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GEOMETRICAL CONSIDERATIONS AFFECTING THE
DETERMINATION OF BASAL AREA GROWTH BY

INCREMENT BORING METHODS

INTRODUCTION

For many years the use of basal area as a measure of growth or

relative growth has been widespread in the field of forestry. The

determination of the area of a ring of wood on a stem cross section,

composed of one or several years' growth, has been a problem when-

ever the tree cannot be felledand the cross section directly examined.

The common approach has been through the use of increment borings,

normally two in number, and often at right angles to each other. Re

gardless of objections that basal area at a single height is not a total

indicator of volume growth the method continues to be used extensively

in the field, for management and for research. Recent workindicates

that borings at opposite sides of the tree may have advantages. Al-

though it is commonly agreed and often repeated that trees do not have

a circular cross section, the circular model is almost always used in

practice, but has been only slightly examined, particularly with re-

gard to eccentricity in the enclosed circles. It is the purpose of this

study to examine the geometry of the circular model, in hopes that it

might yield additional information on the preferred method of using

increment borings, and perhaps on the reasons for the experimental

results noted in past studies.



LITERATURE REVIEW

Because of the obvious effect of the basal area of geometrical

forms on the resultant volumes, interest in accurate determination of

basal area was evident some years ago. The geometry of the stem

cross section was of concern to McArdle (1928) and Robertson (1928)

who commented on the relative accuracy of calipers vs. diameter

tape. As was often the case in later years their work was based on

empirical study with little reference to geometrical theory. The main

concern was with the repeatability of the two methods, and the estima-

tion of the amount of the usual area underestimation using calipers

compared to the diameter tape. The very excellent work by Chatur-

vedi (1926) and the addition to it by the Imperial Forestry Institute

(1944) cover very well the bias incurred in elliptical forms when dia-

meter tape or caliper are used. Chaturvedi also points out that the

common formulas used to obtain area from diameter measurements

are not correct for an elliptical form even though they are often in-

voked under the argument that tree stems are elliptical. Chacko

(1961) concluded from the four species he studied that tree cross sec-

tions more closely resembled a circle than an ellipse.

Probably the most complete work in the field was done by

Matern (1956) who examined the geometry of closed convex curves.

Matern defineda diameter(D) as the distance between parallel lines

2
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which are tangent to the convex figure. This is the same as a caliper

measurement when the caliper arms are straight and parallel. He

used a theorem first published by Cauchy to prove that the perimeter

of the figure, divided by pi, gave the average of all possible diameters

(D). This was quite an important observation, since it showed that

the expectation of a random caliper measurement was exactly the

same as the value given by a diameter tape. Brickell (1970) later re-

ferred to this work by Matern after the publication of an article by

Ross (1968). Ross had been examining the use of optical calipers to

get upper stem measurements, and had questioned the comparability

of such measurements with diameter tape estimates.

Matern further points out that the quadratic mean of randomly

measured radii offers an unbiased method of determining basal area,

even if the figure is not convex. This is of particular interest to for-

esters who might wish to consider the pith as a point from which to

measure such radii. Six examples of convex regions were tested by

Matern, using several equations for area, and a slight overestimate

was obtained in almost all cases. This overestimate was never great-

er than Z percent for the elliptical forms when more than one meas-

urement was used.

The work discussed up to this point has been concerned with the

calculation of total basal area rather than with the basal area of rings,

but it is important, particularly in respect to the validity of the
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circular model, since the ring area is commonly calculated as the

difference between two circles of given diameter.

A later paper by Matern (1961) examined the precision of dia-

meter growth estimates using increment borings. He found that the

standard error of the calculated area was smaller when using borings

from opposite directionsthan those at right angles, and further notes

that:

It is seen that the average for two cores from opposite
directions is as precise as an average for four cores
taken independently and at random.

No geometric causes are stated in relation to this observation. Sio-

strzonek (1958) did workwith ring areas on an empirical basis, par-

ticularly as regards log disks, and suggested that the quadratic mean

should be used when several radii are measured. Reukema (1971)

makes several observations which bear upon the work presented in

this thesis. He states the following:

The geometric center of each ring generally shifts from
the pith in an approximately consistent direction.

