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The quest for greater computer-system speed has brought

about a continuing increase in the parallelism of these systems. In

particular, the number of processors and other devices which are

required to access the same core-memory not for economy, but

for the advantages to be derived from using the memory as an

exchange for data and control information has increased markedly.

That portion of such multiaccess systems which allocates the

memory accesses available at a given instant of time among the

devices then requesting access to memory is denominated the

priority structure. These attributes are desirable in a priority

structure:

1. It should service all requesting devices within the limits

of their patience; i. e. the latency of each memory-



accessing channel should be less than the patience of the

corresponding device.

2. It should be efficient in that all accesses available from

the core-memory are made available to devices.

3. It should be modularly constructed and reconfigurable so

that no single component is absolutely necessary for

system operation; i. e. it should introduce no intrinsic

point of permanent articulation.

Priority structures used heretofore, principally strict-priority

and first come-first serve, do not exhibit all of these characteristics:

First come-first serve systems, although efficient, are incompatible

with devices of small patience unless intrinsic points of permanent

articulation are allowed. Strict-priority systems, are generally not

100% efficient, have variable channel latencies, but are favorable to

the elimination of articulation points. Their inadequacies are not a

result of the idiosyncrasis of a particular hardware implementation

but are shown to be, in each case, a fundamental shortcoming of the

service discipline itself, when applied to multiaccess memory

systems.

An alternate discipline, limited-latency, is developed which

does exhibit all of the desired characteristics. In an example of

this discipline, each multiplexor, at each level, in the memory-

access structure is required to contain a cycle-counter, the states



of which are decoded so as to guarantee each input channel some

fraction of the total number of cycles available to that multiplexor.

Necessary, or desirable, restrictions on the sequence of guaranteed-

fractions to be so obtained are derived and their consequences are

discussed.

Finally, it is shown that the limited-latency structure is a

general schema, independent of ad hoc hardware considerations,

which can serve as the basis for particular designs. (It does, in

fact, include first come-first serve and strict-priority as special

cases.)
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PRIORITY STRUCTURES FOR MULTIACCESS

MEMORY SYSTEMS

INTRODUCTION

The innovations, inventions, and improvements in computer

technology in the last 15 years have increased the speed of computer

systems both directly and indirectly.

The direct application of technological achievements has resulted

in an increase in the intrinsic speed of computer system components.

Faster circuits, due primarily to the evolution and perfection of manu-

facturing techniques in solid-state electronicsfaster core memories,

due primarily to the evolution and perfection of manufacturing and

testing techniques for extremely small coresfaster rotating memories,

through the perfection of the mechanical-finishing and plating

processes for the rotating surface and the refinement of head-

manufacturing techniquesare three examples,

Indirectly, improved technologiesparticularly in the area of

circuitshave increased the speed of computer systems by decreasing

the cost of components while increasing their reliability. Decreased

cost and increased reliability of components have made large, parallel

systems feasible. Such systems are capable of greater useful speed

because they allow many operations (input, output, calculation) to

proceed simultaneously instead of seriatim (3, p. I).
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The apparent speed of computer systems (or, if you prefer, turn-

around time) has also been greatly improved by the indirect application

of technology. In particular, interactive time-sharing systemswhich

dramatically reduce turn-around time owe much of their success to

high-speed rotating memories and a proliferation of fast registers

within the processor (6, p. I 15).

Due to diminishing returns in overall system speed realizable by

improvements in intrinsic speed, recent approaches to increased system

speed have necessarily concentrated on improving useful and apparent

speed.I Consequently, the simultaneous activity within systems has

been greatly increased. This increased simultaneity greatly increases

the demand for central-memory cycles and creates attendant problems;

these problems are referred to as problems of multiaccessing (11).

This thesis is concerned with the particular problem of allocating

the available memory cycles among the many devices competing for

this commodity in a multiaccess system.

1 For example, the Control Data 7600 is constructed with discrete-
component circuits, not integrated circuits. However, its iterative,
parallel architecture yields a very high useful speed (7).
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DESIRABLE ATTRIBUTES OF A PRIORITY STRUCTURE

FOR MULTIACCESSING

There are three salient considerations which should govern the

design of the priority structure which allocates memory cycles in

a multiaccess system:

1. The worst-case wait-time for a memory cycle at a

particular channel must not exceed the patience of the

device connected to that channel.

2. The structure should contain no intrinsic point of

permanent articulation.

3. The system should be "efficient" in the sense that all

available memory cycles not required by synchronous

devices may be utilized by asynchronous devices.

In this chapter we will relate each consideration to the associated

multiacces sing problems.

Patience

In an excellent paper by Wallace and Rowswell the patience of a

channel is defined as the maximum time which can safely elapse

between the emission of a request by the channel and the completion of
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the corresponding memory access (10). For clarity in subsequent parts

of this thesis, however, some modification of their definition is

desirable.

Consider the case of channels serving synchronous devices with

one word of buffering (in addition to any assembly or disassembly

registers); it is clear that the reciprocal of the transfer rate of the

synchronous device is the "maximum time which can safely elapse"

(minus some overhead, perhaps, such as the minimum allowable time

between clearing and setting the data flip-flops).

However, in the case of channels serving synchronous devices

with more than one word of buffering, the amount of time which may

"safely elapse" depends upon the number of buffer registers which

happen to be full (or empty) at the instant a particular request is

issued. If, for example, data from the device must be emptied into

a buffer register which is still full, then the "safety rule,"for the

request corresponding to the word in the still-full register,has obviously

been violated. Staudhammer, Combs, and Wilkinson speak of such

over-writer (or re-reads) as transfer-timing errors (9).

In the case of channels serving asynchronous devices there may be

no maximum to the wait-time the device can tolerate (infinite patience)

but the channel itself handles every request within some finite time.

Therefore for the sake of clarity we will, from now on, speak of the
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patience of devices and the latency of channels and, in the light of

the preceeding observations, define them as follows:

The patience of a device is the maximum time which
may elapse between the emission of every request and
the completion of the corresponding memory access
without the occurrence of transfer timing errors.

The latency of a channel is the maximum time
which can elapse between the presentation of a request
to that channel and completion of the corresponding
memory access.

The patience of a device should exceed the latency of the

channel serving the device.

Articulation

The term "point of articulation" is borrowed from graph theory.

In a graph-theoretic context it means a node which, when removed

(along with its incident edges) from a connected graph, disconnects

the graph (1, p. 67). In the context of systems, "articulation point"

is to be understood as meaning a component of the system which,

when it fails, entirely removes some capability from the system.

If we say that the system has failed when it can not perform all of

its normal functions and that it has not failed when it can perform

all normal functions, albeit at a reduced rate, then it follows that

the failure of an articulation point produces a system failure.
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There are two cases of interest. If, after the failure, the confi-

guration of the system can be changed to an "equivalent" configuration

which does not include the failing articulation point and thereby allow

the system to begin operation again, the articulation point will be

called a point of temporary articulation. If,on the other hand,no such

reconfiguration is possible,the articulation point will be called a point

of permanent articulation.

For illustration let us consider a simple computer system consisting

of two arithmetic processors with individual consoles; two -tape-unit

controllers, each connected to four tape units; and eight core-memory

modules, each having four ports. Each processor and each tape-unit

controller is connected to a unique port.

If the tape-unit on which the system tape is hung fails, the system

will fail; however, it is not difficult to move the system tape to another

tape-unit and then restart the system. Consequently, the tape-unit

holding the system tape is merely a temporary articulation point.

This system need not contain any permanent articulation points,

but it may. It is possible to create them in the software. It would be

possible to write the system program in such a way that a minimum of

five tape-units would be required; in that case, both tape-unit control-

lers would become permanent articulation points. Furthermore, it is

possible to create permanent articulation points by carelessness. For
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example, if the number of correct copies of system tape is allowed to

decrease to one, that tape is, until a copy of it is made, a permanent

articulation point. However, in all that follows it will be assumed

that a system contains no such extrinsic articulation points but only

the intrinsic articulation points of the hardware.

As an illustration of an intrinsic point of permanent articulation,

suppose that we replace the four-port memory modules of the example

system with one-port memory modules in conjunction with a four-

channel multiplexor. (Each processor and each tape-unit controller

is now connected to a unique multiplexor channel.) Obviously, the

multiplexor is an intrinsic point of permanent articulation.

Equally obvious is the desirability of systems containing no

articulation points, for these are systems which do not fail as the

result of the failure of any one component. Such systems can be

designed; however, a goal much more easily and economically attained

is the design of systems without intrinsic points of permanent articu-

lation.

A system without permanent articulation points will avoid protracted

periods of downtime since it need be down only long enough to recon-

figtre the system, not to repair it. This characteristic is particularly

desirable in large time-sharing systems because the expense (and

irritation) of downtime is proportional to the number of users deprived
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of the services of the system.

