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Abstract Recent advances in microbiology techniques, such as genetic sequencing, allow for rapid and
cost-effective collection of large quantities of genetic information carried within water samples. Here we
posit that the unique composition of aquatic DNA material within a water sample contains relevant informa-
tion about hydrologic function at multiple temporal scales. In this study, machine learning was used to
develop discharge prediction models trained on the relative abundance of bacterial taxa classified into
operational taxonomic units (OTUs) based on 16S rRNA gene sequences from six large arctic rivers. We term
this approach ‘‘genohydrology,’’ and show that OTU relative abundances can be used to predict river
discharge at monthly and longer timescales. Based on a single DNA sample from each river, the average
Nash-Sutcliffe efficiency (NSE) for predicted mean monthly discharge values throughout the year was 0.84,
while the NSE for predicted discharge values across different return intervals was 0.67. These are
considerable improvements over predictions based only on the area-scaled mean specific discharge of five
similar rivers, which had average NSE values of 0.64 and 20.32 for seasonal and recurrence interval
discharge values, respectively. The genohydrology approach demonstrates that genetic diversity within the
aquatic microbiome is a large and underutilized data resource with benefits for prediction of hydrologic
function.

Plain Language Summary An important task in water resources is prediction of the discharge in
rivers and streams at locations where there are no direct measurements. In this study, we show that the
flow in a river can be predicted based only on the bacteria that are present in the river. Because different
flow conditions create environments in which different groups of bacteria grow, measurements of the
diversity of the bacteria community can be used for hydrologic purposes. We call this approach
‘genohydrology’ and explore different discharge predictions based on streamwater bacteria composition.

1. Introduction

A core objective of contemporary hydrology is the prediction of discharge in ungauged streams and rivers
(Seibert & McDonnell, 2013; Sivapalan et al., 2003). While much success had be achieve through develop-
ment of many hydrologic models for this purpose, the accurate calibration of these models often requires
some minimum quantity of discharge measurements, and equifinality can cause to ambiguity in predictions
even if measurements are present (Beven, 2006). When faced with inadequate direct measurements of dis-
charge from a study catchment, the collection of some other type of information-dense data set during
short field campaigns (i.e., ‘‘soft data’’) can be remarkably useful in understanding hydrologic function (Sei-
bert & McDonnell, 2013). In this study, we explore a new type of hydrologic information: the DNA of aquatic
microbes carried in a stream or river, which we evaluate as an emergent property of a catchment as a whole
that is useful for quantitative predictions of discharge. This use of DNA-derived information differs from ear-
lier applications of DNA as a hydrologic tracer (e.g., Dahlke et al., 2015) in which synthetic DNA was released
and recaptured downstream. In our application, we examine naturally occurring aquatic bacteria DNA frag-
ments, and relate their variation between rivers to variations in flow regimes.

Here we focus on bacterial diversity as reflected in 16S rRNA gene fragments from river samples (Crump
et al., 2009), although other types of DNA-derived data may hold similar potential. The 16s rRNA gene has
been used in microbiology since the 1980s to classify bacteria into relative positions in the evolutionary
order, i.e., phylum, class, order, family, etc. (Kolbert & Persing, 1999). Much of the bacterial diversity in rivers
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and streams originates from upslope soil environments and headwater streams (Crump et al., 2007, 2012),
as well as from groundwater (Sorensen et al., 2013). Although aquatic microorganisms are generally consid-
ered passive dispersers, in that dispersal is controlled by the flow of water, evidence indicates that environ-
mental variables have a strong influence in shaping aquatic microbial communities (Crump et al., 2012;
Whittaker & Rynearson, 2017). Lower costs and recent advances in molecular biology methods have
resulted higher quality freshwater microbial DNA extraction and analysis (Li et al., 2015), making this type of
information more accessible to a wider research community for an increasing variety of applications.