The average of measurements along two radii at right
angles to each other, as recommended by some, is very
likely, to either grossly underestimate or grossly over-
estimate growth.



tJSE OF THE INCREMENT BORE

The high cost of felling and sectioning trees, as well as the loss

of material and destructive nature of the operation makes the use of

log disks unreasonable in most cases, even though the results are ex-

cellent and sometimes warranted for research work. In the vast ma-

jority of instances a nondestructive indication of growth on many trees

is needed, and no better measurement scheme seems to have been

found than the use of the increment borer. It provides a fast estimate

of current growth in terms of ring width, which can then be reason

ably extended to basal area growth. Some aspects of the care and use

of the increment borer are covered by Hermann (1971) and the rachet

assembly described in that publication was used in the field test des-

cribedin this paper. The increment borer is essentially a hollow

steel shaft with a cutting edge. This shaft is screwed into the tree

stem and a core of wood is extracted from the hollow center. The

distance between growth rings, along the wood core, is then used as

an indication of the ringwidth.

Several aspects of the field use of increment borings became

apparent during the study. It was difficult to accurately locate oppo-

site points on the tree stem. Lacking some sort of complicated me-

chanical aid the only practical method of assistance in this task

seemed to be circumference division using the diameter tape. The

5



diameter tape also aided in insuring that the boring was done ata uni-

form height.

No satisfactory method was discovered for insuring that borings

were directed towards a commonpoint in the tree or parallel to an-u

Other boring. Bark thickness was measured from the edge o the dia-

meter tape to the edge of the wood as suggested by Me savage (1969).

There is a simple procedure that eliminates many of the pro-

blems of multiple increment borings when the trees are small enough

to use it, and this is simply to bore entirely through the stem. This

procedure has several advantages.

It eliminates most of the problems of bark thickness, which is
usually noted only to get inside bark diameter.

There is no question about the measurements from opposite sides
of rings being parallel and directed at the same point.

The chord distances can be directly measured, without errors
from the subtraction of other measurements, which may be cumu-
lative in nature.

Any regular error from the boring, in either the horizontal or
vertical direction is more easily detectable and measurable, is
identical on both sides of the tree, and therefore can be compen-
sated for more easilyand more accurately.

5. There are several theoretical advantages to the measurement of
this chord distance which will be covered later in this paper.

It is recognized by the author that this type of measurement is

often impossible, principally because of the size of the trees sampled,

but where possible it is the preferred method. The pith of the tree

can often be found by utilizing branching angles, since the branch
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often points directly towardthe pith. Care should be taken to avoid

boring through areas which are close to wounds, branch stubs or other

obvious disturbances. It is wise to checkthe desirability of all boring

points before the first one is taken, so that if adjustment is necessary

it can be done in such a way as to maintain the same angular relation-

ship between the borings. The placement of these borings will be dis-

cussed separately.



THEORETICAL CONSIDERATIONS

The Cross Section as a Circle

However vigorous the protests that stems do not have circular

cross sections, the common practice is to use equations that consider

them circular. If the investigator insists upon using an elliptical mod-

el for the stem cross section, then the proper formula for an ellipse
irabwould be Area

=
where a and b are the major and minor diame-

ters of the ellipse. Instead of this formula the most common formulas

used for cross sectional area are:

(aZ+b2) or Air (a+b

8

Where a and b are two diameters measured across the cross

section. These more closely resemble situations where acircie was

being measured, but the measurement scheme was not too precise,

and therefore some sort of average was taken of several measure-

ments. The work done by Matern (1956) seems to indicate that the

circular model is very adequate, and this would seem even more

warranted for stem sections well above the root swell and for younger

trees. The application of the circular model is obviously in order in

many cases, and lacking any simple figure for a substitute is often

applied to all trees in a particular inventory or research study.
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Opposite Boring System

Concentric Circles

This is the most simple situation, and the calculations are quite

simple as well. Let us consider the two situations in Figure 1. In

the first situation(a) the diameters are measured through the centers

of both circles and the ring area computed by the formula:

AZIr J32r
4

In the second case (b) the distances shown are from the edges of

the circles, but do not pass through the centers of them. The area of

the ring is again computed by

A27T B21AR-4
4

exactly as before, and furnishes exactly the same answer. This equa-

tion is valid for calculating the ring area using any line which passes

through, or is simply tangent to, the inner circle. It does not, of

course, yield the proper basal area for either of the two circles mdi-

vidi.ally, but the area of the ring is correct since the bias is identical

for both of the individual circles and cancels out during the subtrac-

tion of their areas.



distances measured through centers of concentric circles

A

distances not measured through centers of concentric circles

A

Figure 1. Illustration of opposite boring system through concentric
rings.

