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SMOOTH NONPARAMETRIC CONDITIONAL QUANTILE
PROFIT FUNCTION ESTIMATION

1. INTRODUCTION

Investigation of the efficiency (or productivity) of a firm, an industry or other objects of
interest and specification of a frontier, corresponding to efficient units have been the subject of
research in economics since the fundamental papers of Farrell (1957), Shephard (1953, 1970) and
Debreu (1951). These papers introduced the basic ideas for construction of measures of productive
efficiency of the firm based on what has become known as Farrel and Shephard distance functions,
which in turn depend on production function (frontier). A number of subsequent papers were
devoted to the development of different procedures for production function estimation. There
exist, in addition, a large and growing literature in economics devoted to the estimation of profit
functions (or profit frontier). The goal of this paper is to propose a robust profit frontier estimator

and investigate it’s statistical properties.

1.1. Literature and methodology review

It is convenient to start with a small literature review which will shed some light on the
existing methods of frontier estimation.
Consider a pair (z,y) € §Rf x Ry, we can describe a technology where firms use inputs x

in order to produce output ¥y as
U = {(z,y) € RY x Ry : x can produce y}.

A production function and Farrel’s output distance function for some pair (zg,yo) are defined

respectively as

g(z) = sup{y € Ry : (z,y) € V,2 € RP}, Fo(zo,50) = sup{B: (w0, Byo) € V¥, (z0,0) € ¥, > 1}.



Then we can define a Farrel’s output efficiency measure for (zg,yo) as

Yo 1
0 < Dy(zo, = = <1,
< Do(@o, o) g(zo) Fo(zo,y0)

where D, (20, yo) is also known as Shephard’s output distance function. Alternatively, we define

Do(wo,y0) = inf{0: (w0, %) € ¥, 0 € (0,1]}.

The main objective in production and efficiency analysis is, given a random sample of production
pairs {X;,Y;}, € U, to obtain an estimator g(-) for g(-) and use it to obtain estimated efficiencies
ﬁo(Xi,Yi) fori=1,2,...,n.

Estimators for production frontiers can be divided broadly into those which are based on:
parametric or nonparametric models which, in turn, can be subdivided into stochastic and non-
stochastic.

Popular among the parametric stochastic frontiers are the models and estimators proposed
by Aigner, Lovell and Schmidt (1977), and Kumbhakar and Lovell (2000). These models impose
some known parametric structure on the production technology and assume (in)efficiency can be
modeled as a random shock to output with some specific distribution. In addition, output is sub-
ject to random shocks which may result in production plans that are inside or outside the set W.
This model can in general be easily estimated using Maximum Likelihood based estimation, which
is known to be asymptotically normal and efficient. However, it has important disadvantages: (i)
by assuming a parametric form for the technology, restrictions on the shape of the frontier can
lead to potential misspecification; (ii) a large number of distributional assumptions could be made
on the efficiency and random shocks with impact on estimation. Results are sensitive to these
assumptions and there is in general lack of robustness of the results to these distributional as-
sumptions. Even if one could analyze properties of the model with several different distributional
assumptions (Greene (1990)), it is not possible to analyze impacts of all kinds of distributions.

In deterministic frontier models, there exists no random shocks to output that are related
to (in)efficiency.The most frequently used deterministic frontier estimation procedures are Data
Envelopment Analysis (DEA) first introduced by Charnes, Cooper and Rhodes (1978), and Free
Disposal Hull (FDH) proposed by Deprins et al. (1984). Both procedures use similar nonpara-
metric, enveloping techniques based on free disposability of the technology assumption and the

assumption that all observation lie in the set ¥, but FDH is more general since it does not require
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convexity of the technology. Both, DEA and FDH are very easy to implement using linear pro-
gramming algorithms and have known asymptotic properties given by Gijbels et al. (1999) and
Park et al. (2000). However, these estimators have a number of important disadvantages. First,
because of the enveloping nature of DEA and FDH, they are very sensitive to extreme values and
are inherently biased. In other words, DEA and FDH provide frontier estimators which based on
the best production plans in the sample and do not give us much information on how close an
estimated frontier is to the true one. Second, even if true frontier is smooth, FDH and DEA pro-
vide us with discontinuous or piecewise linear functions. Even though there were some attempts
to resolve some of these deficiencies (Simar and Wilson (2004)), various alternative procedures
have emerged based on different approaches to frontier modeling and estimation. Among these are
partial frontiers of order-m introduced by Cazals et al. (2002) and order-« conditional quantile
frontiers proposed by Aragon et al. (2005).

Aragon et al. (2005) define the production function as,

g(z) = sup{y e Ry : F(y|z) <1} = inf{y € Ry : Fy|z) = 1},

where F(yla) = 224 F(z,y) = P({X <2,Y <y}) and Fx(x) = P({X < z}) is the associated

marginal distribution of X. Since Fx (z) > 0, they focus attention on a set
U* = {(z,y) € ¥: Fx(x) > 0}.

Aragon et al. (2005) observe that the last definition of the production function (which coincides
with a conditional quantile of the order one) suggests the possibility to constructing a production

function of continuous order « € [0,1]. They propose the following,
¢o(z) = Inf{y € Ry : F(ylz) > a}.

as an a—frontier. The interpretation for g,(z) is that it is the level of production exceeded by
(1 — ) * 100% of producion plans that use inputs less than or equal to . If F(y|z) is strictly
increasing on the support [0,g(x)], then g,(r) = F~!(alz), where F~1(y|z) is the inverse of
F(y|r)!. In this context any allocation (x,y) belongs to some quantile curve of order-a. Hence

it allows us to dermine the level of productivity of every production plan relative to the other

1See Proposition 2.1 in Aragon et al. (2005).
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plans using the same or less amount of inputs. Another advantage of this approach is that by
construction, it does not require any assumptions on the shape of the technology and as @ — 1,
go(r) — g(z)%. Aragon et al. (2005) proposed an estimator of g, based on empirical conditional

distribution F’(y\x), given by
Gan(z) = F7'(alz) = inf{y: F(ylz) > a)}

and show that \/n(Ga,n(2)—g¢a(2)) <, N(0,0%(z,a)), where 02 (x, o) = a(1—a)/(f*(ga(z|7)) Fx (7)).
Recently Martins-Filho and Yao (2008) proposed a smooth conditional quantile frontier esti-
mator based on Azzalini (1981), which is based on the integration of a Rosenblatt density estimator.
They show that, under suitable assumptions, their estimator has some advantages comparable to
Aragon et al. For finite samples, their estimator has a smaller variance, which is good property,
but smoothness introduces a bias term, which Aragon’s estimator does not have. Monte-Carlo
simulation conducted by Martins-Filho and Yao reveals, that when the data is such that firms are
mostly relatively efficient, then the bias term is dominated over the advantage of smaller variance
and it is probably better to use Aragon’s estimator, but for the data where we have a small number
of efficient firms their estimator is preferable. Asymptotically, both estimators are equivalent since
the bias term disappears and variances become the same. We now turn to the main topic of this

thesis.

1.2. Statement of the problem and organization of the Thesis

In the previous section we discussed different methods for production frontier estimation.
Previous attempts to obtain profit efficiency e.g., Fare and Grosskopf (2005), Briec et al.(2006),
Maruyama E. and Torero M. (2007), used parametric stochastic frontier estimators or DEA/FDH
estimators, which have some of the disadvantages discussed above. Here we build upon the estima-
tion proposed by Martins-Filho and Yao (2008) to construct a robust and smooth estimator for a
profit function (profit frontier). First, we define an a—profit function based on the quantile of the
suitably defined conditional distribution for profits. Second, we propose a smooth nonparamet-

ric conditional quantile estimator for the a—profit function model. Because of the nature of the

2See Theorem 2.4 in Aragon et al. (2005).
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methodology we use, our estimator is computationally simple, resistant to outliers and extreme
values, and smooth. In addition, we establish that the estimator is consistent and asymptotically
normal under mild regularity conditions.

This thesis has the following structure. In Chapter 2 we define a—profit functions and
investigate some of it’s basic properties. Then, in Chapter 3, we introduce our smooth conditional
quantile estimator for a—profit function and impose some assumptions, necessary for further anal-
ysis. In Chapter 4, we provide the main results, which shed light on statistical properties of the
estimator. Finally, in Chapter 5, we present a small Monte-Carlo study in order to check finite
sample properties of our estimator. Proofs of all results and some interesting properties are listed

in the Appendices.



2. CONDITIONAL QUANTILE REPRESENTATION OF THE
PROFIT FUNCTION

2.1. Definition of the conditional quantile profit function

Because of the nature of the conditional quantile representation of the production frontier
we could consider only the case of a single output and multiple inputs®. One of the advantages of
efficiency estimation using conditional quantile profit function is that we can easily consider the
case of multiple inputs and multiple outputs, which in many instances more realistic.

Let z € §R£ and y € Rf be input and output vectors, and w = (w1, wa,...,wp) € &EEJF,
p= (p1,p2,-..,pm) € 8?_1‘([ be vectors of input and output prices respectively.

Given a pair of prices (p,w) € ?Rf X %EJH a level of output y € §Rf and a technology U,
profit can be defined as

m(p,w,y) = py — c(w,y),

where c(w,y) = inf{wz : (z,y) € ¥, w € §R£+} is a cost function. Assume, that for all prices
(p,w) € %y X §R£+, profit m(p, w,y) is bounded above as a function of y, i.e. 30 < B, < 0o such
that 0 < 7(p,w,y) < B, for all y.

Thus, the profit function can be defined as

m(p,w) = sup{m(p,w,y):ye RY}

sup{py — c(w,y) : y € RY'}

sup{py —wx : (z,y) € U}. (2.1)
Profit function, when it exists, has the following properties:

i) Nondecreasing in p: if p® > p! then 7(p°, w) > 7(pt, w), V w.

(
(i) Non increasing in w: if w® > w! then 7(p, w®) < 7(p,wt), V p.
(iil) Homogeneity in p, w: w(kp, kw) = kn(p,w) for k > 0.

(

iv) Convex in p. Let p = A\p® + (1 — \)p! for 0 < A < 1. Then 7(p,w) < A(p°, w) + (1 —

A7 (pt, w).

3See (Simar and Daouia 2007) for an attempt to deal with multiple outputs. Their proposed estimator suffers
from the curse of dimensionality.
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FIGURE 2.1: 3D graph of the profit function

Figure 2.1 illustrates sample profit function (generated as described later in the Monte Carlo
section) and provides some intuition for properties (i), (ii) and (iv).

The set of all attainable profits, given the technology ¥, can be defined by

U, ={(p,w,m) : 7 < 7(p,w),p € RY ,w e RV}

Let F(p,w,m) be an absolutely continuous distribution function with associated density
f(p,w,m), and Fpw, Fp, Fpr and fpw, fp, fpm be, respectively, marginal distributions and
densities for the corresponding variables appearing as subscripts.

Before we proceed with a definition of the conditional quantile profit function, notice that
when we deal with quantile of distribution for a random variable X, based on a conditioning set
C we can define

q(a|C) = inf{z : F(z|C) > a},

where F(z|C) = %})(ﬁg;c) is a conditional distribution of X given a conditioning set C, such
that Prob(C) > 0.

Thus, we can define the profit function as:

w(p,w) = sup{w € [0, B,] : F(n|p,w) < 1} = inf{w € [0, B;] : F(rx|p,w) = 1},

where F(rw|p,w) = %})(ﬁgc) is a conditional distribution of 7 given conditioning set C' =
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{P < p,W > w} with Prob(C) > 0, and B, is an upper bound for the profits given prices
(p,w) € RY x RY.

The concept can be extended to a profit function of continuous order a by
Ta(p,w) = inf{m € [0, Bx] : F(n|p,w) > a},

Note that denominator in the expression for F(7|p, w) can be written as,

p (oo B
Prob(P <p, W >w) = / / / f(P,W,I)dIIdW d P
0 w 0
D e}
= / / few (P, W)dWdP

0 w

Since fOOO fPW(pa W)dW = fp(p)v

| aewowaw = so) ~ [ fowto, wiaw

Hence, we write

/Op /oo fpw(P, W)deP = Fp(p) - pr(p,w).

w

Similarly we can write,

D o3} ™
/ / / f(P,W,I1)dIIdWdP = Fpn(p,7) — F(p,w, 7).
0 w 0
Consequently, the conditional distribution would be,
FPH(p> 71—) B F(p7 w, 7T)
Fp(p) — Frw(p,w)

F(rlp,w) =
where Fp(p) — Fpw (p,w) > 0. Thus, we can focus our attention on the set
\I/;kr = {(p,w,ﬁ) € \I]ﬂ' : FP(p) - FPW(p7 ’lU) > 0}

Figure 2.2 represents an a-profit function for one output and a fixed input price w. Figure
2.3 shows an a—profit function for the case of one input and a fixed output price p. Here the profit
function is convex to the origin with respect to input prices. The area of interest in the Figure
2.2, i.e. a set of efficient points for given (p,w), are all points on the left hand side of p and above
the 7 (p,@). In Figure 2.3 all points on the right hand side of the w and above 7, (p,w) are the
plans efficient relative to (p,w) under .

