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ON COASTAL TRAPPED WAVES AT LOW LATITUDES IN A STRATIFIED OCEAN

Chapter I

INTRODUCTION




ON COASTAL TRAPPED WAVES AT LOW LATITUDES IN A STRATIFIED OCEAN

I. Introduction

Buring 1876-1977 an extensive oceanographic field program called
JOINT-2 was conducted off the central Peru coast between 10° and 15°S
latitude as part of the Coastal Upwelling Ecosystems Ana]ysis'Program.
The CSACAN {Estudio del Sistema de Afloramiento Costero en el Area
Norte) field experiment during 1977 near 5°S off the Peru coast
suppiemented the JOINT-2 observations and the combined data set providas
us with observations along the Peru coast between 5° and 15°S.

Using a subset of this data, Smith (1978) found propagation of
fluctuations in sea level and currents between 10° and 15°S at about
200 km day'1 in the poleward direction. These fluctuations were in the
0.1-0.2 cpd frequency band and did no% appear well correlated with the
local winds. While coastally trapped waves have been observed at
mid-latitudes (e.g., Hammon, 1966; Cutchin and Smith, 1973; Kundu
anc¢ Allen, 1976; Brooks and Mooers, 1977), the Peru cbservations are
of particular interest because they are Tow latitude measurements.

At mid-Tatitudes, barotropic continental shelf waves are observed,
whose structure and dynamics are governed by shelf-siope topography
with only small effects due to stratification. These waves have been

well studied theoretically (e.g., Reid, 1958; Robinson, 1964; Mysak,



1967; Buchwald and Adams, 1968; Adams and Buchwald, 1969; Gill and
Schumann, 1974; Huthnance, 1975). In addition, perturbation effects

on continental shelf waves due to bottom friction, and variations in
Coriolis parameter, coastline curvature, and bottom topography have

been studied (e.g., Allen, 1976 Buchwald, 1977; Clarke, 1977; Grimshaw,
1977; Brink and Allen, 1978; Brink, 1980).

Allen and Romea (1980) have shown theoretically that, at low
latitudes, coastal trapped waves are not barotropic and internal Kelvin
waves may play an important role in shelf dynamics. Analysis of the
structure of the current fluctuations and the dynamic balances from the
JOINT-2 data (Smith, 1978; Brink, et. al., 1978; Brink, et. al., 1980;
Allen and Smith, 1981) suggests that the waves near 15°S are internal
Kelvin wave-like.

This thesis is motivated by a desire to better understand the Peru
observations. In order to model low latitude coastal wave dynamics,
both the effects of stratification and topography should be included.
This is relatively difficult and, in the past, investigators have
appealed to two-layer models (e.g., Allen, 1975; Allen, 1976; Gill and
Clarke, 1974; Allen and Romea, 1980) and numerical mode]s.with
realistic stratification (e.g., Huthnance, 1978; Brink, 1982 a,b) in
order to obtain results. However, two-layer models can be difficult
to relate to observations, and numerical models have difficuities at
Tow 1at€tudes (Brink, private communication). In addition, numerical
models generally solve for pressure and it is computationally difficult

to obtain an accurate solution for velocity (see, e.g., Brink, 1982b).




Analytical models for low latitude shelf dynamics with continuous
stratification are needed.

This study is composed of four parts, each of which addresses
a particular aspect of coastal trapped wave dynamics at low latitudes.
The first three parts are theoretical in nature, and were motivated by
a desire to fill a gap in the existing theory. In Chapter II, the
response on the continental shelf and slope te driving by an alongshore
wind stress at the coast and by barotropic and baroclinic wind forced
interior motions is studied as a function of latitude. A two layer
model is wtilized. The observations off the coast of Peru indicate
that the wave-like fluctuations are typically not well correlated
with the Tocal component of the alongshore wind stress (Brink, et. al.,
1978). Motivated by these observations, we are particularly interested
in interior oceanic motions as a possible source for the observed
propagating energy.

Offshore and vertical phase lags are observed in the velocity
data from the Peru coast (see, e.g., Brink, 1982a). Propagation in
the offshore or vertical directions or frictional effects may be
responsible for these phase lags. In Chapter III the dynamics of
vertically propagating internal Kelvin waves at low latitudes is
studied and conditions are defined where phase lags due to vertically
propagating waves would be observed in the ocean. The perturbation
effects of both friction and topography on internal Kelvin waves in
a contiuously stratified ocean are studied in Chapter IV, and predicted
phase lags due to frictional effects are derived and compared to

observations.




In Chapter V, the data from the JOINT-2 and ESACAN experiments
is used to document the existence of propagating fluctuations and to
elucidate their structure. The longer and more extensive data set is
used to revisit the analysis of Smith (1978), and the behavior of the
fluctuations is compared to theories of coastal trapped waves at low

latitudes.




Chapter II

ON FORCED COASTAL TRAPPED WAVES
AT LOW LATITUDES IN A STRATIFIED OCEAN




Introduction

The response on a continental shelf and siope to forcing by wind
stress and by interior oceanic motion will vary with latitude. This
response will also depend on the stratification, the shelf-slope topog-
raphy, and the nature of the motjon in the interior ocean.

Recent observations from the Coastal Upwelling Ecosystems Analysis
(CUEA) experiment on the continental shelf and slope off the coast of
Peru (Brink et al., 1978; Smith, 1978) at 10°-15°S indicate strong
pdleward propagating wavelike motions in the alongshore component of the
currents which are typically not well correlated with the local alongshore
component 6f the wind stress. Motivated by these observations, we study
the characteristics of forced long waves trdpped over a continental
shelf and slope as a function of latitude and we investigate the interior
oceanic motion as a possible source for the observed propagating energy.
We consider a linear inviscid two layer ocean with a continental shelf
and slope along the eastern boundary. A response may be forced on the
shelf by the wind directly through the alongshore component of the wind
Stress at the coast and indirectly through the interaction with the
shelf of motions forced in the interior ocean by the wind stress curl.

We first solve the forced problem in terms of cross-shelf eigen-
functions of the unforced problem, using an f-plane. With this approach,
a first order wave equation may be obtained for the.alongshore and time-
dependent behavior of each wave mode. This method is particularly well-
suited for initial-value problems where it shows how the forced flow on
the shelf develops as each wave mode responds tc the forcing. Since the

phase velocities vary and the eigenfunctions change structure as a

function of latitude, the mid-latitude forced response, aspects'of which
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have been discussed by Gill and Schumann (1974) and Allen (1976a), will
differ from the Tow latitude forced response.

The problem is also approached in another way. For an idealized
wind stress forcing, with sinusoidal dependence on time and on the
horizontal spatial coordinates (e.g., a traveling wave), the onshore-
offshore structure of the solutions on the shelf may be obtained directly.
These solutions are particularly well suited for determining the relative
importance of the various mechanisms for forcing shelf circulations.

For example, the offshore dependence of the solutions forced by the
alongshore component of the wind stress at the coast and by the interior
wind forced barotropic and baroclinic motions may be compared as a
function of latitude, forcing frequency and wavenumber. Since the
solutions change character for forcing at very low frequency (Section
5b)}, the g-effect is included in the anlaysis to establish the validity

of the f-plane solutions presented in Sections 3-5.




2) Formulation

We consider a north-south oriented boundary on the eastern side of
a two layer B-plane ocean, where Cartesian coordinates {x', y', z'), are
uti]ized], with x' positive in the offshore direction {the coastline is
at x' = 0), y' positive southward, and z' positive vertically upward.
Stratification is modelled by two layers of homogenecus fluid of different
density, with the heavier fluid on the bottom. The top surface is
bounded by a rigid 1id. ~The upper layer fluid has density Pys and a
constant undisturbed depth Hi. The lower laver fluid has density P and
a variable undisturbed depth Hy = Hé(x', y'). The total depth is H' =
Hi + Hé. The difference in density ap = Py = Py is assumed to be small,
Ao/pz << 1. Along the boundary there is a continental shelf and sTope
topography which is confined to the region 0 < x' < Lg- In the interior
67 i+ g
Dimensionless variables are formed in the following manner:

(x!' > L¢), the depth is constant, H' = H
(o y) = (x', y')/L, 2= z2'/K), t =t'f,,

(ui, vi) = (u%, v%)/U, W = w%L/(HéU),

Py = [Py + eq9(z' - Hy) /e UfyL),

P, = [py + po9(z' - Héo) - plgHi]/(szfDL),

h = h'gro/(p,UfL),

(Hps Hys H) = (HI, Hy, H')/H,

f = El/(UpszH])s

f=(fy-8'y')/fy=1- 8y, (2.1)

]In this and the following sections, dimensional variables for which a

nondimensional counterpart will be defined are denoted with primes.
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where i = 1, 2 refers to the upper and lower layer, respectively. The
variables (u', v', w') are the velocity components in the (x‘, y', z')
directions, p' is the pressure, t' is time, L is a characteristic hori-
zontal alongshore scale (the dimensional alongshore wavelength 1A' =
2rl), U is a characteristic horizontal velocity [U = 1o/ (eofgHy ), where
ré is a characteristic wind stress], g is the acceleration of gravity,

' is the surface wind stress vector with (x', y') components (T(x )
r(‘y)),f

?

0 is the value of the Coriolis parameter at a reference latitude
and g = E‘L/fo- h = Py - Py is the dimensionless perturbation interface
height.

The resulting linear, depth integrated continuity and momentum

equations for each layer are (subscripts x,'y, t denote partial differ-

entiation)
(Hug), * (v, = 570, (2.2a)
Uy = fvg = Py * T(x), (2.2b)
Vg *fuy = Pyt T(y), : (2.2¢c)
(Hyup)y + (Hyvp) = =57Th, (2.2d)
Upy = v, = “Ppy s {2.2e)
Vou *+ fu, = “Pay> (2.2f)

where S = (NHé/fOL)2 is the stratification parameter and G

= gt/ (p,Hy)
is the square of the Brunt—vgisslg freguency.
If (2.2a) and (2.2d) are combined, a streamfunction may be defined,

such that

= 0 + (Hy/Hy) u,, (2.3a)

[}
b
It

K SVt (HZ/H])VZ. - {2.3b)
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The general governing equations for the perturbation interface
height h and the mass transport streamfunction v may be obtained from

(2.2) (Allen, 1975) and are:

Loy + by = (B /MYy - (Ho/H)y Ty - 8y

Yy X

1

(B /M)y = fu, < 00) = () (hy =y, o+ < 0))

(T(Y)

Y-y, (2.42)

Th

+

-1
XX hyy + a(Hx/H)hx + a(Hy/H)hy - (SH) 'Zh

-(8/f)(h, - hy)]t - gh,

= -alh /W) [ - sy v 7004 ([0

-a(Hy/H) [fhx - wa + fr(x) - Tiy)]

+ grX) f(rﬁy) - rix)) - (Tix) + T§Y))t, (2.4b)

where I = £ + (azlatz), a = H]/Hz.

The following assumptions are utilized:

1) restrict the topography to have no alongshore variations, so
that H = H(x) only;

2) assume B << 1;

3) restrict attention to motions on a time scale ét large comparéd
with an inertial period, i.e., &, >> £

4) assume the scale of the wind stress and therefore the scale of

the interior motion and the alongshore scale of the motion on the shelf

5) assume the interior Rossby radius of deformation [defined in

{2.8)1 is much smaller than the 0{1) alongshore scale,
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6R(1) << 1; (2.5a)
€) assume the dimensionless width of the shelf-slope region & is
alsc much smaller than the G(1) alongshore scale,
6 << 1. (2.5b)
7) assume that the small parameters &, 6R(1)’ and B are, in general,

of the same order-of-magnitude, i.e.,

0(¢) = 0{sp) = 0(8). (2.5¢)

It is convenient to define a new cross-shelf variable

£ = x/8, (2.6a)

and an associated time scale

t = ts. (2.6b)
With the above assumptions the equations for the interior, where

Hx = (0, are

§lhey + ¥y )z - Bo, = (W) o (X)), (2.7a)

g, * By = dyy Mg - b = - f(=) LKy 2

where a tilda superscript denotes an interior variable. The interior
Rossby radius, which is the natural offshore decay scale for baroclinic

disturbances, is given by

5§(g =1) = ag(]) = f'zsg(]), (2.8a)

where

H(g) = HiH,(£)/H(z) and ;(1) = Q(g =1). (2.8b,¢)

Equations (2.7a) for the barotropic interior motion and (2.7b) for the
baroclinic interior motion are uncoupled and may be solved separately,

subject to the proper boundary conditions.
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At x = 5, the junction of the interior and the shelf-slope region,
the matching conditions, which follow from the continuity of mass flux

and pressure, are

h(x = §) = n(z = 1), (2.9a)
heg(x = 6) = 6 Tn g (e = 1), (2.9b)
iy(x =6 =y (e=1), (2.9¢)
beplx = 6) = ¢ (e = 1), (2.90)

We expand ¢ in an asymptotic series, i.e.,

-~

b= 8 g+l v ), (2.10)

where the leading order is suggested by (2.7a). With this representation,

(2.7a) is

(Yoxx ¥ KIJoyy)f - 857!y, = -(T§Y) - rﬁx)). (2.11)

The interior variable H is conveniently written as two terms,
h = h; + hg, (2.12)
where, from (2.7b) and with assumption (2.5a),

66&%1) HIE + gh, = f(r(Y) - T x)), (2.13)

- (
Ix X y
and
(hy,. = 655.3ho)z - 671 gho. = O (2.14)
Bxx R(1)'B’t Bx '

The variable EI is an approximate particular solution for the interior
baroclinic field forced by a wind stress curl with 6R(1) << 1, whereas
HB is an approximate homogeneous solution which is added to HI so that

h satisfies the boundary conditions. Except for very low freguency
motion, w << %ﬁGR(1)/5, the second term in {2.13) and the last term in

(2.14) are small with respect to the other terms, and hg in (2.14)
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represents the interior extension of a coastally trapped internal Kelvin
wave. For very low frequency forcing, the third term in (2.11) and the
second term in (2.13) balance the wind stress curl, resulting in an
interior Sverdrup balance.

Expansions of the form

w=w0+6w] + oy (2.15a)
h=h0+ah] S (2.15b)

are assumed for the shelf. Since the interface perturbation h over the
shelf due to the interior solution will consist of the interior interface
deformation at x = 0, 51(0)’ with a boundary layer correction to satisfy
the boundary condition at & = 0, it is convenient to define a new shelf
variable H, where

h = hI(O) + h. (2.16)

Using (2.5a,b}, (2.6a,b), and (2.16), the lowest order equations for the

shelf variables become

-1 1, 1, (y) L :
(oge = 88 Yorlg = 85 (b, - fup,) = &5 (T%) * hiy(0))
) o
-a(Ti{g) ] TJ(,’(‘O)) * Evge (2.17a)
(e, +agg'ng - (s/80) )y + a3 ¥R, - Fug,)

~

£ (2.17b)

where 661(6) = (Hg/H) and where 62(5) = 7% SH(z). The last two terms

R
in (2.17a,b) are 0{¢/«) and 0(g/w) with respect to terms on the left
hand sides and are neglected in general, except in the limit w - O.

The velocities on the shelf may be obtained for each layer from ¥y

and E. They are
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uy < H B Dgy ¢ £ b ¢ T w00 (208
u, = K HyCvgy - f’z(fﬁy # EEE) ; f’1(TE%% + EI(O)y)]' (2.18b)
vy = (eH)] HyL-vge - (aF)7Th, 1, (2.18¢)
v, = (aH)7! Hy Lovge + f']ﬂg], (2.18d)

where (2.5b) has been used in the derivation of (2.18¢c,d). Egs. (2.18c,d)
imply that the slongshore component of the velocity is in geostrophic
“balance.
The boundary conditions at the coast (¢ = 0), which follow from the

requirement that u](i = (0) = uz(g = 0) = 0 and (2.18) are

wo =0 at £

y g, ‘ (2.19a)

fﬂy + HE% = -f(TE%; + EI(O)y) at £ = Q. (2.19b)

If a Taylor series expansion around x = 0 is used for @, (2.10) and
(2.15) may be substituted into the matching conditions (2.9¢,d) and
terms of the same order may be collected to yfe]d (Allen, 1976b):

Ygylx = 0) = 0, (2.20a)
Yoxi(x = 0) = vogle = 1), (2.20b)

Assuming that a boundary condition for &O’ similar to (2.20a),
holds en the other boundaries of the interior region, the lowest order
barotropic motion in the interior may be determined from (2.11), (2.20a),
and that condition, and is uncoupled from the shelf motion.

The relations (2.12), (2.15b), and (2.16) are substituted for h and
h in {2.9a,b) and a Taylor series expansion around x = 0 is utilized for
HI to yield the matching conditions for the perturbation interface,

j.e.,
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hg(x = &) = h(z = 1), (2.21a)
(¥ =0) +hg (x=8) =6 R (z=1). (2.21b)

The two terms on the left hand side of (2.21b) are retained with the
anticipation that, over the total freguency range, either one may be

important in balancing the right hand side.
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3)  The Free Wave Solutions

Before proceeding to the forced problem, it is useful to have an
understanding of the unforced or free wave problem. The detailed solu-
tions to (2.17a,b) for the free waves are discussed in Allen and Romea
(1980) (henceforth dencted as AR), and only a brief summary will be
presented here.

We adopt an f-plane analysis (g = D, f = constant), and choose the

exponential shelf profile of Buchwald and Adams (1968), i.e.,
H = exp [(z - 1)/¢51. (3.1)

In this case, H/H = s;”! is a constant. This depth profile, while
still highly idealized, is not an unreasonable approximation to actual
shelf slope topography.

The equation for the free waves may be written

~

(voe/Hleg + (H /H Hfugy - ny) =0, (3.2a)

: 2,7 2 Sy

(he/aH) g - (8/8p) (hg/Hy) - F(H /M Mfugy - b)) =0, (3.2b)
Yoy = 0> fh *hg=0 atg=0, (3.3a,b)
Yoeg = 0> b+ (8/8p07y)h =0 ate=l. (3.4a,b)

By multiplying (3.2a) and (3.2b) by, repectively, Yo and h, inte-
grating the two equations over £ from 0 to 1, assuming periodicity in y
and integrating over a period in y, we obtain an equation for the total

energy density:

-1 82 2.2, \=1 .22
- %. é 2 + (afH) T h? + (f sghy)” 6°h“)de

}. (3.5)
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As a result of assumptions (2.5b), all of the coastal trapped waves

in the present model are nondispersive. Accordingly, free wave solutions

are sought in the form

(¥g>h) = Retexp [-u(E + ¢™ )T (s(5),9(e))1, (3.6)

where w is the radian frequency, ¢ is the phase velocity, and Re denotes

the real part.

The equations and boundary conditions for the eigenfunctions (¢n,
gn) with corresponding eigenva]ues.cn are

-1

ngg = S5 one * (Sgcy) (e, -g.) =0, (3.7a)

- 2 .--I _
Ingg * 3% Oy - (6/6p)" g - aloge )™ f(fe, - g ) =0, (3.7b)

¢y = 0, Ine + (f/cn)gn =0 ate¢ =0, (3.8a,b)
ne = 0, 9ne * (5/6R)gn =0 at¢=1. (3.9a,b)

The orthogonality relation for the eigenfunctions is

1

! I (sg)™" (Fo = 0.)(Fe - g

f )dg

m

+ (a(O)H(O))'] 9,(0) g, (0)] =6 cE, (3.10a)

where, from (3.5), the energy density for each mode is

1
21 -1,2 20y-1 o 2, (2,2, \-1 22
B, =5 {Of B Tepy + (f"H)™ g, " + (FOspH)™ 6% Jde

+ 2)‘]

(SR(])a(])H(])f 5gn(])2} - (3.]0b)

The factor on the right hand side of (3.10a) follows from multiplying
(3.7a,b) for (¢n,gn) by, respectively, ¢, and g, integrating over ¢
from 0 to 1 and combining. The result is

1

ann = Hn = %'f-] [Of (6BH)-] (f¢n - gn)sz + (a(O)H(
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We may rewrite (3.11) as

-1
c, = En/Hn. (3.12)

Eq. (3.12} represents a variational formulation of (3.7) and (3.8)
in the sense that the admissible functions (¢0,go) which mipimize the
quotient En/Hn are eigenfunctions for the problem defined by (3.7) and
-1

(3.8), and the minimum value is the associated eigenfunction c If

0
the orthogonality condition (3.10a) is imposed, the variational formulation
results in an increasing seguence of values for c—], e.g., c]'] is the

minimum of E, /2 among functions orthogonal to (¢0,go). In addition,

Lim ¢! = «, (3.13)

Now N
and the eigenfunctions (¢n,gn) form a complete set {Courant and Hilbert,
Vol. 1, pp. 412, 424-426). The result (3.13) was demonstrated explicitly
in Appendix B of Allen (1975).

Similar variational principles are obtained by Clarke (1976) and
Huthnance (1978) in connection with the eigenvalue problem for coastal
trapped waves in a continuously stratified fluid. One additional con-
sequence of (3.12) (also reported by Clarke and Huthnance) is that for
monotonic H, the right hand side of (3.12) is positive definite and all
free waves propagate poleward (toward'-y).

While (3.7b) and (3.9b) have non-constant coefficients, if we
assume that

a(o) = H]/H2(0)<< ], (3.]4)

(3.7a,b), (3.8a,b), and (3.9a,b) may be solved by perturbation methods,
as in AR. The eigenfunctions consist of an infinite set of "shelf wave"

(SW) solutions (¢n,gn), (n=1,2,...), and a single internal Kelvin
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wave (IKW) solution (¢0,go). At mid-latitudes, §p/8 << 1, the SW modes
are barotropic and have offshore structures which are essentially those
found for barotropic continental shelf waves in an unstratified ocean.

For /¢ >> 1, the SW modes are "bottom trapped," i.e., all their motion
is confined to the lower 1ayef. The IKW mode is baroclinic and has an
offshore structure and wave speed similar to that obtained for a flat
bottom internal Kelvin wave. In this case, however, there is a barotropic
contribution to the onshore velocities from b

The phase speed o of the IKW mode is independent of f while the SW
mode phase speeds depend on f. Estimates of <o and ¢ {the first SW
mode) are calculated in Appendix B of AR for the Pacific coast of South
America. For latitudes less than 5°S, €y >> Cqy» 1.e., the IKW mode
travels faster than the first SW mode, while for mid—]afitudes, €y <<
Cqs i.e., the first SW mode travels faster than the IKW mode. The two
wave modes have the same phase speeds at a latitude of about 10°S.

For parameter values where the wave speeds of the IKW mode and a SW
mode are nearly equal, i.e., where Co = Cp» there is a coupling between
the two types of wave modes. A plot of the phase speeds for the first
three eigenfunctions as a function of dR/d is shown in Figure 1. As is
indicated by the behavior of the wave speeds as a function of SR/S, the
mode which is originally an IKW becomes a first SW mode, and vice versa.
At a larger value of SR/G, a similar behavior occurs for the IKW and
second SW modes.

Note that, while the parameter BR/a varies strongly with latitude,

it is also a function of shelf width, so it is possible, for example,

for 5R/6 to be small at low latitudes for a very wide shelf.
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4)  Solutions via a Cross Shelf Modal Analysis

Sclutions to the shelf equations (2.17a,b), with the boundary
conditions {2.19a,b), (2.20b), and (2.21a,b) may be obtained for a
coasté] wind stress with a general (y, t) structure by expanding the
shelf variables in terms of the cross shelf eigenfunctions of the unforced
equations.

As in Section 3, an f-plane analysis is employed here and the assumptions
in Section 2 (2.5a,b) are retained.

In a manner similar to (2.16) for hy» we define
- - g
Vo =V gy [ oH(ENdE (4.7)
0

The Tast term in (4.7) represents the extension of the interior alongshore

velocity at x = § onto the shelf topography.]

With (4.1), the governing equations for the shelf variables (2.17a,b)

are
Uy = 570,z - 657 (h = Fp.) = 6,7 F (4.2a)
EE B gt B Yy y B
(h,, +asg h. = (6/65)%h)z + fae, " \(h. - f0.) = -as.” VfF (4.2b)
£E B ¢ R t B y y B g )
where
E
Fle,y,B) = < 4 q + 5 I H(z')de'. (4.2¢)
(0) 1(0)y x(0)y 0
The boundary conditions at the coast are
U =0 at £=0, - (4.3a)
y
h -+ fh = - = 0. 4.3b
heg * fhy = =fFgy at £=0 (4.3b)

‘In Allen (1976b) the substitution Vg = w + gw was used. This
represents an extension of the 1nter1or a]ongsﬁoze transport onto the
shelf. The definition (4.1) turns out to be more appropriate.
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The solution to (2.14) (with g = 0) is:

-~

hB(Xs.yS:E) = Co(.ys%) EXP('X/(SR“))- (4-4)

This solution may be used in (2.27a,b) to derive the boundary condition
on h at £ = 1. The boundary condition at ¢ = 1 for @ may be derived by
introducing (4.1) into (2.20b). These conditions are

bp=0 at £=1, (4.52)

h, + (é/éR(]))h =0 at £=1, (4.5b)

~

v . . -1 _
where the term hIx(O) is negiected relative to SR(])hBX(X = 0) and
é]h(

. = 0) in (2.21b), and where we use, from (2.21a),

~

h(c = 1) = hg(x = §) = Cq exp(-5/5573). (4.6)

)
This relation may be used to calculate CD and hence EB’ after a solution
is obtained for ﬁ.
We now expand the shelf variables in terms of the eigenfunctions of

the unforced problem, i.e.,

[u(e,y,8), My, DT = 8, Lo, (2), g (£)IY (v, ). (4.7)

The series in (4.7) is summed over the single IKW pair (¢0, go) and atl
the SW pairs (¢n, gn), (n=1,2,...). The expansions (4.7) for @ and

h are substituted into the shelf eguations (4.2a,b) and the forced
boundary condition at £ = 0 (4.3b). If (4.2a,b) are multiplied by

(¢m, gm) respectively, integrated with respect to £ from 0 to 1, and are
combined in a suitable manner with (4.3b) and the orthogonality relation
(3.6), a forced first order wave equation is obtained for the (y,%)
structure of each mode (Gill and Clarke, 1974; Clarke, 1977), i.e.,

-] _ - '
Cm Ym"{: = me - = Tm(y!t)s (4.8)
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where
e -1 1 -1
Tnlys®) = £L  (egh) ™ (e - gy lFds

" Bofo)) (o) (o) (4-9)

Tm(y,i) contains two terms; one is integrated over the shelf and one is
evaluated at the coast.
Two separate types of forcing contribute to F, i.e.,

F(E,y,t), = ¢ + 1, (4.70)

where
. 2
(20,1 = fu, i) OI H{g')de!, (4.11a)

Ty, E) = Tgﬁg + 1 i0)y- (4.11b)
The alongshore component of the wind stress at the coast and the baro-
clinic interior flow force motion on the she1f through the boundary
condition at £ = O and always appear together, while ¢, the effect of
ihe interior barotropic flow, depends on £ and vanishes at the coast
(?(0) = 0; F(0) = ;). For (SR/a) << 1, T forces the IKW response mainly
through the boundary term in (4.9), since 9q decays rapidly from the
coast and the contribution from the integral in (4.9) is small. The SW
response arises predominantly from the integrated term in (4.9) which
represents the cross-shelf bottom velocity Us. For (6R/5) << 1, an
offshore barotropic flow interacting with a shelf-slope fopography can
force a SW response in this manner.

In order to examine the relative efficiency of excitation of the

various modes by both TE%% and ¢ we use (3.5), (3.10), (4.8) and (4.9)

to calculate the total energy density E of the Tower modes. Approximate
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expressions for Y may be obtained for short time by solving (4.8) as an

initial value problem with initial condition

Ym (y.t=10)=0. (4.12)
For this case, the balance in (4.8) is me = - ¢, T, and
E = %{OI][H'Z ¢m52 + (£an)”! gmg2 + (:5/<3R);Z H]'] gmz]dé
+ (s/aR)(amHmf)'] gm“)z} T % t2, (4.13)
Figures 2 and 3 show the energy density (divided by EZ) of the

first several modes, forced by . and ¢, respectively, as a function of
$p/é. As in Fig. 1, we use the solutions derived in AR for argy << 1.
The mode which, for §,/6 << 1 is an IKW, is labelled E;» while the mode
which is a first mode SW is labelled E,. The interaction (see Fig. 1)
between E] and E2 occurs at 6R/6 = 0.43. For GR/a << 1, E] ijs a first
mode SW. E, interacts at &p/é = 0.11 with E; (the second mode SW).
Poleward of this interaction, E3 is an IKW and E2 is a second mode SW.

