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This thesis presents a novel approach for propagation of uncertainty in river systems.

Errors in data observations and predictions (e.g., stream inflows), in model parameters,

and resulting from the discretization of continuous systems, all point to the need to ac-

curately quantify the amount of uncertainty carried through the modeling process. In

the proposed framework, stochastic processes are incorporated directly into the physical

description of the system (e.g., river flow dynamics) with the goal of better modeling

uncertainties (both aleatoric and epistemic) and hence, reducing the ranges of the con-

fidence intervals on quantities of interest. We represent uncertainty in stream inflows

via an error term modeled as a stochastic process. Stochastic collocation is then used

to discretize random space. This non-intrusive approach is both more efficient than

Monte-Carlo methods and is as flexible in its application. The flow dynamics are simu-

lated efficiently using the performance graphs approach implemented in the OSU Rivers

model. For one-dimensional unsteady flow routing, the performance graph (PG) ap-

proach has been shown to be accurate, numerically efficient, and robust. The Hydraulic

Performance Graph (HPG) of a channel reach graphically summarizes the dynamic re-

lation between the flow through and the stages at the ends of the reach under gradually

varied flow (GVF) conditions, while the Volumetric Performance Graph (VPG) sum-

marizes the corresponding storage. The hydraulic routing for the entire system consists

of dividing the river system into reaches and pre-computing the hydraulics for each of



these reaches independently using a steady flow model. Then, a non-linear system of

equations is solved that is assembled based on information summarized in the systems’

performance graphs, the reach-wise equation of conservation of mass, continuity and

water stage compatibility conditions at the union of reaches (nodes), and the system

boundary conditions. For complex flows in river systems such as when there is flow over

floodplains, the dynamic relation between water stages and flow in a river reach is best

represented by depth averaged two-dimensional hydrodynamic models. The applicability

of two-dimensional flow modeling for the construction of PGs for unsteady flow routing

in complex river networks is explored. To illustrate application of the uncertainty prop-

agation framework and PGs derived from two-dimensional flow models, a test case is

presented that examines uncertainty quantification and flood routing through a complex

section of the Fraser River in British Columbia.
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Chapter 1: Introduction

Uncertainties play a major role in the management of regulated river systems and if

unaccounted for, can lead to hydropower revenue losses, flooding events, or general inef-

fective management of water resources. In the case of operational decisions in regulated

river systems, (e.g. Columbia River Basin) strict socio-economic constraints require an

understanding of modeling uncertainties (e.g. stream inflows) and how they propagate

through the system. It is not sufficient to merely understand the magnitude of these

uncertainties, but it is also necessary to be able to quantify the sensitivity of the sys-

tem to the uncertainties in individual model parameters and forcings. In this thesis two

components of a larger project are covered, namely efficient unsteady hydraulic routing

and uncertainty propagation in river systems.

The Pacific Northwest has by far the largest fraction of hydropower use in the U.S.

(around 70%), most of which is produced at thirty federally owned dams (Payne et al.,

2004). These reservoirs serve many functions including flood protection, hydropower

generation, and recreation. Bonneville Power Administration (BPA) is the Northwest’s

federal marketer for Columbia River hydroelectric power. The BPA real-time opera-

tions planning group makes operational decisions based on projections and forecasts for

stream inflows and energy market pricing on an hourly to daily operational time frame.

For short-term operational problems, stream inflows may be generated from forecasting

models, in which case the primary source of uncertainty is the forecast error (Labadie,

2004). Based on uncertainty in the forecast inflows, it becomes necessary to quantify

the uncertainty for operation metrics (e.g. discharge, water stage) in a robust and ef-

ficient manner. In chapter 3, a novel uncertainty quantification framework is proposed

that correlates the response of the reservoir operation metrics to the uncertainty in the

forecast inflows, through dynamics of the river flow.

Open-channel flows in natural river systems are generally unsteady and non-uniform.

Spatial and temporal changes in flow discharge and water stages derive from precipitation

run-off, snow melt, reservoir operations in regulated river systems as well as many other

sources. Modeling of unsteady river hydraulics is achieved through discretizing and
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solving the conservation of mass and momentum equations. The Saint-Venant equations,

or dynamic-wave model, are one such pair of partial differential equations. No exact

analytic solution exists for the Saint-Venant equations (except for special cases) and

the developed numerical schemes must adhere to strict spatial and temporal criterion

to attain stability. However, despite the developed numerical schemes, robustness is

still a problem (González-Castro, 2000). For one-dimensional unsteady flow routing, the

performance graph (PG) approach has been shown to be accurate, numerically efficient,

and robust (Leon et al., 2013a). Chapter 2 in this thesis expands upon previous PG work

to utilize two-dimensional depth-averaged hydrodynamic simulations in the construction

of PGs for unsteady flow routing.

This thesis is presented in two major parts. The first part explores unsteady flow

routing utilizing performance graphs generated from two-dimensional hydrodynamic sim-

ulations and the second presents an uncertainty propagation framework for use in river

systems. The performance graph unsteady flow routing approach is used to represent

the river flow dynamics within the proposed uncertainty propagation framework. An

application of the proposed framework is illustrated through a test case that examines

uncertainty propagation and flood routing through a complex stretch of the Fraser River

in British Columbia.
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Chapter 2: Unsteady flow routing using Performance Graphs based

on two-dimensional hydrodynamic simulations
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2.1 Introduction

When considering optimization problems that involve river systems, hundreds or thou-

sands of simulations may be required for each operational decision (e.g., gate operations).

Depending on the operational time-scale, relevant hydraulic information throughout the

system may be required at a time resolution of an hour, or less (i.e. short-term opera-

tion) (Fleten and Kristoffersen, 2008). Hence, robust and numerically efficient hydraulic

routing methods are necessary.

A standard method for modeling unsteady flows in rivers is the application of the

Saint-Venant equations. The Saint-Venant equations are a set of non-linear, partial

differential equations that describe one-dimensional, unsteady open-channel flow. The

Saint-Venant equations consist of conservation of mass and momentum equations and

can be written as Equations (2.1) and (2.2), respectively (Leon et al., 2013a):

∂A

∂t
+
∂Q

∂x
= 0 (2.1)

1

g

∂V

∂t
+

∂

∂x

(
V 2

2g

)
+ cosθ

∂h

∂x
+ Sf − So = 0 (2.2)

where x = the distance along the channel; t = time, V = cross-sectional velocity; g =

acceleration due to gravity; h = flow depth normal to x; A = cross-sectional area; Q =

discharge; θ = angle between the channel bed and horizontal plane; So = bed slope; Sf

= friction slope. The five terms in momentum equation, Eq. (2.2), [from left to right]

represent the local and convective acceleration, pressure force, friction force, and gravity

force respectively.

Due to non-linear terms in the Saint-Venant equations (i.e. convective acceleration),

no exact analytic solution exists, except for special cases. Numerical methods used to

solve the one-dimensional Saint-Venant equations include the Method of Characteris-

tics, finite-difference, finite-element, and finite-volume schemes (Cunge et al. (1980) and

Chaudhry (2008)). Classic methods for solving the Saint-Venant equations are also pre-

sented in (Mahmood et al., 1975), (Abbott, 1979), (Cunge et al., 1980), (Chaudhry,

2008), and others. Despite the wide array of numerical methods available for solving the

Saint-Venant equations, the lack of robustness (e.g., instabilities) and accuracy issues

still poses a problem (Leon et al., 2013a).
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In an effort to address the issue of robustness and accuracy when solving the Saint-

Venant equations, there have been several studies and applications determining suitabil-

ity of simplified versions of the full Saint-Venant equations, or also called the dynamic

wave equation (e.g., Henderson, 1966; Tsai, 2003). Common approximations of the dy-

namic wave equation for use in unsteady flow routing include quasi-steady dynamic wave,

noninertia wave, and kinematic wave models. Each of the aforementioned models ex-

clude physical terms of the momentum equation, Eq. (2.2), to reduce computational

complexity. The quasi-steady dynamic wave approximation for example, includes all

terms in the full dynamic wave equation, Eq. (2.2), except for the local acceleration (i.e.
∂V
∂t ). Details for selection criteria to determine applicability of each approximation to

unsteady flow routing can be found in (Ponce et al., 1978; Tsai, 2003).

