

AN ABSTRACT OF THE THESIS OF

Lo’ai Ali Tawalbeh for the degree of Doctor of Philosophy in

Electrical & Computer Engineering presented on October 28, 2004.

Title: A Novel Unified Algorithm and Hardware Architecture for Integrated Modular

Division and Multiplication in GF (p) and GF (2n) Suitable for Public-Key

Cryptography.

Abstract approved:

Çetin Kaya Koç

The spread of the internet and communications techniques increases the necessity

for security in applications that involves sharing or exchange of secret or private infor-

mation. Public-key cryptography is widely used in establishing secure communication

channels between the users on the Internet, for E-commerce transactions, and in net-

work security protocols. Public-key cryptography relies on algorithms from computer

arithmetic, number theory and algebra. The modular arithmetic operations, modular

division, and modular multiplication over finite fields (GF (p) and GF (2n)) are exten-

sively used in many public-key cryptosystems, such as RSA, ElGamal cryptosystem,

Diffie-Hellman key exchange algorithm, elliptic curve cryptography (ECC), and the Dig-

ital Signature Standard including the Elliptic Curve Digital Signature Algorithm. In

our research, we have mainly concentrated on hardware realization of the ECC since it

seems to provide similar amount of security using smaller key size.

The modular multiplication operation with a large modulus is very important in

many public-key cryptosystems. One of the most efficient ways to compute modular mul-

tiplication is the Montgomery algorithm. Many efficient Montgomery multiplier designs

were proposed up to now. On the other hand, computing modular division (inverse) is

a time-consuming process and cannot be avoided completely. It was claimed that a gain

in performance can be obtained when implementing the division (inverse) in hardware.

In this work, we propose, with a mathematical proof, an efficient unified division

algorithm to compute the modular division operation in GF (p) and GF (2n). The al-

gorithm uses a counter to keep track of the difference between two field elements and

this way eliminates the need for comparisons which are usually expensive and time-

consuming. An hardware architecture implementing the algorithm is also proposed.

The unified division algorithm is integrated with a unified Montgomery multipli-

cation algorithm to obtain a novel Unified Division/Multiplication Algorithm (UDMA).

The UDMA computes division (inverse) and multiplication in a very efficient way in

both GF (p) and GF (2n) fields. Also, we propose a unified hardware architecture that

efficiently supports all operations in the UDMA and uses carry-save unified adders for re-

duced critical path delay, making the proposed architecture faster than other previously

proposed designs.

Experimental results obtained by synthesizing the hardware design for AMI 0.5µm

CMOS technology and FPGA V ertixII chip (xc2vp50− 7ff148 technology) are shown

and compared with other proposed dividers and multipliers.

c©Copyright by Lo’ai Ali Tawalbeh

October 28, 2004

All Rights Reserved

A Novel Unified Algorithm and Hardware Architecture for
Integrated Modular Division and Multiplication in GF (p)

and GF (2n) Suitable for Public-Key Cryptography

by

Lo’ai Ali Tawalbeh

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented October 28, 2004
Commencement June 2005

Doctor of Philosophy thesis of Lo’ai Ali Tawalbeh presented on October 28, 2004

APPROVED:

Major Professor, representing Electrical & Computer Engineering

Associate Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Lo’ai Ali Tawalbeh, Author

ACKNOWLEDGMENTS

First of all, I am grateful to the GOD, most mighty, most merciful, who created

me and gave me the ability to think and search for the truth.

I would like to thank my major advisor, prof. Çetin Kaya Koç, for his help, sup-

port, encouragement, and valuable directions towards accomplishing this work. Also, I

want to thank Dr. Alexandre F. Tenca who was my advisor during my Master study

(September 2001- October 2002), and part of my PhD study. Dr. Tenca’s discussions,

directions, reviews and comments helped me much in conducting this research and writ-

ing conference and journal publications which formed as the bases of this thesis. I also

thank the other members of my graduate committee for their valuable input.

I am thankful to my research colleagues in the Information Security Laboratory

of Oregon State University. In particular, I acknowledge Mohammad Sinky, Song Park,

Ajay Shantilal, Minho Kim, Colin Van Dyke, Onur Aciiçmez and Gökay Saldamli, for

providing valuable feedback during different research phases.

The financial support for my PhD education is from a scholarship provided by

Jordan University of Science and Technology (JUST)- Jordan, and NSF CAREER grant

CCR-0093434- ”Computer Arithmetic Algorithms and Scalable Hardware Designs for

Cryptographic Applications”.

Finally, this work will not have been possible without the love and moral support of

my father (Ali Tawalbeh), my patient, great and wonderful mother, my brothers (Qosai,

Ahmad and Mohammad), my sisters, and my aunts (Um Anas and Um Ibrahim). I am

deeply thankful to all of them for their support and warm feelings during my study years

overseas.

Lo’ai Ali Tawalbeh

Corvallis, Oregon, USA

October , 2004

TABLE OF CONTENTS

Page

1. INTRODUCTION. 1

1.1. Motivation . 2

1.2. Literature Review . 3

1.3. Montgomery Modular Multiplication . 6

1.4. Thesis Organization . 8

2. NEW UNIFIED MODULAR DIVISION ALGORITHM AND HARDWARE
ARCHITECTURE IN GF (P) AND GF (2N). 10

2.1. Mathematical Concepts and Notation . 10

2.2. Unified Modular Division Algorithm (UMD). 11

2.2.1. Numerical Example . 14
2.2.2. Mathematical Proof . 14

2.3. Hardware Architecture of The Unified Modular Divider 16

2.3.1. Adders Scheduling for Efficiency . 17
2.3.2. Datapath . 18
2.3.3. Improving The System Performance . 21

3. NOVEL UNIFIED MODULAR DIVISION AND MULTIPLICATION ALGO-
RITHM (UDMA) IN GF (P) AND GF (2N). 23

3.1. Unified Algorithm for Modular Division and Montgomery Modular Mul-
tiplication. 23

3.2. Multiplication Mode . 25

3.2.1. Numerical Example:Computing Montgomery Multiplication Us-
ing The UDMA . 26

3.3. Division Mode . 27

3.3.1. Numerical Example:Computing Modular Division Using The
UDMA . 27

TABLE OF CONTENTS (Continued)

Page

3.4. Mathematical Proof During Computing Montgomery Multiplication . . 29

3.4.1. Product modulo p . 30
3.4.2. Product is Reduced . 30

4. SCALABLE AND UNIFIED MODULAR DIVIDER/MULTIPLIER HARD-
WARE DESIGN. 33

4.1. Overall Hardware System Architecture . 33

4.1.1. Register File . 33
4.1.2. UMDM Datapath . 34
4.1.3. Control Block . 38

4.2. Scalable Divider/Multiplier Architecture . 42

4.2.1. Implementation Details . 43

5. EXPERIMENTAL RESULTS AND COMPARISONS. 45

5.1. The Number of Iterations . 45

5.2. Synthesis Results . 48

5.3. FPGA Synthesis Results for The Scalable Design . 51

5.3.1. Area Results . 51
5.3.2. Critical Path Delay Results . 52

6. CONCLUSIONS AND FUTURE WORK. 54

6.1. Conclusion . 54

6.2. Future work. 55

BIBLIOGRAPHY . 57

TABLE OF CONTENTS (Continued)

Page

APPENDICES . 61

A THE GREATEST COMMON DIVISOR. 63

B RELATED ALGORITHMS. 66

B1. The Euclidean Algorithm. 66

B2. The Binary GCD Algorithm . 68

B3. The Plus-Minus Algorithm . 69

B4. The Extended Binary GCD Algorithm for Modular Division 70

C NUMERICAL EXAMPLE FOR COMPUTING MODULAR INVERSE US-
ING UDMA IN GF (P). 71

LIST OF FIGURES

Figure Page

1.1 Modular multiplication using MM. 7

1.2 Modified version of the unified Montgomery multiplication algorithm
presented in [6]. 9

2.1 Unified Modular Division Algorithm (UMD) . 13

2.2 Top level organization of the modular divider which implements the
UMD Algorithm. 16

2.3 Scheduling of adders in the modular divider that implements the UMD
algorithm . 18

2.4 The Unified Datapath of the Modular Divider . 19

2.5 The two possible configurations of the Swapping Network. 21

2.6 The delay paths of the Modular Divider. 22

3.1 Unified modular Division/Multiplication Algorithm (UDMA) for GF (p)
and GF (2n). 24

3.2 Computing Montgomery multiplication in GF (p) and GF (2n) using the
UDMA. 28

3.3 Computing modular division in GF (p) and GF (2n) using the UDMA. . . 32

4.1 Top Level Hardware Architecture of the Unified Modular Divider/Multiplier
(UMDM). 34

4.2 Unified datapath of the Modular Divider/Multiplier (UMDM datap-
ath). 35

4.3 Unified Carry-Save Adder with Complement (UCSA1) for 1-bit and
n-bit precision. 36

4.4 Unified Carry-Save Adder with integrated AND gate for 1-bit and n-bit
precision . 37

4.5 Data dependency between the words of the scalable design 43

5.1 The number of iterations as a function of operand size required by Alg1
(UDMA) and Alg2 (presented in [10]) to compute the modular inverse
in GF (p) and GF (2n) . 46

LIST OF FIGURES (Continued)

Figure Page

5.2 The critical path delay of the UMDM in nano-seconds (operand size
from 160-512 bits). 49

5.3 The Area (FPGA Technology) of the scalable UMDM in number of
slices for combinations of operand size (n) form 16-512 bits, and data-
path word size (w) from 16-256 bits. 52

LIST OF TABLES

Table Page

1.1 Area and time complexity of some inversion designs . 4

2.1 A modular division by the UMD algorithm in GF (p) 15

3.1 The operations performed by the UDMA during Montgomery multipli-
cation . 26

3.2 Montgomery multiplication example by the UDMA in GF (p) 27

3.3 The operations performed by the UDMA during modular division 28

3.4 A modular division by the UDMA in GF (24) . 29

4.1 Loading phase for multiplication and division . 39

4.2 The operation of the UMDM during Montgomery multiplication. 40

4.3 The UMDM operation during computing division when c0 = 0 41

4.4 The UMDM operation during division when c0 = 1. 42

5.1 Average number of additions for Alg1 and Alg2 to compute the modular
inverse in GF (p) and GF (2n). 47

5.2 The Area of the UMDM Design in gates for different operand sizes 50

5.3 The critical path delay (clock period) of the scalable UMDM in nano-
seconds for combinations of operand size (16-512 bits), and datapath
word size from 16-256 bits . 53

LIST OF APPENDIX TABLES

Table Page

C.1 A modular inverse computation by the UDMA algorithm in GF (p) 72

9

To my mother and my father, with love ..

A NOVEL UNIFIED ALGORITHM AND HARDWARE
ARCHITECTURE FOR

INTEGRATED MODULAR DIVISION AND
MULTIPLICATION IN GF (P)

AND GF (2N) SUITABLE FOR PUBLIC-KEY
CRYPTOGRAPHY

1. INTRODUCTION.

The spread of the internet and communications techniques increases the necessity

for security in applications that involves sharing or exchange of secret or private infor-

mation. Public-key cryptography is widely used in establishing and verifying communi-

cations between the users on the web, E-commerce transactions, and network security

protocols.

Among the modular arithmetic operations, modular division (notice that division

includes computing the inverse) and multiplication over finite fields (GF (p) and GF (2n))

are extensively used in many cryptographic applications, such as ElGamal cryptosys-

tem [1], Diffie-Hellman [2] key exchange algorithm, RSA [3], elliptic curve cryptogra-

phy, and the Digital Signature Standard including the Elliptic Curve Digital Signature

Algorithm[4].

In this work, we: first, propose an efficient unified modular division algorithm to

compute modular division in GF (p) and GF (2n) and its hardware architecture. We also

provide a mathematical proof for the algorithm. The algorithm uses a counter to keep

track of the difference between two field elements and this way eliminates need for com-

parisons which are usually expensive and time-consuming. The hardware architecture

that implements the algorithm is also proposed.

Second, knowing that the Montgomery multiplication algorithm [5] is one of the

most efficient ways to compute modular multiplication, we modify the unified Mont-

2

gomery multiplication algorithm proposed by other members of our research group in [6]

to have a control flow similar to the proposed division algorithm.

After that, we integrate the proposed unified division algorithm in this work with

the unified Montgomery multiplication algorithm in [6] to get a novel Unified modular

Division/Multiplication Algorithm (UDMA). The UDMA computes division (inverse)

and multiplication in a very efficient way in both GF (p) and GF (2n) fields. Also,

we propose the hardware architecture of the algorithm which efficiently supports all

the operations in the UDMA, and uses carry-save unified adders for reduced critical

path delay, making the proposed architecture faster than other previously proposed

designs. The added scalability feature of the proposed divider/multiplier allows a fixed-

area datapath to handle operands of any size. Also, the word size of the datapath can

be adjusted to meet the area and performance requirements.

Experimental results obtained by synthesizing the hardware design for AMI 0.5µm

CMOS technology and FPGA V ertixII chip (xc2vp50− 7ff148 technology) are shown

and compared with other proposed dividers and multipliers.

Next section of this Chapter presents the motivation behind conducting this re-

search. Section 2 shows previous work related to computing modular division (inverse)

and Montgomery multiplication in hardware. Section 3 describes Montgomery mul-

tiplication, and presents a modified version of the unified Montgomery multiplication

algorithm proposed in [6]. The organization of this thesis is presented in Section 4.

1.1. Motivation

Modular arithmetic operations such as division and multiplication over finite fields

(GF (p) and GF (2n)), are widely used in several cryptographic applications. The modu-

lar multiplication operation with a large modulus is very important in many public-key

cryptosystems such as the RSA algorithm [3].