Recent studies have linked bacterial community composition with hydrologic function, with these studies
primarily directed at understanding the microbial ecology of rivers and streams. In the River Thames basin,
Read et al. (2015) found a significant relationship between bacterial community composition and cumula-
tive stream length upstream of the community, and concluded that physical and chemical characteristics of
the river were less important than hydrogeomorphic parameters in shaping microbial communities. Savio
et al. (2015) measured 280 individual water quality parameters and found that the bacterioplankton com-
munity along the Danube River continuum was primarily correlated with catchment characteristics, includ-
ing river kilometer, dendritic stream length, mean dendritic length, catchment size, and accumulated
dendritic distance. Other studies have linked microbial communities to river flow rate (Crump & Hobbie,
2005; Doherty et al., 2017), and flow conditions have been used to model the abundance of crucial bacterial
populations, such as Vibrio cholera (Bertuzzo et al., 2008). Furthermore, freshwater microbial communities
have demonstrated seasonal shifts, with returns to characteristic ‘‘core’’ seasonal communities (Crump &
Hobbie, 2005; Doherty et al., 2017; Savio et al., 2015). These studies suggest that the composition of micro-
bial communities of rivers and streams is influenced by the hydrology of the watersheds in which they are
found.

Given that geographically and hydrologically diverse rivers have been shown to host characteristic, season-
ally shifting, and predictable microbial communities, and that those communities are shaped by hydrologi-
cal properties of a watershed, including discharge, we hypothesized that microbial community composition
could be used to predict the hydrological characteristics of a basin. We term this approach ‘‘genohydrol-
ogy.’’ In this study, we use previously measured estimates of the bacterial community composition of six
arctic rivers to make predictions of river flow regimes.

2. Materials and Methods

2.1. Arctic River Bacteria Community Composition
This study evaluates the bacterial and hydrologic characteristics of six arctic rivers: the Yukon, Kolyma, Yeni-
sey, Mackenzie, Lena, and Ob (Figure 1). These rivers range in discharge from �100 to �600 km3/yr, with
basin sizes from 0.8 to 2.4 million square kilometers (Table 1). In total, these northern latitude rivers consti-
tute 67% of the Arctic Ocean’s drainage area (Holmes et al., 2012), with all six ranked in the world’s top 50
largest rivers by discharge (Dai & Trenberth, 2002), and share broad similarities in their discharge patterns,
geochemical composition, and bacterial community structure (Crump et al., 2009; Holmes et al., 2012). Dis-
charge observations (Bodo, 2001a, 2001b) were compiled by the Global Runoff Data Center of the Federal
Institute of Hydrology, Germany, and the International Hydrological Programme of the United Nations Edu-
cational, Scientific, and Cultural Organization. Only years with discharge data for all 12 months of the year
were used, and across the six rivers there was an average of 33 years of data per river.

The prediction of two key hydrologic flow quantities (m3/s) was evaluated: (1) the average monthly dis-
charge as it varies throughout the year, and (2) the average discharge expected at different recurrence
intervals. Observed monthly discharge volumes were estimated by averaging across all years with 12
months of discharge data (see Table 1 for number of years in each gauge record). Discharge values at differ-
ent recurrence intervals used data from all months of the year for estimates at 20 logarithmically spaced
intervals spanning 0.1–10 years, with the recurrence period (Tx) calculated as Tx 5 1/Px, where Px is the prob-
ability that a discharge of x will be exceeded in the observed record (Read & Vogel, 2015). Observed flows
were compared to predicted flows (see below) using both root means squared errors (RMSE) and Nash-
Sutcliffe efficiently (NSE) metrics. RMSE, which can range from 0 for a perfect model fit to positive infinity,
captures both model bias and precision. NSE values can range from positive 1, for a perfect model fit, to
negative infinity, with an NSE of zero occurring when predictions are as accurate as the mean of the

Water Resources Research 10.1002/2017WR021974

GOOD ET AL. 2



observed data. Values of the RMSE and NSE for predictions were calculated for each river separately based
on either the 12 monthly means or the 20 return intervals, and then averaged across all six rivers.

This study is based on DNA samples collected though the Pan-Arctic River Transport of Nutrients, Organic
Matter and Suspended Sediments (PARTNERS) program (Holmes et al., 2012), which focused on collection
water samples throughout the arctic with consistent sampling and analytical methods. Though water sam-
ples were obtained throughout the year through the PARTNERS program, only samples from June 2004
were analyzed in detail for bacterial community composition (Crump et al., 2009). The composition of bacte-
rial communities in these six rivers was measured in samples collected by the United States Geological Sur-
vey (USGS) National Research Program and Alaska Water Science Center, Canada’s Department of Indian
Affairs and Northern Development, the South Russian Centre for Preparation and Implementation of Inter-
national Projects, and the Northeast Science Station in Russia (Crump et al., 2009). Water samples were
taken from the river mouths following USGS sampling protocols (Striegl et al., 2005) as cross-sectionally
integrated, flow-weighted water samples during June 2004.