Without solving the interior problem for hI(O)y and &X(O)’ the
relative importance of driving by t and ¢ cannot be deduced, and we
defer a discussion of this subject until Section 5. However, several
points can be made from Figs. 2 and 3, together with our understanding
of the eigenfunctions discussed in Section 3.

Forcing by T for SR/é << 1 results in an IKW response which is
confined within 5R/a of the coast and a set of barotropic SW modes which
extend over the shelf. This implies that it is possible for interior
baroclinic motions to drive barotropic motions on the shelf, although

estimates using typical parameter values give ITE%%l >> {51(0) |. For

y
SR/S >> 1 the response to 1 consists of a baroclinic IKW mode which decays

~

slowiy into the interior and a set of "bottom trapped" SW modes.
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Hence, forcing by a surface wind stress or interior baroclinic motion
yields a SW response on the shelf which is bottom intensified.

Fig. 2 shows that, for 5,/6 >> 1 and forcing by 7, £, (the IKW) is
very efficiently excited, while E, (the bottom trapped first mode SW) is
not very energetic. For Tatitudes Tess than 5°, the SW response is
negligible. For ep/6 << 1, E, (the IKH) and E; (the first mode SW) are
both excited, with the IKW more energetically forced than the SW. If
kinetic energy density (not shown in Fig. 2) is considered instead of
total energy density, the IKW mode, with a(o) = 0.3, is less energetic
than the first mode SW for aR/a > 0.15, i.e., for Tatitudes >40°.

Note that, for a completely two-dimensional response, the dependence
of h and ¢ on y vanishes and (4.2a,b) uncouple. Forced solutions may be
directly obtained and may be used in (4.13) to derive the total energy
density which is also shown in Fig. 2. The response will consist of an
infinite sum of modes and the total energy of the response, aof course,
will be higher than that of the first two modes alone. Note, however,
that the first two modes contain most of the énergy.

The barotropic interior forcing excites an IKW response and ,a SW
response on the shelf. Fig. 3 shows that both the IKW and the SW re-
sponses are not forced efficiently for 5R/6 >> 1. For mid-Tatitudes,
the IKW response (E2) is not forced efficiently, while the first mode
(barotropic) SW is relatively energetic.

Examples

It is useful to consider some simple solutions to (4.8). We focus

only on driving by the alongshore component of the wind stress at the

coast (F = ngg (y>t)), so that (4.8), (4.9) and (4.12) are
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-1 _
< YmE - me = -bmr, (4.14a)
b =) f](a h)-] (f¢_ - g )de - (afH )‘I (4.14b)
m 0 B m " GplaE (0) 9m(0)° ’
mZO (fon = 9plby, = 1, (4.14c)
Y (y,t=0) =0 (4.14d)

In the following examples, we concentrate on the qualitative differences
between the results at mid and low latitudes. (Examples at mid-latitude
have been discussed by Allen [1976a].)
We first examine a simple impulsive wind stress with a limited
alongshore extent, i.e.,
{y,t) = s(T)T(y), . (4.15)

where, e.q.,
T(y) = 4 exp(-yz/Z). (4.16)
The solution to (4.14a) with a wind stress given by (4.15) and (4.16) is

Yo = ST (¥ - cmt). (4.17)

This solution corresponds to a response of limited extent propagating in
the negative y direction (poleward) with speed c,» for each mode. At
Tow latitudes, the IKW response propagates relatively guickly away from
the forcing region, while the bottom trapped SW modes, whose phase

speeds ¢ are small compared with Cps remain behind. This behavior can

n

result in bottom intensified undercurrents over the continental slope.
We now consider an alongshore wind stress of the form

t{y,t) = H(E)T(y), (4.18a)

where H(t) is the Heaviside unit function. Here, for simplicity in
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illustrating the features of the solution (Allen, 1976a) we use the "top

hat" function

[0 O0<y,
T(y) = 5 -yl <y <0 (4.18b)
0y < - |yl

The solution for Ym as a function of y for various times is shown
in Fig. 4. This solution is obtained by the method of characteristics
in Allen (1976a). For the purely baroclinic problem, YO is the interface
height at the ceoast, while for the purely barotropic problem Yn gives
the (y,t) structure in the expansion of the mass transport streamfunction
in terms of the free shelf wave eigenfunctions.

The initial response, for —Iyol <y < -cmf, is time dependent and
two~dimensional (me = 0}, The three-dimensional flow pattern develops
as a free IKW front and a set of SW fronts are generated and propagate
poleward (toward negative y). For cmf > ]yol, a region where Ym is
constant and where the alongshore velocity associated with a particular
mode m is in steady geostrophic balance exists between the time dependent
free wave front and the location of forcing, i.e., in -c.t <y < -{ygl.

A steady state is achieved at a given y as ¥ - = after the free wave
fronts associated with every mode have propagated past that location.

The two-dimensional flow pattern which results from the impulsive
application of 1, in the region -|y,| < y < 0 consists of an offshore
flow ug in the surface Ekman layer which is balanced by an inviscid
onshore flow Uy toward the coast in the same cross-shelf plane. For the
mid-latitude case SR(6 << 1,-the onshore flow Uy is depth independent
over most of the shelf. Within a distance sR/é from the coast the flow

also has & baroclinic component and the interface rises. At £ =20, a
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mass flux equal to the offshore Ekman transport is fed into the surface
Ekman Tayer from the upper layer interior and the lower layer onshore
flux is zero.

For SR/G >> 1, the two-dimensional picture is much the same except
that the baroclinic component of the flow becomes important farther
offshore and the flow is surface intensified over the shelf with a weak
onshore velocity component in the Tower layer. As a result the bottom
trapped shelf waves are not efficiently excited, as is evident in Fig.
2.

In order to describe the three-dimensicnal flow field, we utilize
(4.7) in (2.18a-d) to obtain expressions for the velocities. .In partic-

ular,

1 1

fup = (Hy/H)a™" {zg + Eg [(afe, + g )Y , +f

e m’ 'my gngmE]}, (4]96)

i

. v -1 .
fu2 = (H]/H) {-tg * mgo [(f¢m - gm)me - f ngme]J' 7 (4.19b)

The steady solution, with me = 0, me = btq and with (4.14c), is

fup = (Hy/H)(0 + a)a™! ¥ forPnTo (4.20a)
m=0
fu2 = 0. (4.20b)
When Ym% = 0, we may write
Y
Yo = b é zdy. (4.21)

Utilization of (4.14c), (4.21), and (4.7) in (2.18d) yields the result
that vV, = 0. Hence for all GRlé the final steady solution over the

slope has no motion in the Tower layer.
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The cross-shelf eigenfunctions obtained in AR and discussed in
Section 3 of this paper may be used to examine the steady flow field in
the upper layer. With a(o) << 1, the IKW solution for g is

9g = exp(-8&/¢p), (4.22)
while, for the SW modes
8, = Olaggy). (4.23)

From (2.18), (4.7), (4.14), (4.22), and (4.23), u; and v, may be expressed

as
fuy = TO[1 - exp(—ag/éR)] + 0{a), (4.24)
-1 y
fv; =8 exp(-ﬁg/sR) [ wdy + 0(a). (4.25)
0

Eqns. (4.24) and (4.25) show that baroclinic processes Ering u; to zero
at £ = 0 within a scale of §p/8, and that the final steady alongshore

iow in the upper layer is confined to a region with an offshore scale
of the Rossby radius (this result and the Timiting behavior UpsVy > 0
was not pointed out in Allen [1976a]).

The flow pattern that develops at mid-latitudes is different from
that at low latitudes and we will briefly discuss each case. The quali-
tative discussion given here can be easily verified using the approximate
solution for the eigenfunctions given in AR for a '"weak slope" and with
the assumption a(o) << 1.

For mid-latitudes, the Rossby radius is a fraction of the shelf
width. The SW modes are barotropic and the first several modes, which
represent a dominant portion of the total SW response (see Fig. 2), have
phase speeds which are faster than the IKW mode phase speed. For sim-

plicity, we assume that all the SW modes move faster than the IKW mode.
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Fiuid is drawn onshore in a region near each SW front and the region of
orishore flow to the shelf-slope region propagates poleward with the SW
phase speed. (The region of dominant onshore flow occurs in connection
with the first mode SW and propagates poleward with the first mode SW
phase speed.) The solution for increasing t, as the first several SW
modes achieve a steady balance but before the IKW front has propagated
away from the forcing region, consists of an eguatorward barotropic
alongshore current which is asymptotically confined to a distance 6R/6
of the coast as t > =. This is shown schematically in Fig. 5. The
current connects the locations where fluid is drawn onto the slope to
the region of forcing. The IKW front propagates into this barotropic
current, leaving behind a final steady solufion having velocities in the
Tower layer equal to zero and an upper layer flow confined within a
baroclinic radius of deformation of the coast. This upper layer flow is
turned in the region of forcing and is fed horizontally to the coast to
satisfy the boundary condition at £ = 0.

At Tow latitudes, the IKW mode has a large offshore scale with
respect to the shelf width and propagates poleward with a much faster
speed than the SW modes which are bottom trapped. A schematic of the
flow field for low latitudes is shown in Fig. 6. When the IKW mode has
propagated away from the forcing region, the onshore flow in the bottom
layer turns poleward in a broad region within 6R/6 of the ;oast. The
velocity in the bottom layer is poleward up to the location of an IKW
front, where the density interface moves vertically upward (Allen,
1976a). The corresponding return flow in the top layer, from the location
of the wave front to the region where the stress acts, is turned and fed

horizontally to the coast, and, together with a component of the flow
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which comes directly onshore in the upper layer, is fed into the surface
Ekman layer at £ = 0. The SW modes are forced by the stress driven
onshore flow in the lower layer and respond such that the location of
the onshore flow to the slope in the lower layer propagates poleward.
The velocities in the Tower layer behind the region of onshore flow for
all the modes are zero. This implies that, for steady forcing of 1imited
extent at low latitudes, the upper layer will assume a steady flow
re]ative]y quickly, while the lower layer will be time dependent, adjust-
ing slowly toward a steady state with zero motion in the lower layer
over the slope as each bottom-trapped SW mode propagates away from the
region of forcing. 1In addition, Fig. 6 shows that, as the flow field
develops, water is drawn onto the slope at different alongshore locations
in the upper and Tower layers.

As a final example, we examine forcing by a standing wave, given by

T = T4C088y coswl, {4.26)

where Ty s a constant. For Cn > (w/2), the balance in (4.14a) is
approximately steady, i.e.,

me = b, (4.27)

while for ¢ << (w/2), the balance is time dependent and locally two-

dimensional, i.e.,
-c Y . =b 1. (4.28)

For (w/%) in the range ¢y >> (w/e) >> ¢ the balance in (4.28)
applies to the time dependent solutions Yn for the SW modes at low
latitudes, while (4.27) is the approximate balance for the more rapidly

propagating IKW mode.
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These solutions are

Yo = boz'] Ty cos(ay - %ﬂ) coswt, (4.29a)
_ ‘ - 1
Yn = -bn(Cn/w)TO coszy cos{wt - ?T)' (4.29b)

Since the shelf wave modes are bottom trapped, the (y,t) behavior of vy
will be governed by YO whereas that of Vo will depend on a sum involving
Y0 and Yn. This will Tead to phase differences between Vi and v, and
therefore the flow will have a depth dependent phase relation with .
With an IKW speed Cy = 200 km/day (Smith, 1978), an estimated first
mode wave speed cp = 25 km/day (AR}, and wind stress forcing with wave-
Tength =1000 km, the solutions (4.29%a,b) are valid for wind stress

forcing with period in the range 5 days < T < 40 days.
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5} Sinusoidal Forcing

We now consider sgiutions for the interior and shelf motion when
the wind stress has a sinusoidal dependence on time and on the horizontal
spatial coordinates, i.e.,

(T(X), (Y))

T

= Re{T, exp[~i(wt -~ kx - 2y)]}, (5.1)

so that the wind stress curl becomes

Tf(” - —L)(,") = Re{imT, exp[-i(ul - kx - 2y)13, (5.2)

where
m==k-2, >0, (5.3a,b)

We Took for interior and shelf solutions of the form

~

(Wgshgatgsh) = Ret[3(x),a(x),0(),a(6)] expl-i(ut - 2y)13. (5.4)

Equations for ; and § may be obtained by substituting (5.4) in (2.11),
(2.13) and (2.14) while equations for the shelf variables may be obtained
by utilizing (5.4) in {2.17a,b) (Appendix A). As in Section 4, the
shelf equations are forced at the boundary £ = 0 by TE%% and by interior
baroclinic wind forced motions. In addition, interior wind forced
barotropic motion % drives a flow on the shelf through the boundary
condition at £ = 1 (Al13c). Expressions for the interior motions are
presented in Appendix A (Al-A4), and éx(o)’ the relevant expression for
interior barotropic forcing at £ = 1 is given by (A7). In general,
éx(O) is complex and the shelf circulation due to ; will have components
both in phase and out of phase with 1%%3. Examination of the forcing
terms in (A12a,b) and (A13b) indicates that the response over the shelf
due to 1%%3 is %—out of phase with the wind.

Fig. 7 shows the absolute value of %x(o) scaled by To/w for various

k/%2 as a function of inverse frequency scaled as B(Zwsz)']. Fig. 8
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shows the phase of ;x(O)‘ Far & >> k (alongshore traveling wind) the
phase relation between components driven by éx(o) and r%ég changes
considerably as a function of w, with these components being %—out of
phase for B(Ewéz)'] << 1 and in phase for B(Zméﬁ)'] = 1. For k >> 2
(onshore traveling wind) the bhase difference is =§: Therefore, motions
on the shelf driven by ; and TE%% will exhibit a phase relation which is

dependent on the frequency and wavenumbers of the wind.

a) Forced coastally trapped waves

In Appendix A it is'shown that for forcing at moderate frequency
(A5a,b) (e.g., T' < 60 days for oceanic parameters at 6° latitude off
the west coast of South America) the interior baroclinic forcing term is
negligible compared to T0 (A15) and hence 15 neglected in the calculated
examples below. Also, the interior barotropic forcing %s given by the

approximate form (A8a)

¢x(0) = To/w. (5.5)

The validity of this approximation for forcing at moderate frequencies
is also discussed in Appendix A.

With (ASa,b}, the equations for the shelf variables are given by
(A12a,b) and solutions which represent coastally trapped waves may be
obtained by perturbation methods for a(o) << 1 using an exponential
slope topography (Appendix B). These solutions are presented in Figs.
9-11 with Ty = 1, where the figures show the contributions of forcing by
the wind stress at £ = 0 and by interior barotropic motions at ¢ = 1,
The parameters we vary are &g SR/ﬁ, and ¢/w. Figs. 9 and 10 represent
solutions for 2 > 0. We choose ag) = 0.3 (the results are relatively

} 0.3). As

insensitive to the value of a in the range 0.05 < a
(0) (0
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indicated above, the forcing in (Al2a,b} and (A13b,c) appears as To/us
if 2/u is regarded as a parameter., Accordingly, the velocities in Figs.

9-11 have been rescaled with wy 1.e.,

V.} = V,iw, 1 = ],2. (5.6)

Note that, in comparing solutions at different latitudes (i.e., different
aR/s), 2/w contains a factor of fo, and 2/« corresponding to a wave with

a certain period and wavelength will vary with fo (e.g., in Figs. %a,b a

It

wave with period T' = 10 days and wavelength x‘' = 1000 km corresponds to

2/w = 16 for &p/6 = 0.05 and 2/w = 0.4 for Sp/8 2.0).

Figs. 9a and 9b show V; and V, on the shelf (0 < ¢ < 1) for &,/é =
0.05 and 5R/5 = 2.0 respectively. The subscripts 7 and ¢ refer to
forcing by 1%%3 and interior barotropic motions, respectively. The
phase relation between V(¢) and t may be obtained from Fig. 8 with
g = 0. Fig. %9 is the mid-latitude case and, except on the inner shelf,
the flow is barotropic. The highly baroclinic region near £ = 0 is due
to the forced internal Kelvin wave which decays rapidly away from the
coast. The interior motion forces a non-negligible barotropic shelf
response, which is confined to the outer slope. This behavior is evident
in the approximate solutions (B10Da,b) given in Appendix B for 5R/6 << 1.

Fig. 9b shows V, and V2 for the Tow latitude case (V1(T) is rescaled
for ease in plotting). These solutions are qualitatively very different
from the mid-latitude response, due to the increased decay scale for
baroclinic motions at Tow latitudes, and to the increased coupling
between the equations (Al2a,b)} for the shelf variables. For low lati-
tudes, the response over the entire shelf-slope region is highly baro-

clinic, V] is dominated by the forced internal Kelvin wave. This is

evident in Fig. 9b, where V, decays with exp(-gS/éR) with only a slight
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modification due to other terms. This behavior may be seen in the
approximate solution {Blla,b) given in Appendix B for aR/a >> 1, where
the contribution to the alongshore velocity in the upper layer due to
&0 is cancelled by the 0(a) correction to é. This is eguivalent to
bottom trapping of the modal Sw forced response at low latitudes.
Similar qualitative hehavior was obtained by Clarke (1976) with a step
shelf topography. For sR/G >> 1, V2(@) 3-V2(1) over the whole shelf
region. Similar behavior is evident in the low latitude approximate
solution (B11b), where vé(T) is 0(sp/8) while vy .y is 0(1). MNote also
that VE(T} is relatively large near the shelf edge and decreases toward
mid-shelf.

A dependence on latitude is also evident in Figs. 10a-d where solu-
tions have been plotted for GR/G << 1 (10a,c) and GR/S > 1 (10b,d) for
various (w/%). V](T) decays away from £ = 0 with eXD(-Ed/éR) in all
cases. For GR/G = 0.1, the decay is rapid, and the response is confined
to the near-shore region. As GR/G becomes 1afger, the baroclinic decay
scale increases, and the response extends across the entire shelf-slope
region into the interior. ,

Figs. 10b,d illustrate the growing importance of VE(Q) with respect
to VZ(T} as SR/S increases. Near £ = 1, V2(¢) dominates for all SR/G.
For &p/6 << 1, the wind forced motion is the dominant response for ¢ <
0.5. For &p/s = 2.0, |V2(®)1 > }VZ(r)l over the entire shelf-slope
region.

We may examine the behavior of the exponential slope solutions
given in Appendix B as a function of w, keeping in mind the conditions
(ASa,b) required to preserve their validity. In particular, for YZ =

k(wﬁa)'] >> 1, v >> 6/6R, approximate solutions for the shelf velocities
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with Tow frequency forcing are given in Appendix B (Bl2a-c}. The con-
tribution to vy due to ; is cancelled by part of the 0{a) correction to
6, which is equivalent to bottom trapping of the modal SW solutions when
their cross-shelf scale is much less than the Rossby radius. The con-
tribution to Vo due to 60 is cancelled by part of ;, which implies that
the IKW response becomes surface trapped for forcihg at low freguency.
V] is due entirely to the IKW response with offshore Rossby radius scale
and Vol and Vo(e) are confined within boundary layers of width Y'](<<6R/5)
and decay rapidly away from £ = 0 and £ = 1, respectively. Wind forced
and interior barotropic motions penetraté less effectively onto the
shelf in the lower layer as w becomes small, reflecting the reluctance
of low frequency motions to cross contours of constant depth.

Several of the gualitative features of (Bl12a-c) are evident in
Figs. 10b,d. For both 5R/6 >> 1 and SR/é << 1, VZ(@) exhibits a decreased
penetration onto the shelf, and becomes more important with respect to
VZ(T)’ as w/4% decreases.

It is evident from {B12a-c) that as w -+ 0, interior barotropic
motions do not penetrate onto the slope and VE(T) + @, which implies
that for nearly steady forcing there is no motion in the lower layer.
This corresponds to the limiting steady solution as T + = for "top hat"
forcing (4.18), given in the modal analysis of Section 4.

The case 2 < 0 is more difficult to interpret due to the fact that
the wind forcing can resonate with the free wave solutions. Fig. 11 is
a plot of V1(0) for £ > 0 and £ < 0 as a function of Q/m(SR/é = 0.1),
and clearly shows the resonance with the free internal Kelvin wave mode
for 2/uw = G/SR = 10. There is a = phase shift as 2/w passes through the

resonance.
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In addition to the above resonance, free barotropic continental
shelf waves over an exponential shelf will resonate with the wind forcing

(2 < 0) when vy satisfies (see Appendix B)

tany = -23 (5.7)

BY

where y is given by (B5e). With &, = 0.33, a = 0.1, the first three

B
resonance points are (Z/w)] x 2,33, (z/w)2 = 9,04, and (E/w)3 = 22.09.

b} Very low frequency behavior

The cases (A6a;b) and (A10a) where 51 and éB are given by (A6c,d)
respectively, and where éx(O) is given by {A10b) correspond to forcing
at very low freguency (T' > 60 days). The approximate 0(1) motion in
the interior consists of a Sverdrup balance in the upper layer which
extends onto the shelf and no motion in the lower layer.

The alongshore coastal wind stress and interior baroclinic motions
force an internal Rossby wave which propagates into the interior (Andersdn
and Gill, 1975).

The transition from a coastally trapped internal Kelvin wave to a
westward propagating internal Rossby wave as the forcing frequency is
lowered may be seen in the expression for R in (A4b). For (6/6R)2 >
(%ﬁ/w)z, the solution is coastally trapped with an oscillatory character.
As (%ﬂ/m)z > (6/6R)2 the trapping scale grows, until (-]z-ﬁ/w)2 3_(6/6R)2

and the solution is no longer coastally trapped.
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6)  Summary

The main guestion we pose in the introduction is: what is the
response on a continental shelf and slope to direct wind stress forcing
and to forcing by interior motions, and how does this response vary with
latitude? The simple theory presented here provides some answers to
this question, and gives some insight for further observational and
theoretical work.

In Section 2, it was shown that motions in the shelf-slope region
are coupled to those in the interior ocean. The cross-shelf modal
analysis of Section 4 clearly shows forcing of shelf circulations by
interior barotropic and baroclinic flow. The modal solutions of Section
4 exhibit a dependence of the cross-shelf and vertical structure on
latitude. At mid-latitudes, the barotropic (shelf wave) response extends
over the shelf, while the baroclinic (internal Kelvin wave) response is
confined to a region of width SR/G << 1 near the coast. At low latitudes,
the response is highly baroclinic over the entire shelf, reflecting the
relatively large size of the baroclinic boundary layer. The shelf wave
response is bottom intensified for low latitudes. This depth dependence,
coupled with the fact that, for low latitudes, the internal Kelvin wave |
speed is larger than the n = 1 shelf wave speed, yields a different
qualitative time dependent response to wind stress forcing than that
obtained for mid-latitudes. With a constant wind stress forcing which
is switched on at t = 0 and which has a limited extent in y (i.e., a
"top hat" function), the upper layer assumes a steady flow relatively
quickly with an offshore scale given by 5R/6, while the lower layer
remains time dependent, adjusting slowly toward a steady state of no

motion.
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Using the modal solutions of Section 4 and the energy density of
each forced mode, we obtain an understanding of the relative efficiency
of energy transfer into each mode. At low latitudes, ;g%g, the alongshore
wind stress at the coast, forces a very energetic internal Kelvin wave,
but is inefficient in forcing shelf waves. For driving by r%%g at mid-
latitudes, the IKW and n = 1 SW modes have energy densities of the same
order. However, the kinetic energy of the n = 1 SW mode is greater than
that of the IKW mode at mid-latitudes. Interior barotropic motions do
not efficiently excite the IKW or the SW modes at low latitudes. The n
= 1 SW mode is efficiently excited, however, for mid-latitude offshore
barotropic forcing.

A simple solution obtained with forcing by a traveling wave wind
disturbance enables us to compare the relative effects of forcing by
T%é% and by élx(O)’ offshore generated barotropic motions. With the
assumptions of the present model, interior baroclinic motions are unim-
portant except for very low frequency driving.

Coastal wind stress forcing is an important effect for all latitudes.
For mid-latitudes, interior driving mechanisms force motions on the
shelf and slope which, for £ > 0.5, are as large or larger than the
coastal wind stress forced motion. The mid-latitude forced response
over most of the inner shelf and slope (£ < 0.5) is predominantly due to
the Tocal alongshore wind stress. However, the effect of interior
forcing on the velocity in the lower layer grows with respect to the
direct wind forced effect as BR/S becomes larger, and the low latitude

forced response to interior barotropic motions v2(¢) can be comparable

to or greater than the wind forced response VZ(T)‘
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For Tow frequency driving [%ﬁR(])(B/G) << w << ]2[/68, (20 days <
T' < 60 days at 6° latitude)], interior motions penetrate less effectively
ontc the shelf, reflecting the topographic constraint on low frequency
circulations. The coastal wind forced response is also inhibited from
crossing contours of constant depth, so that, for low freguency driving,
the circulation over the outer shelf and slope is controlled predominently
by the interaction of the interior flow with the shelf. In cases where
V(T) is concentrated near the coast and V(@) is concentrated near the
outer shelf, cross~shelf phase shifts of % are predicted for driving by
a wind which is traveling predominantly in the alongshore direction. In
the general case, predicted cross shelf phase lags may be estimated
using Fig. 8. For forcing at very Tow frequency [w << %{SR(])B/G),

(T' > 60 days at 6° latitude)], an interior Sverdrup flow in the upper
layer extends onto the shelf and represents the dominant shelf response.
Wave moticns on the shelf are not coastally trapped, but propagate into
the interior in the form of westward traveling Tong interna) Rossby
waves.

Finally, we point out that the ability of interior motion to con-
tribute significantly to shelf-slope circulation is limited for this
model by assumptions of a linear interior ocean driven locally by a wind
stress curl. Strong nonlinear offshore baroclinic currents, for example,
or free Rossby waves that propagate toward the shelf might drive appre-
ciable baroclinic shelf motion at Tow latitudes. This probiem remains

to be investigated.
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Figure Captions

Figure 1: Variaticn of wave speeds as a function of éR/G for the 3
eigenfunctions ET’ E2, and E3, which, for 5R/6 < 0.43, represent
the internal Kelvin wave, the n = 1 and the n = 2 shelf waves,

7 = 0.33 have been util-

B
ized. Dimensionless f (f = f'/fc', where fc' is the dimensional

respectively. The values a(o) = 0.3 and ¢

latitude for the interaction between the internal Kelvin wave and
the n = 1 shelf wave) is plotted along the top axis. With dimen-
sional values of shelf width LS = 90 km and internal Kelvin wave
phase speed ¢g' = 100 cm s'], Sp/8 = co'/(f'Ls) is plotted along
the bottom axis, where §p/é = 0.43 at the critical latitude f' =
fc'. Corresponding iatitudes for f = 1, 2, 3, 4, 5 are 10°, 21°,
32°, 45°, and 63°, respectively. .

2

Figure 2: Energy density E (4.13) divided by t° as a function of 8p/8

for the 3 eigenfunctions Ey, E,, and Eq, forced by t (z = 1). The
dashed line represents the total energy density. The parameters
used are the same as in Fig. 1.

Figure 3: Energy density E (4.13) divided by fz as a function of SR/G
for the 3 eigenfunctions E, E,, and E5, forced by e, (’ny(D) = 1).
The parameters used are the same as in Fig. 1.

Figure 4: Y_ as a function of y for four values of t (., » ii) [ from

i+]
Allen (1976a)].

Figure 5: A schematic of the flow pattern that develops at mid-latitudes
in the upper and lower layers for a constant wind stress which is
switched on at T = 0 in the region -{yol <y < 0. The flow pattern

is shown for two times (Ez > i}) after the SW modes have achieved a

steady balance. Regions where the density interface moves vertically
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upward are shaded. The upper layer flow pattern does not include
the offshore flow due to the surface Ekman layer.

Figure 6: A schematic of the flow pattern that develops at low-latitudes.
For simplicity, the effects of all the SW modes are represented by
one W front. The notation is the same as for Fig. 5.

Figure 7: Scaled interior barotropic forcing I;X(O)]/(To/w) as a function
of scaled inverse frequency B(Zm&&)"] for various values of (k/2).

Figure 8: Phase difference & between éx(o) and TE%% as a function of
B(Zmdl)-] for various values of (k/e).

Figure 9: (a) Scaled alongshore velocity V; (in the upper layer) and V,
(in the lower layer) over the shelf (0 < ¢ < 1), for 6p/é = 0.05,

L/w = 16, ¢g = 0.33, and 30) = 0.3 (Vi = v.e, 1 = 1,2). The solid

3
line represents V(T) forced only by TE%%, With éx(o) = 0. The

, : , (y) _
dashed line represents V(®), forced only by ¢x(0)’ with (0) 0.

