

AN ABSTRACT OF THE THESIS OF

William Jernigan for the degree of Master of Science in Computer Science presented

on October 26, 2015.

Title: Generalizing the Idea Garden: Principles and Contexts

Abstract approved:

__

Margaret M. Burnett

In previous work, the Idea Garden was created to help those relatively new to pro-

gramming overcome their barriers in CoScripter. The goal of this thesis was to gener-

alize the Idea Garden’s success to other users and environments. We present a set of

principles on how to help EUPs like this learn just a little when they need to over-

come a barrier. We then instantiate the principles in a prototype and empirically in-

vestigate the principles in two studies: a formative think-aloud study and a pair of

summer camps attended by 42 teens. Among the surprising results were the comple-

mentary roles of implicitly actionable hints versus explicitly actionable hints, and the

importance of both context-free and context-sensitive availability. Under these prin-

ciples, the camp participants required significantly less in-person help than in a previ-

ous camp to learn the same amount of material in the same amount of time. Further-

more, a third study including another pair of summer camps with 48 teens revealed

that problem solving instruction coupled with Idea Garden helped the experimental

condition advance to debugging more often and depend on helpers less than the con-

trol group.

©Copyright by William Jernigan

October 26, 2015

All Rights Reserved

Generalizing the Idea Garden: Principles and Contexts

by

William Jernigan

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented October 26, 2015

Commencement June 2016

Master of Science thesis of William Jernigan presented on October 26, 2015

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

William Jernigan, Author

ACKNOWLEDGEMENTS

I want to thank Margaret Burnett for all the guidance she has given me. She has

gathered this awesome group of researchers at Oregon State and built her network with

great researchers abroad, helping her students succeed.

I thank Jill Cao for all her work on the Idea Garden. Her work gave me the oppor-

tunity to produce this thesis and inspired much of the work that we did.

I would like to acknowledge Irwin Kwan, Faezeh Bahmani, Michael Lee, Andrew

Ko, Sandeep Kuttal, Anicia Peters, and Dastyni Loksa for setting an example, working

hard on our research, and guiding me toward success.

Amber Horvath, Jilian LaFerte, Taylor Cuilty, Shannon Ernst, Alannah Oleson,

and Chris Mendez did so much of the work that makes our research group look good,

and they kept pushing me to do my best. Thanks to you.

I also thank Sheridan Long, Renuka Bhatt, Leah Hanen, Rory Moeller, and Claire

Richards for giving everyone on the team new perspectives and motivation to do good

work while helping propel our efforts.

I thank Andrew Faulring for his help with the technical aspects of Study #3.

Finally, I thank my wife Phaedra for being there for me every day and pushing me

to be my very best.

TABLE OF CONTENTS

Page

Introduction .. 1

My role in this research ... 2

Background and Related Work .. 3

The Idea Garden Principles .. 6

The Principles Concretely: Idea Garden Prototype in Gidget 9

The Idea Garden Prototype for Gidget .. 9

The prototype’s support for the 7 principles ... 10

Antipattern support for the principles .. 11

Generalized Idea Garden Architecture ... 13

Example ... 15

Porting Idea Garden to new environments .. 16

Study #1: Principled Formative Study ... 18

Study #2 (Summative): The Principles go to Camp .. 22

Study #2 Results .. 24

Successes ... 24

Teams’ Behaviors with P2-Relevance and P6-Availability 25

Teams’ Behaviors with P3-Actionable ... 27

Teams’ Behaviors with P5-Information Processing .. 28

How Much Did They Learn? ... 30

Study #3 Method .. 33

TABLE OF CONTENTS (CONTINUED)

Page

Participants .. 34

The Camps .. 35

The Instruction .. 35

The Project .. 37

Data Collection .. 39

Study #3 Results .. 41

Summary of treatment results beyond the scope of this thesis 41

Differences between treatments in barriers and help requested 41

Camper experiences .. 43

Conclusion ... 45

Bibliography ... 48

Appendices .. 51

Appendix A: Idea Garden Hints in Gidget .. 52

Appendix B: Idea Garden Hints in Cloud9 ... 63

LIST OF FIGURES

Figure Page

1. Idea Garden icons in Gidget .. 9

2. Idea Garden hints in Gidget ... 10

3. Idea Garden Architecture ... 13

4. Team Mouse uses Idea Garden .. 27

5. Team Tiger’s “River Dam” created level .. 30

6. Problem solving paper handout ... 33

7. Idea Garden in Cloud9 ... 34

8. Camper E27’s final project website ... 37

LIST OF TABLES

Table Page

1. Prior evidence of Idea Garden Principles .. 8

2. Pairs of abstract events and abstract actions .. 15

3. Study #1 and #2 Barrier codes and outcomes .. 19

4. Study #1 participant progress with P2 and P6 ... 20

5. Study #2 barrier-by-barrier and principle-by-principle progress 24

6. Study #2 barrier progress with/without in-person help .. 25

7. Study #2 team responses to Idea Garden icon ... 26

8. Percentage of teams using programming concepts in level design 31

9. Percentage of barriers with/without in-person help Study #2 vs. past study 32

10. Study #3 camp schedule ... 33

11. Study #3 tasks .. 36

12. Percentage of barriers by type for each condition ... 40

13. New evidence for Idea Garden principles .. 44

LIST OF APPENDIX FIGURES

Figure Page

Appendix A: Idea Garden Hints in Gidget .. 52

Conditions ... 52

Events (collapsed) ... 53

Events (expanded) ... 54

Functions (collapsed) .. 55

Functions (expanded) .. 56

Conditional Statements (collapsed) ... 57

Conditional Statements (expanded) ... 58

Iteration (collapsed) ... 59

Iteration (expanded) .. 60

Lists ... 61

Objects (collapsed) .. 61

Objects (expanded) .. 62

Appendix B: Idea Garden Hints in Cloud9 .. 63

The Idea Garden Panel .. 63

Reinterpret Problem Prompt: Divide and Conquer ... 63

Search for Solutions: Working Backwards (collapsed) .. 64

Search for Solutions: Working Backwards (expanded) .. 64

Implementation of Solution: Conditional Statements (collapsed) 65

Implementation of Solution: Conditional Statements (expanded) 66

Implementation of Solution: Events (collapsed) ... 65

Implementation of Solution: Events (expanded) ... 68

Implementation of Solution: Functions (collapsed) .. 69

Implementation of Solution: Functions (expanded) .. 70

Implementation of Solution: Iteration with For (collapsed) 71

Implementation of Solution: Iteration with For (expanded) 71

LIST OF APPENDIX FIGURES (CONTINUED)

Figure Page

Implementation of Solution: Iteration with For-In (collapsed) 72

Implementation of Solution: Iteration with For-In (expanded) 72

Implementation of Solution: Iteration with Map (collapsed) 73

Implementation of Solution: Iteration with Map (expanded) 74

Implementation of Solution: Iteration with While (collapsed) 75

Implementation of Solution: Iteration with While (expanded) 76

Implementation of Solution: Lists (collapsed) .. 77

Implementation of Solution: Lists (expanded) .. 77

Implementation of Solution: Objects (collapsed) .. 78

Implementation of Solution: Objects (expanded) ... 78

Implementation of Solution: Variables ... 79

Evaluation of Implementation: Can it work better with Functions? 79

Evaluation of Implementation: Can it work better with Iteration? (Collapsed) 80

Evaluation of Implementation: Can it work better with Iteration? (Expanded) 80

1

INTRODUCTION

End-user programmers (EUPs) are defined in the literature as people who do some

form of programming with the goal of achieving something other than programming

itself [Nardi 1993]. In this thesis, we consider one portion of the spectrum of EUPs—

those who are definitely not interested in learning programming per se, but are willing

to do just enough programming to get their tasks done.

We can describe EUPs like this as being “indifferent” to learning programming

(abbreviated “indifferent EUPs”). Indifferent EUPs are described well by Minimalist

Learning Theory’s [Carroll and Rosson 1987] notion of “active users”. That theory

describes users who are just interested in performing some kind of task—such as get-

ting a budget correct or scripting a tedious web-based task so that they do not have to

do it manually—not in learning about the tool and its features. According to the theo-

ry, active users like our indifferent EUPs are willing to do a bit of learning only if they

expect it to help them get their task done.

We would like to help indifferent EUPs in the following situation: they have start-

ed a task that involves programming, and then have gotten “stuck” partway through

the process. As we detail in the next section, indifferent EUPs in these situations have

been largely overlooked in the literature.

We have been working toward filling this gap through an approach called the Idea

Garden [Cao et al. 2011, Cao et al. 2012, Cao et al. 2013, Cao et al. 2014]. Our previ-

ous work has described the Idea Garden and its roots in Minimalist Learning Theory.

In essence, the Idea Garden exists to entice indifferent EUPs who are stuck, to learn

just enough to help themselves become unstuck. Empirical evaluations of the Idea

Garden to date have been encouraging.

This thesis presents three research contributions: (1) a generalization of the Idea

Garden through a set of principles analyzed in Study #1 and #2, (2) a generalization of

the Idea Garden in an architecture to help port the system to new environments, and

(3) the use of those principles and the architecture in a new context, analyzed in Study

#3.

Our first contribution is answering this: how can the Idea Garden be generalized

2

into its essential characteristics? To answer this question, we present seven principles

upon which (we hypothesize) the Idea Garden’s effectiveness rests, and instantiate

them in a new Idea Garden prototype that sits on top of the Gidget EUP environment

[Lee et al. 2014]. We then empirically investigate in studies #1 and #2, principle by

principle, the following research question: How do these principles influence the ways

indifferent EUPs can solve the programming problems that get them “stuck”?

Second, we present an architecture of the Idea Garden which helps implementors

port the system to new environments. Third, we investigate the Idea Garden in Study

#3 as part of a larger intervention to help new programmers when programming. We

pose this research question: Does the Idea Garden help EUPs in new settings with dif-

ferent programming problems that get them “stuck”?

My role in this research

Many of these contributions involved collaboration with other researchers. My col-

laborators are mentioned in the acknowledgements, and this research could not have

been completed without them. To clarify my own contributions to this work, they in-

clude the following:

 Lead developer for the last few months implementing the Idea Garden in

Gidget,

 Lead developer for implementing Idea Garden in Cloud9

 Refined the Idea Garden architecture from [Cao 2013] and implemented it.

 First author for [Jernigan et al. 2015]

 Almost all of the qualitative thematic coding in Study #2 and #3 (with a

partner)

 Lead analyst of the Gidget-based empirical work, including poring over da-

ta, visualizing data, writing scripts to transform data, interpreting data to

write results, and running statistical tests.

