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Summary

1. Spatial climate variables are routinely used in species distributionmodels (SDMs) without accounting for the

fact that they have been predicted with uncertainty, which can lead to biased estimates, erroneous inference and

poor performances when predicting to new settings – for example under climate change scenarios.

2. We show how information on uncertainty associated with spatial climate variables can be obtained from cli-

mate data models. We then explain different types of uncertainty (i.e. classical and Berkson error) and use two

statistical methods that incorporate uncertainty in climate variables into SDMs bymeans of (i) hierarchical mod-

elling and (ii) simulation–extrapolation.

3. Weused simulation to study the consequences of failure to account formeasurement error.When uncertainty

in explanatory variables was not accounted for, we found that coefficient estimates were biased and the SDM

had a loss of statistical power. Further, this bias led to biased predictions when projecting change in distribution

under climate change scenarios. The proposed errors-in-variablesmethods were less sensitive to these issues.

4. We also fit the proposed models to real data (presence/absence data on the Carolina wren, Thryothorus ludo-

vicianus), as a function of temperature variables.

5. The proposed framework allows for many possible extensions and improvements to SDMs. If information

on the uncertainty of spatial climate variables is available to researchers, we recommend the following: (i) first

identify the type of uncertainty; (ii) consider whether any spatial autocorrelation or independence assumptions

are required; and (iii) attempt to incorporate the uncertainty into the SDM through established statistical meth-

ods and their extensions.

Key-words: climate maps, errors-in-variables, hierarchical statistical models, measurement error,

prediction error, PRISM, SIMEX

Introduction

Species distribution models (SDMs, Elith & Leathwick 2009)

are of fundamental importance to many aspects of biological

and ecological sciences as well as to environmental manage-

ment. SDMs quantify the relationship between the environ-

ment and a species’ distribution. The environment is quantified

using spatial climate variables, such as maximum/minimum

temperature, temperature in warmest month, amongst many

others (Soria-Auza et al. 2010). These variables are often

obtained by querying GIS data bases. Example uses of a SDM

are to predict a species’ distribution of a study region (Pearson

&Dawson 2003), or to project potential change in distribution

under climate change scenarios (Forester, DeChaine & Bunn

2013;Wenger et al. 2013).

Most spatial climate data sets in use today have been devel-

oped using one of several interpolation techniques, which

represent a mixture of general numerical methods and specific

models. These include the following: inverse-distance weight-

ing (Matheron 1971; Isaaks & Srivastava 1989); various forms

of kriging (Phillips, Dolph & Marks 1992; Dodson & Marks

1997); tri-variate splines (Wahba & Wendelberger 1980; Cres-

sie 2003; Hijmans et al. 2005; Xu & Hutchinson 2012); local

regression (Daly 2006); and regional regression models (Goo-

dale, Aber & Ollinger 1998; Johansson & Chen 2005; Ashcroft

& Gollan 2012). These spatial climate data sets are estimates

(or predictions) of the true spatial climate and are therefore

subject to uncertainty, which itself can also have spatial struc-

ture with some regions consistently overestimated and others

consistently underestimated (Fern�andez, Hamilton &

Kueppers 2013). In this article, we use PRISM (Parameter–ele-
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vation Relationships on Independent Slopes Model) as an

illustrative example. PRISM is a weighted, local regression

technique that accounts for physiographic factors affecting

spatial climate variations, and has been used extensively in the

United States, Europe and Asia (Daly, Neilson & Phillips

1994; Daly et al. 2002; Daly, Helmer & Quinones 2003; Daly

et al. 2008; Bishop&Beier 2013).

Even if the uncertainty arising from spatial climate variables

can be estimated, there remain questions about how this infor-

mation can be used in SDMs. Can uncertainty in climate vari-

ables be incorporated? If so, how? What happens if the

uncertainty is ignored? What is the type of change in predic-

tions and/or inference expected if uncertainty is incorporated?

How might extrapolation (for example a changed climate)

behave under an uncertain model? This paper sets out to

answer these questions.