A relatively new method for hydraulic routing of unsteady, open-channel flows utilizes

Hydraulic performance graph (HPG) theory (Yen and González-Castro, 2000; González-

Castro, 2000). HPGs summarize the dynamic relationship between the water depths, or

stages, at the upstream and downstream ends of a channel reach for a range of specified

discharges. This family of channel delivery curves, or hydraulic performance curves

(HPCs) (Bakhmeteff, 1932), stores precomputed solutions to the gradually varied flow

(GVF) profiles for each reach, through all possible operating conditions. The theory

of HPGs was further improved by Ben Chie Yen’s research group at the University of

Illinois at Urbana-Champaign. HPGs have since been applied to various open channel

hydraulic studies such as:

1. hydraulic performance of floodplain channels under pre- and post-breached levee

conditions (González and Yen, 1996)

2. carrying capacity assessment of channel systems in series (Yen and González-

Castro, 2000)

3. applicability of Hydraulic Performance Graphs to unsteady flow routing in channels

and channels in series (González-Castro, 2000)

4. theoretical development of discharge ratings based on the hydrodynamics of un-

steady and nonuniform flows (Schmidt, 2002)

5. unsteady flow routing in sewers maintaining mass conservation by pre-computing
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the reach volume for each HPG flow condition, and storing as Volumetric Perfor-

mance Graphs (VPGs) (Hoy and Schmidt, 2006a)

6. flood control coupling HPG/VPG unsteady flow routing and NSGA-II optimization

(Leon et al., 2013b)

7. unsteady flow routing in looped and dendritic open-channel networks (Leon et al.,

2013a)

8. pressurized and supercritical flows in a combined sewer system optimization model

(Zimmer et al., 2013)

Unsteady open-channel flow routing is achieved in this paper utilizing the perfor-

mance graph (PG) approach applied to dendritic and looped networks as presented in

(Leon et al., 2013a). HPGs summarize the discharge capacity of an open channel as a

function of the downstream water surface elevation (Yen and González-Castro, 2000),

and accounts for the conservation of momentum, Eq. (2.2). VPGs summarize the corre-

sponding channel reach volume for each HPG flow scenario, accounting for conservation

of mass, Eq. (2.1). HPGs and VPGs are then accessed as look-up tables rather than

performing repetitive backwater calculations, and can be used to simulate unsteady flows

through dendritic and looped networks. Given that the hydraulics of each reach are pre-

computed, the PG approach results in a robust and computationally efficient tool for

analyzing unsteady river flows.

Even though HPGs were used in a wide array of applications, the use of two-

dimensional (2D) hydrodynamic models for the construction of PGs for unsteady flow

routing has not yet been investigated. In a river system with complex flow features, a

two-dimensional model is better suited to capture and represent two-dimensional flow

structures (e.g. horizontal eddies). This paper explores the use of a depth averaged

two-dimensional (2D) hydrodynamic model for the construction of PGs and their ap-

plication to unsteady flow routing. The model utilized for PG unsteady flow routing is

OSU-Rivers, the Oregon State University unsteady routing model (Leon et al., 2013a).

The two-dimensional performance graphs (2D-PGs) are later applied to a test section of

the Fraser River in British Columbia.
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2.2 Hydraulic Performance Graphs

The following describes the basic procedure required to create a HPG, adapted from

(González-Castro and Yen, 2000).

1. Divide the river system into reaches, making sure that the flow is near one-

dimensional at the ends of each reach.

2. Determine the ranges of water depth, or water stages, to be considered at the reach

ends.

3. Determine and plot the Z-line which is composed of water surface elevation pairs

representing a horizontal water level (i.e. WSEds = WSEus). Where WSE =

water surface elevation and subscripts ds and us refer to downstream and upstream

ends of a reach respectively.

4. For mild-sloped channels with M1- or M2- type backwater profiles:

(a) Select a constant discharge value (Q)

(b) Set the downstream boundary condition to a fixed water stage, WSEds

(c) Compute the backwater profile using a gradually varied flow (GVF) model to

obtain upstream water stage, WSEus

(d) Store resulting upstream water stage value, where WSEus = f(WSEds, Q)

5. Repeat steps 1 through 3 until adequate resolution is achieved

For further details about the HPG and VPG generation the reader is referred to

(González-Castro, 2000), (Hoy and Schmidt, 2006a) and (Leon et al., 2013a).

2.3 Governing Equations

The open source TELEMAC-2D (Galland et al., 1991; Hervouet, 2007) model was used

to build the 2D-PGs. TELEMAC-2D uses finite-element and finite-volume methods to

solve the two-dimensional depth-averaged free surface flow equations (also known as the

shallow water or 2D Saint-Venant equations) in non-conservative depth-velocity form

(Hervouet, 2007). Finite-element methods are used in this study. TELEMAC-2D solves

the following equations:
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Continuity Equation:
∂h

∂t
+
∂(hVx)

∂x
+
∂(hVy)

∂y
= 0 (2.3)

x-momentum direction:

∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

= −g∂Zs
∂x

+ Fx +
1

h
5 ·[hνT

−→
5(Vx)] (2.4)

y-momentum direction:

∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

= −g∂Zs
∂y

+ Fy +
1

h
5 ·[hνT

−→
5(Vy)] (2.5)

The Fx and Fy source terms represent the force induced by boundary friction, where

the depth averaged volume force in terms of Manning coefficient, n, is given by:

x-direction:

Fx = − 1

cosθ

gn2

h4/3
Vx

√
V 2
x + V 2

y (2.6)

y-direction:

Fy = − 1

cosθ

gn2

h4/3
Vy

√
V 2
x + V 2

y (2.7)

Where t = time; x and y = horizontal Cartesian coordinates; h = flow depth; Vx and Vy

= depth-averaged flow velocities in x and y directions respectively; Zs = water surface

elevation; g = gravitational acceleration; θ = angle between the channel bed and longi-

tudinal plane; νT = turbulent viscosity.

Various turbulence closure schemes are implemented in TELEMAC-2D. An extended

k − ε turbulence model is used herein. Due to the non-uniform vertical velocity profile,

dispersion terms result when depth-integrating the Reynold’s averaged Navier-Stokes

equations (Hervouet, 2007). TELEMAC-2D employs an extension to the classical k − ε
model that addresses these dispersion terms through source/sink terms in the transport

equations (Rastogi and Rodi, 1978; Rodi, 1993). The k−ε model describes the turbulent

viscosity as a function of the turbulent kinetic energy (k) and rate of dissipation (ε):

νT = cµ
k2

ε
(2.8)

where cµ is an emperically derived constant typically equal to 0.09 (Launder and Spald-
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ing, 1974). Transport of the turbulent kinetic energy and its dissipation are expressed

as (Hervouet, 2007):

∂k

∂t
+ Vi

∂k

xi
=

1

h
5
(
h
νT
σk

−→
5(k)

)
+ P − ε+ Pkv (2.9)

∂ε

∂t
+ Vi

∂ε

xi
=

1

h
5
(
h
νT
σε

−→
5(k)

)
+
ε

k
(C1εP − C2εε) + Pεv (2.10)

where turbulent kinetic energy production, P , is calculated by horizontal velocity gradi-

ents shown in tensorial form (e.g. indices i and j = 1,2):

P = νT

(
∂Vi
∂xj

+
∂Vj
∂xi

)
∂Vi
∂xj

(2.11)

Pkv and Pεv are source terms due to shear force of flow along the vertical plane:

Pkv = Ck
V∗3

h and Pεv = Cε
V∗4

h2

In these formulae:

Ck = 1√
Cf

and Cε = 3.6
C2ε

√
Cµ

C
3
4
f

where Cf = dimensionless friction coefficient (in our case, Manning’s n); V∗ = shear

velocity (or friction velocity) and σk, σε, C1ε, C2ε represent closure coefficients for the

standard k− ε model; the closure coefficients are typically assumed to take values of 1.0,

1.3, 1.44, and 1.92, respectively (Launder and Spalding, 1974). Cε and Ck are determined

on the basis of normal flow in the center of a rectilinear fluvial channel (Hervouet, 2007).

