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LOCAL FIELD EFFECTS ON DIELECTRIC PROPERTIES OF SOLIDS

CHAPTER I

INTRODUCTION

1.1 Microscopic and Macroscopic Fields

A weak external electric field applied to a crystal will

displace electronic charges and produce an internal polarization.

The dielectric response f(i,i)';t-t') is defined by relating the

microscopic displacement vector g(il,t) to the microscopic local

electric field g(i',t1 at the position il' and time t' t:

11(i,t) = if e(il,il';t-t1g(i.',t1di'dt'. (1.1)

In contrast the macroscopic relation from Maxwell equations is

< V > . e(w) < g >, (1.2)

where E is the measured dielectric constant, with < V > and < g > the

macroscopic average fields. It is the relationship between

microscopic and macroscopic quantities, and the bearing it has on

t CGS units are used throughout this work.
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measured and calculated optical properties, that forms the main body

of this work.

For a better understanding of the problem, we rewrite Eq.(1.1)

in a different way. In a perfect crystal, translational symmetry

requires that

e(iCg,i'+g;t-t') (1.3)

where g denotes a lattice vector. Taking the Fourier transform of

Eq.(1.1) then gives the relation:

g(4+g; id) = E c(4+g,4+g'; w)g(4+g'; (1.4)

where 4 is a wave vector confined to the first Brillouin zone and 4

and g' are reciprocal lattice vectors for any crystal symmetry. Thus

the allowed values of 4+g cover the infinite range of wave vectors

and the simple g and g' dependence of f(4+g,4+g'; ar) reflects the

crystal symmetry. If the external field is a long-wavelength optical

field then 4 corresponds to the external wave vector in the medium

(i.e. 4-4' /n, 4' is the external wave vector, n is the refractive

index of the medium), and id is its frequency.

Notice that in Eq.(1.1), which is in coordinate-time space, or

in Eq.(1.4), which is in wave vector-frequency space, the electric

fields are the microscopic fields which contain small-scale (unit

cell) fluctuations -- historically called local fields. Local fields

arise from the external field and the induced polarization
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distributed throughout the crystal. Due to the inhomogeneity in the

charge distribution these unit cell scale variations occur even if

the applied external field is uniform.

Petals (in which the electrons are often modeled as a highly

delocalized free electron gas) have negligible microscopic field

fluctuations. So the derived microscopic fields will also be

uniform. The quantum mechanically obtained microscopic screening

dielectric function will therefore correspond to the macroscopic

average value. However, for covalent and ionic crystals, where there

are local accumulations of polarizable electrons, the screening

response will reflect local field variations within the unit cell.

In a crystal, it is the local field that actually determines how the

charge is polarized, which in turn determines the macroscopic

dielectric response by an average of the microscopic quantities over

a unit cell. Taking the g = 0 and 0 term in Eq.(1.4), gives the

macroscopic relation

I4; = f(4; 0t(ii; (1.5)

In the optical limit 4=0 Eq. (1.5) becom s the macrosB4725Iaxwell

relation Eq.(1.2). The detailed relationship between the microscopic

and macroscopic electric fields will be discussed later in this

chapter and in Chapter II.
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1.2 Dielectric Constant and the Lorentz Lorenz Relation

The complex dielectric constant

E(4/) = e (w) + i e (o) (1.6)
1 2

contains a complete description of the linear optical properties of

matter. For example the optical absorption coefficient ,(a) is

related to the imaginary part of the dielectric function f2(w) by

n(w) .
E

f
2
(id), and the complex index of refraction n(w) is defined

C

by

n(w) . 4f(w), (1.7)

which in turn determines the reflectivity at normal incidence

n
R

=
I1 TTil

2
. Moreover, light scattering and harmonic generation

cross-sections can be modeled by considering variations of the

complex dielectric constant with the crystal under strain.

Comparison between measured dielectric constants and those

calculated from microscopic models must be done with care. The

measured dielectric constant is a bulk property defined through

Maxwell equations in terms of macroscopic average fields. On the

other hand, dielectric constants calculated from quantum mechanical

models are usually found as linear and non-linear screening responses

of a polarizable system to an external electric field.

The relation between macroscopic and microscopic fields was

first studied, over 100 years ago, by Mossotti (1847) and Clausius



(1879). They independently anticipated a relationship between the

macroscopic dielectric constant and the microscopic atomic

polarizability which was later theoretically obtained by Lorentz

(1880) from the following arguments.

Consider a cubic crystal consisting of identical polarizable

dipoles with polarizability a(w) at each site. Let there be an

external electric field text (due to external charges). The

microscopic dipoles are polarized by the microscopic field ESL at

their sites which, as a result of the fields from all the other

dipoles, are clearly not the same as the external field. The

microscopic dipoles acquire moments according to

V(w) = a(w) gL,

5

(1.8)

and the average polarization vector within the crystal is the sum of

these dipole moments

V = N a(w) rp (1.9)

where N is the number of dipoles (n) per unit volume (a
3
), a being

the lattice constant and therefore N = n/a
3

. However, the

polarization vector defines the macroscopic electric susceptibility x

= x t, (1.10)

where r is the macroscopic averaged electric field within matter.
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The macroscopic dielectric constant c is defined from x by

E = 1 + 47x. (1.11)

The local field g
L
can be estimated by using the Lorentz spherical

cavity argument in a cubic crystal to find(1)

Substituting Eq.(1.9) into Eq.(1.12), we have

gL
g

47
1 7-Na(w)

(1.12)

(1.13)

so the local field has the same direction as the macroscopic average

field. Comparison with Eq(1.9) and (1.10) yields

E . 1 +
E 9

47 Na(w)EL

from which it is found that

E= 1+ 4r Na(w)
4T

1 --Na(w)

(1.14)

(1.15)

This demonstrates the difference between a microscopic description

(via a(w) in this model) and the macroscopic (measured) dielectric
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function. Eq.(1.15) is the so-called Lorentz Lorenz (L-L) formula

and the factor 4r/3 is called the Lorentz factor ( L-factor) for

cubic crystals.

1.3 Quantum Local Field Theory and the L-L Relation

Apart from the obvious limitation that the L-L relation is only

valid for cubic symmetry, it may seem like the L-L formula is a

hopelessly naive approach to what is a complex quantum mechanical

many body problem. In general, the L-factor is crystal structure

dependent, which is beyond the Lorentz theory(2). However, within

this simple L-L formula

Xo

X= 1- Lx0 = xo {1 Lx0 + (140)2 (40)3 }, (1.16)

lies the suggestion of a summation of Feynman diagrams, hinting

perhaps at some form of Random Phase Approximation (RPA).

From the general method for obtaining the Maxwell measured

dielectric constant from the fully local field corrected microscopic

dielectric response, originally developed by Adler (1962)(3), Wiser

(1963)(4) and Sinha et al. (1973)(5'6'7), the macroscopic dielectric

constant c(w) with local field effect included is given by(3'4)

1

E(w) = Lim g=0 .

ci-0 c (44,44'; tir)

Here c
-1

is the inverse dielectric matrix and 44 is the

(1.17)
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long-wavelength (optical) limit. If one considers the limit of

tightly bound electrons, neglects the overlap of electronic wave

functions belonging to different sites and uses the dipole

approximation, one finds results analogous to the classical Lorentz

Lorenz relation.

This has been most clearly discussed by Onodera(8) and we state

here his result. If the unit cell contains one atom, the dielectric

constant is

E( &) = Lim{ 1 +
A 2

a(&) }, (1.18)

1 %Te
[EG

If(44)12 GE If(t)12]

where a(w) = e211(0,1,)12 is the free-atom polarizability and f(44)

is the polarizability between a pair of localized Vannier states

p
A
M and p (i)

f(44) = r d3r f)(1)e-i(44-4).-11p14(T). (1.19)

Onodera(8) is careful to point out that while the third term in the

denominator corresponds to the RPA result the second term, which is

the subtracted self polarization of charge in a unit cell, is

essential to give the L-L result. The removal of self polarization

corresponds to going beyond RPA and including the exchange

contribution in the Feynman diagrams.

In principle, if the Vannier functions of the solid are known,

the self-consistent local field calculation of the dielectric matrix
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can be done by using the many body quantum theory which we have

described above. However, determination of the Vannier functions of

a solid is very complicated and in most cases is too difficult to be

practical, although linear combination of atomic orbitals (LCAO)

calculations are often useful. Moreover, for the more general case

of a non-cubic crystal or a crystal with several atoms per unit cell,

the dielectric matrix is not so easily obtained. But having seen

even a restrictive quantum justification for the L-L form, it may be

that a direct " classical" evaluation of the dielectric function in

the spirit of L-L can be an useful approach.

A number of investigations have been reported into the local

field effect in semiconductors and insulators(9'
10).

Hanke and

Sham(11'
12,13,14) expressed the dielectric response in Vannier

states, by writing the single-electron Bloch wave in terms of a set

of well localized wave functions describing the inhomogeneity of the

charge distribution. The localization of the Vannier functions

describes precisely the physical origin of the charge inhomogeneity.

Notice that in Eq.(1.19), the first non-vanishing term in the

multipole expansion (i.e. e
-1.11

r1J 1 iV1.4) corresponds to the

appearance of a dipole. If we assume that the well localized Vannier

states are the physical origin of the dipole, then we can still use

the point dipole model to evaluate the local fields and the

dielectric constant in the solids.
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1.4 This York

The L-L relation is justifiable for solids with electrons

tightly bound to the atom, but is questionable for covalent

crystals
(10)

in which the electron wave functions are sufficiently

spread out to form bonds bridging atomic sites. Yet this is a case

we wish to consider here. As an alternative if we assume that the

well localized bonds are the actual dipoles (i.e the bond dipole

model) then we can consider a relationship between the bond

polarizability and the dielectric constant.

In this work we use the point dipole model to calculate the self

consistent local field at each dipole's site and the dielectric

constants of solids. Ye also examine the variation of local field

strength at the interstitial sites in a unit cell, which may be very

useful for studying defects in solids and understanding local field

related light absorption or light scattering enhancements.

In this work the following assumptions are made. Ye assume that

the frequency of the external field is in the optical range but far

from resonances which allows us to be concerned only with the

contributions from the electrons in the solid and to ignore the

frequency dependence of the dielectric function.

In the point dipole limit, the local field at an arbitrary

position in the unit cell is the external field plus the field due to

all the interacting polarized electrons, i.e all the dipoles, in the

th.
solid. In Cartesian coordinates, the 1 component of the local

field at an arbitrary position in the unit cell can be written as
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i
, 3( )xit)c pi

EL Eext(V'r) Et,m
m m m cm mexp(i4.311m), (1.20)

xtm

-4 -)

where x
tm
re r

m'
r is an arbitrary position in the unit cell,

re is the lattice vector, rm is the position of the m
th

dipole basis

in the unit cell (see Fig. 1.1), pm is the dipole moment at the mth

basis, 4 is the propagation wave vector in the solid, 4, is the

external wave vector where 4 = n4' with n the index of refraction of

the material, and a' is the frequency of the external field. If this

point is a dipole site, then this dipole must be excluded from the

dipole field sum. The prime in the sum indicates that the dipole at

the site of interest is excluded from the sum. Since we are only

considering the long wave length limit of the external field, the

phase difference of the local fields at different unit cells can be

ignored.

Nahan(15) has pointed out that Eq.(1.20) is not a static

electric field since the retardation effect from the dipoles is

already rigorously included in the instantaneous dipole sums. A

brief review of Kahan's work on this subject is presented in Appendix

P.

Vith the help of the Ewald method(16) to calculate the dipole

summations, we can solve for the self-consistent local field at any

arbitrary position in a unit cell, including at each dipole's

position. Ve can also evaluate the macroscopic average field in the



12

Figure 1.1 Schematic illustration of r, it and im.
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solid which is the zero-order Fourier transform of the local fields.

This allows us to examine the local field effects on the dielectric

properties of the solids. A review of the Ewald method and a

derivation of the macroscopic average field in the medium will be

given in Chapter II.

In Chapter III, the method will be applied to the atomic dipole

(polarized atoms) and bond dipole (hybrid orbitals in the classical

dipole limit) models. We also examine the Lorentz -factor for

different crystal structures and discuss the results from the

self-consistent local field calculations for the two kinds of dipole

models.

The self-consistent local field calculations are used to examine

the effect on Brillouin scattering in solids in Chapter IV. The

elasto-optic (Pockels) constants which are related to the Brillouin

scattering cross section
(17,18)

, represent the coupling of a photon

and an acoustic phonon. They are determined by the change in the

dielectric tensor due to an elastic strain. In Chapter IV, we have

calculated the elasto-optical constants of compounds with the diamond

and zinc blende structure by using the two kinds of dipole models.

In Chapter V, the self-consistent local field calculations have

been extended to surfaces. In this case, some spatial averages which

are zero in the original L-L argument are non-zero. For the two

kinds of dipole models two dimensional local field equations and

calculations are presented. Local fields at an arbitrary point on

the surface are evaluated and the L-factor for different two

dimensional surface structures are also calculated.
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Finally, a summary of this work and the conclusions are

presented in Chapter VI. Future work that may extend the analysis

and application of this work are also discussed.
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CHAPTER II

BORN-EVALD METHOD AND ITS APPLICATION

2.1 Introduction

From Chapter I, the ith component of the dipole electric field

at an arbitrary position il in a unit cell of a crystal is

3 ( ic'tm-Vm)4m x2 i
i -4 &Pm .-) -,

E (r) . Eioi exp(lq-xim),
P x5 $m

(2.1)

-4 -4 -4 -4 -4

where xtm = r rt rm, rt is the lattice vector and rm is the

position of the mth dipole basis in a primitive cell (see Fig. 1.1).

pm is the dipole moment at the mth site and 4 is the wave vector in

the crystal. The prime on the sum means the self contribution of the

dipole is excluded. Ve define two functions SV and S3, which are

related to the dipole field by

and

xim xiiiij -, -4
S (q '5 7 r 7 m) = Ei

m
5

exp(i4ilim), i i j =1..3, (2.2)

xtm

yi,i101) = E 4 exp(iiiim).
' ]qiii

Ye can also define a function .. ,

(2.3)
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Sii(4,i1,m) = 3SP(4,i),m) SiiS3(4,11,m), i k j = 1..3. (2.4)

Then, the dipole field of Eq.(2.1) can be rewritten as:

EP i(4,i1)
= Ems.

S. (4 il" m
m)pi

'

i k j = 1..3. (2.5)
ii

The dipole sum in Eq.(2.4) is absolutely convergent when 4 i 0

but is conditionally convergent for an infinite lattice when 4 = 0.

Because the sum has no unique limit when 4 = 0, its limiting value

depends entirely on the direction by which the point 4 = 0 is

approached or, equivalently, the results depends on the order in

which the terms are summed. However, for a finite lattice, a direct

evaluation of Eq.(2.4) for 4.0 case is zero. All these points have

been discussed in detail by Cohen and Keffer(19) .

For either case the real space lattice sum converges too slowly

to be computationally practical.

The Born-Ewald method(16
,20,21)

is the canonical method for

evaluating this type of lattice summation because it accomplishes

three important things: (1) it separates the conditionally convergent

term, (2) it accelerates the convergence, and (3) it obtains the

correct 4 dependence for small 4 which can not be obtained by a

finite real space sum. The first point will be mentioned later in

the discussion and the second point is discussed in next section.

The Ewald method(16) was further developed by iisra(20) and Born and

Bradburn(21). In addition it has been widely applied by many other

authors who have contributed to its evaluations and
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applications
(22,23,24,25). However, throughout all these consequent

extensions to the Born-Ewald method, the essential features were

still retained and are used here.

2.2 Born-Ewald Method For Dipole Summations

Consider a Bravais lattice with m basis dipoles in each

primitive cell. Each basis dipole is located on a sublattice. In

particular, the diamond crystal has two basis atoms in one primitive

cell with each basis atoms part of a face-center-cubic (fcc)

sublattice. So the diamond structure can be thought of as two

interpenetrating fcc sublattices.

Ve have introduced the two dipole sums S53(4,i1,m1 and S3(4,1.)00

in section 2.1. They are the sums at position 11 in the unit cell due

to the dipoles on sublattice m'. If the position we are interested

is the Nth dipole site, i.e. take il at the Nth dipole site (Capital I

stands for one of the lattice points in the m
th

sublattice), then the

sums SV(4),I0e) and S3(-4,11,m1 are the sums at the Nth dipole site

due to the m'
th (m' = 1..m) sublattice in the solid. If m' = m, then

the sum is over an imperfect lattice for which the Nth point must be

excluded. If m' # m, then the sum is over a perfect lattice but at a

point which is on a different sublattice. A perfect lattice here

means that the lattice is perfectly periodic.

To simplify the derivation of S53(-4,101') and S3(4,101') in the

Born-Ewald expression, we define:
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Sn(4,i,m) = EQ exp(i4.Ti1 ), (n > 0), (2.6a)

xim

and note that

Sii (4" m) 0 0

n 7
s
n
(4

'
m)

(71

.

j

(2.6b)

Ve will use this result to simplify the derivation later.

The Born-Ewald method is based on using Euler's integral for the

r-function,

w
t(n/2 1) x2

r(n/2) e t) dt, (n.1,2,3..). (2.7)

0

The relationships between the perfect lattice sum and the sum

excluding the point -Xtm = 0 is:

2
Eitexp(-xlmt + Et exp(-xtmt + 1,

and the similar expression

(2.8)

i , j
2,t tm-xtmeximxtmt + iqxtm) Itxtmxtmexp(-ximt + uxtm). (2.9)

The Fourier transform of the perfect lattice sum is given by:

Et exp(-4mt + EG CG exp(ig.i), (2.10)
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where g is a reciprocal lattice vector. By substituting (2.7), and

(2.8) into (2.6a), the Fourier transform is,

CG f exp(-A1.) gt exp(-4mt

c cell

(2.11)

Where, V
c
= a

3
/4 is the volume of the primitive cell and a being the

lattice constant for diamond and zinc blende structures. Ve may

interchange the order of integration and summation and change the

-4 -I
integration variable from r to xtm= r re rm. The resulting

integral (see Appendix A) is,

3/2
1 rCG = v m

which can be inserted into Fq.(2.10) to give

3/2
, 7

Et exp(-xl2 mt + xtm)
1

EG ck )

2

-exp[-A.% ( ] exp(igi1).

If we define

a = E
I

exp(-x
im
t + icx

im)'

-4

then we have

(2.12)

(2.13)

(2.14)
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a a
E1 i---8-7,7 a = i xim.xii exp(-xim t + iiiic'tm)

= EG DVexp(igi), (2.15)

where D
G

jis
(see Appendix A),

3/2 . sq.)-(G. q.)
ij 1 T

(G1
1 J J ]

DG -V-- (-I-) [-2-f Sij 4t2

2

exp[-igi'm

This leads to

(2.16)

3/2

Et xLxitm exp(-x2tmt + i4.i)t) . EG -k (t) [-TT bij

(Gi qi).(G q)
2

g

4 t
2 2 3 ] exp[- igim- ]exp(igi). (2.17)

Eq.(2.13) and Eq.(2.17) are called the theta function

transformations. They will be used later to obtain the final

results.

We now use Euler's integral to rewrite Sn as:

co

Sn(4,i.,m\= 1 j 'JO 1)1-1"/
/ r(n/2) 1

2 .-1-1
LLt exp(-ximt + iqxtm)pdt. (2.18)

0

Ve can break the above integral into the sum of two integrals; the

first extending from 0 to some parameter A and the second from u to



m. In the first integral we use (2.8), the theta function

transformation (2.13) and the integral

J

t(n/2 1) dt
tun /2

n

0

S
n

can be written as:

21

(2.19)

Sni(4,,m)
1

{

3/2 A

r(n/2) 1 Lv--LG exp(-A.rm).exp(il.il) t(n-5)/2

0

.exp dt + f t(n/2 1) [Ei exp(-x2imt
J

A

+
tm

)] dt}. (2.20)

Finally we. replace t by s
-1

in the first integral to give

3/2

Sn(4,il,m) = r(111/2)1 [VG exp(-A i-im)-exp(ig.)f s(1-n)/2

1/p

-exp( ) ds
2
A
n/2

]

2

j t(n/2 1)
[Ei exp(-x2imt + dt}. (2.21)

S
n
(4,i1,m) is the n

th order lattice sum at position r due to the m
th

sublattice. Taking n = 1, we can get the lattice potentials sum

which is used in the ladelung sum, while n = 3 and 5 give the dipole

sum. In general, taking a different order of n will give a different
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order of multipole sum.

Now introduce the incomplete gamma function which is defined as

w

r(m,x) =
J

tm-1 exp(-0 dt

x

and satisfies the recurrence formula

Ve also have

(2.22)

F(m+1, x) = mP(m,x) +xmexp( -x). (2.23)

r(1,x) = exp(-x),

r(0,x) = E1(x),

r(1/2,x) = Ti {(1-F(Ti)},

where E
1
(x) is the exponential integral

m

E
1
(x) = f

exp(-t)
dt

x

and F(x) is the error function integral

x

F(x) = 21T j exp(-t2) dt.

0

(2.24)

(2.25)

(2.26)
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To calculate the dipole sum at the eh dipole site we define

this point to be the origin and take i = 0 in the dipole sum. The

final results of S
3

and S
5

j
at the I

th
dipole site due to the m'

sublattice can be written as:

4n3
S3(4,100 EG exp(-i4im,)E1(xG) (5m,m,

2x
1

+ E'
3

[1 F(xr) + r exp(-4)]. (2.27)

xtm, Ti

Using Eq.(2.6b) we have

S5J(4,11,W) 2r E
G
exp(-Aim,)[ El(xG)

Sij
c

12 exp( xG)] + exp(iqxtm,)[1 F(xr)

G' x tm,

2x
r

4x3
+ exp( x2) + r exp(-x2)],

3f
(2.28)

where b is the reciprocal lattice vector, b' g 4, xG = G'
2

/ 4n
2

,

xr = p xl, and the parameter r = TTI is called the Ewald parameter.

To calculate the dipole sum at an arbitrary position i # it and

-4

r
m

which is a sum over a perfect sublattice due to the m
th

n3
sublattice, the term m

in Eq.(2.27) vanishes, because it
,m

---,-

comes from the exclusion of the dipole's self contribution. That is,
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S3(4,r,m) EG exp(-ig.rm,) exp(ig.r).E1(xG)

2x
+ Ei exp(iii-i'im,) [1 F(x

r
) + r exp(-4)], (2.27')

xim,

sid(v,m) . _3;_ EG exp(-i4im,) exp(igi.)[ Ei(xG) Sii
c

i G.';

i j
2G xgm,xlm,

tm,).[1 F(xr)J exp( xG)] + Ei ' 5' exp(14.x
G' x em,

3
2x

r
4

, , , N,
expk-x

r
2)

+

x
expk-x

r
2)j.

(2.28')

Ti

The value of q is arbitrary and can be carefully chosen to make

the summations over real space and reciprocal space converge at the

same rate. By choosing the optimum value of the Ewald parameter 1,

the summations will converge rapidly. Furthermore, we can prove that

the dipole summations are independent of 7/ by showing,

a s 3 (q,r,m) 0 S 3 (4 )
n')

77 a
0 (or 0) ,

n

0 S P(V,m) 0 S 5'(1,N0E)

0
0 (or

0
0).

71 n

(2.29)

(2.30)

This is established in Appendix B. The dipole sums we have just

evaluated using the Born-Ewald method can be used in any kind of

crystal structure and is not restricted to a cubic crystal. However,

for simplification we consider the cubic crystal to check our

analysis. Tables 2.1 and 2.2 give the dipole sums for a simple cubic
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Table 2.1 The independence of the Ewald parameter of the dipole
sums. Different Ewald parameter n are in put with N = 3 where N is
the number of terms taken in the sums. The calculation is based on a
simple cubic (SC) structure, so there is only one dipole in a unit
cell. The dipole sums are calculated at the dipole's site. The wave

vector 4 in the solid is along the z direction and has the value qa

= 4.1931x 10
3

, where a is the lattice constant.