10
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The properties of this ring calculating chord will be further ex-

amined, since it affords an elegant way of viewing future problems of

this type.

This method of calculating the ring area is given by Gardner

(1959). The third dimensional analogue is sometimes used as an in-

terestingexercise in calculus. As it concernsthe problem at hand,

the statement of the theorem is this:

The half chord length b (see Figure 2) is the radius of a
circle, the area of which is the same as the area which
lies between two concentric circles of radii a and c, one
of which is tangent to the chord Zb, the other which has
Zb as a chord.

The proof is an adaptation of the pythagorean theorem and is

included with Figure 2 for those who are interested.

The areas of any sets of rings through which the borer passes

may thus be calculated even though the borer does not pass through

thecenter of the circles. The distances across the rings are simply

used as though they were the diameters themselves. Note that this is

in no way a sampling procedure, but a measurement in the same

sense that diameters would normally be measured. This mathemati-

cal concept does not seem to be widely known in the field of forestry,

or perhaps has simply not been published.

Eccentric Circles

The term eccentric is used here to indicate that the circles do



Proof

aZ = b2 .+ cZ by the pythagorean theorem multiplying by iron
both sides yields
a27Y = b2+ c2lr

asolving for b if yields
bZlr= a2lr- cZlr

at which point we recognize that
b2 a2fl - c2

(area of ring) = (area of large circle) - (area of small circle)

Figure Z. Illustration of the application of the pythagorean theorem
to the calculation of ring area.

12



13

not have a common center, not that they are other than perfectly cir-

cular in shape. Two other terms will be used throughout the paper

and should be explained at this point.

Direction of offset - is used to refer to the direction in which the

center of an interior circle has moved with respect to the center of the

outer circle.

Axis of offset - refers to a line drawn through the center of two

circles which are eccentric with respect to each other, and extending

in both directions (see Figure 3a).

There are two instances of measurement with eccentric circles

illustrated in Figure 3. The first case(b) is the situation where the

measurement is made through the centers of both circles, and there-

fore necessarily along the axis of offset. In this case the ring area is
AZ1Y BZIT

computed exactly with the formula RA
= -

. In the second

case (c) the measurement is also parallel to the axis of offset, but

goes through the center of neither of the circles. In this case the
A2 B271

area of the ring is also given exactly by the formula RA = - 4

The proof is slightly more tedious but quite simple to see intuitively.

As the circle slides along the axis of offset neither distance A nor B

are changed in the slightest, therefore any results from an equation

with the inner circle at the center of the outer circle (the concentric

case) will be duplicated at any point along the axis of offset. This sys-

tem of course requires one continuous increment core or two at



Terminology used for eccentric circles

Direction of offset

Axis of offset

Diameter measured through center of
circles

Distances measured parallel to axis of
offset but not through center

Figure 3. Illustration of opposite boring system through eccentric
rings, and terminology.

14
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opposite sides with a caliper measurement between their entrances.

There is no error in determining the area as long as the measurement

is along the axis of offset. Approximately this same result has been

noted experimentally, but the underlying reason for it was not noted.

Reukema (1971) states the following:

Examinations of several cross sections indicatedthat pat-
terns of growth tendedtobemore consistent on the long
and short radii than on other radii. Therefore, measure-
ments along radii whose orientation do sely approximates
these two shouid generally give as good an estimate as can
be obtained by any method other than with a planimeter.

When the radius is measured from thecenter of an inner circle to the

edge of an outer circle the long and short radii necessarily lie along

the axis of offset.