A three dimensional picture with shaded area of interest for given (p,w) is shown in the

Figure 2.4.



n(p.w)d

P P
FIGURE 2.2: Profit with fixed input price

n(p,w)4

FIGURE 2.3: Profit with fixed output price

2.2. General properties of the conditional quantile profit function

Similarly to the case of production function we can think of 7, (p,w) as the profit level
exceeded by (1 — a) x 100% of firms that face output prices less than p and input prices greater
than w. We now show that, the set of quantile curves {(p,w, 7 (p,w)) : Fp(p) — Fpw (p,w) >
0, o € ]0,1]} fills the space ¥%, i.e. we show that for every firm represented by triplet a (p,w, )
there exists a corresponding « quantile curve, which gives us the level of profit efficiency of the

observed firm.
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FIGURE 2.4: Area corresponding to the conditional quantile profit function for given (, ).

Assumption A2.1V (p,w) € RY x RP, s.t. Fp(p) — Fpw(p,w) > 0, we have F(m|p,w) >
F(ma|p, w) whenever m > mo for m,ma € [0, By].

Theorem 2.1 Suppose Assumption A2.1 holds. Then,

Y(p,w,m) € ¥

T

we have ™ = w4 (p, w) where a = F(7|p,w)*.

This theorem tells us that, as in the case of production a-frontier, we can use a = F(m|p, w)
as a measure of the efficiency of the observed firm.

Another property of the profit a-frontier that we need to check, is does it satisfy monotonic-
ity properties of the profit function for the case of fixed input or output prices which we described

before? To show this we need to impose more monotonicity assumptions on the F(w|p, w).

Assumption A2.2 Let A,(w) = {p € RY : Fp(p) — Fpw (p,w) > 0}, where w € RY is any fived
input price vector. Then ¥V m € [0, B;] and V p1,p2 € Ap(w) s.t. p1 < pa, we have F(rw | p1,w) >
F(r | p2,w), i.e F(w|p, @) is non increasing in output prices p for any fized input price w and any
profit .

Assumption A2.3 Let A,(p) = {w € RY : Fp(p) — Fpw(p,w) > 0}, where p € RY is any
fixed output price vector. Then ¥ m € [0,B;] and V wi,ws € Ay(p) s.t. wy < wy, we have

F(r | pyun) < F(m | p,wa), i.e F(m|p,w) is nondecreasing in input prices w for any fixed output

4All proofs are in Appendix A.
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price p and any profit w.
Assumption A2.2 says that the probability of profit being less than 7 decreases with output
prices for fixed input prices. Conversely, assumption A2.3 says that the probability of profit being
less than 7 increases with input prices for fixed output prices. Now we state:

Theorem 2.2 (i) The quantile function (p,w) — 7 (p,w) is monotone nondecreasing on the

set A, (w) for every order o € [0,1] and fized w if and only if the function (p,w) — F(rm|p,w) is
monotone non increasing on the set A,(w) for any profit m € [0, Bx], i.e. satisfies Assumption
A2.2.
(i) The quantile function (p, w) — 74 (D, w) is monotone non increasing on the set A, (p) for every
order a € [0,1] if and only if the function (p,w) — F(w|p,w) is monotone nondecreasing on the
set Ay (D) for any profit m € [0, By], i.e. satisfies Assumption A2.3.

Theorem 2.2 shows that under our assumptions on the conditional distribution function,
the conditional quantile profit function satisfies the monotonicity properties associated with the

function.
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3. STOCHASTIC MODEL AND ESTIMATION

3.1. Smooth conditional quantile estimator

In this section we introduce empirical and smooth estimators for the conditional a-quantile
of the profit function, i.e. what we call an a-profit frontier.

Let S, = {(P;, W;,1I;)}?; be a sequence of independent identically distributed random
vectors taking values in U%. Here n is the number of firms observed, II; is an profit and (P;, W;)
are output and input prices faced by the i*" firm. We first define an estimator F (m|p,w) for
F(r|p,w) as

0 if #=0,

Frlp,w) = (3.1)

Fpu(pm)—F(pw,m) -

Fp(p)—Fpw (p.w) if = >0,
where Fpn(p, ), F(p,w,ﬂ), Fp(p), pr(p7w) are defined using two different estimators: (i)
as empirical distributions following Aragon et al. (2005) and (ii) as integrals over II of suitable

defined Rosenblatt density estimators following Martins-Filho and Yao (2008). Both techniques

we have already discussed briefly in the Introduction. For the case (i) we define,

Fpu(p,m) = n~'> I(I; <P <p),
=1
Fp,wm) = 0 Y I(0L <, P < p, Wi < w),
=1
. n
Fp(p) = n~ ') I(P;<p),
=1

pr(p7w) = pnt ZI(Pz <pW; < w),
=1
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and for (ii),

Fpu(p,m) = (nhy)™" Z

F(p,w,m) = (nhy)™! Z

Fp(p) = nt ZI(H < p),

n
Fpw(p,w) = n 'Y I(P; <p, Wi <w),
=1

where I(A) is the indicator function for the set A, K () is a suitably defined kernel function and h,,
is a non stochastic sequence of bandwidths such that h,, > 0, h, — 0 as n — oo. The difference
between estimators in (i) and (ii) is that we use smooth nonparametric estimator of the distribution
function (Azzalini, 1981) in the direction of the profit = instead of using an empirical one, but we
still have empirical distributions in the direction of p and w. It was shown by Martins-Filho and
Yao (2008) for the case of production functions, that smooth kernel based estimator implemented
in the direction of univariate output has y/n rate of convergence. This is the rate of convergence
of an asymptotically efficient parametric estimator and thus is the best rate of convergence one
could obtain. As we show in later chapters, our estimator also achieves a 1/n rate of convergence.
It is possible to smooth estimators in the direction of prices as well, but as a result the estimator
will suffer the curse of dimensionality problem.

It can be shown that, F (m|p, w) is asymptotically a distribution function, i.e. for suitably
defined kernels: (fi) F(x|p,w) is nondecreasing in ; (£ii) F(7|p,w) is right continuous in R ;
(£.iii) limg_o F(7|p, w) = 0; (£iv) there exists some N (p,w) such that for all n > N (p,w) we have
limy—_ o0 F(7|p, w) = 15.

Now, assuming that 7, (p, w) is the unique order o quantile for the conditional distribution

F(m|p,w), we define the estimator 7, ,(p, w) as the root of
F(ﬁa)n(p,wﬂp,w) =aq, for a € (0, 1] and (p,w) € §Rf X §R£, (3.2)

and thus

Tan(p,w) = F_l(oz|p7 w), (3.3)

5See Appendix C.



14
which constitute an estimator for conditional a-quantile (frontier) of the profit function. Now,
using the mean value theorem, absolute continuity of F' and smoothness of the kernel function we

can write

# w) — w) = F(ﬂ'a(p,wﬂp,w) _F(ﬂ-a(pvw”pvw)
a,n(pv ) a(p, ) f(ﬁam(p, U})|p, ’LU) )

) e -
OF (nlpw) _ (nhn) t T K(=—)[I(P;<p)—I(P;<p,W;<
on -

Fp(p)—Fpw (pw)

where f(Ta.n(p, w)|p, w) = N for > 0 (no-

tice that for 7 < 0, f(x|p,w) = 0) and Ta. (P, w) = tia.n(p, w) + (1 — )70 (p, w) for t € (0,1).
3.2. Assumptions

The stochastic properties of the estimator defined in previous the section are obtained
under the following regularity conditions:
Assumption A3.1 (a) S, = {(P;, W;, L)}, is a sequence of independent random vectors taking
values in U% and having the same distribution F as the vector (P, W,II) with support in W ;
(b) % is compact and 0 < f(p,w,7) < By for all (p,w,m) € ¥;
(c)30<w™n ¢ §R£ st. ¥ (pyw,m) € U, wi™ <w, Vk=1,...,D, i.e. we assume that input
prices are bounded away from zero.

The assumption that S, is an independent and identically distributed sequence, and the
existence of the density f as a bounded function in ¥, is standard in deterministic frontier literature
(Aragon et al., 2005; Cazals et al., 2002; Park et al., 2000; Martins-Filho and Yao, 2007a, 2008).
Notice, that assumption A3.1(c) is needed, since if we allow w to be zero, we get infinite profits
m(p,w,y) = py — c(w,y) and thus profit function (maximum) does not exist.

Assumption A3.2 (a) K(y) : Sk — R is a symmetric bounded function with compact support
Sk = [-Bxk, Bk] such that:

() [75, K()dy = 1;

(¢) [25 K (dy =0, [T K (3)dy = o

(d) for all v, € Sk we have |K(v) — K(v)| < mgly — | for some 0 < mg < o0;

(e) for all v, € R we have |k(y) — &(7)] < mg|y — 7| for some 0 < mg < oo, where
k() = [, K()dy.

Assumption A3.2 is standard in nonparametric estimation and is satisfied by commonly
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used kernels such as Epanechnikov, Biweight and others.
Assumption A3.3 (a) [ is continuous in VUZ;
(b) for all (p,w) such that Fp(p) — Fpw (p,w) > 0 and for all a € (0,1], f(wa(p,w)p,w) > 0,
where f(-|p,w) is the derivative of F(-|p,w);
(c) for all (p,w,n), (p,w,n") € ¥, |f(p,w,n") — f(p,w,m)| < my|n’ — x| for some 0 < my < co;
(d) F is twice continuously differentiable in the interior of V.

Before we state the next assumption, we adopt the following notations:

(i) Let (p,w) € RY x R, then for any three subsets 4, C C, = xM,[0,p;], Ay C
Cyp = xP (wmm w;] and B C [0,7(p,w)], 7(A, x Ay) = {m(p,w) : p € Ap,w € A,} and
7 Y(B) = {(p,w) : p € Cp,w € Cy,m(p,w) € B} = (A, x Ay) C (Cp x Cy), (but note that
3 (po,wo) € Ap X Ay 3 m(po,wo) > m(p,w));

(ii) Let w € %f be fixed and 7 = w(p,w) < 7’ = 7w(p/,w’), for some (p,w), (p’,w’) €
RY x RP. Then 7z ([r,7']) = {p: 7 < n(p,w) < 7'}

(i) Note that for (p,w) € RY x RP, m(p, w) is not the maximal value in the region C,, x Cy,
since profit function increases when w decreases. Since we assumed that profit is bounded, i.e.
for given (y,p,w) € RY x §Rf, 3 B, >0, s.t. (y,p,w) < By, and given that every element of
w id bounded below by w!", the maximal value of the profit function in the region C, x C,
must belong to R, and is given by Tpazp.w) = (P, w™m), where w™™ € RP is provided by
Assumption A3.1(c).

(iv) Denote RD = {w € R? : w™ <w, Vk=1,...,D}.
Assumption A3.4 For all m, 7' € G, where G is compact subset of (0,00), we have
|f7r‘1([7r77r']) d(P,W)| <mg-1|n" —m|, for some 0 < my-1 < o0.

Assumption A3.4 imposes Lipschitz type condition on the integral on the left hand side of

the last inequality.
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4. ASYMPTOTIC CHARACTERIZATION OF THE ESTIMATOR

4.1. Asymptotic properties

In order to establish asymptotic properties of 74, (p, w) we need to proof some inter-
mediate results provided by Lemma 4.1 and Lemma 4.2. Lemma 4.1 is an extension of Lemma 1
in Martins-Filho and Yao (2008), with a difference in the object of interest: we are interested in
properties of the difference EFpyy (p,7) — F(p, w, ) because of the nature of our estimator. Notice
that, asymptotically the difference between Fpn (p,m) — F (p, w, ) and the difference between cor-
responding empirical distributions is the order at which our bias and variance converge to zero.

Lemma 4.2 is used in the Theorem 4.2 in order to obtain the asymptotic normality of our estimator.

Lemma 4.1 For all (p,w) € §Rf X §R£ and m € R4 and under assumptions A3.1, A3.2(a), A3.2,
A3.3, we have:

Fpu(p,m) — F(p,w,m) + Bgn +o(h2) if 0 <7 < Tpaz(pw),

(a) E(Fpu(p,m)—F(p,w,m)) = Fpn(p,7) — F(p,w, ) + o(h2) if 7> Tonas(pw)
Fpr(p,m) — F(p,w, ) + o(hy) if ™= Trmas(p,w)s
where
2
Bpn = 2202 { I/ O Wmapaw ~ [ FOE,W,md(P, W)
2 RD S (7 maa(pow))) T (T ag (pw))
(b)
V (FPH(p,TF)—F(p,w,’TT)) =
% (FPH (p7 7r) - F(p,w, 7‘—)) (1 — Fpn (p7 7T) + F(p,w,ﬂ')) + BV,n + O(hn/n) ifo<n< Tmaz (p,w)»
% (Fpn(p,ﬂ') - F(p,’w,ﬂ')) (1 - FPH(pv 7T) + F(pvwvﬂ-)) + O(hn/n) if m> Tmaz(p,w)s
where
By, =2n" hpox [/ F(P,W, m)d(P, W) —/ / F(P,W,m)dPdW | ,
(I T mas, (p,w))) RE S (17 ma, (,w)))

and k(\) = f:\BK K(y)dy, o, = figgk ve(Y)K (y)dy, fO(P,W,r) denotes the first derivative of

f with respect to I, and 0 < h,, — 0 is a nonstochastic sequence of bandwidths.