S
3

S
11

5
S
12

5
S
22

5
S
13

5
S
23
5

s
33
5

1.25 77.9271 27.3720 0.0000 27.3720 0.0000 0.0000 23.1832

1.50 77.9271 27.3720 0.0000 27.3720 0.0000 0.0000 23.1832

1.75 77.9271 27.3720 0.0000 27.3720 0.0000 0.0000 23.1832

2.00 77.9271 27.3720 0.0000 27.3720 0.0000 0.0000 23.1832

Table 2.2 The convergence of the dipole sums. With Ewald parameter
= 1.75 and all other conditions the same as in Table 2.1. N is the

number of terms taken in the sums in both real space and wave vector
space.

N S
3

s11
5

S
12

5
S
22
5

S
13

5
S
23
5

s
33
5

1 77.9270 27.3719 0.0000 27.3719 0.0000 0.0000 23.1831

2 77.9271 27.3720 0.0000 27.3720 0.0000 0.0000 23.1832

3 77.9271 27.3720 0.0000 27.3720 0.0000 0.0000 23.1832

6 77.9271 27.3720 0.0000 27.3720 0.0000 0.0000 23.1832

9 77.9271 27.3720 0.0000 27.3720 0.0000 0.0000 23.1832
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crystal with different values of I/ and number of terms N taken for

the sums in both real space and wave vector space. We can see

immediately that the dipole sums are independent of Ewald parameter q

and that they converge very quickly.

2.3 The Macroscopic Average Field

As mentioned in Chapter 1, the local field riA is equal to the

external field plus the contribution of the fields from all the

dipoles in the solid except the self contribution if r is at a dipole

site, i.e.

E'(4 = E' (4 e(4L ' ext ' p " (2.31)

where Ei(4,-i.) is the dipole field defined in Eq.(2.1). The

macroscopic average field is an average of the local fields over the

th
unit cell. The of the macroscopic average field < E

i
>

in the solid is the zero order Fourier component of the local field:

< > = f Et(4,i-) dr3. (2.32)

c cell

It is this macroscopic average field which satisfies the Maxwell

equations in the medium. Using Eq.(2.31), the ith component of the

macroscopic average field can be rewritten as the the external field

plus the averaged dipole field over the primitive cell, i.e.



1 -4

< E (q) > E
ext

+ v E (q.r) dr,

cell
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(2.33)

Now let us calculate the second term of Eq.(2.33). We want the

Fourier transform of Ei(4,-11) and then take the g = 0 term which will

give us the macroscopic average of the dipole field. Notice that

when i is not taken at the dipole site (i.e. i # it or im), the

dipole sum is over a perfect lattice. Even in the case where ; is at

the eh dipole site, the sum over m' # m sublattice is still over a

perfect lattice. Only the case of S. (4
'

IA which is the sum at the
ij

I
th dipole site over its own sublattice must exclude the self

contribution. Therefore only this sum is over an imperfect lattice.

From Eq.(2.5), we know that the Fourier transform of the dipole field

Ep is equivalent to the Fourier transform of Sid. For the sums over

a perfect lattice and using Euler's integral again, we can rewrite Sn

which was defined in Eq.(2.6a) as

sn(4,Wm,m) = rolo)
J

ft(n/2 1)E1exp(-4 t + i411) }dt. (2.34)

0

Using the theta function transformation in section 2.2, we obtain the

Fourier transform of S
3

and Sij.
5

(0

S3(4,i,m) = Lim
1 r +1,2f

IG V
1

( t

3/2

r(3/2) J ' 1 )
exp[igilm

(-0
f

exp(ig;)} dt. (2.35)



m 3/2 (Gi q)-(G qj)

Sij(4 m) Lim 1 f r g [ 1 b.5 9 9 F(5/2) J-17 G -2-f ij 4 t2

28

2

]exp(igi.)} dt. (2.36)

Thus, for the 4 = 0 term (which does not depend on r so its

dependence is suppressed) in Eq.(2.35) and (2.36):

< S
3
(4

'

m) >1 r(3/2
Lim

y3/e i

i j t exp( dt, (2.37)

G.0 (4 ) c

Lim
(03/2 T t-1

Qiiu5 (q,m) ,1 "i .

J
(-2-- Si'S

4 t
)co. c-)0 /

c

2

-exp( ) dt. (2.38)

For the sums over an imperfect lattice only S3(4,11,m) requires

special attention, since from Eq.(2.9) the sum S5J(4,11,m) is the same

as S5J(4,1101'), which is over a perfect lattice. Also from Eq.(2.8),

the imperfect lattice sum S3(4,11,m) is related to a perfect lattice

which means we can take the Fourier transform. By a change of

variable, the zero order Fourier component of the S3(4,I,m) can

finally be written as

< S3(4,101) >I = Lim I r(3/2) Yc
/ 1

(r)3/2

t exp( dt
2

G =0 c-40

2 c
3/2

}. (2.39)



In the limit f -, 0, it has the same form as Eq.(2.37).

If we set

2

I(f) =ftlexp( dt,

then we can write

< S3(4,m) >1 = Lim--2;-- I(f),
G=0 c

and

q. q.
< SP(4,m) >1 1,T7Lim ( Y4.4 1 23 ).

G=0 E.40 c J

29

(2.40)

(2.41)

(2.42)

The second term in (2.42) is from the integral over the second term

in (2.38). Using Eq.(2.4), the zero order Fourier component of Sid

is

Sij(4,m)1G.0 Ej 3 < S53(4,m) >1 S..< S
3
(4,m) >1

G=0 13 G.0

qi qj
--V '

c

(2.43)

which is the quantity we are really interested in. The TM canceled

between < SP(4,m) >1 and < S3(4,m) >1 . Therefore < Ei > can
G.0 G=0

be written as:

Ei

P J
r

Ei(r) dr
3

c cell



or

= E
m9

.S..(4121)1G=0.P1
3 1.1

4r r
q
i

q
j

p
m

= -
--V "m,j q2 '

g - _ 47 _g_ E _4_ 1,

P --V 141 m 141 mj

30

(2.44')

(2.44)

where, pm is the dipole moment at the site of the m
th

basis. Notice

that < g > is along the direction of the wave vector, but does not

depend on the magnitude of the wave vector. The macroscopic average

field can then be written as:

< g(i) > gext
'1 -1141 Em 1-'141

Pm) }

which is valid for any kind of crystal structure.

(2.45)

2.4 Discussions

In the beginning of this Chapter, we mentioned the conditional

convergence of the dipole sums. The Born-Ewald method enables one to

separate out this troublesome term, which is in Eq.(2.43) and gives

the second term of Eq.(2.45). Physically, when the optical limit (1-40

is taken, the value of the second term in Eq.(2.45) strongly depends

on the direction in which 4 goes to zero. This in fact reflects the

surface shape effect. So when 4=0, the second term in Eq.(2.45) is

actually the depolarization field due to the surface polarization

charges. For example with a slab shaped sample, the depolarization
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field is well known to be -47P. The second term in Eq.(2.45) gives

this result when 4 is in the same direction as the polarization

vector (i.e. the macroscopic average field), which is the

longitudinal case, and taking the limit 4 -) 0. Thus, for 4 = 0 the

situation must be considered with care since the dipole field gp(4.0)

can take on any value depending on which direction the 4 goes to

zero. We can partition this term to

r (q=0) -0+11, (2.46)

where, N is the shape dependent depolarization factor
(2,7,26)

and

corresponds to the G=0 term in the dipole sums. The depolarization

factor N is extensively tabulated in the literature(27). L is the

so-called Lorentz factor which is only dependent on the crystal

structure and corresponds to all Gf0 terms in the dipole sums. So at

the 4=0 limit, the local field can be written as:

c(4=0) ext NV 4' LV,

< t(4.0) > + L1. (2.47)

The macroscopic average field in this limit can be written as

< t(4=0)
>

text
(2.48)

However, the conditional convergence of the dipole sums does not

occur for Ci f 0. For small 4' > 0, the dipole sum defined in Eq.(2.4)
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is absolutely convergent, i.e. it has only one finite limit and does

not depend on the order in which the sum is taken. Therefore the

dipole field gp(40) is not shape dependent, and the local field

r,(4) does not include the depolarization factor. This is the case

we are going to calculate and discuss in Chapter III.

Let's consider a crystal with one atom per primitive cell, i.e.

m = 1. Ve rewrite the dipole sum Sij (which was defined by Eq.(2.4)

and is a sum for all G) at the dipole site (by taking i=0) to be two

terms, one is the G=0 term (which is in Eq.(2.43)), and another term

which is for all 40. The second term only depends on the crystal

structure and is regular at 4=0. We will see later that this term is

actually related to the L-factor, i.e. (for simplicity the variables

m and r are left out in the following equations since they are for

the special case of m=1 and 11=0)

s..(4) = s..(4)1G_O s..(4)1Gto
-

4T gig'
= + L../V

c
c q

(2.49)

where Lij is independent of 4 for 141 << 1V1. For a cubic crystal,

we know that Lij= (4T/3)5ii. Eq.(2.49) then becomes

4
q.q.

Sij (q) _ [bij 3(121)], (2.50)

which is exactly the same as Cohen and Keffer(19) obtained by a

different approach. From this equation, we see that the dipole sum
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matrix Sij is insensitive to the magnitude of q. However, the G =0

term depends on the direction of the 4 and the sums S53(4,1100 and

S3(4,11,m1 (Eq.(2.27) and Eq.(2.28)) depend on the magnitude and the

direction of 4. Table 2.3 lists the dipole sums S3, SV and Sij for

different values of q for the simple cubic crystal as a check. The

results clearly demonstrate that Eq.(2.50) is satisfied. In fact,

the insensitivity of Sij to the magnitude of q is valid for any

crystal structure, even non-cubic crystals. Table 2.4 shows the

insensitivity of Sij to the magnitude of q for the simple tetragonal

(ST) structure (Fig. 2.1) with the lattice ratio c/a = 0.8.

Therefore in the following calculations the local fields and the

dielectric constants are insensitive to the magnitude of q.

Ve also want to point out here that Sij can be evaluated at any

arbitrary position in a unit cell. This capability can help us to

calculate the local field at any arbitrary point in a unit cell (we

will discuss this further in Chapter III). However, only Sij at the

dipole's site is related to the L-factor, which is a tensor in

general (see Tables 2.3 and 2.4). The L-factor is originally defined

by Lij = VSij(4=0)1Gto. However, since Sij (4)140 is regular at

4.0 and Sij is insensitive to q for small 4, so sii(4,01Gto

Sij(4#0)1Gio. This is also shown in Table 2.4. From Eq.(2.43), if 4

is along the k direction only, then Sij(4#0)1G.0 = 0 for i and j # k,

even for non-cubic crystals. So Sij(40)1
all G =Sij(4")140 for i

and j # k. Therefore we can calculate the L-factor from

Sij(4#0)Iall G for i and j # k. For a crystal with only one atom per

primitive cell, we have
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Table 2.3 The insensitivity of the magnitude of the wave vector for

the dipole sum of a simple cubic structure. For wave vector q along
the z direction, where qa is dimensionless and a is the lattice
constant. All the dipole sums are calculated at the dipole's site.

S5 lj = 0.0 and Sifj . = 0.0 are not listed in the table.

q.a =
4.1931x

3
S
11

5
S
22
5

S
33
5

S
11

S
22

S
33

10
-2

48.9931 17.7273 17.7273 13.5386 4.1888 4.1888 -8.3773

10
-3

77.9271 27.3720 27.3720 23.1832 4.1888 4.1888 -8.3775

10
4

106.8622 37.0170 37.0170 32.8282 4.1888 4.1888 -8.3776

10
6

164.7324 56.3071 56.3071 52.1183 4.1888 4.1888 -8.3776

L S11/a
3

S22/a
3

3 ,"2. 4.1888 (taking a
3

as unity).

Table 2.4 The insensitivity of the magnitude of the wave vector for
the dipole sum of a simple tetragonal structure. The lattice ratio

c/a = 0.8, and 4 is along the x direction. All dipole sums are

calculated at the dipole's site. From Eq.(2.43), S22(4)IG.0

S33(4)IG=0. 0, so Si.(4)1 for i #1. Siij =all G=Sii(4)1G#0 E Sii(4)
0.0 are not listed in the table.

qa =
4.1931x

S11(4)Iall G
S
22

(4) S
33

(4)

10
-2

10
-5

q=0,40

-12.4404

-12.4404

3.2675

3.2675

3.2675

9.1729

9.1729

9.1729

S11(c1=01G#0 S11(4)Iall G -S11(4)IG.0= -12.4404+4r/0.8 3.2675.

So L
xx

.L
yy

.2.6140, L
zz

.7.3383 and L
xx

+L
yy

+L
zz

.4r. S
11

+S
22

+S
33

=0 is

also satisfied for both 4=0 and 4f0 case.
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Figure 2.1 Simple tetragonal crystal structure.
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Lij E VSii (41=13)1G0 Vc.Sii(4f0)1Gio with 141<<Igl (2.51)

VcSij(4101all G
(with i and j # k).

However, if there are m basis atoms per primitive cell, since the

local field at each atom's site are the same in the atomic dipole

model (S..ij s are the coefficients of the coupled self-consistent local

field equations, we will discuss this point in Chapter III), so we

can simply add them together to have

nL.. V .E S.. (with i and j f k), (2.52)
ij c m' 1J(47"11all G

where n is the number of atoms per unit cell. For the bond dipole

model, the L -factor is not so easy to obtain since the local fields

at each bond dipole's site may be different, we can not simply add

the S..
ij

together for different m. The difference between the atomic

model and the bond dipole model will be further discussed in Chapter

III.

Since the self contribution has been excluded in the dipole

field, gp satisfies Vgp=0 anywhere in the crystal (or equivalently

the potential 0 due to all other dipoles satisfies V20 = 0). This

result gives (in the principle axis)

(S11 +S22
+S33) V11 =

0.
(2.53)

For the 40 case, v11 =4 which in general f 0, so we must have



S
11

+S
22

+S
33

=0
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(2.54)

This result can also be observed in Tables 2.3 and 2.4. For the 4=0

case,

V.V {
0, off dipole's site

4Tpd, at the dipole's site,
(2.55)

where pd is the induced polarization charge density. So even for the

4=0 case, Eq.(2.54) holds at the dipole's site. Then, using the

definition of L-factor in Eq.(2.51), Eq.(2.43), and Eq.(2.54), we

have

L
11 22

+1,
33

4i (2.56)

This result is identical to the results obtained by Nueller(28) and

later by Colpa(7) and Purvis and Taylor(2)(differing in definition by

a factor 4r), but in this work it is from an entirely different

approach. Ye obtained Eq.(2.56) without any additional assumptions.

Also the method we used here for calculating the L-factor seems much

simpler than the method of Purvis and Taylor(2) who take the 4=0 case

in the dipole sum, choose special sample shapes and carefully order

the summations to avoid the conditional convergence.
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CHAPTER III

METHOD OF SELF-CONSISTENT LOCAL FIELD CALCULATIONS

3.1 Two Models of Local Dipoles

From Chapter I and II we know that the local field in a solid is

the external field plus the dipole sum, which depends on the dipole

moments residing on the sites in the crystal. The dipole moment is

proportional to the self-consistent local field determined from the

local dipole model used. Here, we use two kinds of dipole models:

(1) the Atomic Dipole Model (ADM) in which the polarizable charge

distribution is placed at the atomic sites, and (2) the Bond Dipole

Model (BDM) in which the polarizable charge distribution is placed at

middle of the bonds between the atoms and is only polarizable along

the bonds..

For cubic materials, the atomic dipole moment is defined as the

atomic polarizability times the local field at atom's position:

1ADM (m) alL(m)' (3.1)

For the diamond and zinc blende structure, shown in Figure 3.1, we

have two atomic dipoles in each primitive cell, which are located at

(0,0,0) and (-,-1--,--) in the unit cell, with the lattice constant

a taken to be unity. As we have discussed in Chapter I, the atomic

dipole model has been widely used in the local field
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*--

Figure 3.1 Crystal structure of zinc blende, showing the tetrahedral

bond arrangement. If the two kinds of atoms are the same, it is the

diamond structure. The numbers on the bonds indicate the four bond

dipoles.



corrections in the past. It was assumed that the medium has been

uniformly polarized and the L-L theory of the susceptibility,

N a
4r1 N N a

40

(3.2)

is based on this model.

The bond dipole model arises from the overlap of quantum sp3

hybridized orbital theory
(29

'

30,31,32)
along the bond directions.

Figure 3.2 shows the bond orbitals in the linear combination of

atomic orbitals (LCAO) quantum theory. The normalized wave function

of the sp3 hybrids and the directions in which the charge density is

greatest are:

1h1 > = [ Is > + Ipx > + Ipy > + Ipz >] with [111] orientation,

> = [ Is > IPx > IPy > Ipz >] with [17 orientation,

1h3 > _ [ Is > 1px > + 1py > Ipz >] with [T11] orientation,

Ih4 > [ Is > Ipx > 1py > + Ipz >] with [III.] orientation.

The sp
3 hybridized orbitals give the four tetrahedral

directions, which will be the direction of the bonds. The magnitude

of the bond dipole moment is proportional to the projected local

field at the middle of the bond along the bond directions. The ith

component of the bond dipole moment is defined as:

PLY(m) = a Eic {Etdk(m)} di(m), (i, k=1..3), (3.3)
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Figure 3.2 The sp3 hybridized bond orbitals in LCAO theory.
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where the bond polarizability a is assumed isotropic and independent

of field, d
i(m) is the unit direction of the m

th
bond, and m.1..4.

There are four bond directions in the tetrahedral structure

given by:

(3.4)

For the diamond and zinc blende structure, we have four bond dipoles

per primitive cell, along the four directions. They are located at:

(0.125, 0.125, 0.125), (0.125, 0.375, 0.375), (0.375, 0.125, 0.375),

(0.375, 0.375, 0.125), which are indicated in Fig.(3.1).

3.2 Self-Consistent Local Field Calculations:

In this section, we will calculate two kinds of self-consistent

local fields: (1) at the dipole sites and (2) at an arbitrary

position in the unit cell which is off a dipole's site.

The self-consistent local fields at the dipole sites are

determined by a set of coupled linear equations(33
,34,35,36,37)

Even for a simple cubic crystal with only one atom per unit cell, the

three components of the local field are still coupled. The minimum

dimension of the matrix is equal to three times the number of dipoles

per primitive cell.

th
The local field at the m dipole's site is equal to the
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external field plus the contribution of the fields from all the other

dipoles at this point, except the self contribution.- We will use the

equations developed in Chapter II to calculate the dipole sums at the

dipole's site. Each dipole moment is proportional to the local field

at that point. The assumption of a field independent polarizability

simplifies the calculation to coupled linear equations. However, an

assumption of a non-linear field dependent polarizability, although

introducing coupled non-linear equations, lies within the scope of

the present formalism and constitutes an interesting problem in

itself.

th
We write the i component of the local field at site I (which

is on one of the mth dipole sublattice) as:

ELi(4 I) Ei + E .S..(4" m
ml.pi

' ext m',3 13 " (3.5)

where m'.1..m and I runs from 1 to m. The sums S..(4,,,m1 are the

m'
th sublattice at the I dipole's site in a primitive cell. Notice

that only when m = m' are the sums Sii(4,11,m) over an imperfect

sublattice (the self contribution has been excluded). The parameter

4 in the local field on the left hand side of Eq.(3.5) indicates that

the limit q = 0 has NOT been taken, so the dipole sums are absolutely

convergent and do not include surface effects (or equivalently the

depolarization factor). From this equation we can see that using

different dipole models will result in different equations. In each

model we need to calculate Sij(4,11,m1 for m'.1..m and for I at all

the sites (11 = 1..m) to get the right coefficients for the local
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field equations.

For the atomic dipole model, we shall use the ADM dipole moment,

substitute Eq.(3.1) into Eq.(3.5), then the ith component of the

local field equation at the mth site is:

Ei(4
'

11) = Eext + a Em',J ij "I m1.0(4L "m') 11=1..m. (3.6)

Ve shall write out the local field equations at all the different

dipole sites in the primitive cell, i.e. I = 1..m for a total of m

dipoles in a primitive cell. This gives us the coupled linear

equations for the local fields. For the diamond and zinc blende

structure there are two atoms per primitive cell so we have II = 1, 2.

From Eq.(3.6), we notice that the three components of the local

fields are coupled to each other as well. Therefore, we have six

linear coupled equations to solve for the atomic dipole model for a

cubic tetrahedral structure.

For the bond dipole model, we shall use the BIA dipole moment,

substitute Eq.(3.3) into Eq.(3.5). Consequently the ith component of

the local field equation at the mth site is:

El,(4,11) = ELt aEm,,kEt(4,m1dk(w).Eisii(491,m1.di(10, (3.7)

where i
th

= 1..m and d
i
(m) is the component of the unit vector of

the bond direction at the m
th

site. For the diamond and zinc blende

structure there are four bond dipoles per primitive cell, which are

th
along the four bond directions. Since the i component of the local
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field at the m
th

dipole is not only coupled to all the other dipole

fields in the primitive cell, but also coupled to its own other

components, we have twelve linear coupled equations to solve for the

bond dipole model for a cubic tetrahedral structure.

The matrix form of the linear coupled equations in both models

can be written as:

EL (I A)-
1
E
ext'

- (3.8)

where E
L

is the vector of the local fields, (I A) is the

coefficient matrix for the local fields, and E
ext

is the constant

external field vector. The elements of the coefficient matrix Aid

depends on which model is used and results of Sii(4,11,m1 as well as

the dipole polarizability per unit volume (a/a3). The

self-consistent local fields can be obtained by solving these linear

equations. We know that Sid depends on crystal structure. For a

given crystal structure, the dipole sums are fixed and the matrix A

scales with the polarizability a/a3. Figure 3.3 is a schematic

representation of the self-consistent local field as a function of

the polarizability per unit cell a/a3 with a given crystal structure.

Notice the divergence in the local field which we may call the local

field catastrophe, corresponds to a phase transition happening at

that point. For large a/a
3

, the local field associated with a charge

in the lattice is so strong that it displaces the charge from its

usual position until it reaches a new equilibrium. The new state of



n
ext

a/a3
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Figure 3.3 Schematic diagram of the self-consistent local field as
function of the polarizability.



the solid permits a finite polarization even in zero applied field

which is called the ferroelectric state.

For the atomic dipole model, the local field at the I dipole

site has the form (in principle axis and 4 is along the k)

Ei

0(40
'

I)
L

ext

(1 aE
m JJ

Ei

Ei(4.0,I)
ext

(1 L..Na)
JJ

47

where N= n /abc, n is the number of atoms per unit cell, and a, b, and

c are the lattice constants. From Chapter II we have shown that when

4 is along the k direction, for a crystal which has I basis atoms per

primitive cell, Em,Sij(4,1,m1 = aii/lic for j #k, but Em,Skk(4,11,m1

(nLkk-47)/Vc. So the local field depends on the direction of 4

since . depends on the direction of 4. So we find that the

relation between the 4.0 local field and the 4f0 local field is (For

simplicity the variable I is ignored since for the ADI the local

field at different atomic sites is the same),

EiL (4#0)=Eir-0) for ifk, and 4(40)01(4.0).
L

Thus, the difference between the rL(4.0) and gL(4#0) occurs only in

the component of the local field which is along 4's direction.