On the other hand, modular division and modular inverse are time consuming

operations and they cannot be avoided completely in practical applications. For instance,

3

they are used in the ElGamal [1] public-key cryptosystem and the Diffie-Hellman key

exchange method [2]. Modular inversion is also considered as an essential operation in the

Elliptic Curve Cryptography (ECC) [4, 7, 8]. This research is targeted mainly toward the

ECC utilization because of its promise to replace several older cryptographic systems [9,

10]. Researchers have claimed that a gain in performance can be obtained when modular

division and inversion are implemented in hardware [9, 11]. Also, for cryptographic

applications, it is more secure to implement all the computations in hardware than

performing some computations in software with others processed in hardware. This is

because software implementations are supported by operating systems, which can be

interrupted and trespassed by intruders, compromising the application security. On the

other hand, such a security threat is not so easily attained in hardware implementations

[9].

In general, there is an increasing demand for dedicated hardware to accelerate

the huge amount of computations required by public-key cryptographic algorithms. An

algorithm and hardware implementation that is able to compute modular division and

multiplication in both GF (p) and GF (2n) is definitely advantageous and has great im-

portance to systems that need to quickly switch between these fields, such as network

servers. The scalability feature of a hardware module is very useful and allows the users

to use a fixed-area module to handle operands of any size. The word size of the module

can be adjusted to meet the best area/performance requirements.

1.2. Literature Review

The Extended Euclidean Algorithm (EEA) is an efficient way to compute modular

division [12, 13]. There are several proposed design in the literature that computes

modular division (inverse) [9, 11, 14, 15, 16, 17, 18, 19, 20, 21] based on the EEA or

one of its modifications [22]. Most of the proposed designs compute the inverse in the

binary extension fields – GF (2n) [14, 17, 18, 19, 20, 21, 23]. The designs proposed in

4

The Design Area Complexity Time Complexity

Guo and Wang [17] O(nlogn) O(n)

Choudhury and Barua [18] O(n) O(n2)

Kovac, Ranganathan and Varanasi [25] O(n3) O(1)

Guo and Wang [24] O(n) O(n)

Daneshbeh and Hasan [14] O(n) O(n)

TABLE 1.1: Area and time complexity of some inversion designs

[20, 23] suffer from signal broadcasting problem which should be avoided in high-speed

VLSI circuits [12].

Other designs are based on the concept of systolic array structures [14, 17, 18, 24,

25]. A systolic array is an arrangement of interconnected logic cells in array where data

flow synchronously between the adjacent cells. Systolic arrays are simple and has regular

communications and control structures which make it suitable for VLSI implementations.

But, on the other hand, a huge amount of hardware area is needed in order to gain

computation speed [26]. Table 1.1 shows the area and time complexities of some inversion

designs.

A VLSI algorithm for modular division based on the Binary GCD algorithm was

proposed in [27]. The algorithm is based on the plus-minus algorithm presented in

[28] which is a modification of the binary method for calculating the Greatest Common

Divisor (GCD). The redundant binary representation is used to avoid carry propagation.

The same author with cooperation with another researcher proposed in [29] a VLSI

algorithm to compute division and multiplication in GF (p) only, which uses the same

algorithm proposed in [27] for division. The algorithm was implemented in a linear array

structure that uses signed digit representation and performs n-bit modular multiplication

in b2(2n+3)
3 c + 3 clock cycles and modular division in 2n + 5 clock cycles.

5

The public-key processor presented in [16] implements operations required for El-

liptic Curve Cryptography (ECC) including modular inverse in GF (2n). Its has a re-

configurable datapath. The processor hardware is more energy efficient and faster than

software implementations. But, on the other hand, it has a very large area.

Another work in [15] presents a simple dual-field arithmetic unit, however, an

unified algorithm for modular inverse/division was not shown. The unit performs one

addition in each clock cycle, and the redundant adder in the architecture is used to

convert from the carry-save form to the non-redundant representation, significantly in-

creasing the number of clock cycles.

The Montgomery multiplication algorithm proposed in [5] is considered a very

efficient way to compute modular multiplication. An implementation of Montgomery

multiplication should consider the tradeoff between chip area and computational speed

[30, 31].

A flexible multiplier can be integrated into a system as an autonomous co-processor

attached to the system bus [6, 32]. Also, the multiplier can be integrated as a functional

unit to the main CPU. With the idea of implementing more cryptographic operations in

hardware, this approach is becoming increasingly attractive [33, 34].

A single chip, 1024-bit RSA implementation is shown in [35]. The multiplication

part is implemented as an array multiplier. This approach for multiplication requires

multiple clock cycles to complete. Another approach to perform modular multiplication,

is to use a core with a small bit size and reuse it with bit portions of the operands [30].

It is shown in [36] that limiting the size of the computing unit has certain advantages.

Implementing the multiplier using reconfigurable hardware provides the means of

solving problems for both high-precision and variable-precision computation [30]. The

main candidates for flexible hardware are FPGAs [32, 37]. Thus, in this work, we are

implementing the proposed hardware architecture in FPGAs in addition to the ASIC

implementation.

A very good representative of Montgomery multiplier implementation is the unified

multiplier architecture for both finite fields, GF (p) and GF (2m), is presented in [6]. It

6

shows that a Montgomery multiplication module can operate in both fields without

significant increases in the design area compared to a multiplier that works on GF (p)

only.

1.3. Montgomery Modular Multiplication

In this Section, we explain briefly the Montgomery multiplication algorithm. We

rewrote the algorithm and used the same notation as in the unified modular division

algorithm proposed in this work to emphasize the similitude between the two algorithms.

The similarities between the two algorithms are used to get a novel Unified modular

Division and Multiplication Algorithm (UDMA) which is described in Chapter 3.

The Montgomery multiplication algorithm generates the product of two n-bit in-

tegers Y (multiplier) and X (multiplicand) in modulo p according to the following ex-

pression:

MM(Y, X) = Y Xr−1 mod p

where r = 2n. p is chosen such that the greatest common divisor of r and p is one

(gcd(r,p) = 1), which indicates that r and p should be relatively prime. This condition

is easily achieved by choosing p as an odd integer, since r = 2n is an even number. We

usually have 2n−1 < p < 2n. The Montgomery image of an integer can be obtained by

multiplying it by the constant r and taking it modulo p: ā = ar mod M.

The Montgomery multiplication over the images ā and b̄ results in:

c̄ = cr mod M = MM(ā, b̄) = abr mod M

which corresponds to the image of c = ab mod M , the modular product of a and b.

Figure 1.1 shows the transformation between the integers and their images per-

formed using MM. This process can be explained as follows:

• to transform an integer a to its image ā, we do: ā = MM(a, r2) = ar2r−1 modM =

ar mod M.

7

MM

MM

Integer
Domain

Montgomery
Domain

MM

X X

Y

S

Y

S

r mod M

r mod M

Xm

Xm

MM

MM

- modular multiplication

- Montgomery modular multiplication

2

2

1

FIGURE 1.1: Modular multiplication using MM.

• to transform from an image ā to the integer a, we compute: a = MM(ā, 1) =

arr−1 mod M = a mod M.

Observe that the constant r2 mod M is pre-computed and used in the process as

shown in Figure 1.1.

The radix-2 unified Montgomery multiplication algorithm is shown in Figure 1.2

[6].

The Montgomery multiplication algorithm performs n iterations. In each iteration

one bit of the multiplier is tested (we are considering C = Y at the beginning). If c0 = 1,

the C variable is shifted one bit to the right, and one multiple of the multiplicand X is

added to the partial product U . If c0 = 0, only a shift right is done on C and the next

bit is tested. Note that U is always bounded by 2p through all iterations. Therefore, the

last correction step (modular reduction) assures that the output is correctly presented

in modulo p. In order to use the result of one multiplication as the input to another

one without modular reduction, we need to use two extra bits of precision (n + 2 bits)

[38, 33].

8

1.4. Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents A new unified

division algorithm and it’s hardware architecture that computes modular division (in-

verse) in GF (p) and GF (2n). A novel Unified Division and Multiplication Algorithm

(UDMA) which is able to compute both modular division (inverse) and Montgomery

multiplication in GF (p) and GF (2n) fields, is presented in Chapter 3. We propose a

scalable and unified modular divider/multiplier hardware architecture for the UDMA

in Chapter 4. The architecture is implemented in ASIC and Field Programmable Gate

Arrays (FPGAs). The experimental results are presented and compared with previous

designs in Chapter 5. The conclusions and future work are shown in Chapter 6.

9

[Montgomery Modular Multiplication in GF (p) and GF (2n) fields]

Inputs: 0 ≤ X,Y < p, 2n−1 < p < 2n, Field, n

Output: Z = XY 2−n mod p when Field = GF (p), Z(x) = X(x)Y (x)2−n mod p(x)

when Field = GF (2n)

Algorithm:

C = Y , U = 0, W = X

FOR i = 1 To n

IF c0 = 0 THEN

C := C >> 1

ELSE /* c0 = 1 */

C := C >> 1, U := (U + W)

END IF;

U := (U + u0 ∗ p) >> 1

END FOR;

IF U ≥ p THEN Z := U − p

ELSE Z := U

END IF;

FIGURE 1.2: Modified version of the unified Montgomery multiplication algorithm
presented in [6].

10

2. NEW UNIFIED MODULAR DIVISION
ALGORITHM AND HARDWARE ARCHITECTURE

IN GF (P) AND GF (2N).

This Chapter presents an algorithm to compute modular division in both GF (p)

and GF (2n) fields (also called unified). Since computing division includes computing the

inverse, we will use the term division because it is more general. In the following Section,

we review some mathematical concepts and introduce the notation to be used in this

Chapter. In Section 2.2, we present the Unified Modular Division (UMD) algorithm with

its mathematical proof. The hardware architecture that implements the UMD algorithm

is described in Section 2.3.

2.1. Mathematical Concepts and Notation

The binary extension field element, Y (x) ∈ GF (2n), is a non-zero polynomial of

degree less than n, when the polynomial basis is used to represent the field elements

(which is the case in this thesis). Each element has coefficients in GF (2), which are

represented by the values {0, 1}. On the other hand, the elements in the prime field

GF (p) are integers in the range {0, ..., p − 1} where p is a n-bit prime modulus in the

range 2n−1 < p < 2n. Bit vectors are used to represent the elements in both fields as

follows:

GF (2n) : Y (x) =
n−1∑

i=0

yi ∗ xi

GF (p) : Y =
n−1∑

i=0

yi ∗ 2i

where yi ∈ {0, 1} in both cases. The polynomial Y (x) is denoted as Y in the algorithm

description for simplicity.

The addition operation of the elements is different in each field. Addition of two

polynomials in GF (2n) is done by a bitwise logic exclusive OR operation (a xor b = a⊕b

11

= a′b + ab′) between the two bit vectors being added. In other words the additions in

GF (2n) are done modulo 2 [15], as shown in the following equation:

Y (x) + W (x) =
n−1∑

i=0

yi ∗ xi +
n−1∑

i=0

wi ∗ xi =
n−1∑

i=0

(yi xor wi)xi

Subtraction and addition in GF (2n) are equivalent. Intermediate results of opera-

tions in GF (2n) that are represented by polynomials of degree greater or equal to n are

reduced using a field polynomial p(x) of degree n (irreducible polynomial) [39].

Moreover, the addition of two elements Y and W in GF (p) is done as a conventional

integer addition. The propagation of carries in this case depends on the use of redundant

or non-redundant representation of elements. Carry-Save (CS) representation is used in

this work. Modular reduction is required when the sum exceeds the value of p to keep

the result in the set {0, ..., p− 1} .

2.2. Unified Modular Division Algorithm (UMD)

The Unified Modular Division (UMD) algorithm is shown in Figure 2.1. The

algorithm is based on the Extended Binary GCD algorithm [27]. Most of the modular

division (inverse) algorithms [11, 16, 15, 14, 21, 17] have integer and polynomial degree

comparisons as part of their control flow. Differently from them, the UMD algorithm

uses a counter variable to keep track of the difference between field elements, and this

way, eliminates the need for comparisons and complex tests which are usually expensive

and time consuming. Using the counter results in a less complex iterations [40], and it

can be implemented using fast up/down counters as the ones described in [41].

The UMD algorithm computes the modular division in GF (2n) when Field =

GF (2n) (Z(x) = X(x)
Y (x) mod p(x)), and in GF (p) when Field = GF (p). In both cases,

Y 6= 0. If X is set to one, the UMD algorithm computes the modular inverse. We

must say that the operations on the control variable δ are always integer operations

regardless of what is the specified field. On the other hand, specifying a field forces all

the additions/subtractions to be done in this field. Swap of values between two variables

12

is indicated by the symbol ⇔. The notation for the least-significant bits of C and U is

c0 and u0, respectively. The symbol >> indicates right shift by one bit (divide by 2 in

GF (p) or by x in GF (2n)). Notice that inputs to the UMD algorithm (X , Y) are bit

vectors that represent elements in GF (p) and GF (2n).

The algorithm is based on the following facts to compute the division in GF (p)

[12, 27, 40]: If C is even and D is odd, then gcd(C, D) = gcd(C/2, D). If C and D are

both odd, then 4 divides either C + D or C −D. If the first is true, then gcd(C, D) =

gcd((C + D)/2, D) = gcd((C + D)/4, D), and |(C + D)/4| ≤ max(|C/2|, |D/2|). If

4 divides (C − D) then gcd(C, D) = gcd((C − D)/2, D) = gcd((C − D)/4, D), and

|(C −D)/4| ≤ max(|C/2|, |D/2|). In the algorithm, these operations are performed by

C := (C + kD)/2 in one iteration and C := C/2 in the following iteration. In any case,

since the result of these operations is stored back into C, when C > D, the size of the

bit vector C is reduced by 1 bit. If C < D, the size of the bit vector may not be reduced,

and the counter is used to limit the number of iterations when the algorithm stays in

this situation, forcing the swap of variables to the condition C > D which is required for

convergence.

In GF (2n) one can show that gcd(C, D) = gcd((C+D)/x,D) (addition is the same

as subtraction in this field) but the divisibility by 4 can not be enforced. Therefore, when

Field = 0, the test (C + D) mod 4 6= 0 is not applicable. When deg(C) > deg(D), we

can see that deg((C + D)/x) ≤ deg(C/x) = deg(C) − 1, and therefore, C will have its

degree reduced in each iteration.