V](T) near £ = 0 goes off scale (V]( = 0.51). {(b) V] and V2 for

0)
6R/6 =2, %/w = 0.4. V](T) has been rescaled.

Figure 10: (a) V1(1); sp/6 = 0.1, (b) VZ(T) and V2(¢); GR/G = 0.1, {c)
V](T); /s = 2, (d) V2(r) and Vz(é); 8p/8 = 2, for various values
of 2/w, With 68 = 0.33 and a(o) = 0.3. V](¢) << V](T) in both
cases (a) and {c) and has not been plotted.

Figure 11: V](r)(O) (V](T) at £ = 0) vs. 2/w for & < O (forcing traveling
poleward) and 2 > 0 (forcing traveling equatorward), with $p/6 =
0.1, 6g = 0.33, and ag) * 0.1. A resonance at Iﬁ/w|7= 10 occurs

for the case & < 0. This corresponds to the atmospheric forcing

resonating with the free internal Kelvin wave.
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1. INTRODUCTION

Vertically propagating internal waves in the ocean are generally
constrained such that f < @ < N, where w is the radian frequency, f
is the Coriolis parameter, and N is the Brunt Vaisdala frequency. For
w < f, vertical propagation is possible when one of the horizontal
wavenumbers is imaginary, a condition that is satisfied for equatorial-
1y trapped waves with meridional modal structure or for coastally
trapped waves that propagate along a boundary and that decay exponen-
tially with distance fﬁom the coast {internal Kelvin waves). Such
Tow frequency vertically propagating waves have been observed near
the eguator, e.g., by Weisberg et al. (1978) who find that eguatorial-
1y trapped motions in the Gulf of Guinea are downward propagating,
not vertically standing modes. Also, from observations on the
continental slope in the Gulf of Guinea, Picaut (1981) reports an
upward phase propagation of temperature associated with the seasonal
upwelling cycle, which he interprets as the signature of a coastal
Kelvin wave that propagates westward and vertically.

Recent observations on the Peru continental shelf and slope
during ESACAN (Estudio del Sistema de Afloramiento Costero en el Area
Norte), the joint German-Peruvian experiment at 5°S latitude, and
during the CUEA (Coastal Upwelling Ecosystems Analysis) JOINT-2
experiment at 15°S latitude indicate that vertically propagating
waves exist over the slope at low frequencies (period T = 27/w >
20 days). For example, Figure 1 shows low-pass filtered alongshore
velocity and temperature, from the ESACAN C2 mooring which is on the
continental slope iﬁ 1360 m of water. The velocity data shows a Tow

frequency pulse-like event that amplifies between 86 m and 560 m
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depth, and that propagates vertically downward between 86 and 560 m.
The relationship between velocity and temperature at 560 and 860 m
suggests that there is a phase propagation upward of both signals
with velocity and temperature 7/2 out of phase.

In this study we analyze the dynamics of the second class of
subinertial vertically propagating waves described above, namely
coastally trapped internal Kelvin waves (hereafter referred to as
IKWs}. We focus oh Tow latitude dynamics, where the Rossby radius
scale, which is the natural offshore length scale for baroclinic
motions, is much larger than the shelf-slope width. For this case,
the shelf-slope region appears 1ike a vertical wall, and we adopt a
model with a vertical coastal boundary.

We pay particular attention to the low frequency behavior
(T = 20-40 days) but specify that the waves are still coastally
trapped. The condition on coastal trapping is mz > (% 8/2)2, where
% 1is alongshore wavenumber and B is a measure of the variation of the
Coriolis parameter with latitude, and is satisfied for w 2 1.8 x
1076 ¢! (T < 40 days) with an alongshore wavelength Ay = 1000 km
{see Allen and Romea, 1980, for an additiona] discussion of this
point).

Typically, oceanic problems are solved with the bottom boundary
condition w = 0. Recently it has been suggested that the ocean might
be better modelled in some frequency-wavenumber regimes by neglecting
the effects of a bottom boundary and assuming that the ocean is

infinitely deep {(Wunsch, 1977; Philander, 1978). We utilize a model

of this type in Sections 2 and 3, where we consider the response of a
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rotating stratified f-plane ocean with a rigid 1id, forced by an
alongshore wind stress at the coast. The forced response for several
different types of wind stress is calculated and shows components
that are trapped near the surface and components that propagate
vertically.

The assumption of infinite depth is justified if the bottom is
highly dissipative, and scatters energy rather than refiecting it
uniformly, or if internal motions generated at the surface dissipate
before the energy can reflect off the bottom and travel back toward
the surface (Wunsch, 1978). In order to assess the frequency-
wavenumber regimes where frictional processes justify the neglect of
a bottom boundary, the effect of internal dissipation is included in
Section 4 and the dissipation time scale is compared to the time
required for initial disturbances to propagate vertically from the
surface to the bottom. The forced response with a bottom boundary is
calculated in Section 5 and compared to the results of Sections 2 and
3 in order to assess further the space and time scales where the
analyses of Sections 2 and 3 are valid. Finally, in order to
generalize the f-plane results, the Coriolis parameter is regarded in
Appendix A as a slowly varying function on the alongshore scale of
the waves. The forced response is obtained with a variable f and is

compared to the f-plane results.
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2. THEORETICAL FORMULATION

We consider a continuously stratified ocean which rotates on an
f-plane in the Northern hemisphere. Cartesian coordinates (x,y,z)
are utilized with x positive westward, y positive southward, and 2z
positive vertically upward. There is a rigid 1id on top (z = 0}, a
straight north-south coastline at x = 0, and the fluid is unbounded
for x + «, z + -=. The problem is linearized by the assumption that
the motion results in negligible nonlinear fluid accelerations and in
small departures from an equilibrium stable density distribution p(z).
The hydrostatic approximation is utilized and we consider interior
motions away from frictional boundary layers. The long wave
assumptions for coastal trapped waves are made, i.e., we assume that
w<<f and that the characteristic alongshore scale L is large relative
to the internal Rossby radius of deformation.

With the above assumptions, the governing egquations are

- fv = -p,/pgs | {2.7a)
vt’+ fu = -py/po, (2.1b)
0=-p, - 9o, (2.7c)
u, * vy +w, s 0, (2.1d)
Pyt W 5; = 0, (2.1e)

where subscripts denote partial differentiation. The variables

(u,v,w) are the velocity components in the {x,y,z) directions, t is
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time, p is pressure, and g is the acceleration of gravity. The total

density is given by
pr(x,y,2,t) = plx,y,z,t) + olz) + o, (2.2)

where fo is a constant.

Egs. (2.1 a-e) may be combined into a s{hgle equation for the

pressure:
, ) ) _
lpy, * 7 (P /W), ] = 0y (2.3)
where
2 .
pof u Pyt - fpy, (2.4)
w2
pow = -N pzta (2'5)
and where N2 = 'QEE/DO is the square of the Brunt-Vaisala frequency.

We assume, consistent with the long wave approximation, that
only the a]ongshdre component of the wind stress is important and
that it is approximately constant over the scale of the Rossby radius.
The alongshore wind stress acts as a driving mechanism through suc-
tion of fluid into the surface Ekman layer at the coast. An offshore
or onshore mass flux in the upper Ekman layer produces the equivalent
of a sink or source-like flow below the Ekman layer at the coast.

The vertical extent of the region is sufficiently small so that the
corner acts very nearly as a point sink or source for the flow
below the Ekman layer (e.g., Pedlosky, 19638; Allen, 1873; Pedlosky,

1974). Consequently, we specify a forced boundary condition at the
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surface which represents an Ekman suction in the upper ccastal
corner at x = 0, 2 = 0 and no flow through the vertical boundary at

z =10, i.e.,

Pt * fpy = f t{y,t) 8(z), at x = 0, (2.6)

X

where (z) =10, z # 0, and

0
jH §(z) dz = 1. (2.7)

The remaining boundary conditions are

P,y =0, atz=0, (2.8)
stpy,PZ < o, as X -+ o, (2.9a)
Z + -, (2.9b)

Condition (2.8) specifies no normal flow through the top, while
(2.9a,b) follow from (2.1a), (2.4), (2.5) and the reguirement that
the energy be finite as x +~ « or z -~ -». In addition, we impose a
radiation condition which restricts the solution to have energy
propagating away from the source at x = 0, z = 0.

We consider initial value problems where
t=0,p=0, for t < 0. (2.10)

(a) Free waves

Before solving the forced problem, it is useful fo obtain the

free wave solution to (2.3) for a vertically unbounded fiuid governed

B
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by a homogeneous version of (2.6) and without condition (2.8).
We assume N2 is a constant and seek a free wave solution of the

form
p(x,y,z,t) = o(x) Re{exp[-i (wt - 2y ~ mz}]}, {2.11)

where £ and m are wavenumbers, and Re denotes the real part.

Substituting (2.11) in (2.3), (2.6) (with T = 0), and (2.%), we

abtain
6. - (fa/N)2 ¢ = 0, (2.12)
XX
b, - (f/w) ¢ = 0, atx=0, (2.132)
¢s G <o, as x -+ o, (2.13b)

The solution to (2.12) subject to (2.13a,b) is
¢ = exp {fix/uw), (2.14)
where the dispersion relation is
w = NL/m. (2.15)
The condition (2.13b) imposes the familiar restriction,
2/w < 0, (2.18)

i.e., free coastally trapped subinertial waves propagate with the
boundary on their right side (poleward toward -y with our mode).
The dispersion relation (2.15) gives a phase velocity with vertical

component w/m = mz(m)-1 and a group velocity with vertical component
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dw/em = -w/m. The group and phase velocities are oppositely directed,
e.g., for w/m > 0, the vertical component of the phase velocity is

directed upward while the vertical group velocity is downward.

(b) Solution to the forced>prob1em

The sotution to (2.3) subject to (2.6)-(2.70) and the radiation
condition may be conveniently represented in terms of its Fourier

cosine transform in z:

P(x,y,m,t) = [ p(x,y,z,t) cos mz dz, (2.17a)
0
p(x,y,z,t) = (2/7) [ Pp{x,y,m,t) cos mz dm. (2.17b)
0

Multiplying (2.3), (2.6) and (2.%a) by cos{mz) and integrating over

z from 0 to =, we obtain

B - /M5 =0, (2.182)
Pyt * fpy = f 1{y,t), at x = 0, (2.18b)
5y, P, <=  as x> | (2.18¢)

Eqs. (2.18a-c) have a solution
p = Y(y,m,t) exp(-fmx/N), (2.19)
where

-(m/N) \?t + ?y = t(y,t). (2.20)
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Eq. (2.20) is a forced first order wave equation for the (y,t)
structure of the response and may be easily solved for various 1(y,t).
In particular, we may obtain a formal solution for general
T = i(y) f(t) by first considering the solution to (2.20) for a wind

stress of the form

wy,t) = Fly) 8(t), (2.21)

where &(t) is the Dira; delta function and where the initial condition

corresponding to (2.10) is
Y(0) = 0. (2.22)
With (2.21) and (2.22), the solution to (2.20) is
0 = -(/m) Fy + Nt/m), (2.23)
which, together with (2.17b) and (2.19), gives

oo

p=py= -{2N/7) é é(y + Nt/m) exp(-fmx/N) m! cos {(mz) dm. (2.24)

The subscript D identifies (2.24) as the response to forcing by a
wind stress whose time dependence is given by a delta function. Pp
represents a Green's function for a wind stress concentrated in time.
If now a wind stress with general time dependence 7(t) is applied,

the pressure is given by

p = ét pD(x,y,z,t-a) 7(a) dao. (2.25)

-
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3. EXAMPLES
To gain an appreciation for some of the features of the solutions,

we examine three idealized situations for the y and t variation of .

Example A

We first choose a wind stress of the form
t{y,t) = 8(y) 8(t) 1. (3.1)
The solution, which may be obtained directly from (2.24), is

p = (2/7) (NTO/Y) cos{Ntz/y) exp{fxt/y), y < 0. (3.2)

The disturbance at y = 0 acts like a source that_emits waves of
all frequencies and wavelengths. The pressure exhibits an exponential
decay in x for fixed y and decays like Iy!-] in the alongshore direc-
tion. 1In Figure 2, v obtained from (3.2) is plotted as a function
of t for various values of z in terms of scaled variables defined in
the Figure Caption. We show v rather than p because velocity may be
directly compared with current observations. Frequency variations
with depth are evident. The envelope t exp(fxt/|y|), which is the
response at z = 0, governs the initial growth of v at all depths to
some maximum value and its subsequent decay with time.

For [Ntz/y| >> 1, the waves behave locally 1ike simple harmonic
waves of a certain fixed period and wavelength which move in accor-

dance with the retlation
6 = Ntz/y = constant, (3.3)

where € is the phase and both z, y < 0. The local frequency and
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wavenumbers are given by

wy = -(30/3t) = -Nz/y, {3.4)
my = 88/%z = Nt/y, (3.5)
8, = 20/3y = _Ntz/yZ, (3.6)

where variations in frequency or wavenumber are small over a

frequency or wavenumber interval, i.e., w61ﬁw, ma]Am, 26]

AL <<}
(Bretherton, 1970). Thus the frequency varies as a function of
position while the wavenumbers change with both position and time.
For fixed time, waves farther in y from the source have longer wave-
lengths.

The alongshore and vertical components of the local phase

velocity may also be computed. These are

c O(Z) = -(3e/3t)/(38/32)

D wO/mO = -z7/t, (3.7a)

il

e Yo _(ae73t)/(38/3y) ug/tg = ¥/t (3.7b)

p0

and the phase velocity is directed upward and poleward. For fixed
y or z, the phase move more slowly as time increases, but for fixed t
more rapidly as |y| or |z]| increase.

We may express the local frequency in terms of the local wave-

numbers, which gives

wy = Nﬁofmo.
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Local group velocity components are

(z) . . 2.
€40 Bwg/omy = =N&gy/my™ = 2/t, (3.9)

¢ ). By /38y = N/my = y/t. (3.10)

The local group velocity vector associated with waves of fixed wave-
numbers 20 and my at time t is directed downward and poleward.
Comparison of (3.8), (3.9), and (3.10) with the corresponding expres-
sions obtained from (2.15) for the free wave example in Section 2
shows, as expected, that for |Ntz/y| >> 1, the response behaves
Tocally 1ike free waves with fixed frequency and wavenumbers in a
vertically unbounded ocean. With y/t = N/m0 from (3.5), the condition
INtz/y| >> 1 is Imyz| >> 1, which specifies that the disturbance

must be much more than a local wavelength away from the surface.

Example B

We next consider
T(y,t) = 8(y) H(t) T(t) 74, (3.11)

where H(t) is the Heaviside function H{t) = 0, t < 0; H(t) = 1, t > O.
This example represents forcing by a wind stress that is localized in
space and that has a general time behavior initiated at t = 0.

Substitution of (3.11) in (2.25) gives

p = -(2/7){N/|y|) exp(-fxt/|y]) étcos[Nz(t-u)/!yIJ exp(fxa/|y])T(a)da.

(3.12)
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The special case T{t) = &(t) corresponds to Example A and yields the
same answer.

If we assume
T{t) = Re{exp(-ict}}, (3.13a)
and scale the variables as
= x(0' D7 2t = (o) z/ly]), = ot ¢t = o/,

p' = p/L2m (N/G)gd, v = v[(sz)(N/c)To(poﬂy])']]", (3.13b)

the evaluation of (3.12} gives, with (3.1),

p' = Re(-y_1(82 + ztz)-] {B exp(-it') -

[Bcos(t'z') - z' sin(t'z')] exp(-x't')}}, y <0, (3.14a)
where
B=x'-1. (3.14b)

The first term in the curly brackets represents a response at the
forcing frequency o. The remaining two terms are trénsients which,
for fixed y and x > O, decay exponentially with t and are coastally
trapped.

The initial response for t' < 10 where the transients are still
important is illustrated in Figure 3. The phase propagation is up-
ward, consistent with a downward propagation of energy from the
surface, while a maximum in v propagates from the surface downward.
Examination of (3.14) for x't' >> 1, when the transient terms have

decayed, shows a subsurface maximum of v at z' = -1, From {2.15),
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this is the ray path dy/dz = (3w/3m)/{8w/3%) that passes through
y =0, z =0 for 2 freely propagating IKW of frequency w = ag.

Figure 3 shows the maximum in v propagating downward from the surface

to z' = -1, where it intersects the IKW free wave ray path.
Subsequently, the maximum in v remains at z' = -1.
Example C

Finally, we examine a more general wind stress,

t(y,t) = H(t) H(-y) Fly) T{t) T4 (3.15)

where the wind has a general y structure for y < 0.

The substitution of (3.15) in (2.24) and (2.25) gives
p = -(2/m)Nt, étT(u) da él‘yiF(B-b’l)EXP[-fx(t-a)/B]cos[N(t—a)z/B] g 'ag,
y < 0. (3.16)
A special case of interest is
F(y) T(t) = Re{exp[-i(st - 2y)]}. (3.17)
The substitution of (3.17) in (3.16) and the subsequent evaluation
of the integral over a yields
p = Re{-(Z/H)Nro exp(iLy) élylexp[ile-fxt/e)[K exp(Kt) - K cos(Ntz/g) +

Tdgr, y<o0, (3.18)

(Nz/8) sin(Ntz/8)] [Nz/g)% + k217 &
where

= fx/B - io. (3.19)
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We first examine (3.18) for small y, i.e., |2y] << 1, or
equivalently |y| << Ay/(Zw), where Ay = 21/% is the alongshore wave-

length of the wind. Evaluation of (3.18) with |fy| << 1 gives

‘2

+ 2‘2)-1( 2 '2)-1

v ~ ¢ Re (x B™ + z

x {exp(-it') E + exp(-x"'t')[-E cos(z't') - z' (B + x') sin(z't')]} ,
y <0, (3.20a)

where

E=-Bx +2z%, | (3.20b)

and where B is given by (3.14b).

Figure 4 shows v' from (3.20) as a function of z' and t'. A
subsurface maximum of v' travels downward to z' = -1 where it
remains. In Example B this behavior was found for F(y) = é(y),
while here a similar behavior is observed, which is evidently
associated with the step function at y = 0.

For large time (x't' >> 1) when the transient terms have

decayed, (3.20) is asymptotically equal to
1 : 1 1 "1 "]
v~ % [sin(t') x' (/T -1_" -1_)
- cos(t') (u, /I, -w /1)), y<G, (3.21a)
where

I1=x"+2z", (3.21b)

1 =x“+ p?_, (3.21c)
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= 1. (3.21d)

Note that (3.21a) corresponds to the solution that may be obtained
directly by solving (2.26) and (2.27) with 1(y,t) = H(-y) exp(-iot).
For x' << 1, a maximum in v' occurs at the surface and near the line
¥, = 0, that is the ray path passing through y =0, z = 0 for a
free IKW. The maximum at the surface is associated with the local
forcing while the maximum near u, = 0 is associated with the step
function at y = 0. This behavior is illustrated in Figures 5 a-d,
which show the magnitude and phase of V, where v' = V exp(-it')
(from (3.20) with x't' >> 1) as a function of y and z' and as a
function of x' and z'. The subsurface maximum along the free IKW
ray path is evident in Figure 5a. Figure 5c shows that the subsurface
maximum is strongest near the coast and weakens with increasing x'.
The maximum of v' near the surface is also evident on Figures 5a,c.
The phase plots shown on Figures 5b,d indicate that there is a 180°
phase difference from the surface to below the subsurface maximum,
with an upward phase propagation. The phase plot shown in Figure 5d
indicates relatively small offshore phase differences for |z'| <1
and shows nearshore motions leading for |z'| > 1.

For large |y| and large t, i.e., for |2y] >> 1 and fxt/|y]| >> 1,

an approximate expression for {3.18) is

p - Rel(2/mINey expl-ifot - 2y)] [* K[(Nz/e)? + KE)™" exp(ita)e” do,
0

y < 0. (3.22)
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This 1imit gives p far from the region influenced by the step function
in y and after the transient components have decayed. Evaluation of

the integral in (3.22) yields

p ~ Re((m)'1 Nt exp[-i(ot - fy)] exp{fax/o)

0
x {-ilexp(iNgz/o) E¥(-fix/oc - iN2z/c) + exp{-iNLz/o) Ei(-fix/c+ iNLz/co)]
+ H{-2/0)7 exp(-iNRz/o)}), y <0, (3.23)

where Ei is the exponential integral function (Gradshteyn and Ryshik,
1980, p. 925) and where H(-%/c) = 1 for &/0 < 0 and 0 for %/o > 0.
The response is composed of two parts, one of which (the last
term in curly brackets) is forced only for /0 < 0 and represents a
coastally trépped IKW with vertical wavenumber m = N&/c and negative
vertical group velocity ng = -g/m. The offshore trapping scale
(Rossby radius scale) is o/f2. The remaining two terms in (3.23)
represent a forced response which decay as ]zl'2 for |z| large and
which exhibit the proper behavior at x = 0, z = 0 to satisfy (2.6).
In Appendix B, we derive a solution for forcing by a traveling
plane wave wind stress with a generalized integral transfo;m in x,
in a manner similar to that utilized by Huppert and Stern (1974).
That procedure gives the same result as the asymptotic solution
(3.23) obtained with a cosine transform in z and provides an alterna-
tive computationally convenient representation of the solution.
The magnitude of the alongshore velocity associated with the
surface trapped response (calculated numerically from the integral
in {B21)) is plotted for several depths as a function of f|&/o|x in

Figure 6 for both poleward (%/c<0) and equatorward (&/c > Q)
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traveling wind. For %/v < 0, the magnitude of the downward propagat-
ing IKW is also plotted for comparison, and the propagating component
may be seen to be the dominant contribution to the forced response
for N|&/o| z < -0.5. The offshore structure of the surface trapped
response is depth dependent and also differs for g/c 2 0. In both
cases, near the surface the magnitude of the response grows as a
function of X to some maximum near f|&/o} = 0.2 and decays with a
. Rossby radius scale for f|2/a|x>0.2.

Figure 7 shows v at x = 0 for various z as a function of
& = ot - Ly with £/c < 0. The outstanding feature is the reversal of
phase with depth, where the signal at lequz = -0.2 lags the signal
above and leads the signal below. The phase behavior near the
‘surface reflects the superposition in time of the vertically propagat-
ing and the surface trapped components, while for N|&/clz < -0.5,
the vertically propagating component dominates the response and the
phase lag is consistent with a downward propagating IKW (the dashed
line in Figure 7 represents the phase lag expected for a free down-

ward propagating IKW).
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4. INTERNAL DISSIPATION

The theory presented in Sections 2 and 3 is limited by the
neglect of bottom topography. For forcing at the surface, an initial
disturbance must propagate from the surface to the bottom and back to
a subsurface point z before the effect of the bottom is felt at z.
Figure B shows the scaled time t* = szTt/(NHD) it takes for an
internal Kelvin wave with frequency w and horizontal wavenumber £ to
propagate at its group velocity from the surface to the bottom
Y. The

z = —HO, as a function of w' = w/f and &' = L& (T, = HO/C

t gz
figure indicates that waves with lower frequency or larger wave-

number & travel more slowly. With L = 1000 km, H, = 2 km,

5 S"] (

0

5°5 Yatitude) and N = 4 x 107> ™1, a wave with

f=1.3x10
ky = 1000 km, T = 27/w = 5.7 days takes approximately 3 days to
reach the bottom while a wave with T = 25 days takes about 30 days.
Internal dissipation, which causes an energy decay with time,
may prevent the energy that is reflected at the bottom from affecting
the response near the surface. For such cases, the response obtained
with an infinitely deep ocean may be valid near the surface for much
longer times than indicated on Figure 8. We next examine this point,
using a model which allows the vertical mixing of heat and momentum

in the deep ocean.

The linearized equations are (2.1a), (2.1¢), (2.1d) and

v+ fu = -py TV, (4.1a)

O, + PW = KD__, {4.1b)
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where v and « are coefficients of vertical eddy viscosity and
diffusivity, respectively, assumed constant.

Egs. (2.1a,c,d) and (4.%a,b) may be combined to form a single
equation for p, given by

o, + (/)1 - vip,, + (FM)Prhp 3 =0, (4.2)

where Pr = u/k is the Prandtl number and where for simplicity we
assume that N = constant. Regularity conditions as % + « and z + -

are given by (2.9a,b) and the remaining boundary conditions are

p = f1{y,t) 6(2), at x =0, (4.3a)

wt fpy - vp

zZ

at z = 0. (4.3b)

_ 2
Py = (e/N7) P

Eq. (4.2) and conditions (4.3a,b) are anatagous to (2.3), (2.6) and

(2.8) for the inviscid case.

(a) Free wave solution

Before solving the forced problem, we obtain the free wave
solution to (4.2) for a vertically unbounded ocean subject to a
homogeneous version of (4.3a) with condition (4.3b) dropped. The
assumed form of the free wave is given by (2.11). The x structure
and the dispersion relation are derived in a manner similar to that

in Section 2a and are given by

6 = exp[-(Fm/N) (1 + im2e/w)® (1 + imov/w) 5], (4.42)

%

w = (Ne/m) (1 + imdc/e)® (1 + imbv/w) (4.4b)
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These reduce to (2.14) and (2.15) when v = ¢k = 0. For the general
case Pr # 1, there is an offshore phase shift induced by internail
dissipation, as well as a correction to the offshore structure. The
frequency and hence the phase speed is modified and w has a negative
imaginary part which corresponds to a decay with time.

The special case Pr = 1 yields

exp(-fmx/N), (4.5a)

-
1]

N&/m - imv, (4.5b)

=
"

i.e., the phase speed and offshore structure are unaffected by dis-
sipation (see (2.14) and (2.15)), but a decay with time is still
present.

We may estimate a dissipation decay time,

T, = (m) 1 = (W) ()72, (4.6a)

d

from (4.5b) with (2.11) for the free vertically propagating waves.

The ratio,

1T, - w(m3vHo)'] - w4(vHo)'] (N2)™3, (4.6b)

gives a measure of the effectiveness of dissipation in damping the
wave before a reflection occurs at the bottom. For Td/Tt >> 1, the
wave reflects many times at the surface and»the bottom before it
decays, while for Td/Tt << 1 dissipation damps the wave before a
single reflection takes place.

Figure 9 shows (VH N3f'4L'3)(Td/Tt) plotted as a function of

0
w and £. The waves are damped more effectively for shorter wavelength
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or lower frequency. The dependence on the dimensional magnitude of

v is shown in Figure 10, where Td/Tt is plotted as a function of

3¢ =13 %100 s

w and v, with ly = 1000 kmy, N = 4 x 10 , and

Hr = 2 km.

0

{b) Forced problem

As in Section 2b, we represent the solution to (4.2) subject to
(4.3a,b), (2.8) and (2.9) in terms of its Fourier cosine transform in
z, given by (2.17a,b}. In doing this, we assume that each side of
(4.3b) is zero independently, i.e., that both w = 0 and the perturba-
tion density p = Q at the ocean surface. This requirement on p
implies that the basic state density or temperature at the surface is
fixed. A more appropriate condition would specify a relationship
between heat flux and other parameters. However, we are concerned
mainly with the velocity structure of the forced response and the
condition on p invoked above has been commonly utilized {Pedlosky,
1974; Allen, 1973; McCreary, 1981).

With Pr = 1, the transformed equation and boundary conditions

have a solution given by {2.19) where

~

-(m/N) ?t + Yy - (v /N = t{y.t). (4.7)

Eq. (4.7) is a forced first order wave equation similar to (2.20)
for the inviscid case but which contains an additional term due to
internal friction. The general solution for t(y,t) = ;(y) ;(t) is
(2.27), where

Py = -{2n/7) fmﬁky + Nt/m) exp(-fmx/N - vmzt) m™ cos mz dm. (4.8)
0
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With the wind stress t given by (3.2a) (Example A from Section 3),

p = (2/m) (NTO/y) cos(Ntz/y) exp(fxt/y - vN2t3/y2), y < 0. (4.9)

This response is similar to the inviscid response {3.1b) except that
there is a decay in time due to the effect of dissipation. At a
fixed location the damping behaves 1ike exp(-vt3), which with (3.5),
may also be expressed as exp(-vmgt), where my is the local vertical
wavenumber. Thus, locally the forced response decays on the same

time scale as the free waves of Section 4a.
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5. EFFECT OF A BOTTOM BOUNDARY

{a) Inviscid case

In order to examine the effects of a bottom boundary at z = 'HO’
the radiation and regularity conditions that apply to the unbounded

ocean are replaced by the boundary condition w = 0 at z = -H In

0°
terms of pressure, (2.5) implies that (2.8) holds also at z = —HO.
The remaining equations are (2.3), (2.6), and (2.%), where again N
is assumed constant for simplicity.

