
f= & \text { coeffioient of friction of the tires } \\
& \text { pgainst the road }
\end{aligned}
$$

On a single lane road, two oncoting vehicles require twice this distance to stop. This is referred to as the ciouble stopping distanoe. The sight distance should be checked at each curve. If it is less than the double stopping distance, the road should be widened to ailow two venicles to pass. The widening should axtend until the sight distance equals or exceeds the double stopplae distance. When designing a road alone a gidehill, curves should be designed first and then the tanfents irawn to join tio curves. The reason for this is that the road muat conform with the contour of the terrain and in sidenill locatione, curves filt the contours better than tangents. On flat ground the tancents are drawn first because long taneonts

P-atationing is determined and antered on the desien form opposite the F-station. The offset from the E-station to the corresponding L-station is measured and recorded on the desien sheet. When this has been completed for the section, the information is tranaferred to the crosa sections as shown in Pisures 13 and 14 . The I-stationing is placed directly under the ?-stationiñ at each cross section. The center line offset is looated on the oross section and the spound elevation at this point is recorded on the desizn sheet. This elovation is a projeoted value based upon the general topography of the sidehill. It does not account for minor irregularities in the topography. The actual elevation must be determined in the field. The profected center ine profile is shown in Tleure 15. The arade ine 13 drawn to fit the profile. In the example, the grade line is the same as the trial grade 1ine. Vertical curve data are computed and the curves are drawn to connect the grade lines. Sho grade alevation is determined for each station and recorded on the desion sheet.

Farthwork guantities. Turniag to Ficures 13 and 14, grade elevation is located and the roadway is urawn on each section with the roadway template. The next step is to determine the areas of cut and fill at each section.

ROADWAY OF DESIGNED CENTER LINE

Tha -11 ne statloa of eaoh seotioc, the aistanse tstwper sectioas, ind the area of cut and il11 at ench aeotion have zeen rocordei on the earthwork giantity sheet siona in Figura 16 in columa i, 2,3 , and j. The ond areas of sucaesinve stations arg added tongtier to jite tive double evi arez. Thess ficures are recordsd in colwins 4 and 6. The doubla ョad aree is conyerted to volume and recorded la colum 10 for excaration and soluma 12 for awbankrent.

Columin 10 rerresents total exosvation. Tisis figure is convartal to onmon material ant salld rock, dapanilna ypon the estimated percentaje of rock. In thes examplo there is no rock so the miterial is 311 olassified as conimon.

The ictual embankment in column 12 is increased by a sfeolfied awoutit to silow for shrintaig and loss. Shere
 sariniage iagtor shoula be used in baianoing garthwork. To ie zore specific, this factor 18 :ot oriy sininfege, but 3 ? 30 includes loss. if a oublo foot of soil is carefully removed from the eround, its voluna will increase to a palue ereatar than one cuijic Eoot cecause of an increase in the void retic. "hon phaceli in a fill, its final volwas ray be freater or less than one ouble foot. In setual practice, a cuble root of excavation jeverally cocupies a
 Ehent No.

Folume less than one cublo foot in a ilil. zilis any je dus in part to the ompaotion and in part to the loss in the proosss of exoivatiac, hauling, and placing in the ambankwent. Another explanation is that soine of the mintarial alassified as ilrt is not dirt at all. Fine top layer is usually durif made ug of twigs and needles in various staces of decouposition. Also, stumps oscupy sjuce that has been considered as alrt. The awount oi space sooupied by sturije varies witi tie size and runcer of stumpe per unit area, and little is inown as to how huch tiais yalua ise lowevar, many anglaeers feol that when the 2raa in well stooked, tine top foot of goil will je lost in the olearing and sruboine operation. fhere fiere are fewer sturpa, the amount lost ay only be six lacios. ine rercant of 1038 7aries inversely wita the depth of the cut. Thus, the larier the cut, the swaller tige percentase of loas due to stumpa and iuff.

Loss ocours in several ways. Jion a bulliozor pushes alrt, souis spills off to the side out of reaoh of tise blade. Jome of this is pioked up with succeeding passes With the blade, but eventually sone will spill over the side and will be lost below the toe of the eabanknent. Ginen eartiowork volumes are computed, it is assuised that the fill $1 s$ built by placing dirt 1 a layers, besinniag at the loner slope stake and buildinc the fill up to frade.