Community composition was assessed using DNA sequencing of PCR-
amplified and cloned bacterial 16S rRNA genes (i.e., clone library
sequencing) (Crump et al., 2009; Crump & Hobbie, 2005). Phylogenetic
distances between sequences were calculated with DNADIST using
the Jukes-Cantor model, and the DOTUR application was used to
group sequences into operation taxonomic units (OTUs) based on
97% DNA sequence similarity (Crump et al., 2009). Taxonomic assign-
ments were made using the Ribosomal Database Project na€ıve Bayes-
ian rRNA classifier tool using a confidence threshold of 80% (http://
rdp.cme.msu.edu). Each OTU in this data set represents a group of
closely related bacterial species found in each river, and the number
of clones belonging to each OTU in each river were published as

Table 1
Characterization of the Six Arctic River Basins Used in This Study

River

Total
area

(km2)

Annual
discharge
(km3/yr)

Gauge
latitude

(8N)

Gauge
longitude

(8E)

Dis-
charge
(years)

Yukon 831,386 203.2 61.93 2162.88 21
Kolyma 526,000 99.3 68.73 158.27 16
Yenisey 2,440,000 577.4 67.43 86.48 59
Mackenzie 1,660,000 288.3 67.46 2133.75 21
Lena 2,460,000 486.1 72.37 2126.80 18
Ob 2,430,000 397.3 66.63 266.60 64

Figure 1. (left) The watersheds of the six arctic rivers used in this study. Rivers were sampled (red circles) near their outlets into the Arctic Ocean in June 2004 to
obtain the (right) relative abundances of nine broadly distributed OTUs, based on the number of 16S rRNA gene sequences in clone libraries prepared from DNA
samples.
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supporting information Table S2 of Crump et al. (2009). A total of 148 different OTUs were identified, and
nine of these OTUs were present in at least five of the six rivers. These nine OTUs represented 20–34% of
clone library sequences from each river, and comparison with the GenBank global database showed that
they are common in freshwater systems world-wide (Crump et al., 2009). The relative abundances of these
nine OTUs in each river (Figure 1) were used as input data for model calculations. These nine OTUs were
selected because they appear in most (at least 5 of 6) of the studied arctic rivers, and the variation in their
relative abundances was explored for predictive purposes.

2.2. Genohydrology Prediction Method
In this study, a common machine learning technique, support vector regression (SVR) is used to map mea-
sured OTU abundances to hydrologic properties. SVR is a machine learning technique with few parameters
(regularization C and kernel width E) that is able to achieve results that match or surpass neural-network
approaches with minimal tuning (Smola et al., 2004). In particular, linear SVR is useful when feature counts
(here the nine OTUs) exceeds the number of samples (here the six rivers). Linear SVR from the python SciKit-
Learn machine learning library (Pedregosa et al., 2012) was used to construct predictor functions, fj,t (), that
take as input xj, the array of normalized OTU counts in target river j, and returns as output the estimated log
fractional discharge anomalies, ŷ j;t , during an individual month or recurrence interval t. Discharge values were
estimated based on models trained with both the absolute discharge and the specific discharge for each river,
with specific discharge then scaled by basin area to estimate a final absolute discharge value.

Predictor functions were trained using an m by n input matrix of the normalized OTU counts for the other riv-
ers (with m the five rivers used in training and n the nine most common OTUs), and m output values of the
log anomalies in the discharge in the other five rivers during period t. Anomalies were calculated relative to
the log mean discharge of the five other rivers, and thus the predictor functions, fj,t (), do not include any infor-
mation of the discharge in river j during period t or any other time period. Observed log discharge anomalies,
yk,t, in each river k (k 6¼ j, with j the target river) for interval t that were used for training are calculated as

yk;t ADð Þ5ln dk;t
� �

2ln
1
m

Xm

i51

di;t

 !
(1a)

yk;t SDð Þ5ln
dk;t

Ak

� �
2ln

1
m

Xm

i51

di;t

Ai

 !
(1b)

where Ai is the area of catchment i. Equation (1a) gives the derived log anomaly of absolute discharge (AD),
and equation (1b) gives the SD-derived log anomaly of the specific discharge (SD). Note that the m rivers in
the summation does not include the target river j.