The combination of the two expressions: U = (U +kW) and U := (U +u0p) >> 1,

where u0 is the least-significant bit of U , implements the operation U := (U + kW) >>

1 mod p. This way the modular reduction is done by a simple conditional addition of

the modulus in GF (p) or irreducible polynomial in GF (2n).

The UMD algorithm can be used to compute the inverse in Montgomery domain by

the use of pre-computed constants. Considering the Montgomery images r (corresponds

to 1) and Y as inputs, where r = 2n, we get Z = r
Y (mod p) = Y −1r (mod p) which is

13

Function: Modular Division in GF (p) and GF (2n) fields

Inputs: 0 ≤ X < p, 0 < Y < p, 2n−1 < p < 2n, Field

Output: Z = X
Y mod p when Field = GF (p), Z(x) = X(x)

Y (x) mod p(x) when Field =

GF (2n)

Algorithm:

C = Y , U = X, D = p, W = 0, δ = 0

WHILE C 6= 0

IF c0 = 0 THEN

C := C >> 1

δ := δ − 1 /* Integer Operation */

ELSE

IF δ < 0 THEN C ⇔ D, U ⇔ W , δ := −δ

END IF;

k := 1

IF((C + D) mod 4 6= 0 AND Field = GF (p)) THEN k := −1

ELSE δ := δ − 1

END IF;

C := (C + k ∗D) >> 1, U := (U + k ∗W);

END IF;

U := (U + u0 ∗ p) >> 1

END WHILE;

IF D = 1 THEN Z := W

ELSE Z := p−W

END IF;

FIGURE 2.1: Unified Modular Division Algorithm (UMD)

14

the inverse in the Montgomery domain. But, if we use r and Y r as inputs, the algorithm

computes the inverse in the integer domain (Z = Y −1 (mod p)).

2.2.1. Numerical Example

Table 2.1 shows a numerical example of modular division using the UMD algo-

rithm. The algorithm computes 213
108 mod 251 in GF (p). The Table shows the values of

the variables: delta, C,D, U , and W . The first column shows the operation performed

by the division algorithm. For instance, C >> 1 indicates that the THEN portion

was executed (C is even), and so, C was shifted and δ was decremented. On the other

hand, the expression C := (C±D) >> 1 indicates that the ELSE portion was executed

(C is odd), and so, U := (U ±W) was also performed. The operation swap means that

C ⇔ D and U ⇔ W , and the sign of δ was flipped (δ = −δ). Notice that the modular

reduction step (U := (U + u0 ∗ p) >> 1) is performed every iteration regardless of C

being odd or even.

The computations are done when C = 0 and the result is W = 246 as can be seen

form the Table.

2.2.2. Mathematical Proof

The algorithm proposed in [27] computes division in GF (p) only. It applies the

Plus-Minus algorithm of Brent and Kung presented in [28]. This last, is a modification of

the standard Binary algorithm to compute the GCD [42]. We adopted similar approach

used in [27] with many modifications including extending the algorithm to compute

division in both GF (p) and GF (2n) fields in a more efficient way, and simpler flow to be

more suitable for hardware implementation.

In both possible cases of fields, the main justification of the success of the algorithm

is that throughout the computation, one has the two congruences:

15

Operations δ C D U W

Initialization 0 108 251 213 0

C >> 1 -1 54 251 232 0

C >> 1 -2 27 251 116 0

swap,C := (C −D) >> 1 2 112 27 -58 116

C >> 1 1 56 27 -29 116

C >> 1 0 28 27 111 116

C >> 1 -1 14 27 181 116

C >> 1 -2 7 27 216 116

swap,C := (C −D) >> 1 2 10 7 -50 216

C >> 1 1 5 7 -25 216

C := (C + D) >> 1 1 6 7 221 216

C >> 1 0 3 7 236 216

C := (C −D) >> 1 0 -2 7 10 216

C >> 1 -1 -1 7 5 216

swap,C := (C −D) >> 1 1 4 -1 231 5

C >> 1 0 2 -1 241 5

C >> 1 -1 1 -1 246 5

swap,C := (C + D) >> 1 1 0 1 0 246

TABLE 2.1: A modular division by the UMD algorithm in GF (p)

CX ≡ UY mod p

DX ≡ WY mod p ;

Indeed, this is clearly true upon initialization: C = Y ; U = X and D = p, W = 0.

Thereafter, we either: swap ordered pairs (C,U) with (D, W); or, replace (C, U) by

((C + kD)ξ−1, (U + kW + v0p)ξ−1), with a shared value of k and with v0 ∈ {0, 1}, and

ξ−1 is either 2 or x depending on the field to be GF (p) or GF (2n), respectively. These

two operations obviously preserve our pair of congruences.

Hence, once we show that the WHILE loop ends with D = 1, it is clear that W

then yields XY −1 mod p. However, the iterates of the values (C, D) are calculating the

greatest common divisor of Y and p in the appropriate ring: Z or (GF (2))[x]; that is,

in any iteration, (C, D) is the value of consecutive remainders in a modified extended

16

Euclidean algorithm applied to (Y, p). Since this pair are relatively prime, the GCD

calculation ends with one of C, D being a unit, the other being zero. On the other hand,

it is easily seen that D is such that d0 = 1 throughout any division phase. Hence, we

eventually find C = 0 and D = 1. ¤

2.3. Hardware Architecture of The Unified Modular Di-
vider

Figure 4.1 shows the top level organization of the unified modular divider that

implements the UMD algorithm. The main functional blocks are Registers, Swapping

Network (Multiplexers), Control and Datapath.

C out U out

Load

SEL

p

UMD Datapath

Load

input
Load (X,Y,p)

Control

reset

cl
k

FieldOp clk(2x)

Lo
ad

 C
,U

Output (Z)

c 0

Load

Swapping Network

Registers

C U D W

C U D W

Lo
ad

 D
,W

FIGURE 2.2: Top level organization of the modular divider which implements the
UMD Algorithm.

The registers C, U , D, and W are initialized with the inputs (X,Y ,p) when Load =

1 through three-state buffers. When Load = 0, the registers receive their values from

17

Uout and Cout coming from the datapath. Uout is fed back to either U or W registers

depending on Load U and Load W , respectively. Also, Cout is fed back to C or D

registers depending on Load C or Load D, respectively. All these signals are generated

by the control block.

The swap operations (C ⇔ D, U ⇔ W) are realized by the Swapping Network

which is a set of two-input muxes, controlled by the SEL signal provided by the control

block and takes its value based on the value of δ (kept internally). More detail are

provided in the dtatpath Section.

2.3.1. Adders Scheduling for Efficiency

The UMD algorithm performs in the worst case (else part of the algorithm) 3

additions in each iteration which are shown in Figure 2.3. Using 3 adders will increase the

area of the design significantly especially for large precision inputs. Another alternative

is to use a single adder in more than one clock cycle to complete one iteration. Such a

solution would increase the overall time to compute the division but would be a solution

when the area is too restrictive. Therefore for this implementation of an isolated division

unit the use of two adders is the best choice.

In this worst case scenario (Figure 2.3), there is data dependency between additions

A1 (U + k ∗ W) and A2 (U + u0 ∗ p). Therefore, one iteration is complete only after

two consecutive additions are performed. If we assign addition A1 to one adder (adder1)

and addition A2 to another adder (adder2), each adder will be working for only half of

the clock cycle time. Based on this observation, we propose a solution that uses adder1

to compute addition 3 (A3) in the second half of the iteration cycle, while adder2 is

computing A2. This solution requires a register or latch between the two adders, clocked

at twice the clock frequency at which iterations are executed.

As can be seen from Figure 2.3, Adder1 receives the operands to compute A1

during phase 1 (φ1). At the end of φ1, the adder output is registered and another set

of input values is applied to compute A3 during φ2. Note that during φ1 the Adder2 is

18

Ai: Addition Operations

Adder1 Adder2

A3: (C+kD)

no addition

 A1:(U+kW) no addition

A3: (C+kD)

 A1:(U+kW) no addition

time

A2: (U+u p)o

A2: (U+u p)o

 A1:(U+kW)
ite

ra
tio

n1
ite

ra
tio

n2
ite

ra
tio

n3

A2: (U+u p)oA3: (C+kD)

1

2

2

2

1

1

FIGURE 2.3: Scheduling of adders in the modular divider that implements the UMD
algorithm

not used anyway because the signals are still propagating in the first half of the circuit.

Another observation is that phase φ2 can be shorter than φ1 in order to keep the hardware

units working most of the time.

2.3.2. Datapath

An n-bit datapath was designed to support the computations described by the

UMD algorithm and it is shown in Figure 4.2. Each iteration of the algorithm is imple-

mented in one clock cycle. The critical path delay (the clock cycle time) is determined by

the datapath and control block, and it will be addressed in more detail in Section 2.3.3.

The proposed datapath uses two Carry-Save Unified Adders (CSUAs) to perform

addition in both GF (p) and GF (2n) fields. The CSUA is basically formed by dual-field

adders which were described in [6] for a (3,2) design (3 inputs and 2 outputs) and in [43]

for a (4,2) design. The (3,2) dual-field adder is similar in complexity to a full-adder and

it performs bit addition with and without carry. This functionality is enabled by the

19

C out

Latch

U LSBit of U (u) 0

clk

U out

N

P

AND

FSEL

FSEL

UC

MUX1

selS

D W

complementer

MUX2

sel d ZS

C/U

4-input n-bit Carry Save Unified Adder
 (CSUA1)

cin

3-input n-bit Carry Save Unified Adder
 (CSUA2)

N

cin

2n

2n2n

2n2n

2n

2n

n

2n2n

FIGURE 2.4: The Unified Datapath of the Modular Divider

input FSEL (Field Select). When FSEL = 0, the carry out bits are forced to 0 and the

dual-field adder performs bitwise modulo-2 addition of its inputs. When FSEL = 1, the

dual-field adder performs the bitwise addition with carry (addition in GF (p)). Another

implementations of unified adders can be used as the one proposed in [44].

CSUA1 was implemented using (4,2) dual-field adders and CSUA2 was imple-

mented using (3,2) dual-field adders. The use of redundant form of the operands enables

the circuit to have a critical path that is less sensitive to the operand precision. The

addition time is less than the time for non-redundant adder, especially for large preci-

sion. A binary vector X is represented in CS form by two vectors XC and XS such that

X = XC +XS. Therefore, the cost of CS representation comes from more registers and

buses.

20

The three control lines: S, Z, and N in MUX2 corresponds to select, zero, and

negate, respectively. When Z = 1 the output of the mux is forced to zero regardless of

S. N = 1 produces a bit-complement of the input. Since we are dealing with numbers in

two’s complement represented in CS form, the change of sign is done by complementing

each vector and adding 1. Thus, N is inserted as carry input into both CSUAs to get

the change of sign operation in this system.

The latch between the two carry-save unified adders lets the information at its

input pass through during φ1 and holds the information at its output when it is φ2.

The UMD algorithm computes the modular division in GF (p) when Field =

GF (p). The select signal S is synchronized with the latch. MUX2 is used to im-

plement k ∗D and k ∗W , where k ∈ {-1,1}. In the case k = −1, the negative D and

the negative W are obtained by setting N = 1. Both signals Z and N are synchronized

with the main clock (clk).

If C is even, then it is shifted right one bit and the counter δ is decremented by

one. If not, we test δ, if it is negative, the circuits swap the values of C and D, and U

and W , and change the sign of δ. The swap operation is performed by the Swapping

Network that precedes the datapath and takes its inputs from the C, U , D, and W

registers.

The test (C + D) mod 4 6= 0 can be implemented using a small two-level gate

network.

The addition U := (U +k∗W) which corresponds to A1 in Figure 2.3, is performed

in the first phase of the clock signal (φ1) using the CSUA1. During φ2, two separate

additions happen: C := (C+k∗D) (A3 in Figure 2.3) using CSUA1, and U := (U+u0∗p)

(A2) using CSUA2. Both outputs are shifted to the right by one bit to complete the

algorithm operations.

An AND gate is used to select between the value 0 or the modulus p depending

whether U is even or odd, respectively.

If the algorithm is computing the modular division in GF (2n), the same procedure

described above is followed, except that the test (C + D) mod 4 6= 0 is not applicable

21

(Field = 0). For both fields, the computation is done when C = 0, and the result is

Z = W .

It can be shown that the UMD algorithm does not change the values of the

operands once C = 0. Therefore, the test C = 0 can take several clock cycles. An-

other observation shows that the non-redundant representation of C = 0 takes only

some particular values, what makes this test easier. So, using these two features we

can make the test of zero for the CS representation simple and multi-cycle, allowing the

design to be fast without a significant increase in area. Another possibility is to use

counters to estimate when C reaches 0.

The Swapping Network shown in the datapath is composed of two-input muxes.

The control signal (SEL) selects between the inputs. The two possible configurations of

the Swapping Network are shown in Figure 2.5 (when SEL=0 or 1).

WDUC

WDUC

SEL=0

WDUC

WDUC

SEL=1

FIGURE 2.5: The two possible configurations of the Swapping Network.

2.3.3. Improving The System Performance

Figure 2.6 shows the critical path of the unified divider which will determine the

clock period of the design.

clock period = max(delayφ1, delayφ2)

22

From the figure it is clear that φ1 is longer than φ2. There are two possibilities for

the delays in φ2 as shown in Figure 2.6, coming from the paths that include CSUA1 or

CSUA2. Noticing that the delay of CSUA2 is smaller than the delay of CSUA1, the

upper path is longer, so it is considered as the delay of φ2.

reg swap MUX2 complementer CSUA1 3-state bufferCSUA1MUX2

ANDreg

 complementer

CSUA2 3-state buffer
1

2

FIGURE 2.6: The delay paths of the Modular Divider.

Since that delayφ1 > delayφ2, the delay of φ1 determines the clock period of clk2x,

which is half the clock period of clk. In this case clk will have a 50% duty cycle. More

performance could be extracted from the circuit if φ2 could be made shorter. However,

such a solution would involve critical implementation details for the design of the clock

signal generator and clock distribution network.