Access Efficiency

The priority structure of a system is a mechanization of the

designer's policy for the distribution of -Ile central-core-memory

accesses available at a given instant of time among those devices

then requesting memory cycles. Under worst-case conditions of

addressing conflict (all requesting devices trying to access locations

in the same memory module), the cycles available in that instant of

time will be limited to the number which one memory module can

provide. Usually the primary objective of the designers priority

policy is to assure satisfactory operation of synchronous devices

under these adverse conditions, i.e., it is a rationing policy for times

when memory accesses are in short supply.

As we will show shortly, however, worst case conditions are

unlikely to prevail for most of the time. It is, therefore, a worthwile

secondary objective of the priority policy to avoid wasting (not

utilizing) available cycles at times when the supply of memory cycles

is greater than that required by the synchronous devices.

Naturally the priority structure itself can not utilize memory cycles

but it can be favorable or unfavorable to the inclusion of fast, asyn-

chronous devices to act as "cycle-sinks" in the system. Therefore,
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we will define the access efficiency of a priority structure as being

the time average of the ratio of the number of memory accesses

available to the devices, to the number of memory cycles available

to the priority structure.

Although the access efficiency can be calculated without actually

knowing the number of memory accesses available (if it is possible

to ascertain what fraction of available cycles the priority structure

must waste), estimating the number of accesses available in a

general system is a worthwile exercise in that it provides insight

into some problems of multiaccessing.

The Availability of Memory Accesses

Consider a multiaccess system with the following properties,

which we will assume to prevail for the remainder of the paper.

The central core-memory is comprised of M identical modules.

Each of these modules has precisely one input-output channel which

connects the module of memory directly to a time-division multiplexor

called a port structure. See Figure 1.

Each port structure provides access to its module of memory for P

external channels. The corresponding external channels from each

port structure are connected in common and called a port (the port

structures are uniquely numbered and a portion of the address supplied
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by any memory-accs sing device is decoded to activate only one of

the M port structures per device request). Thus, a port is an input-

output channel which can access any word of memory through one

multiplexing level.

Each port is connected directly to a second-level time-division

multiplexor called a port multiplexor. A port multiplexor provides

access to its port for S external channels. Every memory-accessing

device in the system has exclusive use of one or more of these

channels called sub-ports. Thus, a sub-port is an input-output

channel which can access any word of memory through two levels

of multiplexing.

The number of memory accesses available per unit time depends

upon the speed of the memory modules and the degree of parallelism

in the accessing hardware,i. e., the number of ports and modules.

If there were only one port, either the transfer rate of the entire

system would be limited to the rate of a single memory module,2 or

the memory would have to be partitioned so that all of memory would

no longer be addressable by any device in the system (contrary to

our definition of a port). Therefore, the desirability of having more

than one port is patent.

2 Interlacing and overlapping are ignored since they can be
accounted for by multiplying factors when considering average
performance.
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If the number of ports were equal to the number of memory

modules, it would be theoretically possible to keep all memory

modules busy all of the time and thus approach the absolute maximum

utilization of the memory. In practice, however, some of the devices

accessing memory will necessarily be idle an appreciable fraction

of the time (consider the latency of discs and drums, for example)

making it impossible to sustain such a high utilization (except in a

system having an extremely undersized memory). Consequently

having the number of ports equal to the number of modules is super-

fluous.

In trying to proportion M and P in a particular system we can not

simply assume that the number of accesses available per unit time

will be equal to P x R provided P where R is the cycle rate of

a memory module. Indeed the existence of address conflicts, more

than one port addressing the same memory module, will appreciably

reduce the number of cycles available.

To investigate this problem, let us begin by making the optimistic

assumption that all address states are equally probable. An address

state is a string of integers

al, a2, a3, ... an ai e (1, 2, 3, ... M)

where a i is the module being addressed by port i. We assume every

port is addressing some module.
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Let Un be the probability that precisely n of the M modules are

being addressed (one or more of the modules is being addressed by

more than one port). Let R be the cycle-rate of one memory module.2

Then T,the average number of memory accesses available per unit

time, is given by

M
T = R Z n Un.

n=1
Equation 1

Hellerman (5) has considered the case where M equals P, and

derived the following formula:

M
T = R Z k

2

(M-1)1
k=1 Mk (M-k)!

Equation 2

His model for computing Un is to determine the probability that

the first n integers of the address string are distinct. The model

is simple but somewhat pessimistic in that it essentially equates

any string of D distinct integers, D less than M, with an M-minus-

D-way address conflict.

Since we are also interested in cases where M is not equal to P,

we will approach the problem in a different manner. We will compute

Un by dividing the number of ways P ports can address M modules

so that precisely n addresses are distinct, by the number of ways

P ports can address M modules. Or,in classical terminology, Up_i

is the number of arrangements of P (distinguishable) marbles in M
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cells, so that precisely P-1 cells are occupied,3 divided by the

total number of arrangements of P marbles in M cells.

Now the number of arrangements of P marbles in M cells so that

precisely P-1 cells are occupied is equal to the number of ways of

chosing P-i cells from M cells; times the number of arrangements

of P marbles in P-i cells so that P-i cells are occupied,

i.e.,

But

A (P, M, P-i) = ( p_i ) A (P, P-i, P-i). Equation 3

P-1-i
A (13, P-i, P-i) = (-1)

k P-i
( k )

k=0 Equation 4
(2, p. 58)

And the total number of arrangements is MP; -therefore,

P-1-i
M

Up-i M
-P

( P-i) Z (-1) k
k( ) (P-i-k)

k=0 Equation 5

consequently

P-1 P-1-1-P k Pi P
R-1 T = M (P-i) ( p_i )(-1) ( )(P--k)

1=0 k=0 Equation 6

Values of this estimate (Equation 6), as well as Hellerman's

formula, are plotted in Figure 2 to illustrate the reduction in available

accesses due to address conflicts. It should again be pointed out

3 We do not say "... that i cells are unoccupied," a more familiar
but very different problem indeed. Consider P < M.
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that the assumption of equally probable address states is optimistic.

In practice, address conflicts can reduce the availability of cycles

considerably more than is indicated by Figure 2.
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Fig. 2. Plot of TM versus the number of ports for various numbers of
modules, showing the reduction in available accesses due to address
conflicts.
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ANALYSIS OF COMMON MEMORY PRIORITY

STRUCTURES

The common disciplines for memory-access allocation are:

1. First come-first served

2. Round-robin

3. Strict-priority

4. A combination of the above

In analyzing these four approaches we shall investigate the

effect of the discipline upon system efficiency and articulation in

addition to determining its effect upon the patience required of

devices.

Only the last consideration, patience, has received a modicum

of attention in the literature (9, 10). No doubt, efficiency and

articulation have not been studied as thoroughly as patience (latency),

because they must be measured relatively while latency can be more

decisively evaluated. Devices either receive service within the

limits of their patience or they do not. System articulation and

efficiency are important considerations, nevertheless , and the

author contends that it is unreasonable to ignore them simply because

they are somewhat intangible.
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First Come-First Served

In a first come-first served system it is true that it is impossible

to ascertain in all cases which of a number of requests was first

initiated, but it is also true that this uncertainty does not affect the

latency, efficiency, or articulation of a system employing this

discipline.

Latency

Let us assume that we have a two-level multiplexing scheme

like the one described in the preceding chapter. If there are Ni

devices connected to the ith port multiplexor, then each of them may

have to wait at most Ni multiplexor cycles to complete any request.

Similarly, each port multiplexor may be required to wait a maximum

of P memory cycles (P is the number of ports) to complete one of its

requests. Consequently the latency of every device using the ith

multiplexor is given by

Lei = P Ni h, Equation 7

where h is the memory cycle-time. However, in most of our work

we will use the memory cycle-time as the unit of time, in that case

we have

L = P Equation 8
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Consequently, if the system must service one or two high-speed

synchronous devices it will be necessary to connect them to a port

multiplexor for which Ni has been made suitably small.

Efficiency

Note from Equation 8 that the latency of any channel is not

affected by the rate of any device in the system. Consequently,

high-rate asynchronous devices are well tolerated. Their presence

as cycle-sinks can result in an access efficiency of 100%; however,

it may be that a multiplexor servicing only one or two small-patience

devices can not also service a cycle-sink because the corresponding

increase in Ni might make the latency of the channels servicing the

synchronous devices too large. In that case, the access efficiency

of the system would be reduced since all cycles available to the

multiplexor when the synchronous devices were idle would be wasted.

Articulation

If we wish to eliminate multiplexors and ports as permanent points

of articulation it is necessary to provide each device in the system

with two access paths to memory (assuming every device is necessary

for system operation): one path to be used during normal operation

and an alternate path to be used whenever it is necessary to reconfigure
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the system in order to bypass an inoperative port or port multiplexor.

Naturally, we want the latency of every sub-port to be independent

of the system configuration.

A simple example of a first come-first serve system that is recon-

figurable in the preceding sense is given in Figure 3.

If, for example, multiplexor B fails, reconfiguring the system

consists of enabling devices bl and b2 in multiplexor C and enabling

devices b3 and b4 in multiplexor A. Observe that reconfiguring the

system does not change the latency of any sub-port; unfortunately,

this is not a general property of first come -first serve structures.