Cf = gn2/h1/3

2.4 Suitability of two-dimensional hydrodynamics models for the

construction of PGs

It is recalled that the PG approach is based on the one-dimensional steady gradually

varied flow approximation of the Saint-Venant equation (González-Castro, 2000). This
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is equivalent to the so-called quasi-steady dynamic wave approximation which for a near

horizontal channel is given by (e.g., González-Castro, 2000)

V

g

∂V

∂x
+
∂h

∂x
− (So − Sf ) = 0, (2.12)

Since the flow is steady, V and h are a function of x only and hence the partial

derivatives in Equation (2.12) can be replaced with total derivatives. The resulting

equation can be discretized as

1

2g

∆V 2

∆x
+

∆h

∆x
−
(
− ∆z

∆x
−
hf
∆x

)
= 0, (2.13)

By eliminating ∆x in Equation (2.13) and applying this equation between two consecu-

tive sections 1 and 2 (1 is upstream of 2) gives

h1 +
U2

1

2g
+ z1 = h2 +

U2
2

2g
+ z2 + hf (2.14)

The energy equation in integral form for a control volume CV bounded by a control

surface CS can be written as (e.g., Kleinstreuer, 1997)

Q̇+ Ẇshear =
∂

∂t

∫ (
u+

∣∣∣~U2
∣∣∣

2
+ gz

)
ρdV +

∫
cs

(
u+

p

ρ
+

∣∣∣~U2
∣∣∣

2
+ gz

)
ρ~U · ~ndA, (2.15)

where u is the internal energy, ~U2/2 is the kinetic energy and gz is the potential energy,

p is pressure, ρ is density, g is the acceleration of gravity, A is area, n is the unit normal

vector to the control surface, Q̇ is the rate of heat added on system, Ẇshear is the shear

work done on system. For a steady flow the first term of the right hand side is zero. In

addition, for uniform flow properties at the inlet (section 1) and outlet (section 2) [see

Figure 2.1] with control sections normal to the local flow direction, Equation (2.15) can

be reduced to (e.g., Kleinstreuer, 1997):

p1

ρ1
+

∣∣∣~U2
1

∣∣∣
2

+ gz1 =
p2

ρ2
+

∣∣∣~U2
2

∣∣∣
2

+ gz2 +

[
u2 − u1 −

Q̇

ṁ
− Ẇshear

ṁ

]
(2.16)

where ṁ is the mass flow rate. The term in square brackets in Equation (2.16) is the
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total head loss and hence, this equation can be written as (e.g., Kleinstreuer, 1997)

h1 +
U2

1

2g
+ z1 = h2 +

U2
2

2g
+ z2 + hloss (2.17)

which is the typical representation of the energy equation. Note in Equation (2.16) that

uniform flow properties need to be insured only at the inlet and outlet of the control

section. The reader can notice that Equations (2.14) and (2.17) are the same and hence

it is expected that one and higher-order gradually varied flow models are suitable for

constructing PGs.

U

n

Control
volume

U

n

Eddies

Near one-dimensional flowNear one-dimensional flow

2

1

Flow does not need to be one-dimensional

Figure 2.1: Control volume representation within a 2D-PG reach; ~n and ~U represent the

outward normal and velocity vectors, respectively

2.5 Fraser River Application

For demonstration purposes, the OSU-Rivers model, using 2D-PGs, is applied to the

Fraser River near Vancouver, British Columbia. By volume, the Fraser River is the

largest river in British Columbia and the fifth largest in Canada. Fraser River is also the

tenth longest river in Canada, flowing with a length of 1,375 kilometers. The Fraser River

test section extends from 500 meters downstream of the Patullo Bridge in Vancouver,



12

Canada, to approximately 6.5 kilometers upstream. As shown in Fig. (2.2), the river

reach consists of a branching flow around an island with a guiding dike upstream of

the island. Because of the complex bathymetry of the river around the island, and

it’s associated flow, two-dimensional PGs will be used to summarize the hydraulics and

corresponding head-losses.

 

Flow 

Image © 2013 DigitalGlobe 

Figure 2.2: Fraser River test case: 6.5 Kilometer river section neighboring New West-

minster, British Columbia (flow is from right to left)
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Table 2.1: Reach characteristics of Fraser River test case

Reach Upstream Downstream Length zu zd

ID section section (m) (m) (m)

US-1 1 2 288.05 10.00 10.97

US-2 2 3 434.78 10.97 13.28

US-3 3 4 609.93 13.28 14.97

RB-0 4 5 274.33 14.97 13.99

RB-1 5 6 1582.08 13.99 20.08

RB-2 6 7 344.78 20.08 19.75

RB-3 7 8 478.21 19.75 16.65

RB-4 8 9 460.28 16.65 17.99

RB-5 9 10 343.74 17.99 17.73

RB-6 10 11 275.74 17.73 16.12

RB-7 11 12 304.40 16.12 16.00

RB-8 12 13 337.92 16.12 12.01

RB-9 13 14 137.24 12.01 9.77

LB-0 4 15 305.90 14.97 12.18

LB-1 15 16 1489.62 12.18 14.19

LB-2 16 17 506.62 14.16 12.03

LB-3 17 18 500.67 12.09 11.73

LB-4 18 19 562.02 11.73 13.81

LB-5 19 20 330.46 13.81 12.30

LB-6 20 14 156.72 12.30 9.77

DS-4 14 21 688.43 9.77 4.60

DS-5 21 22 570.00 4.60 12.30

2.5.1 Grid Generation

As illustrated in the previous section, the PG assumption requires that the flow is near

one-dimensional (e.g., no recirculation) at the upstream and downstream ends of a reach

(e.g. Figure 2.4). The flows inside the reach do not need to be one-dimensional. For

this study, the Fraser River stretch was divided into eighteen reaches as shown in Figure
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(2.5). Fraser River PG reach characteristics are shown in Table 2.1. An unstructured,

triangular element mesh was generated to represent both the Fraser River domain mesh

as well as the 18 individual PG reaches. Each mesh was generated by constrained

Delaunay Triangulation using the freely available meshing tool, Blue Kenue, developed

by the Canadian Hydraulics Centre of the National Research Council.

Spatial discretization of a river for the Performance Graph approach is dependent

on bathymetric features and velocity profiles observed. Each reach is chosen so that

the velocity profile at both the upstream and downstream ends are approximately one-

dimensional (e.g. Fig. 2.4).

 

Figure 2.4: Example of approximately one-dimensional flow at the ends of reach LB-2
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Figure 2.5: Test case of Fraser River divided into reaches for Performance Graph appli-

cation
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2.5.2 Boundary Conditions

The upstream boundary condition was an open boundary with specified discharge, while

the downstream was an open boundary with specified water depth. Velocity distributions

were assumed to have a velocity magnitude proportional to the square root of the depth

at each upstream boundary node (i.e. V ∝
√
h).

In an effort to minimize the effect of the upstream discharge boundary condition, the

mesh domain of each PG reach was extended as illustrated in Fig. (2.6). The purpose

of extending the computational domain is to allow for flow development at the location

of interest, which is the upstream end of the original reach.

 

Q 

Downstream 

end 

Upstream 

end 

Figure 2.6: Extended reach at the upstream end to allow for flow development
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2.5.3 Model Calibration

Calibration of the TELEMAC-2D model was performed using ADCP transect data pro-

vided by Northwest Hydraulic Consultants (NHC) of Vancouver, British Columbia. Sim-

ulated and measured velocity profiles for various transects are presented in Figures (2.8)

and (2.9). The location of each ADCP transect measurement is shown in Figure (2.7).

Through this comparison of measured and simulated velocities, a Mannings n value of

0.04 m1/3 was utilized for the computational domain.

The Grid Convergence Index (GCI) (Celik et al., 2008) method was used to esti-

mate the discretization error for the numerical study and provide an objective means

for determining grid independence. The GCI is an index of the uncertainty associated

with a solution at a particular grid resolution, in comparison to another grid resolution,

based on the Richardson extrapolation (RE) theory (Hardy et al., 2003). Application

of Richardson extrapolation theory as a component of the GCI requires that the flow

field be sufficiently smooth for the quantity of interest, convergence is monotonic, and

that the numerical method is in it’s asymptotic range (Versteeg, 2007). The GCI pro-

cedure consists of five steps that systematically compare discrete solutions of a variable

of interest, φ, between three or more grid resolutions, and estimate the discretization

error multiplied by a factor of safety. A GCI value of zero would indicate that an exact

solution has been achieved, which is not likely due to numerical and discretization errors.