23

3. NOVEL UNIFIED MODULAR DIVISION AND
MULTIPLICATION ALGORITHM (UDMA) IN

GF (P) AND GF (2N).

This Chapter presents a novel Unified modular Division and Multiplication Algo-

rithm (UDMA) in GF (p) and GF (2n). To the best of our knowledge, the UDMA is

the first algorithm to compute modular division and multiplication in both GF (p) and

GF (2n) fields (Unified). The UDMA is based on the Extended Binary GCD algorithm for

modular division, and on the Montgomery’s method for modular multiplication. In the

next Section we present the UDMA, followed by details about the multiplication mode

in Section 3.2. The modular division mode of the UDMA is explained in Section 3.3. A

mathematical proof of the algorithm is presented in Section 3.4.

3.1. Unified Algorithm for Modular Division and Mont-
gomery Modular Multiplication

Figure 3.1 shows the Unified modular Division/Multiplication Algorithm (UDMA)

for both GF (p) and GF (2n) fields. Up to our knowledge, this is the first algorithm that

integrates the computation of modular division and Montgomery modular multiplication

in both GF (p) and GF (2n) fields. The UDMA mode of operation is controlled by the

input Op (div or mult), and the finite field is controlled by the input Field (GF (p) or

GF (2n)). For simplicity, the polynomials X(x), Y (x), and p(x) are denoted as X, Y , and

p, respectively, which corresponds to the bit-vector representation of these polynomials.

Most of the arithmetic operations in the algorithm are common to both modes

of operation. The initialization of variables depends on that division or multiplication

being performed by the algorithm. For a given field, all the additions/subtractions are

done in the field, besides the arithmetic operations on δ (decrement and change of sign)

which are always integer operations. Decrementing δ in both division and multiplication

modes, can be implemented using fast up/down counter as the ones proposed in [41].

24

Function: Modular Division and Multiplication in GF (p) and GF (2n)

Inputs: 0 ≤ X < p, 0 < Y < p, 2n−1 < p < 2n, Field, Op, n

Output: Z = XY 2−n mod p when Op = mult, Z = X
Y mod p when Op = div.

Algorithm:

C = Y .

IF Op = mult THEN /* Multiplication Mode */

D = 0, U = 0, W = X, δ = n

ELSE /* Division Mode */

D = p, U = X, W = 0, δ = 0

END IF;

WHILE [(C 6= 0 AND Op = div) OR (δ 6= 0 AND Op = mult)]

IF c0 = 0 THEN

C := C >> 1

δ := δ − 1 /* Integer Operation */

ELSE

k = 1

IF (Op = div) THEN

IF δ < 0 THEN C ⇔ D, U ⇔ W , δ := −δ END IF; /* Swapping */

IF((C + D) mod 4 6= 0 AND Field = GF (p)) THEN k = −1

ELSE δ := δ − 1 END IF;

ELSE /* Op = mult */

δ := δ − 1

END IF;

C := (C + k ∗D) >> 1, U := (U + k ∗W)

END IF;

U := (U + u0 ∗ p) >> 1

END WHILE;

IF Op = div THEN Z := W ELSE Z := U

END IF;

FIGURE 3.1: Unified modular Division/Multiplication Algorithm (UDMA) for GF (p)
and GF (2n).

25

In this work, we used a similar counter to the one used in [29] as explained in the next

Chapter. The >> operator indicates a 1-bit right shift operation.

The unified division/multiplication algorithm (UDMA) presented in this section,

computes modular multiplication using Montgomery’s method. Section 3.2 shows the

operation of the UDMA when performing Montgomery multiplication. The correctness

of the UDMA is proven mathematically in Section 3.4..

The UDMA computes modular division using the same structure used by the

modular division algorithm presented in the last Chapter, which in turn, is based on

the Extended Binary GCD Algorithm [40, 27]. The operation of the UDMA during

computing modular division is shown in Section 3.3.

More details about the operation and hardware implementation of the UDMA are

presented in the next Chapter.

3.2. Multiplication Mode

To perform Montgomery multiplication using the UDMA, we set the variable

Op = mult, and we choose the field to be either GF (p) or GF (2n). Figure 3.2 shows

the resulting operations performed by the UDMA during computing Montgomery mul-

tiplication after removing the control signals and tests that are required during division

mode.

The UDMA performs n iterations to compute Montgomery multiplication using

an n bit modulus p. The counter δ is initialized with value n, and in each iteration it

is decremented by one. The variables used in the algorithm are initialized as: C = Y ,

D = 0, U = 0, and W = X. The partial product U is reduced mod p in each iteration.

In both fields, addition is used in the operations that update C (k = 1 always).

Table 3.1 shows the operation of the unified modular division/mulitipliaction al-

gorithm when performing Montgomery multiplication in either GF (p) or GF (2n) fields.

Shifting the multiplier C happens in each iteration (notice that the value of D stays

26

c0 = 0 (THEN) c0 = 1 (ELSE)

U := (U + u0 ∗ p) >> 1 U := (U + k ∗W) U := (U + u0 ∗ p) >> 1

C >> 1, δ = δ − 1

TABLE 3.1: The operations performed by the UDMA during Montgomery
multiplication

zero during computing Montgomery multiplication, and so the expression C := (C + k ∗
D) >> 1 is reduced to C >> 1).

Notice that the addition in GF (2n) is done without carry propagation. The final

result is ready (Z = U) when δ = 0. If Z > p then Z = U − p. In order to use the

intermediate result of one multiplication as the input to another one without subtracting

p, we need to use two extra bits of precision (n + 2 bits) [38, 33].

3.2.1. Numerical Example:Computing Montgomery Multiplication
Using The UDMA

To explain the operation of the UDMA more clearly, we show in Table 3.2 a

numerical example to compute Montgomery multiplication using the UDMA. The com-

putations are done in the prime field with p = 503, (and so the precision n = 9 ⇒
r = 2n). We want to compute (483× 301× r−1 mod p. The Table shows the intermedi-

ate values of the variables: delta, C, U , and W . Notice that D is set to zero during the

multiplication mode. The operations performed by the UDMA is also shown (C >> 1

or U := (U + k ∗W)). The reduction mod p is performed in each iteration.

The computation is completed when the counter δ = 0. The result can be read

from U ,301 × 483 × 2−9 mod 503 = 393. Notice that C is also zero at the end. This

indicates that the algorithm scanned all the n bits of the multiplier.

27

Operations δ C U W

Initialization 9 301 0 483

ELSE 8 150 493 483

IF 7 75 498 483

ELSE 6 37 742 483

ELSE 5 18 864 483

IF 4 9 432 483

ELSE 3 4 709 483

IF 2 2 606 483

IF 1 1 303 483

ELSE 0 0 393 483

TABLE 3.2: Montgomery multiplication example by the UDMA in GF (p)

3.3. Division Mode

The unified modular division/multiplication algorithm computes modular division

when the variable Op = div in both fields depending on the value of the variable field.

We show in Figure 3.3 the algorithm during modular division computations.

The variables are initialized as: C = Y , D = p, U = X, W = 0, and δ = 0. If the

division is computed in GF (p), UDMA tests the least significant two bits of C and D

((C +D) mod 4 6= 0) to conditionally subtracts C from D (set k = −1). Otherwise, C is

always added to D in both fields. The division is completed when C = 0, and the final

result is available in W . Table 3.3 summarizes the operations performed by the UDMA

when computing modular division.

3.3.1. Numerical Example:Computing Modular Division Using The
UDMA

Table 3.4 shows a modular division example by the UDMA. The computations are

done in GF (24) (we choose a small field for simplicity) with an irreducible polynomial

p(t) = t4 + t3 + 1. The algorithm computes (t3+t+1
t3+1

mod p(t)). The intermediate values

28

Function: Multiplication Mode of The UDMA

Inputs: 0 ≤ X < p, 0 < Y < p, 2n−1 < p < 2n, Field, n

Output: Z = XY 2−n mod p

Algorithm:

C = Y .

Op = mult THEN

D = 0, U = 0, W = X, δ = n

WHILE (δ 6= 0)

IF c0 = 0 THEN

C := C >> 1

δ := δ − 1 /* Integer Operation */

ELSE

k = 1

δ := δ − 1

C := (C + k ∗D) >> 1, U := (U + k ∗W)

END IF;

U := (U + u0 ∗ p) >> 1

END WHILE;

Z := U

FIGURE 3.2: Computing Montgomery multiplication in GF (p) and GF (2n) using the
UDMA.

c0 = 0 (THEN) c0 = 1 (ELSE)

C >> 1 C := (C + k ∗D) >> 1

U := (U + u0 ∗ p) >> 1 U := (U + k ∗W)

U := (U + u0 ∗ p) >> 1

TABLE 3.3: The operations performed by the UDMA during modular division

29

Operations δ C D U W

Initialization 0 t3 + 1 t4 + t3 + 1 t3 + t + 1 0

ELSE -1 t3 t4 + t3 + 1 t3 + 1 0

THEN -2 t2 t4 + t3 + 1 t3 0

THEN -3 t t4 + t3 + 1 t2 0

THEN -4 1 t4 + t3 + 1 t 0

ELSE 3 t3 + t2 1 1 t

THEN 2 t2 + t 1 t3 + t2 t

THEN 1 t + 1 1 t2 + t t

ELSE 0 1 1 t t

ELSE -1 0 1 0 t

TABLE 3.4: A modular division by the UDMA in GF (24)

of the variables: delta, C, D,U , and W are shown in the Table with the corresponding

performed operation by the UDMA. The Table also shows which portion of the algorithm

was carried out (THEN or ELSE). Notice that the modular reduction step (U :=

(U + u0 ∗ p) >> 1) is performed every iteration.

As can be seen form the Table, the computations are done when C = 0, and the

final result is W = t.

3.4. Mathematical Proof During Computing Montgomery
Multiplication

The UDMA performs modular division based on the Extended Binary GCD al-

gorithm and the unified modular division algorithm which we proposed with its math-

ematical proof in Chapter 2, and it will not be mentioned here to avoid repetition. In

this Section we prove the correctness of computing Montgomery multiplication by the

UDMA.

Since the UDMA operates in both fields, we use ξ to denote either 2, or x, de-

pending upon the context of field being GF (p) or GF (2n), respectively.

Input X, Y as well as n and p, we are to output Z = XY ξ−n.

30

3.4.1. Product modulo p

The multiplication algorithm employs a standard idea. First, writing Y as
∑n−1

j=0 yjξ
j ,

we have

XY ξ−n = Xξ−n
n−1∑

j=0

yjξ
j

=
n−1∑

j=0

yjX ξj−n

= (· · · (((y0Xξ−1 + y1X)ξ−1 + y2X)ξ−1 + · · ·+ yn−2X)ξ−1 + yn−1X

≡ (· · · (((y0X + v0p)ξ−1 + y1X + v1p)ξ−1 + y2X + v2p)ξ−1 + · · ·

· · ·+ yn−2X + vn−2p)ξ−1 + yn−1X + vn−1p mod p ,

where the vi ∈ {0, 1}. In this article, single shifts to the right correspond to

multiplication by ξ−1. In the algorithm, U begins at zero; the value of Y is given to C,

and that of X to W . Thus, whenever yj = 0, we find that U is replaced by (U+u0∗p)ξ−1.

Whenever yj = 1, U is replaced by [(U + X) + (u0 + x0) ∗ p]ξ−1. We conclude that U

evaluates the product XY ξ−n mod p in the form displayed above.

3.4.2. Product is Reduced

All field elements are represented by the standard complete set of residue class

representatives, {0, 1, . . . , p − 1}, or {0, 1, x, x + 1, . . . } except, of course, p or p(x).

Rather than evaluate the product in either ring Z or (GF (2))[x] and then in a final

step reduce modulo the appropriate prime element p, the algorithm uses the standard

“interleaving” process for reduction. Indeed, we claim that at the end of each iteration

(of the WHILE loop), U is reduced.

Initially, U = 0. For a proof by induction, we thus assume that U is reduced at

the beginning of any arbitrary iteration. Now, upon completion of the iteration, (1) U

is replaced by (1) (U + u0p)ξ−1; or, (2) we first find U + X (in reduced form) and then

31

[(U + X) + (u0 + x0) ∗ p]ξ−1, where the multiplication by ξ−1 is effected by a right shift.

Since for any reduced element say V , (V + v0p)ξ−1 is easily seen to be reduced, we are

done.

32

Function: Division Mode of The UDMA

Inputs: 0 ≤ X < p, 0 < Y < p, 2n−1 < p < 2n, Field

Output: X
Y mod p

Algorithm:

C = Y .

D = p, U = X, W = 0, δ = 0

WHILE (C 6= 0)

IF c0 = 0 THEN

C := C >> 1

δ := δ − 1 /* Integer Operation */

ELSE

k = 1

IF δ < 0 THEN C ⇔ D, U ⇔ W , δ := −δ END IF; /* Swapping */

IF((C + D) mod 4 6= 0 AND Field = GF (p)) THEN k = −1

ELSE δ := δ − 1 END IF;

C := (C + k ∗D) >> 1, U := (U + k ∗W)

END IF;

U := (U + u0 ∗ p) >> 1

END WHILE;

Z := W

FIGURE 3.3: Computing modular division in GF (p) and GF (2n) using the UDMA.

33

4. SCALABLE AND UNIFIED MODULAR
DIVIDER/MULTIPLIER HARDWARE DESIGN.

In this Chapter, we propose a Unified Modular Divider/Multiplier hardware that

implements the Unified modular Division and Multiplication Algorithm (UDMA) pre-

sented in Chapter 3. In the next Section, we present the overall hardware system archi-

tecture and the implementation details. The datapath of the proposed architecture has a

variable word size that can be adjusted to meet the area and performance requirements.

In Section 4.2, we modify the proposed divider/mulitper architecture to get a scalable

hardware that can handle operands of any size.

4.1. Overall Hardware System Architecture

Figure 4.1 shows the top level architecture of the Unified Modular Divider/Multiplier

(let us call it UMDM) that implements the UDMA. The main functional blocks are Reg-

ister File, Datapath, and Control.

The following subsections provide the implementation details of the functional

blocks of the UMDM and explains the design approaches used to implement the proposed

architecture [45].

