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baroclinic wind forced interior motions is studied as a function of

latitude. The relative excitation of continental shelf waves and

internal Kelvin waves is studied.
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shows vertically propagating subinertial motions. Several examples

which illustrate the basic properties of the response are presented.

Chan9es in amplitude and frequency with depth are predicted.

Conponertts that decay with depth from the surface and components
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that represent coastal internal Kelvin waves with negative vertical

group velocity and upward phase propagation are forced.

The effect of bottom Ekman layer friction and slope topography

on free internal Kelvin waves is examined, using both a steep and

weak slope model. The steep slope represents the low latitude case

while the weak slope represents the mid-latitude case. There are

substantial differences between the results from the two models.

Free waves are frictionally damped and offshore and vertical phase

shifts are induced by friction, as well as an onshore flow. Topography

induces changes to the wave frequency and alongshore phase speed. The

modal amplitude is altered and an onshore flow is induced.

Sea level and current velocity data from the equator to l7°S on

the west coast of South America show that low frequency (0.1-0.2 cpd)

fluctuations propagate poleward with phase speeds similar to those

predicted for first mode baroclinic Kelvin waves. The sea level

and currents are coherent and approximately 1800 out of phase. The

waves do not appear to be the result of local atmospheric forcing.

Empirical orthogonal functions show that the alongshore and vertical

structure of alongshore velocity is consistent with first mode

internal Kelvin waves.
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ON COASTAL TRAPPED WAVES AT LOW LATITUDES IN A STRATIFIED OCEAN

Chapter I

INTRODuCTION
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ON COASTAL TRAPPED WAVES AT LOW LATITUDES IN A STRATIFIED OCEAN

I. introduction

During 1876-1977 an extensive oceanographic field, program called

JOINT-2 was conducted off the central Peru coast between 100 and 15°S

latitude as part of the Coastal Upweiling Ecosystems Analysis Program.

The ESACAN (Estudlo del Sistema de Afloramiento Costero en el Area

Norte) field experiment during 1977 near 5°S off the Peru coast

supplemented the JOINT-2 observations and the combined data set provides

us with observations along the Peru coast between 50 and 15°S.

Using a subset of this data, Smith (1978) found propagation of

fluctuations in sea level and currents between 10° and 15°S at about

200 km day in the poleward direction. These fluctuations were in the

0.1-0.2 cpd frequency band and did not appear well correlated with' the

local winds. While coastally trapped waves have been observed at

mid-latitudes (e.g., Hammon, 1966; Cutchin and Smith, 1973; Kundu

and Allen, 1976; Brooks and Hooers, 1977), the Peru observations are

of particular interest because they are low latitude measurements.

At mid-latitudes, barotropic continental shelf waves are observed,

whose structure and dynamics are governed by shelf-slope topography

with only small effects due to stratification. These waves have been

well studied theoretically (e.g., Reid, 1958; Robinson, 1954; Mysak,
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1967; Buchwald and Adams, 1968; Adams and Buchwald, 1969; Gill and

Schumann, 1974; Huthnance, 1975). In addition, perturbation effects

on continental shelf waves due to bottom friction, and variations in

Conchs parameter, coastline curvature, and bottom topography have

been studied (e.g., Allen, 1976; Buchwald, 1977; Clarke, 1977; Grimshaw,

1977; Brink and Allen, 1978; Brink, 1980)

Allen and Romea (1980) have shown theoretically that, at low

latitudes, coastal trapped waves are not barotropic and internal Kelvin

waves may play an important role in shelf dynamics. Analysis of the

structure of the current fluctuations and the dynamic balances from the

JOINT-2 data (Smith, 1978; Brink, et. al., 1978; Brink, et. al., 1980;

Allen and Smith, 1981) suggests that the waves near 15CS are internal

Kelvin wave-like.

This thesis is motivated by a desire to better understand the Peru

observations. In order to model low latitude coastal wave dynamics,

both the effects of stratifi cation and topography should be inch uded.

This is relatively difficult and, in the past, investigators have

appealed to two-layer models (e.g., Allen, 1975; Allen, 1976; Gill and

Clarke, 1974; Allen and Romea, 1980) and numerical models with

realistic stratification (e.g., Huthnance, 1978; Brink, 1982 a,b) in

order to obtain results. However, two-layer models can be difficult

to relate to observations, and numerical models have difficulties at

low latitudes (Brink, private communication). In addition, numerical

models generally solve fr pressure and it is computationally difficult

to obtain an accurate solution for velocity (see, e.g., Brink, 1982b).
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Analytical models for low latitude shelf dynamics with continuous

stratification are needed.

This study is composed of four parts, each of which addresses

a particular aspect of coastal trapped wave dynamics at low latitudes.

The first three parts are theoretical in nature, and were motivated by

a desire to fill a gap in the existing theory. In Chapter II, the

response on the continental shelf and slope to driving by an alongshore

wind stress at the coast and by barotropic and baroclinic wind forced

interior motions is studied as a function of latitude. A two layer

model is utilized. The observations off the coast of Peru indicate

that the wave-like fluctuations are typically not well correlated

with the local component of the alongshore wind stress (Brink, et. al.,

1978). Motivated by these observations, we are particularly interested

in interior oceanic motions as a possible source for the observed

propagating energy.

Offshore and vertical phase lags are observed in the velocity

data from the Peru coast (see. e.g.,, Brink, l982a). Propagation in

the offshore or vertical directions or frictional effects may be

responsible for these phase lags. In Chapter III the dynamics of

vertically propagating internal Kelvin waves at low latitudes is

studied and conditions are defined where phase lags due to vertically

propagating waves would be observed in the ocean. The perturbation

effects of both friction and topography on internal Kelvin waves in

a contiuously stratified ocean are studied in Chapter IV, and predicted

phase lags due to frictional effects are derived and compared to

observations.



5

In Chapter V. the data from the JOINT-2 and ESACAN experiments

is used to document the existence of propagating fluctuations and to

elucidate their structure. The longer and more extensive data set is

used to revisit the analysis of Smith (1978), and the behavior of the

fluctuations is compared to theories of coastal trapped waves at low

latitudes.



Chapter II

ON FORCED COASTAL TRAPPED WAVES

AT LOW LATITUDES IN A STRATIFIED OCEAN
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Introduction

The response on a continental shelf and slope to forcing by wind

stress and by interior oceanic motion will vary with latitude. This

response will also depend on the stratification, the shelf-slope topog-

raphy, and the nature of the motion in the interior ocean.

Recent observations from the Coastal Upwelling Ecosystems Analysis

(CUEA) experiment on the continental shelf and slope off the coast of

Peru (Brink etal., 1978; Smith, 1978) at lO°-15°S indicate strong

poleward propagating wavelike motions in the alongshore component of the

currents which are typically not well correlated with the local alonyshore

component of the wind stress. Motivated by these observations, we study

the characteristics of forced long waves trapped over a continental

shelf and slope as a function of latitude and we investigate the interior

oceanic motion as a possible source for the observed propagating energy.

We consider a linear inviscid two layer ocean with a continental shelf

and slope along the eastern boundary. A response may be forced on the

shelf by the wind directly through the alongshore component of the wind

stress at the coast and indirectly through the interaction with the

shelf of motions forced in the interior ocean by the wind stress curl.

We first solve the forced problem in terms of cross-shelf eigen-

functions of the unforced problem, using an f-plane. With this approach,

a first order wave equation may be obtained for the alongshore and time-

dependent behavior of each wave mode. This method is particularly well-

suited for initial-value problems where it shows how the forced flow on

the shelf develops as each wave mode responds to the forcing. Since the

phase velocities vary and the eigenfunctions change structure as a

function of latitude, the mid-latitude forced response, aspects of which
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have been discussed by Gill and Schumann (1974) and Allen (l976a), will

differ from the low latitude forced response.

The problem is also approached in another way. For an idealized

wind stress forcing, with sinusoidal dependence on time and on the

horizontal spatial coordinates (e.g., a traveling wave), the onshore-

offshore structure of the solutions on the shelf may be obtained directly.

These solutions are particularly well suited for determining the relative

importance of the various mechanisms for forcing shelf circulations.

For example, the offshore dependence of the solutions forced by the

alonyshore component of the wind stress at the coast and by the interior

wind forced barotropic and baroclinic motions may be compared as a

function of latitude, forcing frequency and wavenurnber. Since the

solutions change character for forcing at very low frequency (Section

5b), the s-effect is included in the anlaysis to establish the validity

of the f-plane solutions presented in Sections 3-5.



2) Formulation

We consider a north-south oriented boundary on the eastern side of

a two layer s-plane ocean, where Cartesian coordinates (x', y', z'), are

utilized1, with x' positive in the offshore direction (the coastline is

at x' = 0), y' positive southward, and z' positive vertically upward.

Stratification is modelled by two layers of homogeneous fluid of different

density, with the heavier fluid on the bottom. The top surface is

bounded by a rigid lid. The upper layer fluid has density p1, and a

constant undisturbed depth H. The lower layer fluid has density p2 and

a variable undisturbed depth H = H(x', yt). The total depth is H'

H H. The difference in density =
p

is assumed to be small,

p/p2 << 1. Along the boundary there is a continental shelf and slope

topography which is confined to the region 0 < < Ls. In the interior

(x' L5), the depth is constant, H' = H = H.j + H0.

Dimensionless variables are formed in the following manner:

(x, y) = (x', y')/L, z = z'/H, t t'f0,

(u v) (u, v')/U, w wL/(HU),

P1 = + p1g(z'

p2 = [p + p2g(z' - H0) -

h = h'gLp/(p2Uf0L),

(H1, N2, H) = (Hi, H, H')/Hà,

=

f = (f0 - 'y')/f0 = 1 (2.1)

In this and the following sections, dimensional variables for which a
nondimensional counterpart will be defined are denoted with primes.
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where i = 1, 2 refers to the upper and lower layer, respectively. The

variables (u', v', w1) are the velocity components in th.e Cx', y', z')

directions, p' is the pressure, t' is time, L is a characteristic hori-

zontal alongshore scale (the dimensional alongshore wavelength X' =

2rL), U is a characteristic horizontal velocity [IJ = where

T6 is a characteristic wind stressj, g is the acceleration of gravity,

T' is the surface wind stress vector with (x', y') components

f0 is the value of the Coriolis parameter at a reference latitude

and = 'L/f0. h = p2 p1 is the dimensionless perturbation interface

height.

The resulting linear, depth integrated continuity and momentum

equations for each layer are (subscripts x, y, t denote partial differ-

entiation)

(Hiui) + (H1v1) = Sht, (2.2a)

- fv1
1x

+
(x)

T (2.2b)

v1 + fu1 = + (2.2c)

+ (H2v2) = Sht3 (2.2d)

- fv2
2x' (2.2e)

+ fu2 =
P2,)/' (2.2f)

where S (NH6/foL)2 is the stratification parameter and N2 gp/(p2H)

is the square of the Brunt-Vaisala frequency.

If (2.2a) and (2.2d) are combined, a streamfunction may be defined,

such that

= u1 + (H2/H1) u2,

= vi + (N2/H1)v2.

(2. 3a)

(2.3b)
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The general governing equations for the perturbation interface

height h and the mass transport streamfurction ip may be obtained from

(2.2) (Allen, 1975) and are:

[) + 1) - (H /H)l (H/H)]t Jxxx yy x

= (H/H)(h - + T) - (H/H)(h - f + (x)

x x

-
(x)

+ h + a(H/H)h + a(H/H)h - (SH1Lh
xx yy

h)]t

= -a(H/H) [fh £ + f(Y) (x)

(x)
a(H/H) [fh + ft

(2.4a)

+ BT f((Y) (x)) ((X) + (2.4b)
x y t'

where L f2 + (2/t2), a = H1/H2.

The following assumptions are utilized:

1) restrict the topography to have no alorigshore variations, so

that H H(x) only;

2) assume << 1

3) restrict attention to motions on a time scale large compared

with an inertial period, i.e.,

4) assume the scale of the wind stress and therefore the scale of

the interior motion and the alongshore scale of the motion on the shelf

is 0(1);

5) assume the interior Rossby radius of deformation [defined in

(2.8)] is much smaller than the 0(1) alongshore scale,



12

°R(1) << 1; (2.Sa)

6) assume the dimensionless width f the shelf-slope region 0 is

also much smaller than the 0(1) alongshore scale,

<< 1. (2.Sb)

7) assume that the small parameters o,
6R(l)'

and 8 are, in general,

of the same order-of-magnitude, i.e.,

0(o) = 0(8). (2.5c)

It is convenient to define a new cross-shelf variable

= xfo, (2.6a)

and an associated time scale

= to. (2.6b)

With the above assumptions the equations for the Interior, where

= 0, are

+
= -(1(Y)

- (2.7a)

+ h 61) h) -
f(Y) 4x)),

(2.7b)

where a tilda superscript denotes. an interior variable. The interior

Rossby radius, which is the natural offshore decay scale for baroclinic

disturbances, is given by

= 1)
°R(1

= f2SH (2.8a)

where

H() = H1H2()/H() and H(1) = H( = 1). (2.Bb,c)

Equations (2.7a) for the barotropic interior motion and (2.7b) for the

baroclinic interior motion are uncoupled and may be solved separately,

subject to the proper boundary conditions.
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At x , the junction of the interior and the shelf-slope region,

the matching conditions, which follow from the continuity of mass flux

and pressure, are

h(x = ) = h( = 1), (2.9a)

= o) = 1h( = 1), (2.9b)

= 1), (2.9c)

= s) = 1). (2.9d)

We expand in an asymptotic series, i.e.,

l(

+ + ."), (2.10)

where the leading order is suggested by (2.7a). With this representation,

(2.7a) is

(y) Cx)
+ Oyyt ox x y

(2.11)Oxx

The interior variable h is conveniently written as two terms,

h = h1
+

(2.12)

where, from (2.7b) and with assumption (2.Sa),

and

6R(l) hit + = f(T T) (2.13)

Bxx oR(l)hB)f Bx
= (2.14)

The variable is an approximate particular solution for the interior

baroclinic field forced by a wind stress curl with
'R(1)

<< 1, whereas

hB is an approximate homogeneous solution which is added to h1 so that

h satisfies the boundary conditions. Except for very low frequency

motion, w << the second term in (2.13) and the last term in

(2.14) are small with respect to the other terms, and hB in (2.14)
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represents the interior extension of a coastally trapped internal Kelvin

wave. For very low frequency forcing, the third term in (2.11) and the

second term in (2.13) balance the wind stress curl, resulting in an

interior Sverdrup balance.

Expansions of the form

=
+ + ..., (2.15a)

h = h0 + h1 + (2.15b)

are assumed for the shelf. Since the interface perturbation h over the

shelf due to the interior solution will consist of the interior interface

deformation at x = U, h1(0). with a boundary layer correction to satisfy

the boundary condition at = 0, it is convenient to define a new shelf

variable h, where

h = h1(0) + (2.16)

Using (2.5a,b), (2.6a,b), and (2.16), the lowest order equations for the

shelf variables become

-1
61(h = 61(T(Y) + h1y(0))

- T)) +
,

(2.17a)x(0) y

(h + a8h (/R)h) + af(h - f0)

= af(T + h1(0)) f(y)
x(0) x(0)

+ (2.17b)

where () = (Hg/H) and where 6) = f2 SH(). The last two terms

in (2.l7a,b) are 0(S/w) and o(/) with respect to terms on the left

hand sides and are neglected in general, except in the limit 0.

The velocities on the shelf may be obtained for each layer from

and h. They are
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u1 W1 H1[0 + f2a(fh + h -) + (afYl(T + h1(Q)y)b (2.18a)y t

H[0 - (2(fh + h) - f1' +
h1(0))]1

(2.18b)

V1 = (6H) H1[-.0 - (afY'h], (2.18c)

v2 = (oH) H1E-0 + f1hE], (2.18d)

where (2.5b) has been used in the derivation of (2.18c,d). Eqs. (2.18c,d)

imply that the alongshore component of the velocity is in geostrophic

balance.

The boundary conditions at the coast ( = 0), which follow from the

requirement that u1( 0) = u2( = 0) = 0 and (2.18) are

0y0 at =0,

fh + - = -f(T + h1(0))
y t

(2.19a)

at 0. (2.19b)

If a Taylor series expansion around x = 0 is used for , (2.10) and

(2.15) may be substituted into the matching conditions (2.gc,d) and

terms of the same order may be collected to yield (Allen, 1976b):

Oy 0) = 0, (2.20a)

= 0) = 1), (2.20b)

Assuming that a boundary condition for similar to (2.20a),

holds on the other boundaries of the interior region, the lowest order

barotropic motion in the interior may be determined from (2.11), (2.20a),

and that condition, and is uncoupled from the shelf motion.

The relations (2.12), (2.15b), and (2.16) are substituted for h and

h in (2.9a,b) and a Taylor series expansion around x = 0 is utilized for

h1 to yield the matching conditions for the perturbation interface,

i .e.,
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(2.21a)

= 0) + hBx(x ) = 1). (2.21b)

The two terms on the left hand side of (2.21b) are retained with the

anticipation that, over the total frequency range, either one may be

important in balancing the right hand side.
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3) The Free Wave Solutions

Before proceeding to the forced problem, it is useful to have an

understanding of the unforced or free wave problem. The detailed solu-

tions to (2.17a,b) for the free waves are discussed in Allen and Romea

(1980) (henceforth denoted as AR), and only a brief summary will be

presented here.

We adopt an f-plane analysis
( = 0, f = constant) and choose the

exponential shelf profile of Buchwald and Adams (1968), i.e.,

H = exp [( 1)/SB]. (3.1)

In this case, Hr/H
B

is a constant. This depth profile, while

still highly idealized, is not an unreasonable approximation to actual

shelf slope topography.

The equation for the free waves may be written

(0/H) + (H/H2)(f0 - h) = 0, (3.2a)

(h/aH) (/R)2(h/Hl) - f(H/H2)(f0 - h) = 0 (3.2b)

0y
= O fh + 0 at = 0, (3.3a,b)

0, + RR(l))h = 0 at = 1. (3.4a,b)

By multiplying (3.2a) and (3.2b) by, repectively, t and h, inte-

grating the two equations over from 0 to 1 , assuming periodicity in y

and integrating over a period in y, we obtain an equation for the total

energy density:

F = f [H + (af H) h + (f H1Y1 6 h Jd

+ R(1)
a(1) H(1)f2Y1 6h(1)2}. (3.5)



As a result of assumptions (2.5b), all of the coastal trapped waves

in the present model are nondispersive. Accordingly, free wave solutions

are sought in the form

(0,h) = Re{exp [-iw( + cy)) (),g())), (3.6)

where L is the radian frequency, c is the phase velocity, and Re denotes

the real part.

The equations and boundary conditions for the eigenfurictions

g) with corresponding eigenvalues c are

B + (Bcflr1 (f g) 0, (3.7a)

B g - a(68c) f(f g) = 0, (3.7b)g

0, g + (f/c)g 0 at = 0, (3.8a,b)

= 0, g + (/5)g = 0 at = 1. (3.9a,b)

The orthogonality relation for the eigenfunctions is

r' 05B (f nm 9m)d

+ (a(Q)H(0)Y' g(0) g(0)J = mnCnEn (3.lOa)

where, from (3.5), the energy density for each mode is

{J[H + (af2H1 g2 + (f2H1Y1 2g]d

+ (R(l)a(l)H(l)f2Y1 g(1)} (3.lOb)

The factor on the right hand side of (3.lOa) follows from multiplying

(3.7a,b) for (q,g) by, respectively, and g, integrating over

from 0 to 1 and combining. The result is

cE f rf(8Hy1 (f - g)2d + (a(0)H(0)Y1 9(Q)]. (3.11)
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We may rewrite (3.11) as

C = E/H. (3.12)

Eq. (3.12) represents a variational formulation of (3.7) and (3.8)

in the sense that the admissible functions (0,g0) which minimize the

quotient E/1 are elgenfunctions for the problem defined by (3.7) and

(3.8), and the minimum value is the associated eigenfunction c01. If

the orthogonality condition (3.lOa) is imposed, the variational formulation

results in an increasing sequence of values for c, e.g., c.(1 is the

minimum of E'/z among functions orthogonal to (0,g0). In addition,

Lim c =
n

(3.13)

and the eigenfunctions fni a complete set (Cou.rant and Hubert,

Vol. 1, pp. 412, 424-426). The result (3.13) was demonstrated explicitly

in Appendix B of Allen (1975).

Similar variational principles are obtained by Clarke (1976) and

Huthnance (1978) in connection with the eigenvalue problem for coastal

trapped waves in a continuously stratified fluid. One additional con-

sequence of (3.12) (also reported by Clarke and Huthnance) is that for

monotonic H, the right hand side of (3.12) is positive definite and all

free waves propagate poleward (toward -y).

While (3.7b) and (3.9b) have non-constant coefficients, if we

assume that

a(0) = H1/H2(0) << 1, (3.14)

(3.7a,b), (3.8a,b), and (3.9a,b) may be solved by perturbation methods,

as in AR. The elgenfunctions consist of an infinite set of 'she1f wave

(SW) solutions (n 1,2,...), and a single internal Kelvin
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wave (1Kw) solution (3,g0). At mid-latitudes, << 1, the SW modes

are barotropic and have offshore structures which are essentially those

found for barotropic continental shelf waves in an unstratified ocean.

For >> 1, the SW modes are "bottom trapped," i.e., all their motion

is confined to the lower layer. The 1KW mode is baroclinic and has an

offshore structure and wave speed similar to that obtained for a flat

bottom internal Kelvin wave. In this case, however, there is a barotropic

contribution to the onshore velocities from

The phase speed c0 of the 1KW mode is independent of f while the SW

mode phase speeds depend on f. Estimates of c0 and c1 (the first SW

mode) are calculated in Appendix B of AR for the Pacific coast of South

knerica. For latitudes less than 5°S, >> c1, i.e., the 1KW mode

travels faster than the first SW mode, while for mid-latitudes, c0 <<

c1, i.e., the first SW mode travels faster than the 1KW mode. The two

wave modes have the same phase speeds at a latitude of about 10°S.

For parameter values where the wave speeds of the 1KW mode and a SW

mode are nearly equal, i.e., where c0 c. there is a coupling between

the two types of wave modes. A plot of the phase speeds for the first

three eigenfunctions as a function of is shown in Figure 1. As is

indicated by the behavior of the wave speeds as a function of R'' the

mode which is originally an 1KW becomes a first SW mode, and vice versa.

At a larger value of 6R'' a similar behavior occurs for the 1KW and

second SW modes.

Note that, while the parameter
5R1

varies strongly with latitude,

it is also a function of shelf width, so it is possible, for example,

for to be small at low latitudes for a very wide shelf.



21

4) Solutions via a Cross Shelf Modal Analysis

Solutions to the shelf equations (2.17a,b), with the boundary

conditions (2.19a,b), (2.2Db), and (2.21a,b) may be obtained for a

coastal wind stress with a general (y, ) structure by expanding the

shelf variables in terms of the cross shelf eigenfunctions of the unforced

equations.

As in Section 3, an f-plane analysis is employed here and the assumptions

in Section 2 (2.Sa,b) are retained.

In a manner similar to (2.16) for h0, we define

=
+ x(0)

0
(4.1)

The last term in (4.1) represents the extension of the interior alongshore

velocity at x = onto the shelf topography.1

With (4.1), the governing equations for the shelf variables (2.17a,b)

are

ôBthy - f) = 6B1F (4.2a)

(h + aBh (/)2h) + faB(hY - f,) = _a6BfF, (4.2b)

where

()+ +F(,y,t) = T(0)
i(o)y x(0)y I (4.2c)

0

The boundary conditions at the coast are

= 0 at = 0, (4.3a)

+
fh = -fF(0) at = 0. (4.3b)

11n Allen (l976b) the substitution
+ x'O1 was used. This

represents an extension of the interior alongshote transport onto the
shelf. The definition (4.1) turns out to be more appropriate.
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The solution to (2.14) (with = 0) is:

hB,yt) C0(y,) exP(x/R(l)). (4.4)

This solution may be used in (2.21a,b) to derive the boundary condition

on h at 1. The boundary condition at = 1 for i may be derived by

introducing (4.1) into (2.20b). These conditions are

= 0 at = 1, (4.5a)

+ (6/OR(l))h = 0 at = 1, (4.5b)

where the term
hIx(o) is neglected relative to Sl)hBx(x 0) and

= 0) in (2.21b), and where we use, from (2.21a),

= 1) = hB(x = ) = C0 exP(5/R(l)). (4.6)

This relation may be used to calculate C0 and hence hB,.after a solution

is obtained for h.

We now expand the shelf variables in terms of the elgenfunctions of

the unforced problem, i.e.,

E,y,.), m0 Em() 9mm' (4.7)

The series in (4.7) is summed over the single 1KW pair (, g0) and all

the SW pairs (, gm), (Ti = 1,2,...). The expansions (4.7) for iJ and

h are substituted into the shelf equations (4.2a,b) and the forced

boundary condition at = 0 (4.3b). If (4.2a,b) are multiplied by

ni'
) respectively, integrated with respect to from 0 to 1, and are

combined in a suitable manner with (4.3b) and the orthogonality relation

(3.6), a forced first order wave equation is obtained for the (y,)

structure of each mode (Gill and Clarke, 1974; Clarke, 1977), i.e.,

Cm'Ym my
- T(y,), (4.8)
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1

Tm(Yi) = f1[ (BH) m 9m)Fd
0

- (a(0)H(0)Y1 9m(0)F(0)) (4.9)

Tm(y) contains two terms; one is integrated over the shelf and one is

evaluated at the coast.

where

Two separate types of forcing contribute to F, i.e.,

F(,y,t), + ;, (4.10)

xyo J
H(')d, (4.11a)

T(y,t) =
+

(4.11b)

The alongshore component of the wind stress at the coast and the baro-

clinic interior flow force motion on the shelf through the boundary

condition at = 0 and always appear together, while , the effect of

the interior barotropic flow, depends on and vanishes at the coast

((0) = 0; F(0) = T). For (R/o) << 1. forces the 1KW response mainly

through the boundary term in (4.9), since g3 decays rapidly from the

coast and the contribution from the integral in (4.9) is small. The SW

response arises predominantly from the integrated term in (4.9) which

represents the cross-shelf bottom velocity u2. For (ER/a) << 1, an

offshore barotropic flow interacting with a shelf-slope topography can

force a SW response in this manner.