If we let di represent the number of devices switched from the nth

to the ith multiplexor when the jth multiplexor fails, then, in order

to make all latencies insensitive to reconfiguration, we require

P Ni = (P - 1) (Ni + di) , Equation 9

where

P
Z di = Ni;
1=1

ij
for all i and any j in (I, 2, 3 ... P). Since Equation 9 must hold for

all i,we can sum any P 1 of the P corresponding equations and obtain
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Fig. 3. A reconfigurable dual-access, first come-first serve structure.
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P P

Z P N, = T (P Ni + P di Ni di) , Equation 10
i

1=1 1=1

i/j i/i

(P 1) di = Ni,
i=1 1=1

ij i7j

Equation 11

P
(P 1) N, = N, for all j. Equation 12

J i
1=1

iA

N = Ni
i=1

. . P N, = N for all j. Equation 13

From Equation 13 it follows that the same number of devices, n,

must be connected to each multiplexor; it then follows from Equation 9

that P I must divide n. Consequently, the conditions under which

a first come-first serve system can be satisfactorily reconfigured

are seen to be very restrictive and incompatible with a need to

provide a variety of sub-port latencies in order to adequately serve

a variety of devices.

Summary

We may characterize a two-level, first come-first serve structure

as one capable of high efficiency but not compatible with devices of

small patience unless intrinsic points of permanent articulation are

allowed.
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Round-robin

In principle, a round-robin structure works as follows: The

request lines of each sub-port (port) is examined in turn. When a

requesting sub-port (port) is encountered it is allocated the next

multiplexor (memory) cycle. Upon completion of that cycle the scan

of request lines resumes, beginning with the next in the order of scan.

Since the scanner can never be more than Ni - 1 positions away

th
from the request line of any sub-port connected to the

a cycle corresponding to a request on sub-port i will begin no later

than multiplexor cycle -times after the issuance of the

request. Therefore, it will complete after Ni cycles. Similar

remarks apply to the requests of multiplexors to the port structures.

Consequently, the latency of all sub-ports connected to the i

multiplexor is given by

th

L = P Ni. Equation 14

Thus, all the observations concerning the efficiency and articu-

lation of the first come-first serve structure are equally applicable

to the round-robin structure. Therefore, the systems are equivalent

for our purposes.
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Let us determine the latency of the sub-port of priority i in a

strict-priority system. When a request is issued on sub-port i,

service commences immediately if the memory (including the access

structure) is not busy. If the memory is busy, service for sub-port i

will commence at the end of the cycle in progress provided there are

no outstanding requests of higher priority (i.e. requests on sub-ports

with numbers less than i) at that time. When there is such a queue

of higher priority requests,the response to the request of priority i

is of course deferred until the number of elements in the queue is

reduced to zero.

Unfortunately, we can not simply say that the maximum time to

reduce the queue to zero is i-minus-one cycle-times, because as

soon as service for a device begins it is free to issue another

request and re-enter the queue. We must be slightly more subtle.

at before we proceed to ponder the maximum queue-service time

let us make some useful distinctions concerning the components

of latency.

The latency of sub-port i is comprised of two parts, the waiting

period, and the service period, h. The service period, h,
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(approximately the memory cycle-time) is assumed to be constant

for all cycles and is used as the unit of time in all that follows. The

waiting period, the time elapsed between the issuing of a request

and the beginning of the corresponding memory access, also has two

components: the set-up period and the queue-service period.

The set-up period is the time spent completing any memory

access (possibly of priority lower than i) initiated before the occur-

rence of the request on sub-port i.

The queue-service period is the time spent servicing requests

of priority higher than i. Of course the queue-service period is not

a constant,' so in order to determine the latency of a sub-port we

must know the maximum length of its queue-service period.

By definition, there are no outstanding requests of priority

higher than i at the beginning of a maximum queue-service period.

Consequently, the maximum time spent servicing requests of

priority f (where f< i) during WI, the maximum waiting period for

sub-port i, is no more than the smallest integer (h is the unit of

time) greater than or equal to Wi divided by tf, the minimum time

between requests on sub-port f (or the reciprocal of Rf, the maximum

rate at which the device connected to sub-port f can issue requests).

Note that w, is precisely the period in which the arrival of requests

of priority higher than i can delay the service of i.
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Consequently the maximum queue-service period for sub-port i

is given by

Q =
u=1 u

1-1
Wi Equation 15

where Ex] means the least integer greater than or equal to x.

The maximum set-up period is of course 1 (in units of h).

It follows that the maximum waiting period for sub-port i is

the minimum solution (occurrence of the first zero in the queue length)

of the integer equation4 (10, p. 66)

i-i
W].. = E Evi Rj + 1. Equation 16

u=1

thTherefore, the latency of the i sub-port is 'given by

L. = W + 1. Equation 17

Note that, unlike the first come-first serve system, the latency

thof the in a strict-priority system is dependent upon the

transfer rates of higher priority devices. This dependency is disad-

vantageous in two ways. First, it lengthens the system design

process, since the choice (from a set of functionally similar units

with different data rates) of the n + 1st device, along with the

design of its controller, must often be deferred until the choices

for the first n devices are firm. Second, the interdependence of

4 Wallace and Rowswell have given an explicit bound for W.
which is derived in Appendix I.
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sub-channel latencies may lead to the development of a "tuned"

system in which even a slight increase in the transfer rate of one

device may cause transfer-timing errors for some other device. The

difficulty in linking cause and effect for such subtle failures is

formidable.

Equation 17 appears to provide the means for making certain that

the patience of a device exceeds the latency of its channel.

Unfortunately, the exactness of Equation 17 is illusory in any

system in which the sub-ports connected to devices are used to

transfer control words in addition to data words. This dual use of

a sub-port, a virtual necessity in paged systems, creates a variation

in the request rate on the sub-port. This variation is referred to as

the "galloping problem."

As a very specific example, which will illustrate several general

aspects of the problem, consider the case of reading a contiguous

block of pages from disc, which must go to non-contiguous pages

in core. Clearly, the disc-controller must have access to an

ordered list of control words specifying the starting core-address

and word-count of each contiguous portion of the transfer-block

(or an equivalent table of information). For the sake of argument

let us assume that there is a table of words each containing a word-

count, and a starting address corresponding to a contiguous portion
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of the transfer-block. Let us call these words pointer words. Let

us also assume that each pointer word contains two flags: one to

indicate indirect addressing (i.e.,the pointer word is to be replaced

by the contents of its address field, this operation may be nested),

and another to tag the last pointer word in a job.

Let us further assume that the (or a) control processor initiates

a disc-job with two control words -one, called the comdad word,

which contains the command to the disc (read, write, search, etc.)

and the disc-address of the information to be transferred; and another

called the locator word, which contains the address of the first

pointer word of the job. The comdad word and the locator word must

be sent to the disc-controller by some processor-to-controller

channel external to the memory system,or the disc-controller, when

not busy, must periodically examine in core, some predetermined

(by switches, perhaps) flag word for an indication that the contents

of the comdad and locator words contain the parameters for a new

job (the address of comdad could be contained in the flag word; the

address of locator could be this address plus one). (See Appendix II

for a discussion of the implied interlock problem.)

Since it weakens the assertion that the dual use of sub-ports

as both control and data channels is necessary in paged systems,

let us postulate that initiation of disc-jobs is accomplished without
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the necessity of memory access through the sub-port connected to

the disc-controller. However, once the job has started,the n + 1st

pointer word must be read from core during the time the data transfers

corresponding to the nth pointer word are being made. As a result

a control word transfer must be inserted between two data-word

transfers , thus violating the constant-rate consideration upon which

the latencies of lower-priority sub-ports are determined according

to Equations 16 and 17.

One might naively suppose that the problem could be avoided

by connecting the controller to two sub-ports, using one for data

and one for control. But what priority is to be given to the control

sib-port ?

If it is a high priority, what rate is assigned to it so that

Equation 17 can be used with practical exactness? With a high

priority assignment the control sub-port represents an asynchronous

use of a priority position intended for a synchronous device of

constant rate.

If the control sub-port for the disc is assigned a low priority

the n + 1st pointer word may not be obtained before all the words

of the nth part of the transfer-block have been transmitted, resulting

in what are effectively transfer-timing errors. The possibility of

such errors is not remote; the word-count in the nth pointer word
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could be small and the n + 1 st pointer word might be indirected one

or more levels,

At this point one might attempt to avoid the problem in another

way. All the pointer words for a job could be obtained from core

(at a rate no greater than the normal disc rate) and stored in the

controller before beginning the data transfer. How many pointer

words will there be? The number of pointer-word buffers in the

disc-controller becomes a somewhat artificial restriction on the

number of chained links in a data transfer. Such a restriction could

markedly reduce the efficacy of paging if the number of allowed

links was not large enough.

Still, there must be a way out. It is not so much the additional

number of transfers taken by the control sub-port that aggravates

lower priority members of the system, but the fact that they may

come at any time, and in particular, at just that moment when the

patience of a lower priority device is about to expire. Then why

not put two or three words of buffering (with asynchronous control)

in lower priority devices so that they may adjust to occasionally

shorter transfer periods on higher priority sub-ports? Such buffers

installed in the jth device would, for the j + 1st and following

devices, compound the problem of indeterminate transfer periods

on higher priority sub-ports.