The Grid Convergence Index is calculated using the following equation:

GCI21
fine = 1.25

e21
a

rp21 − 1
(2.18)

Where superscripts 1 and 2 represent the fine and coarse mesh resolution, ea =

relative error between solutions 1 and 2, and r21 = ratio of representative element sizes,

and p = apparent order of accuracy. Using a factor of safety of 1.25 is akin to providing

a 95% confidence interval for solutions of interest (Hardy et al., 2003). Grid resolutions

tested were 5m, 10m, and 20m element edge lengths using timesteps of 0.25, 0.50, and

1.00 second, respectively. Timestep sizes were chosen to maintain an approximately

constant Courant number for each simulation. Grid resolutions and GCI values for

variables of interest, water surface elevation (WSE) and discharge (Q), are shown in

Tables 2.2 and 2.3, respectively.
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According to Table 2.3, the numerical uncertainty on parameters of interest range

from 0.1% to 1.51% on the finer grid (5m) and 0.46% to 2.78% on the coarser grid

(10m). After comparing results for mesh element sizes of 5m, 10m, and 20m, it was

determined that 10m grid resolution was sufficient based on computational expense (e.g.

each performance graph requires hundreds or thousands of simulations) and acceptable

error for generation of performance graphs (e.g. Figs. 2.10 and 2.11).
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Figure 2.7: ADCP velocity transect measurements compared with results of TELEMAC-

2D
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Figure 2.8: Transect 1 TELEMAC-2D versus ADCP velocity transect measurements
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Table 2.2: Mesh used in the GCI analysis

Mesh Element size ∆t Number of elements

(m) (s) N

1 5 0.25 456962

2 10 0.50 114218

3 20 1.00 28379

Table 2.3: Grid Convergence Index results

Location GCI21
fine(5m) GCI32

coarse(10m)

Reach (See Figure 2.5) Variable (%) (%)

Upstream Section 4 Average WSE 1.512 2.781

Discharge, Q 0.011 0.035

Right branch Section 8 Average WSE 0.387 1.049

Discharge, Q 1.174 2.152

Left branch Section 15 Average WSE 0.071 0.460

Discharge, Q 0.553 0.667
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Figure 2.10: Water surface elevation mesh convergence results at multiple locations

within the domain
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Figure 2.11: Discharge mesh convergence results at multiple locations within the domain

A major benefit of the performance graph approach is the ability to remove instabil-

ities that could occur during the construction of the performance graphs. Figure (2.12)

shows an example of an instability that was removed and re-simulated with updated

parameters.
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Figure 2.12: Example of instability problem at 500 m3/s HPC

2.5.4 Performance Graph Junctions

Simulating unsteady flows through river network junctions require computationally ex-

pensive iterative schemes or simplifications such as those used in current one-dimensional

unsteady hydraulic models (e.g. HEC-RAS, MIKE11, etc.). Even so, in many occasions,

the iterative schemes may not converge and in some cases may produce numerical in-

stabilities. During this research, a new method for approximating junction head-losses

has been tested. Standard junction conditions typically require water surface elevation

compatibility via energy balance, momentum balance, and conservation of mass. As

previously stated, so long as the upstream and downstream ends of a channel reach have
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approximately one-dimensional velocity profiles, then the Performance Graph assump-

tions are satisfied. The head-loss terms can be accounted for by projecting the nearest

cross-section of each branch that displays near one-dimensional flow up to the original

junction, as an additional reach (e.g. Fig. 2.13). The additional reaches are treated as

standard PG reaches.

Near one-dimensional flow

Flow direction
Extend cross-section
up to junction

Junction

Extend cross-section

Cross-section with near
one-dimensional flow

Figure 2.13: Performance graph junction illustration

2.6 Results

Generating Performance Graphs requires the computation of gradually varied flow sce-

narios within a given reach. Each curve of the performance graph consists of a series

of GVF hydraulic simulations through a range of fixed downstream water stages, hence,

each performance graph is composed of hundreds, potentially thousands of simulations

dependent on desired resolution. The TELEMAC-2D simulations were conducted in

a batch-style manner utilizing the Parallel Computing Toolbox within MATLAB and

also using parallel batch scripts. Given that each hydraulic GVF simulation is solved

independently of one another, embarrassingly parallel computation techniques can be

employed (e.g. parametric sweeps, high performance computing clusters, etc.). As an

example, Figures 2.14 and 2.15 show the 2D-HPG and 2D-VPG for Reach US-3 in the
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Fraser River; for display purposes, some of the HPCs were removed intentionally.
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Figure 2.14: 2D-Hydraulic Performance Graph for reach US-3 of the Fraser River system
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Figure 2.15: 2D-Volumetric Performance Graph for reach US-3 of the Fraser River system

A comparison between HPCs generated from TELEMAC-2D and the Steady 1D

HEC-RAS model has been made for three specified discharges through reach US-3 of the

Fraser River system and are shown in Figure (2.16). The relative difference in resulting

water depths between the 1D and 2D HPCs are computed using Eq. (2.19). Each GVF

simulation was performed using the same geometry and fixed downstream water surface

elevations for both models. The relative errors in resulting depths are shown in Figure

(2.17). Results from Figure (2.17) suggest that the individual HPCs yield a difference

in computed depths of ± 0.1-4.0%, with discrepancies increasing as discharge rises. In

general, the 1D HEC-RAS simulations result in higher upstream water surface elevation

(WSE) values for each scenario suggesting that for each flow scenario through reach
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US-3, TELEMAC-2D predicts higher headlosses than the 1D HEC-RAS model.
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Figure 2.16: Comparison of one-dimensional HEC-RAS and two-dimensional HPCs for

reach US-3

Eh2D-PG
(%) = 100

(
h2D-PG − h1D-PG

h2D-PGmax − h2D-PGmin

)
(2.19)
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Figure 2.17: Percent difference in water depths when comparing selected Hydraulic Per-

formance Curves from reach US-3 for one-dimensional HEC-RAS and two-dimensional

PG generation

Two dimensional performance graphs (2D-PGs) were generated for all reaches in the

Fraser River application and assembled for unsteady flow routing as inputs for the OSU-

Rivers model. OSU-Rivers assembles and solves a nonlinear system of equations based on

information summarized in the reaches HPGs and VPGs, continuity and compatibility

of water stages at junctions, and the system’s initial and boundary conditions (Leon

et al., 2013a). Figure (2.18) shows the results of hydraulic routing of a flood-wave by

the OSU-Rivers unsteady flow routing model, TELEMAC-2D hydrodynamics model,

and the Unsteady HEC-RAS model. The comparison in Fig. (2.18) shows that similar
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results are achieved when contrasting the OSU-Rivers outflow hydrograph to that of

the TELEMAC-2D model. The results indicate that 2D models may not be necessary

for modeling water stage and flow discharge in rivers when the flow is inside the main

channel.

The resulting CPU times for each model are shown in Table 2.4. CPU time calcula-

tion included preprocessing and computational engine times, while post-processing was

excluded. As can be seen from Table 2.4, the computational efficiency of OSU-Rivers

when compared to TELEMAC-2D is significant.
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Figure 2.18: Comparison between unsteady TELEMAC-2D, OSU-Rivers, and HEC-RAS

outflow hydrographs
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Table 2.4: Comparison of CPU time for unsteady flow routing test case

Model ∆t (s) CPU Time (s)

TELEMAC-2D 1.0 14305

OSU-Rivers 400 0.56

HEC-RAS 360 5.41

2.7 Conclusions

This paper investigated the applicability of using a depth-averaged two-dimensional hy-

drodynamics model for the construction of performance graphs and their application to

unsteady flow routing. The TELEMAC-2D model was used to simulate the array of

gradually varied flow profiles necessary to construct performance graphs for a looped

river system, divided into 18 reaches. The key findings are as follows:

1. 1D-, or 2D-Computational Fluid Dynamics (CFD) programs can be used to gen-

erate PGs. Recent advancements in computer hardware and parallel programming

enables batch simulations of complex CFD simulations.

2. When the river flow stays within the main-channel, the results of 1D-PGs and 2D-

PGs produce similar results. If flow exceeds the bank and enters the flood-plain

however, 2D-PGs may be required.

3. Computation efficiency of the OSU-Rivers model compared to TELEMAC-2D is

significant. OSU-Rivers also obtains comparable results to TELEMAC-2D in water

stage and flow discharge.
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2.9 Notation

The following symbols are used in this paper:
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WSE = water surface elevation;

HPG = hydraulic performance graph;

VPG = volume performance graph;

HPC = hydraulic performance curve;

PG = performance graph;

US = upstream reach;

RB = right branch;

LB = left branch;

DS = downstream;

ADCP = acoustic doppler current profiler;

GCI = grid convergence index;

Q = discharge;

A = cross-sectional area;

t = time;

g = gravitational acceleration;

h = flow depth;

Sf = friction slope;

So = bed slope;

θ = angle between channel bed and horizontal plane;

n = Manning’s roughness;

V = depth averaged velocity vector;

Zs = water stage;

νT = turbulent eddy viscosity;

k = turbulent kinetic energy;

ε = turbulent dissipation;

V∗ = shear velocity;

Cf = dimensionless friction coefficient;

Fx, Fy = source terms accounting for boundary friction;

ρ = density;

Q̇ = rate of heat added to the system;

Ẇshear = shear work done on system;

CS = control surface;

ṁ = mass flowrate;

p = pressure;

∆t = time step
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Subscripts

ds = downstream end;

us = upstream end;

x = x direction component;

y = y direction component;

i = tensor notation index;
Superscripts

n = discrete-time index
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Chapter 3: A Framework for Propagation of Uncertainty in River

Systems
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3.1 Introduction

The prediction and control of reservoir systems is important for many reasons, including

flood control, hydropower production, and irrigation. Uncertainties arise via upstream

inflows, weather forecasts, imprecise measurements of water levels, and hydropower de-

mands. The resulting PDE-constrained optimal control problem is a complex task involv-

ing stochastic inputs and objectives, probabilistic constraints, and nonlinear evolution

equations imposed on massive domains. Both the optimization component and the un-

certainty quantification require numerous forward simulations of the system. We focus

here on the forward problem and limit the discussion to uncertain inputs.