In order to examine the relative efficiency of excitation of the

various modes by both and we use (3.5), (3.10), (4.8) and (4.9)

to calculate the total energy density Em of the lower modes. Approximate
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expressions for may be obtained for short time by solving (4.8) as an

initial value problem with initial condition

'i'm
(y, = 0) = 0. (4.12)

For this case, the balance in (4.8) is CmTm and

{ J[H2 2
+ (f2aH1 2

+
H1' m3m

+ (51R)(a(l)H(l)fY1 Tm2Cm2t2 (4.13)

Figures 2 and 3 show the energy density (divided by :E2) of the

first several modes, forced by t and , respectively, as a function of

As in Fig. 1, we use the solutions derived in AR for a(0) << 1.

The mode which, for << 1 is an 1KW, is labelled E1, while the mode

which is a first mode SW is labelled E2. The interaction (see Fig. 1)

between and E2 occurs at 0.43. For R/ó << 1, E1 is a first

mode SW. interacts at = 0.11 with E3 (the second mode SW).

Poleward of this interaction, E3 is an 1KW and E2 is a second mode SW.

Without solving the interior problem for h1(0) and
x(0)'

the

relative importance of driving by T and cannot be deduced, and we

defer a discussion of this subject until Secti.on 5. However, several

points can be made from Figs. 2 and 3, together with our understanding

of the eigenfunctions discussed in Section 3.

Forcing by for << 1 results in an 1KW response which is

confined within
R'

of the coast and a set of barotropicSW modes which

extend over the shelf. This implies that it is possible for interior

haroclinic motions to drive barotropic motions on the shelf, although

estimates using typical parameter values give >> For

>> I the response to T consists of a baroclinic 1KW mode which decays

slowly into the interior and a set of "bottom trappe& SW modes.
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Hence, forcing by a surface wind stress or interior baroclinic motion

yields a SW response on the shelf which is bottom intensified.

Fig. 2 shows that, for >, 1 and forcing by T, E1 (the 1Kw) is

very efficiently excited, while E2 (the bottom trapped first mode SW) is

not very energetic. For latitudes less than 5°, the SW response is

negligible. For << 1, E3 (the 1KW) and (the first mode SW) are

both excited, with the 1KW more energetically forced than the SW. If

kinetic energy density (not shown in Fig. 2) is considered instead of

total energy density, the 1KW mode, with a(0) = 0.3, is less energetic

than the first mode SW for > 0.15, i.e., for latitudes >40°.

Note that, for a completely two-dimensional response, the dependence

of h and on y vanishes and (4.2a,b) uncouple. Forced solutions may be

directly obtained and may be used in (4.13) to derive the total energy

density which is also shown in Fig. 2. The response will consist of an

infinite sum of modes and the total energy of the response, of course,

will be higher than that of the first two modes alone. Note, however,

that the first two modes contain most of the energy.

The barotropic interior forcing excites an 1KW response and,a SW

response on the shelf. Fig. 3 shows that both the 1KW and the SW re-

sponses are not forced efficiently for 6RIS >> 1. For mid-latitudes,

the 1KW response (E2) is not forced efficiently, while the first mode

(barotropic) SW is relatively energetic.

Exanipi es

It is useful to consider some simple solutions to (4.8). We focus

only on driving by the alongshore component of the wind stress at the

coast (F = (y,)), so that (4.8), (4.9) and (4.12) are
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Cm1Y__Yrat my bmt (4.14a)

1

bra = 0f () (f - g)d - (afH(0))' (0). (4.14b)

(f g )b = 1, (4.14c)

= 0) = o. (4.14d)

In the following examples, we concentrate on the qualitative differences

between the results at mid and lo latitudes. (Examples at mid-latitude

have been discussed by Allen [1976aJ.,)

We first examine a simple impulsive wind stress with a limited

alongshore extent, i.e.,

where, e.g.,

T(y,t) = 6(t)T(y), . (4.15)

T(y) T exp(-y212). (4.16)

The solution to (4.14a) with a wind stress given by (4.15) and (4.16) is

= CmbmT(Y (4.17)

This solution corresponds to a response of limited extent propagating in

the negative y direction (poleward) with speed cm for each mode. At

low latitudes, the 1KW response propagates relatively quickly away from

the forcing region, while the bottom trapped SW modes, whose phase

speeds c are small compared with c0, remain behind. This behavior can

result in bottom intensified undercurrents over the continental slope.

We now consider an alongshore wind stress of the form

i(y,) = H(f)T(y), (4.18a)

where H() is the Heaviside unit function. Here, for simplicity in
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illustrating the features of the solution (Allen, 1976a) we use the "top

hat" function

T(y) = TO

Lo

0 y,

-JyO < Y < 0

y

(4.18b)

The solution for V as a function of y for various times is shown

in Fig. 4. This solution is obtained by the method of characteristics

in Allen (l976a). For the purely baroclinic problem, V0 is the interface

height at the coast, while for the purely barotropic problem Y gives

the (y,t) structure in the expansion of the mass transport streanifunction

in terms of the free shelf wave eigenfunctions.

The initial response, for -y0I < y < -Ct, is time dependent and

two-dimensional 0). The three-dimensional flow pattern develops

as a free 1KW front and a set of SW fronts are generated and propagate

poleward (toward negative y). For Ct > y0, a region where is

constant and where the alongshore velocity associated with a particular

mode m is in steady geostrophic balance exists between the time dependent

free wave front and the location of forcing, i.e., lfl -Ct < < -IY

A steady state is achieved at a given y as after the free wave

fronts associated with every mode have propagated past that location.

The two-dimensional flow pattern which results from the impulsive

application ofT0 in the region -1y0! < y 0 consists of an offshore

flow UE in the surface Ekman layer which is balanced by an inviscid

onshore flow u1 toward the coast in the same cross-shelf plane. For the

mid-latitude case 1, the onshore flow u1 is depth independent

over most of the shelf. Within a distance from the coast the flow

also has a baroclinic component and the interface rises. At = 0, a



mass flux equal to the offshore Ekman transport is fed into the surface

Ekrnan layer from the upper layer interior and the lower layer onshore

flux is zero.

For >> 1, the two-dimensional picture is much the same except

that the baroclinic component of the flow becomes important farther

offshore and the flow is surface intensified over the shelf with a weak

onshore velocity component in the lower layer. As a result the bottom

trapped shelf waves are not efficiently excited, as is evident in Fig.

2.

In order to describe the three-dimensional flow field, we utilize

(4.7) in (2.18a-d) to obtain expressions for the velocities. In partic-

ular,

fu1 = (H1/H)a {TO + E(afm + g )Y
+

(4.19a)
in mym=O

fu2 = (H1/H) i-i0 + E( - g)Y - fgY3}. (4.19b)
lily

rn=0

The steady solution, with = 0,
my = bT0 and with (4.14c), is

fu1 = (H1/H)(l + a)a fmbmT0 (4.20a)
m=0

fu2 = 0. (4.2Db)

When = 0 we may write

Y = b tdy. (4.21)

Utilization of (4.14c), (4.21) and (4.7) in (2.18d) yields the result

that V2 = 0. Hence for all the final steady solution over the

slope has no motion in the lower layer.
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The cross-shelf eigenfunctions obtained in AR and discussed in

Section 3 of this paper may be used to examine the steady flow field in

the upper layer. With a(0) << 1, the 1KW solution for g is

while, for the SW modes

g0 exp(-f6R), (4.22)

= 0(a(0)). (4.23)

From (2.18), (4.7), (4.14), (4.22), and (4.23), u1 and v1 may be expressed

as

fu1 T0[1 exp(-óJ6R)] + 0(a), (4.24)

-1 y
fv1 = 6 exp(_o/5R) f Tdy + 0(a). (4.25)

0

Eqns. (4.24) and (4.25) show that baroclinic processes bring u1 to zero

at = 0 within a scale of 6R/6, and that the final steady alorigshore

flOW in the upper layer is confined to a region with an offshore scale

f the Rossby radius (this result and the limiting behavior u2,v2 0

was not pointed out in Allen [l976a]).

The flow pattern that develops at mid-latitudes is different from

that at low latitudes and we will briefly discuss each case. The quali-

tative discussion given here can be easily verified using the approximate

solution for the eigenfunctions given in AR for a "weak slopet' and with

the assumption a(0) << 1

For mid-latitudes, the Rossby radius is a fraction of the shelf

width. The SW modes are barotropic and the first several modes, which

represent a dominant portion of the total SW response (see Fig. 2), have

phase speeds which are faster than the 1KW mode phase speed. For sim-

plicity, we assume that all the SW modes move faster than the 1KW mode.
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Fluid is drawn onshore in a region near each SW front and the region of

onshore flow to the shelf-slope region propagates poleward with the SW

phase speed. (The region of dominant onshore flow occurs in connection

with the first mode SW and propagates poleward with the first mode SW

phase speed.) The solution for increasing E, as the first several SW

modes achieve a steady balance but before the 1KW front has propagated

away from the forcing region, consists of an equatorward barotropic

alongshore current which is asymptotically confined to a distance 6R/ó

of the coast as -*
. This is shown schematically in Fig. 5. The

current connects the locations where fluid is drawn onto the slope to

the region of forcing. The 1KW front propagates into this barotropic

current, leaving behind a final steady solution having velocities in the

lower layer equal to zero and an upper layer flow confined within a

baroclinic radius of deformation of the coast. This upper layer flow is

turned in the region of forcing and is fed horizontally to the coast to

satisfy the boundary condition at 0.

At low latitudes, the 1KW mode has a large offshore scale with

respect to the shelf width and propagates poleward with a much faster

speed than the SW modes which are bottom trapped. A schematic of the

flow field for low latitudes is shown in Fig. 6. When the 1KW mode has

propagated away from the forcing region, the onshore flow in the bottom

layer turns poleward in a broad region within of the coast. The

velocity in the bottom layer is poleward up to the location of an 1KW

front, where the density interface moves vertically upward (Allen,

1976a). The corresponding return flow in the top layer, from the location

of the wave front to the region where the stress acts, is turned and fed

horizontally to the coast, and, together with a component of the flow
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which comes directly onshore in the upper layer, is fed into the surface

Ekman layer at = 0. The SW modes are forced by the stress driven

onshore flow in the lower layer and respond such that the location of

the onshore flow to the slope in the lower layer propagates poleward.

The velocities in the lower layer behind the region of onshore flow for

all the modes are zero. This implies that, for steady forcing of limited

extent at low latitudes, the upper layer will assume a steady flow

relatively quickly, while the lower layer will be time dependent, adjust-

ing slowly toward a steady state with zero motion in the lower layer

over the slope as each bottom-trapped SW mode propagates away from the

region of forcing. In addition, Fig. 6 shows that, as the flow field

develops, water is drawn onto the slope at different alongshore locations

in the upper and lower layers.

As a final example, we examine forcing by a stanfing wave, given by

T = T000SP,Y COSwt, (4.26)

where T0 is a constant. For Cm >> (/), the balance in (4.l4a) is

approximately steady, i.e.,

'my = bmT (4.27)

while for C << (/), the balance is time dependent and locally two-

dimensional, i.e.,

Cm1 'rn. = bmT (4.28)

For (w/) in the range c0 > (o/2.,) >> c. the balance in (4.28)

applies to the time dependent solutions for the SW modes at low

latitudes, while (4.27) is the approximate balance for the more rapidly

propagating 1KW mode.



32

These solutions are

= b0Z Tc cos(zy COswt, (4.29a)

= -b(c/w)T0 cos,y cos( - -r). (4.29b)

Since the shelf wave modes are bottom trapped, the (y,t) behavior of v1

will be governed by Y0 whereas that of v2 will depend on a sum involving

Y0 and Yr,. This will lead to phase differences between and v2 and

therefore the flow will have a depth dependent phase relation with T.

With an 1KW speed c0 200 km/day (Smith, 1978), an estimated first

mode wave speed c1 = 25 km/day (AR), and wind Stress forcing with wave-

length =1000 km, the solutions (4.29a,b) are valid for wind stress

forcing with period in the range 5 days < T< 40 days.
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5) Sinusoidal Forcing

We now consider solutions for the interior and shelf motion when

the wind stress has a sinusoidal dependence on time and on the horizontal

spatial coordinates, i.e.,

((x) (Y))
= Re{T0 exp[-i(wf - kx - Ly)]), (5.1)T , T

so that the wind stress curl becomes

where

(y) (x) -
Re{iniT0 exp[-i(wt - kx - ,y)]}, (5.2)

m = k - t, u > 0. (5.3a,b)

We look for interior and shelf solutions of the form

(,h0,h) = Re[(x),g(x),),g()3 exp[-i(f - ky)]). (5.4)

Equations for and g may be obtained by substituting (5.4) in (2.11),

(2.13) and (2.14) while equations for the shelf variables may be obtained

by utilizing (5.4) in (2.17a,b) (Appendix A). As in Section 4, the

shelf equations are forced at the boundary = 0 by and by interior

baroclinic wind forced motions. In addition, interior wind forced

barotropic motion drives a flow on the shelf through the boundary

condition at = 1 (A13c). Expressions for the interior motions are

presented in Appendix A (Al-A4), and the relevant expression for

interior barotropic forcing at = 1 is given by (A7). In general,

x(0) is complex and the shelf circulation due to will have components

both in phase and out of phase with Examination of the forcing

terms in (Al2a,b) and (A13b) indicates that the response over the shelf

due to is out of phase with the wind.

Fig. 7 shows the absolute value of
'1x(Q)

scaled by T0/i for various

k/a. as a function of inverse frequency scaled as (2w). Fig. 8



shows the phase of
x(o

For >> k

phase relation between components dri

considerably as a function of , with

phase for (2w) << 1 and in phase
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(alongshore traveling wind) the

en by
x(Q)

and changes

these components being out of

for (21 = 1. For k >> 2.

(onshore traveling wind) the phase difference is Therefore, motions

on the shelf driven by and will exhibit a phase relation which is

dependent on the frequency and wavenumbers of the wind.

a) Forced coastafly trapped waves

In Appendix A it is shown that for forcing at moderate frequency

(A5a,b) (e.g., T < 60 days for oceanic parameters at 60 latitude off

the west coast of South America) the interior baroclinic forcing term is

negligible compared to T0 (A15) and hence is neglected in the calculated

examples below. Also, the interior barotropic forcing is given by the

approximate form (A8a)

x(0)
T0/w. (5.5)

The validity of this approximation for forcing at moderate frequencies

is also discussed in Appendix A.

With (A5a,b), the equations for the shelf variables are given by

(Al2a,b) and solutions which represent coastally trapped waves may be

obtained by perturbation methods for a(0) << 1 using an exponential

slope topography (Appendix B). These solutions are presented in Figs.

9-11 with T0 = 1, where the figures show the contributions of forcing by

the wind stress at = 0 and by interior barotropic motions at = 1.

The parameters we vary are
B' R'' and Figs. 9 and 10 represent

solutions for . > 0. We choose a(0) = 0.3 (the results are relatively

insensitive to the value of 8(0) in the range 0.05 < a(0) < 0.3). As
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indicated above, the forcing in (Al2a,b) and (A13b,c) appears as T0/u,

if is regarded as a parameter. Accordingly, the velocities in Figs.

9-11 have been rescaled with , i.e.,

V1 = v.o,, i = 1,2. (5.6)

Note that, in comparing solutions at different latitudes (i.e., different

R"' £./w contains a factor of f0, and L/ corresponding to a wave with

a certain period and wavelength will vary with f0 (e.g., in Figs. 9a,b a

wave with period 1! = 10. days and wavelength A' = 1000 km corresponds to

16 for = 0.05 and /w 0.4 for = 2.0).

Figs. 9a and 9b show V1 and V2 on the shelf (0 < < 1) for =

0.05 and = 2.0 respectively. The subscripts T and refer to

forcing by and interior barotropic motions, respectively. The

phase relation between V() and r may be obtained from Fig. 8 with

= 0. Fig. 9a is the mid-latitude case and, except on the inner shelf,

the flow is barotropic. The highly baroclinic region near 0 is due

to the forced internal Kelvin wave which decays rapidly away from the

coast. The interior motion forces a non-negligible barotropic shelf

response, which is confined to the outer slope. This behavior is evident

in the approximate solutions (BlOa,b) given in Appendix B for '< 1

Fig. 9b shows V1 and V2 for the low latitude case (Vl(T) is rescaled

for ease in plotting). These solutions are qualitatively very different

from the mid-latitude response, due to the increased decay scale for

barocliriic motions at low latitudes, and to the increased coupling

between the equations (Al2a,b) for the shelf variables. For low lati-

tudes, the response over the entire shelf-slope region is highly baro-

clinic. V1 is dominated by the forced internal Kelvin wave. This is

evident in Fig. 9b, where V1 decays with exp(_/R) with only a slight



modification due to other terms. This behavior may be seen in the

approximate solution (Blia,b) given in Appendix B for >> 1, where

the contribution to the alongshore velocity in the upper layer due to

is cancelled by the 0(a) correction to g. This is equivalent to

bottom trapping of the modal SW forced response at low latitudes.

Similar qualitative behavior was obtained by Clarke (1976) with a step

shelf topography. For >> l V2 >V2() over the whole shelf

region. Similar behavior is evident in the low latitude approximate

solution (Blib), where V2() is 0(oR/) while V2() is 0(1). Note also

that V9(_) is relatively large near the shelf edge and decreases toward

mid-shelf.

A dependence on latitude is also evident in Figs. lOa-d where solu-

tions have been plotted for << 1 (loa,c) and > 1 (lOb,d) for

various (w/). V1() decays away from = 0 with exp(-/R) in all

cases. For = 0.1, the decay is rapid, and the response is confined

to the near-shore region. As becomes larger, the baroclinic decay

scale increases, and the response extends across the entire shelf-slope

region into the interior.

Figs. lOb,d illustrate the growing importance of V2() with respect

to V2() as increases. Near = 1 dominates for all

For << 1, the wind forced motion is the dominant response for

0.5. For = 2.0, V2() > over the entire shelf-slope

region.

We may examine the behavior of the exponential slope solutions

given in Appendix B as a function of keeping in mind the conditions

(A5a,b) required to preserve their validity. In particular, for

£(woBY >> '

>> '°R
approximate solutions for the shelf velocities
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with low frequency forcing are given in Appendix B (812a-c). The con-

tribution to v1 due to is cancelled by part of the 0(a) correction to

g, which is equivalent to bottom trapping of the modal SW solutions when

their cross-shelf scale is much less than the Rossby radius. The con-

tribution to v2 due to g0 is cancelled by part of , which implies that

the 1KW response becomes surface trapped for forcing at low frequency.

V1 is due entirely to the 1KW response with offshore Rossby radius scale

and V2(T) and V2(,) are confined within boundary layers of width

and decay rapidly away from = 0 and = 1, respectively. Wind forced

and interior barotropic motions penetrate less effectively onto the

shelf in the lower layer as L becomes small, reflecting the reluctance

of low frequency motions to cross contours of constant depth.

Several of the qualitative features of (B12a-c) are evident in

Figs. lub,d. For both >> 1 and << 1, V2 exhibits a decreased

penetration onto the shelf, and becomes more important with respect to

as w/2. decreases.

It is evident from (B12a-c) that as 0, interior barotropic

motions do not penetrate onto the slope and V2(1) 0, which implies

that for nearly steady forcing there is no motion in the lower layer.

This corresponds to the limiting steady solution as t - for "top hat"

forcing (4.18), given in the modal analysis of Section 4.

The case z < 0 is more difficult to interpret due to the fact that

the wind forcing can resonate with the free wave solutions. Fig. 11 is

a plot of V1(0) for . > 0 and 2. < 0 as a function of i/w(6R/o = 0.1),

and clearly shows the resonance with the free internal Kelvin wave mode

for = 10. There is a i phase shift as 2./w passes through the

resonance.



In addition to the above resonance, free barotropic continental

shelf waves over an exponential shelf will resonate with the wind forcing

< 0) when y satisfies (see Appendix B)

tany 2O (5.7)

where y is given by (B5e). With
B
= 0.33, a 0.1, the first three

resonance points are (P./w)1 2.33, (P.1w)2 9.04, and (P.1w)3 22.09.

b) Very low frequency behavior

The cases (A6a,b) and (AlOa) where g1 and 9B are given by (A6c,d)

respectively, and where
x(Q)

is given by (AlOb) correspond to forcing

at very low frequency CT' > 60 days). The approximate 0(1) motion in

the interior consists of a Sverdrup balance in the upper layer which

extends onto the shelf and no motion in the lower layer..

The alongshore coastal wind stress and interior baroclinic motions

force an internal Rossby wave which propagates into the interior (Anderson

and Gill, 1975).

The transition from a coastally trapped internal Kelvin wave to a

westward propagating internal Rossby wave as the forcing frequency is

lowered may be seen in the expression for R in (A4b). For

the solution is coastally trapped with an oscillatory character.

As (i$/w)2 (/)2
the trapping scale grows, until (-/w)2 'R

and the solution is no longer coastally trapped.
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6) Summary

The main question we pose in the introduction is: what is the

response on a continental shelf and slope to direct wind stress forcing

and to forcing by interior motions, and how does this response vary with

latitude? The simple theory presented here provides some answers to

this question, and gives some insight for further observational and

theoretical work.

In Section 2, it was shown that motions in the shelf-slope region

are coupled to those in the interior ocean. The cross-shelf modal

analysis of Section 4 clearly shows forcing of shelf circulations by

interior barotropic and baroclinic flow. The modal solutions of Section

4 exhibit a dependence of the cross-shelf and vertical structure on

latitude. At mid-latitudes, the barotropic (shelf wave) response extends

over the shelf, while the baroclinic (internal Kelvin wave) response is

confined to a region of width << I near the coast. At low latitudes,

the response is highly baroclinic over the entire shelf, reflecting the

relatively large size of the baroclinic boundary layer. The shelf wave

response is bottom intensified for low latitudes. This depth dependence,

coupled with the fact that, for low latitudes, the internal Kelvin wave

speed is larger than the n = 1 shelf wave speed, yields a different

qualitative time dependent response to wind stress forcing than that

obtained for mid-latitudes. With a constant wind stress forcing which

is switched on at t = 0 and which has a limited extent in y (i.e., a

11top hat' function), the upper layer assumes a steady flow relatively

quickly with an offshore scale given by aR/IS, while the lower layer

remains time dependent, adjusting slowly toward a steady state of no

motion.
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Using the modal solutions of Section 4 and the energy density of

each forced mode, we obtain an understanding of the relative efficiency

of energy transfer into each mode. At low latitudes, the alongshore

wind stress at the coast, forces a very energetic internal Kelvin wave,

but is inefficient in forcing shelf waves. For driving by at mid-

latitudes, the 1KW and n = I SW modes have energy densities of the same

order. However, the kinetic energy of the n = 1 SW mode is greater than

that of the 1KW mode at mid-latitudes. Interior barotropic motions do

not efficiently excite the 1KW or the SW modes at low latitudes. The n

= 1 SW mode is efficiently excited, however, for midlatitude offshore

barotropic forcing.

A simple solution obtained with forcing by a traveling wave wind

disturbance enables us to compare the relative effects of forcing by

and by
Ix(0)'

offshore generated barotropic motions. With the

assumptions of the present model, interior baroclinic motions are unim-

portant except for very low frequency driving.

Coastal wind stress forcing is an important effect for all latitudes.

For mid-latitudes, interior driving mechanisms force motions on the

shelf and slope which, for > 0.5, are as large or larger than the

coastal wind stress forced motion. The mid-latitude forced response

over most of the inner shelf and slope ( < 0.5) is predominantly due to

the local alongshore wind stress. However, the effect of interior

forcing on the velocity in the lower layer grows with respect to the

direct wind forced effect as becomes larger, and the low latitude

forced response to interior barotropic motions V2() can be comparable

to or greater than the wind forced response v2.
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For low frequency driving << w << (20 days <

< 60 days at 60 latitude)3, interior motions penetrate less effectively

onto the shelf, reflecting the topographic constraint on low frequency

circulations. The coastal wind forced response is also inhibited from

crossing contours of constant depth, so that, for low frequency driving,

the circulation over the outer shelf and slope is controlled predorninently

by the interaction of the interior flow with the shelf. In cases where

V(T) is concentrated near the coast and V() is concentrated near the

outer shelf, cross-shelf phase shifts of are predicted for driving by

a wind which is traveling predominantly in the alongshore direction. In

the general case, predicted cross shelf phase lags may be estimated

using Fig. 8. For forcing at very low frequency [w
<<

(T > 60 days at 6° latitude)3, an interior Sverdrup flow in the upper

layer extends onto the shelf and represents the dominant shelf response.

Wave motions on the shelf are not coastally trapped, but propagate into

the interior in the form of westward traveling long internal Rossby

waves.

Finally, we point out that the ability of interior motion to con-

tribute significantly to shelf-slope circulation is limited for this

model by assumptions of a linear interior ocean driven locally by a wind

stress curl. Strong nonlinear offshore baroclinic currents, for example,

or free P.ossby waves that propagate toward the shelf might drive appre-

ciable baroclinic shelf motion at low latitudes. This problem remains

to be investigated.
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Figure Captions

Figure 1; Variation of wave speeds as a function of for the 3

eigenfunctions E1, E2, and E3, which, for < 0,43, represent

the internal Kelvin wave, the n = 1 and the n = 2 shelf waves,

respectively. The values a(0) = 0.3 and = 0.33 have been util-

ized. Dimensionless f (f = f'/fç where is the dimensional

latitude for the interaction between the internal Kelvin wave and

the n 1 shelf wave) is plotted along the top axis. With dimen-

sional values of shelf width L5 = 90 km and internal Kelvin wave

phase speed c0' = 100 cm s,
'S'

= c07(f'L5) is plotted along

the bottom axis, where = 0.43 at the critical latitude f' =

Corresponding latitudes for f = 1, 2, 3, 4, 5 are 10°, 21°,

32°, 450, and 630, respectively.

Figure 2: Energy density Em (4.13) divided by as a function of

for the 3 elgenfunctions E1, E2, and E3, forced by t (T = 1). The

dashed line represents the total energy density. The parameters

used are the same as in Fig. 1.

Figure 3: Energy density Em (4.13) divided by
2
as a function of

R16

for the 3 eigenfunctions E1, E2, and E3, forced by
xy(0) =

The parameters used are the same as in Fig. 1.

Figure 4: as a function of y for four values of
j+1

t1) [from

Allen (1976a)].