31

Of course the possibility of transferring the pointer words to the

controller by some means external to the memory system still

remains. Suppose the controller interrupts the control processor

whenever a control word is required and, in response to the interrupt,

the control processor transmits the control word to the disc-controller

over a processor-to-controller channel external to the memory system.

Even if we assume (unrealistically) that the processor will not, itself,

have to retrieve the pointer word from core, the time to process an

interrupt will be many (eight or more) times greater than the time of

a single memory cycle. Consequently, with all devices interrupting

the control processor at unpredictable times in order to obtain

necessary control words, the ensuing interrupt-service-priority

problem becomes greater than the memory-access priority problem

which we are trying (unsuccessfully) to avoid.

The problem can not be avoided. The flexibility and sophisti-

cation (particularly paging) of large multiaccess systems makes

the dual use of memory access channels for data-word transfers and

control-word transfers inescapable. The resulting uncertainty in

transfer rates makes latency calculations indeterminate and increases

the danger of developing a "tuned" system when memory-access

distribution is controlled by a strict-priority discipline.
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Access Efficiency

In Figure 4, the circles marked al, a2, a3, b1,- and b2 are

synchronous devices with patience exceeding the latency of their

respective sub-ports. Device b3 is a high-speed asynchronous

device which can utilize all the accesses available to it, i.e., a
cycle-sink. The lowest priority sub-port services b3 and the

highest priority sub-port services al; the discipline is, of
course, strict-priority.

The presence of b3 guarantees that the lower-priority port, B,

will never be idle. The higher priority port, A, will be idle whenever

al, a2, and a3 are idle-.__a situation which must arise if the

latencies of the sub-ports for bl, b2, and b3 are to be finite

(Equation 16). Consequently there are accesses available to A

which cannot be utilized.

If a cycle-sink, a4, were connected to the lowest priority sub-

port of the higher-priority multiplexor in order to utilize the excess

cycles available, the latencies of the sub-ports servicing devices

131 and b2 would increase beyond the patience of these devices. It

follows that only the lowest-priority port, of those ports serving

one or more limited-patience devices, can have a cycle sink among

its devices.

Consequently the access efficiency of a strict-priority system

cannot be 100%, unless all limited-patience devices and one
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Fig. 4. A strict-priority structure containing a cycle-sink.
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cycle-sink are serviced through the highest priority multiplexor (in

which case that multiplexor would be a point of at least temporary

articulation).

An upper bound for the reduced access efficiency in a given

system configuration is readily determined. If S ports, of a total

of P ports, service devices of limited patience, then those devices

can utilize at most the number of cycles available from one memory

modul e since they all have finite patience and Equation 16 must

hold. If a cycle-sink is connected to the lowest-priority port of

the S Ports it can, in addition, utilize at most the cycles available

from one memory module. 5 Thus, the S ports can utilize at most 2/P

times the total number of cycles available to all ports; the remaining

P - S ports can, of course, utilize at most (P - S)/P times this

total. Therefore, the access efficiency of a strict-priority

discipline, expressed as a fraction, is given by

E

Lock-Out

P - S + 2
P

for (2 S
Equation 18

It is also true of strict-priority systems that only one cycle-

sink can be usefully connected to a multiplexor since, if there

5 Again we ignore interlacing and overlapping because they can
be accounted for by multiplying factors.
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were two, the lower priority one would never obtain any cycles.

This lock-out situation can arise even if the cycle-sinks are not

connected to the same multiplexor; sometimes it is hazardous.

Imagine two processors in a dual-processor system interacting

in the following way. Processor A is waiting for processor B to

finish a computation. Consequently, A (behaving as a cycle-sink)

is continually testing a control word in memory to be modified

by processor B upon completion of the computation. However, B

can never gain access to the control word if it has lower priority

than A. (Such an obvious hazard can remain undiscovered as long

as B always indicates completion of its computation before A tests

the control word.)

Articulation

Consider a multiaccess system with a strict-priority discipline

in both the port structures and multiplexors as illustrated in Figure 5.

In Figure 5 the upward-directed arrows mean that for both the port

structures and the multiplexors the relative priority of the input

channels increases from bottom to top. With this ordering in mind,

observation of the figure reveals that the relative priorities of the

devices, D1 through D12, corresponds to their device numbers

with D1 having the highest priority.
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Fig. 5. A reconfigurable dual-access, strict-priority structure.
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Note that the multiplexors are arranged in pairs and that the

devices associated with each multiplexor-pair are separated into

a high-priority group and a low-priority group.

The normal access paths (solid lines) of the high-priority group

are the high-priority sub-ports of the high-priority multiplexor and

the normal access paths for the low-priority group are the low-

priority sub-ports of the low-priority multiplexor. The alternative

access paths (dotted lines) of the high-priority group are the high-

priority sub-ports of the low-priority multiplexor and the alternative

access paths for the low-priority group are the low-priority sub-

ports of the 1iigh-priority multiplexor. As a consequence of this

arrangement, if any multiplexor or port fails ,- merely activating the

alternative access paths of the associated devices will restore all

of them to the system without changing the relative priorities of

any of the devices. Since the relative priorities do not change,

the latencies of the sub-ports will not change (Equation 17);

therefore, the patience required of each device is not increased

by reconfiguring the system. Consequently, a strict-priority

multiaccess memory system can be implemented without introducing

intrinsic points of permanent articulation.
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Closure

In summary, the strict-priority structure is characterized by

variable sub-port latencies and less than 100% efficiency, although

it is favorable to the elimination of intrinsic points of permanent

articulation.
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Combined Schemes

Strict-priority and round-robin schemes are sometimes combined

with the objective of serving synchronous devices within the limit

of their patience through priority sub-ports, while allowing asyn-

chronous devices to compete for the remaining cycles on the

equitable basis established by the round-robin discipline.

Such a combination does have real merit as a system. Because

it is no longer absolutely necessary to preserve the latency of the

round-robin sub-ports when reconfiguring the system (as they no

longer serve devices with limited patience), a dual-access scheme

can be employed to eliminate any of the round-robin ports or

multiplexors as intrinsic points of permanent articulation.

Naturally, the one or more pairs of strict - priority multiplexors

need not introduce permanent articulation points. (A single port

having priority over all others would of course be a permanent

point of articulation.)

In brief, the mixed structure eliminates the lock-out problem of

the strict-priority discipline and the articulation problem of the

round-robin discipline. However, reduced efficiency and the more

serious galloping problem of the strict-priority structure will still

be present.
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THE LIMITED LATENCY STRUCTURE

In this chapter we will introduce a priority structure which

allows synchronous devices to be serviced within the limits of their

patience without introducing the galloping problem, allows 100%

access efficiency without introducing the lock-out problem, and

favors an architecture free of intrinsic points of permanent articulation.

We will first illustrate the essentials of this structure, called

the limited-latency structure, by example and then discuss how the

structure of the example might be implemented. Next, the attributes

of generalized limited-latency structures will be developed. After

the necessary preliminaries mentioned above, the chapter will

conclude with discussions of latency, efficiency, and articulation

in the limited-latency structure.

An Example of a Limited-Latency Structure

For the purpose of illustration, but without loss of generality,

let us postulate a system with six ports, in which the multiplexor

connected to each port serves 16 sub-ports.

Now let us assign priorities 1/2, 1/4, 1/8, 1/16, 1/32, 1/32 to

the ports 0 through 5 respectively, where the priority 1/2 assigned

to port 0 means that port 0 is guaranteed at least half of the available
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memory cycles. Thus, precisely all of the available memory cycles

are committed, since the sum of the priorities equals one. (The

means for accomplishing this will be discussed in the following

section.) Naturally, a particular port may usurp more than its

allotted fraction of cycles if the other ports demand less than their

guaranteed fraction.

Likewise the sub-ports on each multiplexor are numbered 0

through 15 and are assigned priorities (with respect to the multi-

plexor) 1/2 through 1/215.

It is immediately clear that sub-port 0 on multiplexor I has an

over-all priority of 1/4 with respect to the memory system; and in

general the device on sub-port n of multiplexor p has over all

priority of 2 -(n + p +2)

In the utilization of the system, synchronous devices are

assigned to sub-ports for which the sum (n + p + 2) is suitably

small. The asynchronous devices are connected to the remaining

sub-ports.

It should be observed that, except for extreme values, there

will be more than one sub-port having a particular (n + p + 2) sum.

Consequently, identical, or equivalent, pieces of equipment need

not be connected to the same multiplexor; this is favorable to the

elimination of articulation points.
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The number of system articulation points can be further reduced

by a variation of the preceding scheme. Instead of assigning the

ports priorities 1/2, 1/4, 1/8, 1/16, 1/32, 1/32, we assign two

equal-priority ports to each of three priority levels; the priority

levels have priority 1/2, 1/4, 1/4 resulting in priorities of 1/4,

1/4, 1/8, 1/8, 1/8, 1/8 for the six ports which we now renumber

OA, OB, IA, 1B, 2A, 2B. The priority of the sub-ports served by

each multiplexor is similarly revised and the 16 sub-ports are

renumbered Oa, Ob through 7a, 7b.