It shoujd be stated at this point that the formula used for all four

cases is exact and correct. The use of a quadratic or geometricmean

diameter is incorrect. It may certainly be said that the use of some

other method may compensate for errors in measurement, non-cir-

cularity of the stem, errors of alignment, etc. , but these are consid-

erations quite apart from our discussion here.

Bias in Ring Area

Even though we may have good reason to suspect that the axis of

offset is known, either because of the slope, prevailing wind or

branching indicators, it will not always be anticipated correctly and



a

Axis of offset

Axis of offset

Figure 4. Illustration of the case where the bore passes through the
center of one circle, but misses the center of the other.

16
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some attention must begiven the bias incurred by boring at an angle to

the axis of offset. Consider Figure 4, There are two possible situa-

tions shown.

The first situation. (a) is where the borer passes through the cen-

ter of the outer circle, but misses the center of the inner circle. In

the case where the formula RA = is used, -A would

correctly estimate the outer circle but would underestimate the

inner circle. The difference, or calculated ring area, would then be

too large. In the second case (b) the smaller circle would be correct-

ly estimate.d, but the larger one underestimated, leading to an under-

estimate of the ring area.

In practice one technique is to bore through the pith, assuming

that it is the center of the inner circle, thus eliminating bias for the

inner circle; and then to use a diameter tape to obtain the diameter of

the outer circle without bias. This system is not feasible with the

many layers of interior rings which may be of interest, and which

cannot be measured .with a diameter tape. The problem is to find the

bias in individual areas of pairs of circles. If both have equal or zero

bias, the ring area is correct. If the inner circle has a larger nega-

tive bias (the bias will never be positive) the calculated ring area will

be too large. Conversely, if the outer ring has a larger negative bias

the ring area will be calculated to be too small.

The amount of area bias for an individual circle is not difficult



to compute, nor is the chord length across the circle. Let the dis-

tance along the axis of offset from the center of the circle be desig:-

nated d, and the angle of the boring from the axis of offset be desig-

nated Q as in Figure 5. The chord length C is calculated using 0, d,

and r which is the radius of the circle, by the following formula:

C = 2 1r2 -(d*sin Q)2

This is derived from an application of the pythagorean theorem,

and is mentioned in case the reader is interested. The bias can be

calculated without it. The bias is found by making use of the theorem

earlier proven in relation to the ring calculating chord. The area cal-

culated from the chord is really the area of a circle, excluding a

smaller circle tangent to the chord and having the same center.

Figure 5 indicates such a circle and its radius f. The bias is

simply the difference between the true area of the outer circle and the

area calculated by the chord as a diameter. The bias must then be

the area of this tangent circle, since the area of a circle with the

chord as diameter has been shown to be the area of the ring. The ra-

dius of the tangent circle is equal to d*sin 0, and the area is

(d*sin

The bias for any circle through which a chord passes is there-

fore the same as the area of a smaller circle with the same center

and which is tangent to the chord. The bias in the area of a ring

18



Axis of
off set

Figure 5. Indication of the bias incurred in circle area by using a
chord as diameter rather than the true diameter.
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between circles is dependent on their individual biases. If the circles

have the same center there is no bias in the calculated ring area. The

biases also decrease to zero when the angle of the increment boring

approaches the axis of offset, thus decrea5ing the radius of the tan-

gent circle to zero. Note that the bias does not depend upon the size

of the circle through which the chord passes.

The final question to be examined was whether there existed a

system for measuring through eccentric circles, such that the correct

ring area between them could be determined regardless of the relation-

ship between the boring angle and the axis of offset. The keyto the

problem was simply to insure that the bias in both circles was identi-

cal. Since the bias is dependent only on the distance from the chord to

the center of the circle, and not the size of the circle, it was neces-

sary. only, to insure that the chord (increment bore) passes the same

distance from the 'center of either circle. This situation is shown in

Figure 6.

There remains the problem of locating such a.point. There

would not appear to be any simple way of doing this in the field, but

that such a target point exists at all, for any two circles, is of con-

siderable interest. Since the offset of tree rings generally progresses

in a constant direction, it would be reasonable to expect this point to

be between the geometric center of the tree and the pith. It would also

be expected that less bias would be incurred by boring through any



Where g .+ h is the distance between circle centers measured along
the axis of offset, and g h.