Figure 5: A schematic of the flow pattern that develops at mid-latitudes

in the upper and lower layers for a constant wind stress which is

switched on at = 0 in the region < y < 0. The flow pattern

is shown for two tines (E2 > t..) after the SW modes have achieved a

steady balance. Regions where the density interface moves vertically
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upward are shaded. The upper layer flow pattern does not include

the offshore flow due to the surface Ekmari layer.

Figure 6: A schematic of the flow pattern that develops at low-latitudes.

For simplicity, the effects of all the SW modes are represented by

one SW front. The notation is the same as for Fig. 5.

Figure 7: Scaled interior barotropic forcing as a function

of scaled inverse frequency e(2u.) for various values of (kIt.).

Figure 8: Phase difference 0 between and as a function of

for various values of (k/i).

Figure 9: (a) Scaled alongshore velocity V1 (in the upper layer) and V2

(in the lower layer) over the shelf (0 < < 1). for 0.05,

i/ui 16, = 0.33, and a(0) = 0.3 (V. = v.ui, j = 1,2). The solid

line represents V() forced only by T, with
x(Q)

= 0. The

dashed line represents V() forced only by thx(o) with = 0.

V1() near = 0 goes off scale (V1(0) = 0.51). (b) V1 and V2 for

2, ./ui = 0.4. V1() has been rescaled.

Figure 10: (a) V1(1);
R'

= 0.1, (b) V2(T) and V2();
R'

= 0.1, (c)

Vi; R' = 2, (d) V2() and V2();
R'

= 2, for various values

of i/ui, with = 0.33 and a(0) 0.3. V1() << in both

cases (a) and (c) and has not been plotted.

Figure Ii: V1(0) (Vl(T) at = 0) vs. i/w for i < 0 (forcing traveling

poleward) and i > 0 (forcing traveling equatorward). with

0.1, = 0.33, and a(0) = 0.1. A resonance at i/uij 10 occurs

for the case £ < 0. This corresponds to the atmospheric forcing

resonating with the free internal Kelvin wave.
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Chapter III

ON VERTICALLY PROPAGATING COASTAL KELVIN WAVES AT LOW LATITUDES
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1. INTRODUCTION

Vertically propagating internal waves in the ocean are generally

constrained such that f < w < N, where w is the radian frequency, f

is the Coriolis parameter, and N is the Brunt Vàisàl frequency. For

w < f, vertical propagation is possible when one of the horizontal

wavenumbers is imaginary, a condition that is satisfied for equatorial-

ly trapped waves with meridional modal structure or for coastally

trapped waves that propagate along a boundary and that decay exponen-

tially with distance from the coast (internal Kelvin waves). Such

low frequency vertically propagating waves have been observed near

the equator, e.g., by Weisb.erg et al. (1978) who find that equatorial-

ly trapped motions in the Gulf of Guinea are downward propagating,

not vertically standing modes. Also, from observations on the

continental slope in the Gulf of Guinea, Picaut (1981) reports an

upward phase propagation of temperature associated with the seasonal

upwelling cycle, which he interprets as the signature of a coastal

Kelvin wave that propagates westward and vertically.

Recent observations on the Peru continental shelf and slope

during ESACAN (Estudio del Sistema de Afloramiento Costero en el Area

Norte), the joint German-Peruvian experiment at 5°S latitude, and

during the CUEA (Coastal Upwelling Ecosystems Analysis) JOINT-2

experiment at l5S latitude indicate that vertically propagating

waves exist over the slope at low frequencies (period T = 2ir/w >

20 days). For example, Figure 1 shows low-pass filtered alongshore

velocity and temperature, from the ESACAN C2 mooring which is on the

continental slope in 1360 m of water. The velocity data shows a low

frequency pulse-like event that amplifies between 86 ni and 560 m



depth, and that propagates vertically downward between 86 and 560 m.

The relationship between velocity and temperature at 560 and 860 m

suggests that there is a phase propagation upward of both signals

with velocity and temperature ir/2 out of phase.

In this study we analyze the dynamics of the second class of

subinertial vertically propagating waves described above, namely

coastally trapped internal Kelvin waves (hereafter referred to as

IKWs). We focus on low latitude dynamics, where the Rossby radius

scale, which is the natural offshore length scale for baroclinic

motions, is much larger than the shelf-slope width. For this case,

the shelf-slope region appears like a vertical wall, and we adopt a

model with a vertical coastal boundary.

We pay particular attention to the low frequency behavior

(T 20-40 days) but specify that the waves are still coastally

trapped. The condition on coastal trapping is > (½
/)2

where

£ is alongshore wavenumber and is a measure of the variation of the

Coriolis parameter with latitude, and is satisfied for w 1.8 x

io_6 s CT < 40 days) with an alongshore wavelength 1000 km

(see Allen and Roniea, 1980, for an additional discussion of this

point).

Typically, oceanic problems are solved with the bottom boundary

condition w = 0. Recently it has been suggested that the ocean might

be better modelled in some frequency-wavenumber regimes by neglecting

the effects of a bottom boundary and assuming that the ocean is

infinitely deep (Wunsch, 1977; Philander, 1978). We utilize a model

of this type in Sections 2 and 3, where we consider the response of a
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rotating stratified f-plane ocean with a rigid lid, forced by an

alongshore wind stress at the coast. The forced response for several

different types of wind stress is calculated and shows components

that are trapped near the surface and components that propagate

vertically.

The assumption of infinite depth is justified if the bottom is

highly dissipative, and scatters energy rather than reflecting it

uniformly, or if internal motions generated at the surface dissipate

before the energy can reflect off the bottom and travel back toward

the surface (Wunsch, 1978). In order to assess the frequency-

wavenuniber regimes where frictional processes justify the neglect of

a bottom boundary, the effect of internal dissipation is included in

Section 4 and the dissipation time scale is compared to the time

required for initial disturbances to propagate vertically from the

surface to the bottom. The forced response with a bottom boundary is

calculated in Section 5 and compared to the results of Sections 2 and

3 in order to assess further the space and time scales where the

analyses of Sections 2 and 3 are valid. Finally, in order to

generalize the f-plane results, the Coriolis parameter is regarded in

Appendix A as a slowly varying function on the alongshore scale of

the waves. The forced response is obtained with a variable f and is

compared to the f-plane results.



2. THEORETICAL FORMULATION

We consider a continuously stratified ocean which rotates on an

f-plane in the Northern hemisphere. Cartesian coordinates (x,y,z)

are utilized with x positive westward, y positive southward, and z

positive vertically upward. There is a rigid lid on top (z 0), a

straight north-south coastline at x = 0, and the fluid is unbounded

for x + , z -* -. The problem is linearized by the assumption that

the motion results in negligible nonlinear fluid accelerations and in

small departures from an equilibrium stable density distribution '(z).

The hydrostatic approximation is utilized and we consider interior

motions away from frictional boundary layers. The long wave

assumptions for coastal trapped waves are made, i.e.,we assume that

w<<f and that the characteristic alongshore scale L is large relative

to the internal Rossby radius of deformation.

With the above assumptions, the governing equations are

- fv

fu = -p/p0,

0
-p

- gp,

U + V + W = 0,
x y z

Pt
+ W = 0,

where subscripts denote partial differentiation

(2.la)

(2.lb)

(2.lc)

(2.ld)

(2..le)

The variables

(u,v,w) are the velocity components in the (x,y,z) directions, t is
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time, p is pressure, and g is the acceleration of gravity. The total

density is given by

PT,Y,z,t) = p(x,y,z,t) + iz) + p0, (2.2)

where p0 is a constant.

Eqs. (2.1 a-e) may be combined into a single equation for the

pressure:

where

[p + f2 (p/N2)] = 0, (2.3)

p0f2u
-p

- (2.4)

p0w = (2.5)

and where = -g2/p0 is the square of the Brunt-Visl frequency.

We assume, consistent with the long wave approximation, that

only the alonqshore component of the wind stress is important and

that it is approximately constant over the scale of the Rossby radius.

The alongshore wind stress acts as a driving mechanism through suc-

tion of fluid into the surface Ekman layer at the coast. An offshore

or onshore mass flux in the upper Ekman layer produces the equivalent

of a sink or source-like flow below the Ekman layer at the coast.

The vertical extent of the region is sufficiently small so that the

corner acts very nearly as a point sink or source for the flow

below the Ekman layer (e.g., Pedlosky, 1969; Allen, 1973; Pedlosky,

1974). Consequently, we specify a forced boundary condition at the
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surface which represents an Ekman suction in the upper coastal

corner at x = 0, z 0 and no flow through the vertical boundary at

Z 0, i.e.,

+ fP) = f T(y,t) 6(z),

where (z)=O,z0, and

0

f 6(z)dz=l.
-H

The remaining boundary conditions are

pzt
=

px,py,pz <

z

at z = 0,

as x -i

at x 0, (2.6)

(2.7)

(2.8)

(2.9a)

(2.9b)

Condition (2.8) specifies no normal flow through the top, while

(2.9a,b) follow from (2.la), (2.4), (2.5) and the requirement that

the energy be finite as x + or z -+ -. In addition, we impose a

radiation condition which restricts the solution to have energy

propagating away from the source at x = 0, z = 0.

We consider initial value problems where

r=0, p=0, fort<0. (2.10)

(a) Free waves

Before solving the forced problem, it is useful to obtain the

free wave solution to (2.3) for a vertically unbounded fluid governed
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by a homogeneous version of (2.6) and without condition (2.8).

We assume N2 is a constant and seek a free wave solution of the

form

p(x,y,z,t) = q(x) Re{expt-i (ut - .Qy - mz)]}, (2.11)

where 2.. and m are wavenurnbers, and Re denotes the real part.

Substituting (2.11) in (2.3), (2.6) (with T = 0), and (2.9a), we

o b ta i n

- (fm/N) = 0, (2.12)

- (f.Q/&i) = 0, at x 0, (2.13a)

< , as x - (2.13b)

The solution to (2.12) subject to (2.13a,b) is

4) = exp (f2.x/w), (2.14)

where the dispersion relation is

w = NL/ni. (2.15)

The condition (2.13b) imposes the faniiliar restriction,

9/(.i. < 0, (2.16)

i.e., free coastally trapped subinertial waves propagate with the

boundary on their right side (poleward toward -y with our mode).

The dispersion relation (2.15) gives a phase velocity with vertical

component win = w2(N2..Y and a group velocity with vertical component
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= -w/m. The group and phase velocities are oppositely directed,

e.g., for u/rn > 0, the vertical component of the phase velocity is

directed upward while the vertical group velocity is downward.

(b) Solution to the forced problem

The solution to (2.3) subject to (2.6)-(2.l0) and the radiation

condition may be conveniently represented in terms of its Fourier

cosine transform in z:

(x,ym,t) = I p(x,y,z,t) cos mz dz, (2.17a)

0

p(x,y,z,t) = (2/n) f (x,y,m,t) cos mz dm. (2.17b)

0

Multiplying (Z.3)1 (2.6) and (2.9a) by cos(mz) and integrating over

z from 0 to , we obtain

- (mf/N)2 = o, (2.18a)

xt
+ f r(y,t), at x = 0, (2.18b)

A
ps,, < , as x - . (2.l8c)

Eqs. (2.18a-c) have a solution

where

2(y,m,t) exp(-fmx/N), (2.19)

+ V = T(y,t). (2.20)-(rn/N)
Yt



65

Eq. (2.20) is a forced first order wave equation for the (y,t)

structure of the response and may be easily solved for various t(y,t).

In particular, we may obtain a formal solution for general

T = F(y) T(t) by first considering the solution to (2.20) for a wind

stress of the form

t(y,t) = F(y) (t), (2.21)

where 5(t) is the Dirac delta function and where the initial condition

corresponding to (2.10) is

Y(0) = 0. (2.22)

With (2.21) and (2.22), the solution to (2.20) is

= -(N/rn) F(y + Nt/rn), (2.23)

which, together with (2.17b) and (2.19), gives

= -(2N/) f F(y + Nt/rn) exp(-fmx/N) rn cos (mz) dm. (2.24)

The subscript D identifies (2.24) as the response to forcing by a

wind stress whose time dependence is given by a delta function.

represents a Green's function for a wind stress concentrated in time.

If now a wind stress with general time dependence T(t) is app1ied

the pressure is given by

p D
y,z,t-) () d. (2.25)

0



3. EXAMPLES

To gain an appreciation for some of the features of the solutions,

we examine three idealized situations for the y and t variation of T.

Example A

We first choose a wind stress of the form

t(y,t) = i(y) (t) T0. (3.1)

The solution, which may be obtained directly from (2.24), is

p (2/Tr) (NT0/y) cos(Ntz/y) exp(fxtfy), y < 0. (3.2)

The disturbance at y = 0 acts like a source that emits waves of

all frequencies and wavelengths. The pressure exhibits an exponential

decay in x for fixed y and decays like in the alonyshore direc-

tion. In Figure 2, v obtained from (3.2) is plotted as a function

of t for various values of z -in terms of scaled variables defined in

the Figure Caption. We show v rather than p because velocity may be

directly compared with current observations. Frequency variations

with depth are evident. The envelope t exp(fxt/jyI), which is the

response at z = 0, governs the initial growth of v at all depths to

some maximum value and its subsequent decay with time.

For lNtz/yj >> 1, the waves behave locally like simple harmonic

waves of a certain fixed period and wavelength which move in accor-

dance with the relation

0 Ntz/y = constant, (3.3)

where 0 is the phase and both z, y < 0. The local frequency and



wavenumbers are given by
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= -(e/t) = -Nz/y, (3.4)

= = Nt/y, (3.5)

= = -Ntz/y2, (3.6)

where variations in frequency or wavenuniber are small over a

frequency or wavenumber interval, Le., mLm, << i

(Bretherton, 1970). Thus the frequency varies as a function of

position while the wavenumbers change with both position and time.

For fixed time, waves farther in y from the source have longer wave-

lengths.

The alongshore and vertical components of the local phase

velocity may also be computed. These are

= -(e/t)/(e/z) = 0/m0 -z/t, (3.7a)

c0 -(e/t)/(e/y) = w0/ = y/t, (3.7b)

and the phase velocity is directed upward and poleward. For fixed

y or z, the phase move more slowly as time increases, but for fixed t

more rapidly as or lz increase.

We may express the local frequency in terms of the local wave-

nurnbers which gives

= N.0/m0. (3.8)



Local group velocity components are

cg0 = aw0/m0 = -N0/m02 = z/t, (3.9)

= y/t. (3.10)

The local group velocity vector associated with waves of fixed wave-

numbers and m0 at time t is directed downward and poleward.

Comparison of (3.8), (3.9), and (3.10) with the corresponding expres-

sions obtained from (2.15) for the free wave example in Section 2

shows, as expected, that for INtz/y >> 1, the response behaves

locally like free waves with fixed frequency and wavenumbers in a

vertically unbounded ocean. With y/t = N/rn0 from (3.5), the condition

INtz/y! >> 1 is Jm0zj >> 1, which specifies that the disturbance

must be much more than a local wavelength away from the surface.

Example B

We next consider

T(y,t) = (y) H(t) T(t) T0, (3.11)

where H(t) is the Heaviside function H(t) = 0, t < 0; H(t) = 1, t > 0.

This example represents forcing by a wind stress that is localized in

space and that has a general time behavior initiated at t = 0.

Substitution of (3.11) in (2.25) gives

p = -(2/)(N/IyI) exp(-fxt/jyI) ftcosENz(t)/ylJ
0

(3.12)



The special case T(t) i(t) corresponds to Example A and yields the

same answer.

If we assume

T(t) Re{exp(-iat)}3
(3.13a)

and scale the variables as

x4 x(c z' (N/a)(z/yI), t' at, a' = a/f,

= p/[(2/i)(N/a)T0J,v' = v[(2/)(N/a)T0(p0fIy1Y'J1, (3.13b)

the evaluation of (3.12) gives, with (3.1),

where

p' Re(-y(B2 + z2) {B exp(-it') -

[B cos(t'z') - z' sin(t'z')] exp(-x't')}), y < 0, (3.14a)

B = x' - i. (3.14b)

The first term in the curly brackets represents a response at the

forcing frequency a. The remaining two terms are transients which,

for fixed y and x > 0, decay exponentially with t and are coastally

trapped.

The initial response for t' < 10 where the transients are still

important is illustrated in Figure 3. The phase propagation is up-

ward, consistent with a downward propagation of energy from the

surface, while a maximum in v propagates from the surface downward.

Examination of (3.14) for x't' >> 1, when the transient terms have

decayed, shows a subsurface maximum of v at z' = -1. From (2.15),
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this is the ray path dy/dz = that passes through

y = 0, z = 0 for a freely propagating 1KW of frequency = a.

Figure 3 shows the maximum in v propagating downward from the surface

to z' = -.1, where it intersects the 1KW free wave ray path.

Subsequently, the maximum in v remains at z' -1.

Example C

Finally, we examine a more general wind stress,

'r(y,t) = H(t) H(-y) F(y) 1(t) T0, (3.15)

where the wind has a general y structure for y < 0.

The substitution of (3.15) in (2.24) and (2.25) gives

p 2N ft1()
d fI d8,

0 0

y < 0. (3.16)

A special case of interest is

F(y) T(t) = Re{exp[-i(at - y)]}. (3.17)

The substitution of (3.17) in (3.16) and the subsequent evaluation

of the integral over c yields

p = Re-(2/1T)NT0 exp(iy) f'texp[i-fxt/)[K exp(Kt) - K cos(Ntz/B) +

where

(Nz/) sin(Ntz/)] [Nz/)2 + K2] d}, y < 0, (3.18)

K = fx/ - ia. (3.19)



,
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We first examine (3.18) for small y, i.e., ky << 1, or

equivalently jl << A,/(2ni, where = 2ii/. is the alongshore wave-

length of the wind. Evaluation of (3.18) with j9.yj << 1 gives

'
-1 '2 '2 -

Re (x + z ) '(B2 + z2)

x {exp(-it' ) E + exp(-x't' )[-E cos(z't' ) - z' (B + x' ) sin(z't' )]}

y < 0, (3.20a)

where

E = -Bx + z
2,

(3.2Db)

and where B is given by (3.14b).

Figure 4 shows v' from (3.20) as a function of z' and t'. A

subsurface maximum of v' travels downward to z' = -1 where it

remains. In Example B this behavior was found for F(y) =

while here a similar behavior is observed, which is evidently

associated with the step function at y = 0.

For large time (x't' >> 1) when the transient terms have

decayed, (3.20) is asymptotically equal to

where

½ [sin(t') x' (2/I - 1:1 - 1:1)

- cos(t') (u4II - p/I)], y < 0,

'2 '2I=x +z

'2 2Ix +i.i,

(3.21 a)

(3.21b)

(3.21 c)



= ZI ± 1.
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(3.21d)

Note that (3.2la) corresponds to the solution that may be obtained

directly by solving (2.26) and (2.27) with T(y,t) H(-y) exp(-it).

For x' << 1, a maximum in V1 occurs at the surface and near the line

0, that is the ray path passing through y = 0, z 0 for a

free 1KW. The maximum at the surface is associated with the local

forcing while the maximum near = 0 is associated with the step

function at y = 0. This behavior is illustrated in Figures 5 a-d,

which show the magnitude and phase of V, where v' V exp(-it' )

(from (3.20) with xTt' >> 1) as a function of y and z' and as a

function of x' and z'. The subsurface maximum along the free 1KW

ray path is evident in Figure 5a. Figure 5c shows that the subsurface

maximum is strongest near the coast and weakens with increasing x'.

The maximum of v' near the surface is also evident on Figures 5a,c.

The phase plots shown on Figures 5b,d indicate that there is a 180°

phase difference from the surface to below the subsurface maximum,

with an upward phase propagation. The phase plot shown in Figure 5d

indicates relatively small offshore phase differences for Iz' I < 1

and shows nearshore motions leading for Iz' > 1.

For large lI and large t, i.e., for 2yj >> 1 and fxt/Iy >> 1,

an approximate expression for (3.18) is

p Re{(2/)NT0 exp[-i(at - K[(Nz/a) + K2]1 exp(i)d,
0

y 0. (3.22)
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This limit gives p far from the region influenced by the step function

in y and after the transient components have decayed. Evaluation of

the integral in (3.22) yields

p Re((1 NT0 exp{-i(at - zy)] exp(ftx/c)

x -i[exp(iN2z/cr) Ei(-fRx/a iN2zk) + exp(-iN2z/a) Ei (-f2.x/c+ iNz/a)]

+ H(-i/cY)'iT exp.(-iNzz/a)}), y < 0, (3.23)

where Ei is the exponential integral function (Gradshteyn and Ryshik,

1980, p. 925) and where H(-./a) = 1 for Lie < 0 and 0 for /e > 0.

The response is composed of two parts, one of which (the last

term in curly brackets) is forced only for Lie < 0 and represents a

coastally trapped 1KW with vertical wavenumber in = N.Q10 and negative

vertical group velocity Cgz = -c/rn. The offshore trapping scale

(Rossby radius scale) is c/fL. The remaining two terms in (3.23)

represent a forced response which decay as jzj2 for Izi large and

which exhibit the proper behavior at x 0 z = 0 to satisfy (2.6).

In Appendix B, we derive a solution for forcing by a traveling

plane wave wind stress with a generalized integral transform in x,

in a manner similar to that utilized by Huppert and Stern (1974).

That procedure gives the same result as the asymptotic solution

(3.23) obtained viith a cosine transform in z and provides an alterna-

tive computationally convenient representation of the solution.

The magnitude of the alongshore velocity associated with the

surface trapped response (calculated numerically from the integral

in (B21)) is plotted for several depths as a function of fL/eIx in

Figure 6 for both poleward (2,/<0) and equatorward (2./a > 0)
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traveling wind. For 2/o < 0, the magnitude of the downward propagat-

ing 1KW is also plotted for comparison, and the propagating component

may be seen to be the dominant contribution to the forced response

for Nj/af z < -0.5. The offshore structure of the surface trapped

response is depth dependent and also differs for tic 0. In both

cases, near the surface the magnitude of the response grows as a

function of x to some maximum near fit/cl = 0.2 and decays with a

Rossby radius scale for ftftclx>0.2.

Figure 7 shows v at x = 0 for various z as a function of

8 = ct - .Qy with L/e < 0. The outstanding feature is the reversal of

phase with depth, where the signal at N12,/clz = -0.2 lags the signal

above and leads the signal below. The phase behavior near the

surface reflects the superposition in time of the vertically propagat-

ing and the surface trapped components, while for NIL/olz < -0.5.

the vertically propagating component dominates the response and the

phase lag is consistent with a downward propagating 1KW (the dashed

line in Figure 7 represents the phase lag expected for a free down-

ward propagating 1KW).
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4. INTERNAL DISSIPATION

The theory presented in Sections 2 and 3 is limited by the

neglect of bottom topography. For forcing at the surface, an initial

disturbance must propagate from the surface to the bottom and back to

a subsurface point z before the effect of the bottom is felt at z.

Figure 8 shows the scaled time t = f2LTt/(NH0) it takes for an

internal Kelvin wave with frequency üi and horizontal wavenurnber £. to

propagate at its group velocity from the surface to the bottom

z = -H as a function of w' = w/f and = U (Tt Ho/Cgz) The

figure indicates that waves with lower frequency or larger wave-

number £ travel more slowly. With L = 1000 km, H0 2 km,

f = 1.3 x 10" s'1 (5°S latitude) and U = 4 x l0 s, a wave with

A = 1000 km, T = 2rr/ = 5.7 days takes approximately 3 days to

reach the bottom while a wave with T = 25 days takes about 30 days.

Internal dissipation, which causes an energy decay with time,

may prevent the energy that is

the response near the surface.

with an infinitely deep ocean

longer times than indicated on

using a model which allows the

in the deep ocean.

reflected at the bottom from affecting

For such cases, the response obtained

nay be valid near the surface 'for much

Figure 8. We next examine this point,

vertical mixing of heat and momentum

The linearized equations are (2.la), (2.lc), (2.ld) and

v + fu = -p + ' V
t y zz'

(4.la)

Pt + W = KP, (4.lb)
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where and K are coefficients of vertical eddy viscosity and

diffusivity, respectively, assumed constant.

Eqs. (2.la,c,d) and (4..la,b) may be combined to form a single

equation for p, given by

[p + (f/N)2p3t - v[p + (f/N)2Pr1pJ = 0, (4.2)
xx

where Pr = V/K is the Prandtl number and where for simplicity we

assume that N = constant. Regularity conditions as x and z -- -

are given by (2.9a,b) and the remaining boundary conditions are

p + fp -
xt y zz

ft(y,t) (z), at x = 0, (4.3a)

= (/N2) at z 0. (4.3b)

Eq. (4.2) and conditions (4.3a,b) are analagous to (2.3), (2.6) and

(2.8) for the inviscid case.

La) Free wave solution

Before solving the forced problem, we obtain the free wave

solution to (4.2) for a vertically unbounded ocean subject to a

homogeneous version of (4.3a) with condition (4.3b) dropped. The

assumed form of the free wave is given by (2.11). The x structure

and the dispersion relation are derived in a manner similar to that

in Section 2a and are given by

= exp[-(frn/N) (1 + im2/)½ (1 + im2V/w)xJ, (4.4a)

(N./rn) (1 + im2K/J)½ (1 + ini2V/w). (4.4b)
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These reduce to (2.14) and (2.15) when v = K 0. For the general

case Pr 1, there is an offshore phase shift induced by internal

dissipation, as well as a correction to the offshore structure. The

frequency and hence the phase speed is modified and has a negative

imaginary part which corresponds to a decay with time.

The special case Pr = 1 yields

4) exp(-fmx/N), (4.5a)

= N/m - im2v, (4.Sb)

i.e., the phase speed and offshore structure are unaffected by dis-

sipation (see (2.14) and (2.15)), but a decay with time is still

present.

We may estimate a dissipation decay time,

2 1 (2/) (NY2 (4.6a)Td=(mv)

from (4.5b) with (2.11) for the free vertically propagating waves.

The ratio,

Td/Tt = (m3vH01 = w4(vH0Y1 (NZ3 (4.6b)

gives a measure of the effectiveness of dissipation in damping the

wave before a reflection occurs at the bottom. For Td/Tt >> 1, the

wave reflects many times at the surface and the bottom before it

decays, while for Td/Tt << 1 dissipation damps the wave before a

single reflection takes place.

