Enhanced resistance in *Theobroma cacao* against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

Emily E. Helliwell1,2,†, Julio Vega-Arreguín3,†,‡, Zi Shi1,‡,§, Bryan Bailey4, Shunyuan Xiao5, Siela N. Maximova1,‡, Brett M. Tyler2,3,† and Mark J. Guiltinan1,‡,‡

1Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
2Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
3Virginia Bioinformatics Institute and Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
4Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
5United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA

*These authors contributed equally to this work.
†These authors contributed equally to this work.
‡These authors contributed equally to this work.
§These authors contributed equally to this work.

Accession number: VAM7.P32912.1; Hs: D50050; PepP1: AAG10896.1; GmPh1: NP_001235232.1; FAP1: AAG15199.1; pHG00.0126:KF018690.1.

Keywords: *Theobroma cacao*, disease resistance, phosphatidylinositol-3-phosphate-binding protein, effectors, oomycetes, fungi.

Summary

The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree *Theobroma cacao*. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of *T. cacao* greatly reduced infection by two oomycete pathogens, *Phytophthora tropicalis* and *Phytophthora palmivora*, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI3P-binding protein. Stably transformed, transgenic *T. cacao* plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both *P. tropicalis* and *P. palmivora*, as well as to the fungal pathogen *Colletotrichum theobromicola*. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in *T. cacao*, and potentially in other plants, against a broad spectrum of pathogens.

Introduction

Plant defence involves two overlapping tiers of responses (Jones and Dangl, 2006). The first is triggered when plants detect conserved microbial molecular signatures (microbe-associated molecular patterns—MAMPs), and is called PAMP-triggered immunity (PTI). PTI includes rapid production of reactive oxygen species, antimicrobial molecules such as phytoalexins, and pathogenesis-related (PR) proteins.

Successful pathogens have evolved effector proteins, which can inhibit host defence responses (Giraldo and Valent, 2013; Torto-Alalibo et al., 2010; Tyler and Rouxel, 2013). For example, in the oomycete *Phytophthora sojae*, 22 of 49 effectors screened could suppress PAMP-triggered responses (Wang et al., 2011). The second tier of plant defence involves detection of effector proteins by host resistance (R) proteins (usually but not always nucleotide-binding leucine-rich repeat proteins) and is termed effector-triggered immunity (ETI) (Jones and Dangl, 2006). ETI can be readily overcome if pathogen strains emerge that have lost expression of the effectors or carry variant effectors that are no longer recognized by the R protein. Many effectors show high variability among pathogen species, so R-gene-mediated resistance is often ineffective against different species of a pathogen, even from the same genus (Giraldo and Valent, 2013; Tyler and Rouxel, 2013).

Given the uneven success of conventional R genes, other strategies targeting effectors, such as blocking their function, are of interest given the importance of effectors in establishment of disease. Effectors are typically delivered into the plant cell through either pathogen- or host-encoded machinery (Tyler et al., 2013). Effector delivery may occur from apoplastic hyphae, from specialized intracellular hyphae, or from haustoria (Tyler et al., 2013) which are specialized feeding structures developed from intracellular hyphae (Hahn and Mengden, 1997; Panstruga and Dodds, 2009).

Oomycete effectors carry a short conserved N-terminal motif, RXLR, followed by several acidic residues (dEER) (Jiang et al., 2008) that are required for entry of the effectors into host cells (Dou et al., 2008; Kale et al., 2010; Tyler et al., 2013; Whisson et al., 2007). Some fungal pathogen effectors may gain entry into plant cells through the same or similar processes (Kale et al., 2010; Plett et al., 2011).
2011). The RxLR-dEER domain of oomycete effectors, and fungal effectors with RxLR-like motifs were found to bind to the lipid phosphatidylinositol-3-phosphate (P13P) (Kale et al., 2010; Plett et al., 2011) which was demonstrated to be on the surface of plant and animal cells. P13P is also necessary for endocytic processes such as protein sorting and membrane trafficking (Covara et al., 1999; DeCamilli et al., 1996; Kale et al., 2010). By preventing effectors from binding P13P using competing P13P-binding proteins or inositol-1,3-diphosphate, it was demonstrated that binding of the effectors to P13P was required for cell entry (Kale et al., 2010; Plett et al., 2011).

There are several classes of proteins that can recognize and bind to specific forms of phosphoinositides. Examples include pleckstrin homology (PH) domains, Phox homology (PX) domains, and Fab1, YOTB, Vac1 and EEA1 (FYVE) domains. Different PH domains can bind specifically to a diversity of phosphoinositides (Dowler et al., 2000; Kutateladze, 2010; Lemmon, 2008). Phox homology (PX) domains usually bind to P13P, and sometimes to PI4P (Lemmon, 2008). FYVE domains bind specifically to P13P (Kutateladze, 2010). These PI-binding proteins play diverse roles in membrane trafficking, cell growth and signal transduction (Lemmon, 2008).