4.1.1. Register File

The register file has five registers (R1 to R5). Since the computations are done in

Carry-Save form [46], each intermediate variable (C, U, D, W) is represented in two

vectors (sum,carry). So, the registers inside the register file are designed to store two

n-bit vectors. In other words, the ith register Ri is represented as Ri = (sum, carry) =

(Ris,Ric).

34

Control

Sum

UMDM DatapathRegister File

out1

src1 src2

Load

input
(X,Y,P)

Load

in

 / Carry

dst

out2

(2 vectors)

2n

A
(2 vectors)

2n

B
(2 vectors)

2n

2 vectors

2n

333

Y
n

Op
Field

n

FIGURE 4.1: Top Level Hardware Architecture of the Unified Modular
Divider/Multiplier (UMDM).

The register file has one input, and two output ports. The Control block provides

the register file with the signals necessary to perform reading/writing operations. The

3-bit signal dst determines the destination register to be written. The signals src1, src2

(3-bits each), specify the registers to be read at output ports out1, out2, respectively.

4.1.2. UMDM Datapath

The n-bit datapath implementing the UDMA is shown in Figure 4.2. Each “while

iteration” of the algorithm is implemented in one clock cycle for multiplication mode,

and in three clock cycles for division mode if C is odd, and 2 clock cycles if C is even,

as explained later.

The proposed datapath has two inputs (A,B) represented in carry-save form as

A=(As,Ac) and B=(Bs,Bc) which receive their values from the output ports (out1, out2)

of the register file, respectively.

35

Unified Carry-Save Adder1 with Complement (UCSA1)
C inFSEL

Unified Carry-Save Adder2 (UCSA2)

AND

C in

complementer

FSEL

As Ac Bs Bc

NEG

N

 0 LSBit of U (u) sel_zero

Sum Carry

Y

control

LoadY

shiftY

 0 (c)

Yshifter

result_shifter sh shift

a b c

FIGURE 4.2: Unified datapath of the Modular Divider/Multiplier (UMDM datapath).

The main components of the datapath are two (3-2) Unified Carry-Save Adders

(UCSAs) used to perform addition in either GF (p) or GF (2n) fields. The Unified Adders

(UAs) [6, 47] are similar in complexity to full-adders and are capable of doing bit addition

with or without carry. It has an input called FSEL (Field Select) that enables this

functionality.

The unified adder may be used to implement a redundant or non-redundant adder

which may also be a full-precision or multi-precision adder. The use of non-redundant

form of the operands and results reduces the register area but increases significantly the

addition time (because of carry propagation), when compared with redundant adders.

We decided to use Carry Save adders to make the addition time constant and independent

of the operand’s precision.

36

4.1.2.1. Unified Carry-Save Adders

The first adder in the datapath is a Unified Carry-Save Adder with complement

(UCSA1). Figure 4.a shows the bit slice diagram for this adder and Figure 4.b shows

the connection of n slices to form an n-bit adder.

b
a

FSEL

carry

sum

NEG
c

 (a) bit slice (b) n-bit adder

b0 c0a0 b1 c1a1 bn-1 cn-1an-1

UCSA1UCSA1UCSA1

C in

carry 0sum 0carry 1sum 1carry n-1sum n-1

NEG
FSELFSELFSEL

carry n

1-bit 1-bit1-bit

FIGURE 4.3: Unified Carry-Save Adder with Complement (UCSA1) for 1-bit and
n-bit precision.

Equation 4.1.2.1. defines the outputs of the UCSA1 in terms of the inputs. The

input signal FSEL determines in which field the addition or subtraction of operands are

performed. Note that in GF (2n) addition is the same as subtraction.

(sum, carry) =





a+b+c , when NEG = 0 and Cin = 0

a+b-c , when NEG = 1 and Cin = 1

As we can see from Figure 4.3, the change of sign operation inside the UCSA1 is

done in parallel with the addition operation, and so, it does not add to the critical path.

The AND gate shown at the top of UCSA2 in Figure 4.2 is used to select between

the value 0 or the modulus p depending whether U is even or odd (this is indicated by

testing u0), respectively. The input signal sel zero when asserted forces the third input

of the UCSA2 to zero.

37

The delay of the UMDM datapath (tdatapath) is determined by the delay of the

two unified adders, the delay of the AND gate between them, and the delay of the

result shifter which has the delay of 2-input multiplexer (tMUX ' tXOR). Subsec-

tion 4.1.2.2. describes the shifters used in the datapath. By integrating the AND gate

with the second adder (shown in dashed box in Figure 4.2), its delay will not add to the

path delay as shown in Figure 4.4. Figure 4.4 shows the integration of the AND gate

to the UCSA2 at the bit level and as an n-bit adder. Knowing that each UCSA has a

delay of a full adder (tFA = 2tXOR), we get:

tdatapath = tUSCA1 + tUCSA2 + tresult shifter = 4tXOR + tMUX = 5tXOR

b0 c0a0 b1 c1a1 bn-1 cn-1an-1

C in

carry 0sum 0carry 1sum 1carry n-1sum n-1carry n

b
a

FSEL

carry

sum

prod
c

 (a) bit slice (b) n-bit adder

sel_zero

UCSA2

FSEL

with
AND gate

prod

sel_zero
prod (u0)

FSEL

UCSA2

with
AND gate

prod

FSEL

UCSA2

with
AND gate

prod

FIGURE 4.4: Unified Carry-Save Adder with integrated AND gate for 1-bit and n-bit
precision

4.1.2.2. Shifters

The Yshifter shown in Figure 4.2 is a shift register that is used to implement the

1-bit right shift operation (C >> 1) only in the multiplication mode. The Yshifter is

loaded with the input Y (multiplier) when laodY = 1. In both cases when C (remember

38

that C = Y) is even or odd, it is shifted right by 1-bit when shiftY = 1. The least

significant bit of the shifted C goes to the control section to perform the test c0 = 0.

The outputs of the datapath (Sum and Carry) are shifted 1-bit to the right

by correct wiring. The result shifter at the output of the UCSA2 is used to choose

between these outputs and their shifted values. This module is implemented as two

2-input multiplexers with select line shift. When shift = 1, the shifted outputs are

selected.

4.1.3. Control Block

This subsection describes the Control block and the system operation during divi-

sion and multiplication modes and the design techniques used to implement the proposed

UMDM architecture.

When Load = 1, the registers inside the register file are accessible for external

input (from the user) and are initialized with the inputs X,Y , and p depending on the

operation to be performed by the algorithm.

While the algorithm is in division mode, the test C 6= 0 must be done. The vector

C is in Carry Save form. Simulation results show that C = 4 or −4 at the end of

computation. If more iterations than required are performed, the result is still correct.

In the proposed UMDM design, the test C 6= 0 is replaced by testing the bit vector C

for specific values (4 or -4), and no need to compare all the bits of C with zero.

4.1.3.1. Multiplication Mode

The proposed multiplier/divider performs one iteration of the algorithm in each

clock cycle when computing Montgomery multiplication in both fields. Only three reg-

isters are used. Table 4.1 shows the loading phase for multiplication and division (ini-

tialization of the intermediate variables) as described by the algorithm.

39

Multiplication Division

Variables/parameters Loading the RF Variables/parameters Loading the RF

represented by R R ← (Rs, Rc) represented by R R ← (Rs,Rc)

W and p R1 ← (X, p) W R1 ← (X, 0)

U R2 ← (0, 0) U R2 ← (0, 0)

p R3 ← (0, p) D R3 ← (p, 0)

Variable Loading the Shifter C R4 ← (Y, 0)

C YShifter ← (Y) p R5 ← (0, p)

TABLE 4.1: Loading phase for multiplication and division

Table 4.2 shows the operation of the unified divider/mulitplier when performing

Montgomery multiplication in either GF (p) or GF (2n) fields. It shows the main control

signals to the register file and the datapath to compute multiplication. I assumed that the

signals which are not mentioned in the Table have their values equal to zero. Depending

on C being even or odd, a different set of signals are used. The Table also shows the

interpretation of these signals on the datapath, and the corresponding operation in the

UDMA. When c0 = 1, two additions (U := (U + k ∗W) and U := (U + u0 ∗ p) >> 1)

are performed by the datapath.

As mentioned in subsection 4.1.2.2., the variable C is shifted right one bit using the

Y shifter in every cycle (shiftY ← 1). The counter δ is initialized with n to indicate

the number of iterations. Since δ is decremented by one in each iteration (dec delta = 1),

the computation ends when δ = 0, and the result can be read form R2.

4.1.3.2. Division Mode

Each modular division iteration in the proposed UMDM architecture requires 2

clock cycles if C is even and 3 clock cycles if C is odd independent of the field. The

initialization of variables was shown in Table 4.1.

Let us assume that the algorithm is computing modular division in GF (p). Ta-

bles 4.3 and 4.4 show the control signals during division when C is even and odd, re-

40

c0 = 0 (then) c0 = 1 (else)

Control Datapath Control Datapath

Signals Interpretation Signals Interpretation

src1 ← (010) (As,Ac) ← (Us, Uc) src1 ← (010) (As,Ac) ← (Us, Uc)

src2 ← (011) (Bs, Bc) ← (0, p) src2 ← (001) (Bs,Bc) ← (X, p)

dst ← (010) store the result in U dst ← (010) store the result in U

shiftY ← 1 C >> 1 shiftY ← 1 C >> 1

shift ← 1 the result >> 1 shift ← 1 the result >> 1

dec delta ← 1 δ = δ − 1 dec delta ← 1 δ = δ − 1

Computes: U := (U + u0 ∗ p) >> 1 U := (U + k ∗W), U := (U + u0 ∗ p) >> 1

TABLE 4.2: The operation of the UMDM during Montgomery multiplication

spectively. Table 4.3 shows when δ is positive, the expression U := (U + u0 ∗ p) >> 1

is computed in the first clock cycle. In the second cycle, C is shifted right by 1-bit

(C >> 1). The reason why C >> 1 happened at cycle 2, is to enable the test for

c0 = 0 which decides on the control signals of the next iteration.

The Control during division has two major ”states”: Original (not swapped) and

Swapped. The control goes back and forth between these states only when c0 = 1 and

δ < 0. The sign of δ is made positive (δ = −δ) when this condition happens (realized by

the control signal negate delta as shown in Table 4.4). When the control state is Original,

the variables W, U, D, C are read from the registers R1, R2, R3, R4, respectively. Also,

the updated values of these variables are written to the above registers in the same order.

On the other hand, when the control state is Swapped, the sources for the variables W

and U are reversed (W now is being read from R2 and U from R1). The same thing

applies for C and D, so C is read from R3 and D from R4. The same approach is

used for writing to these variables. This way, the swap operation is realized by reading

from/writing to the correct register. The next subsection explains an efficient hardware

implementation of the counter δ.

The value of k ∈ {-1,1} is determined by the control section depending on the

result of the test ((C + D) mod 4 6= 0 AND Field = GF (p)), which is denoted by

41

c0 = 0 (then)

State1: Original State2: Swapped

Clock Control Datapath Control Datapath

Cycle Signals Interpretation Signals Interpretation

cycle 1 src1 ← (001) (As,Ac) ← (Us, Uc) src1 ← (010) (As,Ac) ← (Ws,Wc)

src2 ← (101) (Bs,Bc) ← (0, p) src2 ← (101) (Bs, Bc) ← (0, p)

dst ← (001) store result in R1(U) dst ← (010) store result in R2(W)

shift ← 1 result >> 1 shift ← 1 result >> 1

U := (U + u0 ∗ p) >> 1 is computed

cycle 2 src1 ← (100) (As,Ac) ← (Cs,Cc) src1 ← (011) (As,Ac) ← (Ds,Dc)

sel zero ← 1 (Bs,Bc) ← (0, 0) sel zero ← 1 (Bs, Bc) ← (0, 0)

dst ← (100) store result in R4(C) dst ← (011) store result in R3(D)

shift ← 1 result >> 1 shift ← 1 result >> 1

dec delta ← 1 δ = δ − 1 dec delta ← 1 δ = δ − 1

C := (C) >> 1 is computed

TABLE 4.3: The UMDM operation during computing division when c0 = 0

(TEST) in Table 4.4. In the case k = −1, negative D and negative W are obtained by

setting N = 1. Since the TEST is done on the least two significant bits of C and D, it

can be implemented using a two-level gate network.

If the algorithm is computing the modular division in GF (2n), the same procedure

described above is followed, except that the TEST is not applicable (Field = GF (2n)).

For both fields, the computation is done when C = 0, and the result is Z = W .

4.1.3.3. Implementing δ Using Fast Counters

In both division and multiplication modes, the variable δ can be represented using

a very fast up/down counter as the ones proposed in [41]. The counter used in this work

is similar to the one in [29].

An up/down counter for hundreds of bits may have long carry/borrow propagation

chains which implies in large critical path delay. To avoid that, the counter for δ uses

a binary number H and a flag f , f ∈ {0, 1}. H is an n-bit vector and has the value

42

c0 = 1 (else)
State1: Original State2: Swapped

Clock Control Datapath Control Datapath
Cycle Signals Interpretation Signals Interpretation
cycle 1 src1 ← (001) (As,Ac) ← (Us, Uc) src1 ← (010) (As,Ac) ← (Ws,Wc)

src2 ← (010) (Bs,Bc) ← (Ws,Wc) src2 ← (001) (Bs, Bc) ← (Us,Uc)
dst ← (001) store result in R1(U) dst ← (010) store result in R2(W)
shift ← 0 result is not shifted shift ← 0 result is not shifted
dec delta ← ∗, *=1 when TEST = 0, otherwise *=0. (δ = δ − 1)

U := (U + k ∗W) is computed
cycle 2 src1 ← (001) (As,Ac) ← (Us, Uc) src1 ← (010) (As,Ac) ← (Ws,Wc)

src2 ← (101) (Bs,Bc) ← (0, p) src2 ← (101) (Bs, Bc) ← (0, p)
dst ← (001) store result in R1(U) dst ← (010) store result in R2(W)
shift ← 1 result >> 1 shift ← 1 result >> 1
negate delta ← ∗, *=1 when δ < 0, otherwise *=0. (δ = −δ)

U := (U + u0 ∗ p) >> 1 is computed
cycle 3 src1 ← (100) (As,Ac) ← (Cs, Cc) src1 ← (011) (As,Ac) ← (Ds, Dc)

src2 ← (011) (Bs,Bc) ← (Ds,Dc) src2 ← (100) (Bs, Bc) ← (Cs, Cc)
dst ← (100) store result in R4(C) dst ← (011) store result in R3(D)
shift ← 1 result >> 1 shift ← 1 result >> 1

C := (C + k ∗D) >> 1 is computed

TABLE 4.4: The UMDM operation during division when c0 = 1

H = 2(−1)f .δ. Note that H has a one-hot encoding of the value |δ|. By using this

approach, we decrement δ by a one-bit shift of H. H is shifted by 1-bit to the right

when f = 0 (δ is positive), and by 1-bit to the left when f = 1 (δ is negative).