Figure 9 shows (vH0N3f4L3)(Td/Tt) plotted as a function of

and £. The waves are damped more effectively for shorter wavelength



or lower frequency. The dependence on the dimensional magnitude of

v is shown in Figure 10, where Td/Tt is plotted as a function of

w and , with = 1000 km, N = 4 x 10
l,

f = 1.3 x 10 s1, and

H0 = 2 km.

Lb) Forced problem

As in Section 2b, we represent the solution to (4.2) subject to

(4.3a,b), (2.8) and (2.9) in terms of its Fourier cosine transform in

z, given by (2.17a,b). In doing this, we assume that each side of

(4.3b) is zero independently, i.e., that both w = 0 and the perturba-

tion density p = 0 at the ocean surface. This requirement on p

implies that the basic state density or temperature at the surface is

fixed. A more appropriate condition would specify a relationship

between heat flux and other parameters. However, we are concerned

mainly with the velocity structure of the forced response and the

condition on p invoked above has been commonly utilized (Pedlosky,

1974; 11en, 1973; McCreary, 1981).

With Pr = 1, the transformed equation and boundary conditions

have a solution given by (2.19) where

-(rn/N) + - (m3JN)Y = T(y,t). (4.7)

Eq. (4.7) is a forced first order wave equation similar to (2.20)

for the inviscid case but which contains an additional term due to

internal friction. The general solution for T(y,t) = F(y) T(t) is

(2.27), where

= -(2n/Tr) JF(y + Nt/rn) exp(-fmx/N - 'm2t) m cos mz dm. (4.8)

0



With the wind stress T given by (3.2a) (Example A from Section 3),

p = (2/n) (NT0/y) cos(Ntz/y) exp(fxt/y - vN2t3/y2), y 0. (4.9)

This response is similar to the inviscid response (3.lb) except that

there is a decay in time due to the effect of dissipation. At a

fixed location the damping behaves like exp(-'t3), which with (3.5),

may also be expressed as exp(.-vmt), where m0 is the local vertical

wavenumber. Thus, locally the forced response decays on the same

time scale as the free waves of Section 4a.



5. EFFECT OF A BOTTOM BOUNDARY

_() Inviscid case

In order to examine the effects of a bottom boundary at z = -H0,

the radiation and regularity conditions that apply to the unbounded

ocean are replaced by the boundary condition w = U at z -H0. In

terms of pressure, (2.5) implies that (2.8) holds also at z = -H0.

The remaining equations are (2.3), (2.6), and (2.9a), where again N

is assumed constant for simplicity.

In this section it is useful to define variables 2 and 2, where

we scale x with the internal Rossby radius scale and z with the

depth, i.e.,

2 = f (NH0Y1 x, = z/H0. (5.la)

In addition, we define

0 = (NH0Y1 lI1 = t. (5.lb)

The solution is conveniently represented by expanding the

pressure in terms of vertical modes. This gives

00

p = z cos(m7r). (5.2)

m0

Substitution of (5.2) in (2.3) and utilization of the orthogonality

of the vertical eigenfunctions gives

mxx
- (fmr)2 (NH0Y2

m
= 0. (5.3)
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Solving (5.3) subject to (2.9a), we obtain

exp(-n) Y(y,t), n = 1, 2... (5.4)

Substitution of (5.4) and (5.2) in (2.6) yields

n(NHoy1Yt = (2/H0) T(y,t). (5.5)

The n 0 term is 4 Y0(y,t) and it corresponds to the representa-

tion, within x < 0[NH0(f'rrY], of the barotropic response that varies

on the larger scale L >> NH0(fii1.

For

we obtain

where

T(y,t) = H(-y) H(t) Re{exp(-iot)}, (5.6)

V P(ofY = 2iT0(p0H0a1 exp(-i)

x exp(-n) cos(nrr)
n=l

J
+ E exp[-n + in] cos(n,) , y < 0, (5.7a)

n= 1

3 = [t/y] (5.7b)

is the largest integer less than t/y. The first sum is the particu-

lar solution to (5.5) while the partial sum is required to satisfy

v 0 for y = 0.

The series in (5.7a) may be summed to yield



where

V 2it3(p0H0Y1 exp(-i)

{½ + ½ sinh (cosh - cos7r) qJ cos(Jrr)

- [1 - q cos(i'r2) qJ cos(J'rr2) + q3 cos((J-l)r2)J

[1 - 2q cos(,T2) + q2]'}, y < 0, (5.8a)

q = exp[- + ii1. (5.8b)

Figure 11 shows v from (5.8) as a function of and for 9 =

and illustrates the adjustment toward the long time solution. The

behavior is similar to that shown in Figure 4, which is the response

of an infinitely deep ocean that is obtained with (3.15), (3.17), and

<< 1. At an alongshore location y, the response is entirely due

to the periodic forcing at the surface until the effect of the step

function at y = 0 propagates past y. This occurs at

t = f7r(NH) IyIc when the first mode, which travels the fastest,

passes y. The response shown in Figure 11 develops as the higher

mode propagate past y.

The limiting solution for v as 3 which corresponds to long

time after transients have dispersed may be obtained from (5.7a) and

is given by

v = ½T0(p0H0Y {sin sinh [2(cosh - cosr21 - (cosh cospY

- (cosh cos+) - cos[sin(cosh

- sinii (coshx - cos.t']}, y < 0, (5.9)

where



lIZ ± .9. (5.10)

The long time response (5.9) is periodic in .9 and £ with a

maximum in v for z 0 and near = 2kw, k = 0, 1, 2 .....

Figures 12a,b show the magnitude and phase of v, where

v 2it0 (p0H0cY V exp(-i), from (5.8a) with J >> l,as a function

of .9 and . The subsurface maximum along p = 0 (Figure l2a) is

associated with the ray path for a free vertically propagating 1KW

with frequency w = a that passes through .9 0, = 0 and travels

to the bottom, while the maximum along i = 2w is associated with the

ray path of the reflected wave that propagates from the bottom to

the surface. Subsequent reflections at z = 0 and z = -1 occur

periodically in 9. In regions where the ray path implies downward

(upward) propagation of energy, the phase velocity is directed upward

(downward). This is illustrated in Figure 12b, which shows the phase

of V.

The adjustment toward the long time solution (Figure 11) shows

that a maximum in v propagates from the surface to a depth where it

intersects the ray path shown in Figure 12a. The maximum subsequent-

ly remains at the location of the ray path.

With the conditions

x<<l, y<<l, (5.11)

(5.8) may be shown to be asymptotically equal to (3.20), the

response of an infinitely deep ocean which is obtained in Section 3c

with (3.15), (3.17), and IyI << 1. Similarly, with (5.11), the

long time solution (5.9) is asymptotically equal to (3.21a). Hence,



for forcing given by (5.6), (5.11) establishes limits on the

validity of the analysis in Sections 2 and 3. For example, with the

parameters chosen above, the effect of a bottom may be neglected for

zj << 0.64 km, x << 196 kni, and jyj << 875 km.

(b) Internal friction

The inviscid analysis of the previous section predicts an

infinite number of reflections at 2 = 0 and 2 = -1, periodic in y.

The effect of internal dissipation modifies this behavior. Equations

and boundary conditions for this problem with friction are (4.2),

(4.3a), and (4.3b).

The response to a wind stress

Section 5a, with Pr 1. is given by

p (2n/)ft E n'expE-nx
t0n=l

(y,t) = F(y) 1(t), derived as in

xT(o.)dcx, y<0. (5.12)

The form of (5.12) is siiiilar to the inviscid solution, with an

additional term which corresponds to an exponential damping due to

dissipation. The effect of dissipation is greater for higher mode

number n. With the forcing (5.6),

0

= 2T0(p0H01 exp(-n) cos(nT12)
(2

+ r2n4)

x {rn2 cos +sin t

A A 2 - A A 3
- H(t -y){rn cos(t - ny) +sin(t - ny)3 exp(-ryn /c)

- H( ) rn2exp(-rn2t)}, y < 0 (5.13a)
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r = \)(1T/H0)2. (5.13b)

The first two terms in the curly brackets represent a particular

solution while the remaining terms are required to satisfy v = 0

for y 0, and represent the effect of the step function at y = 0.

The long time behavior, which may be obtained from (5.13a) by

letting t is no longer periodic in y. The effect of the step

function decays rapidly with y for high mode number, and only the

effect due to the lowest several modes remains. The beam pattern

which results from the inviscid analysis only exists near y = 0, and

far from the origin the response exhibits no vertical phase

propagation.



6. DISCUSSION

Utilizing a simple f-plane model with a vertical boundary, we

have shown that under certain conditions vertically propagating sub-

inertial motions may be forced by the alongshore component of the

wind at the coast. Several examples which illustrate the basic

properties of the forced flow are presented in Section 3. A

Green's function for impulsive forcing at a point on the surface

(Example A) is shown to result in vertically propagating free

coastally trapped internal Kelvin waves. The waves propagate poleward

on an eastern boundary and the group velocity vector is directed

downward while the phase propagation is upward. When the local verti-

cal wavelength is much less than the distance to the surface, the

disturbance appears like a free wave with local frequency and wave-

numbers.

With N = 4 x l0 s' and 1000 km, the dispersion relation

(2.15) gives 0.7 km and c -30 m day for T = 25 days. This

estimate for indicates that it is unlikely that the low frequency

signal in Figure 1, which is measured at depths Izi < 0.8 km, i.e.,

H may be explained in terms of a single wave with fixed

frequency or wavenumbers.

Example B illustrates the effect of forcing that is initiated at

t = 0 and that is oscillatory in time and localized in space.

Changes in amplitude and frequency content with depth are predicted,

as well as an upward propagation of phase. Both a transient

component and a response at the forcing frequency w are generated.

Initially, when the transients are still important, a maximum in v

propagates downward until it intersects the ray path, which passes



through y = 0, z = 0, of a free vertically propagating 1KW with

frequency w = a. The maximum subsequentially remains on the ray path

and, for long time, after the transients have decayed, the forced

response exhibits a subsurface maximum in the y-z plane associated

with this free 1KW ray path.

In Example C, the wind stress is modelled by a traveling wave

with step functions in y and t. The step function in y is an

approximate model for low latitudes, where the presence of the

equator introduces an effective step function behavior to the forcing,

since a wind stress applied at a location is felt only poleward of

that location. With the forcing given in Example C, the response has

a very different qualitative behavior in two limiting cases. For

<< x, the solution resembles that of Example B, with a maximum

in v which initially amplifies and propagates downward and with a

subsurface maximum associated with the free 1KW ray path for long

time. This behavior reflects the presence of the step function at

y = 0.

The limits fxt/yI >> 1 and jy >> X, which corresponds to long

time so that the transients have vanished and an alongshore location

far from the influence of the step function at y 0, yield a

different response. A standing component that decays with depth from

the surface and that is trapped within a Rossby radius of the coast

is forced for a/i. < 0 (poleward traveling wind) and a/i > 0

(equatorward traveling wind). For a/ < 0, an additional propagating

component is forced, which represents a coastally trapped 1KW with

negative vertical group velocity and upward phase propagation. The

response to forcing by a wind stress that is standing in the
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alongshore direction may be obtained by summing the effects of

traveling waves with c/p. > U and c/2. < 0. For this case, downward

propagating waves will be generated by the poleward propagating

component of the wind while a surface trapped response will be

generated by both poleward and equatorward traveling components of the

wind. For jz > IcY/N2, the surface trapped component is small

compared to the vertically propagating component. With the parameters

chosen above, the vertically propagating 1KW is the dominant response

for z < -115 m, i.e., below 115 m one would expect to see an upward

propagation of phase associated with downward propagating IKWs, while

above 115 tTl the surface trapped component of the forced response will

be important and a more complicated phase dependence with depth would

be expected.

These examples illustrate how the coastal response is sensitive

to the exact nature of the wind forcing. The response to an initial

disturbance is very different from the flow due to a steady forcing,

and the behavior near the origin of a step function in y (i.e., near

the equator) differs considerably from the behavior far from the

origin. The examples also indicate the dependence of the oceanic

response on the frequency-wavenumber structure Of the wind forcing.

Based on these examples, together with the analysis of Sections 4

and 5, we may make some general statements about the conditions for

which vertically propagating coastafly trapped waves would be

observed in the ocean.

For an initial disturbance at the surface, with a general

frequency-wavenumber spectrum and large alongshore scale, downward

propagating energy would be observed for those frequency-wavenumber



components of the forced response that have not reflected from the

bottom. Those components that have reflected from the bottom will

exhibit a more complicated vertical phase dependence due to the

superposition of downward and upward propagating energy. Figure 8

shows the time required for an 1KW to reach the bottom as a function

of w and S. Waves with higher frequencies and longer wavelengths

travel faster.

The energy of the disturbance may dissipate before a round trip

from the surface to the bottom to the surface is completed and hence

internal dissipation may prevent the interference of reflected energy

with downward propagating energy, even for longer time. With these

conditions, one would expect to see vertically propagating waves near

the surface for those frequencies and wavenuinbers where they are

damped effectively by internal dissipation. The ratio of dissipation

decay time to travel time (Td/Tt) is shown in Figures 9 and 10.

Internal dissipation damps the waves more effectively for shorter

2
wavelength or lower frequency. For = 1000 km and with v 10 cm

s, Td/Tt < 1 for w/f 0.2, i.e., free waves are damped considerably

before a reflected wave reaches the surface. At 50 latitude,

0.2 corresponds to T = 28.5 days.

These simple calculations may explain why vertically standing

coastally trapped waves are observed along the Peru coast in the 5-10

day band (Smith. 1978; Brink, Allen, and Smith, 1978; Romea and

Smith, 1982) while relatively large phase lags are observed in the

vertical for perturbations in velocity for T > 25 days (Figure 1).

For cases where dissipation or long travel times may not be

invoked in order to neglect the effects of reflection from the ocean



bottom, the calculations of Section 5 suggest that, near the equators

where the wind forcing may be approximated with a step function

behavior in y, the results of Example C with yJ << apply for

lz << H0Iir and lyt << (NK0/fi)(f/cr). An example in Section 5 with

T 25 days, at 50 latitude and with H0 2 km shows that the effect

of the bottom may be ignored for Izi << 0.64 kin,
I
<< 875 km. For

an initial forcing at the surface, an upward propagation of phase

would be expected associated with the propagation of a subsurface

maximum in v downward. For longer time, the response to steady

forcing at a frequency o has a maximum along a line z = cry/N which

is associated with the 1KW ray path, with an upward propagation of

phase in the vicinity of the ray path. Since the ray path is a

function of cr, the response to a wind with a general frequency

spectrum and a step function at y = 0 will consist of many rays

emanating from y = 0, z = 0, and an upward propagation of phase will

be observed near y = 0 over much of the depth.

At 5°S latitude, with yj 550 km (the approximate distance

near the equator to the ESACAN array), T = 25 days and N 4 x l0

the subsurface maximum propagates downward at about 40 m day

and intersects the 1KW ray path at about 400 m depth. This is in

qualitative agreement with the observations shown in Figure l

although more extensive measurements for longer times are needed to

obtain an accurate description of low frequency phenomena along the

Peru coast at low latitudes.

Finally, we point out several interesting questions: (1) Do low

frequency waves that are forced along the equator and that propagate

vertically turn at the intersection of the equator with the
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Peru-Equador coast and travel north and south as vertically propagat-

ing IKWs? (2) Can vertically propagating IKWs transfer momentum

downward and interact with the mean flow? These questions suggest

avenues for further theoretical studies.



92

FIGURE CAPTIONS

Figure 1. Time series of low-pass filtered alongshore wind from

Talara (top plot) and of alongshore current v (solid line)

and temperature I (dashed line) from the ESACAN C2

mooring, which was on the continental slope in 1360 m of

water at 5°S latitude. The low pass filter has a half

power point of 8.5 days.

Figure 2. Scaled alongshore velocity V = [(2/i) Nt0 (p0IyIfxY']1v

as a function of t' = fxtIy and z' = Nz(fx) for

Example A [T(y,t) = 6(y) 6(t) r].

Figure 3. Scaled alongshore velocity v = [(2/u) NT0(p0f2IyIY'VIYI]

as a function of t' = at and z' = (N/o)(z/IyI)

with x = x/(c' lyl) 0.04, for Example B [T(y,t)

6(y) H(t) T0 exp(-iat)].

Figure 4. Scaled alongshore velocity v = [(2/u) Nt0 (p02f2y)jv

as a function of t' = at and z' = (N/a)(z/yJ) with

= x/(c y) = 0.04, from Example C [t(y,t) =

H(-y) H(t) T0 exp{-i(t - £y)}] for the limiting case

<< 1. Dark lines: contours of v = 0; light

* *
lines: v > 0; dashed lines v < 0; contour interval: 1.

Figure 5. Magnitude (a,c) and phase 0(b,d) of V for Example C as a

function of y' = y/L and z' (a,b) (with x' = 0.04) and

as a function of x' and z' (c,d), where v' = V exp(-it').

Limiting case P'I << 1, x't' >> 1. Scaling the same as

in Figure 4. Oi > 62 implies 2 leads 1.

Figure 6. Scaled alongshore velocity V V/[(2/ur) Nt0(p0o2Y]
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for Example C, obtained for the limiting cast fxt/y >>l

and Zyj >> l as a function of x = f2.x/a for various

= N9.z/a, where v = V exp[-i(at - zy)]. The response

is plotted for 2./o > 0 and £/c < 0. The scale for V*

at z = -0.2 applies to V at all depths. The solid line

represents the vertically trapped response while the

dotted line represents the magnitude of the vertically

propagating 1KW. The two components are 1TI 2 out of phase

in time and are plotted on the same figure in order to

compare magnitudes. The offshore distance x = 1

corresponds to the Rossby radius scale.

Figure 7. Scaled alongshore velocity v v/[2NT02.(p0a2)] at

x = 0 for Example C obtained with the limits fxt/y >> 1

and jZy >l as a function of 0 = at - 9.y for various

z = N9.z/a, with £./a < 0. The straight lines connect

the local maxima of v and indicate the vertical phase

structure while the dashed line represents the vertical

phase lag predicted for a free 1KW with positive vertical

phase velocity.

Figure 8. Scaled travel time t = f2Lt(NH0Y1 for a free 1KW with

scaled frequency w' = w/f and horizontal wavenumber

= £L to propagate at its group velocity from the

surface to the bottom (z = -H0), as a function of w

and £'.

Figure 9. Scaled ratio of dissipation decay time to travel time

(Td/Tt)(',HoN3f4C3) as a function of = wf and

= iL.
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Figure 10. Ratio of dissipation decay time to travel time
Td'Tt

as a function of o' = w/f and v, with = 1000 km,

N = 4 x 10 s. f = 1.3 x 10 s and H0 = 2 km.

Figure 11. Scaled alongshore velocity v = v/[2T0(p0H0o)] as a

A p. -1
function of z = z/H0 and t = at for y = oir(NH0) II =

r/2 and = f1T(F4H01 x = 0.2. Flat bottom at z = -H0.

Dark line: contour of v = 0; light line; contour of

= 1; dashed line: contour of v

Figure 12. Magnitude (a) and phase 0 (b) of V as a function of y

and 2, with = 0.02 and £I, >> 1, where v = iV exp(-i).

Flat bottom at z = -H0. Same scaling as in Figure 11.

> e implies 2 leads 1.
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Chapter IV

THE EFFECT OF FRICTION AND TOPOGRAPHY ON COASTAL

INTERNAL KELVIN WAVES AT LOW LATITUDES
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1. INTRODUCTION

Evidence has been presented for the existence of coastally

trapped waves along the central Peru coast (Smith, 1978), where

observations indicate poleward propagation between 100 and 15°S of

fluctuations in sea level, alongshore currents and temperature in

the 0.1-0.2 cpd frequency band with phase speeds of about 200 km

day. Although the frequency range of the propagating fluctuations

is similar to that of weather events, they are found to be uncor-

related with the local winds measured at 12°S or 15°30'S (Brink,

et al., 1978). The analysis has recently been extended equatorward

and poleward by Romea and Smith (1982), and free waves are found to

propagate poleward between 20 and 17°S.

In general, free coastally trapped waves have modal structures

and phase speeds that are dependent on shelf topography, stratifi-

cation, and latitude (see, e.g.,, Allen and Romea, 1980, for a

detailed discussion of this point). The structure of the current

fluctuations and the nature of the dynamical balances suggest that

the waves observed along the Peru coast are internal Kelvin wave-

like (Smith, 1978; Brink, et al., 1978; Brink, et al., 1980; Allen

and Smith, 1981; Brink, l982a; arid Romea and Smith, 1982), i.e.,

that the density stratification is the dominant mechanism for the

waves, with the bottom topography inducing only a minor modification

to their structure and dynamics. This observational result agrees

with the conceptual model that the effect of the continental margin

should be much like a vertical wall for low latitudes where the
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Rossby radius of deformation, which is the natural baroclinic

offshore length scale, is greater than the shelf-slope width L5.

Estimating the Rossby radius scale by oR = c/f, where c is an along-

shore phase speed and f is the Coriolis parameter, we find, at 5°S

latitude, with f 1.3 x 10 s' and c 200 km day, that

180 km, whereas 80-100 km.

Phase shifts in the offshore and vertical directions have been

observed in the velocity data from the Peru coast (Brink et al.,

1978). For barotropic motions, Brink and Allen (1978) have shown

that cross-shelf phase lags may be induced by the effect of bottom

Ekman layer friction, and Brink, et al. (1980) report an observed

mean bottom Ekman layer thickness of 10-20 m based on the Peru data

from March-May 1977. Thus, the observed phase shifts may be due to

the effects of bottom friction. To investigate this possibility for

conditions near the Peru coast, we present a simple analysis of the

effect of bottom friction and shelf slope topography on free internal

Kelvin waves in a continuously stratified ocean. Models with

continuous stratification and realistic bottom topography are the

most useful for direct comparison with coastal trapped wave observa-

tions at low latitudes. These models are generally intractable

analytically and a numerical approach has been adopted in the past

(e.g., Huthnance, 1978.; Brink, l982a). However, there are diffi-

culties with numerical models for low latitudes where Ls/R << 1

(Brink, personal communication). In addition, if bottom friction

effects are included, it is difficult to numerically calculate the

structure of alongshore velocity accurately (Brink, 1982b).
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We concentrate primarily on the low latitude case with weak

bottom friction effects and derive analytical results with a

perturbation analysis for << 1 and for I/T << 1, where Tf is

the frictional time scale and I is the wave period. The limit

Ls/SR 0 corresponds to the flat bottom vertical wall case. As

will be discussed, the formulation including the effect of bottom

friction at low latitudes depends conceptually on taking the limit

Tf/T -- 0 before the limit L/ISR 0.

For comparison to the low latitude case L5/ << 1, we also

include results for an idealized mid-latitude case Ls/ISR >> L with

a vertical wall and a weak slope. Phase lags induced by bottom

friction are qualitatively different in this case and it is of

interest to contrast these results with those from the low latitude

case.
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2. FORMULATION

We consider a continuously stratified ocean on an f-plane in

the northern hemisphere. Cartesian coordinates are utilized with x'

positive westward, y' positive southward, and z' positive vertically

upward. Primes denote dimensional quantities for which a non-

dimensional counterpart will later be defined. The ocean is bounded

on top by a rigid lid and on the bottom by a boundary at z' = -H.

There isa straight north-south oriented coastline at x' 0. The

problem is linearized by the assumption that the motion results in

negligible nonlinear fluid accelerations and in small departures p'

from an equilibrium stable density distribution p(z'). The hydro-

static approximation is utilized1 and we consider interior motions

away from frictional boundary layers. The long wave assumptions for

coastally trapped waves are made, i.e., the frequency w of the wave

motions is small compared to f, and the alongshore scale of the

waves is large compared to their offshore scale I...

Dimensionless variables are formed in the following manner:

(x,y) = (x',y')/L, z = z'/H, t t'f,

(u,v) = (u',v')/U, w = wft/(HU), (2.1)

p = p'/(p0UfL), p = (p1gH)/(p0UfL).

The variables (u',v',w') are the velocity components in the

(x',y',z') directions, t is time, p' is the pressure, U is a

characteristic horizontal velocity, and the total density is given

by
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PTY,z,t) = p'(x',y',z',t') + + (2.2)

where p0 is a constant.

With the above assumptions and scaling, the governing equations

are

where

v (2.3a)

+ fu (2.3b)

0 p, (2.3c)

Pt - R2w = 0, (2.3d)

(2.3e)

R(z) = NH/(fL), (2.4a)

N2(z) = -9P/Po (2.4b)

and where the subscripts denote partial differentiation. N2(z) is

the square of the Brunt-Visl frequency, and R(z) is a stratifica-

tion parameter that represents the ratio of the Rossby radius scale

toL.

Eqs. (2..3a-e) may be combined into a single equation for the

pressure given by

+ [R2(z)p]}t = 0. (2.5)
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Boundary conditions for p, resulting from the assumption that the

surface is a rigid lid and a regularity condition that specifies

coastal trapping, are respectively

= 0, at z = 0, (2.6a)

p, 0, as x . (2.6b)

The remaining boundary conditions depend on the specific bottom

topography chosen, and will be introduced later.
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3. STEEP SLOPE

The geometry of the steep slope model is shown in Figure 1.

The side wall located at x' = £'(z), intersects the surface at

= 0, z'= 0. We assume that the offshore scale of the slope

topography is small compared to a characteristic offshore scale L,

i.e., c = << 1, and that the slope intersects the bottom at

X = << 1, Z = -1.

We introduce friction in the problem by assuming there are

quasi-steady Ekman layers on the bottom at z = -1 and on the slope

x = c(z). The boundary condition at z = -1, which represents the

Ekman compatibility condition (Pedlosky, 1979, p. 198) on the inte-

rior flow, is given by

where

½R2E at z = -1, (3.la)

E = W1 (½ /f)½ (3.lb)

is the vertical Ekman number and v is a constant vertical eddy

coefficient.

A standard boundary layer analysis (e.g., Pedlosky, 1979,

p. 208-215) for a constant sloping boundary, which will be valid for

general slope topography as long as the radius of curvature is large

compared to the boundary layer thickness, gives a normal layer

thickness of E (cos& )½, where c is the dimensional slope angle.

The normal velocity WN at the top of the layer and the transport

TE parallel to the slope in the layer are given by
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= ½E v2(coscr.'), (3.2a)

TE = -½E v(cosc'), (3.2b)

where measures distance along the slope downward from the surface.