An example of a crop species in which no R-gene-mediated resistance has so far been found is *Theobroma cacao*, the chocolate tree. Diseases are a major cause of crop loss, reducing the cacao yield by an estimated 30% (about 810 000 tons) per year and causing much farmer hardship (Keane and Putter, 2008). Diseases are a major cause of crop loss, reducing the cacao yield by an estimated 30% (about 810 000 tons) per year and causing much farmer hardship (Keane and Putter, 2008). Theobroma cacao is susceptible to mummification. The genomes of these three pathogens encode numerous RxLR effectors (B. Tyler, B. Bailey, M. Guiltinan, unpublished data).

To test the efficacy of secreting PI3P-binding proteins in cacao leaves, we developed an *Agrobacterium*-mediated transient gene expression system (agro-infiltration) capable of expressing substantial amounts of the proteins in a large percentage of leaf cells (Shi et al., 2013). The transgenes were driven by a very strong modified E12-Ω CaMV35S promoter (Mitsuhara et al., 1996). Two types of constructs were tested, those in which EGFP was directly fused to the test genes to create a fusion protein, and nonfusion constructs in which the two coding sequences were driven by separate promoters (Figure 1a). To quantify transcription of the transgenes after transient expression in the cacao leaves, quantitative reverse transcriptase–PCR (qRT-PCR) employing primer pairs separately spanning the PI-P-binding region and the EGFP region was used to measure transcript levels in leaves, 2 days after infiltration (Figure 2). Transcript levels following transient expression of each transgene were approximately the same in each case and similar to those of the endogenous controls *Theobroma cacao Acyl-Carrier Protein 1* (TcACP1) and *TcTubulin 1* (TcTubulin 1). When the expression of the two components of the fused transcripts was measured individually using the specific primer sets (PI-P-binding domain and EGFP), as expected, there were no significant differences. Similar results were also observed when the PI-P-binding domain genes and EGFP were driven by separate promoters.

Cacao leaves transiently expressing apoplast-targeted P13P-binding domains show increased resistance to *P. tropicalis*

To test the effect of P13P-binding domain expression on pathogen resistance, the P13P-binding proteins were expressed in cacao leaves by agro-infiltration, and the expression was verified using the EGFP reporter protein (Figure 3a). The reduced level of green fluorescence observed with the fusion proteins relative to the

Table 1 The names, species of origin, accession numbers, class type, binding specificity and size of all the domains used in this study

<table>
<thead>
<tr>
<th>Domain name</th>
<th>Species</th>
<th>Accession number</th>
<th>Domain type</th>
<th>Binding specificity</th>
<th>Length (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAM7p-PX</td>
<td>Saccharomyces cerevisiae</td>
<td>P32912.1</td>
<td>Phox homology (PX)</td>
<td>P13P</td>
<td>0.4</td>
</tr>
<tr>
<td>Hrs-2xFYVE</td>
<td>Mus musculus</td>
<td>D50050</td>
<td>Fab1, YOTB, Vac1, EEA1 (FYVE)</td>
<td>P13P</td>
<td>0.5</td>
</tr>
<tr>
<td>PEPP1-PH</td>
<td>Homo sapiens</td>
<td>AAG01896.1</td>
<td>Pleckstrin Homology (PH)</td>
<td>P13P</td>
<td>0.45</td>
</tr>
<tr>
<td>GmPH1-PH</td>
<td>Glycine max</td>
<td>NP.001235232.1</td>
<td>Pleckstrin Homology (PH)</td>
<td>P13P</td>
<td>0.45</td>
</tr>
<tr>
<td>FAP1-PH</td>
<td>Homo sapiens</td>
<td>AAG15199.1</td>
<td>Pleckstrin Homology (PH)</td>
<td>P4P</td>
<td>0.3</td>
</tr>
</tbody>
</table>

EGFP-only control is likely a result of export of the fusion protein into the apoplastic space where the lower pH in the apoplastic space would quench the GFP signal. Weak GFP fluorescence observed in the cytoplasm in these cases is likely due to incomplete secretion of the proteins and/or re-entry of the secreted proteins into the cells (Kale et al., 2010). After 48 h, agar plugs containing P. tropicalis isolate 73–74 were placed on each leaf (Figure 3b) alongside a control consisting of sterile agar plugs. Pathogen infection was evaluated after 3 days by two methods, lesion area (Figure 3c) and the relative amount of pathogen genomic DNA (Figure 3d). Pathogen DNA levels were measured by quantitative PCR (qPCR) using DNA isolated from standard-sized leaf discs, using primers specific for pathogen and cacao Actin genes. The ratio of these two measurements was used as an indicator of the relative amount of pathogen DNA present in each lesion, which is a proxy for the pathogen biomass.