Figure 6 A system which gives the correct value for ring area for
any angle 0, and any offset.

Axis of
offset

21
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point between the pith and geometric center, than by boring through the

pith itself. When the areas among three or more circles are desired,

all of which have different centers, there appears to be no single tar-

get point which will give an unbiased result. The advantages of a sin-

gle increment core, extending completely through the tree, should be

obvious from the foregoing discussions.

Right Angle Boring System

General Discussion

It is common practice for foresters to take two increment cores

at right angles to each other, and to average the ring radii found, us-

ing either a simple arithmetic mean or the quadratic mean This ths-

cussion will be limited almost exclusively to the simple arithmetic

mean. This system was probably an outgrowth of the practice followed

for determining the basal area of a tree using caLipers, in which two

measurements at right angles were commonly used. Chaturvedi (1926)

credits the popular adoption of this procedure to Klauprect. Recent

work indicating the superiority of opposing borings will probably be

slow to change this practice, however conclusive the studies may be.

Concentric Circles

Two situations regarding the measurement of concentric rings
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are shown in Figure 7. In the first case (a) the mathematics are quite

obvious when the vertex of the two measurements is at the center of

the circles. Since both distances are equal to the true radius, the

area of the ring as calculated by the formula RA = -B2 will

yield the correct answer. There exists a situation in the use of per-

pendicular borings which is almost exactly the same as previously

discussed for opposing borings. The second illustration (b) in Figure

7 shows this rather unusual situation. In this case the formula

-i-A - = RA will give precisely the correct answer for the area

of the ring. A good deal of laborious calculation can be avoided by

simply recognizing that the distance along the shorter core (C1+C2) is

exactly the same length as indicated by the dotted line m. This really

is a situation of a reflection of the incident angle of the first core with

respect to the line passing through the vertex of the cores and the cen-

ter of theci.rcles. Since this is true the same proof as provided earli-

er with Figure Z will apply. It can then be concluded that no bias in

calculated ring area will exist, provided that each of the perpendicular

cores forms an angle of 450 to a line passing from thecenters of the

circles through the vertex of the cores. This proof actually holds

whenever the angles of the cores to the connecting line (0) are equal,

but with the stipulation that the cores also be at right angles to each

other, the restriction to 450 is automatic.



a

Where
A = C2 C1 + d1 + d2

B=C +d

Figure 7. Adjacent borings through concentric circles.

Connecting line 0
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Eccentric Circles

The situation with respect to eccentric circles is complicated

when increment borings are at right angles to each other. No simple

relationships were found for expressing bias, except in the case where

the vertex o.f the boring lay along the axis of offset, and both borings

were at a 450 angle to that axis. In such situations the bias is exactly

the same as with opposing borings. The pith, commonly used as a

meeting point for the two borings is generally, along the axis of offset,

so there is some practical advantage in establishing this relationship.

The bias in an individual circle areais dependent on the distance (f)

from the center of the circle to the partial chord. The bias is the

same as that of a circle with radius f. Figure 8 shows atypical ex-

ample, and the circle of radius f which expresses the bias. When cal-

culating the ring area between two circles the bias for both is identical

when the vertex of the bores is equidistant from the centers of both

circles, along the axis of offset, and with both bores at an angle of 450

to the offset axis. In this case there is no resulting bias in the cal-

culated ring area. Figure 9 shows a scheme for determining ring

area without bias, which closely resembles the method used with

opposite borings, but with the restrictionthat the angle Q can only

be 45°.

The function for the length of the partial chord from the vertex

j
5



Figure 8. Illustration of the bias incurredbymissing the center of a
circle with adjacent borings.

f = d * sin 450

Z6



where

A = + C1 + d1 + d

B=C +d1

g=h

Figure 9. An unbiased system for measuring ring area between
eccentric circles with adjacent borings.

Offset axis

27



C = V4 - (d* sin Q)Z + (d * cos 9)

This can of course be solved for any angle 0, and for 0 + 90 to

get the length for both legs. These summed figures can then be

squared and multiplied by iT'/4 to get estimated circle area and then

compared to r21Y to obtain the bias. This, however, is a tedious pro-

cedure and offers no intuitive comparison to the very simple bias

calculation discussed earlier in relation to opposite borings. When

the borings are made at angles to the offset axis of other than 45° the

area bias may be positive for one circle, while being negative for the

other. This is to be contrasted to the opposite system where area

bias is always negative in both circles. This would lead us to expect

both larger and smaller area estimates with right angle borings, and

very probably a larger variation among those estimates, whenever the

angle of boring is random with respect to the axis of offset.