The results (3.2a,b) are derived with the assumption that I is large

enough that Ev/Eh (vv/vh)(L/H) >> 1, where vh is a constant

horizontal eddy coefficient. This assumption has been discussed by

Allen (1973) and Pedlosky (1974), and is equivalent to the statement

that the offshore scale is large compared to the horizontal diffusion

scale.

With the scaling given in (2.1) and withE << 1, the magnitude

of the slope angle in the nondimensional system is

tan = o(1) >> 1. (3.3a)

However, the problem is formulated such that >> I >> H,

i.e., that the shelf-slope width is much greater than the deep

ocean depth but much less than the internal Rossby radius scale

associated with the first baroclinic mode. Therefore the magnitude

of c is

tan & = D(H/L) << 1. (3.3b)

In terms of variables tn x and z,

WN = u sin a + w cos (3.3c)

and
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= COS LI (/x) - sin (a/az). (3.3d)

With (3.3a,c,d), (3.2a) is

= -tw - ½E (cosLI')v + 0(s0) + 0(E). (3.4a)

Typical values (H 4 km, L 100 kin) give LI' 2.3°, so that

the dimensional slope appears locally almost horizontal. Thus, we

anticipate that the bottom Eknian layer will extend over the slope

up to the surface. With cosa' = 1 and at x c(-l), the Ekman layer

transport (3.2b) on the slope is approximately equal to the Ekman

layer transport on the flat bottom. Since the fluxes approximately

match where the slope meets the bottom, there will be negligible

flux into the interior due directly to the change in slope although

there will be a discontinuity in normal velocity. With no wind

stress forcing, and hence no flux in the surface Ekman layer, any

net flux into the Ekmari layer along the flat bottom or along the

slope must be pumped out at x = 0, z = 0. The approximate boundary

condition along the sloping boundary from (3.4a) is thus

p +p cR
xt z

2zt + ½
[p

V XZ

at x = c(z), (3.4b)

where
x(0) = = 0, z = 0). This condition specifies that the

onshore flow in the interior is balanced by the inviscid vertical

velocity produced by the slope plus the Ekinan pumping along the

slope. The last term on the right hand side of (3.4b) represents

the flow out of the Ekman layer at x = 0, z = 0 and must be included

so that the mass flux condition
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/w d = 0 (3.4c)
rN

is satisfied, where r is the lower boundary, and is distance along

the boundary (see comment after Eq. (3.27)). The function is

defined here such that s5(z) = 0 for z 0 and

0

/ *(z)dz = 1 (3.4d)
-1

We seek a free wave solution of the form

p(x,y,z,t) = Re{4(x,z)exp[-i(tt + y)]}, (3.5)

where and £ are radian frequency and alongshore wavenumber,

respectively. Substituting (3.5) in (2.5), (2.6a,b), (3.la) and

(3.4b) we obtain

+ (/R2) = 0, (3.6)

= 0, at z = 0, (3.7a)

= _½iAR2 at z = -1, (3.7b)

+ (/) eR2
+ xz

at x = (z), (3.7c)

-, 0, as x , (3.7d)

where, as in (3.4b), the notation
x(0) implies 4(x 0, z 0),

and where A = E/w. Eqs. (3.6) and (3.7a-d) describe an eigenvalue
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problem for q with complex eigenvalue w.

To proceed, we first transform the boundary conditions at

x = c(z) to hold on a constant surface = 0 by defining a new

coordinate system (,y,z), where

= x - z). (3.8)

A similar transformation has been used by Huthnance (1978) to handle

boundary conditions similar to (3.7c). The surfaces z = 0, -1

remain unaffected by the coordinate transformation.

The transformed equations and boundary conditions are

+ ( fR2) + (c /R)2c 2cR24 0, (3.9)
z z z

(3.lOa)

= -½iXR2q, at z = -1 (3.lOb)

+ (/ = c) + -

at = 0, (3.1 DC)

0, as . (3.lOd)

A relatively simple solution to (3.9) and (3.10) may be

obtained by perturbation methods. We assume X = 0(c0) << 1, which

corresponds to limiting the wave period to be much less than the

spin down time. In addition, it is important that the limits

X 0, c + 0 be taken in that order, since if c 0, X 0, the

Ekman layer on the slope would vanish and (3.lOc) would be incorrect.
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The variables are expanded as

(o) 1)
(3.11a)

(0) (1)
(3.11b)(i)W. +(j) +

where
40)

and are assumed to be 0(1) and and are

assumed to be 0(.). If (3.11a,b) are substituted in (3.9) and

(3.10), the lowest order balance is the familar inviscid internal

Kelvin wave problem, i.e.,

with solutions

where

(0)
+ = 0, (3.12)

(0)
= 0, at z = 0,1, (3.13a)

z

(0) (/00)
= 0, at = 0, (3.13b)

(0)
0, as , (3.13c)

$
(0) exp(_/w(0))P(z), (3.14)

+ = 0 (3.15)

= 0, at z = 0, -1. (3.16)

Eqs. (3.15) and (3.16) form an elgenvalue problem with

eigenfuncti.ons P and real eigenvalues
(0).

The eigenfunctions



form a complete set and are orthogonal over the domain (-1,0),

subject to

0

PPdz
nm'
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(3.17)

where is the Kronecker delta. An additional restriction due to

(3.13c) is i(0) > 0, which implies that the waves travel only

poleward. These results have been obtained for general subinertial

coastally trapped waves (see, e.g., Huthnance, 1975, and Clarke,

1977).

The equations describing the 0(c0) correction to each mode n,

where terms of O(c), 0(x2), and O(Xc) have been neglected, are

where

+ = 2cR24 + (c/R2)c (3.18)

at z a, (3.19a)

= - at z = -1, (3.19b)
nz

(/(0))(1) =

c R2q + ½ix°{ (0) (0)

2 flZ
'nz -

at = 0, (3.l9c)

(l)
0, as , (3.19d)

x
(0) = E½/(°). (3.19e)

n
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A compatibility condition for the solution of (3.19) may be

found by multiplying (3.18) by (0),
integrating over from 0 to

and over z from -1 to 0, and utilizing the boundary conditions

(3.13a,b,c), and (3.19a-d). This determines as

where

(1)
- -¼iA°[P

(0)
P1) +

0
- (W(0)2/) I c R2PPdz, (3.20)

-1
Z

0

= J{(P/R4) (9/w°))2(z/R2)Pn} PmdZ (3.21)

and where the P are determined by (3.15), (3.16) and (3.17). The

solution to (3.18) and (3.19) is

(1) (0)

+
(3.22)

n

where, for rn

= Z y () P (z), (3.23a)

= A exp(-i/ (0))
+ Bm exp(-2./w'°) (3.23b)

in

[(L/0) (0))11

0

{J c R2P Pdz
-1

0

P p dz - P / P
(0)'

(3.23c)
nz in n0) m
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(0) 2 -18 = ½i °R2(_1) [(/)2 (2.,I(.)
) tnm'

(3.23d)in n

while, for in =

exp(-/w°'I (3.23e)
/ nn

The coefficient of the homogeneous solution to (3.1.8) and (3.19)

is arbitrary and the homogeneous solution may be absorbed in the

0(1) solution.

Since the
(o)

are ordered such that o as n -'-

the perturbation procedure becomes invalid for high mode number,

i.e., when = = 0(1) and when

0(1). Therefore we must restrict our consideration to low modes

where << 1 and SR/EQ >> 1. This restriction is not too severe,

since we are generally only interested in the behavior of the first

mode.

The frictional correction to the 0(1) eigenfunction is

and is purely imaginary, while the topographic correction is O(Eo)

and is real. To 0(X(°)), 0(E0), the presence of bottom friction

induces phase shifts in x and z but does not change the x,z

structure of v or p, while the slope topography affects the x,z

structure of v and p but not the phase. Both friction and

topography induce corrections to the frequency. The

frictional correction (from the first three terms on the right hand

side 0f (3.20)) is purely imaginary and represents a frictional

decay or °spin-down with time. The last term on the right hand

side of (3.20) represents a correction to the real free wave speed
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due to the slope topography. The contribution of that term may be

seen by multiplying (3.15) by P2/R2 and integrating over z from -1

to 0, to obtain, after integration by parts and the use of (3.16),

0
R2PP dz = 0. (3.24)

Eq. (3.24) is a statement that the vertical velocity (= R2PnZ) and

the topographically induced onshore velocity ( P) are orthogonal

over the depth. This implies together with th.e last term in (3.20)

that, for a linear slope, i.e., for

c(z) = -E0 Z, (3.25)

where = constant, the interaction between u and w averaged

over the slope is zero, so tha.t the topographic correction to the

phase speed is zero. There is still a distortion of the mode shape,

however. For a non-linear slope, corrections to both modal structure

and phase speed are induced.

For an arbitrary stratification, the eigenfunctions P and

eigenvalues may be computed numerically from (3.15), (3.16), and

(3.17). A simple case, for which elgenfunctions and eigenvalues may

be obtained directly, is R = R0 = constant, which corresponds to a

constant Brunt-Vis1 frequency. While this case is generally

unrealistic (the modal amplitude for z < -½ tends to be over-

estimated), it is useful for obtaining solutions that illustrate

the essential physics. Solutions with a more realistic stratifica-

tion are obtained in Appendix A and are discussed in Section 5.
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With R = R0, (3.14), (3.15), (3.16), and (3.17) give

,(0)
= 2exp(-nir/R) cos(nrrz), (3.26a)

(0)
= ZR/(nir), n = 1, 2, 3. ..., (3.26b)

and the correction to the frequency from (3.20), is

0
(1) -

- -½iE + 2(°/R) I e sin rnrz cos nrrz dz. (3.27)

-1

Using (3.26a,b), the next order correction (3.22) may be

calculated directly. Substitution of (3.27) in (3.5) shows that the

o(x°) correction to the frequency represents a frictional decay

with time, where the wave damping is given by exp(-½Et). This

corresponds to the spin down time scale for homogeneous fluids

(Greenspan, 1968, p. 34). Note that, if the first term in (3.20),

which comes from the function in (3.4b), were not included, the

frictional correction to w would imply an exponential 9rowth instead

of decay.

We next examine the effect of bottom friction on the first

vertical mode for the special case R = and c(z) given by (3.25)

(A linear slope topography). The n = 1 eigenfunction may be written,

to 0(c0) and o(x°) as

where

= k11 exp(i01), (3.28)

= Ii(0)(1 cirz/R) 2c0(7rR1(1 + 2S)1, (3.29a)
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= tan{1t[3+ exp(-lr/R)(1rz sin rz + (ir/R) cos ,Tz)

+ 45 + D]/410}, (3.2gb)

s = - (1 - 2k)(1 - 4k21 cos(2kz), (3.29c)
k= 1

0 = exp(-/R){¼ cos(n'z) 1n11 - 2 exp(-ir/R) COS liz

+ exp(-2ir/R)3 + sin (liz) tan[exp(-ir/R) sin(liz)(1 -

exp(-li/R) cos(liz)1]}. (3.29d)

The polar representation for ((3.28) and (3.29)) shows

that there is an 0(x1°) phase shift in both the x and z directions.

The dependence on A indicates that the effect of friction is

enhanced for higher latitude or lower frequency. Note that, if x

and are rescaled with R/ir (x* = ,rx/R, c = ire0/R, * ir/R),

are the only paraneters in

The x,z structure of the correction to the alongshore velocity,

computed using (2.3a) and (3.28), is given by

1x + iei) exp(i61). (3.30)

The simple relationship between pressure and alongshore velocity

for an inviscid internal Kelvin wave, i.e.., & -(ir/R), is
modified by the introduction of topographic and frictional effects.

This behavior has been noted by Brink (1982b).

Figure 2 shows the 'frictionally induced phase shift in p and v

for the first mode internal Kelvin wave in the x-z plane for
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= 0.1, topography given by (3.25) with E* 0IR = 0.1, and

R = R0. With (3.28) and (3.5), 01 > S implies 1 lags 2. Phase

shifts for v and p are clearly different, however vertical phase

shifts imply that both surface v and p lead those below. The 180°

phase shift in the vertical is due to the structure of the first

mode inviscid internal Kelvin wave, which has a zero crossing at

z = -½. and would have an abrupt 180° phase shift at z = -½.

The offshore phase structure for both p and V jS depth

dependent. In the upper half (near surface), p offshore lags p at

the coast, while the effect is reversed for the lower layer. For v,

inshore motions lead for -0.15 < z < 0 (near the surface), while

offshore motions lead those nearshore for -0.15 > z > -0.5. Phase

shifts with x are small for z < -0.5, with a suggestion that near-

shore motions lead except very near the bottom.

We next consider the effect of slope topography alone on the

first mode internal Kelvin wave. Figure 3 shows the xz structure

of v for the n = 1 mode for X = 0, (3.25) with 03, and

R = R0. The alongshore velocity is not symmetric about the line

z -½, as would be expected with a vertical wall. Figure 4 shows

several examples of shelf slope topographies and Table 1 lists the

Ok0) topographic corrections to the 0(1) phase speed for each

profile in Figure 4. For each case the shelf-slope width at z = -1

o'
and R = R0. The second term on the right hand side of (3.27),

which represents the topographic correction to w for R = R0, yields

the result that slope profiles that are concave downward (case (a),

Figure 4) act to increase the free wave phase speed while profiles

that are concave upward (case (b)) act to decrease the phase speed.
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As expected, the special case constant (case Cc)) gives no

correction to the phase speed at 0(c0). Most shelf-slope topogra-

phies in nature are concave downward.

The change of sign of the correction to for cases (d) and

(e) may be explained in the following manner: For an internal

Kelvin wave over a flat bottom with a vertical wall and with constant

N, the phase speed is given by c = NH(rnr). With a small shallow

shelf which drops steeply to a deep ocean (case (d)), the wave

"rides" on the bottom at x
>

and the shelf acts as an additional

fluid volume which augments the effective depth by an 0(c0) amount,

thus increasing the phase speed. For case (e), the small topography

near the bottom decreases the effective depth by an 0(c) amount,

thus decreasing the phase speed. Cases (d) and (e) may be regarded

as limiting cases of (a) and (b), respectively.

For case (f), two linear slopes interrupted by a segment of

vertical wall, the wave identifies the vertical segment as a coastal

boundary; the additional fluid volume provided by the shelf for

0 > z > -z0 is cancelled by the decrease due to the shelf segment

for -tz0 > z > -1, and the phase speed is unaffected to 0(c0). For

case (c), the linear slope, there is no equivalent vertical wall to

provide a reference zero for the mode. Case Cc) may be viewed as a

limit of case (f) as the vertical segment shrinks to zero. The

addition of fluid volume for 0 > z > -½ is exactly cancelled by

the decrease of fluid volume for -½> z > .-l. The.effective depth

and hence the phase speed remain unchanged.

The onshore flow u may be obtained by solving (2.3a,b) with

(3.5) for u in terms of . While there is no onshore flow associated
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with an internal Kelvin wave over a flat bottom, the presence of a

steep slope induces a u of O(o) while friction induces a u of

Figure 5 shows u/0* in the x*_z plane with = 0,

(3.25) with = 0.1, and R = R0, i.e., this is the onshore flow

induced by the topography alone. There is a maximum at x

near z = -½, reflecting the interaction of the slope topography with

the 0(1) w which has a maximum near z = -½. Figure 6 shows the

amplitude of u/c0* in the x-z plane where we have chosen (o) =

= 0.1, and R = R0, so that both topography and friction are

important. A local maximum of u near z = -½, x' = is again

evident, and is enhanced relative to u in Figure 5 due to the Ekman

pumping along the sloping boundary. The relatively large u near

x = 0, z = 0 is due to the mass flux out of the Ekman layer at

that location required to satisfy (3.4).

p
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4. WEAK SLOPE

The weak slope model shown in Figure 7 represents the case

where the Rossby radius scale is much smaller than the shelf-slope

width, appropriate for mid-latitudes or for very wide shelves. In

the model, the continental shelf-slope region is represented by a

linear bottom slope of small magnitude, i.e., by

H(x) 1 + cx, (4.1)

where c is a constant and c << 1. While the vertical wall at x = U

is unrealistic, such models are commonly utilized, therefore it is

of interest to compare their results to the steep slope model of

Section 3.

The analysis proceeds as in Section 3, with weak friction,

i.e., where X = 0(c), except that here the limits e 0, A 0 may

be taken independently. The governing equation (2.5) and the

boundary conditions (2.6a,b) apply. The boundary condition on the

lower boundary, which represents the Ekman compatibility on the

interior flow plus the inviscid boundary condition appropriate for

a sloping boundary, is

+ R2H + p) = -½R2Ep, at z = -H(x). (4.2)

The boundary condition that holds at x = 0 is

p +p=_Ep(z=_l)i(z+l),atxO, (4.3a)
xt y

where (z + 1) is equal to 0 for z -1, and
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0

f 6(z + 1) dz = 1. (4.3b)

-1

The term on the right hand side of (4.3a) is due to the flow out

of the Ekman layer at x = 0 and must be included so that the mass

flux condition

0

I w(z = -1) dx + u(z = -1) = 0 (4.4)

-1

is satisfied. This is analagous to (3.4c) for the steep slope case,

and, as in Section 3, neglect of this term leads to an exponential

growth of the solution with time.

We seek a free wave solution given by (3.5). Substititing (3.5)

in (2.5), (2.6a,b), (4.2) and (4.3a), we obtain (3.6), (3.7a),

(3.7d) plus

+ (L/w)4 -½iX(z = -l)(z + 1), at x = 0, (4.5a)

= + (/w)J -½iR2A at z = -H(x). (4.5b)

We define the new coordinate system Cx, y, n), where

Ti = z/H(x), (4.6)

so that the lower boundary z = -H(x) becomes Ti -1 while the

upper surface z = 0 becomes r = 0, i.e., the upper surface is

unchanged. Transforming the equations and boundary conditions, we

have
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+ 2c(l - 2cx +
. ..) - 2r(1 - LX +

(4.7)

+ ()2(l - 2cx + ...) + (/R2)(1 - 2cx + ...) = 0

0, at n = 0, (4.Ba)

- LX + ) + (&/w) =

-½iXE + nc(1 cx + ..)(1)n + 1)),

at x = 0, (4.8b)

= -R2c(1 + + (/w) - nc(l - cx +

_½iXR2Ep + 2ri2(1 - 2cx + .. . )cp11 - 2n(l - x + . . .

+ (TIL)2(1 - 2EX + ...)c], at = -1, (4.Bc)

plus (3.7d) which is the coastal trapping condition. In (4.8b),

= -1).

We expand and as in (3.11a,b), with the restrictions

X << 1, x < 0(1). The lowest order equations for c0) give the

invis.cid internal Kelvin wave problem (3.12), (3.13a,b,c) with a

sequence ii of solutions given by (3.14), (3.15) and (3.16) (with z

replaced by ), orthogonal subject to (3.17).

The 0(L), 0(x) balance, neglecting 0(c2), 0(x2), and 0(cA) is

(l) + (q)(l),R2) = 2c[T1 +
x(°/R2)]1

(4.9)
nxx nr nfl

= 0. at n = 0, (4.lOa)
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(1) (/(0))p(1) (0) +
nx nfl

(0) (0)
)ô(n + 1), at x = 0, (4.lOb)

n nx(-1

(0) (0)
= , at r = -1, (4.lOc)

1)
0, as x . (4.lOd)

nx

The frequency correction is specified by the compatibility

condition as in Section 3, and is

(1) (0)2,½C -w U)
n n

(4.11)+
n

where is given by (3.21) with z replaced by n.

The solution to (4.9) and (4.10) is

2 (0)(l)
= ½iA°R

(.1)nxx
+ (4.12)

I (x)P(), (4.13)
m=0

where

= Am exp(_xJU)m(0)) + Bm exp(-&x/w°) m n, (4.14a)

(0)
= (xD + x2E) exp(_x/U) ), (4.14b)

and
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A = (/(0))Jl

[cJ + ½n((!wn°')Pn(_l)Pm(_l)] (4.15a)
nm

Bm = -

I + 2c(9/()n(0))Jnm] (4.15b)
(-1)

= -¼iA
n (-1)

+ c[½ + (4.lSc)

(4.15d)

0

= I riP P dri. (4.15e)
flflTfl

As in Section 3, the topographic correction to is U(s) and

real, representing an increase in the phase speed, while the

frictional correction to is o(x°) and imaginary, representing

a spin down with time. There is an 0(s) correction to the

structure of and an 0(X°)) correction to the phase of . The

topographic correction to the phase speed is due to the depth

variation from a flat bottom weighted with the Rossby radius scale,

i.e.,

n"Top f - H(x)JdX. (4.16)

With (4.1), calculated with (4.16) is equal to the first term

in (4.11). The weak slope topography increases the effective depth
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(see Figure 7) relative to a flat bottom at z -1, thus increasing

the phase speed relative to the flat bottom case. A similar result

was obtained by Allen (1975, Eq. (3.15c)) with a two layer model.

The m = 0 term in (4.13) represents a barotropic flow induced

by both friction and topography. For x + the baroclinic terms

are exponentially small and (1)
A0 which, with (3.5) and

(2.3a,b), implies that far offshore a barotropic onshore flow

remains. The matching of this barotropic flow to the outer shelf

problem for x >> 1 is discussed in Appendix B.

With R = R0, simple analytical solutions for are again

obtained. In particular, the correction to the 0(1) frequency is

(1)
= ½R(n)' - ½iE . (4.17)

Figure 8 shows the zero crossing for the first mode of v in the

x-z plane, where x = ¶x/R, A = 0, = 0.1, and R = R0. Except

for x < 0.15, the zero crossing is deeper than the zero crossing

(at z -0.5) expected for an internal Kelvin wave with ri = 1 and

with a flat bottom at z = -1. Near x = 0.5, the zero crossing is

near the predicted zero crossing for a flat bottom at an average

depth of z = -1.05. This result again illustrates the increased

effective depth due to the sloping bottom.

Figures 9a,b, show the frictionally induced phase shifts in p

arid v for the n = 1 mode internal Kelvin wave in the x1r_z plane for

= 0.1 and = 0. Phase shifts for v and p are clearly

different, however vertical phase lags imply that both deeper v and

p lead those above. In the upper half, p offshore leads p at the
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coast, while the effect is reversed for the lower layer. For v,

offshore motions lead those inshore for -0.1 > z > -0.5 while

inshore motions lead for -1.0 < z < -0.5 and -0.1 < z < 0.

Figures 10 and 11 show the topographically induced scaled

onshore velocity u1/ (with = 0 and 0.1) and the

frictionally induced scaled onshore velocity uF/Al (with £ 0)

for the n = 1 mode in the x-z plane with R R0. In each figure.

u 0 as x 0, satisfying the boundary condition at x = 0. The

flow UF decreases offshore and
upwards with a maximum at x = 0,

z -1, representing the mass flux out of the bottom Ekman layer

required to satisfy (4.4). The flow UT is largest directly over the

slope and decreases upward and toward the coast.
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5. DISCUSSION

We have examined the effects of bottom Ekrnan layer friction and

slope topography on free internal Kelvin waves, using both steep and

weak slope models. Frictional effects are assumed weak and specific

slope topographies are chosen so that perturbation methods may be

used to obtain solutions. There are substantial differences between

the steep and weak slope models. The steep slope model represents

the low latitude case where the Rossby radius scale is assumed large

compared to the slope width. The slope topography is a small per-

turbation along the side wall and the remainder of the bottom is

flat. The bottom Ekman layer is continuous along the flat bottom

interior and along the slope and intersects the surface at the

coast. As a result, the frictional effect depends on the geometry

of the slope.

The weak slope model corresponds to the mid-latitude case where

the Rossby radius scale is assumed to be much less than the slope

width. The topography is assumed to be a small perturbation on a

flat lower boundary, and a bottom Ekrnan layer intersects a vertical

wall at z = -H, x = 0. For this case, we may examine frictional

effects with a flat bottom or topographic effects in the absence of

bottom friction.

The presence of bottom friction affects internal Kelvin waves

in several ways. Free waves are damped with a dimensional time

scale T' = (iiE"2fY1 where = (frictional)(/E1"2 is

related to the frictional correction to the wa.ve frequency. Phase

shifts in x and z are induced as well as an onshore flow.
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Table 2 shows estimates of the dimensional time scale Tf' for

the first mode internal Kelvin wave for various s, where s is a

measure of the exponential decay of N2 with depth [see (Al) in

Appendix A and Figure 12]. We choose EV"2 = 0.02 (Eknian depth =

40 m for H = 2 km) and f = 1.3 x 1O5s (5° latitude). In Appendix A

we show that s = 3 yields a reasonable approximation to the modal

structure for the Peru case (Figure 13). For the weak slope, where

friction acts through the Ekman compatibility condition at z = -1,

which involves the bottom velocity, we expect that a more realistic

N2 profile will yield a smaller bottom velocity and hence the effect

of friction will be reduced. Table 2 shows that the correction to

the frequency due to friction decreases and the spin down time

increases for increasing s, which supports the above argument. In

addition, Table 2 shows Jv(_1)/v(0)I for the weak slope case and

indicates t,hat the spin down time is almost but not exactly propor-

tional to the bottom velocity.

For the steep slope case, the effects of a more realistic N2

profile is reversed, i.e., Table 2 shows that p increases and

decreases for increasing s. This is due to the fact that the mode

interacts with the Ekman layer over the slope as well as on the

bottom.

The expansion procedure used for both the weak and steep slope

problems becomes invalid when the wave period is the same order as

the spin down time. Table 2 shows that with EV112 = 0.02, this

restriction is satisfied for T < 15 days.
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The estimates for decay time are relatively long compared to

estimates given by Brin.k and Allen (1978) for barotropic continental

shelf waves at mid-latitudes, reflecting both the dependence of spin

down time on latitude and the inhibition of bottom friction effects

by stratification. These long decay times may explain why free

coastally trapped waves with I = 5-10 days are observed to propagate

along the Peru coast between 2°S and 17°S latitude with little

evidence of frictional decay (Smith, 1978; Romea and Smith, 1982).

Frictionally induced phase shifts are proportional to X =

and are stronger for higher latitudes or lower frequency.

Plots.of the x-z phase dependence of p and v for the n = 1 mode

internal Kelvin wave (Figures 2a,b for the steep slope case and

Figures 9a,b for the weak slope case) indicate substantial qualita-

tive differences between the two cases. Phase shifts in v for the

steep slope case are largest near the surface, with a phase lag in x

of 30° over the Rossby radius scale with motions at the coast lead-

ing. Surface motions lead those below, and the vertical phase lags

are greatest near the surface and the coast. In
contrast1
phase

shifts predicted for the weak slope case are much smaller and motions

at the bottom lead those above.