 Lead researcher in determining the Idea Garden principles

 Helped to conduct Study #2 and #3

3

BACKGROUND AND RELATED WORK

As we have explained, the most relevant foundational basis for the Idea Garden’s

target population is Minimalist Learning Theory (MLT) [Carroll and Rosson 1987,

Carroll 1990]. MLT was designed to provide guidance on how to teach users who

(mostly) don’t want to be taught. More specifically, MLT’s users are motivated simply

by getting the task at hand accomplished. Thus, they are often unwilling to invest “ex-

tra” time to take tutorials, read documentation, or use other training materials—even if

such an investment would save them time in the long term. This phenomenon is

termed the “paradox of the active user” [Carroll and Rosson 1987]. MLT aims to help

those who face this paradox to learn, despite their indifference to learning.

The Idea Garden also draws from foundations on curiosity and constructivist learn-

ing. To deliver content to indifferent EUPs, the Idea Garden uses Surprise-Explain-

Reward (a strategy studied in [Robertson et al. 2004]) to surprise EUPs as a curiosity-

based enticement. To encourage learning while acting, the Idea Garden draws from

constructivist theories surveyed in [Bransford et al. 1999] to keep users active, make

explanations not overly directive, and motivate users to draw upon their prior

knowledge. Moreover, the Idea Garden encourages users to construct meaning from its

explanations by arranging, modifying, rearranging, and repurposing concrete materials

in the way bricoleurs do [Turkle and Papert 1990].

Our work is also related to research that aims to help naive users learn program-

ming, often through the use of new kinds of educational approaches, or special-

purpose programming languages and tools [Dorn 2011, Guzdial 2008, Hundhausen et

al. 2009, Kelleher and Pausch 2006, Tillmann et al. 2013]. Stencils [Kelleher and

Pausch 2005] presents translucent guides with tutorials to teach programming skills.

The stencils overlaid upon the Alice interface show users the only possible interactions

and explain them with informative sticky notes, but the Idea Garden aims to help users

figure out the interactions themselves. Also, these approaches target users who aspire

to learn some degree of programming, whereas the Idea Garden targets those whose

motivations are to do only enough programming to complete some other task.

In EUP systems targeting novices who do not aspire to become professional pro-

4

grammers, a common thread has been to simplify programming via language design.

For example, the Natural Programming project promotes designing programming lan-

guages to match users’ natural vocabulary and expressions of computation [Myers et

al. 2004]. One language in that project, the HANDS system for children, depicts com-

putation as a friendly dog who manipulates a set of cards based on graphical rules,

which are expressed in a language designed to match how children described games

[Pane and Myers 2006]. Other programming environments such as Alice [Kelleher and

Pausch 2006] incorporate visual languages and direct or tangible manipulation to make

programming easier for EUPs. The Idea Garden approach is not about language de-

sign, but rather about providing conceptual and problem-solving assistance in whatev-

er language/environment is hosting it.

A related approach is to reduce or eliminate the need for explicit program-

ming. For example, programming by demonstration allows EUPs to demonstrate an

activity from which the system automatically generates a program (e.g., [Cypher et al.

2010]). Some such environments (e.g., CoScripter/Koala [Little et al. 2007]) also pro-

vide a way for users to access the generated code. Another family of approaches seeks

to delegate some programming responsibilities to other people. For example, meta-

design aims at design and implementation of systems by professional programmers

such that the systems are amenable to redesign through configuration and customiza-

tion by EUPs [Andersen and Mørch 2009, Costabile et al. 2009].

Another way to reduce the amount of programming needed is by connecting the

user with examples they can reuse as is. For example, FireCrystal [Oney and Myers

2009] is a Firefox plug-in that allows a programmer to select user interface elements

of a webpage and view the corresponding source code. FireCrystal then eases creation

of another web page by providing features to extract and reuse this code, especially

code for user interface interactions. Another system, BluePrint [Brandt et al. 2010], is

an Adobe Flex Builder plug-in that semi-automatically gleans task-specific example

programs and related information from the web, then provides these for use by EUPs.

Other systems are designed to simplify the task of choosing which existing programs

to run or reuse (e.g., [Gross et al. 2010]) by emulating heuristics that users themselves

5

seem to use when looking for reusable code.

Although the above approaches help EUPs by simplifying, eliminating, or delegat-

ing the challenges of programming, none are aimed at nurturing EUPs’ problem-

solving ideas. In essence, these approaches help EUPs by lowering barriers, whereas

the Idea Garden aims to help EUPs figure out for themselves how to surmount those

barriers.

However, there is a little work aimed at helping professional interface designers

generate and develop ideas for their interface designs. For example, Bricolage [Kumar

et al. 2011] allows designers to retarget design ideas by transferring designs and con-

tent between webpages, thus enabling multiple design ideas to be tested quickly. An-

other example is a visual language that helps web designers develop their design ideas

by suggesting potentially appropriate design patterns along with possible benefits and

limitations of the suggested patterns [Diaz et al. 2010]. That line of work partially in-

spired our research on helping EUPs generate new ideas in solving their programming

problems.

6

THE IDEA GARDEN PRINCIPLES

Using MLT as a foundation, an earlier version of the Idea Garden was defined in

[Cao et al. 2014] as:

(Host) A subsystem that extends a “host” end-user programming environment to pro-

vide hints that...

(Theory) follow the principles from MLT [Carroll 1990] and...

(Content/Presentation) non-authoritatively give intentionally imperfect guidance about

problem-solving strategies, programming concepts, and design patterns, via negoti-

ated interruptions.

(Implementation) In addition, the hints are presented via host-independent templates

that are informed by host-dependent information about the user’s task and progress.

This chapter presents seven principles to ground the Content/Presentation aspect

above:

P1-Content. Hints must contain one or more of the following:

P1.Concepts = explains a programming concept such as iteration or functions. Can

include programming constructs as needed to illustrate the concept.

P1.Minipatterns = design minipatterns show a usage of the concept that the user

must adapt to their problem (minipattern should not solve the user’s problem).

P1.Strategies = a problem-solving strategy such as working through the problem

backward.

P2-Relevance. For Idea Garden hints that are context-sensitive, the aim is that the user

perceives them to be relevant. Thus, such hints use one or more of these types of

relevance:

P2.MyCode = the hint includes some of the user’s code.

P2.MyState = the hint depends on the user’s code, such as by explaining a concept

present in the user’s code.

P2.MyGoal= the hint depends on the requirements the user is working on, such as

referring to associated test cases or pre/postconditions.

P3-Actionable. Because the Idea Garden targets MLT’s “active users”, hints must give

them something to do. Thus, Idea Garden hints must imply an action that the user

7

can take to overcome a barrier or get ideas on how to meet their goals:

P3.ExplictlyActionable = the hint prescribes actions that can be physically done,

such as indenting something.

P3.ImplicitlyActionable = the hint prescribes actions that are “in the head”, such as

“compare” or “recall.”

P4-Personality. The personality and tone of Idea Garden entries must try to encourage

constructive thinking. Toward this end, hints are expressed non-authoritatively [Lee

and Ko 2011], i.e., as a tentative suggestion rather than as an answer or command.

For example, phrases like “try something like this” are intended to show that, while

knowledgeable, the Idea Garden is not sure how to solve the user’s exact problem.

P5-InformationProcessing. Because research has shown that (statistically) females

tend to gather information comprehensively when problem-solving, whereas males

gather information selectively [Meyers-Levy 1989], the hints must support both

styles. For example, when a hint is not small, a condensed version must be offered

with expandable parts.

P6-Availability. Hints must be available in these ways:

P6.ContextSensitive = available in the context where the system deems the hint rel-

evant.

P6.ContextFree = available in context-free form through an always-available widg-

et (e.g., pull-down menu).

P7-InterruptionStyle. Because research has shown the superiority of the negotiated

style of interruptions in debugging situations [Robertson et al. 2004], all hints must

follow this style. In negotiated style, nothing ever pops up. Instead, a small indica-

tor “decorates” the environment (like the incoming mail count on an email icon) to

let the user know where the Idea Garden has relevant information. Users can then

request to see the new information by hovering or clicking on the indicator.

As Table 1 shows, P4-Personality and P7-InterruptionStyle have already been iso-

lated for summative investigation in other end-user programming research [Lee and

Ko 2011, Robertson et al. 2004]. Thus, in this paper, we present our investigation of

P1, P2, P3, P5, and P6.

8

Table 1: Citations show empirical evidence of the principles. An updated version with

the contributions of this thesis appears near the end.

+: Principle was helpful, -: Principle was problematic.

Principle Formative Evidence Summative Evidence

P1-Content

P2-Relevance -[Cao et al. 2012]

P3-Actionable

P4-Personality +[Lee and Ko 2011]

P5-InformationProcessing +[Meyers-Levy 1989]

P6-Availability

P7-InterruptionStyle +[Robertson et al. 2004]

9

THE PRINCIPLES CONCRETELY: IDEA GARDEN PROTOTYPE IN GIDGET

The Idea Garden Prototype for Gidget

The Idea Garden supplements a host EUP environment, and for this version of the

Idea Garden, the host is Gidget, an online puzzle game that centers on debugging

(Figure 1). Gidget has been used successfully by middle- and high-school teens [Lee et

al. 2014] and by adults between the ages of 18 and 66 years old [Lee and Ko 2011].

Gidget has two target audiences: novices who wish to learn programming, and indif-

ferent EUPs who have no interest in learning programming, but want to play Gidget’s

puzzle games. The latter target audience made it a suitable host for the new version of

the Idea Garden we present here.

Figure 1: Dictionary entries appear in tooltips when players hover over keywords

(“for” shown here). Hovering over an idea indicator () then adds an Idea Garden

hint. (The superimposed callouts are for readability.)

In the Gidget game, a robot named Gidget provides players with code to complete

missions. According to the game’s backstory, Gidget was damaged, and the player

must help Gidget diagnose and debug the faulty code. Missions (game levels) intro-

duce or reinforce different programming concepts. After players complete all 37 levels

of the “puzzle play” portion of the Gidget game, they can then move on to the “level

10

design” portion to create (program) new levels of their own.

The prototype’s support for the 7 principles

The Idea Garden prototype aims to help Gidget players who are unable to make

progress even after they have used the host’s existing forms of help. Before we added

the Idea Garden to it, Gidget had three built-in kinds of help: a tutorial slideshow, au-

tomatic highlighting of syntax errors, and an in-line reference manual (called a “dic-

tionary” in Gidget) available through a menu and through tooltips over keywords in

the code. The Idea Garden supplements these kinds of help by instantiating the seven

principles as follows (illustrated in Figure 2).

 Figure 2: Hovering over a shows a hint. The superimposed Ps show where the 7

principles are instianted in this hint.

P1-Content: The Concept portion is in the middle of Figure 2, the Minipattern is

shown via the code example, and the Strategy portion is the numbered set of steps at

the bottom.