As compared to the control transformation lacking a PI3P-binding protein, cacao leaves expressing the PI3P-binding domains from VAM7p, Hrs, PEPP1, and GmPH1 showed 55%–85% reduction both in the areas of the lesions and in P. tropicalis colonization (as measured by genomic DNA levels) (Figure 3). Inoculation experiments with cacao leaves expressing SP::VAM7p, SP::Hrs, and SP::PEPP1 unfused to an EGFP protein showed no difference to results compared to leaves expressing fusion proteins (Figure S1). The expression of the PI4P-binding domain from FAPP1 resulted in lesion sizes that were not significantly different than the control leaves. Lastly, transformation of constructs encoding two different mutated domains, VAM7 m and Hrsm, that could no longer bind PI3P (Cheever et al., 2001; Kutateladze, 2006; Raiborg et al., 2001) (Figure 1b) had no significant effect on lesion size, nor on pathogen biomass, confirming that the PI3P-binding activity of these two proteins was required to produce resistance.

Figure 1 Design of constructs and mutant controls. (a) Structure of transgene cassettes used in this study. Constructs (i) and (ii) both include regions encoding a phosphoinositide (P-I-P)-binding domain fused to a signal peptide (SP) under the control of a strong constitutive promoter (35sE12). In (i), there is an EGFP reporter gene fused to the SP+P-I-P construct (VAM7p, Hrs, PEPP1, GmPH1, FAPP1). In (ii), the EGFP is under the control of a separate 35sE12 promoter, but without the signal peptide (PEPP1). (b) Amino acid sequences of two PI3P-binding domains and their mutated versions: VAM7p and its mutant, VAM7 m (Cheever et al., 2000); and the duplicated FYVE domain from Hrs and its mutant, Hrsm (Kutateladze, 2006; Raiborg et al., 2001).
Cacao leaves transiently expressing PI3P-binding domains show increased resistance to *P. palmivora*, a virulent agent of black pod rot

To test the efficacy of the constructs against a second cacao pathogen, leaves transiently expressing functional or mutated VAM7p domains or the EGFP-only control (Figure 4) were challenged with *P. palmivora*. Leaves expressing functional VAM7p showed significantly reduced lesion sizes and pathogen colonization as compared to the leaves expressing either mutated VAM7p domain or the EGFP-only control (Figure 4).

Apoplastic targeting of PI3P-binding domain proteins is required for resistance to *P. tropicalis*

The effector-blocking strategy assumes that the PI3P-binding domains must be targeted to the apoplastic space, to bind PI3P in the outer leaflet of the plasma membrane. To test this assumption, a PEPP1 PI3P-binding domain construct lacking a secretory leader was used (named PEPP1::EGFP in Figure 1a), which should result in protein accumulation solely in the cytoplasm. The expression of PEPP1::EGFP resulted in high levels of EGFP fluorescence in the cytoplasm approximately similar to the EGFP-only control, whereas, as expected, the SP::PEPP1::EGFP construct produced very little cytoplasmic EGFP (Figure 5a). Based on the lesion size and genomic qPCR bioassays, there was no significant difference in resistance conferred by the cytoplasmic-targeted PEPP1::EGFP compared with the control EGFP-only (Figure 5b). On the other hand, cacao leaves transformed with the apoplast-targeted SP::PEPP1::EGFP construct showed significantly smaller lesions and significantly less *P. tropicalis* colonization. These results demonstrate that to confer resistance to *P. tropicalis*, the PI3P-binding domains must be targeted to the apoplastic space.

Generation and verification of stable transgenic T. cacao plants expressing PI3P-binding domains from VAM7p, VAM7 mutant and Hrs

As a further test of the efficacy of the strategy, we generated stably transformed cacao plants expressing two of the PI3P-binding domains using Agrobacterium-mediated transformation (Maximova et al., 2003). Stable transgenic plants carrying the SP::VAM7p construct (two independent lines), the SP::Hrs::EGFP construct (one line) and the SP::VAM7 m (non-PI3P-binding VAM7p mutant; one line) were produced and maintained in greenhouse conditions along with rooted cuttings of a control stable transgenic line carrying an EGFP-only construct.