The onshore flow due to friction also depends on the model

used. For the steep slope (Figure 6), Uf is largest near x 0, z =

0 due to the mass flux out of the Ekman layer at the point, while

for the weak slope (Figure 10) Uf is strongest near x = 0, z -1.

Slope topography affects free internal Kelvin waves directly in

several ways: There is a change in wave frequency and alongshore
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phase speed, the modal amplitude is altered, and an onshore flow is

induced.

Changes in modal structure and phase speed due to topography

for the weak slope case agree with arguments by Hogg (1980) that

observations of baroclinic wave dynamics on a sloping bottom can be

rationalized with internal modes on a flat bottom by defining an

effective bottom depth as an average over the offshore decay scale.

The expression (4.16), which is the modification to the wave speed

due to a weak slope, is analagous to the result obtained by Miles

(1972) for barotropic Kelvin waves with the assumption that the

shelf width is small compared to the external Rossby radius scale.

For the steep slope case, corrections to the free wave speed

are dependent on details of the slope geometry. A slope which is

concave downward (Figure 4) acts to increase the speed while a slope

which is concave upward decreases the speed. A linear slope induces

a distortion to the x-z modal structure but does not affect the wave

speed to first order. Most continental slopes are concave downward,

therefore at low latitudes we may expect to see wave speeds that are

augmented relative to the predicted flat bottom wave speed. These

results are different from Miles' result for barotropic Kelvin waves

that the addition of a narrow slope always slows the wave speed

relative to the speed with a vertical wall.

The topographically induced onshore flow UT for the weak slope

is strongest directly over the slope and increases offshore, matching

to an outer slope solution consisting of a topographic Rossby wave

(see Appendix B). For the steep slope, UT is strongest over the
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slope near the zero crossing of v, reflecting the interaction of the

0(1) w, which has a maximum near v = 0, with the slope.

Brinks (1982b, Figure 3) numerical calculation of free coastal

trapped waves for = 0.15 and near 15° latitude with bottom friction

and realistic stratification and topography shows p at the bottom

leading p above and p at the coast leading p offshore. These results

agree with predictions from the weak slope model. An empirical

orthogonal function (EOF) for the 0.1-0.2 cpd frequency band using

alongshore velocity from the Lobivia and Lagarta moorings near 15°S

over the slope off the Peru coast in 650 in of water (Romea and

Smith, 1982, Figure 15a) shows v at 215 in leaving V at 58 in by 19°.

On the shelf near 15°S, at the Mila mooring in 120 in of water, an

EOF for the same frequency band as above shows v at 115 in leading v

at 19 m by 30°. Both these observations and the numerical calcula-

tion suggest that, at 15°S, where Ls/SR ' 0(1), the predictions of

the weak slope modes are more appropriate.

An EOF for the 0.1-0.2 cpd frequeicy band using alongshore

velocity at 5°S off the Peru coast from the C2 mooring over the

slope in 1360 in of water (Romea and Smith, 1982, Figure 15b) shows a

phase shift from near the surface (86 m) to below the zero crossing

for the EOF (860 in) of 190°, with the surface leading. This EOF and

the EOF calculated for Lobivia and Lagarta are shown in Romea and

Smith (1982) to represent first mode internal Kelvin waves. These

observations at lower latitude where Ls/R << 1 are in qualitative

agreement with predictions from the steep slope model (Figure 2).
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Brink (1982a) also calculates free wave phase speeds for real-

istic stratification and topography using a numerical model and

finds that, between 5° and 150 latitude, the wave speed is lower

than the wave speed predicted with a vertical wall at the coast.

This is in agreement with predictions from the weak slope model.

Brink does not extend his analysis to lower latitude, however there

is a hint (see Brink, 1982a, Figure 2) that the free wave phase

speed begins to increase for latitudes less than 5°. This may

reflect the increase in phase speed predicted with the steep slope

model for Ls/iR << 1 when the slope is concave downward.
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Chapter IV

TABLE 1: o(co) topographic corrections to the 0(1) phase

speeds 0) for each of the profiles e(z) shown in

Figure 4. For each case, A = 0. the shelf-slope width

at z= -1 is c0, and R= R0.



WEAK SLOPE STEEP SLOPE

S Iv(1)/V(Q)I jJ IJ/IV(1)/V(0)I Tf' (days) p v(v(1)/v(Q)( T' (days)

O 1 0.5 0.5 89 0.5 0.5 89

0.5 0.79 0.39 0.49 114 0.64 0.50 70

1 0.61 0.30 0.49 148 0.80 0.49 56

2 0.40 0.19 0.48 234 1.2 0.48 37

3 0.28 0.13 0.46 342 1.6 0.45 28

5 0.17 0.08 0.44 594 2.6 0.44 17

Chapter IV

TABLE 2: Ratio of bottom alongshore velocity V(1) to surface alongshore velocity V(0) for the n = I

internal Kelvin wave for various s, where the stratification is given by R(z) = R exp(sz).

Also shown are p - w (frictional)I/E for the weak and steep slope models. The dimen.-

sional spin down time is listed and is given by Ift = (E fp) , with E = 0.02 and f = 1.3 x

1O'5s (5° latitude).

-I

01
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FIGURE CAPTIONS

Figure 1: Steep slope model.

Figure 2: Frictionally induced phase shift 0 (in degrees) in (a) p

and (b) v for the n = 1 internal Kelvin wave in the x-z plane

for = 0.1, topography (3.25) with = 0.1, and R = R0 =

constant. 01 > O implies 1 lags 2. Steep slope model.

Figure 3: x-z amplitude structure of v for the n = 1 internal

Kelvin wave for A1(0) = 0, topography (3.25) with = 0.3,

and R = R0. Steep slope model.

Figure 4: Various slope topographies. The letters correspond to

the cases discussed in Section 3 and listed in Table 1; (a)

slope profile which is concave downward, (b) slope profile

which is concave upward, (c) linear slope.

Figure 5: Topographically induced scaled onshore first mode velocity

in the xz plane for A = 0, topography (3.25) with =

0.1, and R R0. Steep slope model.

Figure 6: First mode u/c in the x-z plane for = 0.1,

topography (3.25), and R = R0. Steep slope model.

Figure 7: Weak slope model.

Figure 8: Zero crossing for the n = 1 internal Kelvin wave for v in

the x-z
plane1 with A = 0, = 0.1, and R = R0 (solid line).

Dotted line: predicted zero crossing for corresponding flat

bottom mode with bottom at z = -1. Dashed line: predicted

zero crossing for corresponding flat bottom mode with bottom at

z = -1.05. Weak slope model.
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Figure 9: Frictionally induced phase shift e (in degrees) in (a) p

and (b) v for the first mode internal Kelvin wave in the x-z

plane for = 0.1, s = 0, and R = R0. > implies I

lags 2. Weak slope model.

Figure 10: Topographically induced onshore flow UT/s in the xz

plane with X = 0, c = 0.1, and R = R0, for the first mode

internal Kelvin wave. Weak slope model.

Figure 11: Frictionally induced onshore flow UF/X0) in the xz
plane with s 0 and R = R0, for the first mode internal Kelvin

wave. Weak slope model.

Figure 12: Profiles of R(z)/R0 for various s, where R(z) = R0exp(sz),

and R0 constant.

Figure 13: Vertical structure of v for the first mode internal

Kelvin wave for various s. The modes are rescaled such that

v(x = 0, z = 0) = 1. Also shown is the first dynamical mode

(labelled R) calculated using the N2 profile shown in Figure

14.

Figure 14:
f42

profile, smoothed with a three point moving average,

calculated from CTD observations at 4°58.9'S, 81:33.O'W on

May 22, 1977. The procedure used to obtain and process the CID

data is discussed by Huyer et al. (1978).
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Chapter V

THE COMPILATION OF EVIDENCE FOR COASTAL

TRAPPED WAVES ALONG THE PERU COAST
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1. Introduction

Evidence for the existence of coastally trapped waves along the

central Peru coast has been previously presented by Smith (1978). He

showed that measurements made during the CUEA (Coastal Upwelling

Ecosystems Analysis) JOINT-2 experiment in May-July 1976 and March-

May 1977 indicated poleward propagation of fluctuations in sea level and

currents between 100 and 15°S with phase speeds of about 200 km day1.

The structure of the current fluctuations and the dynamical balances

suggested that the waves were internal Kelvin wave-like (Smith, 1978;

Brink, et. al., 1978; Brink, et. al., 1980). Although the frequency

range of the propagating fluctuations (0.1 to 0.2 cpd) was similar to

that of weather events, the fluctuations were not correlated with winds

measured at 12°S or 15°30S and an equatorial origin was hypothesized.

Additional, and in some cases, considerably longer time series

measurements have become available for the same time period as the

CUEA experiment: meteorological and tide gage data from the Ecuador

and' Peru coasts equatorward of 1ODS, and current meter data from the

ESACAN (Estudio del Sistema de Afloramiento Costero en el Area Norte)

experiment conducted by the lnstitut Fur Meersukunde an der Universitat

Kiel and Instituto del Mar del Peru at 5°S off the Peru coast during

March-May 1977. The ESACAN data set is of particular interest because

it provides an opportunity to study the wave structure at lower

latitudes and the possibility of linking equatorially generated

fluctuations to those observed between 10° and 15°S during the CtJEA

expe riment.

The combined data set includes current and temperature measurements
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near 5°, 10°, 12°, and 15°S off Peru, coastal winds near 4°, 7°, 12°,

and l5°S, hydrographic sections normal to the coast at those latitudes,

and sea level from the tide gages on the Galapagos Islands (O°27'S) and

on the South 4merican continent between 2° and 17°S. Atmospheric

pressure data were obtained near many of the tide gages. Presentation

and basic analysis of the data near 15°S may be found in Brink, et. al.

(1980), and a discussion of the ESACAN data near 5°S is given by

Fahrbach, et. al.,, (1981). The statistics of the CUEA and ESACAN

current meter data are given by Brockmann, et. al. (1980), in a study

on the Peru undercurrent.

In this study we utilize the CUEA and ESACAN current meter and

coastal wind data and the longer tide gage records to reexamine the

conclusions presented by Smith (1978) and to exterd his analyses

farther equatorward. The locations of the observations used are shown

in Figure 1. A more detailed discussion of the data set is presented

in the Appendix. Unless explicitly stated otherwise, the time series

data presented and analyzed in this paper have been initially subjected

to a low pass filter (half power point = 1.96 days) to eliminate

diurnal and higher frequency phenomena.

2. The Longer Time-Series

The longest reliable data records are those of sea level and

atmospheric pressure at La Libertad (2°12'S), Callao (12°03'S), and

San Juan (15°21'S), and those of current and coastal wind near San Juan.

After low-pass filtering to remove diurnal phenomena, the common period

for continuous data extends for 405 days from 27 fhrch 1976. The



atmospheric pressure records were used to 'adjust' sea level to

provide an equivalent to a subsurface pressure, i.e., the 'inverted

barometer' effect was removed by adding the atmospheric pressure

(in mb) to sea level (in cm). The adjusted sea levels, the current

measured at 55 m over the shelf (120 m) at 15°S and the coastal wind at

San Juan are shown in Figure 2.

The dominant fluctuations in sea level are clearly similar at

the three tide gage stations1

and the tendency for the extreme at a

southern station to lag the equivalent extreme at a northern station may

be seen in Figure 2 (cf., Figure 2 in Smith, 1978). The relation of the

shelf current fluctuations to those of sea level is clearly apparent,

e.g.3 equatorward (northwestward along the coast) flow occurs only in

connection with sea level minima. The coastal wind is remarkably uniform

in direction and is apparently not the cause of the fluctuations in the

coastal current.

Figure 3 shows the autospectra of Callao and San Juan sea levels

and the coherence and phase between them for the 405 day long records.

The sea level records have been adjusted for atmospheric pressure

effects. The high coherence and the linear dependence of phase on

frequency, for frequency less than 0.13 cpd and in the 0.15-0.2 cpd

band, indicates non-dispersive poleward propagation at about 240 km day!

Although the cross spectrum suggests that the non-dispersive wave-

like propagation extends to lowest frequency, there is a theoretical

lower boufld on frequency for transmission along the coastal waveguide.

This frequency cutoff corresponds to the approximate condition for

coastal trapping, given by c2 > (/ç,)2/4, where is radian frequency,
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Z is the alongshore wavenumber, and is a measure of the variation of

the Coriolis parameter with latitude (see Allen and Romea, 1980, for an

additional discussion of this point). For example, the condition is

satisfied for > 4 x 10 s (period T < 18 days) for an alongshore

phase speed c = ajP. = 240 km day1.

Auto and cross spectra are shown in Figure 4 for La Libertad and

Callao sea level. The distance between these stations is much greater

(1200 km) than between Callao and San Juan (450 km), and the coherence

is generally lower. However, there is again a peak in the coherence

near 0.17 cpd and the 0.16-0.19 cpd band is coherent at or above the

95% confidence level. A linear dependence of phase on frequency for

frequencies less than 0.2 cpd is again suggested, with the phase

consistent with poleward propagation at about 240 km day.

In contrast to the sea level, the atmospheric pressures at

La Libertad, Callao, and San Juan are in phase and highly coherent for

frequency < 0.2 cpd. Figure 5 shows the spectral computations for

atmospheric pressures at La. Libertad and San Juan, which are the pair

with the greatest alongshore separation ( >1500 km). The figure

indicates that the wave-like propagation observed in sea level is not

a forced response to large scale atmospheric pressure systems.

If the fluctuations represent baroclinic coastally trapped waves

with the alongshore velocity in geostrophic balance, sea level and

currents should be highly coherent. We shall use both sea level and

currents to demonstrate propagation from 20 to 17°S and therefore we

examine their relationship. The phase relation should be 180° for

inviscid motion, i.e., southward flow near the coast should be
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associated with higher sea level near the coast.

Figure 6 shows the cross-spectra beiween sea level at San Juan

and alongshore current at N (55 m). The alongshore direction has been

defined as the principal axis direction from the current record. This

is close to the orientation of the local isobaths (Smith, 1978).

Alongshore current and sea level are highly coherent for w < 0.2 and

nearly 180° out of phase, consistent with a geostrophic balance.

Friction may account for the lack of an exact 180° phase relationship,

or it may simply result from the fact that the current meter location

is 50 km equatorward of the tide gage. This latter fact would account

for the observed phase difference near 0.17 cpd, assuming a propagation

speed of 240 km day.

Finally, we examine the relationship between local winds at

San Juan and the alongshore current at N (55 m). The cross-spectrum

(Figure 7) shows relatively high coherence for 0.06-0.09 cpd but low

coherence for 0.1-0.2 cpd. Although this suggests that very low

frequency motions may be locally wind driven, it supports the hypothesis

that propagating disturbances in the 0.1-0.2 cpd band, which are

observed in the long sea level records, are not locally wind driven.

The analysis of the long records is consistent with the findings

of Smith (1978), based on considerably shorter records. The long

records have provided greater confidence and resolution in the cross-

spectral computations. The frequency band centered at 0.17 + 0.02 cpd

is especially suggestive of free propagating coastally trapped waves

(the puzzling 1drop out' of coherence near 0.13 cpd seems real, and

is also suggested in the analysis by Smith (1978) of the 72 day records).
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In the analysis of the shorter current meter data from March-May 1977,

we shall focus on the frequency band centered at 0.17 cpd.

3. Observations during March-May 1977

The most extensive and complete data set exists for the period of

March-May 1977. Data from all sites shown in Figure 1 were obtained

during that period. Brink, et. al., (1980), using the data near l5°S,

showed that the local subtidal momemtum balances (Vt, v2, T; v,

and the empirical modes were consistent with those expected of free

internal Kelvin waves. Using the spatially extensive data set from

the array of measurements indicated in Figure 1, can we demonstrate

that consistent poleward propagation of the fluctuations in current and

sea level extends from the equatorial zone? Can we eliminate the

coastal winds as the dominant driving force for the fluctuations? Are

the empirical modes at 5°S and 15°S (the latitudinal extrema of the

current measurements) similar? The latter is of interest because of

the theoretical findings of Allen and Romea (1980) that coastally

trapped baroclinic fluctuations propagating poleward from the

equatorial region may take the form of barotropic shelf waves at mid-

latitudes.

(a) Sea Level

The additional sea level data series available during March-May

1977 are not especially useful because the overall coninon period with

good quality data is too short for meaningful spectral analysis; the

Talara and Matarani tide gages malfunctioned at different times during

the period. However, evidence for consistent poleward propagation in
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sea level perturbations can be easily seen and summarized by the lagged

cross-correlation between pairs of stations. Since the cross-spectral

analysis of the long sea level records suggests non-dispersive

propagation, the time lag for which the maximum correlation occurs

between sea level stations should depend linearly on the alongshore

separation of the stations.

For each pair of sea level records, we have used the longest

corriion record length that extends into the March-May 1977 period to

compute lagged cross-correlations. In Figure 8, the time lag for

which maximum correlation is obtained is plotted as a function of

alongshore separation for 1) each adjacent pair of sea level records,

2) each record vs. Callao sea level, and 3) San Martin vs. Matarani sea

level, which we show because it has the same spatial separation, but

displaced latitudinally, as the subsurface pressure gages at P and

near M. With the exception of the open circle, which corresponds to the

Talara-Callao pair, the correlations at the lag indicated in Figure 8

are all the highest correlations obtained for the pair and are signifi-:

cant at the 99% level, i.e., the probability that the correlation

coefficient would result from uncorrelated data is less than 0.01. The

maximum correlation between Talara and Callao occurs near 0 lag; the

open circle represents the highest lagged correlation, and is significant

at the 98% level. The conclusion from the lagged correlations of this

suite of data, which extends from nearly 2°S to 17°S, is the same as

that from the cross-spectral analysis of the three longer sea level

records: perturbations in sea level propagate poleward at about 240 km

day.
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The time lag for maximum correlation between the atmospheric

pressure at Callao and that at La Libertad, Talara, San Juan, and

Matarani is also shown in Figure 8. A well defined maximum correlation

(correlation coefficient greater than 0.9 with significance level

greater than 99.9%) at lags less than or equal to 0.5 days exists.

Moreover, the pressure data are not significantly correlated (95%

confidence level) at lags commensurate with the observed propagation

of fluctuations in sea level. This corroborates the findings from the

cross spectral analysis of atmospheric pressure that the pressure

systems do not move in such a way as to force the observed propagation

of sea level.

(b) Current Velocity

The combined ESACAN-CIJEA current meter data set from March-May 1977

provides a useful alongshore array of current observations that

elucidates the structure and behavior of the propagating fluctuations

better than sea level. The current meter data used here have been

rotated into a coordinate system in which the alongshore direction is

defined by the principal axis of the vector time series.

We first look at the 5°S and 12°S data since the currents from

10°S and 15°S have been analyzed by Smith (1978) and have been

shown to be coherent with those at 12°S, with phase differences

consistent with free propagating coastal trapped waves. At 5°S, we

use only the C2 mooring, which is located over the slope about 50 km

from the coast in 1360 m water depth, and which had current measurements

from 86, 126, 197, 560, and 860 in. Two other moorings were deployed

at 5°S, one on the shelf nearly within the bight of the Bay of Paita
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and the other 25 km farther offshore from C2. The current meters from

the shelf mooring are contaminated' by motions in the Bay of Paita

(Fahrbach, et. al., 1981) and the current measurements at the mooring

farthest offshore were too deep (the shallowest current meter was at

195 m) to clearly reveal the baroclinic waves.

In Figures 9 and 10 we show the spectra and cross-spectral

computations based on the hourly alongshore velocity data from the

86 in current meter at C2 and the 97 in current meter at Y. In the

subtidal frequencies high coherence is found in the 0.00625-0.00804 cph

(0.15-0.19 cpd) band with a maximum at 0.00714 cph (0.17 cpd). There

'is a shoulder or relatiye maximum in both the C2 and Y variance spectra

In the frequency band with high coherence. This is also found in the

Peyote (10°S) current and Callao sea level spectra for this period (of.,

Figure 8 in Smith, 1978). Figure 10 indicates the phase by which V

leads C2 (or, equivalently, C2 lags Y). A phase plot is ambiguous in

showing whether a signal actually leads or lags: Figure 10 may be

interpreted as C2 lagging Y by 115° or C2 leading by 3600 - 115° = 245°.

The ambiguity is resolved by considering the phase between other pairs:

C2-P, P-Y, P-M, Y-M and by considering the lagged correlation; C2 leading

Y by 245° is the quantitatively consistent interpretation. The C2 and

V moorings are 900 km apart along the coast. The phase difference

between them leads to an estimated alongshore propagation speed of

225 km day poleward.

A geostrophic balance for the alongshore velocity is evident

from the shorter current measurements obtained during March-May 1977.

The cross-spectrum between alonyshore current at C2 (86 m) and sea level
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at Talara shows high coherence (greater than the 95% confidence level)

in the 0.15-0.19 cpd frequency band with a maximum (coh2 = 0.72) at

0.17 cpd. Talara sea level lags by 154°, which is within error of 180°

and is displaced in the direction expected since Talara is equatorward

of C2. At 12°S, Callao sea level and the alongshore current at V (97 m)

are coherent above the 95% confidence level in the band 0.10-0.19 cpd

with a maximum coherence at 0.16 cpd (coh2 = 0.79) and with a phase

difference of 180°. These spectral calculations support our hypothesis

that the sea level and current fluctuations are manifestations of the

same phenomena, and that the fluctuations represent coastally trapped

baroclinic waves.

The most efficient way to examine the array of alongshore current

meter data is to compute empirical orthogonal functions (EOFs),

utilizing the method of EOF analysis in the frequency domain (see

Wallace and Dickinson, 1972, for details of the method). This

technique has been successfully used by Wang and Mooers (1977) for

analyzing low frequency fluctuations off the west coast of the United

States. The analysis expresses the time series as a linear combination

of the eigenvectors of the cross-spectrum matrix for the frequency

interval of interest, and has the advantage over individual cross-

spectra of including many records simultaneously. The method is

closely related to the use of EOFs in the time domain applied to

band-pass filtered data, however by using the cross-spectral matrix we

obtain the phase as well as the magnitude of the correlation between the

series, i.e., we obtain complex elgenvectors.
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For each of the EOFs calculated in this and the following sections,

we utilize the longest time series possible, defined by the common

record length of the measurements involved. In order to isolate the

wave band, and guided by the result of the individual cross-spectral

computations, we choose an upper bound on the frequency interval near

0.21 cpd and band average 5 spectral estimates to obtain 10 degrees

of freedom.

To give approximately equal weight to each latitude we have

chosen two current meter records at each of the four latitudes

(C2, P, Y, and M); to include the baroclinicity we choose the uppermost

current meter and the current meter nearest 100 m. At C2, the 86 m and

126 m records had to suffice but at P, Y, and M the current meter

records were from 37 m and 96 rn, 37 m and 97 m, and 39 m and 100 m,

respectively. The common record length for the four locations is

45.25 days beginning 0000 UT 2 April 1977, and we choose a frequency

interval of 0.118-0.213 cpd. Figure 11 shows amplitude and phase

(relative to Y) as a function of alongshore separation for the first

EOF, which accounts for 72% of the total variance in the frequency

interval. Also shown on Figure 11 is the fraction of the variance each

record contributes to the first EOF, which corresponds to the coherence

squared between each record and the first E0F. This is useful in order

to decide whether the EOFs represent a physical entity or are a

fabrication of the computational statistics.

At each location alongshore the velocity pairs are approximately

in phase and a linear regression using the 8 points gives an alongshore

phase speed of 204 km day for frequency = 0,17 cpd (the line on the
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phase plot indicates the behavior for a phase speed of 240 km day

for frequency 0.17 cpd). With the exception of the deeper record

at C2, each velocity record is highly coherent with the first EOF. The

variance in the deeper record at C2 is predominantly in the second EOF.

This calculation indicates that fluctuations in alongshore velocity

propagate coherently between 5°S and 15°S, consistent with conclusions

from individual cross-spectra.

The EUF amplitude is in the range 1-3 cm sec for C2 and P and

3-6 cm sec for V and M, suggesting a doubling of the amplitude

between 50 and 15°S. This may be rationalized as a consequence of the

conservation of wave energy flux. Assuming the alongshore group

speed is constant, which is the case since the waves are non-

dispersive, the total energy density of the waves remains the same as

it travels along the coast (neglecting frictional and other dissipative

effects). Since the offshore scale of the wave decreases as it travels

poleward, its amplitude must increase. An estimate of this increase

is given by (see, e.g., Miles, 1972; Allen and Romea, 1980)

or

1/2
(A15/A5) (f151f5) , (3.1)

(A15/A5) = 1.72, (3.2)

where A and f are local values of amplitude and Coriolis parameter and

the subscripts refer to latitude.
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The predicted amplification with latitude relative to Y from

(3.1) is shown in Figure 11 for the velocities near 100 m. This

agreement between observations and theory is consistent with Brink's

(1982a) conclusion that frictional decay scales for the Peru coast

are very long, and also helps explain why waves are so persistent

over long distances.

(c) Wind Forcing

We can use the same EOF technique to analyze the coastal wind

data. Figure 12 shows the statistics for the first two EOFs formed

from the alongshore components (rotated into their principal axis

frames) of the coastal winds at Talara, Chiclayo, Callao, and San Juan.

The record length and frequency interval are identical to those for the

velocity EOFs of Figure 11. The first EOF contains 63% of the total

variance while the second EOF contains 28%. We show both EOFs because

the winds at Talara and Chfclayo fall primarily into the second EOF

while the winds at Callao and San Juan fall primarily into the first

EOF. This may be seen from the coherence plot in Figure 12. In addition,

the modal amplitude of the first EOF is largest for Callac and San

Juan while the amplitude of the second EOF is largest for Talara.