P2-Relevance: Prior empirical studies [Cao et al. 2012] showed that if Idea Garden

users did not immediately see the relevance of a hint to their situation, they would ig-

nore it. Thus, to help Gidget users quickly assess a hint’s relevance, the hint first says

what goal the hint is targeting, and then includes some of the user’s own code and/or

variable names (Figure 2), fulfilling P2.MyCode and P2.MyState. The antipatterns,

explained in the next subsection, are what make these inclusions viable.

P3-Actionable, P4-Personality, and P5-InformationProcessing: Every hint sug-

gests action(s) for the user to take. For example, in Figure 2, the hint gives numbered

11

actions (P3). However, whether the hint is the right suggestion for the user’s particular

situation is still phrased tentatively (P4). Since hints can be relatively long, they are

initially collapsed but can be expanded to see everything at once, supporting players

with comprehensive and selective information processing styles (P5).

P6-Availability, P7-InterruptionStyle: Hints never interrupt the user directly; in-

stead, a hint’s availability in context (P6.ContextSensitive) is indicated by a small

green beside the user’s code (Figure 2, P7) or within one of Gidget’s tooltips (Fig-

ure 1). The user can hover to see the hint, and can also “pin” a hint so that it stays on

the screen. Context-free versions of all the hints are always available (P6.ContextFree)

via the “Dictionary” button at the top right of Figure 1.

Antipattern support for the principles

Idea Garden’s support for several of the principles comes from its detection of

mini-antipatterns in the user’s code. Antipatterns, a notion similar to “code smells”,

are implementation patterns that suggest some kind of conceptual, problem-solving, or

strategy difficulty. The prototype detects these antipatterns as soon as a player intro-

duces one.

Our prototype detects several antipatterns that imply conceptual programming

problems. In selecting which ones to support in this prototype, we selected antipatterns

that occurred in prior empirical data about Gidget at least three times (i.e., by at least

three users). The following is a description of each programming antipattern and the

conceptual issue behind them:

(1) no-iterator: not using an iterator variable within the body of a loop. Users usu-

ally thought that loops would interact with every object in for loop’s list when using a

reference to a single object instead of the iterator variable.

(2) all-at-once: trying to perform the same action on every element of the set/list

all at once instead of iterating over the list. Users thought that functions built to work

with objects as parameters would take lists as arguments.

(3) function definition without call: Users sometimes believed that the definition of

a function would run once execution reached the function keyword; they did not real-

ize they had to call the function.

12

(4) function call without definition: calling an undefined function. Sometimes, us-

ers did not realize that some function calls referred to definitions that they could not

see (since they were defined in Gidget’s world code). They would try to call other

functions that had no definition whatsoever.

(5) instantiating an undefined object: instantiating an undefined object. Similar to

(4), objects could be defined in the world code and created in Gidget’s code. Some

users thought they could create other objects they had seen in past levels despite the

fact they were not defined in the current level.

Detecting antipatterns enables support for two of the Idea Garden principles. The

antipatterns define context (P6.Context Sensitive), letting the hint to be derived from

and shown in the context of the problem. For P2-Relevance, the hint communicates

relevance (to the user’s current problem) by being derived from the player’s current

code as soon as they enter it, such as using the same variable names (Figure 2, P2 and

P6). The prototype brings these two principles together by constructing a context-

sensitive hint whenever it detects a conceptual antipattern. It then displays the be-

side the relevant code to show the hint’s availability.

13

GENERALIZED IDEA GARDEN ARCHITECTURE

Past research [Cao et al. 2011, Cao et al. 2012, Cao et al. 2013, Cao et al. 2014]

has shown the Idea Garden’s success in CoScripter. Later chapters in this thesis show

the Idea Garden’s success in Gidget. However, both implementations were specific to

their hosts and not generalized. The architecture presented in this section extends and

implements an earlier generalized architecture proposed in [Cao 2013] but never im-

plemented beyond a small fraction until now. Figure 3 shows the components of the

Idea Garden and which components interact with the host programming environment.

The host calls the startListening() method of the Host-Specific Listener,

which is described with its base class next.

Figure 3: Architecture of Idea Garden. The black arrows represent the flow of data.

User data (e.g., user’s code) flows from the end-user programming tool to the Host-

Specific Listener. That data is passed along to the controller, information processors,

actioner, and then used to build the hints that are sent back to the host environment.

The thick blue arrows represent inheritance, so the Host-Specific Listener inherits

from the Abstract Listener. The thin blue arrows point to examples, so the code

mentioned near black arrow 2 is shown in the code image.

14

Listener: The Abstract Listener provides the abstract events that may be listened

for (see Table 2) and also provides required interfaces to the Host-Specific Listener

(through inheritance), which are included in this paragraph. In order to receive the rel-

evant user events, code and data from the host, the startListening() method

should call igListener.processUserCode() (and other similar functions like

processUserEditor() and processUserRequirements() where applica-

ble). The Host-Specific Listener then retrieves the code (or other data elements) from

the host and starts listening for abstract events. The Host-Specific Listener finds ab-

stract events by searching the user code for the antipatterns described in the Principles

chapter or by listening for clicks. Then, the Host-Specific Listener passes the ab-

stract event along with relevant user code and data to the Controller (by calling con-

troller.onReceiveAbstractEvent()).

Controllers and Information Processors: The Controller and Information Pro-

cessors map abstract events to actions and process data like bug reports. These classes

do not require host-specific versions. First, upon receiving an abstract event from the

Host-Specific Listener, the Controller pairs the abstract event with an abstract action.

Table 2 lists example pairs of abstract events and abstract actions. Second, the Con-

troller then sends the matched abstract action to the Host-Specific Actioner, passing

along the code that it received from the Host-Specific Listener by calling action-

er.onReceiveAbstractAction(). If the Host-Specific Listener also sent addi-

tional data to the Controller, the Controller first sends the data to the relevant Infor-

mation Processors, which calculates additional information based on the data and

sends the calculated information back to the Controller. For example, the Information

Processor used in CoScripter’s Idea Garden [Cao et al. 2012, Cao et al. 2013, Cao et

al. 2014] is the Data Type Matcher1 which determines a data type based on input data.

The Controller then passes the calculated information on to the Host-Specific Action-

er.

15

Abstract Events Abstract Actions

user_needs_help_getting_started show_getting_started_hint

for_loop_without_iterator_antipattern show_iteration_icon

user_previewed_webpage highlight_evaluation_hints

Table 2: Pairs of abstract events and abstract actions, matched by the Controller.

Actioner: Given an abstract event that requires an action, the Host-Specific Ac-

tioner produces the appropriate action. The Host-Specific Actioner inherits the Ab-

stract Actioner, implementing the actioner.onReceiveAbstractAction()

function mentioned above and the abstract actions it may execute, including high-

light_evaluation_hints. First, the Host-Specific Actioner fills the hint with

the relevant pieces of the user’s context, such as function names. Second, the Host-

Specific Actioner decorates the host environment’s UI with a linked to the relevant

hint. For example, in Cloud9, if the is clicked, the hint panel is opened and the

linked hint is highlighted briefly.

Hint Engine: The Host-Specific Hint Engine provides context-free and context-

sensitive access to hints through the hint panel. For example, in Cloud9, hint titles are

shown initially and the hint contents can be shown by clicking the next to the title.

The panel starts with default versions of all the host-specific hints made by the imple-

menter. The hints are updated by the Host-Specific Actioner to include context-

specific information.

Example

Now, let’s consider an example situation where the Idea Garden responds to the

user typing in some code that contains one of the antipatterns. The concrete items in

the example use the Cloud9 implementation.

The following sequence occurs:

1. Suppose the user types in the following code: :

for (var x in arr){f1(arr[0]);}

2. The host programming environment sends this user code to the listener.

3. The Listener parses that code and finds a for loop that does not use its itera-

tor variable. This is an instance of the for_loop_without_iterator antipat-

tern.

16

4. The Listener labels an object as an abstract event with type

for_loop_no_iterator, then collects the name of the unused variable (in this

case, x) and the name of the list from the for loop (arr), and sends it all to-

gether to the Controller.

5. The Controller determines the abstract action the Idea Garden should exe-

cute by mapping the input abstract event (for_loop_no_iterator) to its cor-

responding abstract action (show_iteration_icon).

6. The Controller sends this abstract action (show_iteration_icon) and the us-

er’s code to the Actioner.

7. The Actioner sends that user code on to the Hint Engine.

8. The Hint Engine finds the relevant hint, (the iteration hint), and inserts that

user code into the code example in the iteration hint like this:

for (var x in arr){console.log(arr[x]);}

9. The Actioner puts an Idea Garden icon in the user’s IDE that links to the

hint that the Hint Engine just updated.

Porting Idea Garden to new environments:

After acquiring a previous version of the Idea Garden (all versions so far have

been in JavaScript), an implementer would follow these steps to adapt it for a new en-

vironment:

 Determine how users conceptually struggle in the new environment, per-

haps with a study Develop antipatterns that detect at least some of these

struggles.

 For the antipatterns, create or modify host-specific antipattern code to de-

tect when users exhibit these antipatterns in your environment in the Host-

Specific Listener.

o New code is needed for struggles you found typical (like antipat-

terns) that weren’t present before.

o You also may need new hints and design patterns within them.

Some of the hints you’ll set up to be triggered by antipatterns (as

below), and some you’ll simply make available other ways, such as

17

by linking them to other hints.

o All hints need to be made available in a context-free way, such as

through your host environment’s existing “help” button or reference

manual link. (In Cloud9, a side panel provided access to all the

hints.)

o Modify previous host-specific code to correspond to your new envi-

ronment for struggles (antipatterns) that were implemented before,

like for_loop_no_iterator,

 For those antipatterns, send them to the Controller as a new abstract event.

 In the Controller, map the new abstract events to new abstract actions. (Ex-

isting antipatterns are already mapped.) Send the abstract action to the Ac-

tioner.

 Make the Actioner tell the Hint Engine to update hints with user data/code.

 Make the Hint Engine display the hints on the screen. Use the same format

for all the hints where possible.

 Make the Actioner display an icon on the screen when Idea Garden should

respond to user actions, based on the abstract action sent to the Actioner.

 Delete code in the Host-Specific components that deal with user struggles

that can’t occur your environment (or set them aside for guidance).

About 85% of our code in Cloud9 was host-specific, but some of it is modifiable

for new environments. About 15% was entirely host-independent, and the struc-

ture/framework is entirely reusable.

18

STUDY #1: PRINCIPLED FORMATIVE STUDY

Prior to implementing the Idea Garden principles in the prototype, we conducted

Study #1, a small formative study. Our goal was to gather evidence about our pro-

posed principles, helping us choose which ones to implement in the prototype that we

would evaluate in Study #2.