Lemma 4.2 Let 0 < h,, — 0 as n — oo be a nonstochastic sequence of bandwidths with nh? — oco.
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Assume A3.1, A3.2, A3.3 and A3.4, then for a compact subset G C (0, 7(p,w)) we have:

sup
TeG

1 - Hi—ﬂ'
— K I(P,<p —I(FP< - <
nhn; ( hn )[(l_p) (z_p7W1_UJ)]

- / / F(P, W, 7)dPdW + / F(P,W,m)d(P,W)| = 0,(1).
ERB Tr‘zll([ﬂ)ﬂma,m(p,w)])

T ([T Tmaz (p,w)])

Theorems 4.1 and 4.2 establish consistency and asymptotic normality of 7, ,(p,w). Notice
that in addition to our assumptions imposed in Chapter 3, Theorem 4.2 uses the following as-
sumption ming;.p, <,y Il; > hy, By, which implies that as the number of observations that satisfy
{i: P; < p} goes to infinity, then corresponding level of profit II; is bounded away from zero. The

Theorem 4.1, following below, establishes consistency of 7y (p, w):

Theorem 4.1 Let 0 < h, — 0 be a nonstochastic sequence of bandwidths with nh, — oo as
n — oo. Assume that for a given (p,w) € %f X 3‘%2 and some n we have ming;. p, <,y Il; > hy, By

and A8.1, A8.2, A3.8, A8.4. Then we have that,

T (P ) = Ta(p, w) = 0p(1) (4.1)

Asymptotic normality of 74, (p, w) is obtained in Theorem 4.2.

Theorem 4.2 Let 0 < h,, — 0 be a nonstochastic sequence of bandwidths with nh? — oo and
nhy = O(1) as n — oo. Assume that for a given (p,w) € RY x RY and some n we have that

ming. p,<py i > hn By and A3.1, A3.2, A3.8, A3.4. Then for all a € (0,1) we have

_ N d
U’I’L(p7 w) 1\/ﬁ(wa,n<pa U)) - Tra(p? ’U)) - BE/I’L) i N(Oa 1)7 (42>
where
JoD [ 1 O PW,x)dPdW —[ _, O (P,w,m)d(P,W)

— h’?z R T ([ra (P, w), "o (p,w)]) T ([ma (P W) T a0 (p,w)))
Bpn = —F0k n D Frw 5 (e 5w +o(h7)
and

1
2
v (pyw) = FPH(var (p7w))_F(paw7ﬂ- (p7w))
" (Fp(p) — Fpw (p,w)) f(ma(p, w)|p, w))? “ “
(FPH(pa ﬂ-(x(pa UJ)) B F(p7 w, 7T0,(p, 'UJ)))2
2h B h,
’ Fo(p) ~ Fow (p,0) ¥ 2n0Bun | olhn)

where

s wratonarw- [ J(P, W, o (p, w))dP WY,

Ta(PW) Tmaw(p,w)l)

B'U,n = /
7"_1([77(1 (paw)777maz(p,w)])
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It could be easily obtained that if we use solely empirical estimator instead of smooth,
we would get similar asymptotic results with the only difference, that in that case we would not
have bias Bg,(p,w) and extra term in variance B, , (it is similar to the conditional quantile
production function estimator provided by Aragon et al (2005)). Notice that we obtained that our
smooth estimator has /n rate of convergence, which is very good result. Another appeal of the
smooth estimator is it’s finite sample properties suggested by the Theorem 4.2. Since we subtract
a nonnegative term B, ,, in the variance of our smooth estimator, for finite samples, the smooth
estimator has less variance than the empirical one. When n — oo, B, ,, disappears, which means
that smooth and empirical asymptotically have the same variance. At the same time we have
bias term Bg, = O(hZ), which does not exist for empirical estimator, but it is also disappears
asymptotically when nh? = o(1). Notice, that drawing a parallel with the case of the estimation
of the production function, we get similar results as in Martins-Filho and Yao (2008), just as one
would expect.

In the next theorem we turn our attention to the estimation of the true frontier m (p, w).
Theorem 4.3 Assume that ming;.p,<p w,>w} Ili > hnBr and that A3.1, A3.2 holds. In addition,
assume that density [ is strictly positive on the frontier {(p,w,n(p,w)) : Fp(p) — Fpw (p,w) > 0}
and that w(p,w) is continuously differentiable. Then for all (p,w) in the support of (P, W) we have
(a) there exists N(p,w) > 0 such that ¥ n > N(p,w) 71, (p,w) = maxy;.p,<p,w,>w} i + hn Bk ;
(b) nM @D (g (p, w) — 71 (p, w) + by Bie) > Weibull(ud+?, d + 1).

Park et al. (2000) provide an expression for a constant u, and it’s consistent estimator.
Notice, that we get exactly the same result as in Martins-Filho and Yao (2008) in corresponding
theorem for true production frontier. Thus, we can just make the same conclusion (which follows
from the results obtained in Park et al. (2000)), that this result suggests, that the bias term
associated with the estimation of the true frontier m (p, w) using 71 ,(p, w) could be smaller than

that associated with the FDH estimator.

4.2. Bandwidth selection

Implementation of the profit a—frontier estimator requires the selection of bandwidth.

Following standard practice in nonparametric methods, similarly to Martins-Filho and Yao (2008),
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we select our bandwidth by minimizing an asymptotic approximation of the estimator’s mean
integrated squared error (AMISE) over all . Disregarding terms of order o(h#) and o(h, /n), we
get AMISE(7qn(p,w); hy) as a function of hy,:

MISE(Ganlpuiin) = B [ 1<ﬁa,n<p7w>—m<p,w>>2da)

/0 V(o (p,w)) + Bias? (Fon(p,w))da

= A1<p,UI)+A2(p,U))+A3(p,’LU),

where
hiof I?(p,w, )
Ai(p,w) = K / ’ a,
1(p ) 4(FP( ) FPW p,w f2 7Ta p7 ‘pv )
1 1 1—a)
As(p,w) = — / da,
P = R Feww) Jo Pl w)lpw)
1 2hn0y p,w «)
Az(p,w) = — / dov,
) = o PPy PG
with
Li(p,w,0) = / / fO(P, W, m)dPdW
SRB Tw ( T (p w sTmaz(p, w)])
- / FO (P, W, m)d(P.W)
7 H([7a (Psw) Tmaz(p,w)])
and

Bip.we) = [ F(P W, o (p, )P, V)
T 1 [71'& b, ’UJ) Tmaz(p, w)])

/ / f(Pv Wa '/Toz(paw))dpdw
§RD 7"_1 ([ra p,w),Trm,,T(p w)])

Then, using standard technique for minimization problems, the bandwidth that minimizes
AMISE(#tq n(p, w); hy) is given by

1/3

I (p,w,«
204 fo fQ(Wa(p,w)\pyw)da n~13 — on~1/3.

ni =
o) o

ok Jo e

Since our expression for AMISE accounts for all possible values of «, h can be interpreted as a
global optimal bandwidth with respect to « for given output and input prices (p, w). Note that,
since the estimator for profit a—frontier is constructed as a quantile estimator with univariate

smoothing in the profit direction only for the underlying conditional distribution, the order O(n'/3)
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was expected. It is not surprising, similar result was obtained in Martins-Filho and Yao (2008),

Azzalini (1981) etc. where a kernel estimator is used to estimate an unconditional distribution.

However, the constant C is different from theirs, this is also expected because of the difference

in conditional sets. Recall that in our case we have {P < p,W > w} instead of, for example,
{X < z} in Martins-Filho and Yao (2008).

The practical use of h¥ requires the estimation of the unknowns f(-), f()(-) appearing in

its equation, as in the traditional plug-in bandwidth selection methods. In the next section we

provide an estimation procedure for these unknowns and check finite sample performance of our

estimator via a small Monte Carlo study.
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5. MONTE CARLO STUDY

In this section, we perform a Monte Carlo study, which implements our smooth estimator
for profit a—frontier (S) and compares it’s finite sample performance with the empirical estimator
(E) constructed using empirical distribution only, similarly to Aragon et al (2005).

The data in the experiment are simulated according to the model II; = 7(P;, W;)R;, i =
1,2,...,n where II; represents profit; the univariate output prices P; and input prices W; are
pseudo random variables, generated from a uniform distribution with support given by [b;, b,].
R; = exp(—U;), where U; are pseudo random variables representing efficiency shocks, generated

independently from exponential distribution with parameter § = % In order to satisfy monotonic-

p?
VW

which is convex in p and nondecreasing in p for fixed w; and is non increasing in w for fixed p.

ity properties of the profit function we chose the following functional form: =« (P;, W;) =

Similar DGP has been considered in Martins-Filho and Yao (2008, 2007a,b), Aragon et al. (2005),
Park et al. (2000).

In our study, we estimate profit a—frontiers for o = 0.25,0.5,0.75,0.99. For our specifica-
tion of m(p, w), we consider three sample sizes n = 200, 600 and 1000 and perform 1000 repetitions
for each experiment. Using 10 equally spaced points in each direction P and W (total 100 points)
of the support of m(p, w), we obtain the averaged bias, standard deviation and root mean squared

error of estimator for each «.

5.1. Estimator implementation

The empirical profit a-frontier is implemented similarly to one described in Aragon et al.
(2005) with the only difference in conditioning set. For convenience, we provide below a description
of the algorithm.

Let Ny, be the number of observations (P;, W;) such that P; < p and W; > w, i.e. Np, =
Sr I P < p,W; > w}), and, for j = 1,..., Np,, denote I,y the it order statistic of the

observations II; such that {P, <p,W; > w}: II;, <II;, <...< Hizva' Supposing that N, > 0,
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we have,
0 if 7 <11,
F(rlp,w) = k/Npy i I, <7<y, 1<k<Np,—1,
1 e
Therefore, we obtain for every a > 0,
(o) = i n,. if aNpw € N,
otherwise,

o Npwl+1
where [Np,,] denotes integral part of aNp,,: the largest integer less than or equal to aVp,, and
N* stands for the set of all nonnegative integers.

Our smooth estimator is implemented using the Epanechnikov kernel and the following

plug-in bandwidth
. 1/3
1 _ I>(p,w,a)
- 20 [, fQ(Wa(p,w)Inw)da -1/3
T o fl _Bwe) g, " ’
K JO #2(nq (p,w)|p,w)

where fl (p, w, a)a fZ(p7 w, a)a ]E(,]roz(pa UJ)|p, ’U}) are estimators for Il (pv w, Q), 12(]97 w, a) and f(ﬁa(p, w)|pa ’UJ)

appearing in hy. Notice, that
s (ngn) ™' iy K(=T)[I(P; < p) = I(P; < p,W; < w)]
f(ﬂ'a,n (p7 w)|p, w) = = )
F (p) — F(p,w)

where F(p) and F(p,w) are empirical distribution functions. Since f(#4.,(p,w)|p,w) is suit-

ably defined Rosenblatt density estimator, we utilize the rule-or-thumb bandwidth of Silverman
(1986) for g,. In I(p,w,a), I2(p,w,«) the area of integration ﬁ{vl(ﬂa(p, W), Traz(paw)), ¥ W
and 7 (7, (p, W), Tmaz(p,w)) Need to be estimated. Then to estimate I (p, w, «) and I>(p,w,a)

consider

a2 b2 a2 bl
/ f W (p,w, 7)dPAW = < / FO(P, W, m)dPdW — / f<1>(P,W,7r)deW>
al 0 0 0 0

al b2 al bl
- < / fO(P, W, 7)dPdW — / f<1>(P,W,7r)deW>,
0 0 0 0

for some positive bounds al, a2, bl and b2. Given our estimator for conditional distribution and
any two bounds a > 0 and b > 0, a natural estimator for I(m fo fo f(1 P, W, m)dPdW is given
by

Z KO (

)I(P <b,W; <a),

ngnl gn1
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where K1) (zp) = diiff) for a bandwidth ¢,1. The optimal bandwidth ¢;; can be obtained in a
similar manner as it was obtained in Martins-Filho and Yao (2008), using their Lemma 3 with

a minor changes in areas of integration. For Iy(p,w,a) we consider an estimator for H(w) =

Iy fob f(P,W,m)dPdW width some constants a > 0, b > 0. The estimator can be defined as

A R — 1
H(r) = K(” )I(Pi<b,Wi <a),
ngn2 i—1 gn2

for a bandwidth gn». Since H (m) is suitably defined Rosenblatt density estimator, we can use
the rule-of-thumb bandwidth of Silverman (1986) for g,s. Finally, we can use FDH estimator for
771(-) and get initial estimator for 7, ,(p,w) using true optimal bandwidth h} based on some
known simple function for 7(p,w) and joint standard normal distribution for (p, w, 7).

Given the results of the Theorem 2 we can construct asymptotic confidence intervals for the
smooth a-profit function estimator. Similarly to Martins-Filho and Yao, given that the asymptotic
bias is O(h2) and h* oc n='/3 we have that O(y/nh2) = O(n='/%) = o(1). Hence, the normalized
bias vanishes asymptotically and for 97.5% quantile Zy 975 of standard normal distribution, we

obtain

Hm P (Fan(p,w) — n Y2(S2)2 Zg 975 < Ta(p,w) < Fan(p,w) + 1" Y2(83)V2 2 975) = 0.95,

n—oo

a(l—a)
(Fp(p)=Fpw (p,w)) f (Fon (pw)|p,w)?

mated as described above. The asymptotic confidence interval for the empirical a-profit frontier

where 52 = Ep(p), Fpw(p,w) and f(fa.n(p, w)|p, w) are esti-

is constructed in a similar manner.

5.2. Results and analysis

In previous section we described a procedure for the choice of the optimal bandwidth, but
even the rule-of-thumb bandwidth supports our theoretical results. All results in this section
are obtained with the rule-of-thumb bandwidth and it is most likely that with the optimal one,
performance of the smooth estimator would be much better.

Figure 5.1 depicts the true a—profit frontier with estimated smooth and empirical frontiers
for « ranging over 0.01, 0.02, ..., 1 for simulated data set of size n = 50 and 7(p, w) = 7(1.9,1.1).