Accounting for uncertainty in explanatory variables

(through what is commonly referred to as measurement error

models or errors-in-variables models) is a well-known and

important topic in many applied fields, such as engineering

and medical studies (Fuller 1987; Carroll et al. 2006). Uncer-

tainty in explanatory variables has two main implications: bias

in estimates of regression coefficients, and a loss of power (to

determine whether explanatory variables are important),

which combined, Carroll et al. (2006) refer to as the ‘double

whammy’. Generally, more uncertainty in the explanatory

variables induces more bias in the estimates of the model’s

parameters, which can have adverse consequences for model

predictions too. Errors-in-variables models aim to avoid the

‘double whammy’ using one of a variety of statistical methods

(Carroll et al. 2006). In order for these methods to be applica-

ble, some known information on the uncertainty in the explan-

atory variables is required (e.g. the variance) which is usually

obtained from the measuring device/procedure/model, or

some validation data set, or from repeatedmeasures.However,

it is critical that we specify the type of underlying error in the

explanatory variables. In section ‘Classical vs. BerksonErrors’,

we discuss two common types (classical and Berkson errors) in

greater detail and highlight their implications for SDMs.

In the SDM context, several attempts have been made to

either examine or account for uncertainty in spatial climate

variables – for example: Elston et al. (1997) proposed an

adjustment in regression coefficients; Foster, Shimadzu&Dar-

nell (2012) used errors-in-variables models to account for

explanatory variables that are overly smooth; Denham, Falk

& Mengersen (2011) considered a conditional independence

model in a hierarchical Bayesian framework using a Gibbs

sampler where uncertainty in the explanatory variables was

accounted for using a validation data set; McInerny & Purves

(2011) investigated uncertainty in explanatory variables attrib-

uted to fine-scale environmental variation, and proposed a

general correction for regression dilution (or attenuation) also

based on Bayesian methods; Fern�andez, Hamilton & Kuep-

pers (2013) examined the influence of interannual variability,

topographic heterogeneity and the distance to nearest weather

station; and Hefley et al. (2014) investigated the presence of

location uncertainty in presence-only data.

We use two statistical errors-in-variables methods: (i) hierar-

chical modelling and (ii) simulation–extrapolation (SIMEX) –

both of which are well developed. In contrast to the existing

approaches (those referenced above), our presented methodol-

ogy differs from (and complement) in the assumptions made

about the underlying prediction process. We present a case

study where estimates of uncertainty in temperature variables

are available, via the PRISM software (Daly et al. 2008), and

we relate them to the species distribution of the Carolina wren

Thryothorus ludovicianus in the United States. Additionally,

we present simulation studies to investigate bias, efficiency and

statistical power, and look at how well SDMs predict and pro-

ject to new scenarios when prediction error is both ignored and

accounted for.

Species distributionmodelling and data

In this article, we focus on SDMs fitted using generalized lin-

ear models (GLMs; McCullagh & Nelder 1989) using logistic

regression of presence/absence data. SDMs are currently

implemented using a variety of different methods: for exam-

ple MaxEnt (Phillips & Dud�ık 2008); hierarchical

Bayes (Clark 2005); generalized additive models; boosted

regression trees; or multivariate adaptive regression splines

(Hastie, Tibshirani & Friedman 2001). However, most of

these are generalisations of GLMs (in fact MaxEnt is exactly

a penalized Poisson GLM; Fithian & Hastie 2013; Renner &

Warton 2013), and there is an opportunity to extend errors-

in-variables models to these other modelling frameworks.

SPATIAL CLIMATE VARIABLES DATA

PRISM was used to develop grids that reflected, as closely

as possible, the current state of knowledge of spatial climate

patterns in the USA. PRISM calculated a local climate-ele-

vation regression function for each grid cell on a digital ele-

vation model, and stations entering the regression were

assigned weights based primarily on the physiographic simi-

larity of the station to the grid cell. Factors considered were

distance, elevation, coastal proximity, topographic facet ori-

entation, vertical atmospheric layer, topographic position

and orographic effectiveness of the terrain. Information on

these physiographic factors was provided to PRISM by

means of grids generated by models of marine intrusion into

adjacent inland areas (Daly, Helmer & Quinones 2003),

topographic orientation (Daly et al. 2002), relative position

on the topography (Daly et al. 2007) and others.