The presence of the transgenes was confirmed using a PCR-based analysis (Maximova et al., 2003) (Figure 6a). Three different sets of primers were designed to amplify a 100-bp sequence from the *TcActin* gene, a 500-bp sequence from the EGFP transgene and a 411-bp sequence (Bin19 backbone) located outside of the T-DNA region of the p126 transformation vector and not expected to be transferred to the transgenic plant genome. DNA was isolated from leaf tissues of five different genotypes: nontransformed cacao, EGFP-only transformants, SP::Hrs::EGFP transformants, SP::VAM7p transformants and SP::VAM7 m transformants. As expected, control p126A plasmid DNA produced amplified fragments with both Bin19 and EGFP primers. The nontransformed cacao samples produced amplified fragments only for cacao actin. Amplification of DNA from the transgenic cacao leaves using the three primer pairs resulted in products from *TcActin* and *EGFP*, but not from Bin19. The absence of Bin19 products from the stable transformants confirmed that there was no *Agrobacterium* present, nor any plasmid DNA contamination in the transgenic leaves. Therefore, it was inferred that genomic integration of the T-DNA had occurred in each of the transformants as expected, without inclusion of the flanking, non-T-DNA region of the Ti plasmids used.

The transcript levels of the constructs encoding the PI3P-binding domains and EGFP were measured using qRT-PCR (Figure 6b). The *EGFP* primers revealed transgene transcript levels about 90- to 180-fold higher than the endogenous *TcACP1* and *TcTubulin1* transcripts in the VAM7p-, Hrs- and VAM7 m-expressing lines and the control (EGFP-only). The *Hrs* primers revealed transgene transcript levels in the SP::Hrs::EGFP-expressing line about 300-fold higher than the *TcACP1* and *TcTubulin1* transcripts (the high signal from the Hrs primers relative to the EGFP primers likely results from the duplication of the FYVE domain). As expected, the *Hrs* primers did not amplify any sequences from the EGFP-only and SP::VAM7 lines. Likewise, the VAM7 m primers revealed transgene transcripts around 200-fold higher than *TcACP1* and *TcTubulin1* transcripts in the two SP::VAM7 lines and 100-fold higher in the SP::VAM7 m line, but failed to amplify any sequences from the EGFP-only and SP::Hrs::EGFP lines.

To confirm that the secreted proteins remained intact in the apoplastic space, a Western blot was performed to detect Hrs fused to EGFP. Total protein was extracted from three leaves each from Scavina6, from the EGFP-only transformant and from the SP::Hrs::EGFP transformant and blotted with a GFP-specific antibody. The blot revealed no GFP-positive proteins in Scavina6, proteins of expected size (~32 kDa) for EGFP in the EGFP-only samples, and two protein bands in the SP::Hrs::EGFP samples: larger bands of about 50–52 kDa, which is the expected size of a Hrs::EGFP fusion protein, and 32 kDa, showing that some cleavage occurs between the Hrs and the EGFP proteins (Figure 52).
At a gross morphological and developmental level, all transgenic plants appeared phenotypically normal. No obvious visible differences in growth rate or morphology were observed in any of the plants relative to nontransgenic plants grown in identical conditions (Figure S3a). Visualization of EGFP in leaves from stable transgenic plants expressing EGFP (cytoplasmic-localized EGFP) or SP::Hrs::EGFP (apoplastic-localized EGFP) (Figure S3b) resembled the distribution of EGFP in transient expression experiments (Figures 3 and 5); cytoplasmically localized EGFP appeared much brighter than apoplastically localized EGFP due to quenching. Visualization of EGFP in SP::VAM7p and SP::VAM7m stable transgenic plants revealed a bright cytoplasmic EGFP signal, as the EGFP protein is targeted to the cytoplasm and is not produced as a fusion to the signal peptide and PI-binding protein (Figure S3b). To verify that the expression of the PI-binding proteins caused no severe membrane dysfunction or cell death, leaf discs from untransformed Scavina6, SP::Hrs::EGFP and SP::VAM7p constructs were stained with propidium iodide and compared with stained leaf discs that were previously killed with CuSO4. In healthy tissue, it is expected that propidium iodide is excluded from the inside of the cells, showing only staining of the membrane. In dead tissue, the cell membrane is permeable, allowing for staining of cellular contents. As shown in Figure S3c, Scavina6 leaf tissue killed with CuSO4 showed staining of the cellular contents, but not of the membrane, whereas staining of Scavina6 leaves and leaves from the SP::Hrs::EGFP and SP::VAM7p transformants showed staining of cell membranes, with the stain being excluded from the intracellular space.