We reanalyzed think-aloud data that we presented in [Lee et al. 2014]. This study

had 10 participants (5 female, 5 male) 18-19 years old, with little to no programming

experience. Each session was 2 hours, fully video recorded. The experimenter helped

participants when they were stuck for more than 3 minutes. We re-analyzed the video

recordings from this study using the code sets in Table 3. The objective of [Lee et al.

2014] was to investigate Gidget barriers and successes. Here we analyze the think-

aloud data from a new perspective: to inform our research into how Idea Garden prin-

ciples should target those issues. Thus, the Idea Garden was not yet present in Gidget

for Study #1.

19

Table 3: Study #1 and #2 Barrier codes and Outcome codes.

Algorithm Design Barrier Codes [Cao et al. 2012, Lee et al. 2014]

More than once Did not know how to generalize one set of commands for one

object onto multiple objects

Composition Did not know how to combine the functionality of existing

commands

Learning Phase Barrier Codes [Ko et al. 2004, Lee et al. 2014]

Design Did not know what they wanted Gidget to do

Selection Thought they knew what they wanted Gidget to do, but did not

know what to use to make that happen

Use Thought they knew what to use, bud did not know how to use it.

Coordination Thought they knew what things to use, but did not know how to

use them together

Understanding Thought they knew how to use something, but it did not do what

they expected

Information Thought they knew why it did not do what they expected, but

did not know how to check

Barrier Outcomes Codes

Progress Participant overcame the barrier or partially overcame the

barrier.

In-person help Participant overcame the barrier, but with some help from the

experimenter.

No Progress Neither of the above.

Although the Idea Garden was not yet present, some UI elements in Gidget were

consistent with some Idea Garden principles (Table 3’s left column). We leveraged

these connections to obtain formative evidence about the relative importance of the

proposed principles. Toward this end, we analyzed 921 barriers and 6138 uses of user

interfaces.

20

Table 4: Study #1: number of instances in which participants made progress for

principles P2-Relevance and P6-Availability. (Max values highlighted.)

 +: progress with no in-person help.

 +: progress with additional help from experimenter.

 -: no progress.

Principle

(example UI elements)

Participants’ progress Which barriers

 + + -

P2-Relevance
P2.MyState

(e.g., Error messages)

2128

44%

1378

28%

1368

28%

(Minor contribution to most)

P2.MyGoal

(e.g., Mission/level goals)

767

42%

571

31%

487

27%

Design

(& minor to most)

P6-Availability

P6.Context-Sensitive Avail.

(e.g., Tooltips over code)

1691

44%

1151

29%

1034

27%

Coord., Compos., Selection (&

minor to most)

P6.Context-Free Avail.

(e.g., Dictionary)

823

36%

845

37%

594

26%

(Minor to Design)

The Gidget UI elements’ connection to Idea Garden principles primarily related to

P2-Relevance and P6-Availability. Table 4 shows that, when these principles were

present, participants tended to make progress—usually without needing any help from

the experimenter.

However, as Table 4 also shows, each principle helped with different barriers (de-

fined in Table 3). For example, P2.MyGoal stood out in helping participants with De-

sign barriers, whereas P6.ContextSensitive was strong with Coordination, Composi-

tion, and Selection barriers.

These results revealed useful insights for Study #2’s principled evaluation and the

Idea Garden prototype: (1) The complementary roles that it revealed of different prin-

ciples for different sections in “barrier space” caused us to design Study #2 to allow

evaluation from a barrier perspective. (2) The promising results for P2-Relevance and

P6.ContextSensitive motivated us to design several of the antipatterns described in

Section IV, so as to trigger relevant hints in context. (3) The concepts (P1.Concepts)

that participants struggled with the most were the ones we wrote the antipatterns and

hints to target.

21

Informed by these insights, we implemented the principles in the form described in

the Gidget Prototype chapter and conducted Study #2 to evaluate the results.

22

STUDY #2 (SUMMATIVE): THE PRINCIPLES GO TO CAMP

We conducted Study #2 as a (primarily) qualitative study, via two summer camps

for teenagers playing the Gidget debugging game. The teens used the Idea Garden

whenever they got stuck with the Gidget game. The study’s goal was to evaluate the

usefulness of the Idea Garden principles to these teens. Our overall research question

was: How do the principles influence the ways indifferent EUPs can solve the pro-

gramming problems that get them “stuck”?

The two summer camps took place on college campuses in Oregon and Washing-

ton. Each camp ran 3 hours/day for 5 days, for 15 hours total. Campers spent 5 hours

each in Gidget puzzle play; other activities such as icebreakers, guest speakers, and

breaks; and level design.

We recruited 34 teens aged 13-17. The Oregon camp had 7 males and 11 females;

all 16 teens in the Washington camp were females. Both camps’ median ages were 15

years. The participants were paired up into same-gender teams of similar age (with

only one male/female pair) and were instructed to follow pair programming practices,

with the “driver” and “navigator” switching places after every game level.

The Gidget game is intended for two audiences: those who want to learn pro-

gramming and our population of indifferent EUPs. Since the Idea Garden targets the

latter audience, we aimed to recruit camp participants with little interest in program-

ming itself by inviting them to a “problem-solving” camp (without implying that the

camp would teach programming).

The teens we attracted did seem to be largely made up of the “indifferent EUP”

audience we sought. We interviewed the outreach director who spoke with most par-

ents and kids of Study #2’s Oregon camp, which targeted schools in economically-

depressed rural towns, providing scholarships and transportation. She explained that a

large percentage of campers came in spite of the computing aspect, not because of it:

the primary draw for them was that they could come to the university, free of cost,

transportation provided.

The same researchers ran both camps: a lead (male graduate student) led the activi-

ties and kept the camp on schedule; a researcher (female professor), and four helpers

23

(one male graduate student, three female undergraduates) answered questions and ap-

proached struggling participants. We provided no formal instruction about Gidget or

programming. The Gidget system recorded logs of user actions, and the helpers ob-

served and recorded instances when the campers had problems, noting if teams asked

for help, what the problem was, what steps they tried prior to asking for help, and what

(if any) assistance was given and if it resolved the issue.

We coded the 407 helper observations in three phases using the same code set as

for Study #1: we first determined if a barrier occurred, then which types of barriers

occurred, and finally what their outcomes were (Table 3). Two coders reached 85%,

90%, and 85% agreement (Jaccard Index), respectively, on 20% of the data during

each phase, and then split up the rest of the coding. We then added in each additional

log instance (not observed by a helper) in which a team viewed an antipattern-

triggered Idea Garden hint marked by a . We considered these 39 instances evidence

of “self-proclaimed” barriers. Two coders reached 80% and 93% on 20% of the data

respectively, and one coder finished the remaining data. Finally, for purposes of analy-

sis, we removed all Idea Garden instances in which the helper staff also gave assis-

tance (except where explicitly stated otherwise), since we cannot know in such in-

stances whether progress was due to the helpers or to the Idea Garden.

24

STUDY #2 RESULTS

Successes

Teams did not always need the Idea Garden; they solved 53 of their problems just

by discussing them with each other, reading the reference manual, etc. However, when

these measures did not suffice, they turned to the Idea Garden for more assistance 149

times (bottom right, Table 5). Doing so enabled them to problem-solve their way past

77 of these 149 barriers (52%) without any guidance from the helper staff (Table 6).

In fact, as Table 6 shows, when the Idea Garden hint or was on the screen,

teams seldom needed in-person help: only 25 times (out of 149+25) = 14%. Finally,

the teams’ success rate with in-person help alone (59%) was only a little higher than

with the Idea Garden alone (52%).

Table 5: Barrier-by-barrier progress when situation-based aspects of Idea Garden

principles P2, P3, and/or P6 were on-screen. (P1, P5 not shown because all aspects

were always present.) The total column (right) adds in the small numbers of Design,

Composition, and Information barrier instances not detailed in other columns.

 Barriers

S
el

ec
ti

o
n

U
se

C
o
o
rd

i-

n
a
ti

o
n

U
n

d
er

-

st
a
n

d
in

g

M
o
re

T
h

a
n

O
n

ce

T
o
ta

l

P
2
-

R
el

ev
an

ce

MyCode
8/20

40%

13/21

62%

1/1

100%

1/2

50%

12/24

50%

35/69

51%

MyState
9/24

38%

28/54

52%

12/18

67%

2/4

50%

12/25

48%

64/128

50%

P
3
-

A
ct

io
n
ab

le

Explicitly

Actionable

9/24

38%

28/54

52%

13/19

68%

2/4

50%

12/25

48%

66/130

51%

Implicitly

Actionable

10/23

43%

17/28

61%

1/1

100%

3/5

60%

14/29

48%

45/87

52%

P
6

-

A
v
ai

la
b
le

Context

Sensitive

6/19

32%

22/37

59%

10/14

71%

1/3

33%

9/21

43%

48/95

51%

Context

Free

2/5

40%

5/7

71%

2/2

100%

1/1

100%

2/5

40%

12/21

57%

Total

(unique

instances)

11/27

41%

33/62

53%

13/19

68%

4/7

57%

14/30

47%

77/149

52%

25

Table 6: Barrier instances and teams’ progress with/without getting in-person help.

Teams did not usually need in-person help when an Idea Garden hint and/or

antipattern-triggered was on the screen (top row).

IG

On-screen?

Progress

without

in-person

help

Progress if

team got

in-person help

Yes (149+25

instances)

77/149

(52%)
25

No (155

instances)
53 91/155 (59%)

Table 5 also breaks out the teams’ success rates principle by principle (rows). No

particular difference in success rates with one principle or aspect versus another stands

out in isolation. However, viewing the table column-wise yields two particularly inter-

esting barriers.

First, Selection barriers (first column) were the most resistant to the principles.

This brings out a gap: the Selection barrier happens before use as the user tries to de-

cide what to use, whereas the Idea Garden usually became active after a player at-

tempted to use some construct in code. How the Idea Garden might close this gap is an

opportunity we have barely begun to explore.

Second, Coordination barriers (third column) showed the highest progress rate

consistently for all of the Idea Garden principles. We hypothesize that this relatively

high success rate may be attributable to P1’s minipatterns (present in every hint),

which show explicitly how to incorporate and coordinate combinations of program

elements.

Teams’ Behaviors with P2-Relevance and P6-Availability

In this section, we narrow our focus to observations of how the teams reacted to

the from the lens of P2 and P6. We consider P2 and P6 together because the proto-

type supported P2-Relevance in a context-sensitive (P6) way.