The five sets of normalized OTU data from the nontarget rivers and the five values of yk,t for interval t were
used to train the SVR predictor function fj,t (). Note that the j subscript in fj,t () specifies that this is the predic-
tor function trained with flow and OTU data from all the rivers that are not j, and is therefore unique to river
j because it is the only predictor function that will not contain data from river j. The t subscript in fj,t () signi-
fies that each time interval is predicted independently, in that the same summer OTU is repeatedly used to
predict each separate month and return interval discharge. In the training of the predictor function, OTU
data are passed to possible predictor functions to produce estimates of the expected discharge anomaly in
that river, i.e., fj.t(xk) 5ŷ k;t . The SVR approach seeks the hyperplane, or series of hyperplanes, that have the
largest separation between sets of training data (Pedregosa et al., 2012), with a larger margin typically asso-
ciated with smaller training errors: ŷ k;t 2 yk,t. Note that separate predictor functions and resulting predic-
tions were created for both the absolute (ŷ j;t ADð Þ) and specific (ŷ j;t ADð Þ) discharge-based approaches.

Once the form of a fj,t () has been determined, the OTU data from the target river are passed through the pre-
dictor function to produce the SVR estimate of discharge anomalies in the target river j relative to average of
the other nontarget rivers, i.e., fj.t(xj) 5 ŷ j;t . The final predicted discharge values are then calculated as

d̂ j;t5eŷ j;t ADð Þ
1
m
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d̂ j;t5eŷ j;t SDð Þ
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where equation (2a) gives the predicted discharge based on the absolute discharge and equation (2b) gives
the predicted discharge based on the specific discharge scaled by the basin area. The SciKit-Learn linear
SVR routine was used to train each fj,t () function with the regularization penalty C was set as 60 for the
absolute discharge models and 7.1 for the specific discharge models, where these were values selected
through trail and error to reduce overall error. For all models, the E value set to 0, as suggested in the SciKit
documentation. Training the SVR function to predict log anomalies bounds the exponentially transformed
discharge predictions in equation (2) to positive values, and defaults predictions in river j to the mean of
the other five rivers when fj,t () carries no information and predictions ŷ j;t approach zero.

In this study, discharge data from five of six rivers were used to develop the predictive models, which were
then used with remaining river OTU distribution for a leave-one-out validation approach. All genohydrology
predictions were compared to both observations from river gauges and to predictions obtained using the
mean of the five nontarget rivers to estimate the discharge in river j for interval t, as well as to predictions
obtained using the mean specific discharge of the five nontarget rivers multiplied by the area of the target
basin. Our comparison with the mean of the other, nontarget, rivers was not intended to suggest that this is
good hydrologic practice, but only to assess the added information that the genohydrology approach
brings. In cases where OTU data hold no relation to true discharge values, or where our SVR approach can-
not discern this relation, the genohydrology predictions will result in error statistics similar to those
obtained when comparing the mean discharge of the nontarget rivers to that of the target river.

3. Results

After training both the absolute and specific discharge-based models, we compare the predicted monthly
discharge values from both models against the mean of the five other nontarget rivers, the area-scaled
means specific discharge of the five other nontarget rivers, and the observed discharge values (Figure 2).
Error metrics for each of the four predictions methods across all months of the year are listed for each river
(Table 2). Similarly, we compare the two genohydrology approaches with the two approaches based on the
means of the nontarget rivers and with the observed data for recurrence intervals from 0.1 to 10 years (Fig-
ure 3). Error metrics for each of the four predictions methods across all of the different recurrence intervals
are listed for each river (Table 3). Additionally, we also show the cross-plot of each prediction method with
observed values for both the monthly flows and the different recurrence intervals (Figure 4).