Figure 3 Transient expression of apoplast-targeted PI3P-binding domain proteins confers resistance to *Phytophthora tropicalis* in cacao. (a) Cacao leaf tissue transiently expressing EGFP 48 h after transformation by vacuum infiltration. Bars represent 250 μm. (b) Representative transiently transformed leaves, 3 days postinoculation with 3-mm2 agar plugs containing *P. tropicalis* mycelia (right) and clean agar plugs (left). Bars represent 1 cm. (c) Average lesion areas from each genotype 3 days postinoculation, calculated by ImageJ. Each bar represents the mean ± standard error (SE) from three independent biological replicates, with 18 lesions per replicate. (d) Proliferation of *P. tropicalis* as determined by qPCR analysis of the genomic DNA ratio of *P. tropicalis* to *T. cacao* 3 days post-inoculation. Three lesions from each leaf piece were combined and extracted as a single genomic DNA sample. Each bar in the graph represents the mean ± SE of three independent biological replicates, with each replicate consisting of three inoculation sites from two pieces from different leaves. In (c) and (d), asterisks indicate significant differences (P < 0.05) to the EGFP-only control as determined by ANOVA.

Transgenic *T. cacao* plants expressing apoplast-targeted PI3P-binding domains show enhanced resistance to two *Phytophthora* species

Leaves from stably transformed cacao plants expressing VAM7p, VAM7 m, Hrs and EGFP-only constructs were inoculated with 3-mm agar plugs containing mycelia of *P. tropicalis* isolate 73–74 or *P. palmivora* isolate DUK23.1. Leaves from a *T. cacao* transformant expressing an antimicrobial peptide, D4E1, previously shown to exhibit enhanced resistance to *P. palmivora* (Mejia et al., 2012) were inoculated alongside as a positive control for resistance. Images of representative leaves 3 days after inoculation with the *Phytophthora* pathogens are shown in Figure 7a. Following inoculation with *P. tropicalis* 73–74, the *T. cacao* lines expressing Hrs showed a 69% reduction in lesion area, while the two independent VAM7p lines showed 74% and 79% reductions.
in lesion area. This was significantly lower compared to EGFP-only-expressing leaves, and slightly better than the 60% reduction in the positive control line expressing the peptide D4E1. The mutant VAM7 m line showed about a 50% increase in lesion size that was not statistically significant, which shows that the PI3P-binding activity of the protein is required for resistance (Figure 7a, Figure 5).
Stable transgenic *T. cacao* plants expressing functional PI3P-binding domains show strong resistance to the fungal pathogen *C. theobromicola*

To test the resistance of the transformants to a fungal pathogen, leaves from the Hrs-, VAM7p-, VAM7 m- and EGFP-only-expressing lines were inoculated with 10-μL drops of a conidial suspension from two *C. theobromicola* isolates, 11–50 and 11–183. As for the *Phytophthora* resistance assays, leaves from the D4E1-expressing cacao line were used as a positive check for resistance (Mejía et al., 2012). Images of representative leaves 4 days postinoculation by 11–50 and 11–183 are shown in Figure 8a. The three lines expressing the PI3P-binding domains from Hrs and VAM7p showed lesion areas after inoculation by *C. theobromicola* 11–50 that were reduced by 95%, 91% and 94%, respectively, compared to the EGFP-only control. The D4E1-expressing leaves showed a 75% reduction, which was significantly less resistance than that displayed by the PI3P-binding protein transformants. The mutant VAM7 m line showed about a 50% reduction in lesion size; however, this difference was not significant. When inoculated by a second *C. theobromicola* isolate, 11–183, the PI3P-binding protein transformants showed lesion areas reduced by 90%, 83% and 87%, respectively (Figure 8b), while the resistance conferred by the peptide was significantly weaker (55% reduction). The mutant VAM7 m line showed a 42% reduction in lesion area; however, this difference again was not significant. The strong resistance conferred by the PI3P-binding protein constructs was confirmed by qPCR quantification of *C. theobromicola* genomic DNA content: the genomic DNA content of 11–50 was reduced by 98% in the Hrs- and two VAM7p-expressing transgenic lines compared to the EGFP-only control line, while the expression of the peptide resulted in a 94% reduction of pathogen genomic DNA content. The genomic DNA content of 11–183 was reduced 97% in all three PI3P-binding lines and by 74% in the peptide-expressing line. The mutant VAM7 m line showed a 20% increase in both 11–50 and 11–183 genomic DNA (Figure 8c), showing that the slight decrease in lesion area was not associated with decreased pathogen colonization.

Discussion

Fungal and oomycete pathogens cause billions of dollars of economic loss each year throughout the world. For many crops, the lack of good resistance genes and difficult breeding systems means farmers must rely on chemical or cultural methods of disease management. Even when resistance genes are deployed in cultivars, the pathogen populations can often evolve rapidly to evade the resistance genes.