In this section it is useful to define variables X and Z, where

we scale X with the internal Rossby radius scale and z with the

depth, i.e.,

77, 7= z/Hy- (5.1a)

lyl, t= t. (5.1b)

The solution is conveniently represented by expanding the

pressure in terms of vertical modes. This gives

Pp= I o {X,y,t) cos{mrz). (5.2)
m=0 "

Substitution of (5.2) in {2.3) and utilization of the orthogonality

of the vertical eigenfunctions gives

6 - ()% ()2 g = 0. (5.3)

mxX
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Solving (5.3) subject to (2.%2), we obtain

O = exp(-nx) Yn(y,t), n=1, 2... (5.4)

Substitution of (5.4) and (5.2) in (2.8) yields

. mT(NHO)“Ynt + Y, = (2H) T(y,t). (5.5)

The n = O term is ¢, = Yo(y,t) and it corresponds to the representa-

tion, within x EVOENHO(fn)-T], of the barotropic response that varies

on the larger scale L, >> NHO(fn)'].
For
T{y,t) = H{-y) H(t) Re{exp(-ict)}, (5.6)
we obtain

v = Dx(oof)-] = 2110(p0H00)'1 exp(-it)

x { L exp{-nx) cos(nmz)
n=1

J
+ T exp[-nx + iny] cos(nmz) , y <0, (5.7a)
n=1

where
J = [t/y] (5.7b)

is the largest integer less than f/ﬁ. The first sum is the particu-
lar solution to (5.5) while the partial sum is required to Satisfy'
v=0fory=20

The series in {5.7a) may be summed to yjeld
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~

v = ZiTD(pGHOO)“ exp(-it)

x {3 + % sinh x{cosh X - COSﬂE)'] - q‘J cos (Jnz)

- [1 - g cos(nz) - qJ cos{Jnz) + qJ+1 cos((J-1)12)]
x [1 - 29 cos(nz) + 217V}, y <0, (5.8a)
where
q = exp[-x + iy]. {5.8b)

Figure 11 shows v from (5.8) as a function of 7 and t for § = 7/2,
and illustrates the adjustment toward the long time solution. The
behavior is similar to that shown in Figure &4, which is the response
of an infinitely deep ocean that is obtained with (3.15), (3.17), and
[Ly| << 1. At an alongshore location y, the reSponse'is entirely due
to the periodic forcing at the surface until the effect of the step
function at y = O propagates past y. This occurs at
t = fn(NDH}'1|y|c{1 when the first mode, which travels the fastest,
passes y. The response shown in Figure 11 deveiops as the higher
mode propagate past y.

The limiting solution for v as J - «, which corresponds to long

time after transients have dispersed may be obtained from (5.7a) and

is given by
v = %TO(DOHOG)'] {sinf sinhX [2(cosh} - cosnz)™' - (coshx - cosu_)']
- (coshx - cosu+)'T - cosf[sinu+(cosh§ - cosu+)'1
- sinu_(cosh§ - cosu_)'l]}, y <0, (5.9)

where
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{5.10)

b
H+
n
=3
NS
14
]

The long time response {5.9) is periodic in y and  with a
maximum in v for z = 0 and near u, = 2kn, k=0, 1, 2.....
Figures 12a,b show the magnitude and phase of v, where
vy = 2110 (pOHoo)_] Vv exp{-it), from (5.8a) with J >> 1,as a function
of ¥ and z. The subsurface maximum along u, = O (Figure 12a) is
associated with the ray path for a free vertically propagating IKW

with frequency w = o that passes through y=0,z=0 and travels

to the bottom, while the maximum along u_ = 2w is associated with the
ray path of the reflected wave that propagates from the bottom to
the surface. Subsequent reflections at 2 =0 and z = -1 occur
periodically in ?. In regions where the ray path implies downward
(upward) propagation of energy, the phase velocity is directed upward
(downward). This is illustrated in Figure 12b, which shows the phase
of V. '

The adjustment toward the long time solution {Figure 11) shows
that a maximum in v propagates from the surface to a depth where it
intersects the ray path shown in Figure 12a. The maximum subsequent-

1y remains at the location of the ray path.

With the conditions
1z << 1, x<<1, y<<1, (5.11)

(5.8) may be shown to be asymptotically equal to (3.20}), the
response of an infinitely deep ocean which is obtained in Section 3¢
with {3.15), (3.17), and |2y| << 1. Similarly, with {5.11), the

long time solution (5.9) is asymptotically equal to (3.21a). Hence,



84

for forcing given by (5.6), (5.11) establishes 1imits on the
validity of the analysis in Sections 2 and 3. For example, with the
parameters chosen above, the effect of a bottom may be neglected for

|z]| << 0.64 km, x << 196 km, and |y| << 875 km.

(b) Internal friction

The inviscid analysis of the previous section predicts an
infinite number of reflections at z = 0 and Z = -1, periodic in y.
The effect of internal dissipation modifies this behavior. Equations
and boundary conditions for this problem with friction are {(4.2),
(4.3a), and (4.3b).

The response to a wind stress (y,t) = ;(y) ;(t), derived as in
Section 5a, with Pr = 1, is given by

p = -(2n/n)ft rn!

t, n=1

expl-nx -v(m/HO)Z(t-u)]cos(nnz)Tr[y+NH0(m)"1 (t-a)]
0 _

x fku) do, y < 0. (5.12)

The form of (5.12) is similar to the inviscid solution, with an

additional term which corresponds to an exponential damping due to
dissipation. The effect of dissipation is greater for higher mode
number n. With the forcing (5.6),

v = 21, (pH )_] % exp(-nx) cos(nmz) (02 +r
0f0"0’ I

2 4)-1

~

X {rn2 cos t+osin t

- H(t - §)[rn2 cos(f - ny) + osin(f - ny)] exp(-ry n3/c)

2

- H(y - t) rn exp(-rnzt)}, y < 0, (5.13a)
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where
r = v(n/Hy)?. (5.13b)

The first two terms in the curly brackets represent a particular
solution while the remaining terms are required to satisfy v = 0
for y = 0, and represent the effect of the step function at y = 0.
The long time behavior, which may be obtained from {5.13a) by
letting t + « is no longer periodic in y. The effect of the step
function decays rapidly with y for high mode number, and only the
effect due to the lowest several modes remains. The beam pattern
which results from the inviscid analysis only exists near y = 0, and
far from the origin the response exhibits no vertical phase

propagation.
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6. DISCUSSION

Utilizing a simple f-plane model with a vertical boundary, we
have shown that under certain conditions vertically propagating sub-
inertial motions may be forced by the alongshore component of the
wind at the coast. Several examples which illustrate the basic
properties of the forced flow are presented in Section 3. A
Green's function for impulsive forcing at a point on the surface
{Example A) is shown to result in vertically propagating free
coastally trapped 1ntefna1 Kelvin waves. The waves propagate poleward
on an eastern boundary and the group velocity vector is directed
downward while the phase propagation is upward. When the local verti-
cal wavelength is much less than the distance to the surface, the
disturbance appears like a free wave with local frequency and wave-
numbers.

With N = 4 x 1073

s™' and Ay = 1000 km, the dispersion relation
(2.15) gives A, = 0.7 kmand ¢ = -30 m day”! for T = 25 days. This
estimate for AZ indicates that it is unlikely that the low frequency
signal in Figure 1, which is measured at depths {z| < 0.8 km, i.e.,
[z g_kz, may be explained in terms of a single wave with fixed
frequency or wavenumbers.

Example B illustrates the effect of forcing that is initiated at
t = 0 and that is oscillatory in time and localized in space.
Changes in amplitude and frequency content with depth are predicted,
as well as an upward propagatioh of phase. Both a transient
component and a response at the forcing frequency w are generated.

Initially, when the transients are still important, a maximum in v

propagates downward until it intersects the ray path, which passes



87

through y = 0, z = 0, of a free vertically propagating IKW with
frequency w = 6. The maximum subsequentially remains on the ray path
and, for long time, after the transients have decayed, the forced
response exhibits a subsurface maximum in the y-z plane associated
with this free IKW ray path.

In Example C, the wind stress is modelled by a‘traveling wave
with step functions in y and t. The step function in y is an
approximate model for low latitudes, where the presence of the
equator introduces an effective step function behavior to the forcing,
since a wind stress applied at a location is felt only poleward of
that location. With the forcing given in Example C, the response has
a very different qualitative behavior in two 1imiting cases. For
lyl << ly, the solution resembles that of Example B, with a maximum
in v which initially amplifies and propagates downward and with a
subsurface maximum associated with the free IKW ray path for long
time. This behavior refiects the presence of the step function at
y = 0.

The 1imits fxt/{y| >> 1 and [y| >> Ay, which corresponds to long
time so that the transients have vanished and an alongshore location
far from the influence of the step function at y = 0, yield a
different response. A standing component that decays with depth from
the surface and that is trapped within a Rossby radius of the coast
is forced for o/% < O (poleward traveling wind) and o/2 > 0
{equatorward traveling wind). For o/% < 0, an additional propagating
component is forced, which represents a coastally trapped IKW with
negative vertical group velocity and upward phase propagation. The

response to forcing by a wind stress that is standing in the
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alongshore direction may be obtained by summing the effects of
traveling waves with o/% > 0 and /% < 0. For this case, downward
propagating waves will be generated by the poleward propagating
component of the wind while a surface trapped response will be
generated by both poleward and equatorward traveling components of the
wind. For |z| > |o/NL|, the surface trapped component is small
compared to the vertically propagating component. With the parameters
chosen above, the vertically propagating IKW is the dominant response
for z < -115 m, i.e., below 115 m one would expect to see an upward
propagation of phase associated with downward propagating IKWs, while
above 115 m the surface trapped component of the forced response will
be important and a more complicated phase dependence with depth would
be expected. -

These examples illustrate how the coastal response is sensitive
to the exact nature of the wind forcing. The response to an initial
disturbance is very different from the flow due to a steady forcing,
and the behavior near the origin of a step function in y (i.e., near
the equator) differs considerably from the behavior far from the
origin. The examples also indicate the dependence.of the oceanic
response on the frequency-wavenumber structure of the wind forcing.
Based on these examples, together with the analysis of Sections 4
and 5, we may make some general statements about the conditions for
which vertically propagating coastally trapped waves would be
observed in the ocean.

For an initial disturbance at the surface, with a general
frequency-wavenumber spectrum and large alongshore scale, downward

propagating energy would be observed for those frequency-wavenumber
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components of the forced response that have not reflected from the
bottom. Those components that have reflected from the bottom wi11
exhibit a more complicated vertical phase dependence due to the
superposition of downward and upward propagating energy. Figure 8
shows the time required for an IKW to reach the bottom as a function
of w and 2. Waves with higher frequencies and longer wavelengths
travel faster.

The energy of the disturbance may dissipate before a round trip
from the surface to thé bottom to the surface is completed and hence
internal dissipation may prevent the interference of reflected energy
with downward propagating energy, even for longer time. With these
conditions, one would expect to see vertically propagating waves near
the surface for those frequencies and wavenumbers where they are
damped effectively by internal dissipation. The ratio of dissipation
decay time to travel time (Td/Tt) is shown in Figures 8 and 10.
Internal dissipation damps the waves more effectively for shorter
wavelength or lower freqguency. For xy = 1000 km and with v 2 10 cm2
s-], Td/Tt < 1 for w/f < 0.2, i.e., free waves are damped considerably
before a reflected wave reaches the surface. At 5° latitude,

w/f = 0.2 corresponds to T = 28.5 days.

These simple calculations may explain why vertically standing
coastally trapped waves are observed along the Peru coast in the 5-10
day band {Smith, 1978; Brink, Allen, and Smith, 1978; Romea and
Smith, 1982) while relatively large phase lags are observed in the
vertical for perturbations in velocity for T > 25 days (Figure 1).

For cases where dissipation or long travel times may not be

invcked in order to neglect the effects of refiection from the ocean
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bottom, the calculations of Section 5 suggest that, near the eguator,
where the wind forcing may be approximated with a step function
behavior in y, the results of Example C, with |y]| << Ay, apply for
lz| << Ho/ T and |y| << (NHO/fn)(f/c). An example in Section & with

T = 25 days, at 5° latitude and with H, = 2 km shows that the effect

0
of the bottom may be ignored for |z| << 0.64 km, |y| << 875 km. For
an initial forcing at the surface, an upward propagation of phase
would be expected associated with the propagation of a subsurface
maximum in v downward.- For longer time, the response to steady
forcing at a frequency o has a maximum along a line z = oy/N which
is associated with the IKW ray path, with an upward propagation of
phase in the vicinity of the ray path. Since the ray path is a
function of o, the response to a wind with a general %requency
spectrum and a step function at y = 0 will consist of many rays
emanating fromy = 0, z = 0, and an upward propagation of phase will
be observed near y ='Q over much of the depth.

At 5°S latitude, with |y| = 550 km (the approximate distance
3

1

near the equator to the ESACAN array), T = 25 days and N = 4 x 107
s'], the subsurface maximum propagates downward at about 40 m day”
and intersects the IKW ray path at about 400 m depth. This is in
qualitative agreement with the observations shown in Figure 1,
although more extensive measurements for longer times are needed to
obtain an accurate description of low frequency phenomena along the
Peru coast at Tow latitudes.

Finally, we point out several interesting guestions: (1) Do low

frequency waves that are forced along the equator and that propagate

vertically turn at the intersection of the equator with the
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Peru-Equador coast and travel north and south as vertically propagat-
ing IKWs? (2) Can vertically propagating IKWs transfer momentum
downward and interact with the mean flow? These questions suggest

avenues for further theoretical studies.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

* -
Figure 4. Scaled alongshore velocity v = [(2/7) NTg (pOU'Zfziyl) ]]

Figure 5.

Figure 6.

Time series of low-pass filtered alongshore wind from

Talara (top plot) and of alongshore current v (solid 1ine)

and temperature T {dashed 1ine) from the ESACAN C2

mooring, which was on the continental slope in 1360 m of

water at 5°5 latitude. The low pass filter has a half

power point of 8.5 days.

Sca]edralongshore velocity v = [(2/m) Nty (Dolylfx)_1]-1v

as a function of t' = fxt/|y| and z' = Nz(fx)_] for

Example A [t{y,t) = &8{y) s(t) To].

Scaled alongshore velocity v* = [(2/7) NTO(DOU'fZIYI)_1VIYI]
as a function of t' = ot and z' = (N/o)(z/|y]|)

with x = x/(c'|y|)} = 0.04, for Example B [t(y,t) =

8{y) H(t) Tq exp{-ioct)].

-1,

as a function of t' = ot and z' = (N/o)(z/|y]|) with

x* = x/(c'|y]}) = 0.04, from Example C [t{y,t) =

H(-y) H(t) T exp{~i{ot - 2y)}] for the limiting case

|2y| << 1. Dark lines: contours of v o= 0; light

lines: v* > 0; dashed lines v* < 0; contour interval: 1.

Magnitude (a,c) and phase 6(b,d) of V for Example C as a

function of y' = y/L and z' (a,b) (with x' = 0.04) and

as a function of x' and z' (c,d), where v' = V exp{-it').

Limiting case |fy| << 1, x't' >> 1. Scaling the same as

in Figure 4. 3§, > 62 implies 2 leads 1.

1
$caled alongshore velocity V* = V/[(2/m) Nroﬁ(pooz)-1]
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for Example C, obtained for the limiting cast fxt/|y} >>1
and [2y| >> 1, as a function of x* = fix/g for various
z* = NM2z/o, where v = V exp[-i{ot - 2y)}]. The response
is plotted for 2/c > 0 and %/o < 0. The scale for V*
at z* = -0.2 applies to V* at all depths. The solid 1line
represents the vertically trapped response while the
dotted line represents the magnitude of the vertically
propagating IKW. The two components are m/2 out of phase
in time and are plotted on the same figure in order to
compare magnitudes. The offshore distance x* = 1
corresponds to the Rossby radius scale.

Figure 7. Scaled alongshore velocity v* = v/[ZNTOR(QOOZ)'TJ at
x = 0 for Example C obtained with the limits fxt/|y| >> 1
and |[fy|>>1 as a function of 6 = ot - Ly for various
2* = N2z/o, with /0 < 0. The straight lines connect
the local maxima of v* and indicate the vertical phase
structure while the dashed line represents the vertical
phase lag predicted for a free IKKW with positive vertical
phase velocity.

Figure 8. Scaled travel time t* = fZLt(NHO)_] for a free IKW with
scaled freguency w' = w/f and horizontal wavenumber
2' = &L to propagate at its group velocity from the
surface to the bottom (z = —HO), as a function of w'
and %',

Figure 9. Scaled ratic of dissipation decay time to travel time

| (Td/Tt)(vHON3f‘4L'3) as a function of w' = wf and

L' = oL,
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Figure 10. Ratio of dissipation decay time to travel time Td/Tt
as a function of w' = w/f and v, with Ay = 1000 km,
N=ax107 57, £=1.3x10% 577 and #, = 2 kn.

Figure 11. Scaled alongshore velocity v* = v/[ZTO(DOHoc)'IJ as a
function of z = 2/H, and t =ot for y = UT(NHD)_1|y| =
m/2 and X = fTr(NHO)'I x = 0.2. Flat bottom at z = -HO.
Dark 1ine: contour of v* = 0; light Tine; contour of
v*¥ = 1; dashed Tine: contour of v* = -7,

Figure 12. Magnitude (a) and phase 6 (b) of V as a function of §
and Z, with X = 0.02 and E/? >> 1, where v* = iV exp(-i%).
Flat bottom at z = -HD. Same scaling as in Figure 11.

e1 > 82 implies 2 leads 1.
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1. INTRODUCTION

Evidence has been presented for the existence of coastally
trapped waves along the central Peru coast (Smith, 1978), where
observations indicate poleward propagation between 10° and 15°S of
fluctuations in sea level, alongshore currents and temperature in
the 0.1-0.2 cpd frequency band with phase speeds of about 200 km
day-]. AYthough the frequency range of the propagating fluctuations
is similar to that of weather events, they are found to be uncor-
related with the local winds measured at 12°S or 15°30'S (Brink,
et al., 1978). The analysis has recently been extended equatorward
and poleward by Romea and Smith (1982), and free waves are found to
propagate poleward between 2° and 17°S.

In general, free coastally trapped waves have modal structures
and phase speeds that are dependent on shelf topography, stratifi-
cation, and latitude (see, e.g., Allen and Romea, 1980, for a
detailed discussion of this point). The structure of the current
fluctuations and the nature of the dynamical balances suggest that
the waves observed along the Peru coast are internal Kelvin wave-
like (Smith, 1978; Brink, et al., 1978; Brink, et al., 1980; Allen
and Smith, 1981; Brink, 1982a; and Romea and Smith, 1982), i.e.,
that the density stratification is the dominant mechanism for the
wavés, with the bottom topography inducing only a minor modification
to their structure and dynamics. This observational result agrees
with the conceptual model that the effect of the continental margin

should be much like a vertical wall for low latitudes where the
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ﬁossby radius of deformation, GR’ which is the natural baroclinic
offshore length scale, is greater than the shelf-slope width Ls‘
Estimating the Rossby radius scale by 6R = ¢/f, where ¢ is an along-
shore phase speed and f is the Coriolis parameter, we find, at 5°S

5 1

Tatitude, with £ = 1.3 x 10™° s”! and ¢ = 200 km day”', that &

R =
180 km, whereas L. = 80-100 km.

Phase shifts in the offshore and vertical directions have been
observed in the velocity data from the Peru coast (Brink et al.,
1978}, For barotropic.motions, Brink and Allen (1978) have shown
that cross-shelf phase lags may be induced by the effect of bottom
Ekman layer friction, and Brink, et al. (1980) report an observed
mean bottom Ekman layer thickness of 10-26 m based on the Peru data
from March-May 1977. Thus, the observed phase shifts may be due to
the effects of bottom friction. To investigate this possibiiity for
conditions near the Peru coast, we present a simple analysis of the
effect of bottom friction and shelf slope topograbhy on free internal
Kelvin waves in a continuously stratified ocean. Models with
continuous stratification and realistic bottom topography are the
most useful for direct comparison with coastal trapped wave observa-
tions at Tow latitudes. These models are‘generally intractable
analytically and a numerica1‘approach has been adopted in the past
(e.g., Huthnance, 1978; Brink, 1982a). However, there are diffi-
culties with numerical models for low latitudes where L /8 << 1
(Brink, personal communication). In addition, if bottom friction
effects are included, it is difficult to numerically calculate the

structure of alongshore velocity accurately (Brink, 1982b).
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We concentrate primarily on the low latitude case with weak
bottom friction effects and derive analytical results with a
perturbation analysis for LSIGR << 1.and for Tf/T << 1, where Tf is
the frictional time scale and T is the wave period. The limit
leaR + 0 corresponds to thé flat bottom vertical wall case. As
will be discussed, the formulation including the effect of bottom
friction at low latitudes depends conceptually en taking the limit
Tf/T + 0 before the limit LSIGR + 0.

For comparison to the low latitude case LSIGR << 1, we also
include results for an idealized mid-latitude case LS/6R >> 1, with
a vertical wall and a weak siope. Phase lags induced by bottom
friction are qualitatively different in this case and it is of
interest to contrast these results with those from th; low latitude

Case.
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2. FORMULATION

We consider a continuously stratified ocean on an f-pliane in
the northern hemisphere. C(artesian coordinates are utilized with x'
pesitive westward, y' positive sbuthward, and z' positive vertically
upward. Primes denote dimensional quantities for which a non-
dimensional counterpart will later be defined. The ocean is bounded
on top by a rigid 1id and on the bottom by a boundary at z' = -H.
There is a straight north-sputh oriented coastline at x' = 0. The
problem is linearized Ey the assumption that the motion results in
negligible nonlinear fluid accelerations and in small departures p'
from an equilibrium stable density distribution p{(z'). The hydro-
static approximation is utilized, and we éonsider interior motions
away from frictional boundary layers. The long wave assumptions for
coastally trapped waves are made, i.e., the frequency w of the wave
motions is small compared to f, and the alongshore scale Ly of the
waves is large compared to their offshore scale L.

Dimensionless variables are formed in the following manner:
{(x,y) = (x",¥y')/L, z = 2'/H, t = t'f,
(us,v) = (u',v')/U, w = w'L/(HU), (2.1)

p=p'/(pgUfL), p = (p'gH)/(pyUfL).

The variables (u’,v',w') are the velocity components in the
(x',y',z') directions, t' is time, p' is the pressure, U is a
characteristic horizontal velocity, and the total density is given

by
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pplxtaytaz',th) = o' (x',y'a2',t") + 3(z") + ofs (2.2}

where Po is a constant.

With the above assumptions and scaling, the governing equations

are
V= Py (2.3a)
Ve * fu = —py (2.3b)
0= -p, - P (2.3c)
2
p, - Rw =0, | (2.3d)
ux + Vy + WZ = 0: (2-39)
where
R(z) = NH/(fL), (2.4a)
2 - _nT .
N“(z) = -gp,/pps (2.4b)

and where the subscripts denote partial differentiation. Nz(z) is
the square of the Brunt-Vaisalia frequency, and R{z) is a stratifica-
tion parameter that represents the ratio of the Rossby radius scale
to L.

qs. (2.3a-e) may be combined into a single equation for the

pressure given by

Sy, v IR z)p 1LY _(2.5)
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Boundary conditions for p, resulting from the assumption that the
surface is a rigid 1id and a regularity condition that specifies

coastal trapping, are respectively

pZt = 0, at z = 0, (2.6&)

px, py -+ 0, as x + =, (2.6b)

The remaining boundary conditions depend on the specific bottom

topography chosen, and will be introduced later.
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3. STEEP stopt

The geometry of the steep slope model is shown in Figure 1.
The side wall , located at x' = ¢'(z), intersects the surface at
x' =0, z'-= 0. We assume that the offshore scale of the slope
topography is small compared to a characteristic offshore scale L,
i.e., e = e'/L << 1, and that the slope intersects the bottom at
X = £g << 1, 2= -1,

We introduce friction in the problem by assuming there are
quasi-steady Ekman 1ayérs on the bottom at z = -1 and on the siope
x = g(z). The boundary condition at z = -1, which represents the
Ekman compatibility condition (Pedlosky, 1979, p. 198) on the inte-

rior flow, is given by

1
P,y ~!§R2E\f P> 2tz = -1, (3.1a)
where
Efs o1 (s v /)5, (3.1b)

Ev is the vertical Ekman number and Vy is a constant vertical eddy
coefficient.

A standard boundary layer analysis (e.g., Pedlosky, 1979,
p. 208-215) for a constant sloping boundary, which will be valid for
general slope topography as long as the radius of curvature is large
compared to the boundary layer thickness, gives a normal layer
thickness of E? (cosa')%, where o' is the dimensional slope angle.
The normal velocity ¥y at the top of the layer and the transport

TE paralle! to the slope in the layer are given by
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Wy = %E% vi(cosa')'%, (3.2a)
TE = -%E? v(cosa')'%, (3.2b)

where z measures distance along the slope downward from the surface.
The results (3.2a,b) are derived with the assumption that L is large
enough that Ev/Eh = (vv/vh)(L/H)2 > 1, where'vh is a constant
horizontal eddy coefficient. This assumption has been discussed by
Allen (1973) and Pedlosky (1974), and is equivalent to the statement
that the offshore scale is large compared to the horizontal diffusion
scale.

With the scaling given in (2.1) and with'e << 1, the magnitude

of the slope angle @ in the nondimensional system is °

tan a = 0(561) >> 1, (3.3a)

However, the problem is formulated such that NH(ﬁT)'1 >> L > H,
i.e., that the shelf-slope width is much greater than the deep
ocean depth but much less than the internal Rossby radius scale
associated with the first baroclinic mode. Therefore the magnitude

of a' is
tan a' = O(H/L) << 1. (3.3b)
In terms of variables in x and z,

Wy = U sin o + w cos o (3.3c)

and
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3/3Z = cos a (3/3x) - sin a (8/3z). (3.3d)

With (3.3a,c,d), (3.2a) is

3 -3
U= -EW - %E; (cosa'} 2vz + O(EO) + O(Ev)‘ (3.4a)

Typical values (H = 4 km, L = 100 km) give a' = 2.3°, so that
the dfmensional slope appears locally almost hdrizonta1. Thus, we
anticipate that the bottom Ekman layer will extend over the slope
up to the surface. With cosa' = 1 and at x = e(-1), the Ekman layer
transport (3.2b) on the slope is approximately equai to the Ekman
layer transport on the flat bottom. Since the fluxes approximately
match where the slope meets the bottom, there will be negligible
flux into the interior due directly to the change in slope although
there will be a discontinuity in normal velocity. With no wind
stress forcing, and hence no flux in the surface Ekman layer, any
net flux inte the Ekman layer along the flat bottom or a]oné the
slope must be pumped out at x = 0, z = 0. The approximate  boundary

condition along the sloping boundary from (3.4a) is thus

o2 3
pxt + py = EZR pZt + ;EE: [pr - pX(O)G(Z)]’

at x = e(z), ‘ (3.4b)

where Pyo) = px(x‘= 0, z = 0). This condition specifies that the
onshore flow in the interior is balanced by the inviscid vertical
velocity produced by the slope plus the Ekman pumping along the
slope. The last term on the right hand side of (3.4b) represents
the flow out of the Ekman layer at x = 0, z = 0 and must be included

so that the mass flux condition



wad§ =0 {(3.4c)
T

is satisfied, where T is the lower boundary, and § is distance along
the boundary (see comment after Eq. (3.27)). The function & is
defined here such that §(z) = 0 for z # 0 and

0
ﬁ §(z)dz = 1 (3.4d)

We seek a free wave solution of the form
P(x,¥,z,t) = Re{d(x,z)exp[-1(ut + 2y)]}, {3.5)

where w and 2 are radian frequency and alongshore wavenumber,

respectively. Substituting (3.5) in (2.5), (2.6a,b), (3.1a) and
(3.4b) we obtain

b0 * (8,/R5), = 0, (3.6)
$, = 0, at z =0, (3f7a)
6, = ‘%11R2¢x¥’ at z = -1, (3.7b)
by * (RI0)g = € R 7%, + HiA[4,, = 9y00)8(2)],
at x = g(z), | (3.7¢)
¢, > 0, a5 X + =, (3.7d)

where, as in (3.4b), the notation ¢x(0) iﬁp]ies ¢x(x =0, z=90),

and where X = E?/w. Egs. (3.6) and (3.7a-d) describe an eigenvalue
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problem for ¢ with complex eigenvalue w.
To proceed, we first transform the boundary conditions at
x = €{z) to hold on a constant surface £ = 0 by defining a new

coordinate system (£,y,z), where
£=x-¢e(z). (3.8)

A similar transformation has been used by Huthnance (1978) to handle
boundary conditions similar to (3.7c}. The surfaces z = 0, -1
remain unaffected by the coordinate transformation.