.th
The component of the polarization of the material is defined

as the sum of all the dipoles in a primitive cell divided by the



volume of the cell:

i
Pm

P

i

1m V '
c
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(3.10)

where the dipole moment pm is proportional to the local field as

calculated above. Ve also can write the linear polarization as:

Pi = E. x.
j

< E3 >,
j i

(3.11)

where < E3 > is the jth component of macroscopic average field

defined by Eq.(2.45). The linear susceptibility xij is therefore

defined by:

Xli
_ a pi

0 < Ei >'

The dielectric constant is defined by:

ijj
E1 . = 5i + 4rx...

(3.12)

(3.13)

Considering the 4#0 case, for ADN we use Eq.(3.1) in Eq.(3.10)

where the local field is defined by Eq.(3.9a). Notice that the local

-) k -4
field E

L
(00)# E

L
(q.0) for k along 4 direction and E

m'
S
kk

(4
'

X
'

m) .

(nLkk-4T)/Vc'
Then, from Eq.(3.12) even for 4#0 case the

susceptibility in ADM has the form



Na
Xij= 1 L..Ne
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(3.14)

Eq.(3.14) tells us that the susceptibility with 40 is the same as

with q.0 in ADN, i.e. xij(4#0) = xij(4.0) for small 4 and it is

independent of 4's direction. So in a crystal for 4f0, the local

fields are scaled by Sij but the susceptibility is scaled by Lij. If

we are interested in how the dielectric property changes in a light

scattering problem, then the L-factor is more important.

Ve also want to calculate the local field at an arbitrary

position off the dipole's site i, (i.e. or ilm) in the unit

cell. The local field at i is the external field plus the dipole

fields at i, where the dipole sums are over perfect lattices.

EL
'

(4 = Eexit Em,3 S..(4,i101)P1, (3.15)

where S. (4 3 m) was defined in (2.4) and pi is the j component of

the m
th basis dipole moment which is proportional to the local field

at the dipole's site. Ve derived the solution to the local field at

the dipole's site previously. For simplicity, we only consider the

atomic dipole model, Eq.(3.15) then can be written as

EL (4
'

1) = Eexti + E
m,j

a.S..(4,i,m)Ei(4,m)

Ei

E1 + E a.S. (4 m)
ext

(3.16)
ext m,j lj "

(1 aEm,Sjj(4,11,m1

.th
Ve can choose text to only have an component, so we have:
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i ...1 -)
1 aE [S(4,11,m) Sii(4,i1,m)]

1 m 11

EL(chr) Eext 1
}, i=1..3. (3.17)

1 aE 4m Sii (I" m)

Ye can use Eq.(3.17) to calculate the self consistent local field at

an arbitrary position off the dipole's site il in the unit cell for

ADM only.

3.3 Results and Discussions for the Cubic Tetrahedral Structure:

All of the following calculations are based on the long wave

length assumption. For simplification, we always take the external

field as a unit vector and the magnitude of the wave vector q in the

crystal times the lattice constant a is about qatY4*10-3, which is

dimensionless. From the discussion in Chapter II, we have already

shown that the local field and the susceptibility calculation results

are insensitive to the magnitude of q for 141 «Igl. Tables 3.1

through 3.5 list the calculated results for the diamond structure

using ADM. Notice that the calculated results of the local fields at

each atomic dipole's site are the same, and the macroscopic average

field is equal to the external field because in the second term, Em

41% is zero. Those tables can be reproduced exactly by using

Eq.(3.9) where LAT/3, n = 8 which corresponds to eight atoms per

unit cell for diamond structure. This was done to check the validity

of the computer program. In Table 3.1, we notice that the local

field and the susceptibility become negative after the atomic

polarizability a/a
3

reaches a certain value a
c
/a

3
. From the L-L

relation, if we take the denominator {1 (47/3)Na} > 0, then we
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Table 3.1 MA in the diamond structure. 4 is along the [001]

direction and text= (1,0,0). The self-consistent local fields at each

dipole's site (ELi(m): m indicates the number of the dipoles) and the

susceptibility. E.T A.V.,

'
is part of the second term of the macroscopic

average field and q is the unit wave vector.

a/a3
-4

E q
m

.p
m

ELx(1)

ELx(2)

ELy(1)

ELy(2)

ELz(1)

ELz(2)

X

0.00 0.0000 1.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000

0.01 0.0000 1.5040 0.0000 0.0000 0.1203
1.5040 0.0000 0.0000

0.02 0.0000 3.0321 0.0000 0.0000 0.4851
3.0321 0.0000 0.0000

0.03 0.0000 -188.6792 0.0000 0.0000 -45.2830
-188.6792 0.0000 0.0000

0.04 0.0000 -2.9377 0.0000 0.0000 -0.9401
-2.9377 0.0000 0.0000

0.05 0.0000 -1.4803 0.0000 0.0000 -0.5922
-1.4803 0.0000 0.0000
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Table 3.2 MA in the diamond structure. 4 is along the [001]

direction and text= (1/T7,1/T7,0). The self-consistent local fields

at each dipole's site (ELi(m): m indicates the number of the dipoles)

...1

and the susceptibility. E.A.p is part of the second term of the
..s,

macroscopic average field and q is the unit wave vector.

a/a3 Emqiim
ELx(1)

ELx(2)

ELy(1)

ELy(2)

ELz(1)

ELz(2)

X

0.00 0.0000 0.7071 0.7071 0.0000 0.0000

0.7071 0.7071 0.0000

0.01 0.0000 1.0635 1.0635 0.0000 0.1203

1.0635 1.0635 0.0000

0.02 0.0000 2.1440 2.1440 0.0000 0.4851

2.1440 2.1440 0.0000

0.025 0.0000 4.3581 4.3581 0.0000 1.2327

4.3581 4.3581 0.0000

Table 3.3 API in the diamond structure. 4 is along the [110]

direction and g
ext

. (1/Ta,1/1-7,1/Ta). The self-consistent local

fields at each dipole's site and the susceptibility.

a/a3 Emq11,11
ELx(1)

ELx(2)

ELy(1)

ELy(2)

ELz(1)

ELz(2)

X

0.00 0.0000 0.5774 0.5774 0.5774 0.0000

0.5774 0.5774 0.5774

0.01 0.0000 0.8683 0.8683 0.8683 0.1203

0.8683 0.8683 0.8683

0.02 0.0000 1.7507 1.7507 1.7507 0.4851

1.7507 1.7507 1.7507

0.025 0.0000 3.5587 3.5587 3.5587 1.2327

3.5587 3.5587 3.5587
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Table 3.4 ADM in the diamond structure. 4 is along the [110]

direction and t
ext

. (1/17,1/17,0). The self-consistent local fields

at each dipole's site (ELi(m): m indicates the number of the dipoles)

and the susceptibility. Emqpm is part of the second term of the

macroscopic average field and q is the unit wave vector.

3
a/a

-4
Emq.pm

ELx(1)

ELx(2)

ELy(1)

ELy(2)

ELz(1)

ELZ(2)
X

0.00 0.0000 0.7071 0.7071 0.0000 0.0000
0.7071 0.7071 0.0000

0.01 0.0000 1.6035 1.6035 0.0000 0.1203
1.6035 1.6035 0.0000

0.02 0.0000 2.1441 2.1441 0.0000 0.4852
2.1441 2.1441 0.0000

0.025 0.0000 4.3585 4.3585 0.0000 1.2328

4.3585 4.3585 0.0000

Table 3.5 ADM in the diamond structure. 4 is along the [110]

direction and g
ext. (0,0,1).

The self-consistent local fields at

each dipole's site and the susceptibility.

3
a/a

-4
Emq.pm

ELx(1)

ELx(2)

ELy(1)

ELy(2)

ELz(1)

ELZ(2)
X

0.00 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

0.01 0.0000 0.0000 0.0000 1.5040 0.1203

0.0000 0.0000 1.5040

0.02 0.0000 0.0000 0.0000 3.0322 0.4852
0.0000 0.0000 3.0322

0.05 0.0000 0.0000 0.0000 6.1636 1.2327

0.0000 0.0000 6.1636
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have a/a
3 < 0.02984, by taking n = 8. As mentioned above for a >ac

we presume a phase transition of some kind and that the L-L relation

is no longer valid. The susceptibility is independent of the

direction of the polarization of the external field which is shown in

all the tables, which can also be reproduced by Eq.(3.14) and taking

L=47/3 and n=8. Table 3.6 and 3.7 give the same calculations for the

zinc blende structure using the ADM for which we have two kinds of

atomic polarizabilities. We have also obtained the isotropic

property of the linear dielectric constant for zincblende structure,

and we have the same local fields at different atom's site. This is

due to the assumption of the ADM which supposes that the medium is

uniformly polarized. The calculated results satisfy the L-L formula

by taking an average of the two polarizabilities a = (a1 + a2)/2.

The S. (4
'

M,m') (at the dipole's site) for the diamond and the zinc
lj

blende crystal for N.1 is listed in Appendix 0, from which we can see

that Sii(4,Noc) are the same for different m'. Since for the ADM

the local fields are the same at each dipole's site, we find for the

the diamond and zinc blende structure the L-factor is

8L=Em,=1,2511(4,Nor), where 8 is the number of atomic dipoles per

unit cell and we find that L is exactly 47/3. Table 3.8 gives the

comparison of the susceptibility from the self consistent calculation

using ADM and from the L-L formula. In figure 3.4 the linear

susceptibility as a function of the atomic polarizability for both

the self-consistent calculation method and the L-L relation are

shown.
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Table 3.6 ADM in the zinc blende structure. 4 is along the [001]

direction and gext. (1/47,1/17,0). The self-consistent local fields

at each dipole's site (ELi(m): m indicates the number of the dipoles)

and the susceptibility. There are two kinds of atomic
polarizabilities, a1 and a2.

E
Lx

(1) E
Ly

(1) E
Lz

(1)

al/a
3

a2/a3 Em4Vm X
E
Lx

(2) E
Ly

(2) E
Lz

(2)

0.005 0.006 0.0000 0.8669 0.8669 0.0000 0.0539
0.8669 0.8669 0.0000

0.015 0.011 0.0000 1.2529 1.2529 0.0000 0.1843
1.2529 1.2529 0.0000

0.020 0.016 0.0000 1.7819 1.7819 0.0000 0.3629
1.7819 1.7819 0.0000

Table 3.7 ADM in the zinc blende structure. 4 is along the [110]

direction and text= (0,0,1). The self-consistent local fields at

each dipole's site (EL1(m): m indicates the number of the dipoles)

and the susceptibility. There are two kinds of atomic
polarizabilities, al and a2.

3 ELx(1) ELy(1) ELz(1)
a1/a3 a2/a lmq.Pm X

ELx(2)
E
Ly

(2)
ELz(2)

0.005 0.006 0.0000 0.0000 0.0000 1.2260 0.0539
0.0000 0.0000 1.2260

0.015 0.011 0.0000 0.0000 0.0000 1.7719 0.1843
0.0000 0.0000 1.7719

0.020 0.016 0.0000 0.0000 0.0000 2.5201 0.3629
0.0000 0.0000 2.5201
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Table 3.8 ADM. Comparison of the susceptibility from the
self-consistent local field calculation (xscd and from the L-L

relation (xL_L) for the diamond and zinc blende structure.

a/a3 Xsci XL -L

0.000 0.0000 0.0000

0.005 0.0481 0.0481

0.010 0.1203 0.1203

0.015 0.2413 0.2413

0.020 0.4852 0.4852

0.025 1.2327 1.2327

0.030 -45.2830 -45.2830

0.040 -0.9401 -0.9401

0.050 -0.5922 -0.5922
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ATOMIC POLARIZABILITY (a/a3)

CUBIC TETRAHEDRAL STRUCTURE: ADM

Figure 3.4 ADM. Plot of susceptibility vs atomic polarizability for
the diamond and zinc blende structure from the self-consistent
calculation and using the functional form.
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Tables 3.9 through 3.13 list the self consistent calculations

using the BDI. Ye can see the isotropic property of the

susceptibility from those tables. However, in the BD' the local

fields at each dipole's site are not the same, because the sp
3

bonds

are very anisotropic. By studying the behavior of the susceptibility

as a function of the bond polarizability, we found that the

susceptibility vs bond polarizability has the following functional

form:

n a/a3
X = (with a=0.0032), (3.18)

3(1 5.2515 n a/a )

where a is the standard deviation for x >0 and n is the number of

dipoles in one unit cell. For the diamond and zinc blende structure

n =16. The factor 3 is a geometric average factor which comes from

the bond orientation. Ye notice that the L-factor 5.2515 is not

4Tequal to F for BDN, even for cubic crystals. The dipole sums

S. (4,1,m) for N=1 using BON is also listed in Appendix O. From
ij

these results we can see that if the local fields at the bond

dipole's site were the same, then, we could have

16L=Em= 1..4Sij(-4'") and still get L = 1;. However, since the

local fields are not the same at each bond dipole's site, we do not

find the L-factor for the BDN so easily. It can be found by fitting

the calculated data of the susceptibility. Therefore, we may not

call the number 5.2515 a L-factor, since it is an empirical factor.

Table 3.14 compares the results from the functional form Eq.(3.18)
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Table 3.9 BIA in the cubic tetrahedral structure. -4 is along the

[001] and text= (1,0,0). The self-consistent local fields at each

dipole's site (ELi(m): m indicates the number of the dipoles) and the

susceptibility. EmqVm is part of the second term in the macroscopic

average field, q is the unit wave vector.

a/a3 ImqPm ELx(1)

ELx(2)

ELx(3)
E
Lx

(4)

ELy(1)

ELy(2)

ELy(3)
E
Ly

(4)

ELz(1)

ELz(2)

ELz(3)

ELz(4)

X

0.000 0.0000 1.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000
1.0000 0.0000 0.0000
1.0000 0.0000 0.0000

0.005 0.0000 1.5251 0.0996 0.0996 0.0460
1.5251 -0.0996 -0.0996
1.5251 -0.0996 0.0996
1.5251 0.0996 -0.0996

0.010 0.0000 4.8101 0.7230 0.7230 0.3337
4.8101 -0.7230 -0.7230
4.8101 -0.7230 0.7230
4.8101 0.7230 -0.7230

0.015 0.0000 -2.5104 -0.6661 -0.6661 -0.3074
-2.5104 0.6661 0.6661
-2.5104 0.6661 0.6661
-2.5104 -0.6661 0.6661

0.025 0.0000 -0.3836 -0.2626 -0.2626 -0.1212
-0.3836 0.2626 0.2626
-0.3836 0.2626 -0.2626
-0.3836 -0.2626 0.2626
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Table 3.10 BDI in the cubic tetrahedral structure. 4 is along the

[001] and text= (1/T7,1/47,0). The self-consistent local fields at

each dipole's site (EL1(m): m indicates the number of the dipoles)

and the susceptibility. E.AV., is part of the second term in the
.,. .

macroscopic average field, q is the unit wave vector.

a/a3
.

Imq.Pm
ELx(1) ELy(1) ELz(1)

ELx(2) ELy(2) ELZ(2)

ELx(3) ELy(3)
ELZ(3)

Eloc(4) ELy(4) ELZ(4)

X

0.000 0.0000 0.7071 0.7071 0.0000 0.0000
0.7071 0.7071 0.0000
0.7071 0.7071 0.0000
0.7071 0.7071 0.0000

0.005 0.0000 1.1489 1.1489 0.1409 0.0460

1.0079 1.0079 0.0000
1.0079 1.0079 0.0000
1.1489 1.1489 -0.1409

0.010 0.0000 3.9125 3.9125 1.0225 0.3337
2.8900 2.8900 0.0000
2.8900 2.8900 0.0000
3.9125 3.9125 -1.0225

0.015 0.0000 -2.2462 -2.2462 -0.9421 -0.3074
-1.3041 -1.3041 0.0000
-1.3041 -1.3041 0.0000
-2.2462 -2.2462 0.9421

0.025 0.0000 -0.4569 -0.4569 -0.3713 -0.1212
-0.0856 -0.0856 0.0000
-0.0856 -0.0856 0.0000
-0.4569 -0.4569 0.3713
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Table 3.11 BDI in the cubic tetrahedral structure. 4 is along the

[110] and gext. (1/17,1/TN,1/TN) . The self-consistent local fields

at each dipole's site (ELi(m): m indicates the number of the dipoles)

and the susceptibility. Emqpm is part of the second term in the

macroscopic average field, q is the unit wave vector.

a/a3 ImqPm
E
Lx

(1) ELy(1)
ELz(1)

E
Lx

(2) ELy(2)
ELz(2)

ELx(3) ELy(3)
ELZ(3)

E
Lx

(4) E
Ly

(4)
ELz(4)

X

0.000 0.0000 0.5774 0.5774 0.5774 0.0000

0.5774 0.5774 0.5774
0.5774 0.5774 0.5774
0.5774 0.5774 0.5774

0.005 0.0000 0.9956 0.9956 0.9956 0.0460
0.7655 0.8805 0.8805
0.8805 0.7655 0.8805
0.8805 0.8805 0.7655

0.010 0.0000 3.6120 3.6120 3.6120 0.3337
1.9423 2.7772 2.7772
2.7772 1.9423 2.7772
2.7772 2.7772 1.9423

0.015 0.0000 -2.2185 -2.2185 -2.2185 -0.3074
-0.6802 -1.4494 -1.4494
-1.4494 -0.6802 -1.4494
-1.4494 -1.4494 -0.6802

0.025 0.0000 -0.5247 -0.5247 -0.5247 -0.1212
0.0817 -0.2215 -0.2215

-0.2215 0.0817 -0.2215
-0.2215 -0.2215 0.0817
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Table 3.12 BDI in the cubic tetrahedral structure. 4 is along the

[110] and next. (1/T7,1/T7,0). The self-consistent local fields at

each dipole's site (En(m): m indicates the number of the dipoles)

-0

and the susceptibility. E.Ap., is part of the second term in the
. .

macroscopic average field, q is the unit wave vector.

a/a3 E (pi;
m m

E
Lx

(1) ELy(1)
ELz(1)

ELX(2) ELy(2) Eu(2)

ELX(3)
ELy(3)

ELZ(3)

ELy
ELx(4)

(4)
ELz(4)

X

0.000 0.0000 0.7071 0.7071 0.0000 0.0000

0.7071 0.7071 0.0000
0.7071 0.7071 0.0000

0.7071 0.7071 0.0000

0.005 0.0000 1.1489 1.1489 0.1409 0.0460

1.0079 1.0079 0.0000
1.0079 1.0079 0.0000
1.1489 1.1489 -0.1409

0.010 0.0000 3.9126 3.9126 1.0225 0.3337
2.8900 2.8900 0.0000
2.8900 2.8900 0.0000

3.9126 3.9126 -1.0225

0.015 0.0000 -2.2461 -2.2461 -0.9421 -0.3074
-1.3041 -1.3041 0.0000
-1.3041 -1.3041 0.0000
-2.2461 -2.2461 0.9421

0.025 0.0000 -0.4569 -0.4569 -0.3713 -0.1212
-0.0856 -0.0856 0.0000
-0.0856 -0.0856 0.0000
-0.4569 -0.4569 0.3713
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Table 3.13 BDI in the cubic tetrahedral structure. 4 is along the

[110] and text= (0,0,1). The self-consistent local fields at each

dipole's site (ET;(m): m indicates the number of the dipoles) and the
.±

susceptibility. E.A5m is part of the second term in the macroscopic

average field, q is the unit wave vector.

a/a3 ImqPm ELx(1)

ELx(2)
ELx(3)

ELx(4)

E
Ly

(1)

ELy(2)
ELy(3)

ELy(4)

ELz(1)
ELZ(2)

ELZ(3)

ELZ(4)

X

0.000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

0.0000 0.0000 1.0000

0.0000 0.0000 1.0000

0.005 0.0000 0.0996 0.0996 1.5251 0.0460
-0.0996 0.0996 1.5251

0.0996 -0.0996 1.5251

-0.0996 -0.0996 1.5251

0.010 0.0000 0.7230 0.7230 4.8101 0.3337
-0.7230 0.7230 4.8101
0.7230 -0.7230 4.8101

-0.7230 -0.7230 4.8101

0.015 0.0000 -0.6661 -0.6661 -2.5104 -0.3074
0.6661 -0.6661 -2.5104

-0.6661 0.6661 -2.5104
0.6661 0.6661 -2.5104

0.025 0.0000 -0.2626 -0.2626 -0.3836 -0.1212
0.2626 -0.2626 -0.3836

-0.2626 0.2626 -0.3836
0.2626 0.2626 -0.3836
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Table 3.14 Comparison of the BIA self-consistent calculation of the
susceptibility (x sc) with the results from function form ( Xfunc) and

the ADM L-L's relation (xL_L) for the cubic tetrahedral structure.

a/a3 Xsc Xfunc

0.000 0.0000 0.0000 0.0000

0.005 0.0460 0.0459 0.0481

0.006 0.0645 0.0645 0.0601

0.007 0.0906 0.0907 0.0732

0.008 0.1301 0.1302 0.0874

0.009 0.1968 0.1969 0.1031

0.010 0.3337 0.3338 0.1203

0.0115 1.8163 1.8187 0.1497

0.0120 -7.8144 -7.7220 0.1606

0.0125 -1.3281 -1.3253 0.1721

0.0150 -0.3074 -0.3073 0.2413
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and from the self consistent calculations. Figure 3.5 is a plot of

the linear susceptibility as a function of the input parameter of the

polarizability per unit cell by using the self-consistent local field

method and the functional form in Eq.(3.18) for BDI. Notice the

similarity of Eq.(3.18) with the L-L relation (3.2) which was based

on the atomic dipole model with Lorentz local fields. The similarity

of the self-consistent BIA calculation and the L-L relation

illustrates the utility of the L-L relation in this cases. As we

have discussed in Chapter I, the L-L relation is of doubtful validity

for a covalent crystal. Eq.(3.18) was based on the bond dipole model

which is an attempt to extend the L-L description to to covalent

crystals. Moreover, the self-consistent calculation we are

presenting here gives a much clearer picture of how the local fields

effect the dielectric property of solids. Table 3.15 compares the

polarizability from the BUN and ADM which corresponds to the

experimental high frequency dielectric constant for some selected

tetrahedral compounds. Unfortunately, the polarizability is not a

quantity accessible to experiment.

By using the ADM, in Table 3.16 we have also calculated the

local field for a simple tetragonal (ST) crystal structure for 4

along the x direction but with different polarization of the external

fields in (a) and (b) and 4 along z direction in (c), for lattice

constant ratio c/a = 0.8. Since in a non-cubic crystal the wave

vector is not necessarily perpendicular to the polarization of the
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-2.0
0.00 0.01 0.02 0.03

BOND POLARIZAB1LITY (a/a)

CUBIC TETRAHEDRAL STRUCTURE: BDM

Figure 3.5 HI. Plot of susceptibility vs bond polarizability for

the diamond and zinc blende structure from the self-consistent

calculation and using the functional form.
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Table 3.15 The calculated bond polarizability (aB/a3) and atomic

polarizability (aA /a3) for some cubic tetrahedral compounds.

semi-

conductor

compounds

dielectric

constant

c.(exp.)

a
B
/a

3

x10
-2

ai/a3

x10
-2

Diamond 5.7
1

1.01746 1.82150

Ge 16.0
1

1.13005 2.48680

GaAs 10.9
2

1.10140 2.29017

GaP 9.1
3

1.08345 2.17763

Si 12.0
1

1.10967 2.34469

InP 9.6
2

1.08912 2.21239

SiC 6.7
2

1.04404 1.95514

InAs 12.2
2

1.11101 2.35370

* Data from 1. N. A. Goryunova, "Chemistry of Diamond-like
Semiconductors" (Chapman and Hall, London, 1965). 2. E. Burstein, H.
I. Brodsky, and G. Lucousky, Int. J. quant. Chem. ls, 759 (1967).
3. A. S. Barker, Phys. Rev. 165, 917 (1968).
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Table 3.16 API for the ST structure with the lattice ratio c/a =0.8.
The self-consistent local fields at each dipole's site and the

susceptibility. 4 is the wave vector in the crystal.