One critical step in the pathogen life cycle that is common across many bacterial, nematode, insect, fungal and oomycete species is the secretion and delivery of protein effectors into host cells, where they manipulate host physiology to promote the success of the pathogen (Torto-Alalibo et al., 2010). The discovery that host cell entry by many oomycete effectors and several fungal effectors involves interactions with PI3P on the plasma membrane (Kale et al., 2010; Plett et al., 2011) suggested to us a possible target for blocking effector entry. We hypothesized that if sufficient amounts of PI3P-binding proteins could be expressed and targeted to the apoplastic space, the proteins could competitively inhibit the PI3P binding and internalization of pathogen effectors, resulting in enhanced disease resistance.
Our results demonstrated that the expression of four completely different PI3P-binding proteins targeted to the apoplastic space did provide resistance against two oomycete pathogens and a fungal pathogen. Three of the four proteins were previously shown to block entry by oomycete and fungal effectors (Kale et al., 2010). No resistance was conferred by a PI4P-binding protein, nor by two proteins with mutations that abolish PI3P binding. Furthermore, targeting of the proteins to the apoplast was required to confer resistance. Resistance was observed both in transiently transformed cacao leaves and in three stably transformed whole plants. Together, the results support our original hypothesis that apoplastic expression of PI3P-binding proteins could be capable of reducing infection.

Although secretion of PI3P-binding proteins results in resistance, the precise mechanisms by which they confer resistance remain to be investigated. Although the blocking of effector entry is the most obvious mechanism, it is also possible that the proteins trigger some kind of resistance or priming response. The purpose of external PI3P on plant cell membranes is currently unknown, and a role in defense signaling is not ruled out currently. Our data also do not rule out that the site of action of the PI3P-binding proteins is within the endomembrane system rather than in the apoplast. The very strong resistance against *C. theobromicola* suggests either that this pathogen utilizes PI3P to deliver its effectors into host cells (which is currently unknown) or that the plants are expressing a broader mechanism of resistance.

So far, we have produced three stable cacao transformants. The resistance phenotypes of these plants are similar and are consistent with the transient expression results. We are producing additional stable transformants, including plants expressing other PI3P-binding proteins, to further confirm the efficacy of these transgenes, and to improve the levels of resistance. So far, the transgenic plants have not been tested for resistance against the three most destructive pathogens of cacao, namely the oomycete *P. megakarya* and the fungi *Moniliophthora perniciosa* (witches’ broom) and *Moniliophthora roreri* (frosty pod), because this will require maturation of whole plants and fruit production.

In summary, our data suggest that this technology offers a promising level of resistance against diverse pathogens that may be applicable to a wide range of crop species.

Experimental procedures

Binary vector construction

All sequences of PI-P-binding domains were obtained from public databases and synthesized by GenScript Corporation, with codon
optimization for expression in *E. coli* and *N. tabacum*. These included human FAPP1-PH (AAG15199.1, residues 1–99), soya bean GmPH1 [NP_001235232.1, Glyma14g06560, residues 1–146; obtained by homology to AtPH1 (Dowler et al., 2000)], human PEPP1-PH (AAG01896.1, residues 15–168), yeast VAM7p-PX (P32912.1, residues 1–134 with the substitution R73W) and mouse Hrs-2xFYVE [D50050, residues 147–223, as modified and duplicated by Gillooly et al. (2000)]. Site-specific mutagenesis of VAM7p-PX and Hrs-2xFYVE was performed using primer mutagenesis by PCR or by gene synthesis, respectively. Those mutations were previously described to abolish PI3P-binding by VAM7p-PX (Cheever et al., 2001) or by Hrs (Kutateladze, 2006; Raiborg et al., 2001). To create the EGFP-fused PI-P-binding domain vectors, binary vector pGH00-0126 (Maximova et al., 2003) was made Gateway-compatible by adding the Gateway® cassette (Invitrogen, Waltham, MA) containing *att*R recombination sites flanking a *ccd*B gene and a chloramphenicol-resistance gene, generating vector 126gfp-gw. The PI-P-binding domains were cloned into 126gfp-gw, with (sp126gfp-gw) or without the signal peptide (SP) sequence from the *Glycine max* PR1a gene (NM_001251239, residues 1–27). Constructs where the PI-P-binding domain was not fused to EGFP were created by adding SpeI and HpaI restriction sites onto the SP::PI-P-binding domain segment and subcloning into pGH00.0126 (GenBank: KF018690.1). All constructs were transformed into *Agrobacterium tumefaciens* strain AGL1 for both transient and stable transformations.