28

of the cores to the edge of the circle is not difficult to calculate. Let

the distance along the partial chord be designated C (see Figure 10)

with the distance from the center of the circle d; r is the radius of the

circle; and the angle of the partial chord to the axis of offset is 9.

The distance C is defined by the equation
p



= lIZ chord length ± length g

= JrZ - (d*sin (cos 0* d)

Figure 10. Principles used to determine equation of partial chord
length.



FIELD TEST

Purpose of the Study

The study was undertaken to determine whether the area differ-

ences between the two basic boring systems would yield a result which

differed significantly in either mean or variance under actual field

conditions. Even though the theoretical considerations indicated that

the system of boring from opposite sides would be less sensitive to

changes in the orientation of the increment borer, it was not known if

this would result many substantial difference under actual field con-

ditions. The general procedure was to calculate the area using a pair

of borings, and to compare it to the area derived from a pair initiated

at right angles to the first pair. The assumption was that the system

which was least sensitive to change of insertion angle relative to the

unknown axis of offset would yield the most uniform calculated areas.

Field Procedures

30

During the summer of 1973, 107 trees were sampled. They

ranged in diameter inside bark from 11 to Z3 inches and averaged

18.6 inches. Four increment borings at 900 angles were taken from

each tree at breast height, penetrating about 30 years' growth in each

case. In every case an attempt was made to bore towards the
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geometric center of the tree. The first core was taken from the uphill

side on each tree, and the downslope azimuth was recorded. Diameter

was measured to the nearest 1/10 inch with a diameter tape. Bark

thickness was measured from the diameter tape to the wood in incre-

ments of 1/100 inch. The cores extracted were storedin. labeled plas-

tic straws. The cores were later dipped in a solution of copper sul-

phate to inhibit mold, and frozen when not being examined. The nec-

essity of these precautions became apparent when mold obscured the

sapwood growth rings from samples taken early in the experiment.

The trees were not selected at random, but on the basis of having a

crown which was essentially free from competitionand a bole free

from mechanical damage. The selection was based on the requirement

of the primary study being made on soil compaction response, but

should not have any effect on the analysis of the data for this study.

Additional data on crown width and length, and tree age were gathered

for the primary study, but do not affect this analysis. The four areas

from which the trees were gathered are noted on. Table 1. The num-

ber of rings counted on each tree was not always identical, but the

author attaches no real importance to this fact, since the ring width

differences are well within the range which would normally occur sim-

ply because of differences in individual tree growth. The study was

concerned withthe problems of establishing ring widths, and there

was no reason to restrict those ring widths to a particular number of



Table 1. Description of Trees Used in Study.

Number
'Number-of of Rings

Group Trees Used Area of Location Counted

A 11 T.J1S., R.7W., Sec. 21 13

B 38 T.3S., R.6W.,Sec. 27 12

C 6 T.3S., R.6W., Sec. 23, W1/2 15

D 18 T.3S., R.6W., Sec. 23, E1/2 11

E 34 T.3S., R.6W., Sec. 9 11

Total number of trees 107

32
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years of growth. Abnormal growth or knots were avoided when taking

cores. The direction in which the first core was taken for each sam-

ple tree is shown in Figure 11. The length of the lines shown are pro-

portional to thenumber of trees first bored from that direction. The

first core, which was on the uphill side, shows a good distribution

through the range of directions. Slopes on which the trees were lo-

cated ranged from 0 to 50 percent. When the ground was level the

first core was taken from the north side.

Ring Width and Ring Area.

The width of the ring along each increment core was measured

to the nearest .005 inch by: a single interpreter. Measurements were

made using a graduated rule and Luxo magnifier, providing approxi-

mately ZX magnification through the center of a fluorescent light. The

combined ring width of six combinations of two cores was calculated

for each tree. Using this combined ring width, the average bark

thickness, and the diameter of the tree, the ring area was calculated.