(a) 4 is along the [100], text= (0'1/7'10)*

a/a3 Emq.Vm E
Lx

E
Ly

E
Lz

0.05 0.0000 0.0000 0.8452 1.3062

0.10 0.0000 0.0000 1.0503 8.5492

0.15 0.0000 0.0000 1.3868 -1.8809

0.20 0.0000 0.0000 2.0407 -0.8473

(b) 4 is along the [100], text- (1/17,1/17,1/17).

3
a/a Emqpm E

Lx
E
Ly

E
Lz

0.05 0.0222 0.3559 0.6901 1.0665

0.10 0.0322 0.2573 0.8576 6.9804

0.15 0.0378 0.2014 1.1323 -1.5358

0.20 0.0414 0.1655 1.6662 -0.6918

(c) 4 is along the [001], next- (1/7'1/7'1/7)*

a/a3 Emq-Vm E
Lx

E
Ly

E
Lz

0.05 0.0272 0.6901 0.6901 0.4352

0.10 0.0436 0.8576 0.8576 0.3492

0.15 0.0547 1.1323 1.1323 0.2916

0.20 0.0626 1.6662 1.6662 0.2503

X11=X22 X33

0.0747

0.1857

0.3677

0.7215

0.1155

1.5113

-0.4988

-0.2996

X11=X22 X33

0.0747 0.1155

0.1857 1.5113

0.3677 -0.4988

0.7215 -0.2996

X11 -X22 X33

0.0747 0.1155

0.1857 1.5113

0.3677 -0.4988

0.7215 -0.2996

For ST structure(c/a=0.8), 4 along Z, S11=-12.4404, Lxx.Lyy. 2.6140,

Lzz=7.3383; 4 along Z, S 11=S22 .Lxx/0.8.3.2675, S33= -6.5351.
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external field, with text polarized in different directions in Table

3.16, we can see that the susceptibility xij(440) = xij(4=0). The

local fields along the x, y and z directions are determined by

EL =Eext /(1-S..a) for 40 case. From Chapter II we have shown that

dipole sum Sii = Lii/Vc for i not in direction. For the case of

i in ises direction, (from Table 3.16 case (a) and (b), it is S11 and

in (c), it is S33) it is not the L-factor but S11 that determines

El(4#0), which is different than El(4=0) for 4 along x direction, and

-1

S
33

determines E
3 (00) which is different than E

3 (00) for 4 has a

component along the z direction. So if 4 is along the k direction,

then EI,(400) = El,(4=0) if ifk, but Et(4f0) 0 Et(4=0) if In

Table 3.16(a) there is only the i #k local field, so

xij(4f0)=xij(4=0). However, in (b) and (c) there is an i=k component

and we still have xij(400)=xij(4=0). Notice that in (c) x33 changes

sign even though EL does not. The reason is that xij is determined

by Lij but Et is determined by S. On the other hand, this is not

surprising because the susceptibility is independent of the direction

of the polarization of the external field in (a) and (b). From (a),

(b) and (c) we also can see that the susceptibility is independent of

the direction of 4 too, because 4 can be in any direction. The only

quantity dependent on the direction of 4 is the local field along

that direction. However, gL(440) may be more meaningful for optical

effects including light scattering which are really a 400 case with

<< Igl. In Table 3.17, we calculated a series of Lorentz factors

for the ST structure with different c/a ratio. The L-factor in
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Table 3.17 ADI for the simple tetragonal structure. The L-factor
for different lattice ratio c/a. They all satisfy the sum rule,
L11 +L22 +L33 =4i.

c/a L . L
xx yy

L
zz

0.4 -8.7424 30.0512

0.5 -3.3317 19.2298

0.6 -0.3853 13.3370

0.7 1.4112 9.7440

0.8 2.6140 7.3883

0.9 3.4926 5.5811

1.0 4.1888(= AP 4.1888(=

1.1 4.7808 3.0048

1.2 5.3150 1.9404

1.3 5.8108 0.9448

1.4 6.2888 -0.0113

1.5 6.7556 -0.9447

1.6 7.2158 -1.8652

1.8 8.1267 -3.6871

2.0 9.0325 -5.4986

2.5 11.2920 -10.0175

3.0 13.5504 -14.5344
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Table 3.17 satisfies the L sum rule Eq.(2.54). The method by which

we calculate the L-factor, is much simpler and easier as compared

with Purvis and Taylor(2)'s method which take q.0 in the dipole sums,

use a special crystal geometry to avoid the depolarization factor and

very carefully deal with the summation orders. Figure 3.6 plots the

L-factor as a function of the lattice ratio c/a. A negative L-factor

corresponds to a reduced local field, and A positive L-factor

corresponds to an enhanced local field.

In Table 3.18, we calculate S. (4
'

-11) using ADM for different i

points in the unit cell for ST crystal with different c/a (the m

dependence in Sij is suppressed in the notation since we are

examining the case m =1). By using Eq.(3.17), we can evaluate the

strength of the local field in the unit cell for the ADM. Notice

that even though the local fields at the atomic dipole's site are the

same, the local fields still vary with in a unit cell. This may

provide some useful information for a study of defects in solids.

From Eq.(3.17), if Sii(4,1.4) > Lii, then the local field at i is

greater than the local field at the dipole's site. From Table 3.18

we see that in the center of a SC structure (i.e. c/a = 1), the Sii

(for i #k which is the direction of 4) are the same as it is at the

dipole's site (i=0). Actually, this is true for any i along the

diagonal line of the SC structure. So along the diagonal line of the

cubic crystal, the three components of the local fields are the same

and are the same as at the origin. But anywhere off the diagonal

line and not at the origin point, or for c/a # 1, Sii is different in
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3D Simple Tetragonal Structure

15
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Lattice Ratio (c/a)

Figure 3.6 Plot of the L-factor with different lattice ratio c/a for

the ST structure.
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Table 3.18 ADM for the simple tetragonal structure.- The dipole sum

Sii(4,-11) at different r in a unit cell (with different lattice ratio

c/a). Wave vector 4 is along the [100]. S 11-6224-S3e'

c/a ic(0.5, 0.5,

S
22

0.5*c/a)

S
33

il(0.0, 0.5, 0.0)

S
22

S
33

0.4 15.6804 0.0551 51.0430 -0.8450

0.5 12.4214 0.2899 42.7935 -2.3296

0.6 10.0694 0.8052 38.4996 -4.2422

0.7 8.1915 1.5689 36.2870 -6.2000

0.8 6.6213 2.4654 35.1525 -7.9892

0.9 5.2965 3.3697 34.5705 -9.5389

1.0 4.1888 4.1888 34.2708 -10.8522

c/a i(0.5, 0.0, 0.0) i(0.0, 0.25, 0.0)
S
22

S
33

S
22

S
33

0.4 -18.7821 -0.8450 139.0999 -31.6391

0.5 -15.3312 -2.3296 135.7859 -42.3498

0.6 -13.3135 -4.2422 134.9337 -49.3945

0.7 -12.1350 -6.2000 134.7117 -54.0170

0.8 -11.4554 -7.9892 134.6532 -57.1536

0.9 -11.0690 -9.5389 134.6377 -59.3798

1.0 -10.8522 -10.8522 134.6335 -61.0335
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the three direction. This means a charge at any position along the

diagonal line of the SC structure will be in a stable state. So if

there is an interstitial, it would like to stay at any position along

the diagonal line of the SC structure. Also when the atoms come

together to form a crystal, the local field effects will make it

easier to form a cubic crystal. At the center of ST structure,

ELy(4,i)c) gets lager when the crystal is compressed, while ELz(4,ic)

gets smaller. Also look at the point il1.(0.0,0.5,0.0) and

i2.(0.0,0.25,0.0), the local field gets lager at the point closer to

the atom, i.e. EL(i12) > EL(ii).



75

Chapter IV

BRILLOUIN SCATTERING IN SOLIDS

4.1 Introduction:

Light scattering is now a well established optical technique for

(1
investigating phonons in crystals,-

7
'

18,38,39,40,41).
Figure 4.1

shows a general spectrum of light scattered by phonons. There are

two kinds of phonons. Light scattered by an acoustic phonon is

called Brillouin scattering, and by an optical phonon is called Raman

(42,43,44,45)
scattering . Brillouin scattering is due to the density

fluctuation in solids or liquids. Generally the Brillouin scattering

spectrum consists of an intense incident line and two satellite

lines, one shifted to lower frequency and the other shifted to higher

frequency (see Fig. 4.1). The higher frequency (up-shifted) line

corresponds, in a solid, to acoustic phonon absorption while the

lower frequency (down-shifted) line corresponds to acoustic phonon

emission. As is to be expected, the relative intensities of the

shifted pair are temperature dependent since the number of phonons

available for up-shifting depends on temperature. The frequency

shifts can tell us about the small q acoustic phonon spectrum in the

solid.

Equally important are the absolute intensities of the the

scattered light components, for these are related to the coupling

constant between the light and the acoustic phonons and involve the
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Figure 4.1 Schematic spectrum of scattered light.
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Figure 4.2 Schematic representation of the scattering of light by

sound waves. The Bragg condition mA = 2d sin 0 (m an integer), can

be written as mk = 2q sin 0, or mk = (4'- 4)k. Since Bragg
reflection is specular (angle of incidence equals angle of
reflection) and since the magnitude q' equals the magnitude q, it

follows that (4'- 4) must be parallel to V, and therefore 4,- 4 = mv.
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elastic and elasto-optic materials parameters(46
,47,48,49,50)

An elementary picture of the scattering process is given in

Figure 4.2. If a beam of light passes through a medium, a small

fraction of the incident light will be scattered in all directions by

thermal fluctuations in the dielectric constant of the medium.

Consider the incident and scattered light with angular frequencies ai

and ms and wave vectors qi and 4s, interacting with a particular

normal mode of the acoustic branch with angular frequency w and wave

vector V. We assume that only this particular normal mode is

excited; i.e. we consider the interaction of the light with one

phonon at a time. Conservation of energy and crystal momentum in one

phonon process requires

and

s
= wi f w(V) (4.1)

nqs = nqi f V. (4.2)

Here the upper sign refers to phonon absorption (anti-stokes), the

lower sign refers to phonon emission (stokes), and n is the index of

refraction of the medium. The scattered light follows Bragg's law.

The spectrum of the scattered light is determined by the time

dependence of the fluctuations in the dielectric constant, which is

non-linear in general. Moreover, the light scattered from this

fluctuation has a frequency changes ±6&. Thus, Brillouin predicted a

long time ago that thermally scattered light should show certain

frequency changes ±8& which are functions of the scattering angle:



Figure 4.3 Feynman diagram of the photon-electron-phonon
interaction.

(a)

nq

(b)

k
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Figure 4.4. Schematic diagram of (a) anti-Stokes and (b) Stokes

Brillouin Scattering. The scattering of a photon through an angle 0

from free space wave vector 4 to free space wave vector 4, with (a)

absorption of a phonon of wave vector V and (b) the emission of a

phonon of wave vector V. The photon wave vectors in the crystal are

nil and nil', where n is the index of refraction.
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(Wm.) = 2(V/c) n sin(0/2), (4.3)

where w is the frequency of the incident light wave, and c is the

velocity of light in vacuum, V is the velocity of the thermally

excited sound wave. This formula was first obtained by Brillouin(51).

Viewed in more detail the scattering process is best described

by the Figure 4.3. Here the incident photon (associated with the

self-consistent local field at that point) excites an electron-hole

pair followed by the electron (or hole) emitting (or absorbing) an

acoustic phonon and then annihilating with the production of the

scattered photon. Thus, in principle, the scattering intensity

depends on the electron-phonon coupling constants as well as the

electrodynamics coupling constant. In a simpler picture, which

emphasis the macroscopic (long wavelength) character of the process,

the interaction shrinks to a "dot" as shown in Figure 4.4. and the

coupling is described by macroscopic parameter as discussed in

section 4.2.

4.2 Brillouin Scattering Cross Section:

The calculation of the acoustic-phonon scattering cross section

closely follows the quantum theory of the scattering cross section

for photon-electron-phonon interactions(17). The detailed derivation

has been worked out by I. Born and K. Huang(18). Ve give a basic

picture here. Since the Hamiltonians of the interacting light and

the scattering medium can be written as:



-212 Jd3ri1.

J

d3r f r
s
r

I'
--
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(4.4)

where the dielectric tensor f to a first order approximation can be

taken as a linear function of the elastic strain q, i.e

a
E f

f
+ 17,

o u
(4.5)

where f
0
is the dielectric constant of the crystal without a strain

8 f
and the change of the dielectric constant under a strain, which

we will see in next section, is related to the elasto-optical

(Pockels) constants. The differential cross section is determined by

the Golden rule in quantum theory which gives us an expression in

terms of a scattering tensor T, which is a combination of the

Pockels constants. The standard formula for the Brillouin scattering

cross section can be written as(38):

dr
FeR-T.e7:12

-au- constant lj (4.6)

-4

where the e
s

and e
I

are the unit polarization vectors of the

scattered and incident light, T is the scattering tensor which is

related to the Pockels constants, X is a combination of elastic

constants corresponding to the normalization of wave function.

Values of T and X for a cubic crystal have been tabulated for phonon



81

direction along [110] in Table 4.1(17). For a cubic crystal, the

only non-vanishing elasto-optic constants are the following:

P1111 p2222 p3333 p11

P1122 p2211 =p2233 p3322 p3311 p1133 p12

P1212 p2121 p1221 p2112 p2323 p2332 p3223

p3232 p3131 p3113 p1331 p1313 = P44'
(4.7)

Let us consider the incoming radiation along one cubic axis and

the scattered radiation observed along another axis. The

differential cross sections for the acoustic phonon traveling along

[110] in the order shown Table 4.1 are:

2( p2 P2
1

= constant (cli+
1

c212+ 2c44

/

44)

2

= constant (P447----)

'44

= 0, (Transverse)

(Longitudinal)

(Transverse) (4.8)

where the c.f are the elastic constants of a cubic crystal, which

have the same symmetry of the Pockels constants. If we know the

elastic constants of a cubic crystal, then calculations of the

differential cross sections for Brillouin scattering will become

calculations of the Pockels constants.
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Table 4.1 Scattering tensor T, Z and the lattice displacement vector
-4
u, for a phonon traveling in the direction [110] in a cubic crystal.

c
11

+c
12

+2c
4
4

2

P1141312 2p44

2p44 P1141112

o

0

0

2P12

0 0
p44

c
44

12 [0 0 p44

P44 p44 0

c11 c12

2

P11-P12 0
0-

0
P12-1311

0 0 o-

[110]: Longitudinal

[001]: Transverse

[1.10]: Transverse



83

4.3 Pockels Constants and Their Calculations:

Pockels constants are dimensionless constants, which are a

measure of the change in the inverse dielectric tensor with respect

to deformations. They are defined as(18):

1)ij (e-1)ij (E01)ij Ikl Pijkllikl'
(4.9)

where f
-1

denotes the inverse of the dielectric tensor and ,' is the

elastic strain tensor,

1 a uk a u1
nkl = aii

and u represents the elastic displacement. The symmetric

coefficients

Pijkl Pjikl Pijlk'

(4.10)

(4.11)

are the elasto-optic constants in tensor notation.

There are two ways to calculate the Pockels constants. A formal

procedure to calculate the elasto-optic coefficient is contained in

the band theory of solids. The imaginary part of the dielectric

response tensor in fij = fl,ii + if2,ij is related to the absorption

coefficient which can be calculated by the Golden rule if we know the

initial and final states of the electron wave functions. The real

part of the dielectric function is given by a Kramers-Kronig



transformation,

m 1 = 2 2,ij
(re)

f
1,ip

(w) l

7 f: (1,1,2
ai2)

du'.

g
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(4.12)

Here rig refers to the absorption threshold frequency. In the

presence of strain, the wave functions and the energy bands will be

modified slightly. From Eq.(4.12) changes in el and e2 are related

by

2 rm w'sc2,ij(w)
6,1,ii (.) =

(w,2
)

dar'. (4.13)

where id' =
g

+ Sorg, , and 51,) is the strain induced shift in the

absorption threshold. Calculating (5e2,ii for each strain component

lin is certainly a difficult task.

Another way to calculate the Pockels constants is to use the

classical Lorentz-Lorenz model of a solid, avoiding the more complex

energy band problem(42'43). The details of this approach were first

worked out by Nueller(28), who calculated the Pockels constant for

NaC1 type of crystals. N.H. Verthamer(39) calculated the Pockels

constants for rare gas crystals like Xenon with a form of L-L theory

using non-self-consistent dipole sums and atomic polarizabilities.

Here we present a calculation of Pockels constants which uses

the quantum dipoles in the classical limit and considers the local

field self-consistently. In order to compare with Verthamer, we use
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the atomic dipole model as well and calculate the Pockels constants

for Xenon. Ve use a phenomenological parameter, the atomic and bond

polarizability which is defined by the dielectric formula in chapter

III. The calculations in this chapter use a strain or shear to the

lattice to calculate the Pockels constants. Ve give different qici to

find the linear relationship of b(f-1)ij vs The slope, as shown

for example in Figure 4.5, is the elasto-optic constant.

4.4 Results and Comparison:

In this calculation, we let the wave vector of the external

field lay along one of the crystal axis (say z), and the polarization

of the field along the plane which is perpendicular to that axis (say

the x-y plane). This is equivalent to the experimental method of

measuring Brillouin scattering.

Figures 4.6a and 4.6b give a schematic picture for a simple

cubic crystal under a deformation .5 (strain or shear) along the x

direction. For diamond or zinc blende crystals under a strain S

along the x direction, in the HI, the positions of the two basis

atoms are: [0.0, 0.0, 0.0] and [0.25(1-5), 0.25, 0.25]. In the BIA,

the positions of the four basis bond dipoles are: [0.125(1-b), 0.125,

0.125], [0.125(1-5), 0.375, 0.375], [ 0.375(1-b), 0.125, 0.375],

[0.375(1-5), 0.375, 0.125]. The change in primitive lattice vectors
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I

0 0.001 0.002 71ki

Figure 4.5 Schematic diagram of Pockels constant calculation.
Showing the typical behavior of the Pockels constants. The shift in

theinversedielectriccomponents6.vs the crystal deformationeli

The slope is the Pockels constant D-ijkl*



x

(b)

x
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Figure 4.6 Schematic representation of a simple cubic crystal under
(a) a strain b (along x direction) and (b) a shear b (along x
direction).



for the cubic tetrahedral structure with strain b along the x

direction are:

-) a
a' = -2- [(1-6)x + y ]

t' = 2 [y + z ]

"4 a
c' = [(1- (5)x + z ]

and the volume primitive cell is,

yc =

ft 3
ki11 u),

88

(4.14)

(4.15)

where a is the lattice constant of the crystal without strain and 6

represents 7/11. In the same way if the strain 6 is oriented along

the y direction, then it will represent 7122.

The reciprocal lattice vectors will also change due to the

strain along the x direction. For the cubic tetrahedral structure,

they now become:

27 r 1

-i-L(1-0x+y-zj
g 2T

L

r -1
(1_ 0 X + y + z ]

e= 2T r 1

a L
J.

(4.16)

For the crystal under a shear 8 = 7/12, in the ADC the positions

of the two basis atoms are: [(0.0.4), 0.0, 0.0] and [(0.25-0.755),

0.25, 0.25]. In the BDM, the positions of the four basis bond
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dipoles are: [(0.125+0.8750, 0.125, 0.125], [(0.125+0.6250, 0.375,

0.375], [(0.375+0.6258), 0.125, 0.375], [(0.375+0.8750, 0.375,

0.125]. The primitive lattice vectors for diamond and zinc blende

structure are then changed to be:

= [(1-5)x + y ]

t' - - 2a [ bx + y + z ]

= [(1 -5)x + z ]

and the volume primitive cell is,

3

Vc = 1 (1 2).

(4.17)

(4.18)

The reciprocal lattice vectors for the crystal under a shear

have changed to be:

2T [ x Y (1-0z ]a(1- a/2)
Tv 27 [ x + (1- .5)y + 8);

a(1-6/2)
#

a(1- 5
2T

/2)
r (1- o)y + z .Z#
L

(4.19)

To calculate p11, p12
and p44 for some tetrahedral compounds, we

-

first use the polarizability listed in Table 3.15 which is the

polarizability for the crystal without deformation. Using the ADN,

Table 4.2 gives the calculated results for some selected tetrahedral

crystals with the deformation S = * 0.001 along x direction. We can

see immediately that although the dielectric constant changes with
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Table 4.2 AD' self-consistent calculation of the Pockels constants
for some selected compounds. The dielectric constant and the atomic
polarizabilities used in calculations are listed in Table 3.15.

((.(5.0) is the undeformed high frequency dielectric constant. (ti

and pig corresponding to the deformation 5.4.001).

Compounds

(.(6.0)

(
11

e
22

22

(
44

(
44

p11

P11

p12

P12

p44

P44

Diamond 5.7024 5.7169 5.7110 -0.0748 -0.5190 -0.3366

5.7 5.6976 5.6832 5.6891 -0.0745 -0.5190 -0.3349

Ge 15.9918 16.1400 16.0955 0.0319 -0.5423 -0.3710

16.0 16.0082 15.8623 15.9062 0.0319 -0.5427 -0.3687

GaAs 10.8998 10.9642 10.9432 0.0014 -0.5375 -0.3624

10.9 10.9002 10.8365 10.8574 0.0018 -0.5375 -0.3601

GaP 9.1014 9.1444 9.1296 -0.0163 -0.5339 -0.3568

9.1 9.0987 9.0560 9.0707 -0.0162 -0.5342 -0.3549

Si 11.9984 12.0779 12.0526 0.0111 -0.5378 -0.3637

12.0 12.0013 11.9227 11.9478 0.0091 -0.5403 -0.3638

InP 9.6009 9.6495 9.6331 -0.0101 -0.5343 -0.3578

9.6 9.5990 9.5509 9.5672 -0.0113 -0.5360 -0.3573

SiC 6.7024 6.7237 6.7155 -0.0527 -0.5256 -0.3449

6.7 6.6977 6.6765 6.6846 -0.0522 -0.5253 -0.3429

InAs 12.1982 12.2807 12.2545 0.0120 -0.5385 -0.3647
12.2 12.2016 12.1202 12.1461 0.0110 -0.5400 -0.3637

For diamond and zinc blende crystals under (a) strain 6 along x

direction, the L-factors are: (0 corresponds to 6.(0.001)

1,4-
xx c

.V1-.16.7500,
yy

=Is+
zz c

=V+.16.7828;

L-xx.Vc16.7604, L
yy zz

.Vc -16.7276; V* (1-4).0/4.

(b) under shear 6 along x direction, the L-factors are:

L+
xx

.V+.16.7524,
yy z

.1+
z c
.V+.16.7692;

c

L-
xx

.Vc .16.7576, L-
yy zz

.V.16.7412; V
c

(14/2)0/4.
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different deformation ( +0.001 or -0.001), which corresponds to the

changes in density, the Pockels constants are almost unchanged. This

gives us a rough evaluation of the Pockels constants for the

dielectric constants and crystal structures are known. Table 4.3

lists the experimental data of the Pockel's constants for some cubic

tetrahedral compounds. Comparing the calculated results in Table 4.2

with the experimental data, they are not in agreement. However, if

we consider that the atomic polarizability will be a tensor for a

deformed crystal, which is more objective description of the real

physical system, then our calculation has excellent agreement with

the experimental data; this is also shown in Table 4.3. From Table

4.3 we notice that the calculation is very sensitive to the

polarizability we used. This may tell us that the L-L relation is

only good for a rough evaluation. In Table 4.4 we show our

calculated results of the Pockels constants for the rare gas solid

Xenon, obtained using the self-consistent method, and compared with

Verthamer's calculation. By using the same value a/a3 = 0.045 as

Verthamer used, our calculation did not give any better results.