Uncertain inflows were introduced into a multi-reservoir network using a linear,

stochastic perturbation of an expected inflow hydrograph in (Leon et al., 2012). A poly-

nomial chaos expansion (PCE) (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002;

Chen et al., 2005) of the outflow was computed using a Stochastic Collocation approach,

see e.g. (Mathelin et al., 2005; Xiu and Hesthaven, 2005; Babuška et al., 2007). In the

current work, we investigate additional aspects of this general approach to uncertainty

quantification in reservoir modeling. In particular, we assume that predictions of inflow

hydrographs (ensemble forecasts) come from various sources, each of which possibly with

its own probability of being realized. We wish to translate this discrete set of data into

a continuous random framework amenable to PCE. Additionally, we wish to quantify

the possible errors in the approximation resulting from this translation. We can then

effectively reduce the dimension of the random input space to a manageable number

with metrics to estimate the error induced by the approximate subspace. We again use

Stochastic Collocation in computing modes of the uncertain solution, in order to allow

efficiencies in the deterministic forward simulation to be exploited.

Lastly, in order to further reduce the computational burden of the uncertain forward

problem, we suggest an approach for decomposing the problem into subdomains which

can be used in a parallelization of the deterministic forward simulation. Combined,

the methods which we describe below allow for efficient, and adaptive, determination of

stochastic solutions to the uncertain multi-reservoir river system.
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3.2 Governing equations

In the following we present an unsteady flow routing (river system flow dynamics). Due

to space limitations we consider only one-dimensional models. In a one-dimensional

context, under a deterministic assumption, unsteady flows in open-channels are typically

represented by the Saint-Venant equations, a pair of one-dimensional partial differential

equations representing conservation of mass and momentum for a control volume, which

is shown in conservative differential form in Equations (3.1) and (3.2)

∂A

∂t
+
∂Q

∂x
= 0 (3.1)

1

A

∂Q

∂t
+

1

A

∂

∂x

(
Q2

A

)
+ g cos(θ)

dy

dx
− g(S0 − Sf ) = 0. (3.2)

In these equations, x = distance along the channel in the longitudinal direction; t = time;

Q = discharge; A = cross-sectional area; y = flow depth normal to x; θ = angle between

the longitudinal bed slope and a horizontal plane; g = acceleration of gravity; S0 = bed

slope and Sf = friction slope. Appropriate initial and boundary conditions are required

to close the system. Due to the presence of non-linear terms in Equation (3.2), there is

in general no closed-form solution. The equations are therefore solved numerically. In

a network involving numerous branches, the system of equations that must be solved

becomes extremely large and the application of the full Saint-Venant equations becomes

inefficient for real-time operation because of the significant computational requirements

and error accumulations (Hoy and Schmidt, 2006b).

Instead we use the performance graphs approach described in (Leon et al., 2013a).

The method solves a reduced non-linear system of equations to perform the hydraulic

routing of the system. The equations are assembled based on information in the reaches

and nodes summarized in appropriate performance graphs formed from high fidelity,

pre-computed solutions. These are combined with continuity and compatibility of water

stages at junctions, and the system’s initial and boundary conditions. Due to the pre-

computation of solutions, efficiencies cannot be realized if the simulator must adjust to

incorporate uncertainty, therefore we seek a non-instrusive uncertainty framework.
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3.3 Uncertainty framework

In the current work, only the stream inflows (external sources) are assumed to be com-

pletely stochastic. Other uncertain quantities are correlated to the uncertainty of the

stream inflows using the dynamics of the system. For the efficient computation of the

uncertainty components, rather than doing random sampling of the input distributions,

we propose to explicitly model the random space (via random variables and processes)

and perform a generalized Polynomial Chaos (gPC) representation (Ghanem et al., 2005;

Ghanem and Doostan, 2006; Xiu and Karniadakis, 2002; Xiu, 2010).

Convergence of polynomial chaos methods can be shown to be exponential in the

number of basis functions (Xiu and Karniadakis, 2002). Due to the polynomial repre-

sentation, these integrals may be computed exactly, however this approach in general

leads to a large coupled system of equations and this new system must be discretized

in space and time (e.g., an intrusive method which changes the system to be solved).

Instead, we wish to utilize a well-developed forward solution methodology based on per-

formance graphs (Leon et al., 2013a). We therefore employ the Stochastic Collocation

(Babuška et al., 2007; Xiu and Hesthaven, 2005) method for the computation of coeffi-

cients of the PCE, a non-intrusive method which we couple with the performance graphs

implementation in OSU Rivers (Leon et al., 2013a).

Polynomial Chaos has been studied in computational fluid dynamics by numerous

investigators (e.g., Xiu and Karniadakis, 2002; Chen et al., 2005; Knio and Le Mâıtre,

2006; Hou et al., 2006). The non-intrusive Stochastic Collocation method was introduced

in the computational fluid dynamics literature in (Mathelin et al., 2005).

Stochastic Collocation was successfully applied to a non-linear model for incom-

pressible flow and heat transfer around an array of circular cylinders based on the two-

dimensional Reynolds-averaged Navier-Stokes equations (Constantine et al., 2009). The

uncertainty was introduced through boundary conditions in a steady-state model.

A network of human arteries was considered in (Xiu and Sherwin, 2007) where weakly

non-linear 1D equations of pressure and flow wave propagation were used as a model in

each section of compliant vessels. While a network was considered, with mass balance

interface conditions similar to the model described in the current work, the uncertain

quantities were restricted to the geometric and physical properties of the artery, not

inflows or boundary conditions. The study on human arteries did demonstrate the
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feasibility of Stochastic Collocation on a physiologically realistic network of 37 branches.

The proposed framework can be used for any complex river network. For illus-

tration purposes, consider the sample network system presented in Figure 3.1 from

(Leon et al., 2012). This dendritic-looped network consists of eight river reaches, two

reservoirs and three boundary conditions (one inflow hydrograph, one stage hydro-

graph and one rating curve). The (nonlinear) relationship between variables ~X =

Figure 3.1: Schematic of a simple network system from (Leon et al., 2012)

[yd1 . . . yd8 , Qu1 . . . Qu8 , Qd1 . . . Qd8 ] (water stages y and flow discharges Q upstream and

downstream of each river reach) on each timestep is represented using the performance

graphs approach described in (Leon et al., 2013a).

In what follows we describe the method we use to introduce the uncertainty into the

system. Let (Ω,F , P ) be a complete probability space, where Ω is the set of outcomes,

F ⊂ 2Ω is a σ-algebra of events and P : F → [0, 1] is a probability measure. Assume

that the initial inflow function Qu1 can be described as a function of finite number Nrv

of independent random variables {ξk}Nrvk=1, i.e.

Qu1(t, ω) = Qu1(t, ξ1(ω), ξ2(ω), . . . , ξNrv(ω)). (3.3)

Let ρk : Γk → R+, k = 1, 2, . . . , Nrv, denote the probability density function of the

random variable ξk, with the image Γk = ξk(Ω) ⊂ R, k = 1, 2, . . . , Nrv. If the random

variables {ξk}Nrvk=1 are independent then the joint probability density function ρ is given
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by the product of the corresponding densities

ρ(z) =

Nrv∏
k=1

ρk(zk), z ∈ Γ, zk ∈ Γk, (3.4)

where Γ =
∏Nrv
k=1 Γk ⊂ RNrv is a support of the joint density function ρ. The introduction

of uncertainty through the boundary conditions allows us to consider model (3.1) and

(3.2) in the form of stochastic equations, i.e., find Q : R× [0, T ]× Γ → R such that for

all z ∈ Γ, (3.1) and (3.2) hold subject to appropriate initial and boundary conditions,

including Q(x = 0, t, ω) = Qu1(t, ω).