Within a particular priority-level, say level M, either of the

two sub-ports (ports) Ma' or Mb can obtain all the cycles available

to that level if the other sub-port (port) is inactive. (The means

for accomplishing this will also be discussed in the following

section.)

In order to appreciate the advantages of this revised structure

let us imagine that the system has, been interconnected in the

following way:

Each device is connected to two multiplexors on the same port-

priority level but it is "enabled" in onl y one of the two multiplexors.

A device connected to sub-port Ma in the A multiplexor is connected

to sub-port Ma in the B multiplexor, etc. Half of the devices are

enabled in multiplexor A and half the devices are enabled in
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multiplexor B.

For a system connected in this way, the devices have the over-

all priorities shown in Table I. Each fraction in the table represents

a device guaranteed that fraction of memory cycles. The asterisks

indicate the position a devices would occupy in the table if its

alternate access path were enabled.

Suppose the multiplexor connected to port 1B fails; all the

devices enabled in IB can be switched to multiplexor IA. Multiplexor

IA will now be able to pre-empt twice as many cycles as before,

since multiplexor I B will be taking no cycles. As a result, the

effective port priority of multiplexor. IA is doubled, yielding the

over-all priorities shown in Table IL

Observe that each device still has the same over-all priority,

Thus the existence of a dual access scheme which eliminates

intrinsic points of permanent articulation in a particular limited-

latency structure is demonstrated.



TABLE I. NORMAL SUB-PORT PRIORITIES.

Sub-port

Port riority

Priority

Oa Ob

1/2

1/4 1/4

la lb

. 1/4

1/8 1/8

2a 2b ...
1/8

1/16 ..-.'. 1/16 ...

OA 1/4 1/8 1/16
# * 1/32 *

1/2<
OB 1/4 * L/8 * 1/16 * 1/32 ...
IA 1/8 1/16 * 1/32 * 1/64 *

1/4:
1B 1/8 * 1/16 * 1/32 * 1/64 ...

2A ,1/8 1/16 1/32 * 1/64 *

I/4 <c
2B 1/8 * 1/16 , * 1/32 * 1/64 ...

# 1/4 x (1/8 + 1/8)



TABLE II. ALTERNATE SUB-PORT PRIORITIES.

Sub-port

Port Priority

Oa Ob

1/2

la lb

1/4

2a 2b

1/8

---

Priority 1/4
,/

1/4 1/8 1/8 1/16'//N.1/16 ...

OA 1/4 1/8 * 1/16 * 1/32 *

1/2
<OB * * 1/32

1/4 1/8 1/16 *Of

1A 1/4 1/16 1/16 1/32 1/32 1/64 1/64 ...

1/4-7 .

IB * * * -

2A 1/8 1/16 * 1/32 * 1/64 *

1/4<:
2B 1/8 * 1/16 , * 1/32 * 1/64 ...
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Implementation

In strict-priority disciplines the multiplexor (or port structure)

is required to give the imminent cycle to the highest priority device

of those then requesting. Typically this discipline is implemented

by having a select signal propagate down a register of request flip-

flops until a flip-flop in the set state is encountered. Suitable

logic prevents the signal from propagating further, and the forthcoming

cycle is given to the device corresponding to the set flip-flop first

encountered, The n request flip-flops (RF0, RF1 RFn_i) corres-

ponding to the n input channels (ports or sub-ports) are encountered

in the order q0:

q0 = RF0,

Priority is determined by position in the order of propagation; the

request flip-flop closest to the source of the select signal corres-

ponds to the device of highest priority.

The limited-latency structure can be implemented by a variation

of the preceeding scheme. First consider the consequence of inserting

the select signal at some logic node other than the one immediately

before (in the sense of signal propagation) the channel 0 flip-flop.

If, for example, the select signal is inserted immediately before

the channel 1 flip-flop, the request flip-flops are encountered in the

permuted order RF , RF2, RF3 RFn-1' RFO' which is denoted
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by q1 . The channel 1 request flip-flop is appended to the end of

the sequence under the assumption of "end-around" propagation

of the select signal.

Thus, by proper choice of the insertion node for the select

signal any desired cyclic-permutation of the original order, q0, can

be obtained. Let the n possible permutations be designated

c10, c12, qn-1

where the subscripts indicate the number of the first encountered

request flip-flop.

Let us assume that the insertion node of the select signal is

varied from cycle to cycle by a logical network so that each of the

orders q0, qn-1 is the order of propagation for some

fraction of the total number of cycles. Let fi correspond to the

fraction of time qi is the order of propagation, and let {F} corres-

pond to the sequence fo, f1, f2 fn_i. We must indicate how

the logic network steers the select signal so as to produce a required

sequence {F}

For a moment only, let us not consider the general case but

devote our attention to the sequence of the example,
-(i+1)

f for i = (1, 2, 3, ... n-2),
i

= 2

= 2 for i = n-1

Equation 19

Equation 20
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The implementation of this sequence requires, in each multiplexor

and port structure,.a priority-setting apparatus consisting of a binary

counter and a combinatorial decoding network. Each counter is

incremented once for every cycle taken by the associated multiplexor

or port structure. The outputs of the counter flip-flops are used as

inputs to the decoding network which steers the select signal so as

to produce q0 on every other cycle taken by the unit, q1 on every

fourth cycle taken etc. A particular order, qi, is selected whenever

C
0

= 1 for i= 0 Equation 21

ci n Cu =1

u=0

n c. 1

u=0

for i = 1, 2, ... n-2 Equation 22

for i = n I Equation 23

where Cu is a boolean variable equal to the state of the counter

flip-flop with weight 211.

Note that if a simultaneous-transition counter is used, the

logical condition for selecting qi is the same as the set condition

for the counter flip-flop having weight 2i (except for i = n 1).

Consequently the sequence of the example is particularly economical

to implement. Table III exhibits the relationship between the counter

flip-flops and the decoder outputs for the example sequence with

n =4.



TABLE III. THE STATE DECODING NECESSARY TO
IMPLEMENT THE BINARY SEQUENCE FOR

THE FOUR-CHANNEL CASE.

C3 C2 CI co

o 0 0 0

o 0 0 1

o 0 1 0

o 0 1 1

o 1 o 0

o 1 0 1

o 1 1

o 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

q0 ql q2 q3

1 0 0 0

o 1 0 0

1 0 0 0

o 0 1 0

1 0 0 0

o 1 0 0

1 0 0 0

o o 0 1

1 0 0 0

o 1 0 0

1 0 0 0

0 0 1 0

1 0 0 0

0 1 0 0

1 0 0 0

0 0 0 1

49
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For completeness we must indicate how the cycles available to one

priority level can be divided between two sub-ports so that either can

obtain them all if it is the only one requesting, but neither can obtain

more than half when both are requesting. All that is required is a flip-

flop and some additional logic for each pair of sub-ports (ports). The

flip-flop, called the AB flip-flop is complemented at the completion of

every cycle obtained by either member of the pair. The logicwith

inputs: the state of the AB flip-flop, the state of the request flip-flops

for the two sub-ports (ports), and the select signal corresponding to

the particular priority levelsimply steers the select signal to give

sub-port a priority over sub-port b if the AB flip-flop is in the A state

and vice versa.

A more general implementation would be to return to the original

scheme of one priority level for each sub-port (port) and add additional

steering logic for the select signal at each node-pair so that the

order of propagation is

and

q, = RF RF, RF. RF for even i,11 i+1' 1+2 i -2 i-1
Equation 24

Rq1. = F.1 , RF.
1

RF.
1

, RF RF. RF.
1

for odd i.-1' +2 i+1' 1-2' -3
Equation 25

Thus, if j is even and fj = fj+1, the cycles will divide equally as

required. However, when an equal division of the available cycles

between the pair of sub-ports is all that is required, the preceding

AB flip-flop scheme is more economical.
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Attributes of Generalized Limited-Latency Structures

No doubt a sequence of priorities corresponding to the binary

sequence seems somewhat ad hoc. We will now determine what

other sequences will work.

The sequence {Up} is to represent the priorities of the P ports

with respect to the port structures, and the sequence iVn} is to

represent the relative priorities of the N sub-ports associated with

each multiplexor. Since Uj represents the fraction of total available

memory cycles guaranteed to port j,

P-1
1

Ul
1;

i=0

similarly

N-1
Vk = 1.

k= 0

It then follows that

P-1 N-1 P-1 N-1
E 15i Vk = Ui Vk = 1,
j01 j=0 k=0

Equation 26

Equation 27

Equations 28 & 29

which expresses the fact that the sum, over all sub-ports, of guaran-

teed-fractions-of-available-memory-cycles must equal one. Conse-

quently we are required to restrict the sequences {Up} and IVnt so

that the corresponding series each converge to one, This is our first
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restriction on the terms of the priority sequences,

Until now it has been understood, but not stated, that if a

channel is guaranteed 1/4 of the cycles it has top priority once

every 4 cycles instead of on 3 consecutive cycles out of every 12,

for example. The assumed distribution is a natural one, for it yields

the minimum latency obtainable with any allocated fraction of cycles.