However, if we know the observed Pockels constants instead of only

the ratio, we can find the atomic polarizabilities for the deformed

crystal.

Ve are also interested in calculating the Pockels constants

using the BDM. For a crystal under a strain or shear along the x

direction the change in the four bond directions are:
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Table 4.3 The experimental data of the Pockels constants for some
tetrahedral crystals and the calculated Pockels constants from tensor
atomic polarizabilities (a0 is the undeformed polarizability from

Table 3.15).

Compounds
*

Pll p11

*

p12 p12

*

p44 p44

diamond -0.43 -0.4290 0.19 0.1892 -0.16 -0.1591

Ge 0.27 0.2706 0.235 0.2351 0.125 0.1258

GaAs -0.165 -0.1658 -0.140 -0.1397 -0.072 -0.0727

GaP -0.151 -0.1508 -0.082 -0.0814 -0.074 -0.0741

* Data from D. A. Pinnow "Laser Handbook", V1, page 999 (1972)

Compounds (ao/a3)x10 2 (all/a3)x10-2 (a22/a3)x102 (a44/a3)x10-2

diamond 1.82150 1.82324 1.81803 1.82063

Ge 2.48680 2.48511 2.48131 2.48329

GaAs 2.29017 2.29124 2.28763 2.28832

GaP 2.17763 2.17844 2.17491 2.17593
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Table 4.4 AM self-consistent calculation of the Pockels constants
for Xenon. Xenon has fcc structure, with deformation 5 =0.001 along x

direction and 4 is along the [001], text= (142' 142,0). The

dielectric constant without crystal deformation co is calculated by

using the L-L relation.

(a) Crystal under strain 6 along x, S11=4.1938, S22=4.1926.

a/a3 E
Lx

E
Ly

E
Lz Pll p12

0.0451 2.8847 2.8822 0.0000 -0.4114 -0.3354

0.01735
2

0.9974 0.9973 0.0000 -0.3750 -0.3466

(b) Crystal under shear 6 along x, S11=4.1913, S22= 4.1907.

a/a3 E
Lx

E
Ly

E
Lz P44

0.0451 2.8834 2.8822 0.0004 -0.3524

0.01735
2

0.9973 0.9972 0.0001 -0.3529

The observed elasto-optical constants for xenon3 are

1. /
P12/1311=

45
' -

D 44,-D11=
0.10.

In Verthamer's calculation by using a/a3=0.045, they are

P12
/put, 0.81, /

'
D 44,-D11

-0.063.

This work: (1) a/a3 = 0.045, /
' -

D 12-D11= 0.815, P44/P 11=0.856;

(2) a/a3 =0.01735
' -

D 12,/-D11=
0.924, /

' -
D44-D 11=0.941.

Data from 1. N. R. Verthamer, Phys. Rev. B6, 4075 (1972).
2. From atomic optical calculation in Rare Gas Solids, p146 and
p250. Ed. by X. L. Klein and J. A. Venables. Academic Press.

(Harcourt Brace Jovanovich; London, 1976).
3. V. S. Gornall and B. P. Stoicheff, Phys. Rev. B4, 4518 (1971).



d1 = [(1-5), 1, 1] / 2 + (14)2

d2 = [(1-5), 1-, I] / 2 + (1-5)2

d3 = (1-5), 1, I] / 2 + (1-5)2

d4 = [- (1-5), T, 1] / .j 2 + (1-5)2.
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(4.20)

If we take the strain or shear to be on the order of 10
3

, the effect

of considering the change of bond directions yields a difference of

about 10-3 in the results of the calculated Pockels constants or the

polarizability.

By considering the bond polarizability to be a tensor for the

crystal under deformation, we find that the new functional forms for

the deformed crystal (with strain or shear 6 . 0.001) can be

approximately evaluated using the following three equations.

n T11/3
X11

(strain) (4.21)
(1 5.2633nr11) ,

n T22/3
X22

(strain) (4.22)
(1 5.2537n7-20'

n T44/3
X44

(shear) (4.23)
(1 5.2583n7-441

where n is the number of the bond dipoles per unit cell (here n=16),

and xij is the susceptibility of the solid under deformation, rij is

the bond polarizability per unit cell, T.. = a..ij /a
3

'

and the

subscript i and j corresponding to the susceptibility tensor.

Different values of T may represent different compounds which have
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Table 4.5 BDI. Comparison of the susceptibilities from the
self-consistent calculation (x11, x22 and x44)t and from the

functional forms (),
11' -

r
22

and X44)f for the diamond or zinc blende

structure under deformation (strain or shear) 6=0.001 along the x
direction.

a/a3 (X44)t (X44)f (X11)t (X11)f (X22)t (X22)f

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0070 0.0908 0.0908 0.0909 0.0909 0.0908 0.0907

0.0090 0.1977 0.1977 0.1982 0.1983 0.1974 0.1971

0.0100 0.3362 0.3361 0.3376 0.3378 0.3348 0.3346

0.0105 0.4803 0.4803 0.4837 0.4837 0.4772 0.4771

0.0110 0.7871 0.7871 0.7964 0.7964 0.7780 0.7786

0.0115 1.8884 1.8887 1.9446 1.9438 1.8331 1.8408

0.0120 -6.6850 -6.6711 -6.0484 -6.0643 -7.5355 -7.3475

0.0125 -1.2911 -1.2905 -1.2650 -1.2266 -1.3216 -1.3139

0.0150 -0.3054 -0.3054 -0.3038 -0.3039 -0.3075 -0.3066

0.0250 -0.1209 -0.1208 -0.1206 -0.1206 -0.1213 -0.1211
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the same crystal structure. Ve can use Eij = 1 + 4rxij to get the

deformed dielectric constant. In table 4.5 we compare the results

from the self-consistent local field method and from the functional

forms for the crystal under a strain or shear of 0.001, and they are

in an excellent agreement with standard deviation g < 0.003 in the

positive range of X. In Figure 4.7, we plot the results of Table 4.5

for xil vs ail only. x22 vs a22 and x44 vs 044 show a similar plot.

Table 4.6 lists the calculated Pockels constants and the

corresponding bond polarizabilities all, 122, and 044 using the BDI

from the self-consistent local field method for some selected

compounds. Table 4.7 lists results of using the functional form to

calculate the Pockels constants. Comparison of the experimental data

in Table 4.3, the results from the functional form give a good

estimation of the pockels constants. Furthermore, it gives the right

sign of the Pockels constants with better than 0.01 percent accuracy.

A comparison of the bond polarizabilities of the deformed

crystal with the ideal crystal of the diamond and zinc blend

structure are difficult due to the limited availability of data.

However, we can see that the relations a
11

< a
44

< 0
22

< a, hold for

the diamond and zinc blende structure, where ao is the undeformed

bond polarizability from Chapter 3. If we could determine how aii

changes with crystal structure, then we could predict the Pockels

constants.
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Figure 4.7 BDN in the diamond or zinc blende structure with strain
5=0.001. Plot of xil vs the bond polarizability from the

self-consistent calculation and the functional form. x22 and x44

show a similar plot.
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Table 4.6 BDI in the diamond and zinc blende structure under
deformation 5 = 0.001 along the x direction. The self consistent
calculation of the Pockels constants for some compounds, using tensor
bond polarizabilities.

Compounds a
11

/a
2

3

x10

a
22

/a
2

3

x10

a
44

/a3

x10
-2

P11 p12 p44

diamond 1.015977 1.016833 1.016486 -0.4299 0.1902 -0.1593

Ge 1.127371 1.129488 1.128539 0.2699 0.2345 0.1251

GaAs 1.099277 1.101176 1.100148 -0.1654 -0.1392 -0.0719

GaP 1.081392 1.083150 1.082239 -0.1514 -0.0817 -0.0742

Table 4.7 Using the BDI functional forms to calculate the Pockels
constants.

Compounds a
11

/a
2

3

x10

a
22

-2
/a3

xio

a
44

/a2 3

x10-

p11 p12 p44

diamond 1.015977 1.016833 1.016486 -0.4576 0.2602 -0.1458

Ge 1.127371 1.129488 1.128539 0.2766 0.1108 0.1219

GaAs 1.099277 1.101176 1.100148 -0.1684 -0.2088 -0.0702

GaP 1.081392 1.083150 1.082239 -0.1602 -0.1187 -0.0700
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CHAPTER V

SELF-CONSISTENT LOCAL FIELD CALCULATIONS ON I SURFACE

5.1 Introduction:

The last few decades have seen a growing interest in a wide

range of surface optical phenomena. These include linear and

non-linear properties of metal and dielectric surfaces, optical

properties of surface absorbed atoms and molecules and the striking

strongly enhanced Raman scattering at the surface of rough

metals(52'53'54'55). Each of these phenomena have the common element

that local field effects are probably involved.

The importance of the local field effects is that at the surface

the external field is modified by the presence of the electric

dipoles on the solid surface. Each of these dipoles is induced by

the external field and the dipole fields from the other dipoles on

the surface. In the simple self consistent picture used here, as in

the previous chapters, the local field at any point on a surface can

be written as:

g
L
= t

ext
+ g

p'
(5.1)

This dipolar effect modifies the absorption spectra, the intensity,

and the resonant Raman cross section of absorbed

molecules
(56,57,58,59,60,61,63)

. However in the case of a

semi-infinite material -- a real surface -- the local fields vary
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with each layer and a self consistent calculation becomes extremely

difficult. Noreover, in a metal the effective polarizability cannot

be treated in a simple way since a local dipole approximation is

certainly incorrect. Moreover the frequency dependence and complex

character of any model of an effective metallic polarizability are

bound to be extremely important.

In the case of surface enhanced Raman scattering, a local field

picture such as has been discussed here may have some relevance

however crudely in interpreting this striking effect. If it is

assumed that a local field can be calculated then, as we shall show,

it will again display the L-L form observed for three-dimensional

matter

g
ext

g
L 1 aS '

(5.2)

which leads to two interesting possibilities:

(1) If aS is negative, there will be a local suppression of the

external field;

(2) If 0 < aS < 1, there will be a local enhancement of the external

field.

Thus, even the approach taken here, if carried out in some realistic

way, could provide an understanding of the surface enhanced Raman

effect at metal surfaces. This, however, is beyond the intended

scope of the present investigation. ire will, however, explore the

self consistent dipole sums with a constant local polarizability for
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a model surface consisting of atoms and bonds in a two dimensional

layer.

The two goals we have here are: (1) to calculate the self

consistent local field at dipole's site, so that we can evaluate the

dielectric constant of the surface, and (2) to calculate the self

consistent local field at an arbitrary point off the dipole's site on

the surface, this information may be very useful to study defects on

a surface.

5.2 The Two Dimensional Dipole Summations:

As we have discussed in Chapter II, the two dimensional dipole

sums at an arbitrary point 73 on a surface can be defined as:

and

2D
S3 (q,p,m) =

E'n
t -) 3 '

mIPtl

j

2Dij,-,
p mS kg5 ) Ei

pimptmexp(lq.xlm)

IPtml5

(5.3)

(5.4)

The prime on the sum indicates that the point phi. 0 is excluded, 4

is the external wave vector which is a three dimensional quantity,

i'cildim4 and at the surface z=0, i and j run from 1 to 2 and

represent the two components of the two dimensional Cartesian

coordinate, -Pim= P Tt Tm, and 71 is an arbitrary position in a

surface unit cell. For a calculation of the local fields at the

dipole's site, we take p at the dipole site. iQ is the two



dimensional lattice primitive vector and im is the position of the

mth basis in the primitive cell. If we define the dipole sum

OD -) Q0Dir c2D(-)
.j(q,p,m) .. q,p,m ....n q,p,m),

ij a

102

(5.5)

th
then, as we defined in chapter II and III, the of the

dipole field at the P point can be written as:

Ep (4,73)= Em,i S24(4,73,m)Pj. (5.6)

The derivation of the two dimensional dipole summations closely

follows the three dimensional dipole summation derivation in Chapter

II. Ve use Euler's integral (2.6) and take the Fourier transform for

a two dimensional system which gives (see Appendix

Et exp(i4731m- dolt) = EG
exp[ig.(P-ilm)]

( f) exp(-1!), (5.7)
a
c

i --, --) 2
exp[ig4-im)]

El pimplj mexp(iq.pimpimt) - EG
a
c

(Teij

GG e 2

4t

2J) (-1) exp(-2ii), (5.8)

g is the two dimensional reciprocal lattice vector. Notice that for

the g = 0 term, 1' f 0, where g' g 4, and 4 is the external wave

vector, These two equations are called the two dimensional theta
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function transformations. Ve will use them to derive the two

dimensional dipole summations and they will be used to prove that the

final results of the two dimensional dipole sums are independent of

the Ewald parameter.

As in three dimensions, we may now write the n
th

order dipole

sum as:

-)
s
n
D
(p

'

m)
= r(nI2)

J
t(--2-- 1) E' ex (-4 -4tm p lq.xtm- ptmt) dt. (5.9)

0

Ve break the integral into two parts, one from 0 to 7/ and the other

from 7/ to ,. Notice that the perfect lattice and the imperfect

lattice sums are related by

Etexp(iiIPtm- ptmt) = Et exp(ii4IPtm- p2tmt) 1. (5.10)

Ve can substitute the two dimensional theta function transformation

into the first part and make it look like the incomplete gamma

function. Then, using the recurrence formula of the incomplete gamma

function introduced in Chapter II, we can derive the following

equation:

I'( r, x) = 2[x 1/2
exp(-x) r( x)]. (5.11)

The final results for the two dimensional dipole sums at the dipole's

site are:



104

S3D(4,1,m1
4T--t- EG exp[i44 4.,)] exp()
vc

4 3/2
F(If;'),} 611,m, lir

exp(i47ftm,)
+ {[1 + 14-1-ii.ptirexp(-qp2tm,)}, (5.12)

IPtmdu

and,

s2D5J (-401,m,) -4 -)

m'
EG exp[i.(p -r )] f[Ti7 exp(4-)

GIGi Ti [1 F(417 1)]}F41;1))18ii ipl 2 [ 42

nj exp(i4.7), ,)Piwrim, al F(TTI-Pim,)]+ E'

t I 71tm,1
5

3/2
2
im,)

4
(.2 ) exp(-/09264,)}. (5.13)TIPP ,exP(-VTi tm

where / is the Ewald parameter and F(x) is the error function

introduced in Chapter II. For a calculation of the dipole sum off

the dipole's site (i.e. at p # re or %), the dipole sums are over a

4 3/2
perfect lattice, so that the term 31T in Eq.(5.12), which comes

from the exclusion of the dipole's self contribution, is vanishing.

Now we prove that the two dimensional dipole sums are

independent of the Ewald parameter q. For convenience, we set I/

IT, and take the partial derivative of the dipole sums with respect

the parameter
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a S2D _6,2 6,2 _,29

8
- AIac Y

G
exp[ig.(73 { exp(---.2) ---2exp( -71F)

4 2

6,2 0 F(xG) exp(i4731m) 0 F(xr)

Ti + E'

xG 7 I ll 3 Pim
em

2 f_t22 t2,,3 ex,(_2p2im)},
Ti Pim,xcok pim, pim tik

I'I
where, x6

G, and xr = U/m. Using the following formula:

JJ14 _ 2
Ti-

.x Lx21
--B-i--- Pk (5.15)

the two dimensional theta function transformation and Equation (5.6),

we immediately get:

0 S
2D
3

O.
0

In the same way we can prove:

a s2Dij
5

O.
0

(5.16)

(5.17)

Therefore, the two dimensional dipole sums are independent of the

Ewald parameter q just like the three dimensional dipole sums. The

convergence and the independence of the Ewald parameter q is shown in

Table 5.1 and 5.2.



106

Table 5.1 The convergence of the two dimensional dipole sums for

simple square surface lattice. External wave vector 4 is along the z

direction and qa = 4.1931)(102, where a is the lattice constant.
The Ewald parameter ti = 1.75 and N is the number of terms taken in

the dipole sums in both real and wave vector space.

N S
2D

S
2D212D12 2D21

s
2D22

3 5 5 5 5

3 9.0073 4.5080 0.0000 4.5080

6 9.0073 4.5080 0.0000 4.5080

9 9.0073 4.5080 0.0000 4.5080

Table 5.2 The independence of the Ewald parameter of the two
dimensional dipole sums. For a simple square surface structure with
different Ewald parameter 7/. N = 3, all other conditions are the
same as in Table 5.1.

S
2D
3

s
2D11

5

2D12 2D21
S .S

5 5
s
2D22

5

1.25 9.0073 4.5080 0.0000 4.5080

1.50 9.0073 4.5080 0.0000 4.5080

1.75 9.0073 4.5080 0.0000 4.5080

2.00 9.0073 4.5080 0.0000 4.5080
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5.3 Two Dimensional Macroscopic Average Field:

The macroscopic average field for the two dimensional system can

be calculated by averaging the local fields over a unit cell on the

surface, which is just the zero order Fourier component of the local

th
field. The of the macroscopic average field can be

written as follows:

< Eim>2D = f E1(71,i1) d2p.
ffc cell

(5.18)

The local field is due to the external field plus the contribution of

the fields from all the dipoles on the surface, except the self

contribution if -); is taken at a dipole's site. We can rewrite the

equation above as

< Eiji/
i

ext +
ff

1 [
d
2
P,ji/ -2D

c Jcell

(5.19)

where Ei(4,73) is the interactive dipole's field. At a point on the

surface which is not a dipole then g is the sum over a perfect

dipole lattice. If the point is a dipole's site, then the self

contribution must be excluded and the sum is over an imperfect

lattice. By using the dipole sums defined in section 5.1, we can

rewrite the macroscopic average field as

< E. >
2D

Eext + E
m,j

0:/
ij

(4,m)1 G=V1.
(5.20)
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D -4S.2.(q,m)1" is the zero order Fourier component of the dipole sum of

the m
th sublattice (it is not dependent on 74, so we did not write out

theywiablOinSrifor simplification), and it can be obtained by

directly applying Euler's integral and the two dimensional theta

function transformations. Notice that there are two kinds of dipole

sums at the surface, one is due to the perfect lattice, i.e when we

take P # Te or Tm. Another is due to an imperfect lattice, when we

take p at the dipole's site. Using the same method we used for the

three dimension case in Chapter II, the zero order Fourier component

for both kinds of dipole sums can be written as:

2

a3 (1 01)1 Lim
ff7

I exp(
)

G.0 = im
A-)0 C t

dt

47
r
c

q '

and

(5.21)

2 2

s
2Dij

=

exp( -4ctl )

6ij 2-

qiqj exp( )

2 ] dt
-)0 6c t

3/

A

47 rs
= 36

c
q L'ij 2 -1'

where, we use:

2

exp( -.q )
4t dt

0

-I
Then Sij. (q m)I

G.0
can be written as

2D

(5.22)

(5.23)



2D 2r cliqj
Sii(q,m)IG=0=

rc q
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(5.24)

and the two dimensional macroscopic average field can be written as:

< g > =
2D

g
ext r

2r A_E mui.v )
(5.25)

If the surface is the x-y plane, and the external field wave

vector 4 is along the z direction, then the second term will vanish

2D 2 2D
since from Eq.(5.24) we have Sii=0. So S..D I

G
Sii1G0 for i and

j =1,2 on the surface. Then, for the ADM with a surface structure

has m identical atoms per primitive cell, the L-factor can be

2D
calculated from nLij=Eivrc.Sij for 4 along z direction,

where Si.j2D (i,X,mi) is the dipole sum due to the m'
th

sublattice at the

dipole Y which is on the sublattice m. If the atoms per primitive

cell are not identical, or if using the BDI, then the L-factor can

not be obtained so easily because the local fields at each dipole's

site may be different. Also we have that the local field on the

surface gL(4#0)=g1,(4=0) for 4 not on the surface since S24 is

directly related to the L-factor which is a q=0 case. This leads to

the conclusion that the dielectric constant of the surface e(4#0) =

e(4=0). For the case of 4 along i on the surface, we have

E1,(q #0)01,(4=0) and E.1,(q #0)=Ei(4=0) for jfi, because rL(410) is

determined by S24 which is different from Lij along direction.

However, cij is still determined by Lij, just as in three dimensions.

So (00) = c(C1=0) always holds and it is independent of the
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direction of the 4. From Eq.(2.24) we notice that when 4 has

2D
components on the surface, Siii" depends on qiqj/q. The dielectric

constant, however, is determined by the L-factor which is related to

Sij I
GOO

which, is regular at 4.0. Also because q is very small and

the dipole sum converges very quickly, Re[exp(i4-71
1
) is approximately

equal to 1 and therefore S
2DIfl) is insensitive to q. This is shown

U

in Table 5.3 (a) and (b). This leads to another conclusion that in

2D
two dimension there is NO sum rule for S..

2D since SijIG.0 is function

of q.

5.4 Self-Consistent Calculations Using Two Types of Dipole Models:

In this calculation we set the external field wave vector 44

along the z direction. The polarization of the external field lays

on the x-y plane and we always take it to be a unit vector. So the

second term in Eq.(5.25) is always zero and the dipole sums only

depend on the surface structure and are directly related to the

surface L-factor. Following the self-consistent approach the local

field at a site I can be written as the sum of the external field

text plus the dipole fields gp(4,11,m1. The equations of the coupled

local fields can be expressed in the same way as in Chapter III. The

dipole field g depends on the different dipole models and the

crystal structure.

Let's consider a center rectangular surface structure with

identical atoms per primitive cell, as shown in figure 5.1(a), where
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Table 5.3 The insensitivity of the two dimensional dipole sum to the
different magnitude of qa for the simple square structure. The

Ewald parameter I/ =1.75 and the number of unit cell N =

5

s2D15.2

ij

ij 3S
2D21

= 0 0000 is not listed in the Table. S2..= 3S
2D -o.n .

5

2DI
(a) 4 along the z direction: 011 1:/1

c

all G "ii1G#0"

qa= c2D
4.1931x "3

s
2D11

s
2D22 2D 2D

5 5
S
11

= S
22

10
-2

10
-3

10
-4

10
-6

8.7719

9.0073

9.0310

9.0336

4.4296

4.5080

4.5159

4.5168

4.4296

4.5080

4.5159

4.5168

4.5169

4.5168

4.5168

4.5168

(b)4 along the [101] direction: qia=q3a=qa/T2, 11.G=0-
q12r 41

a

q.a= 2D
S
2D

1

2D 2D

/12.4.1931x S11 all G 11 GO S22 I GO=S22 I all G

10
-3 4.4982 4.5168 4.5168

10
-6 4.5168 4.5168 4.5168

S
211 D

1

G=0
= 0.0186 for qa=10

-3
, S

211 D

1

G=0
N 0.0000 for qa=10

-6
.

=
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Figure 5.1 (a) Two dimensional centered rectangular structure, (b)

lattice of the bond dipoles, and (c) lattice of the atomic dipoles.
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a and b are the lattice constants. The ratio 7.b/a, and when 7 = 1

the structure is a center square structure.

Consider the atomic dipole model (ADM). There are two atoms per

unit cell for the center rectangular structure on a surface (Figure.

5.1(c)). Ve can use the rectangular Bravais lattice with two basis

atoms to represent its structure. Tables 5.4 and 5.5 list the local

field at the two dipole sites for a center square surface structure

under different polarizations of the external field. For the two

atoms are identical, the ADM results shown that the local fields at

the two dipole sites that are exactly the same. However, if the two

atoms are different, then the ADM results will give the local fields

at the two dipole sites are different since the dipole sums

c?1.)(4" ) are different for different and m'. However, for the
'ilk

system with identical atoms, we see that for the two dimensional

system the local field and the local field affected linear

susceptibility still have the Lorentz form. The Lorentz factor is

different from three the dimensional problem, i.e.