As it was expected, our a-profit frontier is a smooth function of o and the empirical a-profit frontier
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FIGURE 5.1: Plot of true a—profit frontier with estimated smooth and empirical a—frontiers.

is not. Table 5.1 provides biases, standard deviations and root mean squared errors for smooth and
empirical a—profit frontier estimators for o = 0.25, 0.5, 0.75, and 0.99. As we can see, biases of
the smooth estimator are larger than empirical one for small o and vise-verse when « is high. But
in terms of standard deviations and root mean squared errors our smooth estimator perform better
than empirical estimator for every «, which suggests that smaller variance of the smooth estimator
compensates for an additional term appearing in the bias. Notice also, that when n growing root
mean squared errors of both estimators become closer, which supports our asymptotic results and
suggests that for large n, two estimators become equivalent. We also obtained that root mean
squared errors for both estimator get larger for a close to 1, which is not surprising since there are
relatively less representative data available for high a.

The empirical coverage probability (the frequency that the estimated confidence interval
contains the true a-profit frontier in 1000 repetitions) is shown in the Table 5.2 for (p1g,w1g) =
(1.33,1.67), (p20,wa0) = (1.56,1.44) and (p3g, wse) = (1.78,1.22). For most experiments we obtain
that our smooth a-profit function estimator is superior to the empirical estimator, although both
estimators behave very good for high values of profit function at (psp,wso); and not really good
for small profits at (pso, wso).

The next series of graphs compares 3 dimensional graphs of the estimated smooth a-profit
frontier and empirical one for different values of . As we can see when « growing to 1 both

estimated frontiers become closer to the true frontier (when o = 1) and our smooth estimator



indeed looks smoother than empirical one.

TABLE 5.1: Statistics for alpha profit function estimators

Bias x1073 Std RMSE
S E S E S E
n=200
0.25 1.97 0.91 0.0510 0.0535 0.0511 0.0535
0.5 5.06 4.35 0.0615 0.0638 0.0616 0.0638
0.75 2.59 -1.22  0.0764 0.0793 0.0765 0.0793
0.99 -14.57 -19.13 0.1038 0.1100 0.1055 0.1144
n=400
0.25 1.53 1.13 0.0360 0.0374 0.0361 0.0374
0.5 2.56 0.15 0.0429 0.0443 0.0430 0.0443
0.75 0.88 -1.13  0.0534 0.0549 0.0533 0.0549
0.99 -6.19  -10.13 0.0761 0.0813 0.0764 0.0830
n=800
0.25 0.150  0.02 0.0211 0.0220 0.0210 0.0220
0.5 1.69 0.42 0.0283 0.0293 0.0283 0.0294
0.75 0.91 -0.20  0.0380 0.0391 0.0381 0.0392
0.99 -290  -5.44  0.0549 0.0584 0.0550 0.0589

25



TABLE 5.2: Empirical coverage probability for a—profit function estimators

(P10, w10) (P20, w20) (P30, w30)

S E S E S E
n=200
0.25 0.757 0.706 0.961 0.957 1 1
0.5 0.774 0.766 0.948 0.944 0.997 0.995
0.75 0.759 0.714 0.963 0.930 0.998 0.996
0.99 0.521 0.387 0.857 0.842 0.968 0.912
n=400
0.25 0.779 0.772 0978 0.968 1 1
0.5 0.818 0.813 0.957 0.955 0.999 0.998
0.75 0.806 0.776 0.954 0.946 0.999 0.998
0.99 0.656 0.618 0.908 0.826 0.984 0.968
n=800
0.25 0.826 0.808 0.974 0970 1 1
0.5 0.840 0.828 0.964 0.960 0.999 0.999
0.75 0.805 0.797 0.967 0.967 1 1
0.99 0.783 0.791 0.918 0.891 0.991 0.987
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Profit
ﬂ\ 0:51,01.5202.53.05.5404.685.05.56.0

FIGURE 5.2: Smooth a—profit frontier for a = 0.25

Profit
ﬂ\ 0:51,01.5202.53.05.5404.685.05.56.0

FIGURE 5.3: Empirical a—profit frontier for o = 0.25

27



Profit
ﬂ\ 0:51,01.5202.53.05.5404.685.05.56.0

’ FIGURE 5.4: Smooth a—profit frontier for a = 0.5

Profit
ﬂ\ 0:51,01.5202.53.05.5404.5685.05.56.0

FIGURE 5.5: Empirical a—profit frontier for o = 0.5
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Profit
ﬂ\ 0:51,01.5202.53.05.5404.685.05.56.0

’ FIGURE 5.6: Smooth a—profit frontier for « = 0.75

Profit
ﬂ\ 0:51,01.5202.53.05.5404.685.05.56.0

FIGURE 5.7: Empirical a—profit frontier for o = 0.75

29



Profit
ﬂ\ 0:51,01.5202.53.05.5404.685.05.56.0

' FIGURE 5.8: Smooth a—profit frontier for o = 0.99

Profit
ﬂ\ 0:51,01.5202.53.05.5404.65.05.56.0

FIGURE 5.9: Empirical a—profit frontier for a = 0.99
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Profit
ﬂ\ 0:51,01.5202.53.05.5404.685.05.56.0

FIGURE 5.10: True profit frontier for o = 1

6. CONCLUSIONS

In this thesis we proposed a smooth a—quantile estimator of the profit function based on the
suitably defined conditional distribution for profits. The estimator is pretty easy to implement and
it is shown to be consistent and asymptotically normal with /n rate of convergence. Comparing
with the empirical version of the profit function, smoothness provides us with a smaller variance
and thus better performance for finite samples. Although, we faced bias term, which does not
appear for the empirical estimator, we show, that asymptotically bias and extra term in the
variance disappear, making our smooth estimator and the empirical one equivalent for large n.
Small Monte Carlo study, that we implemented, confirms the asymptotic theory predictions. One
of the steps for future work is to introduce environmental variables into our model and investigate

properties of the model and an impact of environmental variables on the estimator’s performance.
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A APPENDIX Proofs

Theorem 2.1 Suppose Assumption A2.1 holds. Then,
V(p,w,m) € ¥L, we have m = 74 (p, w) where a = F(7|p,w).
Proof Let (po,wo,m) € U and a = F(mg|po, wo). Then having

Ta(Po, wo) = inf{m : F(7|po, wo) > a},

by strict monotonicity of F(w|p,w) we have that the smallest 7 will be that one for which

F(7|po,wp) = a. Thus, by A2.1 7, (po, wo) = .

Theorem 2.2 (i) The quantile function (p,w) — w4 (p,w) is monotone nondecreasing on the

set A,(w) for every order a € [0,1] and fized w if and only if the function (p,w) — F(rn|p,w)
is monotone nonincreasing on the set Ap(w) for any profit m € [0, B], i.e., satisfies Assumption
A2.2.
(i) The quantile function (p,w) — 74 (P, w) is monotone nonincreasing on the set A, (p) for every
order a € [0,1] if and only if the function (p,w) — F(w|p,w) is monotone nondecreasing on the
set Ay, (D) for any profit m € |0, B, i.e. satisfies Assumption A2.3.
Proof (i) («) Let w € R? be a fixed input price vector. Suppose that for any m € [0, By,
the function (p, w) — F(rw|p,w) is monotone nonincreasing on the set A,(w). Let a € [0,1] and
p1,p2 € Ap(w) be such that p1 < ps. Then F(mq(p2,w)|p1, @) > . Thus, since F(w|p, w) satisfies
Assumption A2.1, 7, (p2, @) > F~1(a|p1,w) and therefore 7, (p2, w) > inf{r : F(n|p1,w) > a} =
7Ta(p1,w).

(=) Let m € [0,B;], w € §Rf and p1,p2 € A,(w) such that p1 < p;. Suppose that
the quantile function is monotone nondecreasing for every order a on Ap(w), ie., ma(p1, @) <
To(p2,W). Set a = F(w|pa,w). Since we have 7, (p2, w) = inf{7 : F(7|p2,w) > «}, then
T > To(p2,w), and ™ > wa(p2, W) > 7a(p1,®), which, given Assumption A2.1, implies that
F(rlpy,w) 2 F(ma(p1, w)|p1, @) = o = F(r|pz, w).

Similarly for part two:

(ii) («) Let p € RY be a fixed output price vector. Suppose that for any 7 € [0, By],

the function (p,w) — F(7|p,w) is monotone nondecreasing on the set A, (p). Let a € [0,1] and
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wy,wy € Ay (P) be such that wy < wy. Then F(7, (P, w1)|D, w2) > a. Thus, since F(w|p,w) satis-
fies Assumption A2.1, m,(p,w1) > F~1(a|p,wy) and therefore m, (p,w1) > inf{r : F(rx|p,ws) >
a} = mo (P, wa).

(=) Let m € [0,B,], p € RY and wi,ws € Ay,(p) such that w; < wy. Suppose that the
quantile function is monotone non increasing for every order a on A, (p), i.e. 7o (P, w1) > 7o (P, w2).
Set o« = F(m|p,wy). Since we have 7, (p, w1) = inf{7 : F(7|p,w1) > a}, then 7 > 7, (P, wy), and
T > 7o (P, wa), which, given Assumption A2.1, implies that F(7|p, ws) > F (74 (D, we)|P, w2) = a =

F(,/T‘ﬁfwl)'

Lemma 4.1 For all (p,w) € §Rf X %f and ™ € Ry and under assumptions A3.1, A3.2, A3.3,
we have:
Fpr(p,m) — F(p,w,7) + Bg, +o(h?) if 0 <m< Tmaz(p,w)»

(Cl) E(FPH(p7 7-‘—)_}:_‘(13710’71-)) = FPH(pv 7T) - F(p7w77r) + O(h%) if m> Wmam(p,w)v
FPH(p7 71') - F(p7w,7T) + O(h") if m= Trm‘“?(P;w)’
where
By, = n FO(P,W, )dPdW — FOP,W,m)d(P,W) | ;
& [/ RD /,T  Tman(prwy)) /w*l([w,wmmp,w)])

(b)

V. (Fpn(p,m) — F(pﬂuﬂr)) =

% (FPH(er) - F(p’wv ﬂ—)) (1 - FPH(pv 7‘-) + F(p,’w,ﬂ')) + BV,n + O(hn/n) if 0<m< Tmaz(p,w)s
% (Fpn(p,ﬂ') - F(p,wﬂr)) (1 - FPH(pv ﬂ—) + F(pvwvﬂ-)) + O(h"/n) if m > Tmaz(p,w)s
where
By = 20 hnon U PR, 0) _/ / F(P,W, mydPaw | ,
(T T (pw) ) RE S (7o ma (p0)])
and k( f Bx K(v)dy, o = ffBK ve(Y)K (y)dy, fO(P,W, ) denotes the first derivative of

f with respect to I, and 0 < h,, — 0 is a nonstochastic sequence of bandwidths.
Proof (a) We consider E(Fpr(p, 7)) and E(F(p,w,)) separately.
E(F(p,w,ﬂ)): Since h, — 0 as n — oo, 3 N(p,w) € R, such that V n > N(p,w),

Ly (752

/ / /[0 P / (w o K(y)dy f (P, W, I1)dlldPdW (A1)

E(F(p,w,))
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Let F(p,w, ) f[o .l f(p,w,~)dy, hence

Fp(P,W,1I
E(F(p,w,)) /// < )8 f WD rapaw,
[0.7(P.W)] ha on

Using integration by parts,

— I
/ /ﬁ(ﬂ )de(P,W,H)
[0,7(P,W)] b,

Il
=
7N
3
|
A
e
=

By A3.3(d) and Taylor’s theorem,
Fy(P,W,m = hny) = Fy(P,W, ) = hnf(P,W,m) + lm fOPW,m) + o(h?),

where f0 (P, W, ) = w. Hence, we write E(F(p,w, 7)) = E1n+ Fon — Esp + Ean +0(h2),

where

B, = // (”_ﬂPW))Ff(P,W,w(P,W))deW
L1

7/hn

Es, = Fr(P, W7r)/ K(~)dydPdW
(m—m(P,W))/hn

h7l

B3 = / / F(P,W,m) / VK (7)dydPdW

(mr—m(P,W))/hn
h2 7/hn
By = / / P, W, ) / 2K (y)dydPdW.
Cuw (W_W(va))/hn

For (p,w, ) € U

T

if # < 0 then F(p,w,w) = 0. We now consider the limiting behavior of each
term when: (1) 0 < 7 < Traz(p,w); (2) T > Tmazpaw); (3) T = Tmaz(p,w)-

(1): Recalling our notations, adopted in the previous section, we can write:

n

B, = Ll([oﬁ])l-g(W) Fy(P,W,n(P,W))d(P,W)

— (P
+f g (W) Fy(P,W,x(P.W))d(P, W)
m 1([71' Tmaz(p w)])

n

= FEun+Eion.

First, observe that ’Ii (%fw))‘ |Fr(P,W,m(P,W))| < B < oo for some 0 < B < oo given A3.1

and A3.2. Note that in the case of E11,, we have (P,W) € n~1([0,7]) and «(P,W) < m, thus

K (7r77r(P,W)

W ) — 1. Hence by Lebesgue’s dominated convergence (LDC) theorem

Eivp — / / F(P,W,TD)dIId(P, W).
—1([0,m [0,7(P,W)]
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For E13 5, since (P,W) € = ([T, Timaz,(p,u)]) We have & (w) — 0, hence by LDC theorem,
we have Fiz, — 0.