This is the recomended practice (11, p. 94) and (3, p. 381-382). but too often the dirt is pushed over the side of the f111 and keeps going until the downward force due to the weight of the dirt is overcome by the force of friction between the dirt and the ground. On steep slopes the dirt often continues down the slope well below the slope stake, finally coming to rest in the timber or in the creek bed. One wethod of reducing the amount of dirt that runs below the lower slope stake 18 to mark the lower clearing boundary above the lower slope stake. This practice should be limited to spur roade over walch a relatively sxall volume of thiber is hauled. There are several disadventages of using this rethod on higher standard roads. The size of the clearing is smaller and less sunlifht will reach the fill. Snow will stay later in the year. This weans that the fill cannot dry out or drain properly, thus becoming unstable. Another disadvantaje is that it is difficult to compact this type of $\{111$.

Excavation for the pioneer road accounts for some loas; but if the ploneer road is placed at the lower slope stake, it can be utilized as a bench upon whioh a fill can be oonstructed. In this way the loss is reduced to the material from the pioneer road.

A method to reduce ioss, and at the same time reduce excavation, is by usine a retainine wall to hold material
in place. The most common use of retaining walls is around bridee abutments. They may be used in places Where the toe of the fill 18 subject to erosion by a stream or river. Another use, more in 11 ne with saving material, is in a steep, chute like draw where grade cannot be lowered and it would be too expensive to move the center inne into the hill. Such a struoture is expensive out provides better alignment. The use of retaining walls on steep slopes to eliminate loss of waterial is not likely to become a popular or economio wethod for logeing roads in the Douglas-ifir Eegion.

The shrinkage factor will generally inorease with the percent of slope until the slope reaches some value between 50 percent and 70 percent. fhen the slope approaches these values, very little of the road wlll be on fill, and there will be an excess of material. The value also depends upon the type of $s 011$ and amount of compaction. The Gifford Finchot National Forest uses a 25 percent shrinkage factor and does not consider the top foot of material when computing earthwork quantities. Experience should govern in making the decision, rather than assuming an arbitrary value.

When rook is excavated, the void ratio ereatly inoreases and a swelling rather than a shrinkace ooours. Some engineers assume that this swelling 1s offset by

10ss, and the material axcavatad w111 occupy spproxiwatoly the same volume in the eribankrent (12, p. 11). A shrinkage faotor of 25 percent has been used in this example. The sum of the smbanment and increase 13 shown in columa 13 of the suantity skest.

The noxt step in the earthworis computations is to compute the mass diagram data. A mass diagran is a eraphic representation of the aljebraio sum of the cumulative volumes of excavaiton and embankment. Coluans 14 and 15 are aded algebralcally to obtain the wass ordnate at each station shown in column 16. iass curve data are valuable to the engineer eren if the mass diafram is not drawn, since by looking at the yardage in the mass curve column, the excess or shortace of materlal at any station can be determined. In plotting a mass diagram, the abscisea is the L-ine stationing and the ordinate is the cumulative volume of earthwork as shown in colucn 16.

The mass diasram for the example is snown in Fizure 17. The curve lies very close to tice zero ordinate frow stations $0+00$ to $1+88$. This means that the excavation and embankment cquatitiea balanced at each cross section. The curve rises at station $1+88$ indicating that excapation exceeds embankment. The curve continues to rise until station $4+56$. Then $1 t$ drops off rapidly, Indicating heavy fillinf. The curve croases the zero
ordinate at apfroxibutely station $5+2 \because$ it this point, cumulative excavation ofuals cumulative exbankuent. If any horizoritil line lnterseots the curve, excuration and ewbankment Eetwsen tio vointa are agual. Ehe norizontal 11ne aramn betireen station $2+36$ to $t+96$ equals the freo-haul Instance stated on pae日 38. Inis I1ne is 600 cusic jaris above the zero ordinate. Thas repronents the overhaul volume. Overiaul 13 Eaterial moved beyond tho free-baul distance. It is a function of volume and distance, and it is bost comboaly masured in terme of station-yards. The areraje haul distance equals tine distance betiveen tine ceater of mass of the excavation and orbankxent volures. This distance is approxinately equal to the width of the overhaul area at mid-ialcht. The averace haul show on the diagram by the dashed line is 266 feet. The overinal isatance oquals 266-200, or 66 feet. She overhaul is oqual to (0.06) (600), or 396 station-jards.