El

El(4)L

ext
2D
1

(in the principle axis), (5.26)
1 a.E

m
S..(q,m)
1

i
iwhere the variable in S2..

1
and E

L
is suppressed since local fields

1
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Table 5.4 2D ADI for center square structure. 4 is along the [001]

and g
ext

=(1
'

0) The self-consistent local fields at each dipole's

site and the susceptibility (EL1(m): m indicates the number of the

dipoles).

tria2

Elx(1) ELy(1) ELx(2) ELy(2) X

0.00 1.0000 0.0000 1.0000 0.0000 0.0000

0.01 1.1465 0.0000 1.1465 0.0000 0.0229

0.05 2.7684 0.0000 2.7684 0.0000 0.2768

0.07 9.4588 0.0000 9.4588 0.0000 1.3242

0.10 -3.6031 0.0000 -3.6031 0.0000 -0.7206

0.13 -1.5133 0.0000 -1.5133 0.0000 -0.3935

0.25 -0.4558 0.0000 -0.4558 0.0000 -0.2279
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Table 5.5 2D ADM for center square structure. 4 is along the [001]

and t
ext

.(1/12-,1/47). The self-consistent local fields at each

dipole's site and the susceptibility (EL1(m): m indicates the number

of the dipoles).

a/a2
E
lx

(1) E
Ly

(1)
ELx(2) ELy(2) X

0.00 0.7071 0.7071 0.7071 0.7071 0.0000

0.01 0.8107 0.8107 0.8107 0.8107 0.0229

0.05 1.9575 1.9575 1.9575 1.9575 0.2768

0.07 6.6884 6.6884 6.6884 6.6884 1.3242

0.10 -2.5478 -2.5478 -2.5478 -2.5478 -0.7206

0.13 -1.0701 -1.0701 -1.0701 -1.0701 -0.3935

0.25 -0.3223 -0.3223 -0.3223 -0.3223 -0.2279

-1 -4

S2iD l(q,1,1) . 4.5168, S222D (q,1,1) = 4.5168;

-) -)
S2iD l(q,1,2) = 8.2587, S222D (q,1,2) = 8.2587.

2L = EmSi2i(q,1,m), L = 6.3878 for center square surface..



at each identical atom's site are the same. The susceptibility is

determined by:

Xlj
na/ab

1 L..na/ab
ij
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, (i & j .1,2) (5.27)

where the L factor for a center square lattice is: L = 6.3878, a and

b are the lattice constant, and n is the number of atomic dipoles per

unit cell (n = 2 in this case). Notice that for a two dimensional

system with identical atoms, the simple square structure and the

center square structure have different L-factors (from Table 5.3, for

a simple square surface, L = 4.5168), which is not like the three

dimensional system where for cubic symmetry L is always 4r/3 even if

we have different values of n for different cubic systems. In Table

5.5 we also list the values S24(4,11,m1 at N=1 for m'.1 and 2, we can

see that they are different. However, since the two atoms are

identical, we still have the local fields at each atom's site are the

D -)
same, we have 2L.Em

S..
2(q,N,m'),

and get L. 6.3878. Table 5.6 list
ij

the results of local field and linear susceptibility using these

functional forms for the case of an external field along (10)

direction. Ve can see the excellent agreement with table 5.4. Table

5.7 lists the L-factor for a simple rectangular surface structure

with different lattice ratio b/a. Table 5.8 lists the L-factor for
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Table 5.6 2D ADI for center square structure. Using the functional
form to repeat the calculation in Table 5.4

a/a2
Elx(1) ELy(1)

E
Lx

(2) E
Ly

(2) X

0.00 1.0000 0.0000 1.0000 0.0000 0.0000

0.01 1.1465 0.0000 1.1465 0.0000 0.0229

0.05 2.7684 0.0000 2.7684 0.0000 0.2768

0.07 9.4600 0.0000 9.4600 0.0000 1.3244

0.10 -3.6028 0.0000 -3.6028 0.0000 -0.7206

0.13 -1.5133 0.0000 -1.5133 0.0000 -0.3934

0.25 -0.4558 0.0000 -0.4558 0.0000 -0.2279
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Table 5.7 2D ADI for simple rectangular structure. Calculated

L-factor for different lattice ratio 7 = b/a. 4 is along the [001].

2D 2D
7 L =a-

c
.S

11xx
L
yy

=r
c
-S
22

0.4 -8.4459 30.0513

0.5 -3.0350 19.2314

0.6 -0.0879 13.3467

0.7 1.7110 9.7791

0.8 2.9192 7.4283

0.9 3.8072 5.7666

1.0 4.5168 4.5168

1.1 5.1262 3.5250

1.2 5.6792 2.7017

1.5 7.1969 0.7975

1.7 8.1693 -0.2114

2.0 9.6157 -1.5175

2.5 12.0205 -3.3783

3.0 14.4247 -5.0190
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Table 5.8 2D API for center rectangular structure. Calculated

L-factor for different lattice ratio 7 b/a. (4 is along the [001],
-#

4 and 11.1 did not write out in Si2i(q11,m)).

7 S
2D

(1)
11

S
2D

(1)
22

S
2D

(2)
11

S
2D

(2)
22

L
xx YY

1.0 4.5168 4.5168 8.2587 8.2587 6.3878 6.3878

1.2 4.7327 2.2514 4.2748 8.1121 5.4044 6.2180

1.4 4.7883 0.9752 2.1846 7.3257 4.8810 5.8107

1.6 4.8029 0.1720 1.1114 6.3547 4.7315 5.2214

1.8 4.8068 -0.3718 0.5652 5.4181 4.8348 4.5418

2.0 4.8078 -0.7587 0.2879 4.5974 5.0957 3.8387
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center rectangular structure (i.e. the simple rectangular lattice

with two basis atoms) with a different ratio b/a. Figure 5.2 shows

the L-factor vs b/a for simple rectangular structure. For the

anisotropic structure, the Lorentz factor is a tensor, corresponding

2D
to the susceptibly tensor. In principle axis, we have Sitj = 0 and

there are only two independent elements (L and L
YY

) for the two
XX

dimensional problem, corresponding to L = a -S
2

and L = -S
2D

xx c 11

D
yy

a
22'

2D
where S . are at the dipole's site (for a simple rectangularli

structure with only one atom per primitive cell).

Notice that if we exchange the x and y axis, even if we maintain

a constant ab, Lxx does not have symmetry with L
YY

. This is because

the lattice constant a in the old coordinate system is a constant.

In the new coordinate system the lattice constant along the x

direction is b, which is not a constant. However, if we multiple the

ratio of b/a by their L-factors (Lxx and Lyy), then we obtain the

symmetry of the L-factor. For example from Table 5.7, taking

L-factors for b/a=2 and multiplying by 2, is the same as exchanging

the two L-factors for b /a =0.5.

Figure 5.3 shows the results of xij vs a/ab for the center

rectangular structure using the API. For 7 = 1, the functional form

of the self-consistent calculation for the atomic dipole model has

the same form as we obtained in the three dimensional calculations.

The only difference is the Lorentz factor. However, for the center

square structure the linear susceptibility is a scalar and it will
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2D Simple Rectangular Structure
30

25
0

4-,
U 20
0

li._ 15

I
10

5
10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Lattice Ratio (b/a)

Figure 5.2 Plot of the L-factor vs lattice ratio b/a.



122

(a)

(b)

2D CENTER RECTANGULAR STRUCTURE: HI

3.0

2.0

1.0

0.0
17-

tal
C.) -1.0
rn
D
(f)

-2.0

-3.0
0.00 0.05 0.10 0.15 0.20 0.25

ATOMIC POLARIZABILITY (a/(lb)

o b/a = 1.0
A b/a 1.2
0 b/o = 1.4

ymbols: Theoretical--
Ines: Functional
&a: lattice const.

2.0

1.5

1.0

0.5

0.0

-0.5
a_
ea00 -1.0
cn

cn -1.5

I I

0 b/a = 1.2
sa' b/a = 1.4
Symbol; Theoriticol
Line; Functional
&a: lattice const.

-2.0 1

0.00 0.05 0.10 0.15 0.20 0.25

ATOMIC POLARIZABILITY (a/ob)

Figure 5.3 2D ADI in the center rectangular structure: (a) the

ordinary susceptibility (x11) and (b) the extraordinary

susceptibility (x22) for different lattice ratio b/a. Plot of the

susceptibility vs the atomic polarizability (a/ab).
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not change it's value for different polarizations of the external

fields, which we can see from tables 5.4 and 5.5. For the center

rectangular structure (7 > 1), the linear susceptibility is a second

order tensor and the material is birefringence. In principle axis we

have x.-
12 X21 0,

and xll and x22 are two independent numbers.

They are related to the ordinary and extra-ordinary refractive index

no and ne by no = 4co, and ne = 4ce, where co. 1 + 4rx11, and fe = 1

4"22.

To evaluate the local field off the dipole's site (i.e. at 71

re or rm), we need to calculate S24(4,P,m). As we obtained in

chapter III, we can use Eq.(3.17) to evaluate gL(4,7)) for the two

2D
dimensional systems. Table 5.9 lists Sij(q,p) (m =1 did not write out

D -)
in S.

2
(q p m)) at different points p for a simple rectangle structure

with a different lattice ratio b/a. By using Eq.(3.17) we can

immediately see that at the center of the simple rectangular

structure Sri(4,71) > Lii. Hence, the local field at the center is

larger than the local field at the atom's site. Also if p1 is closer

to the atom's site than --P2, then, EL(71) > EL(P2).

In the bond dipole model (BD') calculation, the center

rectangular structure can be represented as a simple rectangular

Bravais lattice with four basis dipoles as we have shown in Figure

5.1(b). The primitive lattice vector it is defined to be a(iix +

712y ), where ti and e2 are integers and 7 =b /a. If we take a

dipole's site as the origin, then the coordinates of the four bond
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Table 5.9 2D MA for simple rectangular structure. Calculated dipole

sum ST (4,7) at different point 73 = (px, py), with different lattice

ratio 7.b/a. 4 is along the [001].

7 (0.5,

S
2D
11

0.5*7)

S
2D
22

(0.5,

S
2D
11

0.0)

S
2D
22

0.4 48.3909 0.8430 50.3071 -0.8449

0.5 36.7790 2.3036 42.2046 -2.3282

0.6 27.9292 4.1066 38.0077 -4.2334

0.7 20.9653 5.7838 35.8621 -6.1684

0.8 15.5328 7.0648 34.7743 -7.9097

0.9 11.3770 7.8755 34.2242 -9.3815

1.0 8.2587 8.2587 33.9459 -10.5869

7 (0.0, 0.5*7) (0.25, 0.0)

11S11
S
2D
22

S
2D

S
2D

11 22

0.4 -246.5008 525.9001 139.0971 -31.6389

0.5 -121.4742 269.2638 135.7837 -42.3476

0.6 -66.9623 155.8380 134.9318 -49.3821

0.7 -39.7176 98.1751 134.7100 -53.9764

0.8 -24.7637 65.8429 134.6516 -57.0578

0.9 -15.9901 46.3569 134.6361 -59.1983

1.0 -10.5869 33.9459 134.6319 -60.7371



dipoles are: (0,0), 4(1,0), 4(1,7). The four bond

directions are:

d
1
= (-1

'

-7)/1(1 + 72)

d
2

= (1,-7)/1(1 + 72)

d
3

= (-1
'

7)/1(1 + 72)

d4 = (1,7)/1(1 72).
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(5.28)

For 7=1, i.e. the centered square structure, the local field

equations are composed of eight coupled equations. Not only is there

the coupling between the four dipoles, but also the coupling between

each of the components of the local field. The coefficients of each

component of the local fields are the sixteen different S..2D (q,1100

for m=1..4, with different I (1=1..4) as the origin.

Because of the different bond orientations, the surface

calculations using the bond dipole model will give us different

pictures of the local fields than the ADM. Tables 5.10 and 5.11 list

for polarization of the external field along different directions on

the surface, the results of the self-consistent local fields at the

four dipole positions and the linear susceptibility, for the center

square surface structure. By comparing table 5.10 and 5.11, we can

immediately see that local field effects do not change the isotropic

property of the linear dielectric constant. However, the local
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Table 5.10 2D BDI for center square structure. 4 is along the [001]

and text . (1,0). The self-consistent local fields at each dipole's

site and the susceptibility (En(m): m indicates the number of the

dipoles).

a/a2 E
Lx

(1)

E
la

(3)

ELy(1)
ELy(3)

ELx(2)
ELx(4)

ELy(2)
ELy(4)

X

0.00 1.0000 0.0000 1.0000 0.0000 0.0000
1.0000 0.0000 1.0000 0.0000

0.03 1.8788 -0.2574 1.8788 0.2574 0.0973

1.8788 0.2574 1.8788 -0.2574

0.05 3.5008 -0.7325 3.5009 0.7325 0.2768
3.5009 0.7325 3.5009 -0.7325

0.07 12.9626 -3.5038 12.9626 3.5038 1.3242

12.9626 3.5038 12.9626 -3.5038

0.08 -64.6037 19.2151 -64.6037 -19.2151 -7.2622

-64.6037 -19.2151 -64.6037 19.2151

0.10 -5.5098 1.9067 -5.5098 -1.9067 -0.7206

-5.5098 -1.9067 -5.5098 1.9067

0.15 -1.9576 0.8663 -1.9576 -0.8663 -0.3274
-1.9576 -0.8663 -1.9576 0.8663

0.25 -1.0589 0.6030 -1.0589 -0.6030 -0.2279
-1.0589 -0.6030 -1.0589 0.6030
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Table 5.11 2D BD' for center square structure. 4 is along the [001]

and text =
(14721/41). The self-consistent local fields at each

dipole's site and the susceptibility (ELi(m): m indicates the number

of the dipoles).

a/a2
ELx(1)

ELx(3)

ELy(1)

ELy(2)

ELx(2)

ELx(4)

ELy(2)

ELy(4)

X

0.00 0.7071 0.7071 0.7071 0.7071 0.0000
0.7071 0.7071 0.7071 0.7071

0.03 1.1465 1.1465 1.5106 1.5106 0.0973
1.5106 1.5106 1.1465 1.1465

0.05 1.9575 1.9575 2.9934 2.9934 0.2768
2.9934 2.9934 1.9575 1.9575

0.07 6.6884 6.6884 11.6435 11.6435 1.3242
11.6435 11.6435 6.6884 6.6884

0.08 -32.0945 -32.0945 -59.2689 -59.2689 -7.2622
-59.2689 -59.2689 -32.0945 -32.0945

0.10 -2.5478 -2.5478 -5.2442 -5.2442 -0.7206
-5.2442 -5.2442 -2.5478 -2.5478

0.15 -0.7717 -0.7717 -1.9968 -1.9968 -0.3274
-1.9968 -1.9968 -0.7717 -0.7717

0.25 -0.3223 -0.3223 -1.1751 -1.1751 -0.2279
-1.1751 -1.1751 -0.3223 -0.3223
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fields at each bond dipole's site are different. Table 5.12 lists

the linear susceptibilities for a center rectangle structure with

different lattice ratios 7. Notice that for 7 f 1, there is

birefringence. As an example for 7 = 1.2, x22 changes sign much

slower than xll when the bond polarizability increase, because the y

components of the local field at each dipole's site change very

slowly. This is shown in Table 5.13.

Figure 5.4 shows the results of the linear susceptibility as a

function of the bond polarizabilities for different values of 7. A

general functional formula of the self-consistent local field

calculations of the linear susceptibility is of the form,

X (BDN)
n r/(1+72)

1 Liin T' (5.26)

iwhere = a/ab 7a/a
2

which is the bond polarizability per area ab,

and n is the number of bond dipoles per unit cell, n = 4 in this

case. For a lattice ratio 7 = 1, the tensor becomes a scalar, and we

have L(7 =1) = 3.1939, which gives exactly the same form as we have

obtained for the ADN (see Eq. (5.26)). This is not surprising and in

fact it is a good check for using the BDM and occurs because of the

character of the two dimensional bond orientation. For example, when

the external field is polarized along the [11] direction, the bond

orientation of the center square structure (7 =1) has two dipoles
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Table 5.12 2D BDI for center rectangular structure. The
self-consistent calculation of susceptibility for different lattice
ratio 7.

a/a2 x(7.1.0) x11(7.1.2
) x22(7= 1.2 ) x11(7= 1.4 ) x22(7=

1.4)

0.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.02 0.0537 0.0415 0.0414 0.0309 0.0357

0.04 0.1636 0.1734 0.0874 0.1549 0.0674

0.06 0.5140 -3.0145 0.1388 -0.4592 0.0959

0.07 1.3242 -0.4820 0.1669 -0.2153 0.1090

0.09 -1.2017 -0.2274 0.2283 -0.1261 0.1335

0.11 -0.5428 -0.1701 0.2983 -0.0997 0.1556

0.15 -0.3274 -0.1307 0.4716 -0.0798 0.1944

0.20 -0.2572 -0.1127 0.7855 -0.0701 0.2346

0.25 -0.2279 -0.1041 1.3077 -0.0654 0.2678



130

Table 5.13 2D BD' for center rectangular structure (7 = 1.2). 4 is

along the [001] and rext.(1/P,1/11). The self-consistent local

fields at each dipole's site and the susceptibility (ELi(m): m

indicates the number of the dipoles).

a/a2
ELx(1)

ELx (3)

ELy(1)

ELy (3)

ELx(2)

ELx(4)

ELy(2)

ELy(4)

X11 X22

0.00 0.7071 0.7071 0.7071 0.7071 0.0000 0.0000

0.7071 0.7071 0.7071 0.7071

0.05 4.1224 1.4644 4.9109 0.8086 0.4743 0.1124
4.9109 0.8086 4.1224 1.4644

0.11 -1.7059 1.7291 0.3870 1.9644 -0.1701 0.2983

0.3870 1.9644 -1.7059 1.7291

0.35 -19.1557 21.4341 19.0313 21.5666 -0.0958 5.4422

19.0313 21.5666 -19.1557 21.4341

0.45 25.2101 -26.8427 -25.2689 26.7159 -0.0917 -7.1941

-25.2689 -26.7159 25.2101 26.8427

0.50 13.9054 -14.5189 -13.9426 -14.3940 -0.0904 -3.9669
-13.9426 -14.3940 13.9054 -14.5189
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Figure 5.4 2D BOX in the center rectangular structure: the ordinary
and the extraordinary susceptibilities for different lattice ratios
b/a.
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polarized the same as in the ADE The other two are perpendicular to

the external field, so they give no contribution. However, for the 7

# 1 case, the bond orientations make a big difference between using

the two different kinds of dipole models. The L-factor remains a

tensor however, since the local fields at each bond dipole's site are

different, the L-factor cannot be obtained easily as in the in. By

fitting the self consistent calculated data for the case of y = 1.2

in principle axis, we have L11(7=1.2) = 3.875 and L22 (7=1.2) .

1.525. The results of the susceptibility calculated using the

functional form are listed in Table 5.14, It gives a good

approximation in the positive range of the susceptibility.
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Table 5.14 2D BDI for center rectangular structure. The calculated
susceptibility using the functional form.

a/a
2

X(7 =1.0) x11(7=1.2) X22(7 =1.2)

0.00 0.0000 0.0000 0.0000

0.02 0.0537 0.0475 0.0373

0.04 0.1636 0.1726 0.0867

0.06 0.5140 1.4052 0.1551

0.07 1.3244 -1.3500 0.2003

0.09 -1.2016 -0.3735 0.3271

0.11 -0.5428 -0.2558 0.5481

0.15 -0.3274 -0.1856 2.8929

0.20 -0.2572 -0.1561 -1.4903

0.25 -0.2279 -0.1426 -0.7806

L
xx

=3.8751 with standard deviation o= 0.0043 in xil > 0 range.

L
YY
=1.525 with standard deviation a=0.029 in x

11
> 0 range.
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CHAPTER VI

CONCLUSIONS AND FUTURE DEVELOPMENTS

Local field effects on the dielectric properties of

semiconductor solids have been investigated using the classical

Lorentz-Lorenz (L-L) approach in both its original form with

polarizable dipoles located at atomic sites (ADM) and in a modified

form with polarizable charge distributions placed along bond

directions (BDM). The bond dipole model naturally comes from taking

a classical limit of the overlap of quantum sp
3
hybrids orbitals, and

it is intended to remedy some of the obvious L-L deficiencies for

covalent crystals. In both models the local fields and dielectric

constants can be expressed in terms of the familiar L-L formula

4E =1+ rNa
1 LNa '

(6.1)

where L is the Lorentz factor (constant) determined by the lattice

structure only. The dielectric constant is independent of the

magnitude of 141 and the direction of the 4. Also f(q io) = c(4.0)

for small q, while the local field Et(440)01(4.0) for 4 along the k

direction and EiL (440).EiL (q.0) for i #k. In the ADM the Lorentz factor

has a value which is familiar from other calculations, in particular

4r
it is for cubic crystals. However, in the BDM this constant

assumes values different from the ADM values, even for cubic crystal.

The L-L form implies the possibility of strong enhancements or
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reductions of the macroscopic average and the local electric fields

and even suggests the onset of structural (ferroelectric) phase

transitions. Thus because of its qualitative richness it is of some

interest to study the range of applicability and possible

modifications to this venerable formula.

The calculations have been extended to a two-dimensional crystal

where the cubic lattice sum cancellations, important for the original

Lorentz derivation, fail. Here too the ION and the HI are studied

and the variations of local field strength over the two-dimensional

surface are studied with an eye towards understanding possible local

field related light absorption or light scattering enhancements.

We have also calculated the L-factor using the MA in three

dimensions for a simple tetragonal structure with different lattice

ratios c/a, and in two dimension for a simple rectangular and

centered rectangular structure with different lattice ratios b/a,

with small 4#0 in the dipole sums. For three dimensions the L-factor

satisfies a sum rule but for two dimensions there is no sum rule.

Even for the same lattice with a different basis (for example, the

centered rectangular structure is the same lattice as simple

rectangular but with two basis atoms), it has a different L-factor.

The method we used here can be compared with Purvis and Taylor (2) who

use q=0 in dipole sums and have to impose a special summation order,

which corresponds to a certain shape of the crystal in order to avoid

the depolarization factor in obtaining the L-factor. This method

seems to be a much simpler calculation of the L-factor. Also, the

method and the formulas we have obtained here can be easily extended
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to quadrupole or even higher multipole calculations. The dipole sum

formulas have been used to determine the local field strength at

interstitial sites in three-dimensional crystals as well as in

two-dimensional crystals with an eye towards understanding crystal

defect problems.

We have also noticed that the BDI as a more objective

description of dipoles in covalent crystals gives the non-uniform

local fields at each bond dipole site even for the system has

identical atoms. However, this model has its limitations. The BDI

should be used only for semiconductors or insulators with strong bond

orientation, such as covalent crystals.

It is difficult to conceive of direct experimental tests for the

L-L theory since local polarizabilities and local fields in a solid

are not experimentally accessible quantities. On the other hand,

certain derivatives of the dielectric function are experimentally

accessible. The numerical dipole sums have been applied to strained

crystals and we have investigated elasto-optic (Pockels) constants

using both the ADM and the BDM. In particular for some tetrahedral

compounds and for the rare gas crystal Xenon, which probably fulfills

the L-L criterion as well as any other solid, the results of the

isotropic atomic polarizability do not compare very well with the

observed value. However, using an anisotropic atomic polarizability

assumption the fitting is possible in excellent agreement with the

observed value. The value of the anisotropic atomic polarizabilities

are very close to the isotropic value and the calculations are very

sensitive to a small change of the polarizability. This leads us to
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conclude that the L-L is a qualitatively important result which gives

a good approximation of the scale of polarizability.