We used PRISM to obtain the predicted spatial climate

variables and the uncertainty estimates (see section ‘Obtain-

ing uncertainty information from PRISM’). These estimates

were generated as part of a USA Department of Agricul-

ture project to interpolate 1971–2000 monthly averages of

minimum and maximum temperature and precipitation to

a regular grid covering the conterminous United States

(Daly et al. 2008). Grid cell resolution was 30 arc-seconds,

which averages to about 800 m on a side. Specifically, we

obtained model-generated 1971–2000 mean minimum tem-
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peratures in January, and 1971–2000 mean maximum tem-

peratures in July for conterminous USA. These data are

plotted in Fig. 1(a,b).

PRESENCE/ABSENCE DATA FOR THE CAROLINA WREN

Similar to Royle et al. (2012), we obtained presence/absence

data collected on the Carolina wren (Thryothorus ludovici-

anus) from the North American Breeding Bird Survey (BBS).

The presence/absence points were obtained from observers

counting all bird species seen or heard from surveyed BBS

routes at several points along transects across North Amer-

ica. As the spatial location data were only available for the

first points along transects, we used these in our analysis. We

considered data from 2010, where n = 1048 presence/absence

points were recorded. In Fig. 2, we plot the observed pres-

ence/absence points. Our analyses differ from those of Royle

et al. (2012) in a number of ways – in the year of sampling

and explanatory variables considered, and in the methodol-

ogy used to analyse the data. Temperature variables were

used as explanatory variables because they were available at a

suitably fine resolution and because uncertainty information

(which we will also refer to as prediction error) was available

for both explanatory variables, see section ‘Obtaining uncer-

tainty information from PRISM’.

GENERALIZED LINEAR MODELS

Throughout the article, we will denote observable quantities

by lower case and unobservable quantities by upper case. Let

y = (y1, . . . , yn)
T be the observable response variable (such as

count or presence/absence data) collected from site i = 1, . . . ,

nwhich is related to some set of true and unobservable climate

variablesX = (X1, . . . ,Xn)
T. Our objective was to understand

the nature of the relationship between y andX. The problem is

that X is not measured directly; instead, we have the predicted

climate variables w = (w1, . . . , wn)
T which have been pre-

dicted with uncertainty denoted by U = (U1, . . . ,Un)
T, and so

w only approximates the actual climate experienced by species.

The first model we will consider is one which does not take

into account this uncertainty. That is, a model which na€ıvely

treats w (the error contaminated climate variable) as if it were

the true climate. Letwi be a q-length vector of explanatory vari-

ables with associated regression parameters b = (b1, . . . , bq)
T.

For the GLM, we incorrectly assume f(yi|wi;b) where f(�∣�)
belongs to the exponential family, and write li ¼
EðyijwiÞ ¼ hðwT

i bÞ, where h is the inverse logit function.
In our case study, we assume Carolina wrens respond to cli-

mate and the problem we have is that we are predicting the cli-

mate imperfectly (or subject to some prediction error).

Initially, we na€ıvely fitted the aboveGLMusing both themin./

max. temperatures explanatory variables (which were stan-

dardized prior to fitting) as quadratic effects to the Carolina

wren data presented in section ‘Presence/absence data for the

Carolina wren’. The predicted presence probabilities obtained

from this GLMfit are plotted in Fig. 2. In section ‘Incorporat-

ing uncertainty from spatial climate variables into SDMs’, we

will develop models which take into account the uncertainty

from the explanatory variables.
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Fig. 1. USA temperature map data for: (a) January minimum; (b) July maximum; (c) predicted standard deviations for January minimum; and

(d) predicted standard deviations for July maximum. Temperature is measured in degrees Celsius. Note that these data were standardized in our

analysis.
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Obtaining uncertainty information fromPRISM

PRISM interpolation uncertainties were estimated by Daly

et al. (2008) using two methods: single-deletion jack-knife

cross-validation with replacement, and the prediction interval

of the PRISM climate-elevation regression function. The jack-

knife method involved removing, in turn, each station value

from the data set, estimating it in its absence, and returning the

station to the data set. While jack-knife error estimation is a

useful independent measure of interpolation uncertainty, the

disadvantage is that information is provided at point station

locations only and not as a continuous grid.

In contrast, model-based uncertainty estimates have the

advantage of being available as continuous grids. However,

these estimates rely at least partly on the very same assump-

tions used in the interpolation process itself and therefore typi-

cally underestimate the true interpolation error. As PRISM

uses weighted linear regression to estimate precipitation or

temperature as a function of elevation, standard methods for

calculating prediction intervals (PI) for the response variable

could be used.