3.4 Karhunen-Loève representation of the inflow function

In what follows we assume that the logarithm of the inflow function Qu1 can be repre-

sented as a Gaussian process. This is quite a strong assumption although the general

uncertainty framework we use can be adjusted if it is violated.

In order to obtain a representation for the inflow function Qu1 we use the following

procedure (Babuška et al., 2003):

1. Suppose we have M realizations of the inflow function {Qu1,i}Mi=1 measured at time

points {tj}nj=0, where tj = t0 + jh, h =
T − t0
n

, j = 1, . . . , n, and [t0, T ] is a time

interval of interest. By Qu1,i(tj) we denote the value of the i-th realization of the

inflow function at the time point tj . Let Li(tj) = lnQu1,i(tj) denote the logarithm

of the inflow at tj , and L(t) = lnQu1,i(t).

2. Then we compute the sample mean vector L̄ = (L̄1, L̄2, . . . , L̄n)′ and an (n ×
n) covariance matrix C with elements cj,k of the transformed inflows using the

following formulas

L̄j = L̄(tj) =
1

M

M∑
i=1

Li(tj), cj,k =
1

M − 1

M∑
i=1

(Li(tj)− L̄j)(Li(tk)− L̄k). (3.5)

3. It follows that L(t) can be represented in the form of its infinite series representa-
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tion, called the Karhunen-Loève expansion (Xiu, 2010),

L(t) = L̄(t) +

∞∑
k=1

√
λkψk(t)ξk, (3.6)

where {λk, ψk}∞k=1 are the eigenpairs of the integral equation

λψ(t) =

∫ T

t0

C(s, t)ψ(s)ds, (3.7)

with C(tj , tk) = cj,k; and {ξk}∞k=1 is a sequence of uncorrelated random variables

with mean 0 and variance 1 defined by

ξk =
1√
λk

∫ T

t0

[L(t)− L̄(t)]ψk(t)dt, k ≥ 1. (3.8)

We assume that the eigenvalues are arranged in decreasing order, that is, λ1 > λ2 >

λ3 > · · · . In the case L is a Gaussian random process, {ξk}∞k=1 are independent

and identically distributed normal random variables with mean 0 and variance 1.

Then the inflow function Qu1 has the following representation

Qu1(t) = exp

(
L̄(t) +

∞∑
k=1

√
λkψk(t)ξk

)
. (3.9)

From the practical point of view it is not possible to use the infinite series represen-

tation of Qu1 . The truncated representation is used instead

Qu1(t) ≈ QNrv(t) = exp

(
L̄(t) +

Nrv∑
k=1

√
λkψk(t)ξk

)
. (3.10)

The number of terms Nrv in the truncated representation can be chosen in different

ways. One may use a fact that
∑∞

n=1 λn =
∫ T
t0
C(s, s)ds. Based on this criteria we can

choose the number of terms that would capture the major part of the variability. Another

way to determine Nrv is to look at the convergence rate of the eigenvalues and get rid

of those that are close to 0, or insignificant in comparison with the first eigenvalue. For
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example, we can include the eigenvalues λn that satisfy

λn < aλ1 (3.11)

for some predefined constant 0 < a < 1. In some sense a can be treated as a tolerance.

A different perspective on this problem is given in the next section.

3.5 Distributional sensitivity

The representation of the random field in terms of the truncated series has its own

features distinct from the original process. If the random process of interest is Gaussian,

e.g., the logarithm of the inflow, then the truncated KL expansion is a random process

represented as a linear combination of several standard Gaussian random variables. If

the random process is not Gaussian, the representation of the process in the form of its

Karhunen-Loève expansion becomes harder to obtain. The procedure has to involve the

estimation of the distribution of the random coefficients in the series representation. In

general, for non-Gaussian processes there may not be enough data to accurately specify

the distribution of the random variables. This creates additional sources of uncertainty

which in this case relate to the lack of data and may not be easily overcome.

In the work (Narayan and Xiu, 2011), the authors describe a distributional sensitivity

analysis as a way to reduce epistemic uncertainty. The idea is to quantify the effect of the

particular distribution of the random variables on the distribution or statistical moments

of the solution. The random variables with large distributional sensitivity would require

more attention and effort to approximate their distribution while the distribution of

random variables with small distributional sensitivity can be approximated at lower

computational expense. The distributional sensitivity allows one to obtain an additional

rank (aside from the eigenvalues) of the random variables in the KL expansion based on

their actual effect on the quantities of interest. This, for example, can suggest an increase

or decrease in the number of collocation (or quadrature) points used to approximate

expectations in a particular random dimension.

For simplicity of exposition we assume that the solution Qd8 depends on the random

vector ~ξ = (ξ1, ξ2, . . . , ξNrv) through the boundary conditions imposed as stream inflow

Qu1 . We assume that vector ~ξ has a joint density function ρ1. In our experiments ρ1 is a
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joint Gaussian density, i.e. each component of the vector ~ξ has normal distribution with

mean zero and variance 1. To quantify the sensitivity of the solution Qd8 to the distri-

bution of the random variables {ξk}Nrvk=1 we consider the following discrete distributional

sensitivity

DSE [ρ1, ρ2](Qd8) =
‖Eρ1(Qd8)− Eρ2(Qd8)‖

d(ρ1, ρ2)
, (3.12)

where Eρ(Qd8) is a quantity of interest associated with Qd8 , for example, mean or vari-

ance, with respect to the probability density ρ; ρ2 is a perturbation of the density ρ1;

d(ρ1, ρ2) is a measure of distance between two densities, for example, it can be an L1

norm.

It is worth mentioning that ρ1 and ρ2 do not necessarily share the common param-

eterization. The distributional sensitivity depends only on the densities ρ1 and ρ2, so,

in general, it does not matter what numerical methods are used to approximate the

solution Qd8 . The calculation of the distributional sensitivity is post-processing step, no

additional solutions are required. The moments can be obtained by using the Stochastic

Collocation method (described in the following section). For the moments with respect

to the density ρ1 one can use the usual collocation points and weights; for the moments

with respect to the perturbed density ρ2 one can use the same collocation points with

weights scaled by the ratio ρ2/ρ1 evaluated at the given collocation point.

3.6 Polynomial Chaos Expansion

To solve the problem (3.1) and (3.2) in the stochastic context we use the generalized

Polynomial Chaos Expansion (PCE). To illustrate the idea of the proposed uncertainty

approach, the following example is presented. Consider the quantity Qu1 representing

flow discharges upstream of reach 1 in Figure 3.1. We assume that a prediction of this

quantity µQu1 (t) is given and treated as an expectation. Additionally we assume that

based on the previous history or some additional data we can construct an uncertainty

envelope around this prediction using the KL expansion, for example,

Qu1(t) = µQu1 (t) +

Nrv∑
k=1

√
λkψk(t)ξk. (3.13)

We can think about equation (3.13) as a PCE of the random input when the polyno-
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mials of degree 1 are used. In a stochastic Galerkin method one seeks to determine the

coefficients of a PCE of each component of the solution vector [yd1 , . . . , yd8 , Qu1 , . . . ,

Qu8 , Qd1 , . . . , Qd8 ], or some function of the solution vector. To do this, one may take a

Galerkin projection of the original system against the polynomial chaos basis functions,

with these expansions substituted in for the solution quantities.

For example, consider the most downstream reach, Qd8 . Its representation in terms

of a degree p expansion

QPd8(t, ~ξ) =

Mp∑
i=0

vi(t)φi(~ξ)

where ~ξ = (ξ1, ξ2, . . . , ξNrv) is a vector of random variables in the representation of Qu1 ,

Mp is a number of basis functions, {φi}
Mp

i=0 are the Nrv-variate orthogonal polynomial

functions of degree up to p. The maximum possible number of polynomial basis functions

is (Nrv + p)!/(Nrv!p!). Note that the final number of basis functions depends if the same

degree polynomials are used for the approximation in each random dimension. Corre-

sponding to the normal distribution of each components of ~ξ, the orthogonal polynomials

φi are chosen as tensor products of univariate Hermite polynomials.

Since the relationship between Qu1 and Qd8 is clearly nonlinear, more than two

basis functions will be required for accurate representation of Qd8 . Depending on the

importance of the particular component of the random vector ~ξ, determined, for example,

by distributional sensitivity, a different level of approximation can be chosen in the kth

random direction associated with ξk, k = 1, . . . , Nrv.

Each PCE coefficient can be found as an expectation

vi(t) = E[Qd8(t, ~ξ)φi(~ξ)] =

∫
Γ
Qd8(t, z)φi(z)ρ(z)dz. (3.14)

The computation of the coefficients (3.14) can be done efficiently with the use of the

Stochastic Collocation method (Babuška et al., 2007).