The transformed equations and boundary conditions are
b+ (6 /RE) + (e R)2e - 2 R'%0_ - (e /RE) ¢ =0, (3.9)
EE z z z EE Tz £z 2 '2'g ? )

¢Z - EZ¢E =0, at z = 0, (3.10a})

= _13108 -
¢z - EZ¢E = ~LiAR ¢EE’ at z = -1 (3.10b)
- -2 . ’
¢g + (ﬂ,/u})d} - EZR (¢’Z - EZ¢E) + ;§1>\{¢EZ = EZ¢E£ - éa(o)s(z) }9

at £ = 0, (3.10c)

¢ > 0, as £ > o, (3.10d)

A relatively simple solution to (3.9) and (3.10) may be
obtained by perturbation methods. We assume X = O(ED) << 1, which
corresponds to limiting the wave period to be much less than the
spin down time. In addition, it is important that the limits
A+ 0, e > 0 be taken in that order, since if ¢ - 0, » # 0, the

Ekman layer on the slope would vanish and (3.10c) would be incorrect.
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The variables are expanded as

¢(0) + ¢(1) + ..y (3.11a)

o
1

(0, ),

W .

N ey (3.11b)

where ¢(0) and m(o) are assumed to be 0(1) and ¢(1) and w(1) are
assumed to be O(EO). If (3.1%a,b) are substituted in (3.9) and
(3.10), the Towest order balance is the familar inviscid internal

Kelvin wave problem, i.e.,

e V) + (6,00/60), = o0, (3.12)
¢Z(°) =0, at z = 0,';1, {3.13a)
o' + (20061 < 0, at £ = o, (3.13b)
00+ 0, as £ > =, (3.13¢)

with solutions
6,0 = exp(-2r0, (D, (2, (3.14)

where

(P /R0, + (10 (O))% = 0 (3.15)
Pnz =0, at z =0, -1. (3.16)

Egs. (3.15) and (3.16) form an eigenvalue problem with

eigenfunctions Pn and real eigenvalues wn(O). The eigenfunctions
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form a complete set and are orthogonal over the domain (-1,0),

subject to

!

I PyPydz = G (3.17)

where anm is the Kronecker delta. An additional restriction due to
(3.13c) is szn(o) > 0, which implies that the waves travel only
poleward. These results have been obtained for general subinertial
coastally trapped Qavgs (see, e.g., Huthnance, 1975, and Clarke,
1977).

The equations describing the O(EO) correction to each mode n,

where terms of O(Eg), O(kz), and 0(xe) have been neglected, are

et + (o, VR0, = 2e w21 (e R0l (e
ﬁl) = ﬁg’, at z = 0, (3.19a)
0 - z¢£§’ - %iin(p)R2¢égé, at z = -1, (3.19b)

oD 4 (e @) 1) < gy (Vg (012 (©)

20800+ 5in ()40 . 40} a(2)),

nEz = *nz(0)
at £ =0, (3.19¢)
6{1) 0, as £ » =, - (3.194)
where
(0) E%/w 0)_ (3.19)
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A compatibility condition for the solution of (3.19) may be
found by multiplying (3.18) by ¢n(0), integrating over £ from 0 t0 =
and over z from -1 to 0, and utilizing the boundary conditions

(3.13a,b,c), and (3.1%a-d). This determines wn(i) as

mn(]) = -;ﬂ)‘n(O)[Pn%O) + P“%_]) + Rz(__i)(mn(o)/l)zlrm]

0
(0)2 -2
- (wn /%) {]EZR PnszdZ, (3.20)

and where the P_ are determined by (3.15), (3.16) and (3.17). The
solution to (3.18) and (3.19) is

¢n(1) = E¢né0) i 1"”n(m(}{z(J)/Rz)zd’nzm) * ¥y (3.22)

0

by = I Yul€) Pr(2)s | (3.23a)

where, for m # n,

Yy = Am exp(-lg/wm(o)) + B, exp(-lglwn(o)). (3.23b)

0 0)yq-1
Ay = L2, O - (279, O]

x {J e,R
-1 2

2 .5 (0) {0)
Pnszdz - &nkn (l/wn )

0
(f PnszdZ - Pn(O)Pm(O))}, (3-23C)
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B = %ikn(o)Rz(_]) E(z/wn(o))z - (2/mm(°))21'11n

v (2:239)

while, form = n,
v = %% Do /0 e a0z 1 L (3.23)

The coefficient of the homogeneous solution t07{3.18) and (3.19)
is arbitrary and the homogeneous solution may be absorbed in the
0(1) solution.

Since the wn(O) are ordered such that wn(o) + 0 as n~+ow,
the perturbation procedure becomes invalid for high mode number,
i.e., when ln(o) = EEfwn(o) = 0(1) and when SR/EQ = wn(o)(lso)_] =
0(1). Therefore we must restrict our consideration to low modes
where A(O) << 1 and 5R/€0 >> 1, This restriction is not too severe,
since we are generally only interested in the behaviof of the first
mode.

The frictional cqrrection to the 0(1) eigenfunction is D(An(o))
and is purely imaginary, while the topographic correction is 0(50)
and is real. To D(AH(O)), O(EO), the presence of bottom friction
induces phase shifts in x and z but does not change the x,z
structure of v or p,'whiTe the slope topography affects the x,z
structure of v and p but not the phase. Both friction and
topography induce corrections to the frequency. The O(An(o))
frictional correction (from the first three terms on the right hand
side of (3.20)) is pufe1y imaginary and represents a frictional
decéy or "spin-down" with time. The last term on the right hand

side of (3.20) represents a correction to the real free wave speed
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due to the slope topography. The contribution of that term may be
seen by multiplying (3.15) by Pnz/R2 and ihtegrating over z from -1}

to 0, to obtain, after integration by parts and the use of {3.16),
P“ZPn dz = 0. (3.24)

Eq. (3.24) is a statement that the vertical velocity (= R'anz) and
the topographically induced onshore velocity (= Pn) are orthogonal
over the depth. This implies together with the last term in (3.20)

that, for a linear slope, i.e., for

e(z) = -€q 2 : {3.25)

where ez = €4 = constant, the interaction between u and w averaged
over the slope is zero, so that the topographié correction to the
phase speed is zero. There is still a distortion of the mode shape,
however. For a non-linear slope, corrections to both modal structure
and phase speed are iﬁduced.

For an arbitrary stratiffcation, the eigenfunctionsﬁn and
eigenvalues may be computed numerically from (3.15), (3.16), and
(3.17). A simple case, for which eigenfunctions and eigenvalues may
be obtained directly, is R = RO = constant, which corresponds to a
constant Brunt-Vaisala frequency. While this case is genera]]y‘
unrealistic (the modal amplitude for z < -% tends to be over-
estimated), it is useful for cbtaining solutions that illustrate

the essential physics. Solutions with a more realistic stratifica-

tion are obtained in Appendix A and are discussed in Section 5.



126

With R = RO, (3.14), {3.15), (3.16), and (3.17) give

(0)

n = 2exp(-nmE/R) ces(nmz), (3.26a)

6
wn(o) = R/(nm), n=1, 2,3, ..., (3.26b)

and the correction to the frequency from (3.20), is

0
o (D _%153 + Z(wn(o)/R) /e, sin nmz cos nmz dz. (3.27)

n

Using (3.26a,b), the next order correction (3.22) may be
calculated directly. Substitution of (3.27) in (3.5) shows that the
O(Xn(o)) correction to the frequency represents a frictional decay
with time, where the wave damping is given by exp{-%Eft). This
corresponds to the spin down time scale for homogeneous fluids
(Greenspan, 1968, p. 34). Note that, if the first term in (3.20),
which comes from the & function in (3.4b), were not included, the
frictional correction to w would imply an exponential growth instead
of decay.

We next examine the effect of bottom friction on the fifst
vertical mode for the special case R = Rd and £(z) given by (3.25)

(A linear slope topography). The n = 1 eigenfunction may be written,

to 0(ey) and 00 (00, as
¢, = |¢1| exp(ie]), (3.28)

where

o1 = 16,00 - emzym) - 2egeR)T (4 29)], (3.202)
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¢] = tan'1{%i](0)[3+ exp EnE/R) (wz sin wz + (w&/R) cos wz)

+ 45 + o]/¢](°)}, (3.29b)
S=-T o) (1220770 - o) costaknz),  (3.29¢)

B = exp(-m&/R){% cos(nz) In[1 - 2 exp(-mE/R) cos mz
+ exp(-2n&/R)] + sin (wz) tan'1[exp(-ﬂE/R) sin{rz)(1 -

exp(-mE/R) COS(NZ))_]]}. {3.29d)

The polar representation for % ((3.28) and (3.29)) shows
that there is an 0(%1(0)) phase shift in both the x and z directions.
The dependence on ) indicates that the effect of friction is
enhanced for higher latitude or lower freguency. Note that, if x
and g are rescaled with R/m (x* = wx/R, EO* = ﬂEO/R, E* = nf/R),
l1(0) and €* are the only parameters in (3.29).

The x,z structure of the correction to the alongshore velocity,

computed using {2.3a) and (3.28), is given by
Py = (]¢]x| + 5e1x) exp(iel). (3.30)

The simple relationship between pressure and alongshore velocity
for an inviscid internal Kelvin wave, i.e., ¢x = -(n/R)o, is
modified by the introduction of topographic and frictional effects.
This behavior has been noted by Brink (1982b).

Figure 2 shows the frictionally induced phase shift in p and v

for the first mode internal Kelvin wave in the x*-z plane for
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A](O) = 0.1, topography given by (3.25) with e* = nsD/R = 0.1, and
R = Ry With (3.28) and {(3.5), 8y > 6y implies 1 lags 2. Phase
shifts for v and p are clearly different, however vertical phase
shifts imply that both surface v and p lead those below. The 180°
phase shift in the vertical is due to the structure of the first
mode inviscid internal Kelvin wave, which has a zero crossing at
z = -%, and would have an abrupt 180° phase shift at z = -,

The offshore phase structure for both p and v is depth
dependent. In the upﬁer half (near surface), p offshore lags p at
the coast, while the effect is reversed for the lower layer. For v,
inshore motions lead for -0.15 < z < 0 (near the surface), while
offshore motions lead those nearshore for -0.15 > z > -0.5. Phase
shifts with x* are small for z < -0.5, with a suggestion that near-
shore motions lead except very near the bottom.

We next consider the effect of slope topography alone on the
first mode internal Kelvin wave. Figure 3 shows the x*-z structure
of v for the n = 1 mode for » = 0, (3.25) with EO* = 0.3, and
R

"

Ro- The alongshore velocity is not symmetric about the Tine

z = -3, as would be expected with a vertical wall. Figure 4 shows
several examples of shelf slope topographies and Table 1 lists the
0(80) topographic corrections to the 0(1) phase speed cn(o) for each
profile in Figure 4. For each case the shelf-siope width at z = -1
is 50*, and R = Ry. The second term on the right hand side of (3.27),
which represents the topographic correction to w for R = RO’ yields
the result that slope profiles that are concave downward (case (a),
Figure 4) act to increase the free wave phase speed while profiles

that are concave upward (case (b)) act to decrease the phase speed.
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As expected, the special case e, = constant (case (c)) gives no
correction to the phase speed at 0(50). Most shelf-slope topogra-
phies in nature are concave downward.

The change of sign of the correction to cn(o) for cases (d) and
{e) may be explained in thé following manner: For an internal
Kelvin wave over a flat bottom with a vertical wall and with constant
N, the phase speed is given by c_ = NH(nw)']; With a small shallow
shelf which drops steeply to a deep ocean (case (d)), the wave
“rides" on the bottom'at X > eq and the shelf acts as an additional
fluid volume which augments the effective depth by an O(eo) amount,
thus increasing the phase speed. For case (e), the small topography
near the bottom decreases the effective depth by an O(eo) amount,
thus decreasing the phase speed. Cases {(d) and (e} may be regarded
as limiting cases of {a) and (b), respectively.

For case {f), two linear slopes interrupted by a segment of
vertical wall, the wave identifies the vertical segment as a coastal
boundary; the additional fluid volume provided by the shelf for
0>z> -tzol is cancelled by the decrease due to the shelf segment
for -le[ >z > -1, and the phase speed is unaffected to O(eo). For
case (c), the Tinear slope, there is no equivalent vertical wall to
provide a reference zero for the mode. Case (c) may be viewed as a
limit of case (f) as the vertical segment shrinks to zero. The
addition of fluid volume for 0 > z > -% is exactly cancelled by
the decrease of fluid volume for -% > z > -1. The effective depth
and hence the phase speed remain unchanged.

The onshore flow u may be obtained by solving (Z.Ba,b) with

(3.5) for u in terms of ¢. While there is no cnshore flow associated
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with an internal Kelvin wave over a flat bottom, the presence of a
steep slope induces a u of O(eo) while friction induces a u of
O(An(o)). Figure 5 shows u/eo* in the x*-z plane with An(o) = 0,
(3.25) with eo* = 0.1, and R = RO’ i.e., this is the onshore flow
induced by the topography alone. There is a maximum at x* = eo*,
near z = -%, reflecting the interaction of the slope topography with
the 0(1) w which has a maximum near z = -%. Figure 6 shows the
amplitude of u/so* in the x*-z plane where we have chosen ln(o) =
eo* = 0.1, and R = RO; so that both topography and friction are
important. A local maximum of u near z = -k, x* = 50* is again
evident, and is enhanced relative to u in Figure 5 due to the Ekman
pumping along the sloping boundary. The relatively large u near

x* =0, z=0 is due to the mass flux out of the Ekman layer at

that location required to satisfy (3.4).
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4, WEAK SLOPE

The weak slope model shown in Figure 7 represents the case
where the Rossby radius scale is much smaller than the shelf-slope
width, appropriate for mid-latitudes or for very wide shelves. In
the model, the continental shelf-slope region is represented by a

linear bottom slope of small magnitude, i.e., by
H{x) = 1 + ex, (4.7)

where € is a constant and € << 1. While the vertical wall at x = 0
is unrealistic, such models are commonly utilized, therefore it is
of interest to compare their results to the steep slope model of
Section 3.

The analysis proceeds as in Section 3, with weak friction,
i.e., where X = 0(¢g), except that here the limits € -~ 0, A + 0 may
be taken independently. The governing equation (2.5) and the
boundary conditions (2.6a,b) apply. The boundary condition on the
lower boundary, which represents the Ekman compatibility on the
interior flow plus the inviscid boundary condition appropriate for

a sloping boundary, is

2 " 2.k - .
P,y ¥ R Hx(pxt + py) = 3R E:pxx, at z H{x). (4.2)

The boundary condition that holds at x = 0 is

Pyt * Py ° -:ﬁgff p(z = ~1)8(z + 1), at x = 0, (4.3a)

where 8{z + 1) is equal to 0 for z # -1, and
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0
I o&(z + 1) dz = 1. (4.3b)
-]

The term on the right hand side of (4.3a) is due to the flow out

i

of the Ekman layer at x = 0 and must be included so that the mass

flux condition

0
5 ow(z
=1

-1} dx + u{z = -1) =0 (4.4)

is satisfied. This is analagous to (3.4c) for the steep slope case,
and, as in Section 3, neglect of this term leads to an exponential
growth of the solution with time.

We seek a free wave solution given by (3.5). Substititing (3.5)
in (2.5), (2.6a,b), (4.2) and (4.3a), we obtain (3.6), (3.7a),
(3.7d) plus

¢, * (2/w)d =-%1A¢x(z = -1)8{z + 1), at x = 0, (4.5a)

¢_ = -RZHX[(bx + (2/w)o] -%iRz

; Ad, > AL Z = <H(x). (4.5b)

We define the new coordinate system (x, y, n), where

z/H(x}, (4.6)

e
n

-H(x) becomes n = -1 while the

so that the Tower boundary z
upper surface z = 0 becomes n = 0, i.e., the upper surface is
unchanged. Transforming the equations and boundary conditions, we

have
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¢xx + 2nez(1 - 2tx + ...)¢n - 2ne(l - ex + ...)¢nx
(4.7)
+ (ne)z(] - 2ex + ...)¢nn + (¢n/R2)n(] - 2%x+...)=0
¢n =0,atn=0, (4.8a)
¢, - ne(l - ex + "')¢n + {2/w)¢ =
“%1l[¢x +ne(l - ex + c-~)¢n(_1)5(ﬂ + 1)1,
at x = 0, (4.8b)
¢, = Rl + ), + (2/w)o - ne(l = ex + ...)0 ]
-zilR2[¢ + 2n82(1 - 2ex + Yo - 2ne(l - ex + )b
x cedop ce 0y
+ (n€)2(1 - 2ex 4 ...)¢nn], at n= -1, (4.8c)

pius {3.7d} which is the coastal trapping condition. In {4.8b),
¢ﬂ('1) = ¢n(ﬂ = -1).

We expand ¢ and w as in (3.11a,b), with the restrictions
A << 1, x <0(1). The lowest order equations for ¢(0) give the
inviscid internal Kelvin wave problem (3.12), (3.13a,b,c) with a
sequence n of solutions given by (3.14), (3.15) and (3.16) (with z
replaced by n), orthogonal subject to {3.17).

The 0{¢), 0(a) balance, neglecting 0(52), O(Az), and O(ex) is

6+ Wm/R )y = 2eDnedO) + x(6!0)R?) 1, (4.9)
(1) =0, atn =0, (4.10a)

nT'l
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nx n
iy (0), ( ])a(n +1), at x = 0, (4.10b)
(1) ninl (0) (0) = .
nn siR An Prxx at n 1, {4.10c)
(1) > o,
¢\ 1) 50, as x (4.10d)

The frequency correction is specified by the compatibility

condition as in Section 3, and is

on M = (0, 20yt - i Oyt Oy 1

n nn

v (2/u, ORZ i1, (8.11)

where Inn is given by (3.21) with z replaced by n.
The solution to {4.9) and (4.10) is

1 2 0) 2 (0)
¢n( ) - 61kn( ( I)¢nxx Ipn‘ (4.12)
v = 20 Y ()P (R}, (4.13)
m=

where
= Am exp(—zx/wm(o)) + Bm exp(—ﬂx/wn(o)), m#n, (4.14a)
v, = (x0 + x%E ) exp(-ax/u (O, (4.14b)

and
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Ay = Lo/, ) - (g Oy77!

x [0+ %ixn(o)(ilwn(o))Pn(_])Pm(_])], (4.15a)
B = - [(2/w ()2 - (24 (00)277]
< L O a1+ 2ea @0, (4.15b)

0, = i, ORE e P

n
+el+ 9, 1 (4.15¢c)
E = he(r/w (0)), (4.154)
n n
0
Jom = . PP dn. (4.15e)

-1

As in Section 2, the topographic correction to w is 0(e) and
real, representing an increase in the phase speed, while the
frictional correction to w is O(An(e)) and imaginary, representing
a spin down with time. There is an .0(e) correction to the
structure of ¢ and an O(An(o)) correction to the phase of ¢. The
topographic correction to the phase speed is due to the depth
variation from a flat bottom weighted with the Rossby radius scale,

i.e.,

(wn(])/z)Top = 6m exp(-zx/wn(c)}[l - H{x)Jdx. (4.16)

With (4.1), wn(]) calculated with (4.16) is equal to the first term

in {4.11). The weak slope topography increases the effective depth
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(see Figure 7) relative to a flat bottom at z = -1, thus increasing
the phase speed relative to the flat bottom case. A similar result
was obtained by Allen (1975, Eq. (3.15¢)) with a two layer model.
The m = 0 term in (4.13) represents a barotropic flow induced
by both friction and topography. For X + o, the baroclinic terms

are exponentially small and ¢n(}) ~ A, which, with (3.5) and

0
(2.3a,b), implies that far offshore a barotropic onshore flow
remains. The matching of this barotropic flow to the outer shelf
problem for x >> 1 is-discussed in Appendix B.

With R = RO’ simple analytical solutions for ¢ are again

obtained. In particular, the correction to the 0(1) frequency is
o 1) = ser (ney T o oyigk (4.17)

Figure 8 shows the zero crossing for the first mode of v in the

x*-z plane, where x* = 7x/R, X =0, € = 0.1, and R =R Except

0
for x* < 0.15, the zero crossing is deeper than the zero crossing
{at z = -0.5) expected for an internal Kelvin wave with n = 1 and
with a flat bottom at z = -1. Near x* = 0.5, the zero crossing is
near the predicted zerc crossing for a flat bottom at an average
depth of z = -1.05. This result again illustrates the ‘increased
effectiye depth due to the sloping bottom.

Figures 9a,b, show the frictionally induced phase shifts in p
and v for the n = 1 mode internal Kelvin wave in the x*-z plane for
kn(o) = 0.1 and € = 0. Phase shifts for v and p are clearly

different, however vertical phase lags imply that both deeper v and

p lead those above. In the upper half, p offshore ieads p at the
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coast, while the effect is reversed for the Tower layer. For v,
offshore motions lead those inshore for -0.1 > z > -0.5 while
inshore motions lead for -1.0 < z < -0.5 and -0.1 < z < 0.

Figures 10 and 11 show the topographically induced scaled
onshore velocity uT/s (with l](o) =0and € = 0.1) and the
frictionally induced scaled onshore velocity uF/A](O) (with € = 0)
for the n = 1 mode in the x*-z plane with R = RO. In each figure,
u-+0as x+ 0, satisfying the boundary condition at x = 0. The
flow up decreases offshore and upward, with a maximum at x = 0,

Z = -1, representing the mass flux out of the bottom Ekman layer
required to satisfy (4.4). The flow ur is largest directly over the

slope and decreases upward and toward the coast.
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5.  DISCUSSION

. We have examined the effects of bottom Ekman layer friction and
slope topography on free internal Kelvin waves, using both steep and
weak siope models. Frictional effects are assumed weak and specific
slope topographies are chosen so that perturbation methods may be
used to obtain solutions. There are substantial differences between
the steep and weak stope models. The steep slope model represents
the low latitude case where the Rossby radius scale is assumed large
compared to the slope width. The slope topography is a small per-
turbation along the side wall and the remainder of the bottom is
flat. The bottom Ekman layer is continuous along the flat bottom
interior and along the slope and intersects the surface at the
coast. As a result, the frictional effect depends on the geometry
of the slope.

The weak slope model corresponds to the mid-latitude case where
the Rossby radius scale is assumed to be much less than the slope
width. The topography is assumed to be a small perturbation on a
flat lower boundary, and a bottom Ekman layer intersects a vertical
wall at z = -H, x = 0. For this case, we may examine frictjonal
effects with a flat bottom or topographic effects in the absence of
bottom friction.

The presence of bottom friction affects internal Kelvin waves
in several ways. Free waves are damped with a dimensional time
scale Tg' = (uEV]/Zf)'1 where u = [mn(1)(frictional}llEv1/2 is
related to the frictional correction to the wave frequency. Phase

shifts in" x and z are induced as well as an onshore flow.
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Table 2 shows estimates of the dimensional time scale Tf' for
the first mode internal Kelvin wave for various s, where s is a

measure of the exponential decay of N2

with depth [see (A1) in
Appendix A and Figure 12]. We choose EV]/2 = (.02 (Ekman depth =

40 m for H=2 km) and = 1.3 x 107°s”! (5° latitude). In Appendix A
we show that s = 3 yields a reasonable approximation to the modal
structure for the Peru case {Figure 13). For the weak slope, where
friction acts through the Ekman compatibility conditien at z = -1,
which involves the bottom velocity, we expect that a more realistic
N2 profile will yield a smaller bottom velocity and hence the effect
of friction will be reduced. Table 2 shows that the correction to
the frequency due to‘friction decreases and the spin down time
increases for increasing s, which supports the above argument. In
addition, Table 2 shows u]v(_])/v(o)! for the weak slope case and
indicates that the spin down time is almost but not exactly propor-
tional to the bottom velocity.

For the steep sTope case, the effects of a more realistic N2
profile is reversed, i.e., Tahle 2 shows that p increases and Tf'
decreases for increasing s. This is due to the fact that the mode
interacts with the Ekman layer over the slope as well as on the
bottom.

The expansion procedure used for both the weak and steep slope
problems becomes invalid when the wave period is the same order as
the spin down time. Table 2 shows that with Ev1/2 = (0.02, this

restriction is satisfied for T < 15 days.
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The estimates for decay time are relatively long compared to
estimates given by Brink and Allen (1978} for barotropic continental
shelf waves at mid-latitudes, reflecting both the dependence of spin
down time on latitude and the inhibition of bottom friction effects
by stratification. These long decay times may explain why free
coastally trapped waves with T = 5-10 days are cbserved to propagate
along the Peru coast between 2°S and 17°S latitude with little
evidence of frictional decay (Smith, 1978; Romea and Smith, 1982).

Frictionally induced phase shifts are proportional to A =
Ev1/2/w and are stronger for higher latitudes or Jower frequency.
Plots of the x-z phase dependence of p and v for the n = 1 mode
internal Kelvin wave (Figures 2a,b for the steep slope case and
Figures 9a,b for the weak slope case) indicate substantial qualita-
tive differences between the two cases. Phase shifts in v for the
steep slope case are largest near the surface, with a phase lag in x
of 30° over the Rossby radius scale with motions at the coast lead-
ing. Surface motions lead those below, and the vertical phase tags
are greatest near the surface and the coast. In contrast, phase
shifts predicted for the weak slope case are much smaller and motions
at the bottom lead those above.

The onshore flow due to friction Ug also depends on the model
uysed. For the steep slope (Figure 6), Ue js largest near x = 0, z =
0 due to the mass flux out of the Ekman layer at the point, while
for the weak slope (Figure 10) Ug is strongest near x = 0, z = -1.

Slope topography affects free internal Kelvin waves directly in

several ways: There is a change in wave frequency and alongshore
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phase speed, the modal amplitude is altered, and an onshore flow is
induced.

Changes in modal structure and phase speed due to topography
for the weak slope case agree with arguments by Hogg (1980) that
observations of baroclinic wave dynamics on a sloping bottom can be
rationalized with internal modes on a flat bottom by defining an
effective bottom depth as an average over the offshore decay scale.
The expression {4.16), which is the modification to the wave speed
due to a weak slope, is analagous to the result obtained by Miles
(1972) for barotropic Kelvin waves with the assumption that the
shelf width is small compared to the external Rossby radius scale.

For the steep slope case, corrections to the free wave speed
are dependent on details of the slope geometry. A slope which is
concave downward (Figure 4) acts to increase the speed while a slope
which is concave upward decreases the speed. A linear slope induces
a distortion to the x-z modal structure but does not affect the wave
speed to first order. Most continental slopes are concave downward,
therefore at Tow latitudes we may expect to see wave speeds that are
augmented relative to the predicted flat bottom wave speed. These
results are different from Miles' result for barotropic Kelvin waves
that the addition of a narrow's1ope always slows the wave speed
relative to the speed with a vertical wall.

The topographically induced onshore flow Ur for the weak slope
is strongest directly over the slope and increases offshore, matching
to an outer slope solution consisting of a topographic Rossby wave

(see Appendix B). For the steep slope, Ug is strongest over the
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- slope near the zero crossing of v, reflecting the interaction of the
0{1) w, which has a maximum near v = 0, with the slope.

Brink's (1982b, Figure 3) numerical calculation of free coastal
trapped waves for %1=0.15 and near 15° latitude with bottom friction
and realistic stratification and topography shows p at the bottom
leading p above and p at the coast leading p offshore. These results
agree with predictions from the weak slope model. An empirical
orthogonal function (EOF) for the 0.1-0.2 cpd frequency band using
alongshore velocity from the Lobivia and Lagarta moorings near 15°S
over the slope off the Peru coast in 650 m of water (Romea and
Smith, 1982, Figure 15a) shows v at 215 m leaving v at 58 m by 18°.
On the shelf near 15°S, at the Mila mooring in 120 m of water, an
EOF for the same frequency band as above shows v at 115 m leading v
at 19-m by 30°. Both these observations and the numerical calcula-.
tion suggest that, at 15°S, where LS/cSR ~ 0(1), the predictions of
the weak slope modes are more appropriate.