On average, the seasonal discharge predictions in each of the six rivers using the area-scaled specific dis-
charge trained genohydrology approaches showed a clear improvement in both the root mean squared
error (RMSE) and Nash-Sutcliffe efficiency (NSE) over the mean flow of the other, nontarget, rivers (Table 2)
using both the absolute and specific discharge, and over the absolute discharge trained genohydrology
approach. The addition of bacterial information resulted in an average RMSE of 4,367 m3/s, representing a
decrease of 21% in the RMSE from predictions based on the area-scaled mean specific discharge of the non-
target rivers. While on average the genohydrology improved RMSE values, there were specific months in
specific rivers where genohydrology predictions were worse than those predicted from observations of the
average specific discharge in the other five rivers (Figure 2). In rivers where the RMSE was best based on the
mean of other specific discharge values (the Yukon, Kolyma, and Yenisey rivers), the genohydrology was
only slightly worse, with an average difference in RMSE for these rivers of �600 m3/s. However, when the
genohydrology approach was best (the Mackenzie, Lena, and Ob rivers) its improvement over the area-
scaled mean of the specific discharge of the over rivers was much larger (�2,900 m3/s).

The average NSE value of monthly discharges estimated without the bacteria data and only based on the
mean of nontarget rivers specific discharge was 21.19. This negative value signifies that using a single,
average value of the observed flow in the target river across all months, which by definition gives an NSE of
zero, would be more accurate than using the mean monthly discharge values of the other, nontarget, rivers.
If the average specific discharge of the nontarget rivers is scaled by the basin area of the target river, the
average NSE rises to 0.64. When the bacterial information is also included with the specific discharge, the
average NSE value rises to 0.84 and ranged from 0.93 to 0.64 for individual rivers, with predictions in all
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rivers greater than zero. Predictions based on the state-of-the-art distributed hydrologic model (VIC) of dis-
charge in the Lena (NSE of 0.96), Yenisey (NSE of 0.96), and Ob (NSE of 0.92) (Troy et al., 2011) are higher
than our monthly genohydrology predictions.

Figure 2. (a–f) Average monthly discharge in six arctic rivers. Genohydrology estimated discharge values (circles) and the
mean discharge of the other five rivers (squares) are shown based on both absolute discharge (AD) and area-scaled spe-
cific discharge (SD).

Table 2
Error Statistics for Predicted Average Monthly Flows Using the Genohydrology Approach and the Mean Other Rivers Based
on Both Absolute Discharge (AD) and Area-Scaled Specific Discharge (SD)

River

Root mean squared error (m3/s) Nash-Sutcliffe efficiency

Genohydrology Mean of others Genohydrology Mean of others

(AD) (SD) (AD) (SD) (AD) (SD) (AD) (SD)

Yukon 4,084 2,485 8,622 2,202 0.35 0.76 21.97 0.81
Kolyma 3,463 1,385 11,818 1,379 0.31 0.89 27.00 0.89
Yenisey 15,245 12,338 16,313 10,920 0.45 0.64 0.37 0.72
Mackenzie 5,313 1,822 6,179 5,754 0.24 0.91 20.03 0.11
Lena 9,661 4,744 11,386 5,255 0.72 0.93 0.61 0.92
Ob 2,724 3,431 4,083 7,655 0.93 0.88 0.83 0.42
Average 6,748 4,367 9,734 5,527 0.50 0.84 21.19 0.64

Note. The best preforming approach is shown in bold.
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Predictions of the discharge across return intervals ranging from 0.1 to 10 years using the specific discharge
genohydrology approach were also better on average than similar predictions based on the mean of the
other rivers (Table 3). When the bacterial information were included the RMSE decreased by 26%, with the

Figure 3. (a–f) Average discharge for different return intervals in six arctic rivers. Genohydrology estimated discharge
values (circles) and the mean discharge of the other five rivers (squares) are shown based on both absolute
discharge (AD) and area-scaled specific discharge (SD).