Transient and stable transformation of *T. cacao*

For transient transformation of detached cacao leaves, *A. tumefaciens* cells containing each transgene were grown as described in Maximova et al. (2003), induced with acetosyringone, and then vacuum-infiltrated into stage C leaves from cultivar Scavina6 as described in Shi et al. (2013). The Petri dishes were sealed and incubated at 25 °C for 2 days with light intensity of 145 m²/s and 14-h daylight. After 2 days, EGFP fluorescence was examined as described (Maximova et al., 2003). Only leaves with green fluorescence coverage of 80% or more were further subjected to pathogen infection. Stable transformation of cacao was performed as described (Maximova et al., 2003). Resulting stable transformants were grown for about 6 weeks in greenhouse conditions before leaves were sampled for further experiments.
Protein extraction and Western blot

Total protein was extracted from three leaves each of nontransformed Scavina6, stable transformed EGFP-only plants and stable transformed SP::Hrs::EGFP plants following the protocol of Pirovani et al. (2008). Western blotting was performed by electrophoresing 15 μg of total protein per sample on a 12% SDS-PAGE gel, followed by blotting onto a PVDF membrane (Millipore, Billerica, CA) using a wet transfer apparatus (BioRad, Hercules, CA). Post-transfer, the membrane was blocked with 2% bovine serum albumin in PBS-T (137 mM NaCl; 2.7 mM KCl; 10 mM Na2HPO4; 1.8 mM KH2PO4; 0.1% Tween-20), rinsed and incubated for 16 h with rabbit anti-EGFP primary antibody (Immunology Consultants Lab, Inc., Portland, OR) at 4 °C. The membrane was rinsed in PBS-T, incubated for 1 h at room temperature with 1:10,000 dilution of HRP-linked anti-rabbit secondary antibody (GE Healthcare, Buckinghamshire, UK) and then rinsed and exposed with West Pico Chemiluminescent Substrate (Thermo Scientific, Waltham, MA) before visualization with PhosphorImager (Storm 860; GE Healthcare, Buckinghamshire, UK).

Propidium iodide staining

Leaf discs (2.5 cm²) from stage C cacao leaves were vacuum-infiltrated using three 2-min applications of 10 μL of a sufficient concentration to cover a leaf disc of 30 μg/mL propidium iodide (PI). 0.02% Silwet in dH2O. Mock-treated samples were prepared the same way, but were infiltrated with 100 μL dH2O containing 0.02% Silwet without PI. To serve as a positive control for dead tissue, a set of leaf discs was infiltrated with 1 μM CuSO4 30 min prior to staining with propidium iodide. Leaf discs were mounted in water adaxial side up and imaged on a Zeiss AxioObserver (Carl Zeiss Microscopy GmbH, Jena, Germany) spinning disc confocal microscope, with a 561-nm excitation beam, 617/73 emission filter set and 20× objective. Z-stacks were generated that included the entire depth of the first epidermal cell layer, with 0.2 μm distance between slices. The same laser power, exposure time and detector gain were used for every slice and every sample.

Verification of transgene expression

To measure the levels of transcripts spanning the PI-P-binding domains and EGFP regions of the constructs, RNA was extracted from stage C leaves from stable transgenic lines or, in the case of transient expression experiments, from stage C Scavina6 leaves 5 days following infiltration with A. tumefaciens cells. In the case of transient expression experiments, the right-hand side of each leaf was inoculated with P. tropicalis, while the left side of each leaf, which was taken for RNA analysis, was mock-inoculated; this ensured that transcript levels were measured under the same conditions as the pathogen assays. RNA was extracted from the leaves using Plant RNA Reagent (Invitrogen) according to the manufacturer’s protocol. cDNA synthesis was performed using the New England Biolabs (Ipswich, MA) cDNA Synthesis Kit. Transcript levels were measured by quantitative real-time PCR on a Step One Plus Real-Time PCR System (Applied Biosystems, Waltham, MA) with Takara SYBR Green reagent. PCR cycles were performed at 94 °C for 15 min, followed by 40 cycles of 94 °C for 30 s, 60 °C for 1 min and 72 °C for 1 min. Transcript levels from each transgene were measured relative to the transcript levels of TcACP1 (Tc01g039970) and TcTubulin1 (Tc06g000360) of each sample. Primer sequences are listed in Table S1.