In adiltion to determinine overnaul, the mass daGram is used to determine borrow, waste, and the diraction that the raterial will be moved. The balance point at station $1+83$ indicates that the material required to construct the fill teeinnins at atation $4+5611 e s$ between stations $1+88$ and $4+56$. If tre curve is corcave upward, waterial is moved from richt to left. If

the curve is conoave downward, the material is moved from left to right.

The haul sohedule is shown on the Imine profile in Fieure 15: The haul schedule showa the volume of material. the direction it will be moved, and where it 13 to be placed.

Full nenoh Desann

Considerable mileage of road in the Douglas-fir Region is constructed on ground slopes too steep to support any $f 111$ and the road must be oompletely benohed. The material excavated is generally wasted by side casting. Since there is no embankment, the designer is not confronted with the problem of balancing cut and fill volumes. A design procedure well adapted to side cast construction is inscussed here. This method does not utilize the plotting of oross sections.

The P-11ne plan, P-line profile, and trial frade are plotted as described previously. Assuming that the road is to be completely benched, each P-atation is analyzed as follows. The center inne must be moved "x" feet from the P-stake to obtaln a full benohed roadway.

Slegure 18. Offset for Full Bench Road
$a=\frac{0}{5}$
$-\quad x=3-\frac{0}{3}$
There:
$x=$ the offset to center lime for a fill perched road
$3=$ the width of the road frow center in e to the shoulder of the rout
o a the cut or fill as deteraned from the trial vErsus
$\Sigma \equiv$ the round slope from the topography notes

If the value of " x " $1 s$ positive, the offset is uphill. if "x" is negative, the offset: is downhill. If the trial
oraie line is adove the F-atake, the value of "o" is nejative and the formula becones:

$$
\begin{aligned}
& x=B-\frac{(-0)}{(B)} \\
& x=B+\frac{0}{S}
\end{aligned}
$$

The values of " x " are recorded in the trial offiset colun for each station and then transferred to the plan. Fiese Fointa are considered controls becunse center inne cannot be downhil frow then without lonering the yrade 1ine. Curves and timents are dram to fit these control roints. Curye data are computed and the road is stetioned. Ihe center inne offaet is ncaled irom the pisn and recorded on the design form.

The difforence in elavation between the P-Btalse and the sorres:onding Lastation is equal to the produot of the center line offaet and the gound slore. Fina palue is adued to or subtracted from the instate elevation to arrive at the rojeoted center line elaviation. This figure is recordel on the lesich form.

The I-Ine mrofile 18 platted from the projected center Iine alemation, nad the rade line is drann. The srade line zinst be low snouith so that the road will be completaly benched. The cut at any point must be equal to or ereater tizan the produat of the cround slope and the width of road from the center line to the shoulder.

Excaration quantities are computed, but it is not necessary to plot the mass diagram as it serves no purpose with a full benoh road design. By changing erede frequently, excavation may be reduced, but this may increase hauliag cost. If the timber is belag hauled up6111. the grade should be held constant so that time will not be loat by constant shifting of gears.

Trade Contour sesing

The grade contour is an imaginary 11 ne formed by the intersection of grade with the ground slope. The grade contour deaign is similar to the full bench design because neither utilize oross sections. They differ in that the grade contour design an be used to balance excavation and embankment quantities, The offset to the erade contour is locsted as shown in Figure 19.

Figure 19. Offset to the Grade Contour The offset " x " to the grade contour equals- $\frac{0}{S}$, where "o" is the difference in elevation between the P-stake and
the trial grade elevation and "S" is the ground slope. This offset is cecorded on the desicn form and plotted on the plan for the corresponding 3-atation. ohen this has been completed for exch atake, the points are Joined witi stralathtines. This line is the grade conm tour, and it way be considered the center line of the balanced raad.