Context-sensitivity seemed very enticing to the teams. As Table 5 shows, teams

accessed P6.ContextSensitive hints about five times as often as the P6.ContextFree

hints. Still, in some situations, teams accessed the context-free hints to revisit them out

26

of context. Despite more context-sensitive accesses, the progress rates for both were

similar. Thus, this result supports providing for both of these situations, with both con-

text-sensitive and context-free availability of the hints.

Table 7: Observed outcomes of responses to the . Teams made progress when they

read a hint and acted on it (row 1, col 1), but never if they ignored what they read (row

2 col 1). (P2-Relevance’s mechanisms are active only within a hint.)

Response Type Principles Progress%

Read hint

and then…

...acted on it P2+P6 25/42 60%

...ignored it P2+P6 0/4 0%

Didn’t read hint P6 6/15 40%

Deleted code marked by P6 4/19 21%

To-do listing P6 3/4 75%

Table 7 enumerates the five ways teams responded to the context-sensitive s

(i.e., those triggered by the mini-antipatterns). The first way was the “ideal” way that

we had envisioned: reading and then acting on what they read. Teams responded in

this way in about half of our observations, making progress 60% of the time. For ex-

ample:

Team Turtle (Observation #8-A-2):
Observation notes: Navigator pointed at screen, prompting the driver to open the Idea
Garden on function. … they still didn't call the function.
Action notes: ... After reading, she said "Oh!" and said "I think I get it now..." Changed
function declaration from "/piglet/:getpiglet" to "function getpiglet()". The popped up
again since they weren't calling it, so they added a call after rereading the IG and complet-
ed the level.

However, a second response to the was when teams read the hint but did not act

on it. For example:

Team Beaver (Observation #24-T-8):
Observation notes: ... "Gidget doesn't know what a sapling is", "Gidget's stupid". Looked
at Idea Garden hint. ... "It didn't really give us anything useful" …

This example helps illustrate a nuance of P2-Relevance. Previous research has re-

ported challenges in convincing users of relevance [Cao et al. 2012]. In this example

the team may have believed the hint was relevant to the problem, but not to a solution

direction. This suggests that designing according to P2-Relevance should target solu-

tion relevance, not just problem relevance.

Third, some teams responded to the by not reading the hint at all. This helped a

27

little in that it identified a problematic area for them, and they made progress fairly

often (Table 7), but not as often as when they read the hint.

Fourth, some teams deleted code marked by the . They may have viewed the

as an error indicator and did not see the need to read why (perhaps they thought they

already knew why). Teams rarely made progress this way (21%).

Fifth, teams used s as “to-do” list items. For example, Team Mouse, when asked

about the in the code in Figure 4, said “we’re getting there”. Using the as some-

thing to come back to later is an example of the “to-do listing” strategy, which has

been a very successful problem-solving device for EUPs if the strategy is explicitly

supported [Grigoreanu et al. 2010].

Figure 4: (1) Team Mouse spent time working on code above the s. When (2) a

helper asked them about the s in their code, they indicated (3) that the s were

action items to do later. Seven other teams also used this method.

Teams’ Behaviors with P3-Actionable

The two types of actionability that P3 includes, namely P3.ExplicitlyActionable

(step-by-step actions as per Figure 2’s P3) and P3.ImplicitlyActionable (mental, e.g.

“refer back...”) instructions, helped the teams in very different ways.

Explicitly actionable hints seemed to give teams new (prescriptive) action recipes.

For example, Team Rabbit was trying to write and use a function. The hint’s explicitly

actionable instructions revealed to them the steps they had omitted, which was the in-

sight they needed to make their code work:

Team Rabbit (Observation #9-T-3)
Observation notes: They wrote a function... but do not call it.
Action notes: Pointed them to the next to the function definition. They looked at the
steps... then said, "Oh, but we didn't call it!"

Explicitly actionable instructions helped them again later, in writing their very first

28

event handler (using the “when” statement). They succeeded simply by following the

explicitly actionable instructions from the Idea Garden:

Team Rabbit (Observation #10-T-1)
Observation notes: They wanted to make the key object visible when[ever] Gidget asked
the dragon for help. They used the Idea Garden hint for when to write a when statement
inside the key object definition:
 when /gidget/:sayThis = "Dragon, help!" ...
The when statement was correct.

In contrast to explicitly actionable instructions, implicitly actionable instructions

seem to have given teams new options to think over. In the following example, Team

Owl ran out of ideas to try and did not know how to proceed. But after viewing an Idea

Garden hint, they started to experiment with new and different ideas with lists until

they succeeded:

Team Owl (Observation #11-A-7):
Observation notes: They couldn't get Gidget to go to the [right] whale. They had written
“right down grab first /whale/s.”
Action notes: Had them look at the Idea Garden hint about lists to see how to access in-
dividual elements ... Through [experimenting], they found that their desired whale was the
last whale.

The key difference appears to be that the explicitly actionable successes came from

giving teams a single new recipe to try themselves (Team Rabbit’s second example) or

to use as a checklist (Team Rabbit’s first example). This behavior relates to the

Bloom’s taxonomy ability to apply learned material in new, concrete situations [An-

derson et al. 2001]. In contrast, the implicitly actionable successes came from giving

them ways to generate new recipe(s) of their own from component parts of learned

material (Team Owl’s example), as in Bloom’s “analyze” stage [Anderson et al. 2001].

Teams’ Behaviors with P5-Information Processing

Recall that P5-InformationProcessing states that hints should support EUPs infor-

mation processing, whether comprehensive (process everything first) or selective (pro-

cess only a little information before acting, find more later if needed). The prototype

did so by condensing long hints into brief steps for selective EUPs, which could op-

tionally be expanded for more detail for comprehensive EUPs. We also structured each

hint the same way so that selective EUPs could immediately spot the type of infor-

mation they wanted first.

Some teams including Team Monkey and Team Rabbit, followed a comprehensive

29

information processing style:

Team Monkey (Observation #27-S-6)
Observation notes: <Participant name> used the [IG hint] a LOT for step-by-step and
read it to understand.

Team Rabbit (Observation #8-W-4)
Observation notes: They were reading the IG for functions, with the tooltip expanded. Af-
ter closing it, they said "Oh you can reuse functions. That's pretty cool."

Many of the teams who preferred this style were female. Their use of the compre-

hensive style is consistent with prior findings that females often use this style [Grigo-

reanu et al. 2012, Meyers-Levy 1989]. As the same past research suggests, the four

teams with males (but also at least one of the female teams) used the selective style.

Unfortunately, teams who followed the selective style seemed hindered by it. One

male team, Team Frog, exemplifies a pattern we saw several times with this style: they

were a bit too selective, and consistently selected very small portions of information

from the hints, even with a helper trying to get them to consider additional pertinent

information:

Team Frog (Observation #24-W-12 and #24-W-14):
Observation Notes: … Pointed out and even pointed to code, but they quickly selected
one line of code in the IG help and tried it. ... They chose not to read information until I
pointed to each line to read and read it…

In essence, the prototype’s support for both information processing styles fit the

ways a variety of teams worked.

30

HOW MUCH DID THEY LEARN?

After about 5 hours of debugging their way through the Gidget levels, teams

reached the “level design” phase, in which teams were able to freely create whatever

levels they wanted.

In contrast to the puzzle play activity, in which teams only fixed broken code to

fulfill game goals, this “level design” part of the camp required teams to author level

goals, “world code,” behavior of objects, and code that others would debug to pass the

level. Figure 5 shows part of one such level.

Figure 5: Team Tiger’s “River Dam” level’s functions, conditionals, and loops.

The teams created between 1 to 12 levels each (median: 6.5). As Figure 5 helps il-

lustrate, the more complex the level a team devised, the more programming concepts

the team needed to use to implement it. Among the concepts teams used were varia-

bles, conditionals (“if” statements), loops (“for” or “while”), functions, and events

(“when” statements).

The teams’ use of events was particularly telling. Although teams had seen Idea

Garden hints for loops and functions throughout the puzzle play portion of the game,

they had never even seen event handlers. Even so, all 9 teams who asked helpers how

to make event-driven objects were immediately referred to the Idea Garden hint that

31

explains it, and all eventually got it working with little or no help from the helpers.

The number of programming concepts a team chose to incorporate into their own

levels can be used as a conservative measure of how many such concepts they really

learned by the end of the camp. This measure is especially useful here, because the

same data are available from the Gidget camps the year before, in which in-person

help was the main form of assistance available to the campers [Lee et al. 2014] (Table

8).

Table 8: Percentage of teams using each programming concept during level design, for

Study #2 versus Gidget camps held the year before. Note that the average is nearly the

same.

Study Bool Var. Cond. Loops Func. Event Avg.

Study #2 camps 100% 88% 25% 63% 44% 56% 63%

[Lee et al. 2014] camps 100% 94% 35% 47% 41% 76% 66%

As Table 8 shows, the teams from the two years learned about the same number of

concepts on average. Thus, the amount of in-person help from the prior year [Lee et al.

2014] that we replaced by the Idea Garden’s automated help resulted in almost the

same amount of learning.

As to how much in-person help was actually available, we do not have identical

measures, but we can make a conservative comparison (biased against Idea Garden).

We give full credit to Idea Garden this year only if no in-person help was involved, but

give full credit to the Idea Garden last year if one of our early Idea Garden sketches

was used to supplement in-person helpers that year. This bias makes the Idea Garden

improvement look lower than it should, but is the closest basis of comparison possible

given slight differences in data collection.

This comparison is shown in Table 9. As the two tables together show, Study #2’s

teams learned about the same number of concepts as with the previous year’s camps

(Table 8), with significantly less need for in-person help (Table 9, Fisher’s exact test,

p=.0001).

32

Table 9: Instances of barriers and percentage of total barriers teams worked through

with and without in-person help, this year under the principles described here, vs. last

year. (Comparison biased against Idea Garden; see text.)

Study Used in-person help No in-person help

Study #2 camps with Idea Garden:

Barriers with progress

116

47%

130

53%

Prior year’s camps [Lee et al. 2014]:

Barriers (progress not available)

437

89%

56

11%

33

STUDY #3 METHOD

The aim of the generalized architecture we presented in an earlier chapter was to

generalize the Idea Garden to multiple contexts, i.e., to show that the Idea Garden gen-

eralizes from an implementation perspective. Study #3 then considers generalization

from the language/environment, population, and tasks perspectives, aiming to show

that the Idea Garden generalizes to another IDE and another programming language,

helping users of that environment complete tasks different from previous studies.

The Idea Garden in Study #3 was one part of a four member intervention: (1) a

problem solving lecture described in The Instruction section, (2) the handout in Figure

6, (3) the help request prompts described in The Project section, and (4) the Idea Gar-

den shown in Figure 7, each of which are described throughout this section. Study #3

compared a traditional version of a web development camp (the control group) with an

experimental version of the camp that was identical except for those four intervention

elements. In this section, we describe our participants, the two camps, and the data we

collected to measure the effects of our intervention.