An EOF for the 0.1-0.2 ¢pd frequency band using alongshore
velocity at 5°S off the Peru coast from the C2 mooring over the
slope in 1360 m of water (Romea and Smith, 1982, Figure 15b) shows a
phase shift from near the surface (86 m) to below the zero Crossing
for the EOF (860 m) of 190°, with the surface Teading.l This EQF and
the EOF calculated for Lobivia and Lagarta are shown in Romea and
Smith (1982) to represent first mode internal Kelvin waves. These
observations at lower latitude where leﬁR << 1 are in qualitative

agreement with predictions from the steep slope model (Figure 2).
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Brink (1982a) also calculates free wave phase ﬁpeedsrfor real-
istic stratification and topography using a numerical model and
finds that, between 5° and 15° latitude, the wave speed is lower
thah the wave speed predicted with a vertical wall at the coast.
This is in agreement with predictions from the weak slope model.
Brink does not extend his analysis to lower latitude, however there
is a hint {see Brink, 1982a, Figure 2) that the free wave phase
speed begins to increase for latitudes less than 5°. This may
reflect the increase in phase speed predicted with the steep slope

model for Ls/aR << 1 when the slope is concave downward.
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CASE e(z) | Cn(1)
(a) -280(2+ %-22) cn(o)eo(nﬂR)'1
(b) 5022 —cn(o)eo(nﬂR)']
(c) ~€q2 0
(d) -ez/fzol; 0>z> -]zol cn(o)eo[]-cos(anlzol)](ZnﬂRjzol)']
egs ~lzgl >z > -1
(e) €gs 0>z > (-1 + [20]) -'c:n(o)eo[l—cos(ZmriZOI](ZerIzol)—1
eglz + 1 - Jzp]) /1415
(-1 + IZOL) >z 5> -]
(f) —eozflzol; 0>2z> -]z 0
Egs -lzol >z > (-1 + IZOI)
-eglz + 1 - 75717415
(-1 + |zg]) > 2> -1
Chapter IV
TABLE 1: 0(50) topographic corrections Cn(]) to the 0(1) phase
speeds cn(D) for each of the profiles €(z) shown in

Figure 4. For each case, A = 0, the shelf-slope width

at z = -1 is 603 and R = RO-



WEAK SLOPE STEEP SLOPE

3 IV(_”/V(O)I u U/IV(_”/V(O)I Tf' (days) u UlV{_-I)/V(O)l Tf' {days)

0 1 0.5 0.5 89 0.5 0.5 89
0.5 0.79 , 0.39 0.49 114 0.64 0.50 70
1 0.61 0.30 0.49 148 0.80 0.49 56
2 0.40 0.19 0.48 234 1.2 0.48 37
3 0.28 0.13 0.46 342 1.6 0.45 28
) 0.17 0.08 0.44 594 2.6 0.44 17
Chapter IV

TABLE 2: Ratio of bottom alongshore velocity Vi-1) to surface alongshore velocity V(O) for the n = 1
internal Kelvin wave for various s, where the stratification is given by R(z) = Roexp(sz).
Also shown are y - Icu]“)(fr'ictiona])l/EJ‘r for the weak and steep slope models. The dimen-
sional spin down time is listed and is given by T; = (E%fu)*], with Eir = 0.02 and f = 1.3 x
1075571 (5° 1atitude).

Gpl1
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FIGURE CAPTIONS
Figure 1: Steep slope model.

Figure 2: Frictionally induced phase shift 8 (in degrees) in (a) p
and {(b) v for the n = 1 internal Kelvin wave in the x*-z plane
for A](O) = 0.1, topography (3.25) with gg* = 0.1, and R = R

constant. e] > 6, implies 1 lags 2. Steep slope model.

0:

Figure 3: x*-z amplitude structure of v for the n = 1 internal
Kelvin wave for A](O) = 0, topography (3.25) with gg* = 0.3,
and R = Ro. Steep slope model.

Figure 4: Various slcpe topographies. The letters correspond to
the cases discussed in Section 3 and listed in Table 1; (a)
slope profile which is concave downward, (b) slope profile
which is concave upward, (c) linear slope.

Figure 5: Topographically induced scaled onshore first mode velocity
u/eq in the x*-z plane for 1 = 0, topography (3.25) with eo* =
0.1, and R = Rp- Steep slope model.

Figure 6: First mode u/e* in the x*-z plane for A](O) = €4 = 0.1,

topography (3.25), and R = Ry- Steep slope model.

Figure 7: Weak slope model.

Figure 8: Zero crossing for the n = 1 internal Kelvin wave for v in
the x*-z plane, with A = 0, £ = 0.1, and R = Ry (solid line).
Dotted line: predicted zero crossing for corresponding flat
bottom mode with bottom at z = -1. Dashed line: predicted
Zero crossing for corresponding flat bottom mode with bottom at
z = -1.05. Weak slope model.
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Figure §: Frictionally induced phase shift 6 (in degrees) in (a) p
and (b) v for the first mode internal Kelvin wave in the x*-z
plane for 11(0) =0.1,e =0, and R = RO' 81 > 62 implies 1
lags 2. Weak slope model.

Figure 10: Topographically induced onshore flow UT/E in the x*-z
plane with A = 0, e = 0.1, and R = RO, for the first mode
internal Kelvin wave. Weak slope model.

Figure 11: Frictionally induced onshore flow uF/kn(O) in the x*-z

plane with e = 0 and R = Ro’ for the first mode internal Kelvin
wave. Weak sTope model.

Figure 12: Profiles of R(z)/Ry for various s, where R(z) = Ryexp(sz),
and RO = constant.

Figure 13: Vertical structure of v for the first mode internal
Kelvin wave for various s. The modes are rescaled such that
v(ix =0, z=0) = 1. Also shown is the first dynamical mode

(labelled R) calculated using the N2 profile shown in Figure
14,

Figure 14: N2 profile, smoothed with a three point moving average,
calculated from {TD observations at 4°58.9'S, 81:33.0'W on
May 22, 1977. The procedure used to obtain and process the CTD
data is discussed by Huyer et al. (1978).



Figure IV-1

148



149

\\ \Oa
0°
e ——— 200 — ¥4
30° - ]7
60° 7
= st 90° j -05
120° ]
150° _ j
= 160°
P 170° (Q)
1 1 1 % 1 o)
‘ \ L Te——— —30" 0
_j0° =20
o° ) ' 7
20°
60° ‘%
' /80°
1 1 1 ] I 1 P call /90 (b -LO
1.0 0.8 0.6 * 0.4 0.2 0
Figure IV-2



150

~ 0
\ 208
-06
0.4 - z
/ 4-05
/
./
0q =
o12)

/ \ 1 1 -1.0
06 0.4 0.2 0

Figure IV-3



151

(c)

(b)

(a)

(f)

(e)

(d)

Figure 1V-4



06 04

Figure IV-5

152



153

05
0.2
I 3 ] i 2z -1.0

Figure IV-6



154

- N

Figure IV-7



-0.4

0.2

04

06

08

1.0

Figure IV-8

155



Figure IV-9

156

-1.0



157

-0.5

&*_/0

cs8

1.0

Figure IV-10



158

-002

Figure IV-11



-0.4

-0.8

159

R(Z)/RO
02 04 06 08 10
|
5
! 5
&)
9
)
Q
i <
i
n
-

Figure IV-12



Figure IV-13

160



DEPTH (m)

200

400

600

800

1000

N2 (sec? x 107%)
0.4 0.8

|l 1 1 T

Figure IV-14

161



REFERENCES

Allen, J. S., 1973. Upwelling and coastal jets in a continuously
stratified ocean. J. Phys. Oceanogr., 3: 245-257.

Allen, J. S., 1975. Coastal trapped waves in a stratified ocean.
J. Phys. Oceanogr., 5: 300-325.

Allen, J. S., and Romea, R. D., 1980. On coastal trapped waves at
Tow Tatitudes. J. Fluid Mech., 98: 555-585.

Allen, J. S., and Smith, R. L., 1981. On the dynamics of wind
driven currents. Phil. Trans. R. Soc. Lond. A,302: 617-634.

Brink, K. H., 1982a. A comparison of long coastal trapped wave
theory with observations off Peru. J. Phys. Oceanogr., in press.

Brink, K. H., 1982b. The effect of bottom friction on Tow frequency
coastal trapped waves. J. Phys. Oceanogr., 12: 127-133.

Brink, K. H., and Allen, J. S., 1978. On the effect of bottom
friction on barotropic motion over the continental shelf. J.
Phys. Oceanogr., 8: 919-8922.

Brink, K. H., Allen, J. S., and Smith, R. L., 1978. A study of Tow
frequency fluctuations near the Peru coast. J. Phys. Oceanogr.,
8: 1025-1041.

8rink, K. H., Halpern, D., and Smith, R. L., 1980. Circulation in
the Peruvian upwelling system near 15°S. J. Geophys. Res., 85:
4036-4048,

Clarke, A. J., 1976. OQbservational and numerical evidence for wind

forced coastal trapped long waves. J. Phys. Oceanogr., 7:
231-247.



163

Greenspan, H. P., 1968, The Theory of Rotating Fluids, Cambridge
University Press, Cambridge, 328 pp.

Hogg, N. G., 198D. Observations of internal Kelvin waves trapped
round Bermuda, J. Phys. Oceanogr., 10: 1353-1376.

Huthnance, J. M., 1975. On trapped waves over a continental
shelf. J. Fluid Mech., 69: 689-704.

Huthnance, J. M., 1978. On coastal trapped waved: analysis and
numerical calculation by jnverse iniration. J. Phys. Oceanogr.,
8: 74-92.

Huyer, A., Gilbert, W. E., Schramm, R., and Barstow, D., 1978. CTD
observations off the coast of Peru, R/V Mellville 4 March-22
May 1977, and R/V Columbus Iselin, 5 April-19 May 1977. Data
report 71, Oregon State University, Reference 78-18, 409 pp.

Kundu, P. K., Allen, J. S., and Smith, R. L., 1975. Modal
decomposition of the velocity field near the Oregon coast.
J. Phys. QOceanogr., 5: 683-704.

Miles, J. W., 1972. Kelvin waves on oceanic boundaries. J. Fluid
Mech., 55: 113-127.

Pedlosky, J., 1974. On coastal jets and upwelling in bounded
basins. J. Phys. Oceanogr., 4: 3-18.

Pedlosky, J., 1979. Geophysical Fluid Dynamics. Springer-VYerlag,
New York, 624 pp.

Rhines, P., 1970. Edge- bottom-, and Rossby waves in a rotating
stratified fluid. Geophys. Fluid Dyn., 1, 273-302.



164

Romea, R. D., and Smith, R. L., 1982. The compilation of
evidence for coastal trapped waves along the Peru coast.
In preparation.

Smith, R. L., 1978. Poleward propagating perturbations in sea
level and currents along the Peru coast. J. Geophys. Res.,
83: 6083-6092.

Vermersch, J. A., and Beardsley, R. C., 1976. A note on the
theory of Jow frequency waves in a rotating stratified
channel. Studies in Applied Math., 55: 281-292.



Chapter V

THE COMPILATION OF EVIDENCE FOR COASTAL
TRAPPED WAVES ALONG THE PERU COAST

165



166

1. Introduction

Evidence for the existence of coastally trapped waves along the
central Peru coast has been previously presented by Smith (1978). He
showed that measurements made during the CUEA (Coastal Upwelling
Ecosystems Analysis) JOINT-2 experiment in May-July 1876 and March-
May 1977 indicated poleward propagation of fluctuations in sea Jevel and
currents between 10° and 15°S with phase speeds of about 200 km day-1.
The structure of the cufrent fluctuations and the dynamical balances
suggested that the waves were internal Kelvin wave-like (Smith, 1978;
Brink, et. al., 1978; Brink, et. al., 1980). Although the freguency
range of the propagating fluctuations (0.1 to 0.2 cpd) was similar to
that of weather events, the fluctuations were not correlated with winds
measured at 12°S or 15°30'S and an equatorial origin was hypothesized.

Additional, and in some cases, considerably longer time series
measurements have become available for the same time period as the
CUEA experiment: meteorological and tide gage data from the Ecuador
and” Peru coasts equatorward of 10°S, and current meter data from the
ESACAN (Estudio del Sistema de Afloramiento Costerc en el Area Norte)
experiment conducted by the Institut fur Meersukunde an der Universitat
Kiel and Instituto del Mar del Peru at 5°S off the Peru coast during
March-May 1977. The ESACAN data set is of particular interest because
it provides an opportunity to study the wave structure at Jower
latitudes and the possibility of linking equatorially generated
fluctuations to those observed between 10° and 15°S during the CUEA
experiment.

The combined data set includes current and temperature measurements
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near 5°, 10°, 12°, and 15°S off Peru, coastal winds near 4°, 7°, 12°,
and 15°S, hydrographic sections normal to the coast at those latitudes,
and sea level from the tide gages on the Galapagos Islands (0°27'S) and
on the South American continent between 2° and 17°S. Atmospheric
pressure data were obtained near many of the tide gages. Presentation
and basi¢ analysis of the data near 15°S may be found in Brink, et. al.
(1980), and a discussion of the ESACAN data near 5°S 1is given by
Fahrbach, et. al., (1981). The statistics of the CUEA and ESACAN
current meter data are given by Brockmann, et. al., {1980), in a study
on the Peru undercurrent,

In this study we utilize the CUEA and ESACAN current meter and
coastal wind data and the longer tide gage records tc reexamine the
conclusions presented by Smith (1978) and to extend his analyses
farther eqguatorward. The locations of the observations used are shown
in Figurel. A more detailed discussion of the data set is presented
in the Appendix. Unless explicitly stated otherwise, the time series
data presented and analyzed in this paper have been initially subjected
to a Tow pass filter (half power point = 1.96 days) to eliminate

diyrnal and higher frequency phenomena.

2. The Longer Time-Series

The longest reliable data records are those of sea level and
atmospheric pressure at La Libertad (2°12'S), Callao (12°03'S), and
San Juan (15°21'S), and those of current and coastal wind near San Juan.
After low-pass filtering to remove diurnal phenomena, the common period

for continuous data extends for 405 days from 27 March 1976. The
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atmospheric pressure records were used to 'adjust' sea level to

provide an equivalent to a subsurface pressure, i.e., the 'inverted
barometer' effect was removed by adding the atmospheric pressure

(in mb) to sea level (in ¢m). The adjusted sea levels, the current
measured at 55 m over the shelf {120 m) at 15°S and the coastal wind at
San Juan are shown in Figure 2.

The dominant fluctuations in sea level are clearly similar at
the three tide gage stations, and the tendency for the extrema at a
southern station to lag the egquivalent extrema at a northern station may
be seen in Figure 2 (cf., Figure 2 in Smith, 1978). The relation of the
shelf current fluctuations to those of sea level is clearly apparent,
e.g., equatorward (northwestward along the coast) flow occurs only in
connection with sea level minima. The coastal wind is remarkably uniform
in direction and is apparently not the cause of the fluctuations in the
coastal current.

Figure 3 shows the autospectra of Callao and San Juan sea levels
and the coherence and phase between them for the 405 day iong records.
The sea level records have been adjusted for atmospheric pressure ’
effects. The high coherence and the linear dependence of phase on
frequency, for frequency less than 0.13 cpd and in the 0,15-0.2 cpd
band, indicates non-dispersive poleward propagation at about 240 km day'l

Although the cross spectrum suggests that the non-dispersive wave-
1ike propagation extends to lowest frequency, there is a theoretical
lower bound on fregquency for transmission along the coastal waveguide.

This frequency cutoff corresponds to the approximate condition for

coastal trapping, given by o2 > (8/%)2/4, where ¢ is radian frequency,
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% is the alongshore wavenumber, and 8 is a measure of the variation of
the Coriolis parameter with latitude {see Allen and Romea, 1980, for an
additional discussion of this point). For example, the condition is

6 -1 (

satisfied for ¢ > 4 x 10~ period T < 18 days) for an alongshore

phase speed ¢ = g/% = 240 km day'1.

Auto and cross spectra are shown in Figure 4 for La Libertad and
Callao sea level. The distance between these stations is much greater
(1200 km) than between Callao and San Juan (450 km), and the coherence
is generally lower. However, there is again a peak in the coherence
near 0.17 cpd and the 0.16~0.19 cpd band is coherent at or above the
95% confidence level, A linear dependence of phase on frequency for
frequencies less than 0.2 cpd is again suggested, with the phase
consistent with poleward propagation at about 240 km day‘l.

In contrast to the sea level, the atmospheric pressures at
La Libertad, Callao, and San Juan are in phase and highly coherent for
freguency w < 0.2 cpd. Figure 5 shows the spectral computations for
atmospheric pressures at La Libertad and San Juan, which are the pair
with the greatest alongshore separation ( >1500 km). The figure
indicates that the wave-like propagation observed in sea level is not
a forced response to large scale atmospheric pressure systems.

If the fluctuations represent baroclinic coastally trapped waves
with the alongshore velocity in geostrophic balance, sea level and
currents should be highly coherent. We shall use both sea level and
currents to demonstrate propagation from 2° to 17°S and therefore we

examine their relationship. The phase relation should be 180° for

inviscid motion, i.e., southward flow near the coast should be
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associated with higher sea level near the coast.

Figure 6 shows the cross-spectra between sea level at San Juan
and alongshore current at M (55 m). The alongshore direction has been
defined as the principal axis direction from the current record. This
is close to the orientation of the local isobaths (Smith, 1978).
Alongshore current and sea level are highly coherent for v < 0.2 and
nearly 180° out of phase, consistent with a geostrophic balance.
Friction may account for the lack of an exact 180° phase relationship,
or it may simply result from the fact that the current meter location
is 50 km equatorward of the tide gage. This latter fact would account
for the observed phase difference near 0.17 cpd, assuming a propagation
speed of 240 km day-].

Finally, we examine the relationship between local winds at
San Juan and the alongshore current at M (55 m). The cross-spectrum
(Figure 7) shows relatively high coherence for 0.06-0.09 cpd but Tow
coherence for 0.1-0.2 cpd. Although this suggests that very Tow
frequency motions may be locally wind driven, it supports the hypothesis
that propagating disturbances in the 0.1-0.2 cpd band, which are
observed in the long sea level records, are not locally wind driven.

The analysis of the long records is consistent with the findings
of Smith (1978), based on considerably shorter records. The long
records have provided greater confidence and resolution in the cross-
spectral computations. The frequency band centered at 0.17 + 0.02 cpd
is especially suggestive of free propagating coastally trapped waves
(the puzzling ‘drop out' of coherence near 0.13 cpd seems real, and

is also suggested in the analysis by Smith (1978) of the 72 day records).
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In the analysis of the shorter current meter data from March-May 1977,

we shall focus on the frequency band centered at 0.17 cpd.

3. Observations during March-May 1877

The most extensive and complete data set exists for the period of
March-May 1977. Data from all sites shown in Figure 1 were obtained
during that period. Brink, et. al., (1980), using the data near 15°S,

s Vo, T

showed that the local subtidal momemtum balances (Vt’ Pys Vys Iy

3 Vs py)
and the empirical modes were consistent with those expected of free
internal Kelvin waves. Using the spatially extensive data set from
the array of measurements indicated in Figure 1, can we demonstrate
that consistent poleward propagation of the fluctuations in current and
sea level extends from the equatorial zone? Can we eliminate the
coastal winds as the dominant driving force for the fluctuations? Are
the empirical modes at 5°S and 15°S (the latitudinal extrema of the
current measurements) similar? The latter is of interest because of
the theoretical findings of Allen and Romea {1980) that coastally
trapped baroclinic fluctuations propagating poleward from the
equatorial region may take the form of barotropic shelf waves at mid-
latitudes.
(a) Sea Level

The additional sea level data series available during March-May
1977 are not especially useful because the overall common period with
good quality data is too short for meaningful spectral analysis; the
Talara and Matarani tide gages malfunctioned at different times during

the period. However, evidence for consistent poleward propagation in
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sea level perturbations can be easily seen and summarized by the lagged
cross-correlation between pairs of stations. Since the cross-spectral
analysis of the long sea level records suggests non-dispersive
propagation, the time lag for Which the maximum correlation occurs
between sea level stations should depend linearly on the alongshore
separation of the stations.

For each pair of sea level records, we have used the longest
common record length that extends into the March-May 1977 period to
compute lagged cross-correlations. In Figure 8, the time lag for
which maximum correlation is obtained is plotted as a function of
alongshore separgtion for 1) each adjacent pair of sea level records,
2) each record vs. Callao sea level, and 3) San Martin vs. Matarani sea
level, which we show because it has the same spatial separation, but
displaced latitudinally, as the subsurface pressure gages at P and
near M. With the exception of the open circle, which corresponds to the
Talara-Callao pair, the correlations at the lag indicated in Figure 8
are all the highest correlations obtained for the pair and are signifi-
cant at the 99% level, i.e., the probability that the caorrelation
coefficient would result from uncorrelated data is less than 0.01. The
maximum correlation between Talara and Callao occurs near 0 lag; the
apen circle represents the highest lagged correlation, and is significant
at the 98% level. The conclusion from the lagged correlations of this
suite of data, which extends from nearly 2°S to 17°S, is the same as
that from the cross-spectral analysis of the three longer sea level
records: perturbations in sea level propagate poleward at about 240 km

day_].
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The time lag for maximum correlation between the atmospheric
pressure at Callao and that at La Libertad, Talara, San Juan, and
Matarani is also shown in Figure 8., A well defined maximum correlation
(correlation coefficient greater than 0.9 with significance level
greater than 99.9%) at lags less than or equal to 0.5 days exists.
Moreover, the pressure data are not significantly correlated {95%
confidence level) at lags commensurate with the observed propagation
of fluctuations in sea level. This corroborates the findings from the
cross spectral analysis of atmospheric pressure that the pressure
systems do not move in such a way as to force the observed propagation
of sea level,

{b) Current Velocity

The combined ESACAN-CUEA current meter data set from March-May 1977
proyides a useful alongshore array of current observations that
efucidates the structure and behavior of the propagating fluctuations
better than sea level. The current meter data used here have been
rotated into a coordinate system in which the alongshore direction is
defined by the principal axis of the vector time series.

We first look at the 5°S and 12°S data since the currents from
10°S and 15°S have been analyzed by Smith (1978) and have been
shown to be coherent with those at 12°S, with phase differences
consistent with free propagating coastal trapped waves, At 5°S, we
use only the C2 mooring, which is located over the slope about 50 km
from the coast in 1360 m water depth, and which had current measurements
from 86, 126, 197, 560, and 860 m. Two other moorings were deployed

at 5°S, one on the shelf nearly within the.bight of the Bay of Paita
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and the other 25 km farther offshore from C2. The current meters from
the shelf mooring are 'contaminated' by motions in the Bay of Paita
(Fahrbach, et. al., 1981) and the current measurements at the mooring
farthest offshore were too deep (the shallowest current meter was at
195 m) to clearly reveal the baroclinic waves.

In Figures 9 and 10 we show the spectra and cross-spectral
computations based on the hourly alongshore velocity data from the
86 m current meter at C2 and the 97 m current meter at Y. In the
subtidal frequencies high coherence is found in the 0.00625-0.00804 cph
(0.15-0.19 cpd} band with a maximum at 0.00714 cph (0.17 cpd). There
is a shoulder or relative maximum in both the C2 and Y variance spectra
in the frequency band with high coherence. This is also found in the
Peyote (10°S} current and Callao sea level spectra for this period (cf.,
Figure 8 in Smith, 1978). Figure 10 indicates the phase by which Y
leads C2 (or, eguivalently, C2 lags Y). A phase plot is ambiguous in
showing whether a signal actually teads or lags: Figure 10 may be
interpreted as C2 lagging Y by 115° or C2 leading by 360° - 115° = 245°,
The ambiguity is resolved by considering the phase between other pairs:
C2-P, P-Y, P-M, Y-M and by considering the lagged correiation; {2 leading
Y by 245° 1is the quantitatively consistent interpretation. The C2 and
Y moorings are 900 km apart along the coast. The phase difference
between them leads to an estimated alongshore propagation speed of
225 km day'] poleward.

A geostrophic balance for the alongshore velocity is evident
from the shorter current measurements obtained during March-May 1977.

The cross-spectrum between alongshore current at C2 (86 m) and sea level
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at Talara shows high coherence (greater than the 95% confidence level)
in the 0.15~0.19 cpd freguency band with a maximum (coh2 = 0.72) at

0.17 cpd. Talara sea level lags by 154°, which is within error of 180°
and is displaced in the direction expected since Talara is equatorward
of C2. At 12°S, Callao sea level and the alongshore current at Y (97 m)
are coherent above the 95% confidence level in the band 0.10-0.19 cpd

2 o 0.79) and with a phase

with a maximum coherence at 0.16 cpd (coh
difference of 180°. These spectral calculations support our hypothesis
that the sea level and current fluctuations are manifestations of the
same phenomena, and that the fluctuations represent coastally trapped
baroclinic waves.

The most efficient way to examine the array of alongshore current
meter data is to compute empirical orthogonal functions (EQFs),
utilizing the method of EQF analysis in the frequency domain (see
Wallace and Dickinson, 1972, for details of the method). This
technique has been successfully used by Wang and Mooers (1977) for
analyzing low frequency fluctuations off the west coast of the United
States. The analysis expresses the time series as a linear combination
of the eigenvectors of the cross-spectrum matrix for the frequency
interval of interest, and has the advantage over individual cross-
spectra of including many records simultaneously. The method is
closely related to the use of EOFs in the time domain applied to
band-pass filtered data, however by using the cross-spectral matrix we

obtain the phase as well as the magnitude of the correlation between the

series, i.e., we obtain complex eigenvectors.
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For each of the EQFs calculated in this and the following sections,
we utilize the longest time series possible, defined by the common
record length of the measurements involved. In order to isolate the
wave band, and guided by the result of the individual cross-spectral
computations, we choose an upper bound on the freguency interval near
0.21 cpd and band average 5 spectral estimates to obtain 10 degrees
of freedom,

To give approximately equal weight to each latitude we have
chosen two current meter records at each of the four latitudes
{C2, P, Y, and M); to include the baroclinicity we choose the uppermost
current meter and the current meter nearest 100 m. At C2, the 86 m and
126 m records had to suffice but at P, Y, and M the current meter
records were from 37 m and 96 m, 37 m and 97 m, and 39 m and 100 m,
respectively. The common record length for the four locations is
45,25 days beginning 0000 UT 2 April 1977, and we choose a frequency
interval of 0.118-0.213 cpd. Figure 11 shows ampiitude and phase
(relative to Y) as a function of alongshore separation for the first
EQF, which accounts for 72% of the to?a] variance in the frequéncy
interval. Also shown on Figure 11 is the fraction of the variance each
record contributes to the first EOF, which corresponds to the coherence
squared between each record and the first EOF. This is useful in order
to decide whether the EOFs represent a physical entity or are a
fabrication of the computational statistics.

At each Jocation alongshore the velocity pairs are approximately
in phase and a linear regression using the 8 points gives an alongshore

phase speed of 204 km day'] for frequency = 0.17 cpd (the 1ine on the
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phase plot indicates the behavior for a phase speed of 240 km day'1
for frequency = 0.17 cpd). With the exception of the deeper record
at €2, each velocity record is highly coherent with the first EOF. The
variance in the deeper record at (2 is predominantly in the second EOF.
This calculation indicates that fluctuations in alongshore velocity
propagate coherently between 5°$ and 15°S, consistent with conclusions
from individual cross-spectra.

The EOF amplitude is in the range 1-3 cm sec”! for C2 and P and
3-6 cn sec”! for ¥ and M, suggesting a doubling of the amplitude
between 5° and 15°S. This may be rationalized as a consequence of the
conservation of wave energy flux. Assuming the alongshore group
speed is constant, which is the case since the waves are non-
dispersive, the total energy density of the waves remains the same as
it travels along the coast {neglecting frictional and other dissipative
effects). Since the offshore scale of the wave decreases as it travels
poleward, its ampiitude must increase. An estimate of this increase

is given by (see, e.g., Miles, 1972; Allen and Romea, 1980)

(Ayg/hs) = (F15/15)1 2, (3.1)
or

(AIS/A5) = 1.72, (3.2)

where A and f are local values of amplitude and Coriolis parameter and

the subscripts refer to latitude.