Consequently we now state the requirement: The cycles guaranteed

to a particular channel (port or sub-port) are to be uniformly distri-

buted in the train of cycles obtained by the multiplexing unit (port-

structure or multiplexor) ,

From this requirement it follows immediately that each term of

{Ili} and each term of (v1} must be of the form 1 /ai, where ai is

a positive integer not equal to zero. This is our second restriction

on the terms of the priority sequences.

However it is clear that the terms 1/3 and 1/4 can not be

included in the same priority sequence (the two corresponding

channels would at times be "guaranteed" the same cycle) so there

must be additional constraints on the terms of the sequences.

Choose any two terms from a priority sequence, 1/a1 and 1/ai,

where a, and al are both natural numbers. We desire that channel

ai be guaranteed one cycle every ai cycles and channel a be

guaranteed one cycle every ai cycles without conflict for any i
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and j in (0, I, 2, ... n-1),i.e., for any pair of terms. How does

this requirement restrict the choice of the sequence of integers {ai}?

First observe that, since the train of cycles to be allocated

can be placed in one-to-one correspondence with the integers, the

given problem is equivalent to determining the restrictions on the

aithai and a
j so that the set Ai' comprised of every .

t integer

beginning with some integer
1

A. comprised of every

ta. h integer beginning with some integer b., are disjoint for any i

and j in (0, I, 2, n-1). In other words, a set Ai is the set of

integers congruent to bi modulo a1 7

A. = la. Da. E b. mod ail, Equation 30

and we require

Ai OnA.. for all i, j(0, 1, 2...n-1) Equation 31

Let us assume AinA. ci5 for some i and j, then for some

pair of integers x and y

x a. + b.
1

= y a. + b..
1

Without loss of generality we assume

so that

i <j a. a.

Equation 32

a. r..
a = r

1j
+

a. where and r.. are integers;
a .

1 1 Equation 33
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x ai + bi = y qij ai + y rij + bj Equation 34

bi y rij + bi (mod ai) . Equation 35

r.. = 0 Equation 36

13, t bi (mod ai) for all i and j except i=j,
Equation 37

then there is no i and j such that Equation 35 holds. Therefore

the restrictions

(ai, ai) = ai

(the greatest common divisor of ai and aj is al) and

bi bi (mod ai)

are sufficient to assure

Equation 38

Equation 39

Ai n A; = 95 for all i, j, (Equation 31)

as required. These are our third and fourth restrictions on the terms

of the priority sequences.

The restriction of Equation 38 can always be met by choosing

the elements of the set fail in the following way:

a0 = x Equation 40

y, a,1-1
for i > 0 Equation 41

where x and all the yi are arbitrary positive integers.

The restriction of Equation 39 can always be met by letting



and choosing bi from Si,

Si

= 0b0

1-1

Au
u= 0

Clearly this can always be done for, if

t hen
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for i >O. Equation 42

Si = Equation 43
for some i = j
j E(0, 1, 2 ... n-I),

1, Equation 44

which violates the first restriction placed on the terms of the

priority sequences.

To complete our generalization of the limited-latency structure,

we must ascertain what if any, additional restrictions must be

placed on the terms of {Ili) and {Vi} in order to implement a dual-

access architecture without intrinsic points of permanent articulation.

Consider the general over-all priority table, Table IV. If a

th st
particular multiplexor fails, the . or i + 1 ,let us say, then we

require the fraction of cycles guaranteed to all sub-ports be unchan-

ged when the devices originally enabled in multiplexor i are enabled

in multiplexor i + 1 (or vice versa).



TABLE IV. GENERAL CASE, OVER-ALL PRIORITY TABLE.

Port Sub-port

Priority Priority

V
0

4- VI

V
..-**..

V
0 I

V2 + V3

./.\.
V3V2

. Vn-2 4- Vn-1

Vn-2
/+

Vn-I

Uo

UI

f00 f
02

.71,

f0, n-2

f II f13 fI
, n-1

U + U
2 3

U3

f
20

f22 f2, n-2

f 3, n-1f31

.

f33

,

U
UP --2

UP-1
+ UP-2 UfP -1

fP-2 , 0
fP-2, 2

AZ
fP-2 , n-2

P-I, I fP-1, 3 fP-1, n-I
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Originally we have the arrangement

Ui

Ui+1

Vj Vj+1

f1)..

fi+1 f)+1

where

fij = Ui x (Vj + Vi+1) Equation 45

x (Vi + Vj+i)

j E (0, 2, 4 ,.. n-2).
Equation 46

After reconfiguration we have one of the arrangements,

U. + U.1+1

V). V.

f..
13

f!1+1, .

3+1

V V

where

f! = (U. + U. ) x V.
13 1+1 )

Equation 47

fi+1, j +1.+1 = (Ui + Utfi) x Vi+i

U + U.
i 1+1

We require

for either arrangement.

Equation 48
. f

1+1, j+1

f..
13

and

13
Equation 49

f
i+1, i+1

f'
i +1, j+17

Equation 50

Ui x (V. + Vi+1)

and

(U1 + Ui+i) x Vj Equation 51

Ui+1 x (Vj + Vj+1)

It then follows that

= (Ui + U1+1) x Vj+1. Equation 52

V) Equation 53

Ui+ I Vjn.
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which must hold for all i and j. Consequently we must make the

restriction

Hi = Vj = R, a constant,
U. V.

for all i, j , 2, 4, ... n-2).
Equations 54 & 55

This is our fifth restriction on the terms of the priority sequences.

It is important to observe that the dual-access requirement has

in no way restricted the ratios

Ui + Ui+i

Uk + Uk+1
and Vi + Vi+i

Vk + Vk+l

where i k, and i, k E (0 1, 2 n-2) ,

Suppose that sub-port pairs were not arranged as shown in

Table 4 but as shown below:

U

This arrangement leads to the

1.J14.1

V. V.
J J4-1

requirement

Vj Equation 56
U1 V.H.1

It is desirable to allow both arrangements within the same system

so that the multiplexor connections for a single pair of devices can

be changed for diagnostic purposes, Consequently we require
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Ui Vi Ui+i

ui±i u,vi+1

for all i, j, c(0, 2, 4...n-2).
Equations 57, 58 & 59

Equation 60 represents our sixth restriction on the terms of the

priority sequences.

There is additional justification for this last restriction. Note

that in the normal configuration a device can pre-empt all of the fraction

of cycles guaranteed to two sub-ports (and in the alternate configu-

ration it usurps a fraction of cycles guaranteed to two ports), i.e.,

Vj + Vi+1. (or Ui + Ui+/). As before, we want these cycles to be

uniformly distributed in the train of all cycles, in order to minimize

latency. A uniform distribution could be obtained, if a
j

= a j+1
(as

it must if Equation 59 is to hold), by requiring

bj+1 = bi ± aj/2. Equation 60

But unless we require aj to be an even integer we can only require

bj+j. = bj ± Eaj/. Equation 61

This is our seventh restriction on the terms of the priority sequences.

Naturally, the "uneveness" of the distribution, in the case of aj

odd, must be taken into account in determining sub-port latencies.

In summary we can state that the sequence {Uilof port priorities

in the limited-latency structure must meet these six restrictions:



P-1
1. u.

i=0

2. Ui

3. U.
1

4. (as, aj)

5. bi

6. bi+1 bi ± Fi/21 for i even and ai E bi (mod ai) .

60

1.

= U1+1 for i even.

= 1/al . ai E (I, 2, 3, 4 ...).

= ai i< ,iai .ai.where j

/ bi (mod ai) for i / j and ai :,-: bi (mod ai) .

Identical restrictions apply to the sequence {Vj} of sub-port

priorities.

Note that the restrictions on {111 and {V. were derived from
1

necessary or desirable properties of the limited-latency structure

itself and in no way reflect limitations or idiosyncrasis of a

particular hardware implementation of the structure. On the

contrary, the implementation used in the example, namely the

exhaustive partitioning of the states of a counter into n disjoint

sets, can readily be applied to sequences other than the binary

sequence.

Sub-port Latencies in the Limited-Latency Structure

The latency of a sub-port in a limited-latency structure is not

precisely (U. (V. + Vj+I ))
-1 as one might infer from Equation 45.

Recall that if a particular device is not requesting service its
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"guaranteed" cycles may be usurped by other devices. It can happen,

then, that the jth device will assert its request line just as one of

"its" cycles is being given to some other device. Consequently,

device j will have to waitone cycle-time for the just-missed

cycle to complete, plus EV,
3

+ V,
J+1

)-11 1 cycle-times before the

beginning of "its" next cycle, plus one cycle-time to be serviced

[a total of (Vj + Vi+i)-1 + 1 multiplexor cycle-times. (Since we

have notrestricted the al . of the priority sequences to even integers,

we Vemust use the least integer greater than or equal to (V. + j+1 )
-1

in calculating latencies.)