Figure 6: The paper handout and physical token we gave to campers to track their

problem solving stage.

34

Figure 7: (Main) The Idea Garden panel in the Cloud9 IDE as campers see it when

they opened the panel for the first time. (Callout) An example of the Idea Garden

decorating the code with an icon. Here, the icon links to the Iteration with For hint.

Participants

Our participants were campers in a university-sponsored summer youth learning

program. The program was based in a region with a large software industry, so many

of the campers likely knew someone with coding skills. Campers in the youth program

have historically been from upper-middle class families with college-educated parents,

and have typically been only 20-30% female. Campers and parents were not aware of

any difference between the two camps other than their scheduled time. The youth pro-

gram managed registrations, recruiting 25 campers in the experimental group and 23 in

the control. From this point forward, we refer to campers with a letter indicating their

group followed a unique number (e.g. E27 is an experimental camper and C75 a con-

trol).

The experimental group included 8 females and 17 males. Two campers listed

English as their non-primary language. The control group included 8 females and 15

males, and all listed English as their primary language. The two groups were largely

35

indistinguishable: they did not miss class at different rates (Kruskal-Wallis, H=2.2,

p=0.138), they contained similar numbers of females (X2=0, df=1, p=1.000), they had

similar grade levels (X2=4.1829, df=3, p=0.242), and similar self-reported program-

ming and web development experience (X2 = 2.669, df=1, p=0.102).

The Camps

Each camp consisted of ten 3-hour weekday sessions from 9am to 12pm (experi-

mental) and from 1pm to 4pm (control). We placed the experimental group in the

morning to bias any instructional improvements toward the control group (though this

may have introduced other confounds, as we discuss later). Both camps took place in

the same university computer lab. Campers worked in the Chrome web browser and

Cloud9, a web-based IDE (c9.io).

The Instruction

We aimed to teach concepts, syntax, and semantics of HTML, CSS, and JavaScript

with a focus on the React JavaScript framework (facebook.github.io/react). Our goal

was for campers to feel capable of learning more about these technologies, but not

necessarily capable of developing interactive web sites with them independently. We

chose the React framework because it is based on a powerful but highly constrained

view abstraction, which meant that there are only a small number of ways to imple-

ment any particular functionality. This made measuring task completion more straight-

forward, as we describe later in our results.

Day 1 HTML lecture and activity

Day 2 1-hour problem solving lecture (experimental only);

Problem solving stages handout and prompts (experimental only);

CSS lecture and activity

Day 3 JavaScript lecture and activity;

Growth mindset development exercise

Day 4 React lecture and Interactive activity;

Problem solving reminder (experimental only)

Days 5-9 Free development time

Day 10 Project presentations

Table 10: The camp schedule, with experimental camp’s additions as noted.

As Table 10 shows, the baseline camp included 4 days of lectures and practice, fol-

lowed by 5 days of self-directed programming time on a course project. The lead in-

36

structor (a PhD student), presented HTML, JavaScript, and React lectures to both

groups. Another instructor (a master’s student) presented a CSS lecture and a growth

mindset exercise to both groups. Three additional undergrads also acted as helpers. All

members of the instructional team had at least novice experience with web develop-

ment and React. The lead instructor had no experience running camps or teaching pro-

gramming.

The 1-hour problem solving lecture (the first part of our intervention, given only to

the experimental group) taught campers six programming problem solving stages

[Loksa et al. 2016] 1. The instructor began the lecture with a book sorting exercise. He

asked the campers how to sort the books by size and followed their verbal instructions.

Next, he asked the campers how they knew how to sort the books in that way and why

they sorted the books that way. The campers discussed the how and why amongst

themselves until they reported that they understood the problem. The instructor then

prompted for more explanation until it became apparent to campers that the questions

were not as simple as they initially seemed. The instructor used this realization to trig-

ger a discussion of each of the six problem solving stages, starting with reinterpreting

the problem prompt. Campers tried to identify the next stage of the process in groups

at the instructor’s request. Once the campers identified the next stage (or the instructor

identified it when campers ran out of ideas), he tied abstract concept of the stage to a

concrete problem, such as the book sorting problem the lecture began with.

After the lecture, we provided the experimental group with a physical handout of

the problem solving stages (shown in Figure 6) and a physical token so they could

track their current state on the handout (the second part of our intervention). We in-

structed campers to track their progress through the stages as they worked on their

website and to reflect on and adjust their strategies.

While the problem solving lecture detailed what programmers must achieve in the

six stages, it did not prescribe how they achieve it. We did not mention any particular

1 The six problem solving stages are out of the scope of this thesis. For reference, they

are: (1) reinterpreting problem prompt, (2) search for analogous problems, (3) search

for solutions, (4) evaluate a potential solution, (5) Implement a solution, and (6) eval-

uate implemented solution.

37

strategies or resources to use for each stage. The one exception to this is a mention of

the development of sub-problems, which the instructor mentioned in the lecture and

noted in the handout. The instructor also told the campers they could use the Idea Gar-

den, which mentions some strategies such as working backwards.

The Project

After the four days of lecture and practice, campers in both groups spent the re-

maining five work days on a class project. The project was to build an interactive, Re-

act-based single-page web application that contained both static and interactive con-

tent about campers’ interests. Figure 8 shows an example of a camper’s final site. To

scaffold the project, we provided a basic architecture for the application. We then pro-

vided a set of 20 progressively more difficult tasks for campers to complete at their

own pace (see Table 11).

Figure 8: Camper E27’s final project, showing buttons that link to different interests

(left) and content and images (center). Details have been anonymized.

38

Task C
o
n
te

n
t

H
T

M
L

C
S

S

JS

Add a window title to the web page ✓

Create objects to represent each of your interests ✓ ✓

Change the background color and add a border to your page ✓

Create a space for each of your interest’s names ✓ ✓

Add a component that displays a photo of your interest ✓

Display interest text paragraphs in their own <div> tags ✓

Give your page a background image ✓

Give the content area a background color and rounded border ✓

Use a component to display a page title stored in a variable ✓

Give each paragraph a unique style using .map() ✓ ✓

Make a “Surprise Me” button that shows a random interest ✓ ✓

Style your buttons with a border and transitions ✓

Create a menu component with two buttons ✓ ✓

Make the menu navigate between the interests and “about me” pages ✓

Fill your “about me” page with content about you ✓ ✓ ✓

Make the title match the currently selected page ✓

Add an image to “about me” page that changes when clicked ✓

Embed a video in your interest’s content area ✓

Link your images to an external page ✓ ✓

Create a photo gallery that displays six images ✓ ✓ ✓ ✓

Table 11: Condensed versions of the prescribed tasks given to the campers and the

skills that each task required.

During both the after-lecture activities and project work time, campers in both

groups had access to several types of help. We gave campers PDFs of the lectures

along with HTML, CSS, and JavaScript “cheat sheets.” We also encouraged campers

to find online resources on their own. The two instructors and three helpers also of-

fered help upon request. The helpers’ goals were twofold: 1) to get the camper on a

more productive path without giving them a solution and 2) to gather data about the

camper’s metacognitive awareness and problem solving strategies. To achieve these

goals, helpers provided assistance only when asked to do so, and they never provided

code.

When responding to a camper’s help request, helpers first asked the camper two

questions: 1) “Describe the problem in as much detail as you can” and 2) “What have

39

you tried so far?” Additionally, helpers asked the experimental group, “What problem

solving stage do you think you are in? (The help request prompts, the third part of our

intervention). After these questions, the helpers provided assistance. Next, the helpers

recorded detailed observations about the problem(s) the camper had encountered and

the assistance provided. At the end of each day, helpers transcribed their notes, elabo-

rating on details they did not capture previously. To practice, the helpers also trained

in a 3-day pilot camp.

To provide context-sensitive problem solving prompts to the experimental group

(the fourth part of our intervention), we implemented the Idea Garden [Cao et al. 2011,

Cao et al. 2012, Cao et al. 2013, Cao et al. 2014, Jernigan et al. 2015] in a panel of the

Cloud9 IDE (see Figure 7, main). The Idea Garden prototype for Cloud9 had many

similarities to the Gidget version, but it differed in order to fulfill the principles and

create an interaction design more cohesive with Cloud9. We reinforced the problem

solving stages by housing the Idea Garden’s 14 hints under headers corresponding to

the six stages.

The panel housing the hints helped fulfill P6.ContextSensitive and

P6.ContextFree; we highlighted hints that were relevant in context after users clicked

the . For every hint where it made sense, we included identifiers from user code in

the hint to fulfill P2-Relevance. Many hints had multiple sections that expanded, al-

lowing users with different P5-InformationProcessing styles to customize what infor-

mation they wanted to see. When campers triggered a programming anti-pattern, such

as forgetting to use the iterator in a for loop, the Idea Garden placed an icon on the

screen next to the problematic line of code (Figure 7, callout). If the camper then

clicked on the icon, the titles of hints relevant to the problem became highlighted.

Data Collection

At the end of each camp day, campers completed an end-of-day survey. To learn

about the campers’ metacognitive awareness during the camps, we adapted the tech-

niques of [Whitebread et al. 2009, Sperling et al. 2002], asking campers to reflect on a

difficult task and respond to the survey question “How did you solve this problem? If

you didn’t solve it, what did you try?”

40

To measure campers’ programming self-efficacy, we adapted the scale by [Askar

and Davenport 2009] to fit web development tasks. The eight survey prompts were on

a 5-point Likert scale and featured statements such as “I can write syntactically correct

JavaScript statements”, “I can complete a programming project even if I only have the

documentation for help.”, and “When I get stuck I can find ways of overcoming the

problem.”

To measure campers’ growth mindset, we used previous programming aptitude

mindset measures of [Scott and Ghinea 2014]. The three survey prompts were also on

a 5-point Likert scale and included the statements “I do not think I can really change

my aptitude for programming.”, “I have a fixed level of programming aptitude, and

not much can be done to change it.”, and “I can learn new things about software de-

velopment, but I cannot change my basic aptitude for programming.”

To measure productivity, helpers saved the campers’ source code at the end of

each camp session. We also captured the experimental group’s use of the Idea Garden,

modifying a Cloud9 event logging mechanism to report Idea Garden interactions like

opening a hint. The experimental group’s end-of-day surveys included three questions

about how campers used the Idea Garden as a resource.

41

STUDY #3 RESULTS

We begin by briefly summarizing the effects of the treatment on metacognitive

awareness, productivity, self-efficacy, and growth mindset. These measures are out-

side the scope of this thesis because the Idea Garden does not explicitly target helping

users in these ways, but we present them here to explain how the campers were affect-

ed by the intervention. Next, we present the effects of the treatment on campers’ barri-

ers and help requests. Finally, we give a qualitative description of the campers’ experi-

ences and outcomes to give context to our results. We make no attempt to tease apart

the effects of individual intervention elements (like the Idea Garden) because the in-

tervention is intended to include all those elements at once, so the results presented

represent the effect of all intervention elements combined.