The predicted amplification with latitude relative to Y from
{3.1) is shown in Figure 11 for the velocities near 100 m, This
agreement between observations and theory is consistent with Brink's
{1982a) conclusion that frictional decay scales for the Peru coast
are very long, and also helps explain why waves are so persistent
over long distances.
(c) Wind Forcing

We can use the same EOF technique to analyze the coastal wind
data. Figure 12 shows the statistics for the first two EQFs formed
from the alongshore components {rotated into their principal axis
frames} of the coastal winds at Talara, Chiclayo, Callao, and San Juan.
The record length and frequency interval are identical to those for the
velocity EOFs of Figure 11, The first EOF contains 63% of the total
variance while the second EOF contains 28%. We show both EOFs because
the winds at Talara and Chiclayo fall primarily into the second EOF
while the winds at Callao and San Juan fall primarily into the first
EOF. This may be seen from the coherence plot in Figure 12. In addition,
the modal amplitude of the first EOF is largest for Callao and San
Juan while the amplitude of the second EQF is largest for Talara.
The phase of the first EOF suggests that the Callao wind leads the
wind at San Juan with a phase consistent with poleward propagation at
200 km day'1. There is a hint that the phase behavior of the first
EOF extends equatorward to Chiclayo, however the coherence of the Chiclayo
wind with the first EOF is extremely Tow. The phase structure of the
second EOF indicates that the winds at Talara and Chiclayo are

approximately in phase, with a suggestion that Chiclayo leads Talara.



179

Using the leng records, we have shown (Figure 7) that the local
winds at San Juan and the alongshore current at M are not coherent in
the 0.1-0.2 cpd frequency band. Table 1 shows the coherence squared
and phase from cross-spectral calculations using coastal winds at
Talara, Chiclayo, Callao, and San Juan, and alongshore currents at
C2, P, Y, and M. The record length and freguency interval are
identical to the velocity EOFs of Figure 11. The c¢oherence is Tow
(1ess than 95% significance level), particularly for local winds and
currents. However, there is a suggestion that the coherence is higher
for current and wind records which are spatially separated where the
wind is equatorward of the current {e.g., Chiclayc wind and M 39 m),

Figure 13 shows the statistics for the first EQOF for winds and
currents nearest 100 m for the same record length and frequency interval
as for igures 11 and 12. The current velocities are normalized to
unity total variance, as are the winds, to give the two a priori
equal weights. This procedure was applied by Wang and Walsh (1976)
and Brink, et. al., (1978) in diffgrent problems involving modes of
mixed quantities. The phase behavior of both the current fluctuations
and the wind is consistent with poleward propagation at about 200 km
day—], suggesting the possibility of resonance forcing. However, the
phase relation between currents and wind shows the currents leading
by approximately 90°. In addition, the coherence plot indicates that
all the currents are highly coherent with the first EQOF while all the
winds are not.

This calculation supports Brink's (1982b) conclusion, based on a

forced wave hindcast model using observed winds and currents as input.
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that the wind driving along the Peru coast between 5°S and 15°S
accounts for no more than 25% of the amplitude of the predicted

current time series,

4. Vertical Modal Structure

In order to examine the vertical structure of the fluctuations
in the currents we compute vertical EOFs, using the alongshore velocities
from C2 at 5°S and L at 15°S. These two locations provide the
greatest depth range and the highest vertical resolution and they are
both located over the continental slope at about an eguivalent
distance offshore (when scaled by the baroclinic radius of deformation)
(Figure 14). The estimated Rossby radius scale §p is larger at 5°S
than at 15°S due to a factor of f in the calculation of &p, i.e.,

SR = ¢/f, where ¢ is alongshore phase speed. In Figure 14, where we
have scaled the offshore coordinate of each profile with the local f,
Sp spans the entire shelf-slope region at 5°S while at 15°S &, extends
out from the coast to about 2000 m depth over the slope.

At C2 a common record length of 47.5 days was available while for
L we use a record length of 53.75 days. With the convention described
above, the fregquency intervals to maintain 10 degrees of freedom are
0.126-0.211 cpd at C2 and 0.131-0.206 cpd at L.

Figures 15 a,b show amplitude, phase and coherence as a function
of depth for the first EOF at C2 and L, respectively. In eaéh case the
first EOF contains most of the total variance in the frequency interval
{82%at C2 and 87% at L) and the higher EQFs all contain less than

12% of the total variance.
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Both EOFs are concentrated near the surface; the EOF at C2 has
a zero crossing at about 700 m depth, while the indication is that the
EOF at L has a shallower zero crossing. The coherence of each record
with the EDF is high near the surface and very low near the zero
crossing of the EOFs, as would be expected. With the exception of the
points near the zero crossing, where the phase information may be
regarded as noise, both EOFs are within + 20° of being in phase over
their whole depth.

In order to establish the physical significance of the eigen-
vectors, it is necessary to show consistency with dynamical constraints.
Accordingly, we have used the smoothed NZ(z) profiles shown in Figure 16
to calculate the 'flat bottom' dynamical vertical modes at 5° and 15°S,
obtaining estimates of vertical structure, Rossby radius, and alongshore
phase speed for each mode. Comparison with other N2 profiles obtained
from other CTD observations which were made during the course of the
experiments in 1977 shows that the profiles are typical. Figure 12 in
Smith (1978} also shows the secondary maximum an N? between 300 and 400
m depth for a CTD station near 16° in August, 1976, 55 km from the
coast, suggesting that this structure is persistent in both space and
time.

The mode shapes were computed by integrating the governing
equations by means of a fourth order Runge-Kutta scheme, with a
trial and error procedure for determining the proper eigenvalue
so that the boundary conditions are satisfied (see Kundu, et. al., 1875
Section 5 for a discussion of the eguations and methods). Since the

density profiles extend only to 780 m depth at 5°5 and 980 m depth
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at 15°S, the N2 profile has been extrapolated in both cases to 0.1 x 10"5

s~ at 4000 m depth by an exponential profile below 600 m. The
starting value for the exponential profile is chosen to be an average
of the measurements between 600 and 780 m depth. Parameter studies
indicate that the mode is insensitive to the choice of exponential

2 at the bottom increases the

structure, e.g., doubling the value of N
calculated phase speed of the deep ocean mode by less than 10%.

The dynamical modes are computed assuming a flat bottom, and
Figures 17 and 18 show the first dynamical modes corresponding to
various mean depths. The alongshore phase speeds, zero crossing depths,
and Rossby radii of the first dynamical modes are listed in Table 2.
Also plotted on Figures 17 and 18 are the vertical structures of
the first EOF at each location. At 5°S the first dynamical mode
calculated with the actual mooring depth {1360 m) gives a zero crossing
around 440 m which is shallower than that estimated by the first EOF.
For a bottom depth HO of 4000 m {an estimate of the deep ocean depth)
the zero c¢rossing is 1675 mywhich is too deep. A similar behavior is
obseryed at 15°§, where the actual mooring depth is 650 m.

An ayeraged bottom depth over the scale Sp = 180 km at 5°S is
approximately 2000 m, while the averaged bottom depth at 15°S over
the Rossby radius scale 6p * 60 km is approximately 1400 km, The
structures (particularly the zero crossing) of the first EOFs at 5°S
and 15°S are approximated by the first dynamical modes calculated with
Hp = 2000 m and HO = 1400 m, respectively, suggesting that in both cases
the wave structures are consistent with a constant bottom depth

which is deeper than the local mooring depth but shallower than the
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the deep ocean depth, and which is approximately equal to the

averaged shelf-slope topography over the local Rossby radius scale.

5. Inertial Motions

The Tocal inertial frequency at the C2 mooring is 0.175 cpd, which
is almost exactly (to within the resolution of the spectral computations)
the frequency at which the maximum alongshore coherence between the
currents from 5°S to 15°S and between the sea level from 2°S to 15°S
is observed. In other words, the 0.16«0.19 cpd frequency band is
dominated by free baroclinic coastally trapped waves which propagate
poleward through latitudes where their frequency is equal to the local
inertial frequency. This is not surprising- Kelvin waves are well
behaved when their frequency is equal to f (sce Pedlosky, 1979, p.81)-
but it is of interest to examine the relative strength of the inertial
signal and coastally trapped waves at 5°S. Evidence from other latitudes
suggest the inertial signal is relatively weak (see Figure 2 in Brink,
et. al., 1980, and Figure 9 above).

We use the rotary spectrum (Mooers, 1973) to examine the velocity
records, with the expectation that the inertial signal will be
evident due to its preferred rotary sense. The method decomposes
a two dimensional vector time series into clockwise and counterclockwise
rotating parts. The sum of the two components of the rotary spectrum
yields the conventional kinetic energy spectrum at a given freguency.

Figure 19 shows R, the ratio of the variance of the counter-
clockwise to clockwise rotating parts for the velocity time series

at C2 and L, centered around three frequencies, calculated with the
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rotary spectrum. The frequencies chosen are 0.09%4 cpd, 0.187 cpd (the
nearest spectral estimate to the local inertial frequency at 5°S) and
0.516 cpd (the nearest spectral estimate to the local inertial

frequency at 15°S). A record length of 42.75 days was used for both

C2 and L, starting 0000 UT 2 April 1977. For 0.094 cpd, well below

the local inertial frequency at either 5° or 15°S, R is centered around
1 for both C2 and L for all depths, reflecting the lack of preferred
rotary sense for frequencies much less than f. For 0,187 cpd, there

is significantly more energy in the counterclockwise direction at C2
near the surface while R = 1 for L, i.e., in the wave band the

signal which shows a preferred rotary sense at 5°S is nearly rectilinear
at 15°S, Near the local inertial frequency at 15°S the signal at L
shows significantly more energy in the counterclockwise direction near
the surface with a decay in R with depth. At C2, the frequency 0.516
cpd is superinertial, i.e., greater than f, and R = 1 with the exception
of one point near 200 m depth. This point perhaps reflects the presence
of superinertial waves with a preferred rotary sense.

We next form EOFs using u-v pairs from five depths at C2. As for
the vertical mode of alongshore velocity at C2, we choose a maximum
common record length of 47.5 days and a freguency interval of 0.126-
0.211 cpd, which includes the inertial frequency. The result for the
first four EQFs, which contain 97% of the total variance in the band,
are shown in Table 3. The first EOF contains 56% of the total variance,
and v >> u (the ratio v/u is 3.6, 4.3, and 8 at 86, 126, and 197 m,
respectively}. These ratios v/u >> 1 are consistent with predictions

for internal Kelvin waves. The signals at 560 and 860 m both have a
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low coherence with the first EOF and the v/u ratios are low, reflecting
the Yow amplitude of the first mode internal Kelvin wave near its zero
crossing., The phase relations for the first EQF are such that the
alongshore currents at all depths are in phase to within £ 30° and the
top three u-v pairs rotate countercliockwise {(u leading implies
counterclockwise rotation) while the bottom two u-v pairs rotate
clockwise. This agrees qualitatively with predictions that perturbation
effects on free internal Kelvin waves due to topography give u=v
pairs which are 90° out of phase with counterclockwise rotation in
the upper layer and clockwise rotation in the lower layer (Allen and
Romea, 1980). The error in the phase relation for the u-v pairs is
perhaps related to the fact that the coherence of u with the first EOF
is Tow..

The remaihing three EOFs which contain a non-negligible amount
of the total variance in the band show vertically averaged values of
v/iu of 1.94, 1.6, and 1.14 for the second, third and fourth EOF,
respectively. These values jndicate a much higher level of
horizontal isotropy in the velocities than that calculated for the
first EOF. Since we do not expect inertial oscillations to be
coherent in the vertical over depths greater than a few tens of
meters (Fomin and Savin, 1973), it is difficult to interpret these
EOFs. Indeed, they might represent only noise. However, the EOF
decomposition implies that first mode internal Kelvin waves
contain greater than 50% of the total variance in the 0.126-0.211 cpd
band and that inertial oscillations account for less than 50% of the

total variance.
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6. Discussion

Sea level data from 2°12'S to 17°S on the west coast of South
America show that low frequency (0.1-0.2 cpd) fluctuations propagate
poleward along the coast with phase speeds similar to those predicted
for first mode baroclinic coastally trapped waves. 405 day long sea
level records of excellent quality at La Libertad, Callao, and San
Juan provide the basic evidence for the process, while shorter sea
level records from other locations provide supporting evidence.

Current velocities measured at 5°, 12°, and 15°S along the Peru
coast show that the sea level and currents are coherent and approximately
180° out of phase, as expected for baroclinic coastally trapped waves.
The empirical orthogonal function of alongshore velocity along the
Peru coast shaws the amplification of the waves as they travel poleward
and the Rossby radius scale decreases. The phase speeds estimated
from the EQF agrees with the results from the long sea level records.

The fiuctuations do not seem to be the result of coastal wind
forcing near the equator and the current fluctuations are of sufficient
magnitude to mask the effects of local winds to at least 15°S. This
conclusion is consistent with results from Brink's (1982b) forced wave
calculation, where he used observed winds and currents along the Peru
coast as input teo hindcast alongshore currents and sea level in the
0.1-0.2 cpd frequency band. The results from the model suggest that
most of the observed sea level and current fluctuations in the band are
due to free waves originating equatorward of 5°S, while between 5° and
15°S winds contribute 1ittle to the observed variance.

Empirical orthogonal function decomposition of the alongshore



velocity fields at 5° and 15°S indicate that about 75% of the signal in
the 0.1-0.2 cpd frequency band is due to a mode whose vertical structure
and alongshore phase speed are consistent with a first mode internal
Kelvin wave. The vertical structure of the mode at both locations is
reasonably well approximated by the structure of the first vertical
dynamical mode, calculated using realistic stratification assuming a
flat bottom equal to the shelf slope depth averaged ovef the local
Rossby radius scale. This behavior has been reported by Hogg (1981)

in connection with internal waves near Bermuda, We note, however, that
alongshore phase speeds obtained with a deep ocean bottom depth are in
better agreement with observations than speeds obtained with the
averaged slope topography.

Allen and Romea (1980) have shown theoretically that coastally
trapped baroclinic fluctuations propagating poleward from the equatorial
region may take the form of barotropic continental shelf waves at
mid-latitudes. The EOFs calculated for vertical structure suggest that
the transformation of modal structure has not taken place between 5°
and 15°S,

Brink (1982a) has calculated wave properties using a numerical
model with realistic stratification and shelf-slope topography. He
finds that the first mode internal Kelvin-like wave near 15°S has a
zerg crossing over the slope at 1200 m depth, less than the zero crossing
depth predicted with a flat bottom corresponding to the deep
ocean depth. In addition, he finds first mode phase speeds which are
less than those predicted with a deep ocean depth. These results

support the observational results that the structure of internal
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Kelyin waves depends on an zyeraged bottom topography.

The interesting question remains: Where and how are the
fluctuations first energized? Luther (1980) suggests that a basin
wide barotropic oceanic response to large scale atmospheric forcing
exists in the 4-6 day period band at all longitudes from 60°N to 60°S
latitude. We have shown that the fluctuations along the Peru coast are
not a response to atmospheric pressure effects, which are connected
with large scale atmospheric weather systems. Moore {1968) (see Moore
and Philander, 1977} has shown that equatorially trapped free waves
incident on an eastern boundary may be partially transmitted north
and south along the coast as boundary trapped internal Kelvin waves
(see also Anderson and Rowlands, 1976, and Cane and Sarachik, 1977).
Wunsch and Gi1l (1976) show evidence that peaks in equatorial sea level
are manifestations of first baroclinic mode inertial-gravity waves.
Luther (1980) reports peaks in spectra of observed sea level in the
equatorial Pacific which correspond to the first baroclinic first
meridional inertial-grayity wave with frequency 0.17-0.20 cpd and
the second baroclinic first meridional mode with frequency 0.13-0.15
cpd. These modes are equatorially trapped with most of their energy
equatorward of 4°, Ripa and Hayes (1981) have presented spectra of:
bottom pressure and temperature in shallow water from the western
side of the Galapagos Islands at latitudes between 1°24'N and 0°59'S,
which show relatively energetic baroclinic motions in the 0.18-0.2 cpd
frequency band. Luther (1980) also reports 35-80 day oscillations in
equatorial sea level which he interprets as atmospherically forced

equatorial Kelvin waves with phase speeds of 230 km day']. These lower
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frequency waves could also be transmitted south atong the Peru coast.

Measurements of sea level (e.g., Figure 3} indicate high coherence
for o < 0.1 cpd and in the 0.15-0.2 cpd band. Smith (1978) shows the
cross spectral analysis of current meter observations at 12° and 15°S
for May-July 1976 and March-May in Figures 5, 6, 8, and 9 of that paper.
During the 1976 period there was coherent propagation for « < 0.1 cpd
and near 0.2 cpd but not near 0.14 cpd. The spectra show relatively
little energy near that freguency. For the current meter data taken in
the 1977 period, the spectral peaks are near 0.17 (Figure 10) and the
cross spectra show coherent propagation from 5° to 12°S in the band
centered around 0.17 cpd. Thus the observed frequency band for forced
first baroclinic first meridional equatorial inertial-gravity waves
coincides with the observed frequency band for poleward propagating
fluctuations along the Peru coast. The gap in coherence bLetween
motion in the 0.1-0.2 cpd band. and lower {(w < 0.1 cpd) frequency motions
may reflect the separation in freguency space of equatorial Kelvin and
inertial-gravity waves.

A sea level record from Baltra (0°27'S, 90°17'W) at the Galapagos
Islands is the only data available that enables us to directly extehd
our analysis and trace the fluctuations in sea level to the equator.
The Baltra record has several gaps which prevents us from using one
long record. The auto-spectrum of six-hourly sea level at Baltra was
calculated with three-448 point segments which were ensemble averaged.
The cross-spectrum between sea level at Baltra and La Libertad and
La Libertad and Callao was computed for the same segments. The auto-

spectra of sea level at Baltra and La Libertad for this time period
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show peaks at 0.205 and 0.188 cpd, respectively, with the coherence
above the 90% significance level in the 0.187-0.214 cpd band. The peak
coherence, which is significant at 95%, is at 0.205 cpd, with Baltra
teading by 398°. Baltra and La Libertad are separated by about 1050
km, which gives a phase speed of about 200 km day']. For the same
record periods, Callao has'a sﬁectra] peak at 0.170 cpd and leads La
Libertad by 300°, which implies a phase speed of 240 km day-]. For the
cross-spectrum between sea level at La Libertad and Callao for the

same record periods, the 0.161-0.187 cpd band is coherent above the

90% significance level, with a maximum at 0.17 cpd. The phase relation
between Baltra and La Libertad is ambigquous since we have no
intermediate points to add confidence to our interpretation of the
sense of phase propagation. In addition, the coherence between Baltra
and La Libertad is not as good as for the longer time series of sea
Tevel along the Peru coast. MNevertheless, the evidence suggests an
equatorial origin for the fluctuations along the Peru coast, although

more detailed observations are nacessary,

»
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WIND

Current Talara Chiclayo Callao San Juan
€z 86 m .03/-120° .16/-171°  ,36/-5° .04/-132°
P 37m .09/16° .31/-28° .16/143° .05/-109°
P 96m .14/68° 27/7° .26/155° .047-29°
Y 37m 14/129°  [33/99° .35/-121°  ,04/75°

Y 97m .16/91° .44/94°. .23/-90° .01/-47°
M 39m .35/-128° .44/-124°  ,03/70° L10/114°
M 100m .15/83° .06/-133°  .03/59° .07/68°
CHAPTER V

TABLE 1: Coherence Squared/ Phase (in degrees) between winds and
currents for the 0.118-0.213 cpd frequency band . Record
length: 45,25 days.,

Phase positive for top Jeads side.

192

10 degrees of freedom; 95% confidence level for coherence

squared is 0.53.



193

TOTAL DEPTH (m) ZERO CROSSING (m) ¢, (cm s™') 5 (k)
(a) 5°S (1977)

1360 440 157 124
2000 760 177 139
4000 1675 239 188

(b) 15°S (1977)

650 320 98 26
1400 510 146 39
4000 1610 247 56

(c) 15°5 (1976)

650 320 106 28
1400 500 158 42
4000 1550 259 59

CHAPTER y
TABLE 2: Depth of zero crossing, alongshore phase speed Cy and Rossby

radius scale GR for the forst vertical dynamical mode far

alongshore velocity, calculated with various bottom depths,

using realistic stratification from 1977 (Figure 16) from

over the slope near (a) 5°S and (b) 15°S. Also shown are the
resuits with stratification from 1976 (see Appendix). At 5°S,

1360 m corresponds to the C2 mooring depth, while at 15°S

the mooring depth is 650 m for L {Figure 14).
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TABLE 3:

EOF 1 EOF 2 ECF 3 EOF 4

A 6 ye A ! y2 A € ¥2 A B y2
0.14 -390 0.16 0.16 1 0.08 0.37 37 0.31 0.61 66 0.41
0.50 12 0.83 0.05 & 0.0 0.24 86 0.05 0.36 ~114 0.06
0.14 -150 0.3% 0.15 -73 0.18 0.15 -79 0.13 0.21 114 Q.11
0.6 -3 0.84 0.36 -82 0.1 g.12 -60 0.01 0.25 20 0.02
0.06 -57 0.09 0.05 93 0.03 0.14 -88 0.14 ~0.46 9 0.73
0.48 7 0.82 0.25 -113 0.08 0.22 -152 0.04 0.32 93 0.05
0.26 20 0.21 0.59 111 0.41 0.66 -6 0.36 Q.10 -90 0.07
0.2 -23 0.17 0.63 71 0.55 0.52 156 0.26 0.22 22 0.02
0.03 59 0.20 0.06 -80 0.37 0.02 146 Q.07 0.07 113 0.21

-0.05 -3 0.34 0.06 148 0.19 0.08 89 0.28 0.07 -2 0.09

Amplitude (A), phase (¢} and coherence squared (y2) for the first 4 EOFs of u-v pairs at
€2, calculated from 6-hourly data with a common record length of 47.5 days, beginning
Q000 UT 2 April 1977, and a frequency interval of 0.126-0.211 cpd. The amplitudes are
normalized such that the sum of the squares of each EOF equals 1. EOFs 1, 2, 3 and 4
contain 56%, 20%, 14% and 7% of the total variance in the band, respectively. 4 > 8

] 1 2
implies 2 leads 1.

vol






Figure 1,

Figure 2.

Figure 3.

Figure 4.

Figure Captions

Location of observations used in this paper. Dots indicate
current meter moorings, crosses (+} indicate tide gages
with nearby meteorological stations, and the open square
indicates an airport meteorological station., The 200 m
isobath is also shown,

Sea level, corrected for atmospheric pressure effects, at
La Libertad, Callao, and San Juan, and vector plots of wind
at San Juan and current velocity at M {55 m).

Auto spectra of sea level from the Callao (solid line) and
the San Juan {dashed 1ine) tide gages, based on 405 days

of hourly data, beginning 0000 UT 27 March 1976, and the
coherence and phase between Callao and San Juan sea level.
Phase is positive for Callao leading. The 99% confidence
level is indicated on the coherence plot. The line on

the phase versus freguency diagram represents 240 km day~!?
phase speed for poleward propagating nondispersive waves.
Auto spectra of sea level from the La Libertad (solid line)
and the Callao (dashed 1ine) tide gages, for the same
period as in Figure 3, and the coherence and phase between
La Libertad and Callao sea level. Phase is positive for

La Libertad Teading. The 95% confidence level is indicated
on the coherence plot. The line on the phase versus
frequency diagram represents 240 km day~! for poleward

propagating nondispersive waves.



Figure 5,

Figure 6.

Figure 7.

Figure 8.

197
Auto-spectra of La Libertad {solid line) and San dJuan

(dashed 1ine) atmospheric pressure, and the coherence and
phase between them, with the same period and analysis as in
Figure 3. Phase positive for La Libertad leading. The

99% confidence level is indicated on the coherence plot.
Auto-spectra of alongshore current at M (55 m) (solid line)
and sea level at San Juan (dashed line) and the ccherence
and phase between them, with the same period and analysis
as in Figure 3. Phase positive for current leading. The
99% confidence level is indicated on the coherence plot.
Autp-spectra of alongshore wind (solid line) at San Juan
and alongshore current (dashed line) at M (55 m), and the
coherence and phase between them, with thé same period and
analysis as in Figure 3. Phase positive for wind leading.
The 95% confidence level is indicated on the coherence plot.
Scale on left of auto-spectral plot applies to wind while
scale on right applies to current.

The lag (equatorward series leading) at maximum correlation
between: 1) adjacent pairs of sea level records (see Figure
1), each sea level record vs. Callao sea level, and

San Martin sea level vs. Materani sea level {circles});

2} tide gages at Agave (15°S) and P (+); 3) each atmospheric
pressure record vs. Callao atmospheric pressure (triangles)

All points represent a correlation



Figure 9.

Figure 10.

Figure 11.
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significant at the 98% confidence level, and all but

the Talara-Callao (open circle) correlation represent the
absolute maximum of the cross-correlation function. The
Talara-Callao pair also has a maximum at 0 lag.

Auto spectra based on 49.7 days of hourly data of along-
shore currents at €2 (86 m) (solid line) and Y {97 m)
(dotted 1ine) beginning 2100 UT 31 March 1977. The 95%
confidence interval is shown.

Coherence and phase between alongshore currents at €2 {86 m)
and Y (97 m), for the same time period as in Figure 9.
Phase is positive for Y leads C2. The 95% confidence

level is shown on the coherence plot.

The alongshore structure of the first EOF for the 0.118-
0.213 cpd freguency band for the alongshore currents at

C2 (86 m, 126 m}, P (36 m, 96 m), Y {36 m, 97m) and

M (39 m, 100 m), based on 6 hourly data. A common record
length of 45.25 days is utilized, beginning 0000 UT 2 April
1977. Open circles represent shallow records at each
location while dark circies represent deeper records. The
first EOF contains 72% of the total variance in the
frequency band. (a) Amplitude; {b) phase, relative to

Y ( the line indicates the behavior for a phase speed of
240 km da_y_1 with w = 0.17 ¢cpd); a linear regression gives
an alongshore phase speed of 204 km day-] with w = 0.17 cpd;

el > 92 implies 2 leads 1; (c) coherence squared (the 95%

‘confidence level is shown).



Figure 12,

Figure 13.

Figure 14,

The alongshore structure of the first and second EQFs for
the same record length and freguency interval as in Figure
11 for alongshore winds at Talara (T), Chiclayo (CH),
Callao (CA) and San Juan (SJd). The first EOF contains 63%
of the total variance in the frequency band while the
second EOF contains 28%. (a) amplitude; (b) phase, relative
to Callao; (c¢) coherence squared ( the 95% significance
Tevel is shown).

The alongshore structure of the first EQF for the same
record length and frequency interval as in Figure 11 for
alongshore winds (triangles) at Talara (T}, Chiclayo {(CH),
Callao (CA), and San Juan'(SJ) and alongshore currents at
C2 (86 m} (open ciré]e), P (96 m), Y (97 m) and M (100 m)
(dark circles). The first EOF contains 55% of the total
variance in the frequency interval. (a) normalized
amplitude (the current velocities are normalized to

unity variance as are the winds); (b) phase relative to
Callao (the line represents the behavior for a phase speed
of 240 km day"] with w = 0.17 cpd; (c¢) coherence squared
{the 95% level is shown).

Shelf-slope topography at 5°S and 15°S latitude as a
function of depth, where the offshore coordinate is scaled
with the Tocal f in each case. The locations of the C2
current meters at 5°S are indicated by open circies while
the locations of the current meters at M and L are indicated

by dark circles.



Figure 15.

Figure 16.

Figure 17.

Figure 18.
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The vertical structure of amplitude, phase (relative to

the shallowest record) and coherence squared (the 95%
significance level is shown) for (a) the C2 mooring and

(b) the L mooring for the first EOF of alongshore velocity,
based on 6 hourly data. For the C2 mooring, a recore
length of 47.5 days is used, beginning 0000 UT 2 April
1977, with a frequency interval of 0.126-0.211 cpd and the
First EOF contains 82% of the total variance in the.
frequency band. For the L mooring a record length of

53.75 days beginning 0600 UT 17 April 1877 is used, with

a frequency interval of 0.131-0.206 cpd and the first EOF
contains 87% of the total variance in the frequency band.
N(z)2 profile, smoothed with a three pocint mooving average,
based on measurements every 10 m, near the Peru continental
slope, at 4°58.9'S, 81°33'W , 1922 m water depth, May 22
1977 (dashed 1ine); 15°15.5'S, 75°40.0 W, 1353 m water depth
May 9 1977 (solid line)

First vertical dynamical mode for alongshore velocity
calculated for a flat bottom depth of 2000 m and 4000 m
(figure truncated at 2200 m), using the dashed G profile
shown in Figure 16. Also plotted is the vertical structure
(open circles) of the first EQF of alongshore velocity at
€2 (normalized by the maximum value) from Figure 15 a.
First vertical dynamical mode for alongshore velocity
calculated for a flat bottom of 1400 m and 4000 m (figure

truncated at 2200 m) using the solid N2 profile shown in



Figure 19.
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Figure 16. Also plotted is the vertical structure (dark
circles) of the first EOF of alongshore velocity at L
{normalized by the maximum value) from Figure 15b.