4.2. Scalable Divider/Multiplier Architecture

An arithmetic unit is called scalable if it can be reused in order to generate long-

precision results independently of the datapath precision for which the unit was originally

designed [6, 48, 43]. To speed up the arithmetic operations such as multiplication and

division, various dedicated arithmetic modules (e.g., dividers, multipliers) were developed

[14, 17, 23, 49], which use fixed-precision operands. They are fixed-precision designs

because a module designed for n bits cannot be immediately used in a system which

43

requires k > n bits, forcing a complete redesign [36, 33]. As an example of a scalable

unit is the multiplier presented in [6]. It used processing elements that can be adjusted

in size and number in order to fit into a given area.

The scalability feature of the proposed divider/multiplier allows the datapath to

handle operands of any size. Also, the variable word size of the datapth can be adjusted

to meet the area and performance requirements.

Let the actual operand size be n, and let w be the word size of the datapath. We

define the number of words in the operand as e = n
w . To carry out one iteration of the

algorithm, all the e words will pass through the datapath. There is a data dependency

between the e words, and some bits are needed at different times. So, these bits have

to be stored and used at the appropriate time. More implementation details about the

operation of the scalable design in both division and multiplication modes are presented

below.

4.2.1. Implementation Details

To make the explanation more clear and easier to understand, let us take an

example: let the operand size n = 32 bits, and the datapath word size, w = 8 bits. Then

e = 32
8 = 4 words. All of these words will pass through the datapath in each iteration of

the algorithm. Figure 4.5 shows the 4 words and the data dependency between them.

8th-bit

word1 (8-bits)
16th-bit24th-bit 031

Operand size: 32-bits

word2 (8-bits)word4 (8-bits) word3 (8-bits)

FIGURE 4.5: Data dependency between the words of the scalable design

44

The first word will be applied to the datapath in the first iteration. Depending

on C being even or odd (testing c0), it takes 2 or 3 cycles, respectively, to finish one

division algorithm iteration. In order to shift the first word to the right, the 8th bit of

the operand (or bit 0 of the second word) is needed. This bit is stored in Flip-Flop to

be used at the appropriate time. Once the computations are done on the first word, it

is stored in the memory waiting for the rest of the words to be computed.

The same operations performed on the first word will be performed on the second,

third and fourth words to complete the first algorithm iteration. Again to shift the

second word to the right, the 16th bit (or bit 0 of the third word) is required, and so, it

is stored in a Flip-Flop. The same thing is done for the third word. In general, for the

word number y, we need to store the w ∗ y bit. For example for the third word (y = 3),

we store the (8∗3 = 24th) bit. To shift the last word to the right, the most significant bit

is generated by a simple logic which depends on the carry save representation properties.

Since the variables D, U, W might be shifted during the computations, the ap-

propriate bits of these vectors are also stored in Flip-Flops.

To carry out the next algorithm iteration, we again test the least significant bit of

the first word of C, and apply the operations to all words, as done in iteration one.

The test (C + D mod 4), is performed in GF (p) only, and it needs the two least

significant bits of C and D. These four bits are stored in a Flip-Flops to be tested in

the next iteration.

The procedure to compute Montgomery multiplication using the scalable design

is almost the same to the above procedure described for computing modular division.

Notice that it takes only one clock cycles to perform one Montgomery multiplication

iteration as explained in Section 4.1.2.

45

5. EXPERIMENTAL RESULTS AND COMPARISONS.

This Chapter contains two categories of experimental results : (a) number of

iterations and additions obtained from a Maple model, and it is presented in Section

5.1,and (b) the critical path delay results obtained by synthesis of the VHDL description

of the algorithm presented in Section 5.2. The scalable design was synthesized using

FPGA and the results are shown in Section 5.3. The generated results were compared

with other known designs in this field.

5.1. The Number of Iterations

Maple was used to describe the proposed algorithm (Alg1 = UDMA) and the

unified Montgomery inverse algorithm presented in [11] (Alg2). At least 100 random

samples were used to verify each algorithm operation and obtain statistics.

The other division (inversion) algorithm being compared is the unified Montgomery

inverse algorithm presented in [11] (Alg2). For consistency, no multiple-word calculation

is considered here. For an n−bit input Y , Alg2 computes Z = Y −12k, where n ≤ k ≤ 2n

is the number of algorithm iterations. A correction step is needed to get the inverse in

the Montgomery domain (Y −12n) or in the integer domain (Y −1). Therefore, the total

number of iterations required to compute the inverse in Montgomery domain is 2k − n.

To compute the modular inverse in the integer domain it needs 2k iterations.

Number comparisons were used in Alg2 to compare the size of the bit vectors

that represent elements in the field (the same way it was done in [9, 16, 15]) instead

of the counter (δ) used in our algorithm. These comparisons are expensive in both

fields and their time complexity is O(log(n)). The comparison limits a fast hardware

implementation.

46

Figure 5.1 shows the number of iterations as a function of operand size required

by Alg1 (UDMA) and Alg2 to compute the integer modular inverse (division) in GF (p)

and GF (2n). The size of the operands is in the range (160 to 512) bits.

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600

Operand size (bits)

Ite
ra

tio
ns

Alg1 GF(p)

Alg2 GF(p)

Alg1 GF(2^n)

Alg2 GF(2^n)

FIGURE 5.1: The number of iterations as a function of operand size required by Alg1
(UDMA) and Alg2 (presented in [10]) to compute the modular inverse in GF (p) and

GF (2n)

From figure 5.1, we can see that Alg1 executes in about 25% less iterations than

Alg2 when computing the inverse in the integer domain for GF (p). For GF (2n), Alg1 has

about 40% less iterations than Alg2 when computing the inverse in the integer domain.

Notice that the number of iterations for Alg1 in both fields increase linearly with

the operand precision.

Table 5.1 shows the average number of additions used in Alg1 and Alg2. The

Gain = Alg2−Alg1
Alg2 is also shown in the Table. The Table shows that Alg1 has up to 9%

less additions than Alg2 when computing integer inverse in GF (p), and 5% less additions

in GF (2n).

When computing the inverse in Montgomery domain, Alg2 has less number of

additions than Alg1. But, since the hardware implementation of Alg1 (see Chapter ??)

47

GF (p) Alg1 Alg2 Gain%

n-bits

160 516 562 8.2

192 620 682 9

224 726 791 8.5

256 832 904 8

512 1660 1807 8

GF (2n) Alg1 Alg3 Gain%

n-bits

160 643 671 4.2

192 762 811 6

224 895 931 3.9

256 1031 1072 3.8

512 2005 2113 5.1

TABLE 5.1: Average number of additions for Alg1 and Alg2 to compute the modular
inverse in GF (p) and GF (2n).

uses carry save adders, the additions are performed in almost constant time and will not

increase the critical path delay as we will be seen in the next Section.

J. Goodman et al. presented in [16] a public-key processor that implements op-

erations required for Elliptic Curve Cryptography (ECC) including modular inverse in

GF (2n) only. It is stated in [16] that the inversion in GF (2n) takes on average 3.3 cycles

for each bit. Alg1 needs a maximum of 2 iterations/bit and on average 1.5 iterations/bit

to compute the modular inverse in GF (2n). The UMDM architecture performs each

iteration of Alg1 in 2.5 clock cycles on average. Therefore, the GF (2n) inversion by

Alg1 takes on average 1.5 × 2.5 = 3.75 cycles for each bit. But on the other hand, the

critical path delay (clock period) of the datapath of the processor presented in [16] (let

us call it tGµP) is the delay of two full adders (tFA) and two levels of multiplexers and an

48

AND gate (tGµP = 2tFA +2tmux + tAND), compared to a critical path delay of only two

full adders and one level of multiplexers for the UMDM datapath proposed in this work

(tUMDM = 2tFA + tmux). The critical path delay will affect the total computational time

as will be seen in the next subsection.

The dual-field arithmetic unit proposed in [15] performs one addition in each clock

cycle and the redundant adder in the architecture is used to convert from carry-save form

to non-redundant representation, significantly increasing the number of clock cycles. So,

the only way to compare our algorithm with [15] is to compare the number of additions,

and in this case the number of additions reported in [15] is around 20 times greater than

the number of additions in Alg1 [40].

The algorithm presented in [9] is a word-based algorithm that applies several strate-

gies such as variable shifts. For this reason, we didn’t consider it for comparison with

Alg1.

Alg1 computes Montgomery modular multiplication in n cycles, which is consistent

with several other designs [5, 6, 16].

5.2. Synthesis Results

The experimental data presented in this section were generated using Mentor

Graphics CAD tools. The target technology was set to AMI05 fast auto (0.5 µm

CMOS with hierarchy preserved) provided in the ASIC Design Kit (ADK) from the

same company [50].

The unified modular divider/multiplier (UMDM) architecture was described in

VHDL and simulated in ModelSim for functional correctness. It was synthesized using

Leonardo synthesis tool for the mentioned technology. ADK provides a consistent en-

vironment for comparison between the designs, and a reasonable approximation of the

system performance when using commercial ASIC technology.

Figure 5.2 shows the critical path delays (in nano-seconds) of the (UMDM) for

the precision range from 128-bit to 512-bit. The delay at 128-bit is 11.77 nsec, at 256 is

49

12.51 nsec, and at 512-bit is around 12.8 nsec. form the Figure we can notice that the

delay increases as the number of bits increase and it saturates at higher precision. This

indicates that the critical path delay (clock period) of the UMDM became independent

of the operands size at high precisions. This behavior comes out from the load that is

applied to same high fan-out signals in the design.

12

13

0 100 200 300 400 500 600

Operand size (bits)

T
im

e
(n

an
o

se
co

nd
s)

FIGURE 5.2: The critical path delay of the UMDM in nano-seconds (operand size
from 160-512 bits).

The public-key processor presented by Goodman and et.al in [16] (GµP) runs at

clock rate of 50 MHz (clock period = 20 nsec), and it is considered a good representative

of this class of hardware designs. The divider/multiplier proposed in this work has a

maximum clock period of 12.8 nsec at 512-bit operand size, which is about 1.6 times

faster than the processor presented in [16]. Also, as we mentioned in the previous

subsection, the GµP takes 3.3 cycles/bit to perform a modular inverse in GF (2n) and

this design takes 3.75 cycles/bit. Let the total average computation time of a given

design be Tdesign which is given by:

Tdesign = (cycles/bit) ∗ n ∗ clock period.

50

Operand size (bits) Area (gates)

128-bit 30403

160-bit 37059

192-bit 45513

224-bit 53075

256-bit 60629

512-bit 121070

TABLE 5.2: The Area of the UMDM Design in gates for different operand sizes

where n is the operand size in bits. At n = 512-bits, the total computation time of GµP

(TGµP) is:

TGµP = 3.3 ∗ 512 ∗ 20× 10−9 = 33.79µsec

and the total computation time for this design (TUMDM) is:

TUMDM = 3.75 ∗ 512 ∗ 12.8× 10−9 = 24.57µsec

Comparing TGµP and TUMDM , we find that the UMDM computes division in

33.79−24.57
33.79 = 27.3% less total computation time than the GµP .

Table 5.2 shows the total number of gates for the UMDM design as a function of

operand size. The area for the UMDM design was extracted from the experimental data

presented in Table 5.2 as:

AUMDM = 236.12 ∗ n + 180 = O(n) gates

The architecture presented in [14] is dedicated to GF (2n) only, and it uses degree

comparisons to keep track of the field polynomials, which results in longer critical path

delay. The design has an area complexity of O(n) too.

The integrating of Montgomery multiplication and modular division in one design

will add extra gates when compared to a dedicated divider. In the design proposed in this

51

work, Montgomery multiplication is computed in almost the same time and complexity

of a separate multiplication unit. In addition to that, this design allows the ability to

compute division in the same unit with the flexibility to choose the required finite field.

5.3. FPGA Synthesis Results for The Scalable Design

The scalable divider/multiplier design was synthesized for the Field Programmable

Gate Arrays (FPGAs) V ertixII chip. The technology was set to xc2vp50−7ff148. The

following two subsections present the area and the critical path delay results obtained

for the design.

5.3.1. Area Results

Figure 5.3 shows the area synthesis results (in number of slices) of the scalable

Unified Modular Divider/Multiplier (UMDM). The area is presented as function of the

operands size (n) with different combinations of the datapath word sizes (w). The area

results were obtained for the operands size in the range from 16 to 512 bits. The datapath

word size was in the range from 16 to 256 bits. The reason why we did not use larger

operand sizes, is because the machines we are using could not handle operand size greater

than 512 bits.

From the Figure, we notice that the area increases linearly as the operand size

increases. There is a little difference in the number of slices when using different datapath

word sizes for the same operand size.

The area for the scalable UMDM design was extracted from the experimental data

presented in Figure 5.3, approximately as:

AscUMDM = 28 ∗ n + 275 = O(n)

52

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600

Operand Size (n)

A
re

a
(#

 S
lic

es
)

w=16

w=32

w=64

w=128

w=256

FIGURE 5.3: The Area (FPGA Technology) of the scalable UMDM in number of slices
for combinations of operand size (n) form 16-512 bits, and datapath word size (w) from

16-256 bits.