For the case of Ey,, we have:

7/hp
Eon = / Fy(P,W, ) / K(7)dvd(P, W)
w=1([0,7]) (m—=m(P,W))/hn

7/ hn

+f Fy(p. W) [ K()dyd(P, V).
Wﬁl([”‘»”mam(p,w)]) (WﬁW(P’W))/hn

For (P,W) € ([0, 7]) we have that fﬂ/h"

(ﬂfﬂ—(PyW))/hn K(’Y)d’y - 07 and fOI' (Pa W) € 77_1([71-’ 7Tmaz(p,w)])

7/hn
we have f(w/_W(RW))/hn K(v)dy — 1. Therefore Ey,, — fﬂfl([mwmm(p,w)]) f[o,n} f(P,W,I)dld(P,W).
For the case of Fs3, we have:

7w/hn

Bon = hn / (P, W) / VK (7)dyd(P, W)
m=1([0,7]) (m—=7(P,W))/hn

7/hn

o [ e [ VK (3)dd(P, V)
_1([77)7rmaz(p,u')]) (W_W(P7W))/hn

= BE3in+ E3p.

For (P,W) € m—1([0,7]) we have that fw/h"

(m—m(P.W))/h vK(vy)dy — 0, hence h,'E3;,, — 0. Then,

by A3.2(c), for (P,W) € 7 ([, Tmaz(p,u)]) We have that f(:/f;(PW))/hn yK(y)dy — 0, and

therefore h,, ' E3,, — 0.
Now,

h2 7T/hn
By = M FO (P W, ) / 22K (7)dnd(P, W)
2 Jx=1(j0,x) (r—r(PW))/hn

h2
2 T T T maz, (p,w)])

= Fqn+ By

7/ hn

SO (P ) / K (7)dyd(P,W)
(m—m(P,W))/hn

+

For (P,W) € 7=1([0,7]) we have that f(:/_h;(P W) /b V2K (y)dy — 0, hence h,?E4;, — 0. For

7/ hp

(P,W) e ﬂfl([w,ﬂmaxmw)]) we have that fﬂfﬂ(P’W))/hn

Y2 K (vy)dy — 0% by A3.2(c), and
1
W Ein — 30k / FOPW,)d(P,W) + o(h2).
T[T T maw (p,w)])

Hence, for 0 < 7 < m(p, w) we have

E(F(pyw,m)) = F(pyw,m) + 2o [ FOPW,md(P,W) +o(h2).  (A2)
7"-_1([7"77"'7711135,(;D,w)])



39

(2): If > Tppaw(pw), Bin = fW*l([Oﬂrmw(p.w)D K (w) Fy(P,W,m(P,W))d(P,W) and since
(P,W) € 7 1[0, Tau(p,w)]) We have that m(P,W) < 7 and H(%f’w)) — 1. Hence by

LDC theorem FE;, — Fr(P,W,n(P,W))d(P,W) = F(p,w,w). Similarly, E, —

71'71([Owﬂ'muzw(p,w)])

0, hy'Ezy — 0, hy,?Ey, — 0, since 7ﬂfﬂéf’w) — 00 as n — oo. Consequently,
E(F(p,w,m)) = F(p,w, ) + o(h3). (A.3)
(3): If T = Trmaa(p,w), then f(P,W,m) is not differentiable and Fy(P, W, 7 — hy,y) = F¢(P,W, ) —

hoyf(P,W, ) + 0(hy). Hence we write E(F(p,w, 7)) = E1n + Eaon — Esn + 0(hy). In this case,

n

—a(P,W
B | o () Epawaeav )
1[0, T () h

and since for (P,W) € 7 ([0, Tpqu(p,u)]); we have that m(P,W) < 7 and & (%WPW)) — 1 as

n — o0o. Hence by LDC theorem

Eln - Ff(P7 W77T(P7 W))d(P’ W) = F(p,umr).
Wﬁl([ovﬂmaz(%w)])
Similarly,
7/ hn
/ / Fy(P,W,T K()dydPdW — 0
(m—m(P,W))/hn
and

7/ hn
Bo=ho [ [ sewin) | VK (7)drdPdW — 0
Cw Cp (W_W(va))/hn

as n — o0o. Hence, when 7 = T,45( we have

pw)>
E(F(p,w,m)) = F(p,w,m) + o(hy). (A.4)

Similarly we obtain E(Epr(p,)). Since h, — 0 as n — oo, 3 N(p,w) € Ry such that V¥ n >

N(p,w),
T /zRD / /[0 m(P,W)] / (thw) A IE W Py

/ / /[0pr) /(7T o K (v)dy f(P, W, T1)dl1d PAW (A.5)

Let F¢(p,w, ) f[o l f(p,w,~)dy, hence

. T\ OF;(P,W.1I
E(FPH(IMT)):/ / / n(ﬂh )8 f<6’HW’ ) dTdpaw.
§RB Cp [O,ﬂ'(P,W)] n

E(Fpu(p, ))
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Using integration by parts,

n

w/hn
hn

By A3.3(d) and Taylor’s theorem,
1
Fy(P,W,m = hny) = Fy(P.W,m) = hyy f(P,W,m) + Shi® fO(P,W,m) + o(h7),

where f()(P,W,x) = %. Hence, we write E(EF(p, 7)) = E1n + Eay, — Fsn 4 Egn + o(h2),

where
B, = / //{(W?T(P’m)Ff(P,VV,W(P,W))deW
wp Je, ha
w/hn
Ea = / / Fy(P,W,) / K(x)drdPdW
(= (P,W)) [
hn
B, = / / F(P,W, K(v)ddedW
RD (m—7(P,W))/hn,
7/hn,
Em = ™ / / £ (P, W) / 22K (7)dydPdWY.
2 Jep Je, (= (P,W)) /i

We now consider the limiting behavior of each term when: (1) 0 < T < Tpap(pw); (2) ™ >

Tmazx(p,w)s (3) T = Tmaz(p,w)-

(1): Recalling our notations, adopted in the previous section, we can write:

/W/ (0r]) ( h(f W))Ff(P,Wﬂ(P,W))deW

+/ / . (7T_7T(PVV)) F¢(P,W,n(P,W))dPdW
RE S (1 Tmas ) h

n

= Fin+Eiapy.

First, observe that ‘Ii (%ﬂpw))‘ |F¢(P,W,m(P,WW))| < B < oo for some 0 < B < 0o given A3.1.
Note that in the case of Ey,, we have P € 7,/ ([0,7]) for given W € R2 and 7#(P,W) < =
thus & <M) — 1. Hence by Lebesgue’s dominated convergence (LDC) theorem E1;, —
féRD fﬂw (07]) f[OJr(P,W)] f(P,W,I)dlldPdW . For Eis,, since P € ngl([w,mmx(p7,w)]) for given

W € RE . we have & (%) — 0, hence by LDC theorem, we have E2, — 0.
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For the case of Ey,, we have:

7/ hn,
B = [ [ meww [ K (3)dydPdW
RD Jr ! ([0,7]) (r—m(P,W))/hn
hn
/ / Fy(P,W,) / K (y)dydPdW.
RD ([, Tmaz(p,w))) (m=m(P,W))/hn

7w/ hn

For P € ;! ([0,7]) for given W € RE o (PW))

we have that f K(y)dy — 0, and for P €

w

T ([T Tomaz(pw)]) for given W € RD, we have f(ﬂ_ﬂ'(PVW))/hn K(y)dy — 1. Therefore E3, —

fmg fﬂv_vl([mﬂmam,w)]) f[o,w] f(P, W, II)dIIdPdWV .

Now,
7/hn
Es, = hy / / 7r)/ ~K (7)dydPdW

RD 7\'71 ([0,7]) (mr—mw(P,W))/hn

7/hn,

o [ ] ey VK (7)dydPdW
RD i (M T man (o)) (m—m(P,W))/hn
= E314+ E3 .

For P € 7,/ ([0,7]) for given W € RL, we have that f(7r w(PW)) /B K(v)dy — 0, hence

w, we have that

hy'E31, — 0. Then, by A3.2(c), for P € W;V ([7, Trmaz(p,uw)]) for given W e RD
fﬂ/h" Ih vK(v)dy — 0, and therefore h,, 1 E3, — 0.

(m—m(P,W))
Now,
h2 /hn
Bo = 2 [ [ e [ V2K (7)dyd P
2 RD ‘IT;VI(O‘IT]) (mr—m(P,W))/hn
7/hn
/ / FOP, W) / V2K () dydPdW
RD T ([WWmnT(p,(‘,)]) (m=m(P,W))/hn

= E41,n + E42,n~

7/hn

For P € 7;}([0,7]) for given W € RD e (PW)) /Y

we have that [, 2K(vy)dy — 0, hence

w

hp2Esq1,, — 0. For P € 77‘7‘,1([71', Tmaz(p,w))) for given W e R we have that f:/hﬂ (PWY) /o V2K (y)dy

— 02, by A3.2(c), and
1
h 2By, — 50%(/ / FOP, W, m)dPAW + o(h?).
RY Sy (7 T maz(p,w)]
Hence, for 0 < 7 < 7p40(p,w) We have

E(Fpu(p,m)) = Fpn(p,m) + —oK / / [ SO(PW, 1) dPAW + o(h2).  (A.6)
RE Jy Ym,w

maz(p,w)))
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(2): 17 > Toaep)s Bin = Jnp St omne o (w) Fy(P,W,m(P,W))dPdW and
since P € 7y ([0, Trnaz(p,w))) for given W € R we have that 7(P, W) < 7 and (%ﬁjw)) —
1. Hence by LDC theorem Ei,, — [up fﬂfl([oﬂ ( )])Ff(P,VV,ﬂ'(P, W))dPdW = Fpp(p, ).
w w sTmaz(p,w
w—n(P,W)
hn

Similarly, Eo, — 0, h,'Es, — 0, h,?Ey, — 0, since — o0 as n — oo. Consequently,

E(F(p, 7)) = Fpu(p,m) + o(h2). (A7)
3): If ™ = Taw(n.w), then f(P,W,m) is not differentiable and Fr(P,W, 7 — hy,y) = Fr(P,W, ) —
(p,w) f f

hory f(P,W, ) + 0(hy,). Hence we write E(F(p, 7)) = E1p 4+ Eay, — Esy, + 0(hy,). In this case,

B = / / K (”Wh(PW)> Fy(P,W,n(P,W))dPdW
RD [O Tmaxz(p,w n

and since for P € 3 ([0, Tpaw(p.w)]) for given W € RD w(P,W) < m we have that m(P,W) <

and K (M> — 1 as n — oo. Hence by LDC theorem

hn
B / / Fy(P,W,n(P,W))dPdW = Fpp(p, ).
§R5 [O sTmaz(p, w)
Similarly,
W/hn,
FEoy, :/ / Fy(P,W,n(P, W))/ K(y)dydPdW — 0
D (m=m(P,W))/hn
and
/hn
n = hn / / fPW’ITPW))/ YK (v)dydPdW — 0
RD (=7 (P,W))/hn

as n — o0o. Hence, when 7 = T,,44(p,w), We have
E(Fpu(p, 7)) = Fpu(p, ) + o(hn). (A.8)
Finally combining terms, we get:

FPH(pa ﬂ-) - F(p, ’LU,TF) + BE,n + O(h%) ifo<n< Tmaz(p,w)»
E(Fpu(p,7) — F(p,w, 7)) =3 Fpu(p,7) — F(p,w, ) + o(h2) if ™ > Tinaa(p,w)s

FPH(pa 7T) - F(pa w, 71') + O(hn) if = ﬂmaz(p,w%

Bpn =252 [ [/ FOP,W, m)dPaW FOP, W, m)d(P, W)
2 RD Jm 1([77 Tmaz(p w)]) s 1([7T Tmaz(p 'w)])
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(b) Note, V(Epn(p, 7)) — F(p,w, 7)) = L (Vi,, — Vay,), where

(hln [x (”;n”) dv)z (I(P, < p)— (P, < p,W; < w>>]

Vou = E [(hl /OﬂK (”,f) dy (I(P; < p) — I(P, < p, W < “’)))r'

First let’s examine the term Vi,. Given that h, — 0, 3 N(p,w) € R4 such that V n > N(p,w)

Vin=FE

and

we have that:

T / / / 2 <”_H> Oy (P W) yrrgpayy
w0 Jc, Ji0,m(P,W)] b, o1l

_/ / / 2 (W—H) aFf(P,W,H))dePdW
cw Je, Jorpw) hn o1l
= Vll,n - ‘/12,n~

Now as in part (a), using integration by parts and the fact that F¢(P, W, 7 —hy7y) = F¢(P,W,7) —
hoyf(P,W, ) + o(hy,), we obtain:

Vit = /%D/ (””PW)>F,«(P,W,7T(P,W))deW

7/hn
w2 | mewo [ () K (7)dydPdW
RD (m—7(P,W))/hn

7/ hn,
“oh, / / F(P.W, ) / vk (7) K () dydPAW + o{h,)
RD JCp (

m—m(P,W))/hn
= Viiin +Vien + Viizn,

and

Vign = / / (”_”PW))Ff(P,W,w(P,W))deW

7w/ hn
+2 / / Fy(P,W, ) / K (y) K(y)dydPdW
Cw JCp (m—m(P,W))/hn

7/hy
“oh, / / F(P.W,7) / vk (7) K () dydPAW + ofh)
Cw JCy (

m—m(P,W))/hn

Vioi,n + Vison + Vias n.