The ratio of the variance of the counterclockwise to the
clockwise rotating parts as a function of depth for the
velocity time series at £2 {(open circles) and L (dark
circles) calculated using the rotary spectrum with hourly
data. A record length of 42.75 days was used for both
C2 and L, starting 0000 UT 2 April 1977. The ratio is
computed centered around 3 frequencies: 0.094 cpd,
0.187 cpd ( the local inertial freguency at 5°S), and
0.516 cpd (the local inertial frequency at 15°S).

Hourly data was used. Bandwith = ¥ 0.06 cpd.
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Appendix A Sinuscidal Forcing

a) Interior Solutions
With a wind stress given by (5.1}, we seek interior solutions given
by (5.4), and, in a manner similar to the representation for h in (2.12),

we define
g(x) = gy + g5. (A1)

The solutions to (2.11), {2.13), and {2.14) for %, éI and éB’

subject to (2.20a) and (2.21b) and appropriate for an eastern boundary,

are
o = -nTolu(k? + 22) - (ke/s)]™! [exp(ike) - exp(Qx)],  (h2a)
0, = (is/208) + [2% - (s/208)21V7%, | (A2b)
9y = FaTglke - weepihy]™" explikx), (A3)
95 = Co exp(Rx), (Ada)
R = (ig/2us) - [asz) - (8/208)]"/2, (Ab)

where assumption (2.5a) has been used in (5.7) and where the constant ¢
in (Ada) may be determined from (2.21a) after a solution for h on the
shelf is obtained.

For

2 1
w >> kBop(1)/8s  w >> 58 (q)8/8), (A5a,b)
applied to (A3) and (A4) respectively, we obtain
éI no- fmTO(SR%1)/md) exp(ikx), éB ~ Coexp(-x/SR(])). (A5c,d)

Eq. (A5d) is the interior extension of a coastal trapped internal

Kelvin wave. This case is investigated in Section 5a. Note that in
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general (ASb) implies (A5a) since SR(])k << 1. Condition (A5a) corre-
sponds to forcing at wavenumbers and frequencies above the cutoff for
long internal Rossby waves.

For very low frequency forcing, i.e., for

w << k86§(1)/5, w << %{‘SR(‘i)BIS)’ (Aﬁa,b)

we obtain
-~ 2)

gy ™ fm(TO/kB) exp{ikx), QB " Coexp(imﬁx/séR(1) (Abc,d)

and the interior solution takes the form of an interior Sverdrup flow
(A6c) and a westward propagating internal Rossby wave (A6d). This case
is briefly discussed in Section 5b.

The relevant expression (2.20b) for the forcing at £ = 1 by the

interior barotropic motion is
~ _ . . -]
by(0) = im(T/w)(k + 1Q,)", (A7)

In general ;X(D) is complex and the forced shelf circulation will have
components both in phase and out of phase with the wind stress driving.
For the purposes of calculating specific solutiens in Section 5a for the

shelf velocities, we employ the approximate expression

¢X(0) = TU/UJ, (Asa)

obtained with the conditions

22 5> (8/206)2, k| » 0. (A8b,c)

The condition (A8b) is restrictive, implying the period T' < 20 days.
However, for 22 3_(8/2w6)2, with [k| = 0,
)2

IE’X(Q)JZ v {Tplw)®s (A8d)

i.e., ;x(o) has the same magnitude for the more general case (see Fig. 7

with k/2 = 0).
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The limit

2 > (8/208)%, Kk »> %, (A9a,b)
yields

-

q)X(U) n -'i(TO/w), {ASc)

and the response, while of the same magnitude as ;x(O) obtained in the
limit (A8b,c), is out of phase with the wind stress by a factor of n/2.
This behavior is evident in Figs. 7 and 8 with (k/ﬂ) = 15.0.

Condition (A8c) corresponds to a wind stress with x wavenumber k =
0, traveling along the coast. For £ < 0 (equatorward traveling distur-
bance), ;x(o) < 0. For i > 0, ;x(O) > 0. Condition (A9b) corresponds
to & wind stress traveling in the onshore-offshore direction. For both

k >0and k <0, ;X(O) < 0,
We also note that ¢x(0) is independent of ¢ for small w, i.e., the
condition
(als [k|) << gr2ws (A10a)
yields

-~

¢X(0) N im(Toﬁ/B), (Al1b)

corresponding to a Sverdrup balance in the interior.

b) Shelf Equations

We restrict our attention to cases where (A5a,b) are satisfied and

use (A5c,d) for éI and éB‘ For oceanic parameters at 6° latitude off

the west coast of South America (e.g., 6R' = 100 km, ' = 2.3 x 10']3

em™ ] sec']), (ABa,b) are satisfied for periods T' < 60 days.
We seek a forced response on the shelf of the form (5.4). The
equations for the shelf variables, obtained by utilizing (5.4) in

(2.17a,b) are
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bep = Sg 4 - 1(w55)'] (f$ - g) ifo(wsg)'], (A12a)

-~ _'t» -~ - ~ . ~ -
9 + asy g, - (a/sR) g + an(wéB) 1 (fo - g) = -1afTD(m58),] (A12b)

where
Tg=Tp* ing(O). (Al2c)
As in Section 4, the shelf equations are forced by the alongshore com-

ponent of the wind stress at the coast and by the interior baraclinic

motion.

With (5.4), the boundary conditions (2.19a,b), (2.20b), and (2.21a,b)

are
6 =0, fle/w)g - g, = if(Ty/u), ate =0, (A13a,b)
¢ = ¢x(0), 2tE=T, (A13c)
9= 95(8)s  14(0) * Tpx(e) = & g AE . (A142,b)

With (A5a,b), except very near the equator, the interior baroclinic
forced response is relatively small. This is reflected in the ratio of
the interjor forcing term izal(o) and the coastal wind stress term TO’

which appear in the forcing T; i.e.,
1291 1)/ Tp ~ (me/w) (£6)(8p/8)%4, (A15)

which is 0(s) and therefore small. Accordingly, with {(A5a,b) we employ

the approximation

—i>
4
-

(A16)
Note that with (A6),
1&@1(0)/T0 ~ mef(ke) 14, (A17)

which is 0(1) in general, indicating that for forcing at very Tow fre-
quencies barociinic interior motions may be as important as the alongshore

coastal wind stress.
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Appendix B Exponential Slope

Analytical results to (Al2a,b) are obtainable if an exponential
slope (Buchwald and Adams, 1968) is assumed:

H = exp[(g - 1)/45]. (B1)
In this case, HE/H = 68'1 is a constant. This depth profile, while
still highly idealized, is not an unreasonable approximation to actual
shelf-slope topography.

We obtain approximate solutions under the assumption

We utilize the expansion
)

2 = aq) exp(ng/SB) + O(a(o) . (B2b)

so that (Al2a,b) may be written to D(a(o)z) in the form

- - -
bge = g ¢ - (2/wep)(fe - g) = 0, (B3a)
Gee - (6755)°0 = [a(gyexp(-2/eg) 10~ (fa/usy) (Fo - 3) - 8573,
+ (s/65)%q], (B3b)

where we define

b= 0+ ATy, (B3c)

For simplicity, we adopt an f-plane anatysis (f = 1) here, and assumptions
(A5a,b).
The boundary conditions are

4 = iTy/2, g - (m/z)éE = iTy/2, ate =0, (B4a,b)

~

‘pg = q}x(o)! g = COB 95 + (6/6R("))g = 09 at E = 1, (B4C,d,e)

where ;x(O) is given by (A8a) and Cy is the coefficient from (A5d).
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With (B2a), (B3a,b) are weakly coupled and may be solved, subject
to (B4a-e), by perturbation methods. We solve (B3a) for $ only, subject
to (B4a,c), to obtain a first order approximation, éo. Similarly, we
solve (B3b) for é only, subject to (B4b,e) to obtain a first order

approximation, 60‘

These are
50 = K, exp[-£(s/6p)], (B5a)
0 = exp(e/26y) (Dgsinhye + Te”" coshye), (85b)
where
Ko = H(To/a)[1 + (w/2) (678017, (B5c)
Dy = [-i(Tola)(%ﬁB']coshv + ysinhy) + 5,((0) exp(—%ﬁg)ll
(957" sinhy + ycoshy), (B5d)
Y2 o= (/weg™t + (265) 72 (BSe)

These solutions are written for ¢ > O. ‘

We substitute §0 into (B3a) to obtain an 0(1) correction 51. The
O(a(o)) correction to.é, a(O)él’ is obtained by substituting &0, éO’
and é] into (B3b). Finally, we utilize a(0)§1 in (B3a) to obtain the
0(a) correction a(0)¢2 to ¢. The corrections satisfy homogeneous bound-
ary conditions at £ = 0 and £ = 1. Additional corrections are O(a%o))

so that the approximate solutions are

-~ A~

¢ = ¢g + éj + a(0)$2 + O(a(o)z), (B6a)

~ -~
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The corrections may be obtained in a straightforward manner but their
algebraic form is complicated and they are omitted here.

This perturbation procedure was verified by comparison with expan-
sions for gy << 1 of exact solutions which may be obtained in the weak

slope limit &, >> 1.

B
The coefficient Ko possesses a singularity for (m/&)(G/GR) = -1

(see B6a), while Dy is unbounded for
tanhy = -ZGBY' (B7)

The first singularity corresponds to wind forcing at the resonant fre-
quency for free internal Kelvin waves, and (B7) corresponds to the
excitation of the free shelf wave modes. These resonances occur only

for 2 < 0.

Substitution of (5.5) into (2.18c,d) yields the shelf velocities:

vy = (e v (e)  expl-iuf - a)], (BSa)
vp = ~(sHIH T Vo(e)  expl-i(af - )], (B8b)
where
' vie) = o, +a7lg,, (8%a)
Va(e) = ¢ - g, (89b)

The solutions {B6a,b) simplify considerably if the limits (6R/6) <<
1 and (5R/5) >> 1 are examined. These approximate solutions may be
utilized in (B9a,b) to obtain approximate shelf velocities. For (GRIS) <<

1 \

.
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t

v(8) = ~iTglaw) ™! exp(-sc/sp)
+ exp(&/265) 105[(265)"" sinhyg + ycoshyt]

+ iToz'] [(253)'] coshyg + ysinhyzl}, (B10a)

it

92(5) iTOw'] exp(-8&/6p)

+ EXP(€/26B) {DO[(E’&B)"1 sinhyg + ycossc]

+ iToz"] [(258)‘] coshye + ysinhyell. (B10b)

For (SR/G) >> 1,

R

vi(e) = -iTy(ae) ™" (s/6g) exp(-68/4p), (811a)

R

Vp() = Loy(gy * 1Toe™" (8/6)] expl(z - 1)/255]

[(268)—1sinhyg + ycoshya]/[(ZGB)'1sinhy + ycoshy]. (B11b)

b g

We may also examine the behavior of the solutions for low frequency,
keeping in mind the conditions (A5a,b) required to preserve their valid-

2 1

ity. In particular, for y° = R(wéB)’ >> 1, v >> 8/6p,

vi(e) = -iTo(an) ™! (s/6p) exp(~£8/8p), | (B12a)

vo(g) = 1T02'] Ly exp(-ve) + 5x(0)v'] exp[v(z - 1)1, (B12b)

where

Ly = wﬁ-](ﬁléR) + y‘z [(a/aR)2 + 5(6RaB)’]]. {B12¢c)
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Chapter III
APPENDIX A: SOLUTIONS FOR SLOWLY VARYING f

In this section we treat f as a slowly varying function of y, so
that f = f(n), n = By, and B << 1. The equations that describe the
problem and that may be derived from {2.1) with the above definition

for f are (2.6), (2.8), (2.9) and

[Py * (/N2 p,, )¢ + £.p, = 0. (A1)

{a) Free wave prob]em_

An understanding of the free wave problem is useful. Therefore
we consider a vertically unbounded ocean governed by a homcgeneous
version of (2.6) with the rigid 1id condition (2.8) removed. A free

wave solution is sought of the form

y
p {x,¥,z,t) = Relé¢(x;n) exp[-i{wt + mz + [ rdy)]}, (A2)
Yo

where here £ = 2(n) and ¢ depends parametrically on n.
If (A2) is substituted in (A1) and a homogeneous version of (2.6),

the resylt is

by = (/N0 + 1(8/0)F 8, = O, (A3)

4y * (f/w)o + 1f(B/w)e =0, atx=0. (A4)

The variable ¢ is expanded in the form

6= Alog + 186y + ...), (A5)
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where A is a complex constant with Al = 1 and dg ¢, are real
variables. Substituting (A5) in (A3) and (A4) we find that the
lowest order solution 99 satisfies the same equations and boundary
conditions as the constant f solutions (2.3)-{2.9) (with no forcing)

but with f = f(n). This solution is

g = C(n) exp(-fax/w), m/N = L/w. (A6)
The equation for ¢] is
Sy - (F/MY0y = <(F fu)eg,, (A7)
with boundary conditions
Y T (F/w)ey = -(Flu)gy.,  at x =0, (A8)
15 Gry < as x -+ o, (AD)

A compatibility condition for ¢1 may be determined by multiplying
(A7) by 9 and integrating over x from 0 to e:

2 _
g" [op01xx = (F/N) 400, Jdx = ~(f /u) g’" boBoxdx-  (A10)

Utilizing the boundary conditions on ¢0 and ¢], we obtain

C(n) = (£/5,)%, (A11)

where f0 is a reference value of the Coriolis parameter.
35 .
This implies an f° growth in amplitude of an internal Kelvin

wave as it propagates poleward and vertically and corresponds to the
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conservation of wave energy flux. The amplification agrees with
results obtained by Miles {1972) for external Kelvin waves and by

Allen and Romea (1980).

(b) Forced Problem

In a manner similar to the method used in Section 2, we seek a
solution to (A1) in terms of the Fourier cosine transform. The

transformed problem is (2.18b,c) and

" (fm/N)2 Bl + £,8, = 0. (A12)

(b

where the transform is defined by (2.17).

The solution to {A12) may be written

(A13)

>
ft
=)
o
+
h=Bs
-t
w

where 61 is assumed to be a small perturbation (51 << 60), and where

Pg = YO exp(—fmx/N). (A14)

The problem for E] is

[alxx - (fm/N)z 5I]t = fy?o(fm/N) exp(-fmx/N).  (A15)

The solution to (A15) subject to (2.18c) is

51 = ?] exp(-fmx/N) - %V]p xexp (-fmx/N), (A16)

where

(A17)

—)
t
-3

hy

Int  '0y
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Therefore the total solution for 5 is (absorbing Yy in YO)

-~

p = (¥ - Y1 ;%) exp(~fmx/K). (A18)

We now use (A17) and (A18) in the remaining boundary condition

(2.18b) to obtain

- (M), + Fo - WG(F/F) = cly,). (A19)

Eq. (A19) is a forced first order wave equation which includes

~ 1. A
a slowly varying Coriolis parameter. The transformation Y0 = f? YO'

yields

- ) B, + 9y = £ () <y, 1), (A20)

Eq. (A20) for the scaled varijable Y0

-
wave equation obtained for constant f, but with a factor of f %(n)

is similar to {2.20), the forced

multiplying the forcing function.
With an initial condition given by (2.22), the solution for a

general wind stress T = F(y) }(t) is {2.25), where

pp = -(2&N/m) [T £ sy + Nt/m)] Fy + Nt/m)
0
exp (-fmx/N) m] cos mz dm. (A21)

For forcing given by {3.1) (Example A} or (3.11) (Example B), the

f-plane results are similar to the solutions obtained with (A21),

-1
]

with the rescaling p (slowly varying f) = f 2p (f-plane).
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APPENDIX B: GENERALIZED INTEGRAL TRANSFORM IN x

The sclution to (2.3) is derived here in an alternate manner with
a generalized integral transform in x. In this case, boundary

conditions (2.6) and (2.8) are replaced by the equivalent conditions

pyp = ~(N/F) tly,t) 8(x), z =0, (B1)

Pyg ¥ TPy = 0 x=0 (B2)

where here the Ekman suction in the upper coastal corner is
represented by a delta function at x = 0 (B1).

We express p and 1 as Fourier integrals in time and in y, i.e.,

[T(2,0), P(x,2,2,w)]

= [T [T [tly.t), p(x,y,z,t)] exptiut) explity) dt dy, (B3)

-0 =00

[tly,t), p(x,y,z,t}]

= (20)7N 010 [ltw), p(x.2,2.0)] expliut) exp(isy) dw dg. (B4)

-0 -0l

Utilization of (B3) in (2.3), (2.9), (B1) and (B2) gives

Bt (FMNE B, =0, (B5)
P, Pys P, <= S X >,z -, (B6)
~ a2 -1 ~ _
p_ = iN“(fw) 1 &{x), at z = 0, (B7)

0, at x = 0, {B8)

e
>
4
-
-
2‘0
.
£
L
o
1l
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plus appropriate radiation conditions for x =+ e, z » -,

Eq. (B8) is satisfied by the transform

plxs2,2,0) = [ ¢la,L,z,0)[sinex - m(ﬂ?,)'1 acosdxJdo
O .
+ W(z,%,w) H(w/%) exp(-fax/uw), (B9)

where the last term is present only for {&/w) > 0. The transform
variabie ¢ may be obtained my multiplying both sides of (B9) by

sinox - m(fi)'l acosax and integrating over x from 0 to =, j.e.,

®la,r,z,w) = (2/7)[1 + (wu)z(fﬁ)_zjﬂ} jw p{sinax - mu(fi)_]COSux]dx.
¢
(B10)

Similarly, W is obtained by multiplying (B2) by exp(-f&x/w) and
integrating with respect to x from 0 to «, i.e.,

W(z,8,w) = 2F(&/w) [° p exp(~fLx/w)dx. (B11)
0 .

We obtain the transformed problem for & by multiplying (B5) and
(B6a) by sinax-wu(fi)-lcosax, integrating over x from 0 to =, and

integrating by parts where appropriate. The result is

2 5 .
¢, - (Na/f)" ¢ = 0, (B12)

P < ©, as z - -, (813)

with solution

o = Ala,2,0) exp{Naz/f). (B14)
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W(z} is obtained by multiplying (B5) and (Béa) by exp(-fix/w) and

integrating over x from 0 to «. This yields

W= W.(R,w) exp(iNtz/w)}, {B15)

0

where the positive root is chosen in (B15) to satisfy the radiation
condition, giving a downward flux of wave energy for %/w > Q. The

total solution is
p(x,2,2,0) = fw Ala,2,w)[sinax - wa(fﬁ)'1cosax] exp(Nzo/f) da
0

+ H(w/l)wo(i,w)exp(-fﬂx/w)exp(1NEz/w). (B16)

We find A and wo by substituting (B16) in the remaining condition
(B7):

(N/T) fm aAlsinax - wu(fl)-1c05ax]da
0

1 Rlw/2) WN(R/w)exp(-Fhx/u) = i M)l T s(x).  (B17)

To find Wos when w/% > 0, multiply both sides of (B17) by exp(-fix/w)
and integrate with respect to x from 0 to «, and to find A, multiply
both sides by sinax « wu(fz)'1c05ax and integrate over x from 0 to

=, This gives

Wy = (2N/w) T (w/%) > 0, (B18}

A= - i(2/m) N(FR)YT 4 (w)2(f0)7277T 3 (B19)
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With a particular forcing T the pressure may now be calculated from
(B4), (B16), (B18), and (B19) and the velocities computed using
(2.1a) and (2.4a,b).

As a simple example, consider a traveling plane wave coastal wind

stress where
(y,t) = Ty exp(—iwot - iloy). (B20)
The solution for p is

p = ZNTO(ﬂwO)—] exp[-i(wot + Rﬂy)]

0

1

X{-iwo(fﬂo)'1£ [sinax - moa(fﬁo)"]cosax][l + (wou)z(fin)"z]_ exp{NaZ/f)do
+ H(wO/RO) T exp(-fﬂox/wo) exp(iNgoz/wO)T (B21)

Evaluation of the integral in (B21) yields (3.23), where o and £ in

(3.23) are equal to w,. and % in (B21).

0
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Chapter IV
APPENDIX A: EXPONENTIAL NZ PROFILE

We have obtained results for both steep and weak slope topog-
raphies with general stratification. We now examine a particular
more realistic stratification, but one which stil1 allows analytical

solutions, i.e., an exponential N2 profile given by
R(z) = R0 exp(sz), (A1)

where Ry = constant. Profiles of R(z) are plotted for various s in
Figure 12.

The x-z structure of the 0(1) solution is given by (3.14),
where Pn(z), the vertical medal structure, is obtained by solving
(3.15), (3.16) and (3.17) with the appropriate R. With (A1), the

eigenvalue problem yields

¢n(0) = 51/2 exp(-lx/mn(o)) [01(z§1/2/mn(0)s)

+ GnY](MUZ/mn(O)s)], {A2)
where |
G, = -JO(RRO/mn(O)s)/YD(ERO/mn(O)s), (A3)

and where the dispersion relation for the 0(1) egienvalue wn(o) is

JoLeRgexp(-s)/u {0057 + 6 v [aroexp(-s)/e (Vs] = 0. (n4)

JO’ J], YO and Y1 are Bessel functions of the first and second kind
of order 0 and 1 and
2

r{z) = R%(z) = Roexp(ZSZ). (A5)

The vertical structure of ¢]x(0), which corresponds to along-

shore velocity, is plotted in Figure 13 for various s, where the
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modes are rescaled so that P](O) = 1. This is the 0(1) modal solu-
tion, which is unaffected to first order by friction or topography
and is the same for both the steep and weak slope problems. As s
increases, the zero crossing of the mode becomes shallower and the
bottom velocity decreases in accardance with the constraint of zero
depth integrated mass flux in each mode, which follows from the
integration over z of Fn(o) and the use of (3.13a). The ratio

[v(z = 0)/v(z = -1)] is shown in Table 2 as a function of s.

Figure 14 shows a smoothed N2 profile calculated from measure-
ments taken near 5°S latitude over the slope. The vertical structure
of v associated with the first dynamical mode (the dashed curve
labelled R in Figure 13), obtained numerically with the stratifica-
tion shown in Figure 14, indicates that the bottom velocity is a
fraction of that predicted by the solution for constant stratifica-
tion (the curve labelled s = 0 in Figure 13). The mode shape was
computed by integrating the governing equations by means of a fourth
order Runge-Kutta technique, with a trial and error procedure for
obtaining the proper eigenvalue so that the boundary conditions are
satisfied (see Kundu et al., 1975, Section 5, for a discussion of

22 0.1 x 10792 at

the method). The profile was extrapolated to
the bottom at 4 km depth by an exponential profile below 780 m depth
(parameter studies indicate that the modal structure is relatively

insensitive to the exact choice of exponential structure). Although
the N2 profile is different from the exponential profiles, the mode
shape for s between 2 and 3, particularly near z = -1, is a reason-

able approximation to the vertical structure calculated with the N2
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prafile shown in Figure 14, therefore we expect estimates of fric-
tional effects to be more realistic with s between 2 and 3 than with
s = 0.

Corrections to w may be obtained using (A2), (A3) and {A4) in
(3.20) for the steep slope and (4.11) for the weak slope. The
O(A](O)) frictional corrections te w for both cases are shown in

Table 2 for various s. Table 2 is discussed in Section 5.
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Chapter IV
APPENDIX B: WEAK SLOPE; MATCHING TQ THE QUTER SHELF

In Section 4, the coastal weak slope solution becomes invalid
for large x, when baroclinic motions decay with a Rossby radius
scale from the coast leaving a barotropic onshore flow, which crosses
constant depth contours. We show here that the barotropic component
represents the first term in an expansion that matches to an outer
sheif solution which represents a topographic Rossby wave. For
simplicity, we set R = R0 = constant and consider the frictionless
case A = 0. The qualitative results presented here are unchanged
for general R and with bottom friction, but the analysis is more
complicated.

The outer shelf equations are obtained for offshore scale L >>

8ps i.e., for R = O(e) << 1. The Towest order equations are

by * R 20, = 0, (B1)
4, = 0, atn =0, (82a)
4 =0,at x =0, ' (82b)
& < ®, as X + o, ‘ (B2¢)
(2/w)¢ = -;‘1 R“Zén, atn = -1, | (B2d)

where the tilda superscript denotes an outer sheif variable. The

solution is
¢, = Cn sin(kns) cosh(Rknn), n=1, 2, ..., (B3)

where Cn is an arbitrary constant. This topographic wave, where the

motions arise from the sloping bottom, was studied by Rhines (1370)
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and was also obtained by Vermersch and Beardsley (1976). The wave
is bottom trapped for Rkn > 1 and is approximately barotropic for

Rkn <«< 1.

The relation between kn and Wy is obtained from the bottom

boundary condition (B2d) and is

_ =1 4-1 .
2/w, =€ " R tanh(Rkn)kn. (B4)

In the 1imit of small Rk, (B3) and (B4) may be written, to O(Rk ),

as

. . 1
= Cn s1n(knx)(1 + 3R

2,22

0, kyon%), (85)

‘ ky” = (2w e, (B6)

o The weak slope solution, with a vertical wall at x = 0, is

derived to 0(c) in Section 4. For x + =, this solution is

AL (87)

where A0 is given by (4.15a) with m = 0. For R = constant and X =
0,

o () o elum/R)(-1)". (B8)

nes
For the purpose of matching to the outer shelf solution (BS),

we must evaluate ¢ at the next order. The procedure is identical

to that used for the 0(e) problem, but with more complicated algebra,

and the result is

b 2~ (1/2)0% Reme? ¢ (1), (89)

Since ¢p(0} - 0 as x + =, the asymptotic selution for ¢n as x +« to

0(e?) is
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P E¢nm(1) 1+ 1/2n2 Rnme]. (B10)

Eg. (B10) for b, represents the first two terms in the expansion of
cosh{n(nmeR) /41, With 4/u_ = nm/R from (3.265), (B5) for x »

matches ¢n for x + = with

c, = (nme/R)"1/2 ¢nm“). (B11)
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Chapter V
Appendix

A summary of the observations obtained during the ESACAN
experiment is given by Brockmann, et. al., (1978). The complete set
of data from moored instruments and hydrographic stations from the
CUEA program has appeared in a series of data reports published by
Oregon State University (e.g., Enfield, et. al., 1978). In both
experiments the currents were measured by Aanderaa current meters on
taut subsurface moorings. The sampling interval was 10 min. for the
ESACAN array and 15 or 20 min for the CUEA arrays, and the instruments
recorded temperature as well as current speed and direction. These
data were averaged to provide hourly data sets. The data from the CUEA
anemometer at Callao and the subsurface pressure gages at P and near
M were processed in the same manner as the current meter data. For the
spectral computations (except Figures 9 and 10), and the EOFs, the
hourly data were filtered with a low-pass filter with a one half power
point of 1.96 days to remove diurnal and shorter period variations and
decimated to six-hourly values. Currents at each mooring were rotated
into a coordinate system in which the alongshore direction is defined
by the averaged principal axis direction of the vector time series at
the mooring as follows: C2 (15°) (counterclockwise from north), P (10°),
Y (25°), M and L (45°). The winds were rotated as follows: Talara (15°),
Chiclayo (0°), Callao {36°) and San Juan (45°). Hourly tide gage
and three-hourly atmospheric pressure data at Baltra and La Libertad
were obtained from Instituto Oceanografico de la Armada (Ecuador).
Hourly tide gage data at Talara, Callao, San Juan, and Materani were

obtained from Direccion de Hidrografia y Navigacion de la Marina (Peru}.
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Hourly atmospheric pressure data and wind data at Talara, Chiclayo,
Callao, San Juan, and Materani were obtained from Corporacion Peruana

de Aerolineas Commerciales. The coastel tide gage at San Martin and
additional coastal anamometers at Callao and San Juan, maintained by the
Cuea program, provided hourly data.

Two representative stations during 1977 where conductivity,
temperature, and depth (CTD) observations of temperature and salinity
were made are used in this paper, both obtained durind Leg IV of
the Mellville cruise, at 15°15.5'S, 75°40.0'W on May 9, 1977, and
4°58,9'S, 81°33.0'W, on May 22, 1977, in the approximate locations
of the L moorings at 15°S and the C2 mooring at 5°S, respectively.

A profile from 1976 is also used, taken on 30 July at 15°19'S, 75°41.5'W
with 1350 m water depth. The procedure used tc obtain and process
the CTD data is discussed in Data Report 71 from Oregon State

University (Huyer, et. al., 1977).