The phase of the first EOF suggests that the Callao wind leads the

wind at San Juan with a phase consistent with poleward propagation at

200 km day. There is a hint that the phase behavior of the first

EOF extends equatorward to Chiclayo, however the coherence of the Chiclayc

wind with the first EOF is extremely low. The phase structure of the

second EOF indicates that the winds at Talara and Chiclayo are

approximately in phase, with a suggestion that Chiclayo leads Talara.
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Using the long records, we have shown (Figure 7) that the local

winds at San Juan and the alongshore current at M are not coherent in

the 0.1-0.2 cpd frequency band. Table 1 shows the coherence squared

and phase froin cross-spectral calculations using coastal winds at

Talara, Chiclayo, Callao, and San Juan, and alongshore currents at

C2, P. Y, and N. The record length and frequency interval are

identical to the velocity EOFs of Figure 11. The coherence is low

(less than 95% significance level), particularly for local winds and

currents. However, there is a suggestion that the coherence is higher

for current and wind records which are spatially separated where the

wind is equatorward of the current (e.g., Chiclayo wind and N 39 m).

Figure 13 shows the statistics for the first EOF for winds and

currents nearest 100 in for the saine record length and frequency interval

as for igures 11 and 12. The current velocities are normalized to

unity total variance, as are the winds, to give the two a priori

equal weights. This procedure was applied by Wang and Walsh (1976)

and Brink, et. al.., (1978) in different problems involving modes of

mixed quantities. The phase behavior of both the current fluctuations

and the wind is consistent with poleward propagation at about 200 km

day, suggesting the possibility of resonance forcing. However, the

phase relation between currents and wind shows the currents leading

by approximately 90°. In addition, the coherence plot indicates that

all the currents are highly coherent with the first EOF while all the

winds are not.

This calculation supports Brink's (1982b) conclusion, based on a

forced wave hindcast model using observed winds and currents as input



that the wind driving along the Peru coast between 5S and 15°S

accounts for no more than 25% of the amplitude of the predicted

current time series.

4. Vertical Modal Structure

In order to examine the vertical structure of the fluctuations

in the currents we compute vertical EOFs, using the alongshore velocities

from C2 at 5°S and L at 15°S. These two locations provide the

greatest depth range and the highest vertical resolution and they are

both located over the continental slope at about an equivalent

distance offshore (when scaled by the baroclinic radius of deformation)

(Figure 14). The estimated Rossby radius scale is larger at 5°S

than at 15°S due to a factor of f in the calculation of 4SR, i.e.,

= c/f, where c is alonshore phase speed. In Figure 14, where we

have scaled the offshore coordinate of each profile with the local f,

spans the entire shelf-slope region at 5°S while at 15°S extends

out from the coast to about 2000 m depth over the slope.

At C2 a common record length of 47.5 days was available while for

L we use a record length of 53.75 days. With the convention described

above, the frequency intervals to maintain 10 degrees of freedom are

0.126-0.211 cpd at C2 and 0.131-0.206 cpd at L.

Figures 15 a,b show amplitude, phase and coherence as a function

of depth for the first EOF at C2 and L, respectively. In each case the

first EOF contains most of the total variance in the frequency interval

(82%at C2 and 87% at L) and the higher EOFs all contain less than

12% of the total variance.
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Both EOFs are concentrated near the surface; the EOF at C2 has

a zero crossing at about 700 m depth, while the indication is that the

EOF at L has a shallower zero crossing. The coherence of each record

with the EOF is high near the surface and very low near the zero

crossing of the EOFs, as would be expected. With the exception of the

points near the zero crossing, where the phase information may be

regarded as noise, both EOFs are within ± 20° of being in phase over

their whole depth.

In order to establish the physical significance of the eigen-

vectors, it is necessary to show consistency with dynamical constraints.

Accordingly, we have used the smoothed N2(z) profiles shown in Figure 16

to calculate the 'flat bottom' dynamical vertical modes at 5° and 15°S,

obtaining estimates of vertical structure, Rossby radius, and alongshore

phase speed for each mode. Comparison with other N2 profiles obtained

from other CTO observations which were made during the course of the

experiments in 1977 shows that the profiles are typical. Figure 12 in

Smith (1978) also shows the secondary maximum an N2 between 300 and 400

m depth for a CTD station near 16° in August, 1976, 55 km from the

coast, suggesting that this structure is persistent in both space and

time.

The mode shapes were computed by integrating the governing

equations by means of a fourth order Runge-Kutta scheme, with a

trial and error procedure for determining the proper eigenvalue

so that the boundary conditions are satisfied (see Kundu, et. al., 1975

Section 5 for a discussion of the equations and methods). Since the

density profiles extend only to 780 m depth at 5°S and 980 ni depth



182

at 15°S, the N2 profile has been extrapolated in both cases to 0.1 x l0

at 4000 in depth by an exponential profile below 600 m. The

starting value for the exponential profile is chosen to be an average

of the measurements between 600 and 780 m depth. Parameter studies

indicate that the mode is insensitive to the choice of exponential

structure, e.g., doubling the value of N2 at the bottom increases the

calculated phase speed of the deep ocean mode by less than 10%.

The dynamical modes are computed assuming a flat bottom, and

Figures 17 and 18 show the first dynamical modes corresponding to

various mean depths. The alongshore phase speeds., zero crossing depths,

and Rossby radii of the first dynamical modes are listed in Table 2.

Also plotted on Figures 17 and 18 are the vertical structures of

the first EOF at each location. At 5°S the first dynamical mode

calculated with the actual mooring depth (1360 m) gives a zero crossing

around 440 m which is shallower than that estimated by the first EOF.

For a bottom depth H0 of 4000 in (an estimate of the deep ocean depth)

the zero crossing is 1675 m,which is too deep. A similar behavior is

obseryed at 15°S, where the actual mooring depth is 650 in.

An averaged bottom depth over the scale 180 km at 5DS is

approximately 2000 in, while the averaged bottom depth at 15°S over

the Rossby radius scale 60 km is approximately 1400 km. The

structures (particularly the zero crossing) of the first EOFs at 5°S

and 15°S are approximated by the first dynamical modes calculated with

H0 = 2000 in and H0 = 1400 m, respectively, suggesting that in both cases

the wave structures are consistent with a constant bottom depth

which is deeper than the local mooring depth but shallower than the
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the deep ocean depth, and which is approximately equal to the

averaged shelf-slope topography over the local Rossby radius scale.

5. Inertial Motions

The local inertial frequency at the C2 mooring is 0.175 cpd, which

is almost exactly (to within the resolution of the spectral computations)

the frequency at which the maximum alongshore coherence between the

currents from 5°S to 15°S and between the sea level from 2°S to 15°S

is observed. In other words, the 0.16-0.19 cpd frequency band is

dominated by free baroclinic coastally trapped waves which propagate

poleward through latitudes where their frequency is equal to the local

inertial frequency. This is not surprising- Kelvin waves are well

behaved when their frequency is equal to f (see Pedlosky, 1979, p.81)-

but it is of interest to examine the relative strength of the inertial

signal and coastally trapped waves at 5°S. Evidence from other latitudes

suggest the inertial signal is relatively weak (see Figure 2 in Brink,

et. al., 1980, and Figure 9 above).

We use the rotary spectrum (Mooers, 1973) to examine the velocity

records, with the expectation that the inertial signal will be

evident due to its preferred rotary sense. The method decomposes

a two dimensional vector time series into clockwise and counterclockwise

rotating parts. The sum of the two components of the rotary spectrum

yields the conventional kinetic energy spectrum at a given frequency.

Figure 19 shows R, the ratio of the variance of the counter-

clockwise to clockwise rotating parts for the velocity time series

at C2 and L, centered around three frequencies, calculated with the
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rotary spectrum. The frequencies chosen are 0.094 cpd, 0.187 cpd (the

nearest spectral estimate to the local inertial frequency at 5°S) and

0.516 cpd (the nearest spectral estimate to the local inertial

frequency at 15°S). A record length of 42.75 days was used for both

C2 and L, starting 0000 UT 2 April 1977. For 0.094 cpd, well below

the local inertial frequency at either 50 or 15°S, R is centered around

1 for both C2 and L for all depths, reflecting the lack of preferred

rotary sense for frequencies much less than f. For 0.187 cpd, there

is significantly more energy in the counterclockwise direction at C2

near the surface while R 1 for L, i.e., in the wave band the

signal which shows a preferred rotary sense at 5°S is nearly rectilinear

at 15°S. Near the local inertial frequency at 15°S the signal at L

shows significantly more energy in the counterclockwise direction near

the surface with a decay in R with depth. At C2, the frequency 0.516

cpd is superinertial, i.e., greater than f, and R 1 with the exception

of one point near 200 m depth. This point perhaps reflects the presence

of superinertial waves with a preferred rotary sense.

We next form EOFs using u-v pairs from five depths at C2. As for

the vertical mode of alongshore velocity at C2, we choose a maximum

common record length of 47.5 days and a frequency interval of 0.126-

0.211 cpd, which includes the inertial frequency. The result for the

first four EOFs, which contain 97% of the total variance in the band,

are shown in Table 3. The first EOF contains 56% of the total variance,

and v u (the ratio v/u is 3.6. 43, and 8 at 86, 126, and 197 in,

respectively). These ratios v/u > 1 are consistent with predictions

for internal Kelvin waves. The signals at 560 and 860 in both have a
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low coherence with the first EOF and the v/u ratios are low, reflecting

the low amplitude of the first mode internal Kelvin wave near its zero

crossing. The phase relations for the first EOF are such that the

alongshore currents at all depths are in phase to within ± 3Q0 and the

top three u-v pairs rotate counterclockwise (u leading implies

counterclockwise rotation) while the bottom two u-v pairs rotate

clockwise. This agrees qualitatively with predictions that perturbation

effects on free internal Kelvin waves due to topography give u-v

pairs which are 900 out of phase with counterclockwise rotation in

the upper layer and clockwise rotation in the lower layer (Allen and

Romea, 1980). The error in the phase relation for the u-v pairs is

perhaps related to the fact that the coherence of u with the first EOF

is low..

The remaining three EOFs which contain a non-negligible amount

of the total variance in the band show vertically averaged values of

v/u of 1.94, 1.6, and 1.14 for the second, third and fourth EOF,

respectively. These values indicate a much higher level of

horizontal isotropy in the velocities than that calculated for the

first EOF. Since we do not expect inertial oscillations to be

coherent in the vertical over depths greater than a few tens of

meters (Fomin and Savin, 1973), it is difficult to interpret these

EOFs. Indeed, they might represent only noise. However, the EOF

decomposition implies that first mode internal Kelvin waves

contain greater than 50% of the total variance in the 0.126-0.211 cpd

band and that inertial oscillations account for less than 50% of the

total variance.
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Sea level data from 2°12'S to 17°S on the west coast of South

America show that low frequency (0.1-0.2 cpd) fluctuations propagate

poleward along the coast with phase speeds similar to those predicted

for first mode baroclinic coastally trapped waves. 405 day long sea

level records of excellent quality at La Libertad, Callao, and San

Juan provide the basic evidence 'for the process, while shorter sea

level records from other locations provide supporting evidence.

Current velocities measured at 50, 12°, and 15°S along the Peru

coast show that the sea level and currents are coherent and approximately

1800 out of phase, as expected for baroclinic coastally trapped waves.

The empirical orthogonal function of alongshore velocity along the

Peru coast shows the amplification of the waves as they travel poleward

and the Rossby radius scale decreases. The phase speeds estimated

from the EOF agrees with the results from the long sea level records.

The fluctuations do not seem to be the result of coastal wind

forcing near the equator and the current fluctuations are of sufficient

magnitude to mask the effects of local winds to at least 15°S. This

conclusion is consistent with resUlts from Brink's (1982b) forced wave

calculation, where he used observed winds and currents along the Peru

coast as input to hindcast alongshore currents and sea level in the

0.1-0.2 cpd frequency band. The results from the model suggest that

most of the observed sea level and current fluctuations in the band are

due to free waves originating equatorward of 5°S, while between 50 and

15°S winds contribute little to the observed variance.

Empirical orthogonal function decomposition of the alongshore
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velocity fields at 5° and l5°S indicate that about 75% of the signal in

the 0.1-0.2 cpd frequency band is due to a mode whose vertical structure

and alongshore phase speed are consistent with a first mode internal

Kelvin wave. The vertical structure of the mode at both locations is

reasonably well approximated by the structure of the first vertical

dynamical node, calculated using realistic stratification assuming a

flat bottom equal to the shelf slope depth averaged over the local

Rossby radius scale. This behavior has been reported by Hogg (1981)

in connection with internal waves near Bermuda. We note, however, that

alongshore phase speeds obtained with a deep ocean bottom depth are in

better agreement with observations than speeds obtained with the.

averaged slope topography.

Allen and Romea (1980) have shown theoretically that coastally

trapped baroclinic fluctuations propagating poleward from the equatorial

region may take the form of barotropic continental shelf waves at

mid-latitudes. The EOFs calculated for vertical structure suggest that

the transformation of modal structure has not taken place between 50

and 15°S,

Brink (1982a) has calculated wave properties using a numerical

model with realistic stratification and shelf-slope topography. He

finds that the first mode internal Kelvin-like wave near l5°S has a

zero crossing over the slope at 1200 m depth, less than the zero crossing

depth predicted with a flat bottom corresponding to the deep

ocean depth. tn addition, he finds first mode phase speeds which are

less than those predicted with a deep ocean depth. These results

support the observational results that the structure of internal
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The interesting question remains: Where and how are the

fluctuations first energized? Luther (1980) suggests that a basin

wide barotropic oceanic response to large scale atmospheric forcing

exists in the 4-6 day period band at all longitudes from 60°N to 60°S

latitude. We have shown that the fluctuations along the Peru coast are

not a response to atnospheric pressure effects, which are connected

with large scale atmospheric weather systems. Moore (1968) (see Mo&re

and Philander, 1977) has shown that equatorially trapped free waves

incident or. an eastern boundary may be partially transmitted north

and south along the coast as boundary trapped internal Kelvin waves

(see also Anderson arid Rowlands, 1976, and Cane and Sarachik, 1977).

Wunsch and Gill (1976) show evidence that peaks in equatorial sea level

are manifestations of first baroclinic mode inertial-gravity waves.

Luther (1980) reports peaks in spectra of observed sea level in the

equatorial Pacific which correspond to the first baroclinic first

n1erdiona1 inertial-gravity wave with frequency 0.17-0.20 cpd and

the. second barocliriic first meridional mode with frequency 0.13-0.15

cpd. These modes are equatorially trapped with most of their energy

equatorward of 4°. Ripa and Hayes (1981) have presented spectra øf

bottom pressure and temperature in shallow water from the western

side of the Galapagos Islands at latitudes between 1°24'N and 0o59aS,

which show relatively energetic baroclinic motions in the 0.18-0.2 cpd

frequency band. Luther (1980) also reports 35-80 day oscillations in

equatorial sea level which he interprets as atmospherically forced

equatorial Kelvin waves with phase speeds of 230 km day. These lower
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Measurements of sea level (e.g., Figure 3) indicate high coherence

for w < 0.1 cpd and in the 0.15-0.2 cpd band. Smith (1978) shows the

cross spectral analysis of current meter observations at 12° and 15°S

for May-July 1976 and March-May in Figures 5, 6, 8, and 9 of that paper.

During the 1976 period there was coherent propagation for < 0.1 cpd

and near 02 cpd but not near 0.14 cpd. The spectra show relatively

little energy near that frequency. For the current meter data taken in

the 1977 period, the spectral peaks are near 0.17 (Figure 10) and the

cross spectra show coherent propagation from
50 to 12°S in the band

centered around 0.17 cpd. Thus the observed frequency band for forced

first baroclinic first meridional equatorial inertial-gravity waves

coincides with the observed frequency band for poleward propagating

fluctuations along the Peru coast. The gap in coherence between

motion in the 0.1-0.2 cpd band. and lower ( < 0.1 cpd) frequency motions

may reflect the separation in frequency space of equatorial Kelvin and

inertial-gravity waves.

A sea level record from Baltra (0°27'S, 90°17'W) at the Galapagos

Islands is the only data available that enables us to directly extend

our analysis and trace the fluctuations in sea level to the equator.

The Baltra record has several gaps which prevents us from using one

long record. The auto-spectriin of six-hourly sea level at Baltra was

calculated with three-448 point segments which were ensemble averaged.

The cross-spectrum between sea level at Baltra and La Libertad and

La Libertad and Callao was computed for the same segments. The auto-

spectra of sea level at Baltra and La Libertad for this time period
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show peaks at 0.205 and 0.188 cpd, respectively, with the coherence

above the 90% significance level in the 0.187-0.214 cpd band. The peak

coherence, which is significant at 95%, is at 0.205 cpd, with Baltra

leading by 398°.. Baltra and La Libertad are separated by about 1050

km. which gives a phase speed of about 200 kin day. For the same

record periods,C.allao has a spectral peak at 0.170 cpd and leads La

Libertad by 300°, which implies a phase speed of 240 km day. For the

cross-spectrum between sea level at La Libertad and Callao for the

same record periods, the 0.161-0.187 cpd band is coherent above the

90% significance level, with a maximum at 0.17 cpd. The phase relation

between Baltra and La Libertad is ambiguous since we have no

intermediate points to add confidence to our interpretation of the

sense of phase propagation. In addition, the coherence between Baltra

and La Libertad is not as good as for the longer time series of sea

level along the Peru coast. Nevertheless, the evidence suggests an

equatorial origin for the fluctuations alonq the Peru coast, although

more detai1d observations are necessary.
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WIND

Current Talara Chiclayo Callao San Juan

C2 86 in .031-120° .16/-171° .36/-5° .04/-132°

P 37m .09/16° .31/-28° .16/143° .051-109°

P 96w 14/68° 27/7° 26/155° 04/-29°

Y 37w 14/129° 33/99° 35/-121° 04/75°

V 97w 16/91° 44/94° 23/-90° 01/-47°

N 39m 351-128° 44/-124° 03/70° 10/114°

M 100w .15/93° .06/-133° .03/59° .07/68°

CHAPTER V
TABLE 1: Coherence Squared! Phase (in degrees) between winds and

currents for the 0.fl8-0.213 cpd frequency band . Record

length: 45.25 days. Phase positive for top leads side.

10 degrees of freedom; 95% confidence level for coherence

squared is 0.53.
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TOTAL DEPTH (rn) ZERO CROSSING (m) c1 (cm s)
R

(km)

(a) S°S (1977)

1360 440 157 124

2000 760 177 139

4000 1675 239 188

(b) 15°S (1977)

650 320 98 26

1400 510 146 39

4000 1610 247 66

(c) 15S (1976)

650 320 106 28

1400 500 158 42

4000 1550 259 69

CHAPTER V
TABLE 2: Depth of zero crossing, alongshore phase speed c1 and Rossby

radius scale oR for the forst vertical dynamical mode for

alongshore velocity, calculated with various bottom depths,

using realistic stratification from 1977 (Figure 16) from

over the slope near (a) 5°S and (b) 15°S. Also shown are the

results with stratification from 1976 (see Appendix). At 5°S,

1360 m corresponds to the C2 mooring depth, while at 15°S

the mooring depth is 650 m for L (Figure 14).



EOF 1 EOF 2 EOF 3 [OF 4

C2 A 8 A A e A

86 m u 0.14 -90 0.16 0.16 1 0.08 0.37 37 0.31 0.61 66 0.41

v 0.50 12 0.83 0.05 6 0.01 0.24 86 0.05 0.36 -114 0.06

126 m u 0.14 -150 0.39 0.15 -73 0.18 0.15 -79 0.13 0.21 114 0.11

v 0.60 - 3 0.84 0.36 -82 0.11 0.12 -60 0.01 0.25 -20 0.02

197 ni u 0.06 -57 0.09 0.05 93 0.03 0.14 -88 0.14 0.46 9 0.73

v 0.48 7 0.82 0.25 -113 0.08 0.22 -152 0.04 0.32 93 0.05

560 ni u 0.26 20 0.21 0.59 111 0.41 0.66 -6 0.36 0.10 -90 0.01

v 0.21 -23 0.17 0.63 71 0.55 0.52 156 0.26 0.22 22 0.02

860 m u 0.03 59 0.20 0.06 -80 0.37 0.02 146 0.07 0.07 113 0.21

v -0.05 -3 0.34 0.06 148 0.19 0.08 89 0.28 0.07 -2 0.09
CHAPTER V
TABLE 3: Amplitude (A), phase (e) and coherence squared (y2) for the first 4 EOFs of u-v pairs at

C2, calculated from 6-hourly data with a common record length of 47.5 days, beginning

0000 UT 2 April 1977, and a frequency interval of 0.126-0.211 cpd. The amplitudes are

normalized such that the sum of the squares of each [OF equals 1. EOFs 1, 2, 3 and 4

contain 56%, 20%, 14% and 7% of the total variance in the band, respectively. 0 > 0
1 2

implies 2 leads 1.
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Figure Captions

Figure 1. Location of observations used in this paper. Dots indicate

current meter moorings, crosses (+) indicate tide gages

with nearby meteorological stations, and the open square

indicates an airport meteorological station. The 200 rn

isobath is also shown.

Figure 2. Sea level, corrected for atmospheric pressure effects, at

La Libertad, Callao, and San Juan, and vector plots of wind

at San Juan and current velocity at M (55 ni).

Figure 3. Auto spectra of sea level from the Callao (solid line) and

the San Juan (dashed line) tide gages, based on 405 days

of hourly data, beginning 0000 UT 27 March 1976, and the

coherence and phase between Callao and San Juan sea level.

Phase is positive for Callao leading. The 99% confidence

level is indicated on the coherence plot. The line on

the phase versus frequency diagram represents 240 km day1

phase speed for poleward propagating nondispersive waves.

Figure 4. Auto spectra of sea level from the La Libertad (solid line)

and the Callao (dashed line) tide gages, for the same

period as in Figure 3, and the coherence and phase between

La Libertad and Callao sea level. Phase is positive for

La Libertad leading. The 95% confidence level is indicated

on the coherence plot. The line on the phase versus

frequency diagram represents 240 km day1 for poleward

propagating nondispersive waves.
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Figure 5. Auto-spectra of La Libertad (solid line) and San Juan

(dashed line) atmospheric pressure, and the coherence and

phase between them, with the same period and analysis as in

Figure 3. Phase positive for La Libertad leading. The

99% confidence level is indicated on the coherence plot.

Figure 6. Auto-spectra of alongshore current at M (55 m) (solid line)

and sea level at San Juan (dashed line) and the coherence

and phase between them, with the same period and analysis

as in Figure 3. Phase positive for current leading. The

99% confidence level is indicated on the coherence plot.

Figure 7. Auto-spectra of alongshore wind (solid line) at San Juan

and alongshore current (dashed line) at M (55 ni), and the

coherence and phase between them, with the same period and

analysis as in Figure 3. Phase positive for wind leading.

The 95% confidence level is indicated on the coherence plot.

Scale on left of auto-spectral plot applies to wind while

scale on right applies to current.

Figure 8. The lag (equatorward series leading) at maximum correlation

between: 1) adjacent pairs of sea level records (see Figure

1), each sea level record vs. Callao sea level, and

San Martin sea level vs. Materani sea level (circles);

2) tide gages at Agave (l5°S) and P (+); 3) each atmospheric

pressure record vs. Callao atmospheric pressure (triangles)

All points represent a correlation



significant at the 98% confidence level, and all but

the Talara-Callao (open circle) correlation represent the

absolute maximum of the cross-correlation function. The

Talara-Callao pair also has a maximum at 0 lag.

Figure 9. Auto spectra based on 49.7 days of hourly data of along-

shore currents at C2 (86 in) (solid line) and V (97 m)

(dotted line) beginning 2100 UT 31 March 1977. The 95%

confidence interval is shown.

Figure 10. Coherence and phase between alongshore currents at C2 (86 in)

and V (97 m), for the same time period as in Figure 9.

Phase is positive for Y leads C2. The 95% confidence

level is shown on the coherence plot.

Figure 11. The alongshore structure of the first EOF for the 0.118-

0.213 cpd frequency band for the alongshore currents at

C2 (86 in, 126 in), P (36 in, 96 in), V (36 in, 97m) and

M (39 in, 100 in), based on 6 hourly data. A common record

length of 45.25 days is utilized, beginning 0000 UT 2 April

1977. Open circles represent shallow records at each

location while dark circles represent deeper records. The

first EOF contains 72% of the total variance in the

frequency band. (a) Amplitude; (b) phase, relative to

V ( the line indicates the behavior for a phase speed øf

240 km day with L = 0.17 cpd); a linear regression gives

an alongshore phase speed of 204 km day with w = 0.17 cpd;

8 > e implies 2 leads 1; (c) coherence squared (the 95%
1 2

confidence level is shown).
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Figure 12. The alongshore structure of the first and second EOFs for

the same record length and frequency interval as in Figure

11 for alongshore winds at Talara (1), Chiclayo (CH),

Callao (CA) and San Juan (Si). The first EUF contains 63%

of the total variance in the frequency band while the

second EOF contains 28%. (a) amplitude; (b) phase, relative

to Callao; (c) coherence squared ( the 95% significance

level is shown).

Figure 13. The alongshore structure of the first EOF for the same

record length and frequency interval as in Figure 11 for

alongshore winds (triangles) at Talara (T), Chiclayo (CH),

Callao (CA), and San Juan (Si) and alongshore currents at

C2 (86 m) (open circle), P (96 m), Y (97 iii) and M (100 in)

(dark circles). The first EOF contains 55% of the total

variance in the frequency interval. (a) normalized

amplitude (the current velocities are normalized to

unity variance as are the winds); (b) phase relative to

Callao (the line represents the behavior for a phase speed

of 240 km day with = 0.17 cpd; (c) coherence squared

(the 95% level is shown).

Figure 14. Shelf-slope topography at 5°S and 15°S latitude as a

function of depth, where the offshore coordinate is scaled

with the local f in each case. The locations of the C2

current meters at 5°S are indicated by open circles while

the locations of the current meters at M and L are indicated

by dark circles.
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Figure 15. The vertical structure of amplitude, phase (relative to

the shallowest record) and coherence squared (the 95%

significance level is shown) for (a) the C2 mooring and

(b) the L mooring for the first EOF of alongshore velocity,

based on 6 hourly data. For the C2 mooring, a recore

length of 47,5 days is used, beginning 0000 UT 2 April

1977, with a frequency interval of 0.126-0.211 cpd and the

First EOF contains 82% of the total variance in the,

frequency band. For the L mooring a record length of

53.75 days beginning 0600 UT 17 April 1977 is used, with

a frequency interval of 0.131-0.206 cpd and the first EOF

contains 87% of the total variance in the frequency band.