We consider the asymptotic behavior of each term for (1) 0 < m < Tpaz(p,w) a0d (2) T > Trmaa(p,w)-



(1):
—r(P,W
Vitie = // K2 (W>Ff(P,W,7r(P,W))deW
RD Jr il ([0,7]) hn,
—n(PW
/ / K2 (Wﬁ()> Fp(P,W,n(P,W))dPdW
5R5 Tw ([7\' Tmaz(p, w)]) hn
= Uip + V2n.

Given that m < 7,42 (p,w), similarly to the part (a) we can use LDC theorem and obtain

vln—>/ / Fy(P,W,n(P,W))dPdW
R Sy (0,7

and vy, — 0 as n — oco. Consequently,

Viti,n — / / (P, W, m(P,W))dPdW,
RD ([0,7]

and similarly,

Vigtn — / Fy(P.W,x(P,W))d(P,W).
—L([0,x])

Note that,

7/hy

Viien = 2/ / Ff(P,W,TF)/ k() K (v)dydPdW
RD Jy ([0,7]) (m—m(P,W))/hn

7/hn
wf f Fy(pWm) [ w() K (3)ddPAW,
%8 W;VI([Wﬂrmam(p,W)]) (WﬁW(P:W))/hn

and by LDC theorem we have

By
Viign — 2/ / Ff(P,VV,T(‘)/ k (y) K (v)dydPdW
RD 71";,1([71' Tmaw(p,w))) _ Bk

/ / Fy (P, W, m)dPdW,
RD 7T sSTmaz(p,w) )

w

since fng % (v) K(y)dy = %. Similarly,
Visa — / Fy(P.W.x)d(P,W).
7T sTmaz(p,w) )

Now

7/hn

Viian = —2h, / / f(p, W,’/T)/ v&(v) K (y)dydPdW
R0 Jr ([0, 7r]) (m—m(P,W))/hn

7/hn

- 2h/ / f(P,VVﬂT)/ ~v&(7) K ()dydPdW,
RD ﬂ-a/l([wv'lﬂnam(p,w)]) (W*W(P,W))/hn

w

44
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and by LDC theorem

an s go [ F(P, W, m)dPaw,
RD Jm

w (T Tz (p.w)])

where o,, = fng ve(7)K (v)dy. Again,

Vi2s n
Vizsn o5, / F(P,W.m)d(P,W).
™ 1([7T Tmazx(p w)])

I

Thus,
mn:FPH(paﬂ-) - F(p7w 7T
+ 2h,0. l// f(P, W, m)dPdW
(T Tmaz (p,w)])
/ / f(P,W,m)dPdW | + o(hy,).
RD Sy, (w Tmaz(p,w)])
) Vit = i Jottommy oy 2 (22D Fy (P W, (P, W))dPAW and by LDC theorem
we have
Vo= [ FH (P W (R W)APAW = Frn(p. )

%5 Tw ( 0 7T7naz(p w)

and

V1217n - (0 ) Ff(Pa VV77T(Pv W))d(P, W) = F(p,w,w).
([0, T man(p,w)

.. % %
Similarly, Vi12,, — 0, Viz2,, — 0, 52> — 0 and —2* — 0 as n — oo. Consequently, Vi, =

FPH(pa 71—) - F(pa w, ’/T) + O(hn)
. . 2
Now, since Va,, = (E(F(p7 ) — F(p,w, ﬂ'))) , we obtain directly from the results of part (a):

(FPH(p, 7T) - F(p,w,’ﬂ))z + O(h%) if 0 << Tmaz(p,w)»
‘/2'” = (FPH(p7 71') - F(p7w77r))2 + O(hi) if > Trmaz(p,w)a
(FPH(pv 7T) - F(p,’u)ﬂr))Q + O(hn) if m= ﬂ—mﬂz(%w)‘

Thus, combining the results for Vi, and V5, we have:
\% (FPH(paﬂ-) _F(pawaﬂ-)) =

{ (FPH(p’ﬂ—) 7F(p,w,7'(')) (17FPH(p»7T)+F(p7w77T))+BV,n +O(hn/n) if0<mw< Tmaz(p,w)»
where

(Fpu(p,m) — F(p,w, 7)) (1 — Fpr(p,n) + F(p,w, 7)) + o(hn/n) if > Tmaz(p,w)>
By, =2n" hyo, [ /
(]

3= 3=

sewmarew) - [ f F(P.W,m)dPdlV |
]) RD [7T Tmaz(p w)])

T, Tmaz(p,w)
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Lemma 4.2 Let 0 < h,, — 0 as n — 0o be a nonstochastic sequence of bandwidths with nh? — oco.

Assume A3.1, A3.2, A3.3 and A3.4, then for a compact subset G C (0, 7(p,w)) we have:

1 «— II
nh, ;K<

”) (P, < p) — I(P, < p. W, < w)

sup
TeG
L. fewmapaw + F(P,W,m)d(P.W)| = 0,(1).
%D w [Tr Tmaz(p w)]) ﬂ-il([ﬂ—aﬂ-m,aw(p,w)])
Proof Let
R I, — =«
So,pw(m) = WZK [L(P; <p)—I(P; <p,W; <w)]
Aopulr) = / / (P, W, 7)dPAW — F(PW,m)d(P, W),
SRB 7!' sTmaz(p, w) Wﬁl([ﬂ-wﬂ—vnam(p,w)])
Then
sup |SO pw( ) AO,pw (71')| <
TeG
< sup [Sopw () = E(So,pw(m))] + sup [E(S0,pw(m)) = Ao,pw ()] -

TeG TeG

Note that,

n(n 1/2
SUp 50,1 (7) — E (S ()| = O ((lnﬁl)) ) ~ 0,(1),

TelG

when nh,, — oo by Lemma 1 in Martins-Filho and Yao (2007a),

/ / / (H_”> £(P, W, T)dIIdPdW
RD 0,7 (P,W)] h by,

_ // /MPW) (Hh_n”) F(P, W, TI)dTIdPdW

w(P,W)—7)/hn

- / / / K () f(P,W,m = hyy)dydPdW
R —/hn
(w(PW)=7)/hn
/ / / K(7)f(P,W, 7 — hy7y)dydPdW
7w/ hn

E(So,pw(T))

Let

(7(P,W)—7)/hn
Qopu(m) = / / / K(7)f(P, W, x)dydPdW
RD JC.

w P _Tr/hn

(m(P,W)—=m)/hn
- [ [ ] K () (P, W, n)dd PV
Cw JCp J—71/hy
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and by A3.3(c)

|E(SO’pw (7)) — Qopuw (m)]

IN

IA

(m(P,W)=m)/hyp
mah | [ / / 7 K () d PV
RD 7/ hn

(m(P,W)—m)/hn
" / / | 9 K ()drdPdW
w/hn
< msh, l/ // |v| K (y)dydPdW
+ / / / |’y‘K d’ydeW :O(hn)ZO(l)

Given that 7 € G C (0, Tpyag(p,w))s 3 N(p,w) such that V n > N(p,w) we have

Qopu(m) = /%D) /Cp/-c (W) F(P,W,7)dPdW
- /Cw /Cpn <7T(PZ)”> F(P,W,n)dPdW

= Hln(pvwaﬂ') - H2n(p7 ’lU,Tl') + H37L(p7w77r) - H47l(paw7ﬂ-)a

where
P. _
Hy,(p,w,w) = / / K(W(W)”) F(P, W, 1)dPdW
RD Sy (0,7]) han
P. _
Hn(p,w,m) = / “(W) F(P,W,m)d(P,W)
—1([o,x]) n

P _
Hsp(pyw,m) = / / <W> f(P, W, 7)dPdW
RE S (17T ) ha

PW) -
B = [ (M) i w i w)
ds T Tmax(p,w) n

For Hy,(p, w, ) and Ha, (p,w, ) we have that (P, W) € 7~1([0, 7]), which implies that (P, W) <
m and consequently k (%) — 0. Then since by our assumptions k(-) < 1,

/%D/ (0D F(P,W,m)dPdW < oo

w

and
/ F(P.W,m)d(P,W) < oo
w=1([0,7])

by LDC theorem Hy,(p, w,n) — 0 and Ha,(p, w,7) — 0. In addition, since x(+) is a nondecreasing

function we have that Hy, (p, w,7) > Hy(nq1)(p, w,7) and Ha, (p, w, ) > Ho(nq1)(p, w, 7). Now
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given A3.2(e), A3.3(c), A3.4 and f(p,w, ) < By, we have that for fixed (p, w) and n, Hi,(p, w, )
and Ha,(p,w, ) are continuous in the argument m. Hence by theorem 7.13 in Rudin (1976)

SUpreq [ Hin(p,w,m)| = o(1) and sup,cq |[Han(p, w, 7)| = o(1). A similar argument gives

sup | Han(powm)~ [ f 5P, W,mdpdwl = o(1)
TeG §R£ ijvl([ﬂvﬂvnam,(p,w)])
and
sup H4n(]3, w,7r) - / f(Pv VVv’]T)d(Pa W)‘ = 0(1)
Teq T ([T T maz(p,w)])

Consequently we have,

sup
TeG

Qpw(T) —/ / f(P, W, m)dPdW
‘SRE Wa/l([ﬂ77rmam,(p,w)])
v F(P, W, m)d(P, W)’ — o(1).
Wﬁl([ﬂ—vﬂ'max(p,w)])
Thus we obtain,

sup
TeG

IR I — 7
I G e LU RN CE

- [ fPwmapaw + [ FPW,m)d(P,W)| = 0,(1).
RE 7y ([0, mas (p,w)])

T ([ T maw (p,w)])

Theorem 4.1 Let 0 < h,, — 0 be a nonstochastc sequence of bandwidths with nh, — co asn — co.

Assume that for a given (p,w) € RM x RP and some n we have ming;. p. <, w,>wy 1; > hnBi and
g + w { i SP,WiZ }

A3.1, A3.2, A3.3, A8.4. Then we have that,

o (py w) — Ta(p, w) = 0p(1) (A.9)
Proof From Nadaraya (1964) given that 7, (p,w) is unique, Ve > 0 3 0 < (e, p, w), where
6(e, p, w) = min{ F (7o (p, w) +€ |p, w)) = F (7o (p, w)|p, w), F(7a(p, w)|p, w)) = F(7a(p, w) —€ [p,w)}
and

P(|[Fan(p,w) = Ta(p,w)| > €) < P(|F(Fon(p, w)|p, w) = F(ma(p, w)|p, w)| > 6(¢, p,w)).
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Then,

|F (ftan (P, w)p,w) = F(ma(p, w)lp, w)]

= |F(7%a,n(p,w)|p,w) - F(fram(p, w)\p,w)|

< sup |F(7T‘p7w) 7F(W|p7w)|
TFG§R+

— sup Fpn(p,ﬂ')—ﬁ(p,w,ﬂ') _Fp]‘[(p,ﬂ')—F(p,w,ﬂ')
ey | Fp(p) — F(p,w) Fp(p) — Fpw(p,w)

H(p,w,n) H(p,w,n)
= sup |= -
TeERL pr(p,w) HPW(p,w)

H(p,w,) H(p,w,) H(p,w,) H(p,w,)
= sup |= - . —
ey | Hpw(p,w)  Hpw(p,w) Hpw(p,w) Hpw(p,w)

1 .
< - sup | H(p,w.x) — H(p.w.7)
HPW(p7w> meRy
1 1
+ - — sup |H(p,w,
Hpw (p,w) HPW(p;w> 7T€§R+| ( )
1 .
S ~ sup H(p,w,ﬂ) - H(p,’u),ﬂ')‘
HPW(paw) TERL
1 1
+ ~ - HPW p,w),
pr(p,w) HPW(paw) ( )

where HPW(]?,U)) = FP(p)_FPW(paw)v H(p,wﬂr) = Fpn(p77T)—F(p,’UJ,7T), IA{PW(p,'UJ) = FP(p)_

FPW(p,'UJ) and ﬁ(PawﬂT) = FPH(p7 71—) - F(p7w77r)' NOW7

sup ﬁ(p,’w,ﬂ')—H(p,w,ﬂ')‘ = sup FPH(paﬂ-)_F(paw7ﬂ-)_FPH(p77T)+F(p7wa7T)‘
7TE§R+ 7TE§R+
S sup FPH(QUJT)_FPH(RW)“" sup F(p>w77r)_F(p7w77T)"
7T€§R+ 7\'6%+

(1): Consider the first sup:

sup | Fpn(p, m) — Fru(p, W)‘ < sup ’Fpn (p, ™) — Fru(p, W)’

TER TE[0,Tmax(p,w)]

+ sup Feu(p,7) — Fpu(p, W)‘ :
TE(Mmaz(p,w)> )

From Lemma 2 in Martins-Filho and Yao (2007b) we have that

s |Fpu(p,m) = E(Fen(p,m)| = 0,(1)

TE[0, Tmaz(p,w))

and

swp | E(Fpn(p. ) = Fen(p.m)| = o(1).

TE€[0, Tmaz(p,w)]
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Thus, SUD €0, 7 100 ()] FPH(I), ™) — Fpu(p, W)‘ = op(1).