Unlike a confidence interval (CI), the PI takes into account

both the variation in the possible location of the expected value

of the response variable for a given explanatory variable, and

variation of individual values of the response variable around

the expected value.We used a 70% prediction interval (PI70) –

further details on the calculation of PI70 are available in sec-

tion 5 ofDaly et al. (2008).

The premise behind interpreting the PI70 spatially is that it

is relatively large when there is a high degree of scatter about

the local regression line, indicating a poor relationship between

climate and elevation and suggesting a poor prediction. This

tends to occur at locations far from stations, in areas within

transition zones between two ormore climatic regimes (such as

coastal temperature boundaries), or at elevations in the vertical

transition between the boundary layer and free atmosphere

during temperature inversions. PI70 also increases the farther

the prediction is extrapolated away from the mean regression

elevation. This is seen in high-mountain areas that are well

above the highest stations in the vicinity and thus have rela-

tively large intervals.

To account for uncertainty in the temperature data, we

make use of the available predicted standard deviations

(obtained from the PI70s, see Daly et al. (2008) by incorporat-

ing them into the proposed errors-in-variables SDMs pre-

sented in section ‘Incorporating uncertainty from spatial

climate variables into SDMs’. These predicted standard devia-

tions are of the same resolution as the spatial climate variables

discussed in section ‘Spatial climate variables data’ and are

plotted in Fig. 1(c,d).

We note that PRISM can calculate regression prediction

intervals for any variable that is being interpolated by the

model, so other environmental variables, such as precipitation,

could also estimate prediction error similar to the above tem-

perature variables. Other interpolation methods and their soft-

ware may also estimate some form of uncertainty from the

predicted environmental variables, for example: kriging pro-

vides estimation variances with each grid cell prediction; and

WORLDCLIM (Hijmans et al. 2005) produces single-value

uncertainty estimates (e.g. R2 or RMSE values) across the

entire study area, although realistically one would expect the

uncertainty to vary spatially.

Incorporating uncertainty fromspatial climate
variables into SDMs

In this section, we discuss two different types of uncertainty

associated with errors-in-variables models. We then present

two statistical approaches: both of which take into account

uncertainty from spatial climate variables in SDMs.

CLASSICAL VS. BERKSON ERRORS

The twomost common types of underlying uncertainty (some-

times referred to as ‘error’) in the explanatory variables are as

follows: (i) classical error and (ii) Berkson error (Fuller 1987;

Carroll et al. 2006). In this article, we focus on classical error

and refer to Carroll et al. (2006), McInerny & Purves (2011)
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and Foster, Shimadzu & Darnell (2012) for Berkson errors;

however, as the analyst can choose which error to consider in

their analysis, we will discuss and distinguish both error types.

A classical error model considers the predicted (or

observed) explanatory variables as noisy realisations of the

true explanatory variables – that is w = X + U where the

errors are centred around zero, E(U|X) = 0. For SDMs, this

model is usually appropriate when the true climate variables

are thought to be an ‘average’. Ecologically, the model is

appropriate if the species is assumed to respond to the

expected value but not the realisation. For example, a species

may tolerate individual years that are colder than the mean

January minimum, but prolonged exposure may be intolera-

ble (i.e. a colder expectation).

A Berkson errormodel considers that the predicted explana-

tory variables are an overly smooth realisation of the true

explanatory variables – that is X = w + U where errors for a

given prediction of the explanatory variable are centred

around zero, E(U|w) = 0. For SDMs, it may be appropriate to

assume Berkson errors when the true explanatory variables are

thought to be noisier than the predicted explanatory variable,

see McInerny & Purves (2011) and Foster, Shimadzu & Dar-

nell (2012). For example, a species that is intolerant of cold

weathermay be absent from relatively warm sites (asmeasured

by average temperature) because the temperature sometimes

falls below the species’ cold tolerance.

We alsomake the standard assumptions thatU: (i) has some

known distribution and (ii) is additive. Note that if no distribu-

tional assumption is made on the prediction errors U, then

nonparametric alternatives could also be considered, see

Aitkin&Rocci (2002) and Carroll et al. (2006).