A diameter tape was used when obtaining outside bark diameters since

this represents common field practice and the size of the: trees pre-

vented boring the entire chord distance. The calculations required

were performed using the SIPS subsystem for the Oregon State Univer-

sity CDC 3300 computer.
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Figure 11. Direction and relative frequency of the first bore for 107
trees.



Statistical Tee hnique s

Individual ring widths, as well as the paired ring widths were

tested for differences in mean and variance through the use of Students

t and F tests, respectively. The same tests were also applied to the

areas generated from these ringwidths. Finally, the differences be-

bween the areas generated for each ring using a set of two borings

was compared to the area generated by a set initiated ,t right angles

to the first set. The calculated differences between the system of

opposite borings were compared to those using adjacent borings.
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PRESENTATION OF RESULTS

No significant differences were found between single ring widths

at the . 10 probability level. The maximum difference in average ring

width was only 5.1 percent. There was no significant difference in

variance between the width of these four rings. These results seemed

to indicate a good distribution of the direction of offset between the

four borings taken. The same results were noted with the areas

generated from pairs of these ring widths. The areas calculated from

opposing borings were in the middle of the range, with the areas

formed from adjacent sets occupying the extremes. No difference in

values of either mean or variance was significant at the .10 probability

level. The maximum difference in mean ring area between sets of

combined borings was less than 4 percent of their combined mean.

The absolute value of the area differences as calculated from

two different sets of borings, initiated at right angles to each other,

showed results which were very highly significant. Table Z and Fig-

ure 12 illustrate these results. The mean difference between areas

using sets of opposing borings was significantly smaller than the mean

difference between areas using sets of adjacent borings at the .01

level in every instance. The differences in variance between areas

calculated from opposing versus adjacent borings were also signifi-

cant at the .01 level. No significant difference in mean or variance
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Table 2. Mean Absolute Difference Between Ring Areas Calculated by Sets of
Borings in Square Inches.

Combinations Mean Variance
Standard

Error

1,2 -3,4 5.239 24.717 .4806

2,4 - 14 7.215 33.309 .558

1, 3 - 1,4 7.769 38.578 .600

1, 3 - 2, 3 7.2 12 32.875 .554

2, 3 - 2,4 7.759 38. 520 .600

Diagram
of Ring

Combinations

0000
000000



Diagram
of Ring

Combinations

0-0
0-0
0-0
0-0
0-0

4.29 5.239 6.19

6.11 7.215 8.32

6.58 7.769 8,96

6.11 7.212 8.31

6.57 7.759 8.95

5 6 7 8

Differences expressed in square inches

Figure 12. Mean absolute difference between ring areas calculated by different pairs of
borings, showing means and 95 percent confidence intervals.
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was noted among the four comparisons of sets of adjacent borings.

The average difference in calculated area between sets of opposite

borings was 10.5 percent of their:combined mean, while the average

difference between pooled sets of adjacent borings was 15.5 percent

of their combined mean.

When the signed differences between calculated areas of sets of

borings were averaged, the positive and negative values largely can-

celed out. None of these averages was significantly different thanany

other, nor were any significantly different thanzero at the 10level.

The variance of the area difference using opposite borings is still

significantly smaller than the variance of the area difference using

adjacent borings at the .01 level. The average difference between

areas when the sign is taken into account drops to .5 percent in the

case of opposite borings, and an average of 1.7 percent in the case of

adjacent borings, when compared to the mean ring area.



DISCUSSION

The results showed clearly that the area calculated by a pair of

opposing borings varied less, when compared to an area calculated

from another set at right angles tothe first, than the areas of two sets

of adjacent borings which were at right angles to each other. The in-

creased variationcaused by using ,a system with cores at right angles

to each other does not seem to strongly affect the mean difference,

which was not significantly differentfrom zero for 107 trees. Even if

the difference had been significant it would have been in the range of

one to two percent, which would be tolerably small from a practical

viewpoint. Where the sample size was small or where accuracy on

individual trees is important, the system of opposite borings would be

desirable, due to the smaller variance. The field test indicated that

opposite borings gave areas that tended towards the middle of the

range of calculated values, though this was not significant. The high-

er variance for ring area on an individual tree which was indicated by

the field test was fully in agreement with theory developed earlier.
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CONCLUSIONS

The use o a single chord length to estimate ring area, rather

than two partial chordlengths at right angles is preferred due to

smaller variance. When using opposite borings, or a single boring

passing through the cross section, bias is reduced by boring parallel

to a line passing through the centers of the circles of interest, or by

passing as evenly as possible between the centers of the two circles

of interest. When using two borings at right angles both borings

shouldbe at a 45° angle to the axis of offset, and their vertex should

be located midway between the centers of the circles of interest.