Now, V7 € (Tmaa(p,w), 00) We have that

Fon(p, 7) = Foui(p Tomas(pon)) = / / / (P, W, IdIdPAW = Fp(p).
RD [0,7(P,W)

In addition under assumption ming;. p,<p w,>w} Ili > hp By and given that 0 < II; < Tpaz(p,w) We

have that V 7 € (Tpaz,(p,w), 00), Il < 7. Hence 3 N, such that ¥ n > N, we have:
Epn(p,m fz/ VAP P, < p}) = F(p),
since by our assumptions we have figk K(v)dy = 1. Thus,

s |Fen(p.m) ~ Fenlpm)| = sw |Fe(p) ~ Fe(p)

TE(Tmaz(p,w)>) WG(TFmaT(p w)>0)

Fp(p) - Fp(p)| = op(1),

where the last equality follows from the fact that E(Fp(p)) = Fp(p) and V(Fp(p)) = LFp(p)(1—
Fp(p)) — 0 as n — co. Hence by Chebyshev’s inequality Fp(p) — Fp(p) = o,(1).

(2): Consider second supremum in sup,cg, H(p,w, ) — H(p,w, w)‘:

sup ﬁ‘(p,wv’n) _F(pvwaﬂ—)} < sup ‘F(pawvﬂ-) _F(pvwaﬂ—)’
TeER, TE€[0,Tmaz(p,w)]

+ sup ‘F(paw,,]r) - F(p,wv’n)‘ .

TE(Tmaz(p,w)»O0)

Then, again by Lemma 2 in Martins-Filho and Yao (2007b) we have that

sup E(p,w, ) — F(p,w, 71')’ = 0,(1)

7Te[077‘—77111.1'(17,111)]

and V 7 € (Tpmaa(p,w), 00) We have

F(p,w,m) = F(p, w, Tpmaz(p,w)) = / / / F(P,W,II)dIIdPdW = Fpw (p,w).
[0,7(P,W)

Then given assumption ming;. p,<p w,>w} i > hy By and given that 0 < II; < Tpy0(p,w) We have

that V 7 € (Tya0(p,w), 00), i < 7. Hence 3 Ny, such that ¥ n > N, we have:

FA'(p7’u)’7T = 72/ d7[ {(P77W1)P1§p7Wl§w}):FPW(p7w)7
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since by our assumptions we have f K (v)dy = 1. Thus,

swp | Plp,w,m) — F(p,w, )| Fpw (p,w) = Fow (p. w)

We(wnlaz(p,w)voo)

sup
We(ﬂ-mam(p,w) :OO)

FPW(I?,U)) — Fpw (p, w)‘ = 0y(1),

where the last equality follows from the fact that E(Fpw (p,w)) = Fpw (p, w) and V(Epw (p, w)) =
L Fpw (p,w)(1 — Fpw(p,w)) — 0 as n — oo. Hence by Chebyshev’s inequality Fpw (p,w) —
Fpw (p,w) = 0p(1). Thus sup,cgp, H(p,w, ) — H(p,w,w)‘ = 0,(1). Now, to complete the proof
notice that since Fp(p) 2 Fp(p) and Fpw (p, w) 2 Fpw (p,w), we have that Fp(p) = O,(1) and
Fpw (p,w) = Op(1). Then provided that Fp(p) — Fpw (p,w) > 0 by Slutsky theorem we get that
Fol(p) — Fpl(p) = 0,(1) and FIZ‘}V(p, w) — Fpy, (p,w) = 0p(1). Which implies that:

Hpw (p,w) = Hpw (o w)| = |Fp(p) = Fpw (p,w) = Fp(p) + Fpw (p,w)|
< |[Fw) = Fe®)| + [Few . w) = Fow (o, w)] = 0,(1),
and thus m - m = 0p(1) which completes the proof since we get that P(|7a.(p,w) —

To(p,w)| > €) — 0.

Theorem 4.2 Let 0 < h,, — 0 be a nonstochastic sequence of bandwidths with nh? — oo and
nhy = O(1) as n — oo. Assume that for a given (p,w) € RY x RE and some n we have that

ming;. p,<p w,>w} 1li > hnBr and A8.1, A3.2, A3.8, A3.4. Then for all a € (0,1) we have

_ . d
Un(pv w) 1\/73(7‘('@7”(]), w) - 7ra(p, w) - BEJL) - N(Oa 1)7 (A.lO)
where
Jpn J - FO(P,W,x)dPdW — [ _4 ) FO(P,W,m)d(P,W)
_ h2 RL (ra(@w),™ Tmaw(p,w))) T (7 (Pyw) s T a0 (p,w)))
Bon = =730k = ) Frw ) e 5w +o(h7)
and
v2(p,w) = ! | Fpn(p. o (pw) = F(p, w, ma(p, w))
(Fp(p) — Fpw (p,w)) f(ma(p, w)|p, w))
(FPH(pa ﬂ-a(pa w)) B F(p7 w, Wa(pv w)))2
+ + 2h,o0.B +o(h
Fp(p) — Fpw (p, w) " o ()

where

Bun= [ F(PW, o (p, w))d(P, W) / / (P, W, 7o (p, ) )dPAW.
"_1([770¢(p1w)777ma1(p,w)]) E;) w Wa(p’w)’ﬂ'WLam(p,w)])
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Proof We write 7g n(p,w) — mo(p,w) = (Ay + Cy) ( 5+ ﬁn>7 where

1
f(ma(pw)p,w

D) [FPH(Wa(pv w),p) — F(ma(p,w),p, w)]

An = F(ﬂ-a(p7 w)|p7w) - ~ ~
E [Fp(p) - Frw(p,w)]
E {FPH(Wa(paw)ap) 7F(Wo¢(paw)7paw>:| N
CYL - N N - F(?Ta(p7 lU)lp,U))
B [Fe(p) — Frw (p,w)]
Bo = 7 Fanpw)lp,w) = 7 (Fan(p, w)|p,w) .

Note that the theorem follows if we prove:

(a) Bn = Op(l)a

h2 {ng fw;VI([mmwmmmp,w)n

FO(P,W,mydPaW — [
(b) Ap = —Foy

D FO(P,W,x)d(P,W)

“([ra (Pw), T az (p,w)

Fr(m—Frw (70) +

-1
_ salpw) d
() (FP(P)*FPw(p,w)> VnCp, = N(0,1), where

(FPH(p’ 7Ta<p, w)) - F(p, W, To (p’ w))>2

Fp(p) — Fpw (p,w)

+ 2h,0. [/ f(P, W, 7o (p, w))d(P, W)
ﬂ_l([ﬂa(p7w)a7rmaz(p,w)])

- / / F(P, W, o (p, w))dPAW
R 73 ([Ta (Pw) T maw (o, w)])
+  o(hn).

sa(p,w) = Fpu(p,ma(p,w)) — F(p,w,ma(p,w)) +

(a) Tt suffices to show that f(ﬁam(p, w)|p,w) — f (Tan(p,w)|p,w) = 0,(1) for all € (0,1). Since
we have already shown that 7, ,,(p, w) — 74 (p,w) = 0,(1), by the Theorem 21.6 in Davidson (1994)

it suffices to show that By, = sup,cq f(7T|p,w) — f(m|p,w)| = o0p(1), where G € (0, Tpaw(p,w))
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and G compact. Note that

Br. — sup| @i KEED P <p) — IR <p Wi <w)]
R=c H(p,w)
- Jnn Jo, f m)dPAW — [o. [o. f(P.W,m)dPdW
H(p,w)
< i i KOS (P < p) — I(P <p, Wi Sw)] H(p,w,n)
T reG Hpw (p,w) Hpw (p, w)
1
< ———su K [I(P; <p)—I(P<p,W;<w)]—H(pwm)|+
< HPW@,wﬂeBnhZ ( ) (P <p)~T(P,<p ) — H(p,w,7)
1
+ N - sup H p,w,m)|,
Hpw(p,w) Hpw(p,w) 7r€G| ( )
where Hpw (p,w) = Fp(p) — Fpw (p,w), Hpw (p,w) = F(p) — F(p,w) and
H(p,w, ) / / F(P,W, m)dPdW — F(P,W,m)d(P,W).
RD 7rW(7r7rmaT(pw) T[T Tomaw (p,w)])

Now since by A3.1 f(p, w, ) < By and V% is compact, we have

/ / APdW — / d(P, W)’ 0().
%D [Tr Tmaz(p, w)] [Tr Tmaz(p, w)])

In addition, given that ’Fp(p) — Fpw(p,w) — Fp(p) + Fpw (p, w)’ = 0p(1) we have the second

sup |H (p,w, m)| < By

term on the right hand side of the inequality ‘ 1). Then by

. 1 — 1 =0 (
F(p)—F(p,w) Fp(p)—Fpw (p,w) P

Lemma 4.2,
I II
— K
/ / F(P,W, )dPdW + / F(P,W, m)d(P, W)| — 0, (1).
%5 W [77 Tmaax(p w)]) ™ ([77 Tmaz(p w)])

Hence 8, = op(1).

sup
TeG

“) (P, < p) — I(P, < p,W; < w)

(b)
E [FPW(pa ﬂa(p,w)) - F(p,w,ﬂa(p,w))}
An = F(T‘-Oé(pvw”pa ’UJ) - ~ ~
E [FP(p) — Fpw (p, w)}
= E ((Fp(p) - FPW(p,W)))_l (A1 — Az,
where,
A, = F(Wa(p, w)|p,w)E [FP(p) - pr(p,w)} - [FPH(]% wa(p,w)) - F(p, w,ﬂa(p,w))] ’

Aoy = [Fen(p.ma(p,w)) = F(p,w,ma(p.w)] = E [Fon(p,ma(p, w) = F(p,w, ma(p,w))]
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Since E Fp(p) — FPW(p, w)} = Fp(p) — Fpw(p,w), then Ay, = 0. In addition, given that 0 <

a < 1, we have 0 < 7o (p, w) < 7(p,w) < Tmaa(p,w) and therefore from Lemma 4.1,

h2
Agp = —?"af( V / 1 fOP, W, m)dPdW
§R1_Du ﬂ-‘;/ ([ﬂ-a (p7w)a7r7n,aw(p,w)])
-/ SO W, (P | +0(1).
Tril([ﬂ'a(pvw)»ﬂ'maz(p,w)])
Thus
(1)
A — 7@02 f%g fﬂ-;vl([ﬂ—a (p’w)v””naz(p.w)]) f (P’ VI/’ Tr)deW
" 2 K Fp(p) — Fpw(p,w)

Fp(p) — Fpw(p, w)
| FO(P.W, m)dPdW

Fp(p) — Fpw(p,w) | + o(h2).

f fﬂ*l([‘n'a(p,w),

Trnzam(p,'w)]

(c) Now note that,

B |Epn(p,ma(p, w)) = Fpw.ma(pw))]
Cn = - F(Wa(p,w)|p, w)

B |Fe(p) - Fow(p.w)|

1 Wa(pvw) H_zy
cm:f/ K (=[P < p) — I(P, < p,Wi < w)] dy —
0

E FPH(paﬂ—a(pvw)) - ﬁ‘(p7w,7ra(p7w))

= (P <p) = 1P <p, Wi S )] Fp(p) — Fpw (p, w)

Hence we write \/nC,, = Zin, where Z;, = <%z and note that E(Z;,) = 0,

Jn’

-1y
F(p)—F(p,w) 2im1
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s2 = 2?21 E(an) = E(cfn) by A3.1. Let’s write E(cfn) = S1p, + Sopn + S3n, Where
1 (p,’w) H _ ,7 2
Sin = E f/ kM 1 < p) - 1P < p Wi < w)]dy|
In Jo Fon
~ “ 2
P <) 1P < s = ) (B [Fru(p, ma(p,w) = F(p, w, 7a(p, w))])
Son = TS - i SP, W S w ;
? P P Fr(p) — Frw(p,w))?
1 To (p,w) ; — ~
S3n = —2F | / KM 1P < p) — 1P < p Wi < w)dy | %
In Jo Fon

E [Fon(p, ma(p, w) = F(p,w,ma(p, w))|
Fp(p) — Fpw(p,w)

Then from Lemma 4.1 (b) we have that

s1n, = Fpu(p,ma(p,w)) — F(p, w, 7o (p,w))

_1([7ch(p1w)77rma:c(p w)])

- / / (P W, 7o (py w))APAW
RO St ([7a (0W), Tmaw (paw)y])
+ o(hn),

and from Lemma 4.1 (a)

s = (Fp(p) — Fow(p,w)) ™ (B [Fpn(p,ma(p, ) — (o w,ma(p,0)] )

FPWp7 )) 1><

X

(FPH D, T pv )) - F(pawv’]roz(paw))

+ V / FO(P,W, 74 (p, w))dPAW
RD T ([ﬂ'a(IL 7rma'r(p w) ])

+ o(hi)) :

and therefore we have so, = (Fp(p) — Fpw (p,w)) ™" (Fpr(p, ma(p,w)) — F(p, w, ma(p, w)))* +

o(h,). Note that s3,, = —2s9, = —2(Fp(p)—Fpw (p,w)) ™ (Fpr(p, 7a(p, w)) — F(p,w,ﬂa(p,w)))2+

- / FOPW, 7o (p, w))d(P,W)
71([7"@ (I) U’)vﬂrvna‘l:(p w)])
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0(hy,). Combining these results we have that

(Fpr(p, ma(p, w)) — F(p,w, 70 (p, w)))?
Fp(p) — Fpw(p,w)

Si(pv U)) = FPH(pa Wa(pa ’LU)) - F(pvwaﬂ—a(pv w)) +

+ 2hnox [/ f(P, W, 7o (p, w))d(P, W)
7 ([ra (p7w))7rm(1m(:ﬁv“’)])

- / / F(P,W, 7o (p, w))dPAW
%'B ﬂ‘;/l([ﬂa(paw)’ﬂ—mam(p,w)])
+  o(hy).

in

S77,(p71u)