The multiplexors themselvesfare no better with respect to the

port-structure. Even if we assume a multiplexor makes its n + 1st

request immediately after its nth request has been acknowledged,

it will still "just-miss" some of "its" cycles because successive

requests coming from different devices are most likely addressed to

different memory modules, and the priority-setting apparatuses in

their different port structures are not likely to be in phase. Therefore,

we may proceed as before and conclude that each multiplexor cycle-

1
lU

cycle -

time can be as long as . + 1 memory cycle-times for the i th

multiplexor.

It follows that the latency for sub-port ij is given by

1
Lii (Ui + 1) ( [Vi + + 1), Equation 62
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which, recalling the restriction V. = Vj +1 for even j, reduces to

Lij
1(U, + 1) ( (2v) + 1)

or

j
Ll. = (2U1 Vi) -1

1

1
+ U. + (2\fj)

-1
+ 1

if V,
-1 is an even integer.

Equation 63

Equation 64

The preceding expression gives the latency of sub-port ij in

the normal configuration; by similar reasoning the latency for the

alternate configuration is given by

Lij = ( EUi + Ui+i)-11 + 1) + 1), Equation 65

which reduces to

-I -1
Lij = ((2151) + 1) (Vj + 1) Equation 66

Or

Lij = (2U1 Vi)
-1

+ (2Ui)
-1 1

+ Vj + I Equation 67

if U-I is an even integer.

When Ili =Vj, Lij =Lij and there is no ambiguity in specifying

the latency of the sub-port. But, in general, there will be sub-ports

in the system for which U. /
V3"

For these sub-ports, in order to

comply with our definition of latency, we must consider the larger

of Lii and Lij to be the latency of sub-port ij.
a

It is apparent, certainly, that the latencies for the fastest

pair of sub-ports in a limited-latency system 6 will be greater than

6 Latencies of 12 memory cycle-times correspond to the sequences
1/3, 1/3, 172 ... UP and 1/3, 1/3, ... Vn_1.
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the latency of the highest priority sub-port in a strict-priority

system. However, with a limited-latency structure, the latency

of a particular sub-port is a function only of well-defined parameters

and is independent of system variables, such as the transfer rate of

devices connected to other sub-ports.

This insensitivity to variations in system activity eliminates

the galloping problem. In a limited-latency structure the controllers

for synchronous devices may contain several registers for data-word

buffering plus one or two registers for control-word buffering. It

then becomes the burden of the device controller to insert control-

word requests into the stream of its data-word requests at propitious

timesjudged from local considerations onlywhen all data-word

registers are full on an out-of-memory transfer,for example. In

practice, a device trying to process an intricately chained data

list may or may not be successful in obtaining all necessary

control words, but at least its hyperactivity (pathological, perhaps)

can not cause transfer-timing errors in some other device.

Access Efficiency of the Limited-Latency Structure

The limited-latency structure's characteristic insensitivity of

sub-port latency to system variables is beneficial to access
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efficiency. Cycle-sinks can be connected to any number of sub-

ports on any number of ports, easily producing an access efficiency

of 100%. Even if all devices in the system were cycle-sinks, the

lock-out problem would not arise; the available cycles would

simply be allocated in proportion to the over-all sub-port priorities.

Articulation in the Limited-Latency Structure

The restrictions (listed at the end of "Attributes of Generalized

Limited-Latency Structures") placed on the terms of the priority

sequences {U.} and 11,7
3

were largely derived from the requirement

that the structure must have a dual-access scheme which preserves

latency for all sub-ports when the system is reconfigured and thus

introduce no intrinsic points of permanent articulation. The re-

quirement is met. However the dual-access scheme of the limited-

latency structure has two advantages not found in the scheme of

the strict-priority structure.

First, the limited-latency structure tends to produce multiple

channels with the same latency, which encourages the incorporation

of more than one unit of a particular type of device into the system.

Naturally a plurality of equivalent devices, as opposed to unique

units, tends to make the devices themselves temporary, instead of

permanent, articulation points.
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The second advantage is that in the limited-latency structure

a single pair of devices can be reconfigured, i.e.,

Ui

V, vj+1

f1.3

fi.+1, j+1

Vj vj+1

1, j+1

i+1, j

f, . = f'
1) 1+1, j

f. . = f'
1+1, 3+1 i, j+1'

Equation 68

Equation 69

with little or no change (depending upon the relative demands of

the pair of devices involved) in the relative number of cycles being

obtained through each multiplexor, Thus, in the event of subtle,

intermittent failures associated with a particular sub-port, it is

a simple matter to change configurations and thereby determine if

the problem is multiplexor- or device-oriented.In a strict-priority

system; however, groups of devices must be switched from multi-

plexor to multiplexor so as not to permute the relative priorities of

the devices. See Figure 5. In the worst cases (the highest priority

device of the higher priority multiplexor or the lowest priority

device of the lower priority multiplexor is suspect), all devices from

both multiplexors must be enabled in only one of them. The cycles

available to the idle multiplexor are entirely wasted, making the

test-run expensive in terms of reduced activity for any asynchronous
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Summary
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The limited-latency structure is favorable to high access

efficiency and the elimination of articulation points. Furthermore

the patience required of devices is explicitly defined and constant

for all devices using the structure. However, the fastest allowed

device can not be as fast as it could be in a strict-priority

structure.
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ADDITIONAL CONCLUSIONS

The Spectrum of Priority Structures

We have already shown that the limited-latency structure is

generally superior to other structures with respect to the ancillary

goals of access efficiency and freedom from permanent articulation

points. However, there are still some observations to be made,

particularly with respect to the primary goal of a priority policy,

serving each device within the limits of its patience.

It must be assumed that every priority structure will meet its

primary goal for as long as the number of devices and their rates do

not deviate from the values specified at the time the system was

defined. However, evolving systems are the rule rather than the

exception, so let us compare the three principle disciplines in a

dynamic situation. We will compare the disciplines when the rate

of devices (the demand of channels) is varied.

Consider three implementations of a one-level (for the sake of

simplicity), four-channel priority structure, first come-first serve,

strict-priority, and limited-latency. Again for the sake of simplicity,

we will assume that all channels are demanding the same number of

accesses per unit-time. The number of accesses actually allocated to

a particular channel, channel rate, and channel latency are plotted
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Fig. 6. Rate and latency versus channel demand
(uniform over all channels) in a one-level,
four-channel, first come-first serve structure.



69

1-1/8

a)

a)

1/2

1/3

1/4

0
1/4 1/3 1/2

Channel demand

7a. Rate versus demand, both in units of memory
cycle-rate.

8

6

4

2

1

0

ch 0

I I I

1/4 1/3 1/2

Channel demand

1 1- /8

7b. Latency in units of memory cycle-times
versus demand in units of memory cycle-
rates.

Fig. 7. Rate and latency versus channel demand
(uniform over all channels) for four channels
in a one-level strict-priority structure.
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over all channels) for four channels in a one-
level limited-latency structure.
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against this uniform channel demand for all three structures in

Figures 6, 7, and 8.

As expected, the channel rate increases to meet channel demand

for all channels, for all structures, until the sum of the rates equals

the transfer capability of the memory. It is not until demand exceeds

capability that the structures exhibit their inherent characteristics.

(In studying these curves we should not limit our concept of increasing

demand to that increase of a few percent per month which represents

growth in system acceptance and utilization. We must keep in mind

the large variations in demand, several hundred percent, that occur

from millisecond to millisecond as a result of the asynchronous

operation of multiple memory-accessing devices.)

The first come-first serve structure divides the available accesses

equally among the channels no matter how great the demand. No

channel receives service equal to its demands, but then no channel

is entirely deprived of service, either. The latency of all channels is

constant and independent of system demand.

In the strict-priority structure, as demand increases, service

to the lowest-priority channel is decreased to zero, as demand increa-

ses further, service to the second-lowest-priority channel is decreased

to zero. This successive elimination of lower-priority channels

continues until the highest-priority channel has usurped the entire
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service capability of the memory. When we note the steeply-rising

latency curves for this structure and imagine the demand-operating

point varying widely and rapidly, it is not difficult to appreciate the

subtlety of the anomalies which can arise in such a system, as

discussed in chapter 3.

The rate vurses demand curves for the limited-latency structure are

interesting in that they illustrate the fact that cycles not requested

by the highest-priority channel are distributed among the lower-

priority channels in proportion to the corresponding terms of the

priority sequence. For example, when the demand on all channels is

equal to 5/12 R, the 1/12 R of unused cycles guaranteed to the highest-

priority channel are distributed among the lower-priority channels so

that channel 1 receives 1/24 R cycles and channels 2 and 3 each

receive 1/48 R cycles in proportion to the terms 1/4, 1/8, 1/8 of

the priority sequence.

Note that the rate curves for the limited-latency structure are

initially similar to those of the strict-priority structure in that the

curves for the lower priority channels have a negative slope, but

that as channel demand is further increased they have zero slope

similar to those of the first come-first serve structure. These

similarities suggest that the limited-latency structure is a compromise

between the other two. However, it may be more accurate to view
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strict-priority and first come-first serve as special cases of the

general limited-latency structure.