When any substantial number of trees are sampled the variation be-

tween tree ring areas can be expected to mask differences between

the two systems studied, but repeated borings of the same tree should

show smaller variance with the opposite boring technique when the

axis of offsetis unknown.
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APPENDIX A. RESULTS OF STATISTICAL ANALYSIS

Table 3. Mean Single Ring Width for 107 Trees.

Ring
Number Diagram

1 0
2

3

4 3

Relative
Size Code Mean Variance

Standard
Error

-

+

-

+

-

+

.88079

.93621

.90383

.93009

.19474

.15525

.19838

.20378

.04Z66

.03809

.04306

.04364



.861 .936 1.01

.819 .904 .989

Ring Number
.7963 .8808 .965

.80 .90 1.0

width in inches
Figure 13. Mean single ring width of 107 trees showing 95 percent confidence interval.

4 a .844 .930 1.02



Table 4.

Diagram

Mean Combined Ring Width for 107 Trees.

Combination Mean Variance Error
Riñg Standard

1 + 2 1.817 .5601 .07235

EII3 + 4 1.834 .6560 .0783

1 + 3 1.785 .7057 .08121

2 + 4 1.866 .6150 .07581

1 + 4 1.811 .7083 .08136

2 + 3 1.840 .6109 .07556

Pooled opposites 1.825 .6053 .05318

Pooled adjacents 1.825 .6563 .03916



Diagram of Ring
Combination

0
C
0
0
©

1.624

1.674 1.817 1.960

1.679 1.834 1.989

1.785 1.946

Figure 14. Mean combined ring width for 107 trees showing 95 percent confidence intervals.

1.716 1.866 2.016
I I

1.650 1.811 1.971

1.690 1.840 1.989

1.6 1.7 1.8 1.9 2.0

width in inches



Table 5. Mean Calculated Ring Area for 107 Trees.

Diagram of Ring
Combination

0

Ring
Combination Mean Variance

Standard
Error

l,:Z 48.731 344.95 1.796

3, 4 48.988 396.41 l.9Z5

1, 3 47.849 4Z7.00 1.998

Z, 4 49.787 374.53 1.871

1, 4 48.474 437.45

2, 3 49.166 369.67 1.859

Pooled opposites 48.86 368.96 1.3 13

Pooled adjacents 48.82 399.87 .967



Diagram of Ring
Combinations

45.17 48.73 52.29

45.18 48.99 52.80

43.89 47.85 51.81

0 46.08 49.79 53.49

44.47 48.47 52.48

45.48 49.17 52.85

42 44 46 48 50 52 54
I . I

area in square inches

Figure 15. Mean calculated ring area of 107 trees showing 95 percent confidence interval.



Table 6. Mean Differences Between Ring Areas Calculated by Sets of Borings.

u-I0

Ring
Combinations Mean Variance

Standard
Error

1,2 - 3,4 -.2546 52.365 .6996

2,4 - 1,4 1.3134 84.108 .8866

1,3 - 1,4 .6241 99.111 .9624

1,3 - 2,3 -1.3168 83.630 .8841

2, 3 - 2,4 -.6207 98.894 .9614

Diagram of Ring
Combination

0000000000



Diagram of Ring
Combination

area in square inches

Figure 16. Mean differences between ring areas calculated by sets of borings, showing
95 percent confidence intervals.

-3 -2 -1 0 1 2 3

0-0 -1.640 -2.546 1.131

0-0 -.442 1.3134 3.069

0-0 -1.281 .6241 2.530

0-0 -3.067 -1.317 .434

00 -2.524 -.621 1.283