Table 3
Error Statistics for Predicted Monthly Flows of Different Return Intervals Using the Genohydrology Approach and the Mean
of the Five Other Rivers Based on Both Absolute Discharge (AD) and Area-Scaled Specific Discharge (SD)

River

Root mean squared error (m3/s) Nash-Sutcliffe Efficiency

Genohydrology Mean of others Genohydrology Mean of others

(AD) (SD) (AD) (SD) (AD) (SD) (AD) (SD)

Yukon 11,148 2,958 20,336 2,636 23.11 0.71 212.68 0.77
Kolyma 3,179 3,639 22,651 3,283 0.77 0.70 210.78 0.75
Yenisey 39,077 28,008 39,358 24,534 20.26 0.35 20.28 0.50
Mackenzie 4,941 4,259 15,460 14,357 0.47 0.61 24.15 23.44
Lena 9,451 5,544 22,105 6,206 0.85 0.95 0.19 0.94
Ob 2,924 6,650 5,534 18,498 0.94 0.69 0.78 21.41
Average 11,789 8,510 20,907 11,586 20.06 0.67 24.48 20.32

Note. The best preforming approach is shown in bold.
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average dropping from 11,586 to 8,510 m3/s. Similar to the seasonal predictions, even though there was a
large improvement overall, predictions of individual return intervals in individual rivers were at times worse
than predictions from the mean of the nontarget rivers (Figure 4). However, as above, decreases in RMSE
for the specific discharge-based genohydrology approach over the area-scaled mean specific discharge
were much larger than increases in RMSE. Interestingly, there were two specific cases (the Kolyma and Ob
rivers), where the absolute discharge-based genohydrology approach preformed best.

Figure 4. Cross-plot of observed and estimated river discharge for (a) specific months and (b) for specific return intervals
using the different approaches.

Figure 5. Average relative error in predictions of (left) monthly discharge values and (right) the discharge for different
recurrence intervals.
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On average, the predicted NSE values for return intervals improved when adding the bacterial data (Table
3), though predictions for this hydrologic quantity were less accurate then for predictions of monthly
means. With the exception of the specific discharge-based genohydrology approach, all average NSE values
were negative. As with the monthly mean predictions, the differences between the specific discharge geno-
hydrology approach and the area-scaled specific discharge mean of others were strongly skewed. Adding
the bacteria community information either resulted in large improvements or small weakening in
predictions.

All the DNA samples used in the study were collected during the month of June, but predictions were
made for all months in order to evaluate the utility of summer bacterial community for predictions during
other periods. When viewed at the monthly timescale, predictions from June to September were very accu-
rate (Figure 5) with relative errors near zero. Predictions in the low-flow, colder months showed larger errors
and were biased high. On average, monthly predictions using the nontarget means were biased high dur-
ing all months for both specific and absolute discharge means. The overall relative error in these
approaches also decreased in the summer. For the return intervals, all approaches had larger errors at
shorter time intervals than at longer ones. Below 0.5 years, all approaches were biased high. At timescales
larger than a year, the two genohydrology approaches demonstrate very low relative errors in predicted
discharges.

4. Discussion

The objective of this study was to explore the hydrologic information contained within aquatic bacterial
DNA fragments. While multiple previous studies (Read et al., 2015; Savio et al., 2015) have suggested that
bacterial composition is influenced by hydrologic flows, here we attempted quantitative macroscale flow
predictions based on this genetic information. When compared to observed flows, our accuracy varied con-
siderably between the six rivers examined and between the hydrologic quantities that were predicted.
However, we demonstrated overall improvement over predictions based only on flow information from
other similar rivers.

While the accuracy of the genohydrology approach for these arctic rivers is below that obtained from
advanced hydrologic models, this study demonstrates that nontrivial hydrologic information can be
obtained from river DNA. In comparison of the absolute and specific discharge approaches, it was expected
that the inclusion of basin area would be highly informative. It is expected that other basic hydrologic prop-
erties such as basin-averaged precipitation would improve our results further. However, the objective of
this study was to test if bacteria alone, without any other ancillary data about the hydrologic system, carry
hydrologic information. There are many possible genohydrology approaches for incorporation of DNA-
derived data into predictive macroscale models, and this study is only an initial investigation. We expect the
accuracy of genohydrology approaches to improve with more extensive sampling of aquatic bacterial DNA
across a larger range of river flow regimes.

For specific rivers, in the cases when the genohydrology approach was not an improvement over the mean
of the other rivers, the decrease in model fit was small. Conversely, when the genohydrology approach did
improve over the mean of the others, the improvement was much larger. This skewness is likely caused by
the fact that genohydrology approach is constructed to predict log relative anomalies from the means of
the others (either specific or absolute discharge). Thus, if the DNA carries little information, ŷ j;t approaches
zero, and predictions do not deviate strongly from the means of the other training rivers. However, when
the DNA does contain information about the hydrologic system, these improvements can be quite large.