Figure 16. N(z)2 profile, smoothed with a three point mooving average,

based on measurements every 10 m, near the Peru continental

slope, at 4°58.9'S, 8l°33'W , 1922 m water depth, May 22

1977 (dashed line); 15015.5tS, 75°40.0W, 1353 m water depth

May 9 1977 (solid line)

Figure 17. First vertical dynamical mode for alongshore velocity

calculated for a flat bottom depth of 2000 m and 4000 m

(figure truncated at 2200 m), using the dashed N2 profile

shown in Figure 16. Also plotted is the vertical structure

(open circles) of the first EOF of alongshore velocity at

C2 (normalized by the maximum value) from Figure 15 a.

Figure 18. First vertical dynamical mode for alongshore velocity

calculated for a flat bottom of 1400 m and 4000 m (figure

truncated at 2200 m) using the solid N2 profile shown in
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Figure 16. Also plotted is the vertical structure (dark

circles) of the first EOF of alongshore velocity at L

(normalized by the maximum value) from Figure 15b.

Figure 19. The ratio of the variance of the counterclockwise to the

clockwise rotating parts as a function of depth for the

velocity time series at C2 (open circles) and L (dark

circles) calculated using the rotary spectrum with hourly

data. A record length of 42.75 days was used for both

C2 and L, starting 0000 UT 2 April 1977. The ratio is

computed centered around 3 frequencies: 0.094 cpd,

0.187 cpd
( the local inertial frequency at 5°S) and

0.516 cpd (the local inertial frequency at 15°S).

Hourly data was used. Bandwith = ± 0.06 cpd.
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Chapter II

Appendix A Sinusoidal Forcing

a) Interior Solutions
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With a wind stress given by
(5.1)3 we seek interior solutions given

by (5.4), and, in a manner similar to the representation for h in (2.12),

we define

g(x) = + (Al)

The solutions to (2.11), (2.13), and (2.14) for and g8,

subject to (2.20a) and (2.21b) and appropriate for an eastern boundary3

are

= -mT0[w(k2 + £2) - (k/)]1 [exp(ikx) - exp(Qx)], (A2a)

= (18/2w6)
[2 (/2w)2]h1/2, (A2b)

g1 = fmT0[k WR(1)] exp(ikx), (A3)

= C0 exp(Rx), (A4a)

R = (i/2o) [6R(i) - (/2w)2I1"2, (A4b)

where assumption (2.5a) has been used in (5.7) and where the constant C0

in (A4a) may be determined from (2.21a) after a solution for h on the

shelf is obtained.

For

>> k/6, >> R(1)"' (A5a,b)

applied to (A3) and (A4) respectively, we obtain

fmTO(Rl)/) exp(ikx), g8 COexP(-x/R(l)). (A5c,d)

Eq. (A5d) is the interior extension of a coastal trapped internal

Kelvin wave. This case is investigated tn Section 5a. Note that in
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general (A5b) implies (A5a) since R(l)k << 1. Condition (A5a) corre-

sponds to forcing at wavenumbers and frequencies above the cutoff for

long internal Rossby waves.

For very low frequency forcing, i.e., for

we obtain

<< ke1./o, << (A6a,b)

fm(T0/k) exp(ikx), cOexP(ix/R(l)2), (A6c,d)

and the interior solution takes the form of an interior Sverdrup flow

(A6c) and a westward propagating internal Rossby wave (A6d). This case

is briefly discussed in Section 5b.

The relevant expression (2.2Db) for the forcing at = 1 by the

interior barotropic motion is

x(0)
= im(T0/)(k + jQ) (A7)

In general
x(0)

is complex and the forced shelf circulation will have

components both in phase and out of phase with the wind stress driving.

For the purposes of calculating specific solutions in Section 5a for the

shelf velocities, we employ the approximate expression

x(0) T0/w, (ABa)

obtained with the conditions

£2 >> (/2o)2, 1k! 0. (ABb,c)

The condition (1\Bb) is restrictive, implying the period T' < 20 days.

However, for £2
> (/2wó)2, with tk[ 0,

(T0/w), (A8d)

i.e.,
x(o) has the same magnitude for the more general case (see Fig. 7

with k/s. 0).
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yields

£2
..

x(0)
' -i(T0/),

k >>
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(A9a ,b)

(A9c)

and the response, while of the same magnitude as
x(0)

obtained in the

limit (A8b,c), is out of phase with the wind stress by a factor of i/2.

This behavior is evident in Figs. 7 and 8 with (k/9) 15.0.

Condition (A8c) corresponds to a wind stress with x wavenumber k =

O traveling along the coast. For . < 0 (equatorward traveling distur-

bance), < 0. For £ > 0,
x(0)

> Condition (A9b) corresponds

to a wind stress traveling in the onshore-offshore direction. For both

k > 0 and k < 0, 4x(0) <

We also notethat is independent of for small , i.e., the

condition

yields

k) << /2uô (AlDa)

x(0j
(T0s/), (Alib)

corresponding to a Sverdrup balance in the interior.

b) Shelf Equations

We restrict our attention to cases where (A5a,b) are satisfied and

use (A5c,d) for g1 and g8. For oceanic parameters at 60 latitude off

the west coast of South America (e.g., 6 100 km, ' 2.3 x io_13

cm sec), (A5a,b) are satisfied for periods T' < 60 days.

We seek a forced response on the shelf of the form (5.4). The

equations for the shelf variables, obtained by utilizing (5.4) in

(2.17a,b) are
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(f g) 1TO(w6B), (Al2a)

+ ag (/0g)9 + afL(wBy1 - iafTO(w6B) (Al2b)

where

+ ig1(0). (Al2c)

As in Section 4, the shelf equations are forced by the alongshore corn-

porient of the wind stress at the coast and by the interior baroclinic

motion.

are

With (5.4), the boundary conditions (2.19a,b), (2.2Db), and (2.21a,b)

= 0, f(i/w)g - g if(T0I), at = 0, (A13a,b)

x(0),
at = 1, (A13c)

g B' I(0) + 8() = 6g at = 1. (A14a,b)

With (A5a,b), except very near the equator, the interior baroclinic

forced response is relatively small. This is reflected in the ratio of

the interior forcing term 91(0) and the coastal wind stress term T0,

which appear in the forcing 1; i.e.,

iig1(0)/TQ (mP/w)(f)(R/)2i, (A15)

which is 0(6) and therefore small. Accordingly, with (A5a,b) we employ

the approximation

T. (A16)

Note that with (A6),

i91(Q)/T0 mf(k)i, (A17)

which is 0(1) in general, indicating that for forcing at very low fre-

quencies baroclinic interior motions may be as important as the alongshore

coastal wind stress.
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Ap_pendix B Exponential Slope

Analytical results to (Al2a,b) are obtainable if an exponential

slope (Buchwald and Adams, 1968) is assumed:

H = exp[( 1)/6B]. (Bi)

In this case, He/H = is a constant. This depth profile, whfl.e

still highly idealized, is not an unreasonable approximation to actual

shelf-slope topography.

We obtain approximate solutions under the assumption

a(0) H1/H2(0) << 1. (B2a)

We utilize the expansion

a a(0) exp(-UB) + O(a(Q)) (B2b)

so that (Al2a,b) may be written to O(a(0)2) in the forii

- (/)(f = (B3a)

- (/)2g =

where we define

+ (s/R)2] (B3b)

= 4' iT0/. (B3c)

For simplicity, we adopt an f-plane analysis (f = 1) here, and assumptions

(A5a,b).

The boundary conditions are

= iT0/t, g - (/)g = iT0f2, at = 0, (B4a,b)

=
o'

+ (61()) = 0, at = 1, (B4c,d,e)

where
4x(Q)

is given by (A8a) and C0 is the coefficient from (A5d).
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With (B2a), (B3a,b) are weakly coupled and may be solved, subject

to (B4a-e), by perturbation methods. We solve (B3a) for only, subject

to (B4a,c), to obtain a first order approximation, Similarly, we

solve (B3b) for g only, subject to (B4b,e) to obtain a first order

approximation, g0.

where

These are

= K0 exp[-/R)J, (B5a)

= exp(/28)(D0sinhy + iT0Z coshy), (B5b)

K0 = i(T0/L)[l
+

(B5c)

+ ysinhy)
+ x(0) exp(--SB)J/

sinhy + ycosh-'), (B5d)

2
+ (26B)2. (B5e)

These solutions are written for £ > 0.

We substitute into (B3a) to obtain an 0(1) correction . The

0(a(0)) correction tog, a(0)91 is obtained by substituting 4c' g0,

and into (B3b). Finally, we utilize a(0)g1 in (B3a) to obtain the

0(a) correction a(0)42 to q. The corrections satisfy homogeneous bound-

ary conditions at = 0 and = 1. Additional corrections are O(a0))

so that the approximate solutions are

+
+ a(0) + 0(8(0)2). (B6a)

+ a(0)g1 + 0(a(Q)2). (B6b)
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The corrections may be obtained in a straightforward manner but their

algebraic form is complicated and they are omitted here.

This perturbation procedure was verified by comparison with expan-

sions for a(0) << 1 of exact solutions which may be obtained in the weak

slope limit >> 1.

The coefficient K0 possesses a singularity for = -1

(see B6a), while D0 is unbounded for

tanhy = -2i8y. (B7)

The first singularity corresponds to wind forcing at the resonant fre-

quency for free internal Kelvin waves, and (B7) corresponds to the

excitation of the free shelf wave modes. These resonances occur only

for < 0.

Substitution of (5.5) into (2.18c,d) yields the shelf velocities:

vi = -(H)H11 v1() exp[-i(tt - ky)], (B8a)

v2 = -(H)H1 v2() exp[-i(w - y)], (B8b)

where

= + (B9a)

V2() = . (B9b)

The solutions (B6a,b) simplify considerably if the limits

1 and (R/6) >> 1 are examined. These approximate solutions may be

utilized in (B9a1b) to obtain approximate shelf velocities. For (%SR/tS) <

1,
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-iT0(aY exp(_oc/6R)

exp(/26B) {D0[(2) sinhy + 1coShyJ

+ iT09 [(26BY' coshy + ysinhy]}, (BlOa)

il0 exp(-W)

+ exp(/2s8) Do[(2BY1 sinhy + ycosJ

+ iT02 t(2BY' coshy + ysinhyJ}. (Blob)

For (R1o) >>

= -iT0(aiY1 (/6R) exp(-/R), (Blia)

x(0)
+ iT0 (foR)] exp[(

[(2)1sinhy + cosh']/[(268Ysinhy + coshi]. (Blib)

We may also examine the behavior of the solutions for low frequency,

keeping in mind the conditions (A5a,b) required to preserve their valid-

ity. In particular, for y2 £(oB) >>
>>

where

-iT0(aY' (0/oR) exp/OR), (B12a)

v2() = iT0 L0 exp(-)
x(0)

e.xp[y( - 1)], (B12b)

L0 u(O/OR) y2 E(o/OR) + R&B)]. (B12c)
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Chapter III

APPENDIX A: SOLUTIONS FOR SLOWLY VARYING f

In this section we treat f as a slowly varying function of y,. so

that -f = f(r), r = y, and << 1. The equations that describe the

problem and that may be derived from (2.1) with the above definition

for f are (2.6), (2.8), (2.9) and

+ (f/N)2 p] + f p = 0.
t yx (Al)

(a) Free wave problem

An understanding of the free wave problem is useful. Therefore

we consider a vertically unbounded ocean governed by a homogeneous

version of (2.6) with the rigid lid condition (2.8) removed. A free

wave solution is sought of the form

y
p (x,y,z,t) = Rè{(x;n) expL-.i(t + mz + 5 2.dy)]}, (A2)

yO

where here £ = 2.() and 4) depends parametrically on ii.

If (A2) is substituted in (Al) and a homogeneous version of (2.6),

the result is

- + i(/ = 0, (A3)

+ (f/)4) + if(8/w)4) = 0, at x = 0. (A4)

The variable 4 is expanded in the form

(A5)

p
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where A is a complex constant with Aj 1 and are real

variables. Substituting (A5) in (A3) and (A4) we find that the

lowest order solution satisfies the same equations and boundary

conditions as the constant f sohitions (2.3)-.(2.9) (with no forcing)

but with f = f(ri). This solution is

= C(n) exp(-fx/w), m/N (A6)

The equation for is

lxx
- (fm/N)21 = (A7)

with boundary conditions

lx
+ (f2./w)4 = -(f/w)q0, at x = 0, (A8)

i' hx as x--. (A9)

A compatibility condition for may be determined by multiplying

(A7) by q and integrating over x from 0 to :

ç0lxx m)20'1) = _tY ç (MO)

Utilizing the boundary conditions on and we obtain

C(n)
(f/f0)½,

(All)

where f is a reference value of the Coriolis parameter.

This implies an f½
growth in amplitude of an internal Kelvin

wave as it propagates poleward and vertically and corresponds to the
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conservation of wave energy flux. The amplification agrees with

results obtained by Miles (1972) for external Kelvin waves and by

Allen and Romea (1980).

(b) Forced Problem

In a manner similar to the method used in Section 2, we seek a

solution to (Al) in terms of the Fourier cosine transform. The

transformed problem is (2.18b,c) and

- (fm/N)2
+

f = 0. (Al2)

where the transform is defined by (2.17).

The solution to (Al2) may be written

0 + 1'
(A13)

where is assumed to be a small perturbation (
<<

and where

''
exp(-fmx/N). (A14)

The problem for is

1xx
= f?0(fm/N) exp(-fmx/N). (A15)

The solution to (A15) subject to (2.18c) is

where

? exp(-fmx/N) xexp(-fmx/N), (A16)

'lpt '0y'
(A17)
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Therefore the total solution for is (absorbing Y1 in Y0)

- ½Y1x) exp(-frnx/N). (A18)

We now use (A17) and (A18) in the remaining boundary condition

(2.18b) to obtain

- (m/N)Y + y ½Y0(fIf) = T(y,t). (l9)Ot Oy

Eq. (A19) is a forced first order wave equation which includes

a slowly varying Coriolis parameter. The transformation v0 fi

yields

- (rn/N) + = f½ (n) T(y,t). (A20)

Eq. (A20) for the scaled variable is similar to (2.2O) the forced

wave equation obtained for constant f, but with a factor of f(n)

multiplying the forcing function.

With an initial condition given by (2.22), the solution for a

general wind stress T = F(y) T(t) is (2.25), where

p0 = -(2N/) r f½[(y
+ Nt/rn)] (y + Nt/rn)

0

exp(-fmx/N) m cos mz drn. (A21)

For forcing given by (3.1) (Example A) or (3.11) (Example B)., the

f-plane results are similar to the solutions obtained with (A21),

with the rescaling p (slowly varying 1) fp (f-plane).
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Chapter III

APPENDIX B: GENERALIZED INTEGRAL TRANSFORM IN x

The solution to (2.3) is derived here in an alternate manner with

a generalized integral transform in x. In this case, boundary

conditions (2.6) and (2.8) are replaced by the equivalent conditions

= -(N2/f) T(y,±) (x), z 0, (Bi)

x=0 (B2)

where here the Ekman suction in the upper coastal corner is

represented by a delta function at x = 0 (Bi).

We express p and t as Fourier integrals in time and in y, i.e.,

Ci(,w), (x,2,,z,w)J

:
r [T(y,t), p(x,y,z,t)] exp(-4wt) exp(-i2.y) dt dy, (B3)

tT(Y,t), p(x,y,z,t)]

(2'ir) f [t(2.,w), p(x,.,z,w)] exp(it) exp(i.y) dw d2.,. (B4)

Utilization of (B3) in (2.3). (2.g), (Bi) and (B2) gives

+ (f/N)2 = 0, (B5)

< , as x , z - (B6)

= iN(fujY1 (x), at z = 0, (B7)

+ f(/) = 0, at x = 0, (B8)
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plus appropriate radiation conditions for x -'- , z - -.

Eq. (B8) is satisfied by the transform

f ( z,u){sincx - w('f) ccosdx]dc
0

+ W(z,2.,u) H(w/) exp(-ftx/t), (B9)

where the last term is present only for (2./w) > 0. The transform

variable may be obtained my multiplying both sides of (89) by

sincx - (f,) ccoscx and integrating over x from 0 to , i.e.,

= (2/)[1 + (c)2(ft)2j 5° (sincx wci(f,Y1coscx)dx.

0
(810)

Similarly, W is obtained by multiplying (89) by exp(-f2..x/w) and

integrating with respect to x from 0 to , i.e.,

W(z,.Q,c) = 2f(.Q/cu) f exp(-f2x/)dx. (Bli)

0

We obtain the transformed problem for by multiplying (B5) and

(B6a) by sincx-wct(fL)coso.x, integrating over x from 0 to , and

integrating by parts where appropriate. The result is

with solution

- (/f)2 4 = 0, (812)

< , as z - (813)

= A(o,i,w) exp(Ncz/f). (814)



244

W(z) is obtained by multiplying (B5) and (B6a) by exp(-f9x/w) and

integrating over x from 0 to . This yields

W = W0(.,w) exp(iNz/), (B15)

where the positive root is chosen in (B15) to satisfy the radiation

condition, giving a downward flux of wave energy for It > 0. The

total solution is

p(x,i,z,w) = J' A(c,,)[sincx - fL)coscx] exp(Nzc/f) dc
0

+ H(w/)W0()exp(-fLx/)exp(iNZz/o.) (B16)

We find A and W, by substituting (B16) in the remaining condition

(87):

(N/f) J ctAEsino,x - c(f2Y1coscLx3dcz
0

+ i H(/) W0N(/u)exp(-fx/w) = i N2(fwY1 (x). (817)

To find W0, when > 0, multiply both sides of (B17) by exp(-fLx/w)

and integrate with respect to x from 0 to , and to find A, multiply

both sides by sincx - x(fLY1cosczx and integrate over x from 0 to

. This gives

= (2N/w) , (c/Z) > 0, (B18)

A = - i(2/i) N(f[l + ()2(fZ)2] . (819)
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With a particular forcing t the pressure may now be calculated from

(84), (B16), (818), and (Big) and the velocities computed using

(2.la) and (2.4a,b).

As a simple example, consider a traveling plane wave coastal wind

stress where

T(y,t) = r0 exp(-iw0t - i2,0y). (820)

The solution for p is

p 2NT0(w0Y1 expE-i(w0t + oy)J

-1

{i0(f0)f Csincx - w0c(f )coscix][l + (0c)2(fY2] exp(NciZ/f)dcx
0

+ H(i0/20) ii exp(-fR.0x/w0) exp(iF40z/w0)Y (B21)

Evaluation of the integral in (821) yields (3.23), where c and 2. in

(3.23) are equal to and in (B21).
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Chapter IV

APPENDIX A: EXPONENTIAL N2 PROFILE

We have obtained results for both steep and weak slope topog-

raphies with general stratification. We now examine a particular

more realistic stratification, but one which still allows analytical

solutions, i.e., an exponential N2 profile given by

R(z) = R0 exp(sz), (Al)

where constant. Profiles of R(z) are plotted for various s in

Figure 12.

The x-z structure of the 0(1) solution is given by (3.14),

where P(z) the vertical modal structure, is obtained by solving

(3.15), (3.16) and (3.17) with the appropriate R. With (Al), the

eigenvalue problem yields

(0) l/2 exp(Zx/w(0)) [J(l/2/(o)s)
n

+ (A2)

where

= _J0(R0/W(0)s)/Y0(R0/W(0)s), (A3)

and where the dispersion relation for the 0(1) egienvalue is

+ = 0. (A4)

V0 and are Bessel functions of the first and second kind

of order 0 and 1 and

(z) = R2(z) R0exp(2sz). (AS)

The vertical structure of (0), which corresponds to along-

shore velocity, is plotted in Figure 13 for various s, where the
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modes are rescaled so that P1(0) = 1. This is the 0(1) modal solu-

tion, which is unaffected to first order by friction or topography

and is the same for both the steep and weak slope problems. As S

increases, the zero crossing of the mode becomes shallower and the

bottom velocity decreases in accordance with the constraint of zero

depth integrated mass flux in each mode, which follows from the

integration over z of and the use of (3.13a). The ratio

v(z = 0)/v(z = -1)1 is shown in Table 2 as a function of S.

Figure 14 shows a smoothed N2 profile calculated from measure-

ments taken near 5°S latitude over the slope. The vertical structure

of v associated with the first dynamical mode (the dashed curve

labelled R in Figure 13), obtained numerically with the stratifica-

tion shown in Figure 14, indicates that the bottom velocity is a

fraction of that predicted by the solution for constant stratifica-

tion (the curve labelled s = 0 in Figure 13). The mode shape was

computed by integrating, the governing equations by means of a fourth

order Runge-Kutta technique, with a trial and error procedure for

obtaining the proper eigenvalue so that the boundary conditions are

satisfied (see Kundu et al., 1975. Section 5, for a discussion of

the method). The profile was extrapolated to N2 0.1 x io.5_2 at

the bottom at 4 km depth by an exponential profile below 780 m depth

(parameter studies indicate that the modal structure is relatively

insensitive to the exact choice 0f exponential structure). Although

the N2 profile is different from the exponential profiles, the mode

shape for s between 2 and 3, particularly near z = -1, is a reason-

able approximation to the vertical structure calculated with the N2
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profile shown in Figure 14, therefore we expect estimates of fric-

tion1 effects to be more realistic with s between 2 and 3 than with

S = 0.

Corrections to w may be obtained using (A2), (A3) and (A4) in

(3.20) for the steep slope and (4.11) for the weak slope. The

o(x1°) frictional Corrections to w for both cases are shown in

Table 2 for various s.. Table 2 is discussed in Section 5.
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Chapter IV

APPENDIX B: WEAK SLOPE; t4ATCHtNG TO THE OUTER SHELF

In Section 4, the coastal weak slope solution becomes invalid

for large x, when baroclinic motions decay with a Rossby radius

scale from the coast leaving a barcitropic onshore flow, which crosses

constant depth contours. We show here that the barotropic component

represents the first term in an expansion that matches to an outer

shelf solution which represents a topographic Rossby wave. For

simplicity, we set R R0 = constant and consider the frictionless

case X = 0. The qualitative results presented here are unchanged

for general R and with bottom friction, but the analysis is more

complicated.

The outer shelf equations are obtained for offshore scale L >>

R'
i.e., for R = 0(c) << 1. The lowest order equations are

+ = 0, (Bi)xx

q=0,atn=0, (B2a)

=0,atx=O, (Bzb)

< , as x (B2c)

= -c1 RT2 at 'n = -1, (B2d)

where the tilda superscript denotes an outer shelf variable. The

solution is

= C sin(k,.$) Co5h(Rknfl) n = 1, 2, ..., (B3)

where C is an arbitrary constant. This topographic wave, where the

motions arise from the sloping bottom, was studied by Rhines (1g70)
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and was also obtained by Vermersch and Beardsley (1976). The wave

is bottom trapped for Rk > 1 and is approximately barotropic for

Rk << 1.

The relation between and is obtained from the bottom

boundary condition (B2d) and is

EH R1 tanh(Rk)k. (B4)

In the limit of small Rk (B3) and (84) may be written, to 0(Rk)

as

2 22
C sin(kx)(l + R k n ), (B5)

(B6)

The weak s'ope solution, with a vertical wall at x 0, is

derived to 0(c) in Section 4 For x this solution is

(1)
A0, (87)

where is given by 4.l5a) with ii 0. For R = constant and X

0,

(1)
c(rnr/R)(-1). (B8)

nc

For the purpose of matching to the outer shelf solution (85),

we must evaluate at the next order. The procedure is identical

to that used for the 0(c) problem, but with more complicated algebra,

and the result is

(2)
(1/2)n2 Rn7rc2

(1)
(B9)no

Since 0 as x o, the asymptotic solution for as x to

0(c2) is
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(1)
ri + 1/22 Rnc]. (BlO)

flco L

Eq. (BlO) for represents the first two terms in the expansion of

cosh[n(nircR)1"23. With = n7r/R from (3.26b), (B5) for x c

matches for x with

C = (nirc/R)'2 (1)
(311)

n
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Chapter V

Appendix

A summary of the observations obtained during the ESACAN

experiment is given by Brockmann, et. al., (1978). The complete set

of data from moored instruments and hydrographic stations from the

CUEA program has appeared in a series of data reports published by

Oregon State University (e.g., Enfield, et. al., 1978). In both

experiments the currents were measured by Aanderaa current meters on

taut subsurface moorings. The sampling interval was 10 mm. for the

ESACAN array and 15 or 20 mm for the CUEA arrays, and the instruments

recorded temperature as well as current speed and direction. These

data were averaged to provide hourly data sets. The data from the CUEA

anemometer at Callao and the subsurface pressure gages at P and near

N were processed in the same manner as the current meter data. For the

spectral computations (except Figures 9 and l0) and the EOFs, the

hourly data were filtered with a low-pass filter with a one half power

point of 1.96 days to remove diurnal and shorter period variations and

decimated to six-hourly values. Currents at each mooring were rotated

into a coordinate system in which the alongshore direction is defined

by the averaged principal axis direction of the vector time series at

the mooring as follows: C2 (15°) (counterclockwise from north), P (100),

Y (25°), N and L (45°). The winds were rotated as follows: Talara (15°),

Chiclayo (0°), Callao (36°) and San Juan (45°). Hourly tide gage

and three-hourly atmospheric pressure data at Baltra and La Libertad

were obtained from Instituto Oceanografico de la Armada (Ecuador).

Hourly tide gage data at Talara, Callao, San Juan, and Materani were

obtained from Direccion de Hidrografia y Navigacion de la Marina (Peru).
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Hourly atmospheric pressure data and wind data at Talara, Chiclayo,

CaTlao, San Juan, and Materani were obtained from Corporacion Peruana

de Aerolineas Commerciales. The coastel tide gage at San Martin and

additional coastal anamonieters at Callao and San Juan, maintained by the

Cuea program, provided hourly data.

Two representative stations during 1977 where conductivity,

temperature, and depth (CTD) observations of temperature and salinity

were made are used in this paper, both obtained durind Leg IV of

the Meliville cruise, at 15°15.5'S, 75°40.O'W on May 9, 1977, and

4°58.9'S, 81°33.O'W, on May 22, 1977, in the approximate locations

of the L moorings at l5°S and the C2 mooring at 5°S, respectively.

A profile from 1976 is also used, taken on 30 July at l5°19'S, 75°41.5'W

with 1350 in water depth. The procedure used to obtain and process

the CTD data is discussed in Data Report 71 from Oregon State

University (Huyer, et. al., 1977).