Clearly, the first come-first serve structure of our example could

have been implemented as a limited-latency structure having the

priority sequence (1/4, 1/4, 1/4, 1/4). Similarly, the strict-priority

structure could have been implemented as a "limited"-latency

structure having the priority sequence (1, 0, 0, 0), a sequence

obtained as a limit when a1, a2, and a3 are allowed to approach

infinity. Some additional thought allows us to make the observation

that any first come-first serve or strict-priority structure can be

realized as a particular limited-latency structure.

Of course, some of the problems associated with the original

schemes would remain; a limited-latency system with priority sequence

(1, 0, 0 ... 0) would be vulnerable to galloping and lock-out, for

example. However, the purpose of the observation is not to support

a proposal that all priority structures actually be built as limited-

latency structures with particular parameters; its purpose is

to illustrate the fact that the limited-latency structure actually

encompasses a spectrum of possible structures which includes first

come-first serve and strict-priority. Consequently, with a design

approach based on the principles of the limited-latency structure

there is some hope of producing systems that can be adapted to
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unanticipated requirements; this hope is not realistic with an ad hoc

design approach.

Central Versus Local Control

In their paper Wallace and Rowswell (10) introduce an ideal priority

structure as a comparison standard. The ideal priority structure

allocates each imminent memory access to the requesting device

having the smallest amount of unexpired patience. Thus, if there

exists some order of servicing the requesting devices so as not to

introduce transfer-timing errors, the ideal priority structure will

service them in precisely that order. Consequently, if there exist

conditions under which the ideal structure would fail to serve every

device within the limits of its patience, then any other structure must

necessarily fail under those conditions also; hence, the name ideal.

Indeed, the structure is ideal in two respects; it will, if possible,

always serve each device within the limits of its patience, and its

tolerance of cycle-sinks makes it capable of 100% access efficiency.

However, the structure can not escape being a point of permanent

articulation. This conclusion is patent when we note that the task of

comparing the patience fragments of all devices can not be partitioned

among several independent units. Even if we were willing to accept

such a vulnerable system (no more vulnerable than some systems
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actually in use), it is impossible to actually build an ideal priority

structure because it requires a counter (or other time-keeper) for

every device and an immense tree of comparison logic, all of which

must operate with essentially zero gate-propagation delay.

In contrast to the central-control approach of the ideal priority

structure, the limited-latency structure makes all allocation decisions

on the basis of local considerations only, for example, the state of

the cycle-counter (just as devices within the structure choose the

times to make their control-word requests on the basis of local

considerations only). While the limited-latency approach does solve

some problems like galloping and lock-out, which are not strictly

local in nature, without introducing centralized control, it can not

optimize the utilization of the memory to the degree theoretically

obtainable with the ideal structure. However, the local autonomy

of the limited-latency scheme leads to a modular system favorable

to the elimination of permanent articulation points.

In the opinion of the author, future designs of large computer

systems will exhibit an increasing tendency to favor modularity and

freedom from permanent articulation over minimization and maximized

resource utilization.
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Closure

We have developed a general priority structure for multiaccess

systems that meets all three of the salient requirements enumerated

in chapter 2. Therefore, we can conclude that responsiveness,

efficiency, and freedom from points of permanent articulation are,

fortunately, not contradictory system attributes. However, only

those systems which have these three characteristics as design

goals at the outset are likely to exhibit them as final characteristics.
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Appendix I: A Bound for the Maximum Waiting Period for the

thi Channel in a Strict-Priority Structure

In a strict-priority structure consisting of n channels, the

thwaiting period of the is given by the minimum solution

of the integer equation

1-1
[Ari Ru] + 1 Equation Al

u-=1

where [x] means the least integer greater than or equal to x, Ru is

the maximum rate at which the device connected to the uth channel

can issue requests, and time is in units of a constant service time

(10, p. 66). See chapter 3, page 26.

If Wi is the least integer solution of Equation Al,then for any

other integer m, 1<m<Wi,

We

i-1
(W. m) <

u=1
m)

RuJ

substitute Equation Al into A2 and obtain

I m +
u=1

Ew

[vyi Rut

RI] <1 +

+ 1. Equation A2

EIAT, m) .

Equation A3

y (w. m) Ru < m.
u=1 Equation A4



But all terms are integers; therefore,

Since each of the terms {[I.V. R]

[W, m) m - 1.

RI

80

Equation A5

is either zero or

a positive integer,at most m - 1 of them are non-zero.

Now, if we let m = k, kE (1, 2, 3 ... i-1) for k = I we have

{[^Ti Ru]
FlAri Ra <0 Equation A6

but there are,at most, zero non-zero terms, i.e. there are at least

values of u,such that

[Wi = FWi I) R] . Equation A7

Similarly for k = 2 we have

i-1

u=1
tv, FW1 2) Rd} 1. Equation A8

Therefore,at most, one of the terms is non-zero. Consequently there

are at least i - 2 values of u,such that

[Wi RI] = [Wi 2) R.ul . Equation A9

Continuing the argument, we arrive at the conclusion that for

k = n there are at least i - n values of u , *1, such that

[Wi Ru = [(Wi - k) Ruj . Equation A10

Therefore, by choosing one such value of u* for each value of k,

and taking care not to use any value of u* more than once '(easily
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accomplished by starting with k = i-1 and working "backwards" to

k = 1), we can assemble a set of k equations

EATi [Wi Ru,] for k = 1, 2, 3...i -l.

By adding all the equations of the ensemble together we obtain

u

i-1 i-1
[Al.

].
R = 7 Pi - k) Ru-] , Equation All)]

k=1 k=1

where {u*} is some permutation of the integers 1, 2, 3 ... 1-1.

Consequently,

therefore,

i-1 i-1
pri Ru [Wi Rt..] W. 1;

k=1 k=1 Equations Alt & A13

W. = - k) Ru 1. Equation Al4
1

k=1

To obtain a bound on W. we replace [x] by (x + 1) in Equation A14

nd solve for W., resulting in (10, p. 66)

where we require

W.

i-1
k Ru*

k=1

1

i-1

k=1
Ru

Equation Al5

i-1
Ru < 1, which means the channels of

k=1
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priority higher than i have not preempted the entire service capability.

i-1
k Ru* will be minimized by that permutation for whichThe term

ki < kJ R, ?, R.. Consequently, if the channels are originally

numbered in order of decreasing rate we have the bound

i-1
i - u Ru

u=1.
i-1

1 Ru
u=1

developed with less detail by Wallace and Rowswell.

Equation Al 6
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Appendix II: The Interlock Problem

In this paper it has been assumed that all memory cycles take

the same amount of time. However, it is quite common for memories

to have pause cycles in addition to read and write cycles. When

a pause cycle is initiated by a processona word is read from

memory, but the restore portion of the cycle is suspended until the

processor puts a resume signal (accompanied by new data) on the

input bus to memory.

Consequently, a pause-type cycle keeps the memory busy

longer than a simple read or write by an amount of time equal to the

time elapsed between the completion of the read portion of the cycle

and the arrival of the resume signal at the memory. Since two-way

bus-propagation delays plus some processor response-time are

included in that elapsed time, pause cycles may be several times

as long as a normal read or write.

Staudhammer, Combs, and Wilkinson (9) have shown that the

expected waiting-time and mean-time-to-transfer-timing-error for

other devices in a strict-priority system are significantly sensitive

to the Mean length of the time-per-instruction that the memory is

kept busy by the control processor. (And certainly any pause

cycle significantly longer than a normal memory cycle would nullif y
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minimum channel-latency calculations.)

In systems with only one control processor (which would of

course be an intrinsic point of permanent articulation) it is possible

to simply force all pause cycles to be separated into a normal-read

followed by a normal-write,forsaking only the increase in processor-

speed that the pause capability provides for such operations as

adding one to the contents of some memory location.

However, systems which contains more than one control processor

use the pause cycle as an essential interlock which makes possible

the unambiguous examination and modification of control flags in

memory by any one of the processors (12). This necessary function

of the pause cycle must be replaced in any scheme which forbids

pause cycles. The most obvious solution is to incorporate a "read-

interlock" cycle into the design of the memory control (in place of

the pause cycle).

A "read-interlock" cycle fetches the contents of the addressed

word during the read portion of the memory cycle and immediately

restores some special pattern during the write portion of the memory

cycle. Of course, the control processors must be so designed that

reception of the special pattern, when trying to fetch a flag word,

forces some appropriate response (such as re-execution of the flag-

fetch intruction). Naturally, if the special pattern is not received,
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the processor can safely examine and modify the flag word and

subsequently restore the modified flag word to memory with a normal-

write cycle, since any other processor examining the flag word in

the interim will receive the special pattern.

There is essentially no difference between a pause cycle and

a read-interlock cycle in terms of hardware cost, but a pause-cycle

scheme can have a deleterious effect upon the operation of the

priority structure of the system.