5.3.2. Critical Path Delay Results

The same as in the area results, the experimental data for the critical path delay

were obtained for the operands size (n) in the range from 16 to 512 bits, and the datapath

word size (w) range from 16-256. Table 5.3 shows the critical path delay (clock period)

for all the possible combinations of the operands size and the datapath word size. The

”-” indicates the combination is not possible.

The operating frequency of the UMDM design can be found by taking the recipro-

cal of the clock period at any point. Form the Table, the lowest clock period (19.83 ns)

is at n = 16 and w = 16, and so, the maximum operating frequency is around 50 MHz.

The question now is how to choose the best design points? or in other words, the

(n, w) combinations that gives the lowest delay? By looking to Table 5.3, we notice that

at a given operand size n, the minimum delay happens at the datapah word size w = n.

For example, the best combination at the operand size n = 256, happens when the word

size w = 256 also, with minimum delay equal to 28.4 nano-seconds.

53

Datapath word size (w)

Operands size (n) 16 32 64 128 256

16 19.83 - - - -

32 24.55 22.13 - - -

64 25 26.55 24.7 - -

128 32 31 27.9 25.4 -

256 34.7 37.3 34.3 31.9 28.4

512 47.15 38.71 38.5 37.4 35.4

TABLE 5.3: The critical path delay (clock period) of the scalable UMDM in
nano-seconds for combinations of operand size (16-512 bits), and datapath word size

from 16-256 bits

54

6. CONCLUSIONS AND FUTURE WORK.

6.1. Conclusion

This thesis has many contributions to the research in the areas of computer arith-

metic algorithms (mainly in GF (p) and GF (2n) finite fields) and scalable hardware

designs for cryptographic applications. Below, is a brief description of the what we did

in this research:

• In this thesis, we proposed an efficient unified modular division algorithm to

compute modular division in GF (p) and GF (2n) fields, and its hardware architecture.

We also provided a mathematical proof for the algorithm. The algorithm uses a counter

to keep track of the difference between two field elements, and this way eliminating the

need for comparisons which are usually expensive and time-consuming. The hardware

architecture that implements the algorithm is also proposed.

• Also, knowing that the Montgomery multiplication algorithm [5] is one of the

most efficient ways to compute modular multiplication, we modified the unified Mont-

gomery multiplication algorithm proposed by other members of our research group in [6]

to have a control flow similar to the proposed division algorithm.

• We present a novel Unified modular Division/Multiplication Algorithm (UDMA)

and its corresponding hardware architecture. The algorithm is a based on a Binary GCD

algorithm for modular division in both fields, and on the Montgomery’s Algorithm for

modular multiplication. The UDMA computes the division in either GF (p) or GF (2n)

fields in an efficient way when compared with other algorithms. Because of using the

counter when computing modular division, the iterations of the UDMA are less complex

and faster than the iterations of other algorithms that use element comparisons. When

compared with Montgomery multipliers, the proposed algorithm has the same number

of iterations and complexity.

55

• The Unified Modular Divider/Multiplier (UMDM) design that implements the

UDMA, efficiently supports all its operations and uses carry-save unified adders for

reduced critical path delay.

• A scalable implementation of the UMDM was also described. The added scala-

bility feature of the divisder/multipler allows a fixed-area datapath to handle operands

of any size. Also, the word size of the datapath can be adjusted to meet the area and

performance requirements.

• The proposed hardware design of the divider/multiplier was described in VHDL,

and passed intensive simulation tests using ModelSim (Mentor Graphics tool). Then, it

was synthesized for AMI 0.5µm CMOS technology and FPGA V ertixII chip (xc2vp50−
7ff148 technology). The results are compared with other proposed dividers and multi-

pliers.

• The experimental results show that the computation time of the proposed solu-

tion is competitive with other dedicated (limited) solutions, and the cost in area paid

to have the integration of division and multiplication is not high. Multiplication is done

almost as fast as in a dedicated multiplier with the added functionality of division and

the flexibility to choose the required finite field.

6.2. Future work

There are many research contributions related to this study that can be investi-

gated in the future. Some of them are:

• The testing process of the hardware implementation of the algorithm is tedious

process. A methodology for developing testing modules is introduced in [51]. Including a

self-testing block in the hardware design system will be beneficial and will reduce the time

and effort for testing. One option could be is to perform modular division/Montgomery

multiplication of hardwired numbers and compare the result with predefined values.

56

• Power dissipation study of the design is also needed in the context of power differ-

ential attack. This type of attack on a cryptographic system tries to deduce parameters

of the system by observing system’s power dissipation.

• The carry-save unified adders used in the hardware architecture are very efficient,

and give very good results. Using other types of redundant adders should be studied,

such as carry look-ahead adders [52].

• Integrating modular exponentiation with our divider/multiplier system, can be

useful to some cryptographic applications that requires the three operations [53].

• The proposed divider/muliplier can be used as a basis for a cryptographic co-

processor.

57

BIBLIOGRAPHY

1. T. ElGamal, “A public key cryptosystem and signature scheme based on discrete
logarithms,” IEEE Trans. - Information Theory, vol. IT-31, no. 4, pp. 469–472,
July 1998.

2. M. E. Hellman and W. Diffie, “New directions on cryptography,” IEEE transactions
on Information Theory, vol. 22, pp. 644–654, November 1976.

3. L. Adleman, R. L. Rivest, and A. Shamir, “A method for obtaining digital signature
and public-key cryptosystems,” Comm. of the ACM, vol. 21, no. 2, pp. 120–126,
February 1978.

4. National Institute for Standards and Technology, “Digital Signature Standard
(DSS),” Tech. Rep. 168-2, FIPS PUB, January 2000.

5. P. L. Montgomery, “Modular multiplication without trial division,” Mathematics
of Computation, vol. 44, no. 170, pp. 519–521, April 1985.

6. E. Savas, A. F. Tenca, and Ç. K. Koç, “A scalable and unified multiplier architecture
for finite fields GF (p) and GF (2m),” in Cryptographic Hardware and Embedded
Systems — CHES 2000, Ç. K. Koç and C. Paar, Eds. 2000, Lecture Notes in
Computer Science, No. 1717, pp. 281–296, Springer, Berlin, Germany.

7. N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation, vol. 48,
no. 177, pp. 203–209, January 1987.

8. A. J. Menezes, “Elliptic curve public key cryptosystems,” 1993, Kluwer Academic
Publishers, Bosten, MA.

9. A. A. Gutub, A. F. Tenca, E. Savas, and Ç. K. Koç , “Scalable and unified hard-
ware to compute Montgomery inverse in GF (P) and GF (2n),” in Cryptographic
Hardware and Embedded Systems — CHES 2002, B.S. Kaliski Jr. et al., Ed. 2003,
Lecture Notes in Computer Science, No. 2523, pp. 484–499, Springer, Verlag Berlin
Heidelberg 2003.

10. W. Trappe and L. C Washington, Introduction to Cryptography with Coding Theory,
Prentice Hall, New Jersey, 2002.

11. E. Savas and Ç. K. Koç , “Architectures for unified field inversion with applica-
tions in elliptic curve cryptography,” in The 9th IEEE international conference on
Electronic, Circuits and systems-ICECS 2002.

12. D. E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algo-
rithms, Third edition, 1998.

13. I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography, Cam-
bridge University Press, New York, 1999.

58

14. A. D. Daneshbeh and M. A. Hasan, “A unidirectional bit serial architecture for
double-bases division over GF (2m),” in IEEE 16th Symposium on Computer Arith-
metic. 2003, IEEE Computer Society, Los Alamitos, California.

15. J. Wolkerstorfer, “Dual-field arithmetic unit for gf(p) and gf(2n),” in Crypto-
graphic Hardware and Embedded Systems — CHES 2002, B.S. Kaliski Jr. et al.,
Ed. 2003, Lecture Notes in Computer Science, No. 2523, pp. 484–499, Springer,
Verlag Berlin Heidelberg 2003.

16. J. Goodman and A. P. Chandrakasan, “An energy-efficient reconfigurable public-
key cryptography processor,” IEEE Journal of solid-state circuits, vol. 36, no. 11,
pp. 1808–1820, November 2001.

17. J-H. Guo and C-L. Wang, “Systolic array implementation of Euclid’s algorithm for
inversion and division in GF (2m),” IEEE Transactions on Computers, vol. 47, no.
10, pp. 1161–1167, October 1998.

18. P. Choudhury and R. Barua, “Cellular automata based VLSI architecture for com-
puting multiplication and inverses in GF (2m),” in Proceedings of the 7th IEEE
International Conference on VLSI Design. 1994, Calcutta, India.

19. H. Brunner, A. Curiger and M. Hofstetter, “On computing multiplicative inverse in
GF (2m),” IEEE Transactions on Computers, vol. 42, no. 8, pp. 1010–1015, August
1993.

20. G. Feng, “ A VLSI architecture for fast inversion in GF (2m),” IEEE Transactions
on Computers, vol. 38, no. 10, pp. 1383–1386, October 1989.

21. M. A. Hasan, “Efficient computation of multiplicative inverse for cryptographic
applications,” in IEEE 15th Symposium on Computer Arithmetic, Colorado. 2001,
IEEE Computer Society, Los Alamitos, California.

22. N. Takagi, “A hardware algorithm for modular division based on the extended
Euclidean algorithm,” IEICE Trans. on Information and Systems, vol. E79-D, no.
11, pp. 1518–1522, November 1996.

23. C. Wang, T. Truong, H. Shao, L. Deutsch, J. Omura and I. Reed, “ A VLSI archi-
tecture for computing multiplications and inverses in GF (2m),” IEEE Transactions
on Computers, vol. C-34, no. 8, pp. 709–717, August 1985.

24. J-H. Guo and C-L. Wang, “Bit-serial systolic array implementation of Euclid’s
algorithm for inversion and division in GF (2m),” Proceedings of Technical Papers,
International Symposium on VLSI Technology, Systems and Applications, 1997.

25. M. Kovac, N. Ranganathan and M. Varanasi, “ SIGMA: A VLSI systolic array im-
plementation of Galois field GF (2m) based multiplication and division algorithm,”
ieeetv, vol. 1, no. 1, pp. 22–30, March 1993.

59

26. A. A.-A. Gutub, New Hardware Algorithms and Designs for Montgomery Modular
Inverse Computation in Galois Fields GF (p) and GF (2n), Ph.D. thesis, Oregon
State University, Oregon,USA, June 2002.

27. N. Takagi, “A VLSI Algorithm for Modular Division Based on the Binary GCD
algorithm,” IEICE Trans. fundamentals, vol. E81-A, no. 5, pp. 724–728, May 1998.

28. R. Brent and H. Kung, “Systolic VLSI array for linear GCD computations,” in
VLSI’83, F. Anceau and E. Aas, Eds. 1983, pp. 145–154, Elsvier Science Publishers.

29. M. E. Kaihara and N. Takagi, “A VLSI Algorithm for Modular Multiplica-
tion/Division,” in IEEE 16th Symposium on Computer Arithmetic. 2003, IEEE
Computer Society, Los Alamitos, California.

30. A. F. Tenca, G. Todorov, and Ç. K. Koç, “High-radix design of a scalable modular
multiplier,” in Cryptographic Hardware and Embedded Systems — CHES 2001, Ç.
K. Koç and C. Paar, Eds. 2001, Lecture Notes in Computer Science, No. 1717, pp.
189–206, Springer, Berlin, Germany.

31. C. D. Walter, “Space/time trade-offs for higher radix modular multiplication using
repeated addition,” IEEE Transactions on computing, vol. 46, no. 2, pp. 139–141,
February 1997.

32. R. R. Taylor and S. C. Goldstein, “A high-performance flexible architecture for
cryptography,” in Cryptographic Hardware and Embedded Systems, C. Paar Ç
K. Koç, Ed. 1999, number 1717 in Lecture Notes in Computer Science, pp. 231–245,
Springer, Berlin, Germany.

33. L. A. Tawalbeh, “Radix-4 ASIC design of a scalable Montgomery modular multiplier
using encoding techniques,” M.S. thesis, Oregon State University, Oregon,USA,
October 2002.

34. A. F. Tenca and L. A. Tawalbeh, “An efficient and scalable radix-4 modular mul-
tiplier design using recoding techniques,” in The Thirty-seventh Annual Asilomar
Conference on Signals, Systems, and Computers. November 9-12, 2003, vol. 2, pp.
1445–1450, IEEE Press, Pacific Grove, California.

35. A. Vandemeulebroecke and et al, “A new carry-free decision algorithm and its
application to a single-chip 1024-bit RSA processor,” IEEE Journal of Solid-state
Circuits, vol. 25, no. 3, pp. 748–755, June 1990.

36. A. F. Tenca and Ç. K. Koç, “A word-based algorithm and scalable architecture for
montgomery multiplication,” in Cryptographic Hardware and Embedded Systems
— CHES 1999, Ç. K. Koç and C. Paar, Eds. 1999, Lecture Notes in Computer
Science, No. 1717, pp. 94–108, Springer, Berlin, Germany.

37. T. Blum and C. Paar, “Montgomery modular exponentiation on reconfigurable
hardware,” in Proceedings, 14th Symposium on Computer Arithmetic, I. Koren and

60

P. Kornerup, Eds., Bath, England, April 14–16 1999, pp. 70–77, IEEE Computer
Society, Los Alamitos, California.

38. G. Hachez and J-J Quisquater, “Montgomery exponentiation with no final sub-
tractions: Improved results,” in Cryptographic Hardware and Embedded Systems
— CHES 2000, Ç. K. Koç and C. Paar, Eds. 2000, Lecture Notes in Computer
Science, No. 1965, pp. 293–301, Springer, Berlin, Germany.

39. L. A. Tawalbeh, A. F. Tenca, S. Park, and Ç. K. Koç , “A dual-field modular division
algorithm and architecture for application specific hardware,” in The Thirty-eighth
Annual Asilomar Conference on Signals, Systems, and Computers. November 7-10,
2004, IEEE Press, Pacific Grove, California.