Which of these two types of error models to consider will

depend on what the analyst believes to be the ‘true underlying

explanatory variable’, and how the data were collected/mea-

sured. The analyst must take into account: how and whether

the species responds to a particular climate observation (Berk-

son); or that itmight respond to an average, such that relatively

minor deviations from this are immaterial (classical).

If the analyst believes that the species responds to average

explanatory variable (e.g. average min. winter temperature),

then the relevant uncertainty measure describes the average –

the standard error. Alternatively, if the analyst believes that

the species responds to the actual explanatory variable (which

is predicted but not observed), then the relevant uncertainty

measure describes the spread of the covariate around its pre-

diction – the standard deviation. Note that the standard devi-

ation will always be larger than the standard error.

As we are assuming that Carolina wrens respond to climate

(which is an expectation), we use classical error. This also

implies that predicted standard errors of the predicted climate

should be used. However, as predicted standard errors were

not available through PRISM, we used the available predicted

standard deviations as an approximate alternative. These pre-

dicted standard deviations serve as upper-bounds to the

required standard errors. It should be noted however that

additional bias in model estimates can arise if the predicted

standard deviations are too large.

HIERARCHICAL MODELL ING

Hierarchical models, which are constructed as joint condi-

tional probabilities of the underlying process, are commonly

used when accounting for different sources of uncertainty in an

ecological setting (Cressie et al. 2009). This ideology falls quite

naturally in our framework, such that the uncertainty in the

explanatory variables can be modelled and carried over to

SDMs.

Suppose now that f(yi|Xi;b) arises from some hierarchical

structure generated byXi. Following Schafer (1987) andAitkin

& Rocci (2002), we have some f(wi|Xi) and f(Xi). Recall that a

classical error model assumes the following additive error

structure:

wi ¼ Xi þUi;

where UijXi �Nð0;r2
uÞ is the prediction error with variance

r2
u. In our case study, r2

u is treated as a heteroskedastic vari-

ance, with a different variance estimate available in each grid

cell of PRISMoutput. The joint probability density function is

given by:

fðy;w; bÞ ¼
Yn
i¼1

fðyi;wi; bÞ

¼
Z Yn

i¼1

fðyi;wi;Xi; bÞ
( )

dX

¼
Z Yn

i¼1

fðyijXi; bÞfðwijXiÞfðXiÞ
( )

dX eqn 1

We aim to estimate the parameters of interest b using

maximum likelihood estimation and therefore must integrate

out the latent X in the estimation procedure. For non-nor-

mal response data, a closed form expression for the marginal

likelihood of (eqn 1) – that is the joint likelihood after inte-

grating out the latent X – is not obtainable. However, there

are a number of different estimation methods which can be

used, such as Markov chain Monte Carlo (Cressie & Wikle

2011; Gelman et al. 2013), or the expectation–maximization

(EM) algorithm, following the works of Schafer (1987) and

Li, Tang & Lin (2009).

We used a variation of the EM-algorithm known as

Monte Carlo EM (MCEM, Wei & Tanner 1990). In our

MCEM approach, we simulated replicate Monte Carlo val-

ues for measurement error (from the prior distribution,

Nð0;r2
uÞ), then weighted these observations proportional to

f(yi|Xi;b)f(Xi), and fitted a GLM on the subsequent esti-

mated explanatory variables. This method has the advanta-

ges that it was quite computationally efficient and it is quite

general. It can be readily modified to handle a range of

variations on the standard GLM – such as including inter-

action or quadratic terms, smoothers, GAMs, mixed effects

– and could in principle handle MARS, LASSO, etc. (Has-

tie, Tibshirani & Friedman 2001) with little technical diffi-

culty. Further details on the computation are given in first

section of Appendix S1.
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SIMULATION–EXTRAPOLATION

Simulation–extrapolation (SIMEX, Cook & Stefanski 1994;

Carroll et al. 2006) is a popular tool when dealing with error in

the explanatory variables, particularly if the response is non-

normal. It has the advantage that software is currently avail-

able to fit errors-in-variables GLMs, and it shares with the

MCEM algorithm the advantage that (in principle) it can be

applied to any parametric model without the need for modifi-

cation of the underlying model-fitting algorithm. It also avoids

having to integrate out X in (eqn 1) using a straightforward

simulation method which we briefly describe in second section

of Appendix S1. It is not however a maximum likelihood

approach, and its estimation algorithm can incur some loss in

efficiency, as investigated in our simulations.