Curves and tangents are drawn to fit the grade contour, curve data are computed, and the road is stationed. The projected ground elevation is determined as shown in the full benoh desicn and the L-line proilie is plotted.

The grade line is drawn on the Lmine profila and the projeoted center ilne cut is miensured and recorded on the desion form. since oross sections have not been drawn, the end area of out and fill at each station Iust be computed from the projected center ilne out and the topography notes. This involves consiuarable work without the use of earthwori tables.

In esrthwork table way be complled to show tie cublo yards per station of exoavation and embankment for any out of fill, combination of back slope and fill slope, and percent of ground slope. The table 18 constructed for the Width of suberade desired. Such a table is time consuming to couplle; but once it has been complled, it sreatly faoilitates tils method and the full bench method of desien.

The readning design is similar to the cross section desiyn. A mass diarram is plotted and the haul scheduls 1s shown on the ime proilile.

THE CONSTRUCTION SURVEY

The location survey is conducted to transfer the center line data from the plan and profile to the sround. There are two basic methoss to accomplish this. The first Is to run a new survey, using the bearings and distances as computed or scaled in the office from the plan and profile. This sethod is not too popular since it involves brushing a new line, and it is considarably slower than the offset method.

The offset method involves ofisetting the center IIne at risht ansles to the P-line, or alone the biseotion of the angle at each P-stake. The horizontal offset from the P-stake to the center line and the difference in elevation between these two points have already been recorded on the desicn sheet. This method, however, also needs revision because the P-stake and the center ine stake both renerally lie within the clearine boundaries and will be deatroyed during the clearing and erubbing operations. In order to insure fermanence of the control data, cench arks or reference stakes should be set 10 to 20 reat beyond the edie of the upper clearing. The zost permanent reference is a bench chopped into a tree close to the ground level. The references are set at richt anjles to the L-1ine when the upper slope stake and clearine
boundary are located. The data recorded on the reference are the corresponding center line stationing, the distance from the reference to the center line, and the vertical distance from the reference to erade. In audition to these data, the distance from the reference to tine upper slope stake is determined since the upper slope stake marks the place to beçin excavation.

The reference on be located by rodding uphill at richt angles to the P-line without looating the center line stake. The horizontal distance from the P-3take to the center line staice has already beon scaled from the plan and recorded in the design form as the center ine offset. This value is added to or subtracted from the horizontal distance between the f-stake and the reference to \&ive the horizontal aistance from the center ilne stake to the reference. The difference in elevation between arade at center I Ine and the F-staice can be determined from the desien form. This value is added to or subtracted from the difference in elevation between the P-stake and the reference to give the vertical distance from the reference to the crade of the roed.

If the direction of the L-ine does not closely paraliel the direction of the P-line, the reference atake cannot be set by rodding uphill perpeadicular to the P-ilne. This can be explained by referring to Figure 20.

Figure 20. I-1ine Reference
Foint "A" represents the referance located along the bisection of the P-ilne. Since the reference is to be at richt ancles to the L-line, "A" represents the reference to point "E" on the I-inne instead of point "D". Feere are two ways of setting point " 3 ". Tine first is to measure alone the bisection of the turning point to the L-inne. Then proceed uphlil along bearine DCB to point "工". The other method involves locating point "C" alone tice f-line and proceed uphill alone the bearine of 200 to set yoint " ${ }^{\prime \prime \prime}$. The distances $F D, P C$, and $C D$ and the bearinc LCB nay be reasured on the rlan. The P-stake is used as a backsifht for elerations in both methods.

The upper slope stake is located elther on the way up to the reference or else it is located by roidine down fror the reference. If cross sections have been drawn, a close approximation can be rade of the location of the
upper alope atzike by soalinz the horizontal alstance from the pastake to where the back slope interseots the sround level. If the data recorded in the topographic notes are acourate, this should coincile quite olosely with the upper slope stake. Bowever, errors in topownohy or local is round variations will affect the losation of the slope stake. Haless the error 13 apreoiable, this method oan be used to find the approxidiate location of the slope stake faster than rodding up from the fastake or down from the reference.