Thus, provided that, lim, .o >, E (

2446
) = 0 for some § > 0, by Liapunov’s central

limit theorem } " | - %an) <, N(0,1). Now note that
n 245 s
ZE ( ) = (s%(p, w))717§ ZE (lZin|2+6)
=1 =1

= (320, w))lin—5/2E<

Zin

sn(p, w)

[T RS e <9 - 12 <p W < w)]dy -
0 n

hn
2+5)

s 2l+8 1 fmal@w) T —
(2 pw) T [E ( /0 K(==D) 1Py < p) = 1(Ps < p. Wi S w)] dy

o ool el

where the last inequality follows form C,-inequality. Hence given that s2 (p, w) = O(1), to complete

E [ﬁpn(p,ﬂa(p, w)) — F(p,w,wa(p, w))]
Fp(p) — Fpw (p,w)

— [P <p)—I(P <p,W; <w)]

IN

246
)

E [FPH(pv Wa(p) w)) - F(p7w77r04(p7 ”Ll)))]
Fp(p) — Fpw (p,w)

[I(P; <p)—I(P; <p,W; <w)

the proof it suffices to show that

1 fTe(pw) I; — v 2o
o = w e [T KRG IR <p) - 1B <p Wi wldr] | =o)
n JO n
~ ~ 244
b =5/2p [ [I(P; < p) — I(P; < p, W; < w)] o [F(p’ o b ) _F(p’w’%(p’w))} (1)
n = n w <p)—I(P <p,W;<w =oll)
P Y Fp(p) = Fow (p,w)
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First, note that

2446

Ta(pyw) _
a, = n?E i/ K(Hl 7)[I(Pigp)—I(PiSp,Wigw)]dw
0

(ma(pyw)—11)/hp 2+46
21_6n_6/2 /§RD /C /[0 (P,W)] /H/h K(’Y)d’y f(P’ VV, H)dePdW+
(7a (pyw)—=T1) /b, 246
/ / / (P,W)] /H/h K(y)dy f(P,W,II)dIIdPdW
Cuw 0,7 _ "

21=0p9/2 / / / f(P, W, IT)dIldPdW +
RD JCp J0,m(P,W)]
/ / / f(P,W,II)dIIdPdW | — 0 as n — oo.
0,7 (P,W)]

N N 249
Now note that b, = n=%/2E (I(P; < p) — I(P; < p, W; < w)) (E[Fpn(p’wo‘(p’w))_F(p’w’ﬂa(p’w))]) —

IA

+

IN

+

Fp(p)—Frw (p,w)
0, since E(I(P; < p) — I(P; < p,W; <w)) = Fp(p) — Fpw(p,w) > 0 and by Lemma 1

E (Fpn(p, 7a(p,w)) = F(p,w, 7a(p,w))) = Fen(p, ma(p,w)) = F(p, w, ma(p,w)).

—1 . "
Hence (ﬁ) VCn % N(0,1) since F(p) — F(p,w) 2 Fp(p) — Fpw (p, w).
Theorem 4.3 Assume that ming;.p,<p w,>w) i > hnBx and that A3.1, A3.2 hold. In addition,
assume that density [ is strictly positive on the frontier {(p, w,w(p,w)) : Fp(p) — Fpw (p,w) > 0}
and that w(p,w) is continuously differentiable. Then for all (p,w) in the support of (P, W) we have
(a) there exists N(p,w) > 0 such that ¥ n > N(p,w) T1n(p,w) = Maxy.p,<p,w,>w} i + hn Bk ;

(b) 0¥/ () (p, w) — 71 (p, W) + i Bic) 5 Weibull (ud+t,d + 1).
Proof (a) Recall that by definition 7y, (p, w) = inf{w € Ry : F(n|p,w) = 1}, i.e., 1., (p, w) is the

greatest lower bound for the set under the constraint that

(nhn) 12/ ( )d'Y[I(P <p) —I(P <p,W; <w)]—n_1Z[I(P <p)—I(P; <p,W; <w)].

i=1

Then under the assumption ming;. p,<p w,>w} Ili > hyn Bi, there exists N(p,w) € R, such that for
all n > N(p,w), we have that the equality holds for all 7 > maxy;.p,<p w,>w} Il + hnBr, and it is
false for all 7 < maxy;.p,<p,w,>w} i + hnBx. Hence, 1 ,(p, w) = maxy;. p,<pw,>w} Ui + hn B
for all n > N(p,w).

(b) Now, similarly to the Park et al. (2000) we have that FDH estimator is defined as 0 pp g (p, w) =
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max;. p,<p,w;>w} 1I; and under the assumptions in the theorem they show that nl/(d“)(m (p,w)—
Orpm(p,w)) 5 Weibull(utt,d + 1). Consequently, provided that nhd+! = O(1) we have that
!/ @Dy (p,w) — 1 (p, w) + b Bre) > Weibull(ud+', d +1).
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B APPENDIX True quantile computation

One of the important parts of the Monte Carlo simulation is true quantile computation.
Assume the functional form we had in Section 5, 7(p, w) = (p?//w)R. If (P, W) is fixed at (p,w),
then m = 7(p, w)R is just a linear transformation of R. Since we assumed R = exp(—Z) where Z

is a random variable having exponential distribution with parameter 5. Then,

l-3togn)l _ 1 1

fR(m):Be_ﬁ T v
Hence,
1 ~ \7 1 1
fﬂ'IP:;DyW:‘U(ﬂ—) = ﬂ(ﬂ(p,w)) W(p,w)
_ Ll 1
=8 rpw)e

Since we assumed p, w distributed uniformly from interval [, u], fpw (p,w) = ﬁ and

%_1 1 1

;”1 wlp. )7 (=02
e ()

p
Having the density explicitly, we can can integrate it and then obtain a conditional distribu-

flp,w,m) =

tion function F'(7|p, w) inverse of which gives us a true quantile. A point (p, w, ) can lie in several
different intervals and for every different case the area of integration is different. First consider

different cases for p and w:

For the case (6) we have F(m|p, w) = 1, for cases (3), (4), (7), (8), (9) we have F(r|p,w) =0
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and for cases (1), (2), (5) we there several levels of 7 to check:

)
)
3) w(lu) < 7 < 7(l,w);
14) w(l,w) <7 < w(p,w);
-5)

m(p,u) <7 < 7(p,w).

Those cases arise because for the functional form of the profit function we have chosen the

following is true:

m(l,u) < w(l,w) < 7(p,u) < 7(p,w).

Notice, that we need to integrate over the shaded area in the Figure 2.3 and it is con-
venient to compute an integral over that area in the direction of (P, W,II) directly instead of
using differences of distribution functions we used in the theoretical part. Denote F,(p,w,n) =

FPH(pa 7T) - F(pawa 7T) and FPW,q(p7 ’lU) = FP(p) - FPW(pa ’lU’L), then F(ﬂ-lp7w) = M Thus

FPW,q(pvu})
we get:
Case L.l I<p<u,l<w<wu,nm>7(pw).
R Y oV V.U,
Fy(p,w,m) = / *ﬁ/ p‘ﬁ/ 75~ dlldPdW
U—l l 0
_ ( —)(
a (u—l) ’
(p—Du—w) (p—1)(u—w)
F =1.
(rlp ) w02 " (a2
Case 1.2. I<p<u,l<w<u, m <7(l,u).
F,(p,w,m) = u—l / w26/ D B/ 75 L dIldPdW
E 252 1-2 1-2 1455 1455
= —1 28 — 2
(-1 (B—2)(20+ 1 >(” ) (utre ),
71'% QﬁQ 1-2 1-2 1455 1+ 55
F(rlp,w) = B —["7F ) (u "2 —w 26,
) = G aw e ) )



Case 1.3. Il<p<u,l <w<u, n(yl) <m < 7w(l,w).

no- 1 ,/u ot [T /pZ/ﬂﬁéldede
Blu—1)? Jia /e ! 0
1 Az (5 DB 1
) w02l5 G“‘ﬂé>+w2_my
I, = 1/l4/7r2 W ppf% /Wﬂ'%fldePdW
Blu—1)* J, l 0
s 23> 2 ey (M5 1+
B w—o%ﬁ—m@a+n(p B_lﬁ)<fﬂé_w w)
I, = L/ ws /,, p*%/ﬂnéfldePdW
Blu—1)* Jia rdwi 0
b B 12 20 1425 A Ani=H
IO lp ﬁ2ﬂ+1<“ mwé) 5
F(rlp,w) = (11+12+13)/W.

Case 14. I<p<u,l<w<u,n(l,w) <7 < w(p,u).

/2,174

]. 47T% 5 5
= ( g 5 <u47w4)+lw—lu ,
U —

S

p?/Vw |
/ 77 LdIldPdW
0

1 T _2 [T 1y
I = —— 2 11dP
2 ﬂ(u—l)?/wwﬁ/w%w%p ﬂ/o mdidbdw
_ 77% 5 -2 2f8 1455 1+ 477%7%
T w-02(B-2 lp ﬁ25+1(“ cow B) 5
— Dy —
Flalpow) = (I + L)y 20—

_way

61
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Case 15. I<p<u,l<w<u, mp,u) < <7w(p,w).

L = ﬁ(ul—l /%2 %/ —*/ 75 Y dIdPdW
_ =l (u_p>7
(u—1)2 72

1 p*/7? . n3wi R p*/Vw
B o= o 1)2,/ w*a/ a/ *F 1 dTdPAW
- w l
_ 1 RV O .y p
 (w=0%2] 5 \ w2 v w2 Y
I s i 51 ddPdW
— 203 B B
P Bw-2), " /w%w%p 0o
1 442 11 5
_ U 5] pl—% 2 AR T _Am2E [ p .-
(u—=1*(8-2) 20+1\ z2t5 5 \m/2 ’
p—0(u—w
F(nlp,w) = (11+Iz+13)/((u)£l)2).

Similarly we can obtain the result for the cases 2.1-2.5 if using w instead of [ and for the

cases 5.1-5.5 if using p instead of u in every integral above.

C APPENDIX Properties of F(r|p, w)

In this Appendix we show that F (7|p, w) is asymptotically a distribution function, when
constructed using the smooth estimators of Section 3.1.

(F.i) F(x|p,w) is nondecreasing in .
Notice, that for the case when m = 0 we have 13’(7r|p7 w) = 0 and the result is trivial. Let
0 < 71 < 7o, then notice that denominator of F(w|p, w) does not depend on 7. Thus, examine the

numerator. We must show that,
[Fpn(p, m2) — F(p,w,m)] = [Fpu(p,m) — F(p,w,m)] > 0.
After simplifications we get:

[Fpu(p,m) — F(p.w,m)] - [Fpu(p,m) — F(p,w,m)] =

= hﬁlg [/0“2[((111};7) dv—/OmK(Hih;7> dv} I(P; <p)[1 = I(W; Sw)].
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Given assumption A3.2, we have

(1L =y (1L =y
K dvy — K dy >0
fo () [ e (B ) m=o

for all 4. Since the other components of the summation are the indicator functions, the numerator

is greater than or equal to zero.

(F.ii) F(n|p,w) is right continuous in R.
Definition A function f(-) is said to be right continuous at the point c if and only if the following
holds: Ve > 03§ > 0 s.t. V z in the domain with ¢ < < ¢+ § the value of f(z) will satisfy
F(0) — e < f(@) < F(c) + e or |f(x) - ()] < e.
Let € > 0 be given, 7 € [0, B;] and § > 0 be such that 7 < < 7 + 4. Then,

(F(n|p,w) — (F(z|p,w)) |
ht iy

Sy (%2 ) ay - fy K (22) dy‘ I(P, < p)[1 — I(W; < w)]

Y 1P < p)(1 = I(W; < w))

Hence,

LIS | AN GG
K dy — K d
/0 < i )7 /0 ( I )7‘

IN

T Hz_'}/) /7\'-‘1-5 (Hl_,y>
K dy — K dy
jﬁ ( hn 0 hn,
T+ H_
i~
= K d
/ﬂ ( i ) !

o [, K W) du

< mK(S.

w6

hp

by assumptions A3.2. Now plugging this result back into the main equation we get

(B (mlp,w) = (F(alp, w))| < =26,

n

since h, >0, Ve >0 3 > 0 such that 75§ < ¢, which establishes right continuity.

(F.iii) limy_, oo F(n|p,w) = 0.
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Consider the numerator in F(r|p, w). Then,

Jlim_(Fen(mp) — Flrpw)) = lim — gj [ | (“h ”) dﬂ 1P < p)(1 = T(Wi < w))
= > i [ [T () ] 1 < - 10w <
_ 1 4n <WEIEIOO _:H K(¢)d¢> 1(P; < p)(1 — I(W; < w)).

m—I;

Now, limy o [_i7 K(¢)dp = 0, which gives the result.

hn

(F.iv) There exists some N (p,w) such that for alln > N(p,w) we have lim_oc F(r|p, w) =

1. Again we have,

o S bt Sy K] 1P < p) [ (W < w)]
lim F(7|p,w) = lim o
T—00 T—00 Ei:l I(P,' < p)(l — I(Wz < w))

Then using symmetry,

IT; —

lim At [ K(

)d~y
T—00 0 hn
= lim At [ K(E—dy
T—00 0 hn
m—II;
o
= lim [ K(y)dy
T—00 _T,,i
By assumption A3.2, for n > N(p, w) we have that —,l;ln < —Bg, therefore
I, m—I,;
hn hn
lim K()dy = lim K()dy =1,
T— 00 _% T— 00 —Bg

n

T,
since T — 00 as m — oo and limy oo [ 57 K(¥)dy = 1.