The genohydrology approach was more successful in predicting average monthly flows than predicting
flows associated with different return periods. This suggests that the average seasonal variations in river
conditions are more influential on bacterial community structure than discharge associated with events of
different frequencies. However, when looking at the discharges associated with return intervals greater
than 1 year, the accuracy of our approach improved. These larger discharge values, which occur less fre-
quently, are most likely to occur during the summer months when they do occur. Higher accuracy during
summer months and at longer return intervals is likely due to the fact that the DNA was collected in sum-
mer. It is possible that winter sampling of DNA would yield improved predictions of discharges associated
with winter months and smaller return intervals.
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The OTU-based genohydrology models used in this study were created using Support Vector Regression,
though other machine learning techniques may be applicable. Machine learning techniques can be prone
to both overfitting and underfitting (Pedregosa et al., 2012), and the removal of superfluous information via
data reduction approaches aids in fitting. Given the small number of rivers examined here, we focused on
OTUs that appeared in five of six surveyed rivers. We also examined prediction accuracy using the OTUs
that appeared in all six rivers (only three OTUs total), and on the OTUs that appeared in less than five of the
rivers. Both cases resulted in much worse predictions (results not shown), suggesting that when either too
few features or too few samples are used, prediction accuracy decreases. Given the limited number of sam-
pled rivers, we employed a leave-one-out cross validation approach of training prediction models with OTU
and flow data from five rivers and testing this on the sixth. This resulted in 16% of the observations being

Figure 6. Average of the standardized SVR regression coefficients used in prediction of discharge (left) for different
months of the year and (right) for different recurrence intervals. The phylum (P), class (C), order (O), and family (F) of OTUs
are listed when known.
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used for validation. Further studies based on DNA information from more rivers may wish to use a higher
percentage of observations for cross validation.

The six rivers in this study are all found at northern latitudes, and they share broadly similar climate (Arctic), veg-
etation (tundra and taiga), and natural bacteria communities (Crump et al., 2009). At present, it is unclear how
widely applicable the OTU-based prediction models derived here are, because collection methods and DNA
analysis varies significantly between surveys of aquatic microbial communities. Comparison of standardized
regression coefficients (Figure 6) allows us to diagnose the stability of our prediction models for different predic-
tion intervals. Each vertical column of Figure 6 represents an average of six prediction models. There is some sta-
bility in the average prediction model across different prediction months or recurrence intervals. In the case of
the monthly coefficients, the summer coefficients often have a different sign than the winter coefficients, sug-
gesting that a different set of OTUs are most informative of flows in different seasons. For the discharge predic-
tions at different recurrence intervals, an inflection point occurs at 1 year, with distinct sets of coefficients for
models at greater than and less than 1 year. Furthermore, the subyear return interval coefficients more closely
match those of monthly prediction values during wither months only. This is consistent because summer
months and longer recurrence intervals both represent periods associated with larger discharge values.

Comparison of standardized average regression coefficient values at different prediction intervals also provides
some insight into which bacterial taxa are likely associated with which type of flow. In the models explored
here, a positive (or negative) SVR regression coefficient corresponds to larger (or smaller) discharge predictions
when those bacteria are more abundant. For both seasonal flow and recurrence interval predictions greater
than one year, the SVR regression coefficients had strong consistency in sign, and, to a lesser degree, in magni-
tude. However, given the limited number of rivers (six) examined here, and the fact that samples were only col-
lected once, it remains difficult to associated specific OTUs with specific hydrologic patterns at this time.

5. Conclusions

In this study, we examined the suitability of using bacterial DNA fragments to predict seasonal discharge
dynamics and the discharge expected at various return intervals. Our approach was successful in demon-
strating that DNA-derived information, as captured in the relative abundance of different OTUs, contains
information about discharge levels. Predictions of discharge volume improved once the OTU data were
incorporated. While the number of rivers involved in this study (six), their sampling period (June only), and
the sequencing approach (16S rRNA clone libraries), are somewhat limiting, further studies with more sam-
pling points in space and time, as well as improved sequencing techniques will likely expand the applica-
tions and improve the precision of the genohydrology approach.
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