To verify transgene insertion in the stable transformants, genomic DNA was extracted from cacao leaves using a modified CTAB method. Stage C leaves were frozen in liquid nitrogen and ground with a mortar and pestle with extraction buffer [10 mM Tris-HCl pH 8.0; 1.4 M NaCl; 10 mM Na2EDTA pH 8.0, 2% polyvinylpyrrolidone (PVP), 2% cetyltrimethylammonium bromide (CTAB) and 0.2% β-mercaptoethanol] and then further homogenized using a TissueLyzer. Nucleic acids were separated using chloroform-isamyl alcohol (24 : 1) and precipitated using isopropanol. Pellets were dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA pH 8.0) and treated with RNase A (10 μg/mL) for 30 min at 37 °C, then re-extracted with phenol: chloroform-isamyl alcohol (25 : 24 : 1) and precipitated using 2.5 M ammonium acetate and 70% ethanol. Resulting pellets were dissolved in sterile dH2O, and the quantity and quality were checked using a Nanodrop spectrophotometer (Thermo Scientific). A total of 10 ng of each sample was amplified using all three sets of primers (T. cacao actin, Bin19 and EGFP, listed in Table S1) at 94 °C for 4 min, followed by 30 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min. Prior to termination, the samples were incubated at 72 °C for 7 min. Samples (20 μL) of each reaction were analysed by electrophoresis on a 2% agarose gel.

Pathogenicity assays

Oomycete pathogens P. tropicalis and P. palmivora were grown on 20% unclarified V8 medium (100 mL/L V8 juice, 3 g/L calcium carbonate and 15 g/L bacto agar) for 2 days at 27 °C, 12-h daylight. Stage C Scavina6 cacao leaves were inoculated, abaxial side up, on the right-hand side with three agar plugs containing actively growing Phytophthora mycelium from the margin of the colony, while the left-hand side was inoculated with sterile agar plugs as a negative control. Inoculated leaves were incubated at 27 °C and 12-h daylight cycle for 3 days before the evaluation of disease symptoms. The leaves were photographed with a Nikon D90 camera (Nikon, Tokyo, Japan) and lesion sizes were measured using ImageJ software tools (Image.j.nih.gov). Average lesion sizes were calculated from three replicates of 18 measurements each, and significance was determined by single-factor ANOVA.

Colletotrichum theobromicola isolates (11–50 and 11–183) were grown on potato dextrose agar (Sigma-Aldrich, St. Louis, MO) for 8 days at 27 °C and 12-h daylight. For inoculations, spores were suspended in sterile deionized water with 0.02% Tween-20, and the concentration was adjusted to 10⁶ spores/mL with a hemocytometer. Leaf pieces, abaxial side up, were inoculated with three 10-μL drops on the right side, while three drops of deionized water were placed on the left side as control. Inoculated leaves were incubated at 27 °C and 12-h daylight for 4 days. Leaves were photographed and lesion sizes were measured as described above.

To assay pathogen DNA as a measure of virulence, the ratio of Phytophthora or Colletotrichum DNA to cacao DNA was determined by qPCR as follows. Tissue samples including the lesions and 2.5 cm² for P. tropicalis and C. theobromicola, and 2.5 cm² for P. palmivora surrounding the inoculation site were excised from the infected leaves and used for genomic DNA extraction. Tissue was ground using a TissueLyzer homogenizer followed by DNA purification with DNeasy Plant Mini Kit (Qiagen, Venlo, Netherlands). DNA qPCR was performed as described (Wang et al., 2011) using an ABI 7300 Real-Time PCR System (Applied Biosystems). The relative amount of Phytophthora or Colletotri-
chum genomic DNA in leaf discs was measured by amplification of the single-copy PcActin (BT031870.1), CtTubulin (KC512191.1) and TcActin (Tc011019000) genes (Table S1), and the ratio of Phytophthora or Colletotrichum to cacao DNA was calculated as two to the power of the difference between Ct numbers.

Acknowledgements

We would like to thank Lena Sheaffer and Sharon Pishak for the technical assistance in maintenance of our cacao tissue culture and transformation pipelines, Germán Sandoya for assistance with statistical analyses, Daniel McClosky for assistance with staining and microscopy procedures, Dylan Storey for advice on distinguishing P. tropicalis from P. capsici, and Brent Kronmiller for bioinformatics assistance. We are also grateful to Andrew Fister and Yufan Zhang for valuable comments throughout this project. This work was supported in part by The Pennsylvania State University, College of Agricultural Sciences, The Huck Institutes of Life Sciences, the American Research Institute Penn State Endowed Program in the Molecular Biology of Cacao and grants from the National Science Foundation BREAD Program (IOS-0965353) to BT, MG, SM and SX, and to BT from the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number (2011-68004-30104).

Conflict of interest

The technology described in this manuscript is the subject of invention disclosures and patent applications by the authors. No other specific conflicts exist.

References

Supporting information

Additional Supporting information may be found in the online version of this article:

Figure S1 Transient expression of apoplast-targeted PI3P-binding domain proteins unfused to EGFP also confers resistance to *P. tropicalis* in cacao.

Figure S2 Western blot of total proteins extracted from fresh tissue of nontransformed and stable transformed stage C cacao leaves.

Figure S3 Characterization of stable transgenic cacao plants expressing PI-binding domain proteins.

Table S1 The list of primers used in this study.