Assuming that the L-L result has largely qualitative

significance, it would be interesting to extend it to cases where the

local polarizability is non-linear in the local field. There we can

possibly obtain at least a qualitative picture of local field effects

on non-linear optical processes, especially at surfaces.
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Appendix A. 3D and 2D FOURIER TRANSFORI

We want to perform the Fourier transform of the following two

equations for a three dimensional systems:

and

E
t t

exp(-x2
m
t + igi'im) = EG CG exp(ig.i), (A-1)

. -) -4
Et ximxim exp(-ximt + iq.xim) = EG DVexp(ig11). (A-2)

Notice that,

8
2

C
G

Dij

Oqi Oqj
(A-3)
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An expression for CG is obtained first by taking the Fourier transform

of Eq.(A-1) which gives,

1
Co = -v- j exp(-igi.)) { Et exp(-x2imt + i47c'tm)} d3-11. (A-4)

c
cell

Interchanging the order of integral and the summation and changing the

-4 -4 -4

variable from r to x
tm=

r r
1

-r
m

in the exponential factor then

gives:

CG 4-E,J exp(-ig%)exp[-x2tmt i(g 4)i'im]d3i)/m, (A-5)

" c
cell



143

where we use the fact that exp(ig.it) is equal to unity. This

integral is equivalent to the integral over all space,

CG j m
).exppx2imt i(g zlm]

space

m
2

V

r f f

J J m
).exp[- x2m t ilg 4Ix

im i
cos o] x2

m
dx

im
dcos0

0 -1

j exp(-x2imt)sn(Ig 4Ixim) dxim
2

0

41j exp(-it%)exp(-xtmt)cos(Ig 4Ixim) dxfm. (A-6)
2

0

Using the table of integrals by H. B. Dwight (4th edition) 861.20:

jexp(- a2x2)cos(mx) dx = exp[-m
2
/(4a

2
)],

0

we then have,

CG =
1 (t)

3/2
exp[-i.im

(A- 7)

A- 8)

which is Eq.(2.12). By using Eq.(A-3), we can easily get DV, which is

Eq.(2.16).

For a two dimensional system, we have an integral over all

surface,



2 m
CG
2D

-
1 i 2

II

J
exp(-i4.%)-exp[-(ptm) t i(Gi qi)ptm] dplm

c i=1

m
4

U fexp(-igim).exp[-(pi im) 2 tilcos(G-qi)piim]dpitm, (A9)
ac i =1 0

using Eq.(A-7) again we have

CAD= exp(-iG.rm) exp[
c

which is Eq.(5.7). Using the same arguments as for the three

dimensional system we have

8
2

C
2D

D
2Dij
G

dqi Oqj

.--1-exp(-iG.rm)(--1-)exp[
a
c

which is Eq.(5.8).

1 (Gi-q,)(G.-q)
J ),

4 t
2
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(A-10)

(A-11)
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Appendix B. PROOF THE 3D DIPOLE SUMS ARE

INDEPENDENT ON THE EWALD PARAMETER /

The partial derivatives of S3(4,11,m) and the S53(4,11,m) (i.e.

Eq.(2.29) and Eq.(2.30)) can be written as the following:

8 S3(4,I,m)
2

2
r 8 E1 8 xG

0 n
EG ) -m---

+ Ei --T- -41; + exp(-x!.).(1
8

1
9 x

2x;)]FilE, (B-1)
xtm

where xG = (g-q)/ 4/
2

and xr = n xim. From the Handbook of

Mathematical functions, edited by I. Abramowitz and I. A. Stegun,

equations (7.2.8) and (6.5.26) we have

and

_ exp( -x)

411x 2
Ti-

.0 2 exP(-x2)d

Therefore, we can rewrite (B-1) as:

a s3(4,x,m) 2r E
G Y L

exnr_ig.(ititm)[ exp(-xG)]
0 n =

2
4
4 7

I/

L
Ei exp(i4.i'im).exp(-xr2 )]. (B-4)

Substituting Eq.(2.8) where t = /2, and Eq.(2.13) into (B-4), we then

have,
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8 S3(4,11,m)
= EG exp[- ig (it i4m)[+

a
exp(-xG)]

- exp(-xG) = 0. (B-5)-yam
c

Similarly we have,

SP (4,11,m) 2r
[ (-4-r )[ 6

-4 2
(Gi-qi)(G4-qi)

]exp(-xG)1,7-Ecexp -1 rm
n .Tc '7

i j

X1 1 . -4 -4 0
(B-6)+ E't exp(upxim11.-

34
XimeXP(-4)].

Xim

Substituting Eq.(2.9) and Eq.(2.17) into Eq.(B-6), we then have,

a Sii(4911,m) 4r
[ -4 )[ 1 5 ]exp(-xG5 - xp -1 m ljd 77 *--TcEGe

2 n
3

;,,r7
4

EG exp[-ig-(7-ind[2-
(G. -q.)(G

17

rr[psi 1
)

]exp(-xG)

= 0. (B-7)

In the same way we can prove that

8 S3(q,r,m) a SP(4,i,m)

0 ?I
= 0, and 0. (i.Weq (B-8)

Therefore, the three dimensional dipole sums are independent of

the Ewald parameter n.
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Appendix C. PROGRAM DIPSN

PROGRAM DIPSN
c Written by Lingzhou L.Canfield, as part of thesis.
c This program use the Ewald method to calculate the dipole
c sums for the diamond or zinc blende structure with or without a
c strain, for the BM and the ADM.

implicit real*8 (a-b,d-h,o-z)
implicit complex*16 (c)
dimension sum5(10,10), sumk5(3,3),sumr5(3,3),s5(3,3),

& s5ij(16,6), s3m(16), rm(16,3),dke(3)
ci=cmplx(0.0d0,1.0d0)
pi=dacos(-1.0d0)

dke 2 =0.d0
dke 3 =4.1931d-3

c dke(i) are the wave vector q times a, a is lattice constants
mb=175
b=mb/100.d0
max=3

delt=0.001d0
rc=1.d0-delt
open unit=6, file.'s3p001x.out', status='new')
open unit=8, file='s5p001x.out', status='new')
open unit=4, file='brps.inp', status = 'old')

c open brps for the BDM; arps for the ADM.
do 11 il=1,m

c m = 16 for the BDM; m = 4 for the ADM
read(4,*)(rm(il,j1),j1=1,3)

rmy=rm i1,2
rmz=rm i1,3

c rm= r-rp, for r run over all rps. rp is the position of the
c dipoles as the basis in one unit cell.

do 20 i=1,3
do 10 j=1,3

if (j .1e.i)then
call subk(max,rc,i,j,b,pi,ci,rmx,rmy,rmz,

& dke,csmk3,csmk5l,csmk52)
sumk3=2*pi*real(csmk3)
smk51=real(csmk51)
smk52=real(csmk52)

if 0 .eq. i then
sumk5(i,j)=2*pi*(smk51-2*smk52)/3.0d0

else
sumk5(i,j)=-4*pi*smk52/3.0d0

endif
call subr(max,rc,i,j,b,pi,ci,rmx,rmy,rmz,csmr3,csmr5)

sumr3=real(csmr3)
sumr5(i,j)=real(smr5)

if (dabs(rmx)+dabs(rmy)+dabs(rmz) .eq. 0.d0)then
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sum3=(4*sumk3/rc)+sumr3-(4*b*b*b)/(3*dsqrt(pi))
else

sum3=(4*sumk3/rc)÷sumr3
endif

c the term -(4*b*b*b)/(3*dsqrt(pi)) is from excluded the self

c contribution
sum5(i,j)=(4*sumk5(i,j)/rc)+sumr5(i,j)

endif
10 continue
20 continue

s3m(i1)=sum3
s5ij i1,1 =sum5 1,1
s5ij i1,2 =sum5 2,1
s5ij i1,3 =sum5 2,2
s5ij i1,4 =sum5 3,1
s5ij i1,5 =sum5 3,2
s5ij i1,6 =sum5 3,3

write(6,56)s3m(i1)
write(8,55)(s5ij(il,j2),j2=1,6)

55 format(6f12.4)
56 format(f12.4)
11 continue

close 6
close 8

stop
end

subroutine subk(max,rc,i,j,b,pi,ci,rmx,rmy,rmz,dke,
& csmk3,csmk5l,csmk52)
implicit real*8(a-b,d-h,o-z)
implicit complex*16 (c)
dimension dkm(3), dke(3),gm(3)
csmk3=(0.0d0,0.0d0)
csmk51.(0.0d0,0.0d0)
csmk52.(0.0d0,0.0d0)

c loops in k space
do 60 m3=-max,max

do 50 m2=-max,max
do 40 m1=-max,max

c where ml,m2,m3 are the integers of the reciprocal lattice vector

c Km=m1A+m2B+m3C

gm 3 =2*pi* -ml+m2+m3)
gm 2 =2*pi* ml+m2-m3)

dkm 1 =gm 1 -dke 1
dkm 2 =gm 2 -dke 2
dkm 3 =gm 3 -dke 3
sqakm=dkm 1 **2+ km(2)**2+dkm(3)**2
akm=dsqrt sqakm)
x=akm/(2*b)
sqx=x*x
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cexpgrm=cexp(-ci*cmplx(gm(1)*rmx+gm(2)*rmy+gm(3)*rmz))
if (sqx .lt. 0.9d0)then

call sube1(sqx,dei)
else

if (sqx .lt. 29.d0)then
c when sqx=29,e1(x)=8.4837e-15, which is apprx. eq 0

call qromo
(63

) (0.0d0,1.0d0/sqx,ss)
dei=ss

else
dei=0.0d0

endif
endif

if (sqx .1t. 36.d0)then
sk52.(dkm(i) *dkmOrdexp(-sqx))/sqakm

else
sk52=0.0d0

endif
sk3=dei
sk5l =dei

csmk3=csmk3+cexpgrecmplx(sk3)
csmk51=csmk51+cexpgrecmplx(sk51)
csmk52=csmk52+cexpgrecmplx(sk52)

40 continue
50 continue
60 continue

return
end

subroutine subr(max,rc,i,j,b,pi,ci,rmx,rmy,rmz,csmr3,csmr5)
implicit real*8(a-h,o-z)
implicit complex*16(c)
dimension rla(10)
csmr3=(0.0d0,0.0d0)
csmr5=(0.0d0,0.0d0)

c loops in r space
do 60 13=-max,max

do 50 12=-max,max
do 40 11=-max,max

c the primitive vector is t=11*a+12*b+13*c.

rla 2 =rmy-0.5d0* 11+12
rla 3 =rmz-0.5d0* 12+13
drl= rla(1) * *2 +rla 2)**2+rla(3)**2

rl=dsqrt(dr1)
x=b*r1

cexpker=cexp(ci*cmplx((dke(1)*rla(1)+dke(2)*rla(2)
+dke(3)*rla(3))))

if (x .lt. 6.0d0)then

sr31=1.0d0-erlx)(63)
sr32=(2*x*dexp -x*x))/dsqrt(pi)
sr53.(4*x*x*x* exp(-x*x))/(3*dsqrt(pi))
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else
sr31=0.0d0
sr32=0.0d0
sr53=0.0d0
endif

if (rl .eq. 0.0d0) then
sr3=0.0d0
sr5=0.0d0

else
sr3=(sr31+sr32)/r1**3
sr5=r1a(i)*rla(j)*(sr31+sr32+sr53)/r1**5

endif
csmr3=csmr3+cmplx(sr3)*cexpker
csmr5=csmr5+cmplx(sr5)*cexpker

40 continue
50 continue
60 continue

return
end

subroutine subel(sqx,dei)
implicit real*8(a-h,o-z)
xm=sqx
sn=0.0d0
do 11 n=1,10
CALL SUB(N,B1)
sl=((-xm)**n)/(n*W1.0D0)
sn=sn+sl

11 CONTINUE
E1=-.5772156649d0-dLOG(H)-SN
dei=e1
return
end

SUBROUTINE SUB(N,M1)
IMPLICIT REAL*8(A-H,0-Z)
m1=1
i=1

5 m1=ml*i
I=I+1
if (i.le.n)then

GOTO 5
endif
RETURN
END
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Appendix D. PROGRAM DIMS
program dmbrps

c Written by Lingzhou L.Canfield, as part of thesis.
c this is a main program to create the rps for BOND DIPOLES in ONE
c primitive cell of the Diamond or Zinc Blende structure with or
c without deformation.
c This is the MAIN program

implicit real*8(a-h,o-z)
dimension rpu(8,3),rmp(16,3),rdm(16,16,3)
call dmbr44x(rpu)

c call dmbr44x(rpu) for crystal under a shear along the x dir.,
c call dmbr(rpu) for crystal with or without a strain.

do 22 m=1,4
do 21 i=1,4

do 20 j=1,3
rdm(m,i,j)=rpu(i,j)-rpu(m,j)

20 continue
21 continue

do 33 i=1,4
write(16,44)(rdm(m,i,j),j=1,3)

44 format(3f18.6)
33 continue
22 continue

close(16)
stop
end

subroutine dmbr44x(rpu)
implicit real*8(a-h,o-z)
dimension rpu(8,3)
delt=0.002d0
open unit=16, file='r44p002x.inp', status = 'new')
rpu 1,1 =0.125d0+0.875*delt
rpu 1,2 =0.125d0
rpu 1,3 =0.125d0
rpu 2,1 =0.125d0+0.625d0*delt
rpu 2,2 =0.375d0
rpu 2,3 =0.375d0
rpu 3,1 =0.375d0+0.625*delt
rpu 3,2 =0.125d0
rpu 3,3 =0.375d0
rpu 4,1 =0.375d0+0.875*delt
rpu 4,2 =0.375d0
rpu 4,3 =0.125d0
return
end

subroutine dmbr rpu)
implicit real*8(a-h,o-z)
dimension rpu(8,3)
open(unit=16, file='dmbr.inp', status = 'new')
rpu(1,1)=0.d0



rpu 1,2
rpu 1,3
rpu 2,1
rpu 2,2
rpu 2,3
rpu 3,1
rpu 3,2
rpu 3,3
rpu 4,1
rpu 4,2
rpu 4,3

return
end

.0.d0
=0.d0
.0.d0
.0.25d0
.0.25d0
.0.25d0
.0.d0
.0.25d0
.0.25d0
.0.25d0
.0.d0
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Appendix E. PROGRAM AMPS
program admrps

c Written by Lingzhou L.Canfield, as part of thesis.

c this is a program to create the rps for ATONIC DIPOLES in ONE

c primitive cell of the Diamond or Zinc blende structure.
implicit real*8(a-h,o-z)
dimension rpu(8,3),ram(8,8,3)
rpu 1,1 =0.d0
rpu 1,2 =0.d0
rpu 1,3 =0.d0
rpu 2,1 =0.25d0
rpu 2,2 =0.25d0
rpu 2,3 =0.25d0

do 22 m=1,2
do 21 i=1,2

do 20 j=1,3
ram(m,i,j)=rpu(i,j)-rpu(m,j)

20 continue
21 continue

open(unit=16, status = 'new')

do 33 i=1,2
write(16,44)(ram(m,i,j),j=1,3)

44 format(3f18.6)
33 continue
22 continue

close(16)
stop
end
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Appendix F. PROGRAM 2DBDIRPS
program 2dbdmrps

c Written by Lingzhou L.Canfield, as part of thesis.
c this is a program to create the rps for Bond DIPOLES in ONE unit

c cell of the 2 Dimensional centered rectangular structure.
implicit real*8(a-h,o-z)
dimension rpu(8,3),rmp(16,3),rbm(16,16,3)
rpu 1,1 =0.d0
rpu 1,2 =0.d0
rpu 2,1 =0.5d0
rpu 2,2 =0.d0
rpu 3,1 =0.d0
rpu 3,2 =0.5d0
rpu 4,1 =0.5d0
rpu 4,2 =0.5d0
do 22 m=1,4

do 21 i=1,4
do 20 j=1,2

rbm(m,i,j)=rpu(i,j)-rpu(m,j)
20 continue
21 continue

open(unit=16, file='2dbrps.inp', status = 'new')
do 33 i=1,4
write(16,44)(rbm(m,i,j),j=1,2)

44 format(2f18.6)
33 continue
22 continue

close(16)
stop
end
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Appendix G. PROGRAM DIPS144X
program dipsm44x

c Vritten by Lingzhou L.Canfield, as part of thesis.
c this is a program using Ewald method to calculate the dipole sums
c for cubic tetrahedral structure under a shear.
c this is a PAIN program

implicit real*8 (a-b,d-h,o-z)
implicit complex 16 (c)
dimension sum5(10,10), sumk5(3,3),sumr5(3,3),s5(3,3),

& s5ij(16,6), s3m(16), rm(16,3),dke(3)
ci=cmplx(0.0d0,1.0d0)
pi=dacos(-1.0d0)

dke 2 =0.d0
dke 3 =4.1931d-3

mb=175
b=mb/100.0d0
max=3

open unit=4, file= 'r44p002x.inp', status = 'old')
open unit=6, file='s3p002x.44z , status ='new'
open unit=8, file='s5p002x.44z', status ='new'
delt=0.002d0
rc=1.d0
dtn=1.d0-delt
dnh.l.d0-delt/2.d0

c rc is the rate of c/a, where c and a are the lattice constants.
do 11 il=1,16

read(4,*)(rm(i1,j1),j1=1,3)

rmy=rm i1,2
rmz=rm i1,3
do 20 i=1,3

do 10 j=1,3
if (j .le.i)then

call subk44(max,rc,dnh,dtn,i,j,b,pi,ci,rmx,rmy,rmz,dke,
& csmk3,csmk51,csmk52)

sumk3=2*pi*real(csmk3)
smk51=real(csmk51)
smk52=real(csmk52)

if (j .eq. i)then
sumk5(i,j)=2*pi*(smk51-2*smk52)/3.0d0
else
sumk5(i,j)=-4*pi*smk52/3.0d0
endif

call subr44(max,rc,dtn,i,j,b,pi,rmx,rmy,rmz,csmr3,csmr5)
sumr3=real(smr3)
sumr5(i,j).real(smr5)

if (dabs(rmx)+dabs(rmy)+dabs(rmz) .eq. 0.d0 then
sum3.(4*sumk3ftc*dnh)+sumr3-(4*b*b*b)/(3*dsqrt(pi))

else
sum3= (4 *sumk3 /rc *dnh) +sumr3

endif
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sum5(i,j)=(4*sumk5(i,j)/rc*dnh)+sumr5(i,j)
endif

10 continue
20 continue

s3m(i1)=sum3
s5ij i1,1 =sum5 1,1
s5ij i1,2 =sum5 2,1
s5ij i1,3 =sum5 2,2
s5ij i1,4 =sum5 3,1
s5ij i1,5 =sum5 3,2
s5ij i1,6 =sum5 3,3
write(6,56)s3m(il)
write(8,55)(s5ij(il,j2),j2=1,6)

55 format(6f12.4)
56 format f12.4)
11 continue

close 6
close 8
stop
end

subroutine subk44(max,rc,dnh,dtn,i,j,b,pi,ci,rmx,rmy,rmz,dke,
& csmk3,csmk5l,csmk52)
implicit real*8(a-b,d-h,o-z)
implicit complex*16 (c)
dimension dkm(3), dke(3),gm(3)
csmk3=(0.0d0,0.0d0)
csmk51.(0.0d0,0.0d0)
csmk52.(0.0d0,0.0d0)

c loops in k space
do 60 m3=-max,max

do 50 m2=-max,max
do 40 m1=-max,max

gm 2 =2*pi* ml+m2*dtn-m3*dtn)/dnh
gm 3 =2*pi* -m1*dtn+m2*dtn+m3)/dnh

dkm 2 =gm 2 -dke 2
dkm 3 =gm 3 -dke 3
dakm= dkm(1) *2+dkm(2)**2+dkm(3)**2
akm=dsqrt(dakm)
sqakm=akeakm
x=akm/(2*b)
sqx=x*x
cexpgrm=cexp(-ci*cmplx(gm(1)*rmx+gm(2)*rmy+gm(3)*rmz))
if (sqx .lt. .9d0)then

call sube1(sqx,dei)
else

if (sqx .lt. 29.d0)then

call gromo(63)(0.0d0,1.0d0/sqx,ss)
dei=ss



157

else
dei=0.0d0
endif

endif
if (sqx .1t. 36.d0)then

sk52=(dkm(i)*dkm(j)*dexp(-sqx))/sqakm
else

sk52=0.0d0
endif

sk3=dei
sk5l =dei

csmk3=csmk3+cexpgrecmplx(sk3)
csmk51=csmk51+cexpgrm*cmplx(sk51)
csmk52=csmk52+cexpgrecmplx(sk52)

40 continue
50 continue
60 continue

return
end

subroutine subr44(max,rc,dtn,i,j,b,pi,rmx,rmy,rmz,csmr3,csmr5)
implicit real*8(a-h,o-z)
implicit complex*16(c)
dimension rla(10)
csmr3=(0.0d0, 0.0d0)
csmr5=(0.0d0, 0.0d0)

c loops in r space
do 60 13=-max,max

do 50 12.-max,max
do 40 11=-max,max

rla 1 =rmx-0.5d0* (11+13)*dtn-12*(1.d0-dtn))*rc
rla 2 =rmy-0.5d0* 11+12)
rla 3 =rmz-0.5d0* 12+13)
drl= rla(1) * *2 +rla 2)**2+rla(3)**2

rl=dsqrt(dr1)
x =b *rl

cexpker.cexp(ci*cmplx((dke(1)*rla(1)+dke(2)*rla(2)
& +dke(3)*rla(3))))
if (x .lt. 6.0d0)then

(631
,

sr32--(2*x*dexp -x*x))/dsqrt(pi)
sr53=(4*x*x*x* exp(-x*x))/(3*dsqrt(pi))

else
sr31=0.0d0
sr32.0.0d0
sr53=0.0d0

endif
if (rl .eq. 0.0d0) then

sr3=0.0d0
sr5=0.0d0

else
sr3=(sr31+sr32)/r1**3
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sr5=r1a(i)*rla(j)*(sr31+sr32+sr53)/r1**5
endif

csmr3=csmr3+cmplx(sr3)*cexpker
csmr5=csmr5+cmplx(sr5)*cexpker

40 continue
50 continue
60 continue

return
end
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Appendix H. PROGRAM 2DDIPSI

Program 2ddipsm
c Written by Lingzhou L.Canfield, as part of thesis.
c this is a program calculating 2D dipole sums for center rectangular
c structure, by using the BDI and the ADM
c this is a RAIN program

implicit real*8 (a-b,d-h,o-z)
implicit complex 16 (c)
dimension sum5(10,10), sumk5(2,2),sumr5(2,2),s5(2,2),

k s5ij(256,3), s3m(256), rm(256,3),dke(3)
do 557 mrc=10,20,2

rc=mrc/10.d0
c rc is the lattice ratio b/a

mb=175
b=mb/100.0d0
max=3
ci=cmplx(0.0d0,1.0d0)
pi.dacos(-1.0d0)

dke 2 =0.d0
dke 3 .4.1931d-3

open unit=6, file='2ds3rctl.out', status='new')
open unit=8, file= '2ds5rctl.out', status.'new2)
open unit=4, file='2dbrps.inp', status = 'old')

c BDM call 2dbrps; ADM call 2darps.
do 11 i1=1,m

c m = 16 for BDC m = 4 for ADM.
read(4,*)(rm(il,j1),j1=1,2)
rmx=rm(i1,1)
rmy.rm(i1,2)*rc
do 20 i=1,2

do 10 j=1,2
if (j .le. i)then

call subk(max,i,j,rc,b,pi,ci,rmx,rmy,dke,csmk3,csmk52)
& sumk3=4*ds rt(pi)*real(csmk3)

smk51=real csmk3)
smk52=real csmk52)
if (j .eq. i)then

sumk5(i,j)=4*dsqrt(pi)*(smk51-smk52)/3.0d0
else

sumk5(i,j)=-4*dsqrt(pi)*smk52/3.0d0
endif
call subr(max,i,j,rc,b,pi,ci,dke,rmx,rmy,csmr3,csmr5)
sumr3=real(csmr3)
sumr5(i,j)=real(csmr5)
if (dabs(rmx)+dabs(rmy) .eq. 0.d0)then

sum3=sumk3/rc+sumr3-(4*b*b*b)/(3*dsqrt(pi))
else

sum3=sumk3/rc+sumr3
endif
sum5(i,j)=sumk5(i,j)/rc+sumr5(i,j)
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endif
10 continue
20 continue

s3m(il) =sum3

s5ij i1,2 =sum5 2,1
s5ij i1,3 =sum5 2,2
write(6,56)s3m(i1)
write(8,55)(s5ij(il,j2),j2=1,3)