40. A. F. Tenca and L. A. Tawalbeh, “ An algorithm for unified modular division in
GF (p) and GF (2n) suitable for cryptographic hardware,” IEE Electronics Letters,
vol. 40, no. 5, pp. 304–306, March 2004.

41. M. Stan, A. Tenca, and M. Ercegovac, “Long and fast up/down counters,” IEEE
Transactions on Computers, vol. 47, no. 7, pp. 722–734, July 1998.

42. J. Stein, “Computational problems associated with racah algebra,” Journal of
Computational Physics, vol. 1, no. 1, pp. 397–405, 1967.

43. A. F. Tenca, E. Savas, and Ç. K. Koç , “A design framework for scalable and unified
multipliers in GF (p) and GF (2n) ,” International Journal of Computer Research,
To appear 2004.

44. L.-S. Au and N. Burgess, “Unified radix-4 multiplier for GF (p) and GF (2n),” in The
IEEE International Conference on Application-Specific Systems, Architectures, and
Processors (ASAP’03), The Hague, The Netherlands, June 24-26 2003, pp. 226–232.

45. L. A. Tawalbeh and Alexandre. F. Tenca, “An algorithm and hardware architecture
for integrated modular division and multiplication in GF (p) and GF (2n),” in The
IEEE International Conference on Application-Specific Systems, Architectures, and
Processors (ASAP). September 27-29, 2004, pp. 247–257, IEEE Computer Society
Press, Los Alamitos, California.

46. M. D. Ercegovac and T. Lang, Digital Arithmetic, Morgan Kaufmann Publishers,
California, 2004.

47. E. Savas, A. F. Tenca, and Ç. K. Koç , “Dual-field multiplier architecture for
cryptographic applications,” in The Thirty-seventh Annual Asilomar Conference
on Signals, Systems, and Computers. November 9-12, 2003, pp. 374–378, IEEE
Press, Pacific Grove, California.

48. E. Savas, A. F. Tenca, M. E. Ciftcibasi, and Ç. K. Koç , “Novel multiplier ar-
chitectures for GF (p) and GF (2n) ,” IEE Proceedings - Computers and Digital
Techniques, vol. 151, no. 2, pp. 147–160, March 2004.

61

49. A. Royo, J. Moran, and J. C. Lopez, “Design and implementation of a coprocessor
for cryptography applications,” in European Design and Test Conference, Paris,
France, March 17-20 1997, pp. 213–217.

50. ASIC Design Kit. Mentor Graphics Co, “http://www.mentor.com
/partners/hep/AsicDesignKit/dsheet/ami05databook.html,” .

51. C. D. Walter, “Moduli for testing implementations of the rsa cryptosystem,” in
IEEE 14th Symposium on Computer Arithmetic. 1999, pp. 78–85, IEEE Computer
Society, Los Alamitos, California.

52. A. A.-A. Gutub, A. F. Tenca and Ç. K. Koç , “Scalable VLSI architecture for GF(p)
Montgomery modular inverse computation,” in IEEE Computer Society Annual
Symposium on VLSI. April 25-26, 2002, pp. 53–58, IEEE Computer Society Press,
Los Alamitos, California.

53. A. J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, Boca Raton, Florida, 1996.

54. D. M. Bressoud, Factorization and Primality Testing, Springer-Verlag, New York,
1989.

55. R. Crandall, Prime Numbers: A Computational Perspective, Springer-Verlag, New
York, 2002.

56. Word IQ, “http://www.wordiq.com/definition/,” .

62

APPENDICES

63

A THE GREATEST COMMON DIVISOR.

There are many important applications that depends on computing the greatest

common divisor (gcd). Among theses applications are the modular arithmetic operations,

specifically, computing modular inverse is heavily depends on the concept of the gcd [54].

The greatest Common Divisor of the two integers, a and b, gcd(a, b) is the largest

integer that evenly divides both of them, provided that a, b 6= 0 at the same time.

Since every integer evenly divides zero, the above definition does not apply when a and

b are both zero [12].

Below are some properties of the gcd:

gcd(0, 0) = 0 (1.1)

Computing the gcd is a commutative operation:

gcd(a, b) = gcd(b, a) (1.2)

Changing the sign of one of the integers, will not affect the value of the gcd as can

be seen from the following equation:

gcd(a, b) = (−a, b) (1.3)

Any integer divides itself, and it evenly divides zero, so:

gcd(a, 0) = |a| (1.4)

If gcd(a, b) = d and a divides the product bc, then a
d divides c. Also, if m is any

integer, then

gcd(ma,mb) = mgcd(a, b) (1.5)

and

gcd(a + mb, b) = gcd(a, b). (1.6)

64

If m is a nonzero common divisor of a and b, then:

gcd(
a

m
,

b

m
) =

gcd(a, b)
m

(1.7)

The gcd of three numbers can be computed as:

gcd(a, b, c) = gcd(gcd(a, b), c) = gcd(a, gcd(b, c)). (1.8)

One way to compute the gcd comes form the canonical factorization of integers.

According to the ”fundamental theorem of arithmetic” [12, 55], each positive integer a

can be written in the form:

a = 2a23a35a57a7 ... =
∏

P

P aP (1.9)

where P is a prime, and the a2, a3, a5, ... are nonnegative integers, including the

value of zero.

To find the gcd(a, b), we factor both of them to the canonical form as in equa-

tion 1.9, then we can write:

gcd(a, b) =
∏

P

Pmin(aP ,bP) (1.10)

Let us take the two integers a = 500 = 22.53 and b = 2600 = 23.52.131. The

gcd(a, b) = 2min(2,3).5min(3,2).13min(0,1) = 22.52 = 100.

Computing the gcd of two numbers by determining the prime factorizations is never

done in practice, is too slow. Because it requires to determine the canonical factorization

of a and b, and there is no known fast way to compute the prime factors of an integer[12].

A much more efficient method to compute the greatest common divisor without

the need for factoring the integers was discovered more than 2000 years ago. This method

is called the Euclidean algorithm [56].

An extended version of the Euclidean algorithm can also compute the integers u

and v such that:

65

u.a + v.b = gcd(a, b) (1.11)

This fact is used to compute the multiplicative inverse. More details about this

subject and the Euclidean algorithm are provided in the next appendix.

66

B RELATED ALGORITHMS.

This appendix gives brief idea of some algorithms related to the research presented

in this thesis.

B1. The Euclidean Algorithm.

The Euclidean algorithm, is an algorithm for finding the greatest common divisor

of two non-negative integers a and b (the algorithm can be applied to the | a | and | b |).
The algorithm can also be defined for more general rings than just the integers, such as

the binary extension fields (GF (2n)) and the prime fields (GF (p)).

For a and b, there exist unique non-negative integers q and r such that:

and

a = qb + r (2.1)

where 0 ≤ r < b. This is basic division operation where q is the quotient and r is

the remainder [26]

The Euclidean Algorithm finds the gcd(a, b) by repeated application of the division

algorithm. The divisor is repeatedly divided by the remainder until the remainder of

this operation is 0. The gcd is the last non-zero remainder in this algorithm.

Function: The Euclidean Algorithm

Inputs: Two Integers a, b

Output: The Greatest Common Divisor (gcd(a, b))

IF b = 0, return gcd(a, b) = b

WHILE b 6= 0

r = a mod b

a = b

b = r

return GCD(a, b) = a

67

The validity of the Euclidean Algorithm comes from equation 1.4, and the fact

that [12]:

gcd(a, b) = gcd(a, a− qb) (2.2)

The following example shows how to compute the gcd(78, 45) by the Euclidean

Algorithm:

78 = 45*1 + 33

45 = 33*1 + 12

33 = 12*2 + 9

12 = 9*1 + 3

9 = 3*3 + 0

The gcd(78, 45) = 3, which is the last non-zero remainder as mentioned earlier.

The Extended Euclidean Algorithm is an extension of the Euclidean Algorithm to

compute the modular inverse. The inverse of an integer a ∈ GF (p) with regard to the

modulus p, is another integer t such that a.t ≡ 1 mod p. The inverse t exists if and

only if a is relatively prime with p. In other words, gcd(a, p) = 1, which implies (from

equation 1.11) the existence of the integers t and s such that:

t.a + s.p = 1 = gcd(a, p) (2.3)

By reducing the equation mod p, the term s.p will be zero, and we get t.a ≡
1 mod p, and so t is the inverse of a mod p. The Extended Euclidean algorithm computes

t efficiently. The same discussion can be used to find the inverse in the binary extension

fields (GF (2n)). For more details, the reader is referred to [13, 26].

68

B2. The Binary GCD Algorithm

A binary method to compute the gcd was proposed by J. Stein in 1967 [42]. It

does not require division instruction as the Euclidean algorithm. It is based on the facts

[27]:

1. If a is even and b is odd, then gcd(a, b) = gcd(A/2, B), also gcd(a, b) = gcd(a−
b, b).

2. If a and b are both odd, then a− b is even and | a− b |< max(a, b).

The Binary GCD algorithm is described below:

Function: The Binary GCD Algorithm

Inputs: Two Integers a, b, b is odd

Output: The Greatest Common Divisor (gcd(a, b))

WHILE a > 0

WHILE a mod 2 = 0 /* a is even */

a := a >> 1

END WHILE;

IF a ≥ b THEN a := a− b

ELSE temp := a, a := b, b := temp

END IF;

END WHILE;

return hcd(a, b) = b;

The algorithm performs simple tests and 1-bit right shift operations (a := a >> 1).

The comparison (a ≥ b) is a time consuming step, and to avoid it, the authors in [28]

modified the above algorithm and proposed the Plus-Minus algorithm, as described in

Section B3.

69

B3. The Plus-Minus Algorithm

Brent and Kung proposed the Plus-Mins (PM) algorithm [28]. and they allowed

the inputs a and b to be negative. The difference of the upper bounds exponents is used

in the algorithm. In other words, let 2α be the upper bound of | a |, and 2β be the upper

bound of | b |, then, the difference between the exponents is δ = α− β.

The PM algorithm is based on the following fact to compute the gcd in GF (p)

[27, 40]: If C and D are both odd, then 4 divides either C + D or C − D. If the first

is true, then gcd(C,D) = gcd((C + D)/2, D) = gcd((C + D)/4, D), and |(C + D)/4| ≤
max(|C/2|, |D/2|). If 4 divides (C−D) then gcd(C, D) = gcd((C−D)/2, D) = gcd((C−
D)/4, D), and |(C −D)/4| ≤ max(|C/2|, |D/2|). The PM algorithm is shown below:

Function: The Plus-Minus Algorithm

Inputs: Two Integers a, b

Output: The Greatest Common Divisor (gcd(a, b))

WHILE | a |> 0

WHILE a mod 2 = 0 /* a is even */

a := a >> 1

δ := δ − 1

END WHILE;

IF δ < 0 THEN

temp := a, a := b, b := temp

δ := −δ

END IF;

IF (a + b)mod 4 = 0 THEN a := (a + b) >> 1

ELSE a := (a− b) >> 1

END IF;

END WHILE

return gcd(a, b) = b;

70

B4. The Extended Binary GCD Algorithm for Modular
Division

Takagi extended the Plus-Minus algorithm to compute the modular inverse by

intertwining a procedure to find the multiplicative inverse along with the procedure to

compute gcd. Further more, he extended it to compute modular division by modifying

the multiplicative inverse procedure so it computes the quotient [27]. The computations

were done in GF (p) only.

The algorithm was denoted by the Extended Binary GCD algorithm, and for

complete details about it, the reader is referred to [27].

The Extended Binary GCD algorithm formed the base for our research. We mod-

ified it and extended to work in both GF (2n) and GF (p) with simpler control and data

flows.

71

C NUMERICAL EXAMPLE FOR COMPUTING
MODULAR INVERSE USING UDMA IN GF (P).

Table C.1 shows the computation of the modular inverse by the UDMA presented

in Chapter 3. In other words, the algorithm is computing Z = 1
Y mod p. The computa-

tions are done in the prime field GF (p), with (X = 1, Y = 1039, and p = 2011). The

operation is set to division (Op = div) with the dividend (X=1) in order to compute

the modular inverse.

The intermediate values of the variables: delta, C, D, U , and W are shown in the

Table with the corresponding performed operation by the UDMA. The Table also shows

which portion of the algorithm was carried out (THEN or ELSE). Notice that the

modular reduction step (U := (U + u0 ∗ p) >> 1) is performed every iteration.

Notice that D = −1, and in this case the result Z = p−W = 2011− 60 = 1951 as

explained in Chapter 3. To verify the result: Z = 1
Y mod p ⇒ ZY ≡ 1 mod p, and by

substituting the corresponding values, we get: 1951.1039 ≡ 2027089 ≡ 1 mod 2011. So

1951 is the inverse of 1039 mod 2011.

72

Operations δ C D U W

Initialization 0 1039 2011 1 0

C := (C −D) >> 1 0 -486 2011 1006 0

C >> 1 -1 -243 2011 503 0

swap,C := (C + D) >> 1 1 884 -243 1257 503

C >> 1 0 442 -243 1634 503

C >> 1 -1 221 -243 817 503

swap,C := (C −D) >> 1 1 -232 221 -157 817

C >> 1 0 -116 221 927 817

C >> 1 -1 -58 221 1469 817

C >> 1 -2 -29 221 1740 817

swap,C := (C + D) >> 1 2 96 -29 2284 1740

C >> 1 1 48 -29 1142 1740

C >> 1 0 24 -29 571 1740

C >> 1 -1 12 -29 1291 1740

C >> 1 -2 6 -29 1651 1740

C >> 1 -3 3 -29 1831 1740

swap,C := (C −D) >> 1 3 -16 3 960 1831

C >> 1 2 -8 3 480 1831

C >> 1 1 -4 3 240 1831

C >> 1 0 -2 3 120 1831

C >> 1 -1 -1 3 60 1831

swap,C := (C −D) >> 1 1 2 -1 1891 60

C >> 1 0 1 -1 1951 60

C := (C + D) >> 1 0 0 -1 2011 60

TABLE C.1: A modular inverse computation by the UDMA algorithm in GF (p)