The outline of the Stochastic Collocation method and PCE is given below:

1. Choose a set of collocation points (zj , wj), zj ∈ Γ, where zj = (zj,1, zj,2, . . . , zj,Ncp)

is a j-th node and wj is its corresponding weight, j = 1, . . . , Ncp. We suggest to

use a sparse grid since it can greatly reduce the computational expense.

2. For each j = 1, . . . , Ncp determine the inflow function Qu1,j and solve the corre-



45

sponding (deterministic) system of equations (3.1) and (3.2), in parallel, to obtain

the flow QD8,j .

3. Approximate the PCE coefficients

vi(t) = E[Qd8(t, ~ξ)φi(~ξ)] ≈
Ncp∑
j=1

wjQd8(t, zj)φi(zj). (3.15)

4. Finally, construct the Nrv-variate, pth-order PCE approximation of the solution

Qpd8(t, ~ξ) =

Mp∑
i=0

vi(t)φi(~ξ). (3.16)

The same coefficients vi can be used to approximate the first two moments of the

solution, e.g.

E[Qd8(t, ~ξ)] ≈ v0(t), Var[Qd8(t, ~ξ)] ≈
Mp∑
i=0

vi(t)
2. (3.17)

Gaussian quadrature applies efficiently to functions which can be represented as

g(~ξ)W (~ξ) where g(~ξ) is well-approximated by a polynomial. The nodes ~ξj of the quadra-

ture rule are the roots of a predetermined orthogonal polynomial (by choice of distribu-

tion) in the support of ρ, and the method has the highest degree of precision possible.

Stochastic Collocation requires only solutions of the deterministic system evaluated at

the fixed points {~ξj}
Ncp
j=1 of the random vector ~ξ. Upon computation of the expansion

coefficients for the quantities of interest, we have an analytical representation of a sur-

rogate of the stochastic solution in polynomial form. This allows, among other things,

various solution statistics to be easily obtained, such as expected value (or higher order

modes), or parametric sensitivities (Xiu and Sherwin, 2007). The PCE for any function

f of output (non-linear, non-smooth or even discontinuous) may be easily constructed

as follows

vi(t) = E[f( ~X(t, ~ξ))φi(~ξ)] ≈
Ncp∑
j=1

wjf( ~X(t, ~ξj))φi(~ξj).

In practice, only desired functions of the solution of the system need to be represented

explicitly. For instance, in a multi-objective optimal control framework, the outflows and
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water stages at the reservoirs may be the actual quantities of interest. The above example

can be restated via a mapping from the solution quantities to the desired quantities. It is

important to note that this mapping need not be linear, nor need it even be continuous,

as demonstrated in (Marzouk and Xiu, 2009), however in the latter case exponential

convergence is sacrificed in favor of algebraic.

3.7 Computational Issues

As described above there are several aspects of the problem for which the computations

can be quite expensive. In this simple model we have introduced only a single random

inflow, while a realistic model of a complex river network might require several. Each

inflow should be modeled with at least one random dimension. Taking into account all

inflows would imply a dependence of the solution on a large number of variables. Com-

putation of modes of a stochastic solution thus requires high dimensional integrations,

in addition to the fact that each single deterministic simulation is already expensive.

In the above we have described two complementary approaches for reducing the

computational effort required to obtain solutions to the uncertainty propagation problem.

As stochastic collocation is easily parallelizable, efficiencies can be made in a straight-

forward manner. However, current massively parallel architectures are not well-suited for

this type of distributed computing as each computational node would need to hold the

entire problem in memory, a more difficult task considering that the performance graphs

approach requires thousands of solutions to be stored to be used in an interpolation

scheme. In fact, if high precision is required in these precomputed solutions, it may not

be feasible to hold the entire performance graphs collection in memory on high memory

workstations. Therefore a fine-grained parallelism should be used, based on domain

decomposition strategies (Gunzburger et al., 1999). In this manner, one computational

node would be responsible for one or possibly several reaches of the network, and would

need to communicate with two other nodes (those with reaches that share interfaces)

on each performance graph time interval (not the time step used in the computation of

the performance graph) in order to converge iteratively to satisfy appropriate interface

conditions.

The performance graph approach lends itself to this type of decomposition due to the

fact that solutions for each reach on a reference time interval are stored on only one node,
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and the entire system solution at the previous time interval determines the solution on

that reach for the next time interval. Further, the non-intrusive nature of the Stochastic

Collocation method allows efficiencies in deterministic solvers to be realized. The level of

fine-grained splitting would be determined by memory constraints and desired precision

of solutions, and would be used in addition to the coarse-grained parallelism allowed by

Stochastic Collocation. The detailed formulation, analysis and implementation of this

procedure will be the topic of a future paper.

3.8 Numerical Experiments

For our simulation experiments we use the river system illustrated on the Figure 3.2.

We assume that forecast of the inflow Qu1 is given for reach 1. We wish to calculate the

expected outflow Qd25 at reach 25, along with a quantification of uncertainty.
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Figure 3.2: Schematic of a river system used in numerical experiments

The predictions that we use are presented in Figure 3.3. We assume 10 ensembles

(or predictions) of the stream inflow. This is meant to reflect the fact that in practice

several competing forecasts are used to generate different scenarios.
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Figure 3.3: Original data

We calculate the statistical mean and covariance of the data using equations (3.5).

To find a spectral representation of the covariance function of the logarithm of the stream

inflow based on its eigenvalues and eigenfunctions we solve the integral equation (3.7).

The first five eigenvalues are presented in the Figure 3.4. It is clear that only the first

three eigenvalues are significant in terms of their magnitude: λ1 = 5.4721, λ2 = 0.2658,

and λ3 = 0.0561. In the Figure 3.5 we present only the eigenfunctions corresponding to

the three largest eigenvalues.
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Since only the first 3 eigenvalues are significant we use those to produce a truncated

KL representation (3.10) of the logarithm of the stream inflow function Qu1(t). We use

the Stochastic Collocation method to approximate the first two statistical moments of

the outflow Qd25 . For this demonstration, we employ 1-dimensional Gaussian quadrature

points to form a full tensor grid 5× 3, 5 nodes in each of the three random dimensions,

although in practice a sparse grid would be used. In Figure 3.6 we present the realizations

of outflow Qd25 evaluated at 53 = 125 collocation points. We observe that they form

five groups (and every group has five branches and twenty-five sub-branches arising due

to the choice of the full tensor grid). The mean outflow, along with the mean plus and

minus the standard deviation, is depicted in Figure 3.7. The deviation is the largest

right after the peak due to both uncertainty in the size of the peak and its timing.
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Figure 3.6: The outflow function values evaluated with the interval of 5 minutes
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Figure 3.7: Mean plus/minus standard deviation of the response function values

The magnitude of the eigenvalues shows the contribution of the corresponding term

of the Karhunen-Loève expansion to the stream inflow. In other words it explains how

much of the variation in data can be expressed with the particular term. The notion

of the distributional sensitivity discussed earlier in this paper shows the contribution of

each term to the outflow function. We measure the sensitivity (the effect of change of

the distribution on the outflow) by perturbing the distribution of the random coefficients

{ξk}3k=1 one at a time. For the perturbed version of the density ρ1 we use the density

ρ2 corresponding to the normal distribution with mean δ and variance 1 + ε. Table 3.1

shows the distributional sensitivity of the mean and variance of the outflow Qd25 due to

the change of the mean and variance of each of the first three random variables.

We observe that the variance of the solution Qd25 is not affected if only the means

of the random variables are changed. Likewise, the mean of the solution is only slightly

sensitive to the variance of the random variables. We also note that the sensitivity of the

mean is well-approximated by perturbing both mean and variance simultaneously (the

values are the same in both cases), but the sensitivity for the variance can be off by an
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Table 3.1: Distributional sensitivity of expected outflow and its variance
ξi δ ε DSE[Qd25 ][ρ1, ρ2](Qd25) DSVar[Qd25 ][ρ1, ρ2](Qd25)

ξ1 0.1 0 4.281 0.381
ξ2 0.1 0 1.174 0.058
ξ3 0.1 0 0.047 0.001

ξ1 0 0.01 6.085e-3 2.069
ξ2 0 0.01 7.952e-4 0.355
ξ3 0 0.01 9.331e-7 0.0006

ξ1 0.1 0.01 4.176 0.039
ξ2 0.1 0.01 1.193 0.181
ξ3 0.1 0.01 0.047 0.0006

order of magnitude. Additionally we observe that the magnitude of the sensitivity esti-

mates is consistent with the arrangement of the eigenvalues in this example. The larger

the eigenvalue corresponding to the particular random variable, the greater the value of

the distributional sensitivity of the solution. We believe this is due to weak nonlinear

dependence of the solution on the inflow function. In the case of strong nonlinearity,

it is possible that the arrangement of eigenvalues would not be well correlated to the

distributional sensitivities.