Summary of treatment results beyond the scope of this thesis

Briefly, Study #3’s overall results were: (1) Metacognitive awareness: campers in

the experimental group were significantly more likely to write a description of a prob-

lem solving strategy than the control group in their end-of-day survey responses. (2)

Productivity: the two groups completed similar amounts of project tasks, but the ex-

perimental group completed significantly more self-initiated tasks than the control

group. (3) Self-efficacy: the experimental group had a significantly higher increase in

self-efficacy than the control group over the course of the camp. Also, all female

campers in the experimental group reported positive self-efficacy, whereas males and

control group females did not all report positive self-efficacy. (4) Growth mindset: the

control group had a significantly larger erosion of growth mindset than the experi-

mental group over the course of the camp. These results suggest that the combination

of the four interventions made a positive impact on the campers.

Differences between treatments in barriers and help requested

 Our instruction aimed to help campers be more aware of their current problem

solving state, and therefore more capable of evaluating their strategies. Therefore, we

predicted that the experimental group would be more independent and make more

progress before requiring help than the control group. For example, if a camper in the

implementing a solution stage struggled with getting some JavaScript to work, the re-

42

peated exposure to the paper handout, the help request prompts, and the Idea Garden

might remind them to search for an alternative solution, think of other similar prob-

lems they had solved before, or re-evaluate their understanding of the problem.

To detect this possible change in help requests, we classified the notes on each

help request using a previously reported coding scheme on programming learning bar-

riers [Ko et al. 2004]. We list the six barriers in Table 12, showing examples from

campers.

Barrier

Definition from

[Ko et al. 2004]

Representative Quote from

Camper

C
o
n

tr
o
l

E
x
p

er
i-

m
en

ta
l

Design Did not know how to

approach solving a

problem.

“I’m incredibly lost. I think I’m

on task 4?” ‒ camper C92
9% 6.7%

Selection Had an approach, but

did not know what

language or API

features to use.

“How can I get the title a

different color?” ‒ camper C95
27.8% 21.3%

Use Had a language or API

feature, but did not

know how to use it.

“I’m kind of confused on how to

write an if statement to display

the pictures...if the tab is

PhotoGallery” ‒ camper E42

34.4% 37.3%

Coordination Did not know how to

use two or more

language or API

features together.

“This is no longer working.

They were separately, but I

tried combining them and it

doesn’t” ‒ camper C89

4.2% 3.2%

Understanding Observed a failure and

did not have guesses

about why it was

failing.

“I added this photo code to my

webpage and now my buttons

don’t work” ‒ camper E37

23.8% 28.8%

Information Had a guess about

why a failure

occurred, but could

not get information to

confirm it.

“I’m using getElementByID

here in the HTML, but it keeps

evaluating to this ‘else’ so I

know it’s not working” ‒

camper E50

0.8% 2.7%

Table 12: Each row defines the barrier and gives an example from a help request,

along with the percent of each type of barrier reported by each condition in their help

requests. Highlighted red cells indicate the control group had the higher of the two

proportions, and green cells indicate the experimental group had the higher proportion.

Two researchers coded the helper observations from camper help requests. They

43

reached 88.75% agreement on 20% of the data and then coded the rest separately. The

helper to camper ratio (1:5) in each camp constrained the amount of requests (289 re-

quests in the control, and 309 in the experimental), so we focused on analyzing the

relative proportion of different types of requests.

As shown in the two rightmost columns of Table 12, the proportion of help request

types varied significantly by condition (X2=11.087, df=5, p=0.049). Campers in the

control group requested assistance with design and selection barriers more often (de-

vising a solution to a problem and identifying programming language and API con-

structs to implement it). In contrast, the experimental group requested more help with

understanding and information barriers (how to debug their implementations). Though

the difference in proportions of help request types was not large, it appears that camp-

ers in the experimental group were more likely to select a solution and implement it

independently, allowing them to progress all the way to evaluation before requiring

debugging help.

 Furthermore, we investigated if one group relied more heavily on the instructor

and helpers by checking the correlations between campers’ help requests and total

productivity scores. We found that the experimental group showed no significant asso-

ciation between help requests and productivity (Pearson: r(23)=0.278, p=0.179),

whereas the control group did have a significant association (Pearson: r(21)=0.467,

p=0.025). This suggests that the control group not only encountered early stage barri-

ers more often, but also relied more on the helpers to complete their work.

Camper experiences

Those results make it clear that campers had differing experiences between the two

groups. Next, we discuss campers from both treatments, our observations of them, and

their camp data to look at those differences. Recall that we refer to campers with a let-

ter indicating their group followed a unique number (e.g. E27 is an experimental

camper and C75 a control).

Camper C87 (an 11th grade male) earned a productivity score of 16, at about the

20th percentile in the control group. He completely avoided tasks requiring JavaScript,

instead focusing on content. He never created a React component and only requested

44

assistance from helpers with CSS and HTML. Despite this, he showed enthusiasm for

the content he created resulting in a distinctive, personal, and expressive site.

Camper E50 (a 9th grade male) earned a productivity score of 40, the 20th percen-

tile in the experimental group. He focused primarily on simple content changes, but he

at least tried the most challenging task (the photo gallery in Table 11). He worked in-

dependently and tried to use the Idea Garden, but reported: “I tried looking at [the map

hint] and it wasn't really useful”. He encountered many early stage learning barriers as

well, saying things like “I don't know where to start. I did display a photo, but I don't

know how to create a component.” Throughout the camp, he demonstrated persistence,

but avoided many tasks.

The control group also contained productive campers, such as campers C91 (10th

grade male, 206 productivity) and C92 (11th grade male, 214 productivity), who

earned the highest scores in the control group. These two campers worked together

many times to make progress, but bailed on problems when they couldn’t figure it out

together, instead turning to helpers with a defeated attitude. For example, camper C91

said, “Tell me what's wrong here because I'm not going to bother figuring out what's

going on,” showing how quickly he gave up on solving problems independently.

Camper E40 (a 12th grade male) earned a 321 productivity score, the second high-

est among all campers (we don’t discuss camper E51’s score of 347 because he had

prior programming experience and didn’t require much help). Camper E40 used all the

resources at his disposal to proceed, discussing his problem solving activities with

helpers and interacting frequently with the Idea Garden. On day 3, he read the iteration

hints about for, for-in, and map and later asked for help iterating over his list of photos

with a map function. On day 5, camper E40 said that the Idea Garden gave him new

tactics: “yeah, it told me to try using a map function or a for-in loop and im [sic] try-

ing to get them to work.” On day 6, helpers recorded two observations of him success-

fully using iteration without much help.

45

CONCLUSION

The results from Studies #1, #2, and #3 suggest the Idea Garden’s generality in

several ways.

First, Table 13 summarizes Study #2’s evidence of each principle and its compo-

nent parts. One way to view the results about these principles is in how they tease

apart what each principle adds to supporting a diversity of EUPs’ problem-solving sit-

uations.

P1-Content: Teams’ successes across a variety of concepts (Table VII) serve to vali-

date the concept aspect of P1; minipatterns were especially involved in teams’ suc-

cess rates with Coordination barriers; and strategies are discussed in P3 below. To-

gether, these aspects enabled the teams to overcome, without any in-person help,

41%-68% of the barriers they encountered across diverse barrier types.

P2-Relevance and P6-Availability, in working together to make available relevant,

just-in-time hints, afforded teams several different ways to use the to make pro-

gress. This suggests that following Principles P2 and P6 can help support diverse

EUP problem-solving styles.

P3-Actionable’s explicit vs. implicit approaches had different strengths. Teams tended

to use explicitly actionable instructions (e.g., “Indent...”) to translate an idea into

code, at the Bloom’s taxonomy “apply” stage. In contrast, teams seem to follow im-

plicitly actionable instructions more conceptually and strategically (“recall how

you...”), as with Bloom’s “analyze” stage. This suggests that the two aspects of P3-

Actionable can help support EUPs’ learning across multiple cognitive process stag-

es.

P5-InformationProcessing: P5 requires supporting both the comprehensive and selec-

tive information processing styles, as per previous research on gender differences in

information processing. The teams used both of these styles, mostly aligning by

gender with the previous research. This suggests that following P5-

InformationProcessing helps support diverse EUP information processing styles.

46

Table 13: Summary of principle-by-principle evaluations.

+: Principle was helpful, -: Principle was problematic.

*:Teams progressed in the majority (>=50%) of their barriers with these Idea Garden

principles.

Principle Ways Formative

Evidence

Summative

Evidence

P1-Content +Study1 +Study2*

P2-Relevance

P2-All -[Cao et al.

2012]

P2.1-MyCode +Study2*

P2.2-MyState +Study1 +Study2*

P2.3-MyRequirements +Study1

P3-Actionable
P3.1-ExplicitlyActionable +Study2*

P3.2-ImplicitlyActionable +Study2*

P4-Personality +[Lee and Ko

2011]

P5-InformProc +[Meyers-

Levy 1989]

+Study2*

P6-Availability
P6.1-ContextFree +,-Study1 +Study2*

P6.2-ContextSenstive +Study1 +Study2*

P7-Interruption Style +[Robertson et

al. 2004]

Second, Study #2 showed the teams learned enough programming in only about 5

hours to begin building their own game levels comparable to those created in a prior

study of Gidget [Lee et al. 2014]. However, unlike the prior study, they accomplished

these gains with significantly less in-person help than in the previous study.

Third, previous research [Cao et al. 2011, Cao et al. 2012, Cao et al. 2013, Cao et

al. 2014, Cao 2013] together with this thesis and [Jernigan et al. 2015] show that the

Idea Garden can be implemented in multiple environments. This thesis also presented

the generalized architecture used in Study #3 that could help facilitate future imple-

mentations.

Finally, Study #3 showed that campers in the experimental group (who had access

to the Idea Garden and problem solving instruction) did not depend on the helpers, but

the control group did. The experimental group also advanced further in their problems

47

than the control group before requiring help. Campers from both Study #2 and Study

#3 showed that the Idea Garden and its principles help support independent work

across diverse environments and tasks.

These promising results from Studies #1, #2, and #3 suggest the effectiveness of

the Idea Garden’s principles and support for different contexts in helping EUPs solve

the programming problems that get them “stuck”—across a diversity of problems, in-

formation processing and problem-solving styles, cognitive stages, environments,

tasks, and people.