ADDIT IONAL REMARKS ABOUT UTIL ITY OF ERRORS- IN -

VARIABLES MODELS

As stated in section 2.6 of Carroll et al. (2006), ‘Generally,

there is no need for themodelling ofmeasurement error to play

a role in the prediction problem’ – that is if the contaminated

explanatory variables are only available as the prediction (or

test) datawtest, then the error-freemodel (e.g. aGLM)will gen-

erally result in better predictions. This is expected as b̂GLM is

estimated conditional on wtrain; then, it follows that the best

predictions will arise from the GLM when using wtest (assum-

ing that the training and test data come from the same popula-

tion).

This may seem quite reassuring in the SDM context as pre-

diction is usually the aim. However, it turns out that there are

some important cases when na€ıve models predicting from wtest

will not work well. First, if test data were measured in a differ-

ent way with a different amount of prediction error, the errors-

in-variables models could be expected to be better. Secondly,

and more importantly, when making projections from the fit-

ted model, for example when making climate change projec-

tions, we would expect projections from na€ıve models to be

biased, and for the bias to increase as the extent of projection

increased. The reason for this is that parameters are biased and

hence projections of changes as X changes will be biased. We

explore this further in the simulations.

Finally, likelihood-based model selection criteria such as

AIC or BIC can be used for both the MCEM approach

and SIMEX, but require using Monte Carlo to approximate

the marginal likelihood. Alternatively, other measures such

as generalized cross-validation (Hastie, Tibshirani & Fried-

man 2001) could be also employed and used for model

selection.

Simulations

To investigate the effects on SDMs with uncertainty in explan-

atory variables, we conducted several simulation studies. We

considered logistic regression with two explanatory variables

both generated from the normal distribution with mean 0 and

variance 1. The error (U) in the explanatory variables was also

assumed to be normally distributed with mean 0 and variance

r2
u (over a range from 0�01 to 1).

BIAS, EFFIC IENCY AND PREDICTIVE PERFORMANCE

SIMULATIONS

First, we considered two scenarios to examine the bias, mean

square error (MSE) and coverage probabilities (CP) for the

regression coefficients, and predicted performance when pre-

dicting to new data. For the first simulation scenario, we set

the true intercept and the two (linear) regression coefficients to

b ¼ ðb0; b1; b2ÞT ¼ ð0:5; 1; 1ÞT, and in the second simulation

scenario, we set b = (0�5,0,1)T. We investigated the predictive

performance by simulating additional (test) data and calculat-

ing the MSE of the linear predictor on to the predicted test

data. In both of the above scenarios, we set ntrain = 200 and

ntest = 800, and considered two types of test data: (i)wtest which

was generated exactly the same way as the training data and

(ii) wc
test ¼ wtest þ 3 (e.g. an increased climate change scenario

of 3 °C).
We fitted the GLM, SIMEX and MCEM (discussed in sec-

tion ‘Incorporating uncertainty from spatial climate variables

into SDMs’) and performed 1000 simulations. In Fig. 3, we

plotted: (a) the bias, (b) the MSE, and (c) the 95% CP for b1
against increasing values of error variance for both scenarios.

When a slope coefficient was required in the model (as in the

left panel of Fig. 3a), the estimates for the GLM were biased,

and in general, the 95%CI did not include the true value of the

parameter a majority of the time (e.g. 95% CP covered only

20% for b1 when r2
u ¼ 0�5, Fig. 3c) – the poor coverage for

the GLM is a result of the large bias and short CIs. This sug-

gests that estimates of, and inferences about, parameters in a

model, and about predicted species distributions (see below),

are quite sensitive to classical errors. The MSE and 95% CP

were similar for all models until r2
u [ 0�20 where the differ-

ences between the GLM and errors-in-variables models were

more apparent.

When a slope coefficient was not needed in the model

(as in the right panel of Fig. 3a), it was estimated with lit-

tle bias, and accurate CPs were obtained irrespective of

whether or not the error in the explanatory variables was

accounted for. This implies that a na€ıve model, which does

not account for the error in the variables, will still handle

unimportant explanatory variables adequately, although

see Hefley et al. (2014). For the MCEM approach, both

the MSE and 95% CP worsened as the error variance had

increased (Fig. 3b,c) – as the MSE is a sum of the squared

bias and the variance, this suggested that the MCEM

yielded larger variances for the coefficient estimates, and

may be due to the additional uncertainty involved in

accounting for error in explanatory variables (which can be

understood as a type of bias-variance trade-off).