3.9 Conclusions and Future Work

The work presented in this paper greatly extends the applicability of the research pre-

sented in (Leon et al., 2012). We have used a Karhunen-Loève representation of a space

of random inflow functions implied by a given set of ensemble predictions. We also

include the distributional sensitivity estimates to help quantify the importance of each

random variable in the expansion of the inflow. This approach allows fewer collocation

points to be used in a particular random dimension.

Future work includes introducing inflow uncertainty into the full optimization frame-

work, i.e., an optimal control of the dams on the multi-reservoir river network. Clearly,

even a deterministic optimization problem of this complexity would require many for-

ward simulations. With uncertainty included in the system, the computational effort

increases dramatically. The uncertainty framework described in this work, together with

a performance graph approach to unsteady flow routing, and fine-grained parallelism



55

allows to reduce the computational expenses to practical levels.

A more complete introduction of uncertainty involves the stochastic representation

of the price of electricity, load and wind power generation. Each of these sources of

uncertainty have different structures and require additional theory to be developed.
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Chapter 4: Conclusion

The uncertainty propagation framework and unsteady flow routing presented in this

thesis are both computationally efficient and robust. In Chapter 2 it was shown that

the performance graph (PG) approach can be expanded to utilize two-dimensional hy-

drodynamic simulations in the construction of PGs. In Chapter 3, a novel uncertainty

propagation framework was detailed that utilizes Polynomial Chaos Expansion theory

to propagate uncertainty in river systems. The key findings are as follows:

1. 1D-, or 2D-Computational Fluid Dynamics (CFD) programs can be used to gen-

erate PGs. Recent advancements in computer hardware and parallel programming

enables batch simulations of complex CFD simulations.

2. When the river flow stays within the main-channel, the results of 1D-PGs and 2D-

PGs will produce similar results. If flow exceeds the bank and enters the flood-plain

however, 2D-PGs may be required.

3. Results show good agreement between flood-wave hydraulic routing between the

OSU-Rivers unsteady routing model and the Telemac-2D hydrodynamics model,

for a small fraction of the computational simulation time.

4. The proposed uncertainty framework is capable of propagating uncertainty through

a river system, correlating system response metrics with stochastic inflows, utilizing

the river dynamics. Stochastic inflows are discretized using a Karhunen-Loève

expansion of the random space, and unsteady flow routing is achieved using OSU-

Rivers unsteady routing model.

5. Overall, the proposed uncertainty propagation framework is numerically efficient

and robust. It can be applied to any complex river system for short time-frame

uncertainty propagation.
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Appendix A: Fraser River Hydraulic Performance Graphs
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Figure A.1: Hydraulic Performance Graph generated using Telemac-2D
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Appendix B: Fraser River Volumetric Performance Graphs
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Figure B.1: Volumetric Performance Graph generated using Telemac-2D
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Appendix C: Parallel batch script code



C:\0_GiffordMiears\SVNs\2D_HPG_Thesis_checkout\2D_HPG_Thesis_Document\Appendix_material\Example_parallel_batch_script.bat Wednesday, November 27, 2013 2:59 AM

::================================================= ==============

:: TELEMAC2D_BATCH_FILE( /0 , maxProc, hpg_id )

::================================================= ==============

:: TELEMAC-2D Performance Graph Batch File

:: Date created:  09/16/13

:: Date modified: 09/16/13

:: Modified By: Chris Gifford-Miears

:: Purpose: run the telemac2d simulations in an "em barrassingly parallel" 

:: fashion starting an independent simulation on ea ch respective thread.

:: modified from:

:: http://stackoverflow.com/questions/672719/parall el-execution-of-shell-processes

:: example of running on DOS prompt: 

:: 1. >cd *batch_file_directory

:: 2. batch_file_directory>TELEMAC2D_BATCH_FILE /O 4 HPG-4

@echo off

setlocal  enableDelayedExpansion

TITLE  "T2D BATCH SIMULATION - %3"

:: Display the output of each process if the /O opt ion is used

:: else ignore the output of each process

if /i " %~1" equ "/O" (

set "lockHandle =1"

set "showOutput =1"

)  else (

set "lockHandle =1^>nul 9"

set "showOutput ="

)

::------------------------------------------------- ----------------------------

:: List of commands goes here. Each command is pref ixed with :::

::: telemac2d.py 

C:\0_GiffordMiears\SVNs\00_2D_HPG_checkout\hpg_3_ca s_files\t2d_input\fraser_hpg_3_0_1.cas

::: telemac2d.py 

C:\0_GiffordMiears\SVNs\00_2D_HPG_checkout\hpg_3_ca s_files\t2d_input\fraser_hpg_3_0_2.cas

::: telemac2d.py 

C:\0_GiffordMiears\SVNs\00_2D_HPG_checkout\hpg_3_ca s_files\t2d_input\fraser_hpg_3_0_63.cas

::: telemac2d.py 

C:\0_GiffordMiears\SVNs\00_2D_HPG_checkout\hpg_3_ca s_files\t2d_input\fraser_hpg_3_0_64.cas

::------------------------------------------------- ----------------------------

:: Define the maximum number of parallel processes to run.

:: Each process number can optionally be assigned t o a particular server

:: and/or cpu via psexec specs (untested).

set "maxProc =%2"

:: Optional - Define CPU targets in terms of PSEXEC  specs

::           (everything but the command)

::

:: If a cpu is not defined for a proc, then it will  be run on the local machine.

:: I haven't tested this feature, but it seems like  it should work.

::

:: set cpu1=psexec \\server1 ...

:: set cpu2=psexec \\server1 ...

:: set cpu3=psexec \\server2 ...

-1-
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:: etc.

:: For this demo force all cpu specs to undefined ( local machine)

for /l %%N in (1 1 %maxProc%)  do set "cpu %%N="

:: Get a unique base lock name for this particular instantiation.

:: Incorporate a timestamp from WMIC if possible, b ut don't fail if

:: WMIC not available. Also incorporate a random nu mber.

set "lock ="

for /f "skip =1 delims =- + " %%T in ('2^ >nul wmic os get localdatetime')  do (

set "lock =%%T"

goto :break

)

:break

set "lock =%temp%\lock %lock%_%random%_"

:: Initialize the counters

set /a "startCount =0, endCount =0"

:: Clear any existing end flags

for /l %%N in (1 1 %maxProc%)  do set "endProc %%N="

:: Launch the commands in a loop

set launch =1

for /f "tokens =* delims =:" %%A in ('findstr /b ":::" " %~f0"')  do (

if !startCount! lss %maxProc% (

set /a "startCount +=1, nextProc =startCount"

)  else (

call :wait

)

set cmd !nextProc!=%%A

if defined showOutput  echo

--------------------------------------------------- ----------------------------

echo !time! - proc !nextProc!: starting %%A

2>nul del %lock%!nextProc!

    %= Redirect the lock handle to the lock file. T he CMD process will     =%

    %= maintain an exclusive lock on the lock file until the process ends. =%

start  /b "" cmd /c %lockHandle%^>" %lock%!nextProc!" 2^ >^&1 !cpu%%N! %%A

)

set "launch ="

:wait

:: Wait for procs to finish in a loop

:: If still launching then return as soon as a proc  ends

:: else wait for all procs to finish

:: redirect stderr to null to suppress any error me ssage if redirection

:: within the loop fails.

for /l %%N in (1 1 %startCount%)  do (

    %= Redirect an unused file handle to the lock f ile.  If the process is    =%

    %= still running then redirection will fail and  the  IF body will  not run =%

if not defined endProc %%N if exist " %lock%%%N"  (

      %= Made it inside the  IF body so the process must have finished =%

if defined showOutput  echo

-2-
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===============================================================================

echo !time! - proc %%N: finished !cmd%%N!

if defined showOutput  type " %lock%%%N"

if defined launch (

set nextProc =%%N

exit /b

)

set /a "endCount +=1, endProc %%N=1"

)  9 >>" %lock%%%N"

)  2 >nul

if %endCount% lss %startCount% (

1>nul 2 >nul ping /n 2 ::1

goto :wait

)

2>nul del %lock%*

if defined showOutput  echo

===============================================================================

echo ======================================================

echo Cheers^^!

echo CGM

echo ======================================================

EXIT /b SUB

-3-
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