55 format 3f12.4)
56 format(f12.4)
11 continue
557 continue

close 6
close 8
stop
end

subroutine subk2d(max,i,j,rc,b,pi,ci,rmx,rmy,dke,csmk3,csmk52)
implicit real*8(a-b,d-h,o-z)
implicit complex*16 (c)
dimension dkm(3), dke(3),gm(3)
csmk3=(0.0d0,0.0d0)
csmk52=(0.0d0,0.0d0)

c loops in k space
do 50 m2=-max,max

do 40 m1 = -max, maxgml
gm(2)=(2*pi*m2)/rc

dkm 2 =gm(2)-dke(2)
dkm 3 =-dke(3)

akm=dsqrt sqakm)
xg=akm/(2 b)
sqx=xg*xg
cexpgrm=cexp(-ci*cmplx(gm(1)*rmx+gm(2)*rmy))
if (sqx .lt. 36.d0)then

sk31=b*dexp(-sqx)

sk32=dsqrt(pWakm*(1.d0-erf(xg)(64))/2.d0
else

sk31=0.0d0
sk32=0.d0

endif
sk3=sk31-sk32
sk52=dkm(i)*dkm(j)*sk32/sqakm
csmk3=csmk3+cexpgrecmplx(sk3)
csmk52=csmk52+cexpgrecmplx(sk52)

40 continue
50 continue

return
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end

subroutine subr2d(max,i,j,rc,b,pi,ci,dke,rmx,rmy,csmr3,csmr5)
implicit real*8(a-b,d-h,o-z)
implicit complex*16(c)
dimension rla(10),dke(3)
csmr3=(0.0d0,0.0d0)
csmr5=(0.0d0,0.0d0)

c loops in r space
do 50 12=-max,max

do 40 11=-max,max

rla(2 =rmy-rc*12
dr1=r a(1)**2+rla(2)**2
rl=dsqrt(dr1)
x =b *rl

if (x .lt. 6.0d0)then

1

sr31=1.0d0-erf x) (63)
sr32.(2*x*dexp -x*x))/dsqrt(pi)
sr53.(4*x*x*x* exp(-x*x))/(3*dsqrt(pi))

else
sr31=0.0d0
sr32=0.0d0
sr53=0.0d0

endif
if (rl .eq. 0.0d0) then

sr3=0.0d0
sr5=0.0d0

else
sr3=(sr31+sr32)/r1**3
sr5=r1a(i) *rla(j)*(sr31+sr32+sr53)/r1**5

endif
cexprla=cexp(ci*(dke(1)*rla(1)+dke(2)*rla(2)))
csmr3=csmr3+cmplx(sr3)*cexprla
csmr5=csmr5+cmplx(sr5)*cexprla

40 continue
50 continue

return
end
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Appendix I. PROM' SPBP

program spbp
c Written by Lingzhou L.Canfield, as part of thesis.
c this is a program searching the parameter of c, i.e bond
c polarizability which fit the experimental data for cubic tetrahedral
c structure.

implicit real*8 (a-h,o-z)
data c/0.045d0/,xi/0.001d0/
ftol =1.d -4

open( unit=9,file.'gapp2x.dt1', status = 'new')

call powell(63)(c,xi,1,1,ftol,iter,fret)
write(9,*)c,fret,iter
close (9)
stop
end

real*8 function func(c)
implicit real*8 (a-h,o-z)

dimension el(12), a(12,12), al(12,12),b(12),s3(16),eld3(3),
& s5ij(16,6),s5(16,3,3),d(4,3),si(16,3),p(3),ext(3),q(3),
& eljdj1(3),indx(12),ave(3)
data pijkl/-0.151d0/,epcer0/9.1d0/

c print 'input the data of which looking for c parameter'
dudx=0.001d0
delt=0.002d0
rc=1.d0-delt
dnh=1.d0-dudx/2.d0
drc=1.d0-dudx

c for crystal under shear, rc=1.d0, for crystal under a strain,
c dnh=1.d0,

pi=dacos(-1.d0)

Ext 2 =1.d0/dsqrt(2.d0)
Ext 3 =0.d0

c Ext(i) is the ith component of the external field

q

=0.d0
q 2 =0.d0

3 =1.d0
c q is the unit wave vector.

cl=c
c ci is the bond polarizability per a**3, a is the lattice constant

if(c1.1e.O.d0)then
func=1.d10*dexp(dabs(c1))
goto 1
else

if(cl.gt.l.d0)then
func=1.d10*dexp(dabs(c1))
goto 1
else

dnij=1.d0/(pijkl*dudx+(1.d0/epcer0))
open(unit=5, file='s3p002x.out', status='old')
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open(unit=6, file='s5p002x.out', status='old')
open(unit=7,file.'dijins.inp',statuWold')
do 10 i=1,16
read(5,*)s3(i)
read 6, )(s5ij(i j), =1,6)

s5 i,1,1 =s5ij i,1
s5 i,2,1 =s5ij i,2
s5 i,2,2 =s5ij i,3
s5 i,3,1 =s5ij i,4
s5 i,3,2 =s5ij i,5
s5 i,3,3 =s5ij i,6
s5 i,1,2 =s5 i,2,1
s5 i,1,3 =s5 i,3,1
s5 i,2,3 =s5 i,3,2

10 continue
do 11 j0=1,4

read(7,*) d(j0,i0),i0=1,3)

d j0,3 =d j0,3 /dsqrt 2.d0+drc**2)
d j0,2 =d j0,2 /dsqrt 2.d0+drc**2)

11 continue
close
close 6
close 7
do 15 m=1,13,4

do 14 il=1,3
si(m,i1)=3.d0*(s5(m,i1,1)*d(1,1)+s5(m,i1,2)*d(1,2)+

k s5(m,i1,3)*d(1,3))-s3(Wd(1,i1)
si(m+1,i1)=3.d0*(s5(m+1,i1,1)*d(2,1)+s5(m+1,i1,2)*d(2,2)+

k s5(m+1,i1,3)*d(2,3))-s3(m+1)*d(2,i1)
si(m+2,i1)=3.d0*(s5(m+21i1,1)*d*(3,1)+s5(m+2,i1,2)*d(3,2)+

si(m+3,i1)=3.d0* s5(m+3,i111)*d(4,1)+s5(m+3,i1,2)*d(4,2)+
k

k s5(m+3,i1,3)* (4,3))-s3(m+3)*d(4,i1)
14 continue
15 continue

m1=0
do 111 i=1,10,3

do 114 k=1,3

al i+1,k)=cl*rd(1,krsi(l+m1,2)
al i+2,k)=cl*d(1,krsi(l+m1,3)

114 continue
do 115 k=4,6

i2=k-3

al i+1,k)=cl*d(2,i2)*si(2+ml,2)
al i+2,k)=cl*d(2,i2)*si(2+m1,3)

115 continue
do 116 k=7,9

i3=k-6
al(i,k)=cl*d(3,i3)*si(3+m1,1)
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al(i+1,k)=cl*d(3,i3)*si(3+m1,2)
al(i+2,k)=cl*d(3,i3)*si(3+m1,3)

116 continue
do 117 k=10,12

i4=k-9

al i+1,k)=cl*d(4,i4)*si(4+ml,2)
al i+2,k)=cl*d(4,i4)*si(4+m1,3)

117 continue
ml=m1+4

111 continue
do 100 i=1,12

do 101 j=1,12
if(j .eq. i)then
i(i,i)=1.d0-A1(i,i)
else
A(i,j)=- A1(i,j)
endif

101 continue
100 continue

do 200 j1=1,10,3
b(j1)=Ext(1)

200 continue
do 201 j2=2,11,3
b(j2)=Ext(2)

201 continue
do 202 j3=3,12,3
b(j3)=Ext(3)

202 continue

call ludcmp(63)(a,12,12,indx,de)

call lubksb(, 63 ) (a,12,12,indx,b)
do 300 j=1,10,3

el j+1)=b0+1)
el j+2)=b0+2)

300 continue
eldl =el 1 *d 1,1 +el 2 *d 1,2 +el 3 *d 1,3
eld2=e1 4 *d 2,1 +el 5 *d 2,2 +el 6 *d 2,3
eld3=e1 7 *d 3,1 +el 8 *d 3,2 +el 9 *d 3,3
eld4=e1 10)* (4,1)+e1(11) d(4,2)+e1(12)*d(4,3)
do 310 i=1,3
eljdj1(i)=eldl*d(1,i)+eld2*d(2,i)+eld3*d(3,i)+eld4*d(4,i)
p(i)=4.d0*cl*eljdj1(i)/rc*dnh

310 continue
qp=q(1)* eljdj1(1)+q(2)*eljdj1(2)+q(3)*eljdj1(3)
do 311 i=1,3
ave(i)=Ext(i)-16.d0*pi*cl*q(i)*qp

311 continue

dkai22=p 2 /ave 2
dkail2=p 1 /ave 2
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dkai21=p(2)/ave(1)

f= 1.d0+4.d0*pi*dkai11)e22
fe44= 1.d0+4.d0*pi*(dkail2+dkai21)/2)

endif
endif

1 continue
p11= 1.d0/fell 1.d0/epcerO /dudx
p12= 1.d0/fe22 1.d0/epcer0 /dudx
p44= 1.d0/fe44 1.d0/epcer0 /dudx

1
ifunc= feij-dnij * 2

c print 'input the ij in 'feij' each time when you calculate'.
return
end
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Appendix J. PROGRAM ADM

program ADILF
c Written by Lingzhou L.Canfield, as part of thesis.
c this is a program to evaluate the local field effect on the
c susceptibility in cubic tetrahedral structure, for ADM in cubic
c tetrahedral structure. However, for 2D ADM problem, just change
c this 3D to 2D.
c this is a MAIN program

implicit real*8(a-h,o-z)
dimension el(6), a(6,6), a1(6,6),b(6),s3(4),ave(3),q(3),

& s5ij( 4, 6), s5( 4, 3, 3), d( 3, 3),si(4,3,3),p(3),idex(6),ext(3)
pi=dacos(-1.d0)

Ext 2 =1.d0/dsqrt(2.d0)
Ext 3 =0.d0

q 3 =1.d0
q

=0.d0
=0.d02

c q(i) is the unit wave vector
dudx=0.0d0
rc=1.d0-dudx
open unit=5, file= 'a3dmz.out', statuWold')
open unit=6, file= 'a5dmz.out', statuWold')
open unit=7, file='dit.inp', status = 'old')
open unit=9,file.'aOqzexy.dat', status = 'new')
do 10 i =1,4

read(5,*)s3(1)
read (6,*)(s51j( .),j=1,6)
s5 i,1,1 =s5ij 1,1
s5 i,2,1 =s5ij i,2
s5 i,2,2 =s5ij i,3
s5 i,3,1 =s5ij i,4
s5 i,3,2 =s5ij i,5
s5 i,3,3 =s5ij i,6
s5 i,1,2 =s5 i,2,1
s5 i,1,3 =s5 i,3,1
s5 i,2,3 =s5 i,3,2

10 continue
do 11 i =1,3

read (7,*)(d(i,j),j=1,3)
11 continue

close 6
close 7
do 15 m=1,4

do 14 i =1,3
do 13 j=1,3

si(m,i,j)=3*s5(m,i,j)-d(i,j)*s3(m)
13 continue
14 continue
15 continue
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do 400 mc1=0,25,5
cl.mc1/1.d2

c ci is the atomic polarizability per a**3, a is the lattice const.
m1=0

do 111 i=1,4,3
do 114 k=1,3

al i+1,k)=cl*si(1 +m1,2,k)
al i+2,k)=cl*si(l+m1,3,k)

114 continue
do 115 k=4,6

i2=k-3

al i+1,k)=cl*si(2+m1,2,i2)
al i+2,k)=cl*si(2+m1,3,i2)

115 continue
ml=m1+2

111 continue
do 100 i=1,6

do 101 j=1,6
if (j .eq. i)then
A(i,i)=1.d0-A1(i,i)
else
A(i,j)=-Al(i,j)
endif

101 continue
100 continue

do 200 j1=1,4,3
b(j1).Ext(1)

200 continue
do 201 j2=2,5,3
b(j2)=Ext(2)

201 continue
do 202 j3=3,6,3
b(j3)=Ext(3)

202 continue

call ludcmp(63)(a,6,6,indx,det)

call lubksb(63)(a,6,6,indx,b)
do 300 j=1,4,3

elrb(j+1)=b0+1)

j)

el
el +2) b( +2)

300 continue

p 2 =4.d0*cl* el 2 +el 5 /rc
p 3 =4.d0*cl* el 3 +el 6 /rc

qpa.q(1)*p(1)+q(2) p(2)+q(3)*p(3)
do 310 i=1,3
ave(i)=Ext(i)-4.d0*pi*q(i)*qpa

310 continue
if(ext(3) .eq. 0.d0)then
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dkail2=p 1 /ave 2
dkai2l=p 2 /ave 1
dkai22=p 2 /ave 2
else

dkail3=p 1 /ave 3
dkai23=p 2 /ave 3
endif
write(9,62)cl,dkaill,dkai22,dkai12,dkai21

62 format(7f8.4)
400 continue

close(9)
stop
end
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Appendix K. PROGRAN BDILF2D

program BDN1f2D
c Written by Lingzhou L.Canfield, as part of thesis.
c this is a program to evaluate the local field effect on the
c susceptibility in 2D center rectangular structure, for the BDI.
c However, if change the external field to be 3D, and open the files
c of the 3D's dipole sums, then it can be used for calculating 3D's
c problem.
c this is a PAIN program

implicit real*8(a-h,o-z)
dimension el( 8), a( 8, 8),al(8,8),b(8),s3(96),eld3(3),

k s5ij(96,6),s5(96,3,3),d(24,2),si(96,3),p(3),ext(3),
k eljdj1(3),indx(12),ave(3),e1d2(3),q(3)

open unit =5, file='2ds3rctl.out , status= old )
open unit=6, file= '2ds5rctl.out', status.'old')
open unit=7,file='2ddins.inp',status='old')
open unit=9, filWb2drct.dat', status = 'new')
delt = 0.d0
rc=1.0d0-delt
pi=dacos(-1.d0)
Ext(1)=1.d0
Ext(2)=0.d0

q

=0.d0
q 2 =0.d0

3 =1.d0
c q is the unit wave vector, input the q when you do the calculation

do 10 i=1,16
read(5,*)s3(i)
s3(i)=s3(i)
read (6,*)(s5ij( ),j=1,3)
s5 i,1,1 =s5ij i,1
s5 i,2,1 =s5ij i,2
s5 i,2,2 =s5ij i,3
s5 i,1,2 =s5(i,2,1

10 continue
do 11 j0=1,4

d(j0,1)=d j0,1)/dsqrt(1.d0+rc*rc)
d0,i0),i0=1,2)

d00,2).d j0,2)*rc/dsqrt(l.d0+rc*rc)
11 continue

close 6
close 7
do 15 m=1,13,4

do 14 il=1,2
si(m,i1)=3.d0*(s5(m,i1,1)*d(1,1)+s5(m,i1,2)*d(1,2))

k -s3(m)*d(1,i1)
si(m+1,i1)=3.d0*(s5(m+1,i1,1)*d(2,1)+s5(m+1,i1,2)*d(2,2))

k -s3(m+1)*d(2,i1)
si(m+2,i1)=3.d0*(s5(m+2,i1,1)*d(3,1)+s5(m+2,i1,2)*d(3,2))

k -s3(m+2)*d(3,i1)
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si(m+3,i1)=3.d0*(s5(m+3,i1,1)*d(4,1)+s5(m+3,i1,2)*d(4,2))
k -s3(m+3)*d(4,i1)

14 continue
15 continue

do 400 mc=0,1000,50
c1=mc/10.d0
m1=0
do 111 i=1,7,2

do 114 k=1,2
al(i,k)=cl*d(1,k) *si(l+m1,1)
al(i+1,k)=c1*d(1,k) *si(1 +m1,2)

114 continue
do 115 k=3,4

i2=k-2
al(i,k)=c1*d(2,i2)*si(2+m1,1)
a1(i+1,k)=c1*d(2,i2)*si(2+m1,2)

115 continue
do 116 k=5,6

i3=k-4
al(i,k)=c1*d(3,i3)*si(3+m1,1)
al(i+1,k)=c1*d(3,i3)*si(3+m1,2)

116 continue
do 117 k=7,8

i4=k-6
al(i,k)=cl*d(4,i4)*si(4+m1,1)
a1(i+1,k)=cl*d(4,i4)*si(4+m1,2)

117 continue
ml=m1+4

111 continue
do 100 i=1,8

do 101 j=1,8
if(j .eq. i)then

else
A(i,j)=- A1(i,j)
endif

101 continue
100 continue

do 200 j1=1,7,2
b(j1)=Ext(1)

200 continue
do 201 j2=2,8,2
b(j2)=Ext(2)

201 continue

call ludcmp(63)(a,8,8,indx,de)

call lubksb(63)(a,8,8,indx,b)
do 300 j=1,7,2
el j) =b(j)

el j +1)= b(j +1)

300 continue
eldl= el(1) *d(1,1) +el(2) *d(1,2)
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e1d3=e1 5 *d 3,1 +el 6 *d 3,2
eld4=e1 7 *d 4,1 +el 8 *d 4,2
do 310 i=1,2
eljdj1(i)=e1d1*d(1,0+eld2*d(2,i)+e1d3*d(3,i)+e1d4*d(4,i)
p(i)=c1 *eljdj1(i)/rc

310 continue
qp=q(1)*p(1)+q(2)*p(2)
do 311 i=1,2
Ave(i) = Ext(i)-2*2*pi*q(i)*qp

c 2 comes from there are two atoms in face center surface structure

311 continue
if (p(1) .eq.0.d0 .AND. p(2) .eq. 0.d0)then
dkail1=0.d0
dkai22=0.d0
else
if (ext(2) .eq. 0.d0)then
dkai11=p(1)/ave(1)
dkai21=p(2)/ave(1)
else
dkai22=p(2)/ave(2)
dkail2=p(1)/ave(2)
endif
endif
write(9,62) cl,dkaill,dkai2l

62 format(3f14.4)
400 continue

close (9)
stop
end.



172

1.d0
1.d0

-1.d0
-1.d0

1.d0
-1. d0

1.d0
-1. d0

Appendix L.

1.d0
-1.d0
-1. d0

1.d0

File DIJINS.INP

Appendix N. File DIT.INP

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

Appendix N. File 2DDINS.INP

-1. d0 -1. d0

-1. d0 1.d0
1.d0 -1.d0
1.d0 1.d0

Appendix 0. Dipole Sums For Diamond and Zinc blende crystals

Sij(4,I,m) . 355i(401,m)-bijS3(4,11,m).

ADM: 2 fcc sublattice, m=1,2. For 4 along z direction:

S11(4, 1,1)= S22(4,1,0=
16.7550 = 4 li, S33(4,1,1)=-33.5103=-4

S11011,2)= S22(4, 1,2). 16.7550 = 4 li, S33(4,1,2).-33.5103.-4q,

Siii(4,1,m).0.0. 4 comes from that one fcc sublattice contains 4

atoms.

BM: 4 fcc sublattice, m=1..4. For 4 along z direction:

S11(4,14)= S22(4,1,0= 16.7550 = 4 4, S33(4,1,1)=-33.5103.-4q,

s11(4, 1,2). -17.9158, S22(4,1,2). 34.0907, S33(4,1,2)=-16.1749,

S23(4,1,2)=57.8424, S11(4,1,3). 34.0907, S22(4,1,3). -17.9158,

S33(4,1,3)=-16.1749, S13(4,1,3).57.8424, S11(4,1,4). 34.0907,

S22(4, 1,4). 34.0907, S33(4,1,4)=-68.1811, S12(4,1,4)=57.8424.

All other Siii(4,1,m).0.0. Notice that EmS11(4, i'm)=EmS22(44'11)=

47
67.0206=16-y

,

there are 16 bond dipoles per unit cell.



Appendix P. Retardation

Ve give a brief summary of G. D. Kahan
(15),

s conclusions here.

By using

and

g =

= g + 4r r,

under the Coulomb Gauge V.1 = 0, the Maxwell equations can be

rewritten as:

V
2

p. 4r V.r,

2 -.4 1 021
=

47
-

c at
8 (TI 1 V 9) ,

(P- 3)

(P- 4)

with the assumption that no free charges or currents are present.

The right hand side of (P-4) contains the factor

r-
r

D= r '
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(P-5)

which is the rotational part of the polarization vector. One can

prove it is rotational by simply proving that

0 = V.rr = V.V
1

/729

by using (P-3). The irrotational part of polarization vector is



(1/40V p. The electric field also has rotational and irrotational

parts. The rotational part is

r
r

1 8
c TT

and the irrotational part is -V p. In the point dipole model, the

polarization 1 is

1
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(P-6)

where V
c
is the volume of the unit cell and the sum is over all

dipoles in the unit cell. The dipole moment pm is proportional to

the local electric field at that atomic site

m
= a g(r

m
)

'

(P- 7)

where a is the atomic polarizability. The local electric field is

given

g(r
m

) =
ext

+
im'

3(i'2 2 5
m, m, m, em,

xem,5
(P-8)

-4 -4 -4 -4 . .

where, xtm. r-re -rm, re is the lattice vector and rm is the position

of the m
th

base, and text is the applied electric field.

In an experiment, text is applied by sending a light beam at the

sample. The light beam strikes the surface of the sample and excites

the normal modes of the solid which subsequently propagate through
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the crystal. Since an oscillating dipole creates both a short range

dipole field and a long range radiation field, the latter of which is

g . gr is not the applied field, but is instead the normal mode

field obtained by the self consistent solution of the interacting

dipole problem. So the local field can be equivalently described by

Eq.(P-2). Suppose there are N identical atoms per unit cell. The

polarization P can then be written as

Na(
1 V p).
c -VT

Substituting (P-9) into (P-4) we have

(P-9)

i72 1 a A 4T arNal 1 0 1 _v91 ) li
Tf-L-c c TT '

v

4rNa 822 Na 1

c 4T) V 4- V. (P-10)
c2V

c
8t2

Since the potential 9 and 1 have an eiwt functional form so (P-9) can

be written as

(V2 2 r id

2
4rNa / 4r( Na 1

C TT) v 9'
(P-11)

However, the rotational part of the electric field can be written as

Ear ill) 1 allowing (P-11) to be rewritten as



(v2 + _14._) g _ w
2
4rNa r w2 Na

r --2i--- r + 47( + TT) v

c
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(P- 12)

ir.If we write the spatial dependence of the g
r

like e 7, where k =

ludic and n is the refractive index, then (P-12) becomes

1

r
n2 1 = Na (gr V V) 41. V ç--47 -I

. P 4T V p. (P-13)

Notice the irrotational part of electric field contributes to the

rotational part of the polarization since Vri NaEr/Vc! This means

that when the instantaneous dipole sum is to be taken the retardation

has been included. If we put the retardation in the dipole

interaction potential we would be putting the retardation in the

calculations twice and would be over counting the retardation.

This conclusion is gauge independent, because although the

potential depends on the choice of gauge, the physically observable

quantities g and g are independent of the choice of gauge.