The evaluation of the predictive performance is given in

Fig. 4 where we plotted the MSE on the linear predictor

against increasing values of error variance for both simulation

scenarios and both types of test data sets: (i) wtest and (ii) wc
test,

see above. As expected, in both simulation scenarios, the
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predictive performance was worse for the errors-in-variables

models when using the test data wtest (see left panel of Fig. 4).

However, when making climate change projections using wc
test

(see right panel of Fig. 4), theMSE for the GLM had substan-

tially increased; it was reported largest in comparison to the

errors-in-variable models for simulation scenario 1, and com-

parable withMCEM for simulation scenario 2.

STATIST ICAL POWER SIMULATIONS

We also examined the statistical power with varying effect sizes

and errors-in-variables. A separate simulation study was con-

ducted here because our interest is in investigating the statisti-

cal power for different sample sizes. We used the same

coefficient values as scenario 1, and looked at two cases where

r2
u ¼ 0�25 and r2

u ¼ 0�5. The null hypothesis assumes the

regression coefficients are zero. In Fig. 5, we plotted the statis-

tical power against increasing sample sizes (using 1000 simula-

tions for each sample size) for b1. In both cases, the MCEM

had substantial statistical power compared with the GLM

and SIMEX, with SIMEX giving greater statistical power

over the GLM when the error in explanatory variables was

increased.

PROJECTED CLIMATE CHANGE SIMULATIONS

We further investigated the predictive performance for an

increasing climate scenario but now constructed simulated

data using the Carolina wren case study (see section ‘Presence/

absence data for the Carolina wren’). We only used the min.

temperature explanatory variable (denoted here as w) and gen-

erated new response data by treating w as the true climate

explanatory variable and b̂MCEM (see Table 1) as the true coef-

ficient values. We then generated prediction error (using the

estimated r2
u from PRISM) and added these to both w and

w + 3○C, to create the new observed training and test data,

respectively. Each model was fit using the simulated training

data, and the MSE of the linear predictor was calculated on

the simulated test data. The largest MSE (when using the

w + 3○C test data) was reported for the GLM (97�50), which
was clearly outperformed by SIMEX (46�78) and MCEM

(40�90).

–0·5

–0·4

–0·3

–0·2

–0·1

0·0

0·1

0·01 0·05 0·1 0·15 0·25 0·5 0·75 1

σu
2 (prediction error variance)

Scenario 1 ( β1 = 1 )
Bias

GLM
SIMEX
MCEM –0·5

–0·4

–0·3

–0·2

–0·1

0·0

0·1

0·01 0·05 0·1 0·15 0·25 0·5 0·75 1

σu
2 (prediction error variance)

Scenario 2 ( β1 = 0 )

GLM
SIMEX
MCEM

0·00

0·05

0·10

0·15

0·20

0·25

0·30

0·01 0·05 0·1 0·15 0·25 0·5 0·75 1

σu
2 (prediction error variance)

Scenario 1 ( β1 = 1 )
MSE

0·00

0·05

0·10

0·15

0·20

0·25

0·30

0·01 0·05 0·1 0·15 0·25 0·5 0·75 1

σu
2 (prediction error variance)

Scenario 2 ( β1 = 0 )

0·0

0·2

0·4

0·6

0·8

1·0

0·01 0·05 0·1 0·15 0·25 0·5 0·75 1

σu
2 (prediction error variance)

Scenario 1 ( β1 = 1 )
95% coverage probability

0·0

0·2

0·4

0·6

0·8

1·0

0·01 0·05 0·1 0·15 0·25 0·5 0·75 1

σu
2 (prediction error variance)

Scenario 2 ( β1 = 0 )

(a)

(b)

(c)

Fig. 3. Plots of the: (a) bias; (b) MSE; and

(c) 95%CP for b1 against increasing values of
the prediction error variance for simulation

scenarios 1 and 2 (both after 1000 simula-

tions), see text for further details. Notice that

when an explanatory variable is in the model

(scenario 1), the GLM gives the largest bias

andMSE, and poor 95%CP as the prediction

error variance increases.
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Case study: incorporating uncertainty to the
Carolinawren data