48

BIBLIOGRAPHY

[Andersen and Mørch 2009] Andersen, R. and Mørch, A. Mutual development: A

case study in customer-initiated software product development. End-User

Development, (2009), 31-49.

[Anderson et al. 2001] Anderson, L. (Ed.), Krathwohl, D. (Ed.), Airasian, P.,

Cruikshank, K., Mayer, R., Pintrich, P., Raths, J., Wittrock, M. A Taxonomy for

Learning, Teaching, and Assessing: A revision of Bloom’s Taxonomy of

Educational Objectives (Complete edition). Longman. (2001)

[Askar and Davenport 2009] Askar, P. and Davenport, D. 2009. An investigation of

factors related to self-efficacy for Java programming among engineering students.

Online Submission 8, 1. http://eric.ed.gov/?id=ED503900.

[Brandt et al. 2010] Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer, S.

Example-centric programming: Integrating web search into the development

environment. In Proc. CHI 2010, ACM (2010), 513-522.

[Bransford et al. 1999] Bransford, J., Brown, A., Cocking, R. (Eds), How People

Learn: Brain, Mind, Experience, and School, National Academy Press, 1999.

[Burnett et al. 2011] Burnett, M., Beckwith, L., Wiedenbeck, S., Fleming, S., Cao, J.,

Park, T., Grigoreanu, V., Rector, K. Gender pluralism in problem-solving

software. Interacting with Computers. 23 (2011), 450–460.

[Cao 2013] Jill Cao. 2013. Helping End-User Programmers Help Themselves - The

Idea Garden Approach. Ph.D Dissertation. Oregon State University, Corvallis,

OR.

[Cao et al. 2014] Cao, J., Fleming, S., Burnett, M., Scaffidi, C. Idea Garden: Situated

support for problem solving by end-user programmers. Interacting with

Computers, 2014. (21 pages)

[Cao et al. 2011] Cao, J., Fleming, S. D., and Burnett, M., An exploration of design

opportunities for ‘gardening’ end-user programmers’ ideas, IEEE VL/HCC

(2011), 35-42.

[Cao et al. 2013] Cao, J., Kwan, I., Bahmani, F., Burnett, M., Fleming, S., Jordahl, J.,

Horvath, A. and Yang, S. End-user programmers in trouble: Can the Idea Garden

help them to help themselves? IEEE VL/HCC, 2013, 151-158.

[Cao et al. 2012] Cao, J., Kwan, I., White, R., Fleming, S., Burnett, M., and Scaffidi,

C. From barriers to learning in the Idea Garden: An empirical study. IEEE

VL/HCC, 2012, 59-66.

[Carroll and Rosson 1987] Carroll, J. and Rosson, M. The paradox of the active user.

Interfacing Thought: Cognitive Aspects of Human-Computer Interaction, MIT

Press. 1987.

[Carroll 1990] Carroll, J. The Nurnberg Funnel: Designing Minimalist Instruction for

Practical Computer Skill. 1990.

[Costabile et al. 2009] Costabile, M., Mussio, P., Provenza, L., and Piccinno, A.

Supporting end users to be co-designers of their tools. End-User Development,

Springer (2009), 70-85.

[Cypher et al. 2010] Cypher, A., Nichols, J., Dontcheva, M., and Lau, T. No Code

Required: Giving Users Tools To Transform the Web, Morgan Kaufmann. 2010.

49

[Diaz et al. 2010] Diaz, P., Aedo, I., Rosson, M., Carroll, J. (2010) A visual tool for

using design patterns as pattern languages. In Proc. AVI. ACM Press 2010. 67–

74.

[Dorn 2011] Dorn, B. ScriptABLE: Supporting informal learning with cases, In Proc.

ICER, ACM, 2011. 69-76.

[Grigoreanu et al. 2010] Grigoreanu, V., Burnett, M., Robertson, G. A strategy-

centric approach to the design of end-user debugging tools. ACM CHI, (2010),

713-722.

[Grigoreanu et al. 2012] Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J.,

Rector, K., Kwan, I. End-user debugging strategies: A sensemaking perspective.

ACM TOCHI 19, 1 (2012), 5:1-5:28.

[Gross et al. 2010] Gross, P., Herstand, M., Hodges, J., and Kelleher, C. A code reuse

interface for non-programmer middle school students. ACM IUI 2010. 2010. 219-

228.

[Guzdial 2008] Guzdial, M. Education: Paving the way for computational thinking.

Comm. ACM 51, 8 (2008), 25–27.

[Hundhausen et al. 2009] Hundhausen, C., Farley, S., and Brown, J. Can direct

manipulation lower the barriers to computer programming and promote transfer of

training? An experimental study. ACM TOCHI 16, 3 (2009), Article 13.

[Jernigan et al. 2015] Jernigan, W., Horvath, A., Lee, M., Burnett, M., Cuilty, T.,

Kuttal, S., Peters, A., Kwan, I, Bahmani, F., Ko, A. 2015. A principled evaluation

for a principled Idea Garden. IEEE VL/HCC 2015, to appear.

[Kelleher and Pausch 2006] Kelleher, C. and Pausch, R. Lessons learned from

designing a programming system to support middle school girls creating animated

stories. IEEE VL/HCC (2006). 165-172.

[Kelleher and Pausch 2005] Kelleher, C. and Pausch, R. Stencils-based tutorials:

design and evaluation. ACM CHI, 2005, 541-550.

[Ko et al. 2004] Ko, A., Myers, B., and Aung, H.. Six learning barriers in end-user

programming systems. IEEE VLHCC 2004, 199-206.

[Kumar et al. 2011] Kumar, R., Talton, J., Ahmad, S., and Klemmer, S. Bricolage:

Example-based retargeting for web design. ACM CHI, 2011. 2197-2206.

[Lee and Ko 2011] Lee, M. and Ko, A. Personifying programming tool feedback

improves novice programmers' learning. In Proc. ICER, ACM Press (2011), 109-

116.

[Lee et al. 2014] Lee, M., Bahmani, F., Kwan, I., Laferte, J., Charters, P., Horvath,

A., Luor, F., Cao, J., Law, C., Beswetherick, M., Long, S., Burnett, M., and Ko,

A. Principles of a debugging-first puzzle game for computing education. IEEE.

VL/HCC 2014, 57-64.

[Little et al. 2007] Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., and Kandogan, E.

Koala: Capture, share, automate, personalize business processes on the web. ACM

CHI 2007, 943-946.

[Loksa et al. 2016] Loksa, D., Ko, A., Jernigan, W., Oleson, A., Mendez, C., Burnett,

M. Programming, Problem Solving, and Self-Awareness: Effects of Explicit

Guidance. ACM CHI 2016, under review.

50

[Meyers-Levy 1989] Meyers-Levy, J., Gender differences in information processing:

A selectivity interpretation, In P. Cafferata and A. Tubout (eds.), Cognitive and

Affective Responses to Advertising, Lexington Books, 1989.

[Myers et al. 2004] Myers, B., Pane, J. and Ko, A. Natural programming languages

and environments. Comm. ACM 47, 9 (2004), 47-52.

[Nardi 1993] Nardi, B. A Small Matter of Programming, MIT Press (1993).

[Oney and Myers 2009] Oney, S. and Myers, B. FireCrystal: Understanding

interactive behaviors in dynamic web pages. IEEE VL/HCC (2009), 105-108.

[Pane and Myers 2006] Pane, J. and Myers, B. More natural programming languages

and environments. In Proc. End User Development, Springer (2006), 31-50.

[Sperling et al. 2002] Sperling, R., Howard, B., Miller, L., and Murphy, C. 2002.

Measures of children's knowledge and regulation of cognition. Contemporary

educational psychology 27, 1: 51-79.

[Robertson et al. 2004] Robertson, T., Prabhakararao, S., Burnett, M., Cook, C.,

Ruthruff, J., Beckwith, L., and Phalgune, A. Impact of interruption style on end-

user debugging. ACM CHI (2004), 287-294.

[Scott and Ghinea 2014] Scott, M., and Ghinea, G. 2014. On the domain-specificity

of mindsets: The relationship between aptitude beliefs and programming practice.

IEEE Transactions on Education, 57, 3: 169-174.

[Tillmann et al. 2013] Tillmann, N., De Halleux, J., Xie, T., Gulwani, S., and Bishop,

J. Teaching and learning programming and software engineering via interactive

gaming. ACM/IEEE International Conference on Software Engineering, 2013,

1117-1126.

[Turkle and Papert 1990] Turkle, S. and Papert, S. Epistemological Pluralism. Signs

16(1), 1990.

[Whitebread et al. 2009] Whitebread, D., Coltman, P., Deborah Pino Pasternak,

Sangster, C., Grau, V., Bingham, S., Almeqdad, Q., and Demetriou, D. 2009. The

development of two observational tools for assessing metacognition and self-

regulated learning in young children. Metacognition and Learning 4, 1: 63-85.

51

APPENDICES

52

Appendix A: Idea Garden Hints in Gidget

Conditions

53

Events (collapsed)

54

Events (expanded)

55

Functions (collapsed)

56

Functions (expanded)

57

Conditional Statements (collapsed)

58

Conditional Statements (expanded)

59

Iteration (collapsed)

60

Iteration (expanded)

61

Lists

Objects (collapsed)

62

Objects (expanded)

63

Appendix B: Idea Garden Hints in Cloud9

The Idea Garden Panel

Reinterpret Problem Prompt: Divide and Conquer

64

Search for Solutions: Working Backwards (Collapsed)

Search for Solutions: Working Backwards (Expanded)

65

Implementation of Solution: Conditional Statements (Collapsed)

66

Implementation of Solution: Conditional Statements (Expanded)

67

Implementation of Solution: Events (Collapsed)

68

Implementation of Solution: Events (Expanded)

69

Implementation of Solution: Functions (Collapsed)

70

Implementation of Solution: Functions (Expanded)

71

Implementation of Solution: Iteration with For (Collapsed)

Implementation of Solution: Iteration with For (Expanded)

72

Implementation of Solution: Iteration with For-In (Collapsed)

Implementation of Solution: Iteration with For-In (Expanded)

73

Implementation of Solution: Iteration with Map (Collapsed)

74

Implementation of Solution: Iteration with Map (Expanded)

75

Implementation of Solution: Iteration with While (Collapsed)

76

Implementation of Solution: Iteration with While (Expanded)

77

Implementation of Solution: Lists (Collapsed)

Implementation of Solution: Lists (Expanded)

78

Implementation of Solution: Objects (Collapsed)

Implementation of Solution: Objects (Expanded)

79

Implementation of Solution: Variables

Evaluation of Implementation: Can it work better with Functions?

80

Evaluation of Implementation: Can it work better with Iteration? (Collapsed)

Evaluation of Implementation: Can it work better with Iteration? (Expanded)

81