Except on fiat cround or through cuts, it is denerally unnecessary to locste the lower slope stako. ?ernaps if wore care were taken in construction of fills, it would be desirable to locate the lower clope stake. Sowever, the fills in the mafority of cases are built by alde castint riaterial over the slope until it builis up to the dosired hejeht of fill. The material will run doin past the lower slope stake and will not stop until its momentum 1 s checked by friction or the lower olearing edee. Ihis results in an unstible rondber that will eventuilly settle and recuire additiocal man hours to repair. In the future wore enphasis N111 undoubtedly be placed on proper construction and oompaction of fills. At this time the lower slope stake will becore a nesessary itam to do located in the field.

The upper edee of clearing should be sot at least 10
feet beyonal the uprer slope stake so that no treen are
undermined by the arcavetion. The lowor clearing boundary is set about 10 feet below the lower slors stake. Since the lower slope stake is sellom located, the lower olagring boundary can he detersined by weasuring tine distance from the p-stake to the intersection of the illl slope aith the eround (as shom on the dram cross ssotion) and then adaing 10 feat. If cross sections are not used, the lower clesring boundary may de established by assurine that the distance from sentor line to the lower clasina boundary equals the distance from center li:as to the uprer dearin boundary. In steep country this can result in a inde richt-of-way, but the darace to treas on the lower 31허 from rooks and debris usually necessitates their rem woral anywy. nlso, this wide richt-of-way will ailow wore sunlicht to reach the road, drying it out faster and revorinit snow eariler. Clearing boundries should be wooth. This often reans that the olearine will extend wore than 10 faet beyond the ureer or lower slore stakes. The location of balance yoliats, is deterained of the wass alacrary, can also io located and marked ath taja on trees on the ede of the clearing. This will show the construction cres which way the excavation caterial is to be coved. Culverts are also tentatively locater. Usually a tree is marked or a at ane la set on the edce of the olearing above the prorosed location of the oulvert. The
stationing of the sulvert and its dinater and lencth are recorded on the tree or stake. When the riaht-of-iday ras keen cleared and rribbed, the upfer slope stakas and canter Ilna stakes dan to set from the data recorded on the reference. The cid or fill at center Ine is secoried on the atike. it thia folat rade and allgnment can te checked and adjusted for any :ininor errors.

1. Syrne, James J., Boger J. Nelson and Faul He Googins. Cost of hauling logs uy motor truck and trailer. Bev. ed. Portland, J. S. Dept. of Agriculture, Forest Eervice, Fuciric Contuost Forest and Fint Exy ariwent itation. 1956. 116p.
2. Calder, Lester E. and Douglas G. Calder. Calder's Forest roch enineerire taises. Liuene, 1953. 47pe
3. Zewes, Labience ard clarkson $\underset{i}{ }$ (iciesoy. ilichay engineering. New York, W11ey, 1754. 628p.
4. Hickerson, Thomas F. Highway surveyine and planning.

5. "atthews, Fonali Finmell. Cost wotion in the locints Industry. New York, Mooraw H111, 1942. 374p.
6. Iitzhsimer, Jarl. Heavy private road construction.

 Todd. Engineering surveys: elerentary and spplied. 2d od. New Yori, Yac:11lar, 1950. 7a?c.
O. Jutr, Tobert i. ard Soy . T. Silen. Nikeotious for getting more forestry in the logenag plan. Fortland,
 ice, Facirlc Northwest Forest and Nance Experiment Station. Teseerch "oto 7a)
 Douclas fir drainage. Pln:berman 56(6): 82-88. April i $\because 55$ 。
 s011 mechanics and foundations. New York, Hachillan, 1951. 284y.
 lozgine roads. Timberman 58(5): 88-98. May 1957.
7. U. S. Dept. of igriculture, Forest Service. Rezion 6 forest road standards. surveys and plans. Fortland, 1954. 20p.
8. Nestreld, 3. A. Applied silviculture in the United States. 2ded. New York, N1ley, 1949. 590p.

AETEDIX A

SAMPLE P-LINE NOTES