To account for uncertainty in the climate variables, we fitted

the MCEM and SIMEX methods using both max. and min.

temperature covariates. First, we compared BIC values (see

section ‘Additional remarks about utility of errors-in-variables

models’) for all models (including the GLM), which contained

either both or one temperature climate variable only and mod-

elled these as quadratic terms. We found that the BIC was

smallest for quadratic models with the min. temperature cli-

mate variable only. Thus, we excluded the max. temperature

climate variable, and only fitted quadratic models using the

min. temperature climate variable. In Table 1, we reported

parameter estimates with 95% CI (in parentheses) and calcu-

lated the log-likelihood (log fðytestjwtest; b̂trainÞ) using a block-

type cross-validation – that is we divided the data into 16 grids

and selected four random grids as the test data. Note that this

log-likelihood measure (denoted by CV-LL) was employed as

the true linear predictor is unknown for the test data.

First, there was a difference in the min. temperature slope

for the errors-in-variables models compared to GLM. This

reflects the simulation study results. Also, the standard error

estimates for the errors-in-variables models were larger com-

pared with the GLM, which resulted in larger 95% CI, reflect-

ing the additional uncertainty in the model when accounting

for error in the climate variable. Not surprisingly, the blocking

CV-LL was marginally better for the GLM; however, as
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Fig. 4. Plots for theMSE on the linear predictor against increasing values for the error variance for: (a) simulation scenario 1 and (b) simulation sce-

nario 2, using (i) test datawtest and (ii) test data under a climate change scenariowc
test after 1000 simulations, see text for further details. Notice the dif-

ference inMSEwhen usingwc
test.
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the MCEM had substantial statistical power

comparedwith theGLMand SIMEX.
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demonstrated in section ‘Projected climate change simula-

tions’, the predictive performance becomes worse under a

future climate change scenario.

In Fig. 6, we plotted the predicted presence probabilities

using the entire temperature climate map for each model. The

predicted presence probabilities are presented on the same

scale. We observed some slight difference in all three species

distribution maps, particularly in the magnitude for the more

southern less dense areas, for example comparing Fig. 6(a,b).

To examine the uncertainty in the predictions for each model/

map, we plotted the standard errors of the linear predictor for

the entire temperature climate map in Fig. 7, for further details

see Appendix S1. The largest standard errors were observed

on the boundaries of the north-western and some southern

areas, where very few or no presence/absence records were

observed and where temperatures were at the extremes of the

observed range. Otherwise, uncertainty in the predictions was

fairly constant across each map. We also inspected how the

estimated models responded to min. temperature in Fig. 8,

where there is a clear distinction between GLM and the errors-

in-variables models. This is also in keeping with simulation

results, where we found downward-biased estimates of slope

parameters when prediction error was ignored.

Discussion

Explanatory variables considered in SDMs, in particular cli-

mate variables, are predicted with uncertainty. We have inves-

tigated the impact of such prediction error, and ways to

account for it in the context of SDMs. Themain impact of fail-

ing to account for error in variables is bias (Fig. 3a), but there

is also a loss of power (Fig. 5) as the error increases. Different

Table 1. Parameter estimates with 95%CI (in parentheses) for quadratic models (using the min. temperature covariate only) after fitting GLM, SI-

MEX and MCEM using the Carolina wren data. The blocking cross-validation log-likelihood (CV-LL) is also reported to evaluate the predictive

performance

GLM SIMEX MCEM

b̂intercept �1�09 (�1�28,�0�90) �0�99 (�1�21,�0�77) �1�07 (�1�27,�0�878)
b̂linear 0�90 (0�67, 1�14) 1�25 (0�92, 1�58) 1�33 (1�01, 1�66)
b̂quadratic �0�46 (�0�63,�0�29) �0�77 (�1�03,�0�50) �0�84 (�1�11,�0�57)
CV-LL �0�603 �0�629 �0�643
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Fig. 6. Predicted presence probabilities for: (a) GLM; (b) SIMEX; and (c) MCEM, using only the min. temperature explanatory variables as qua-

dratic terms for the entire temperature climate map. Plots are presented on the same scale. The observed presences have also been included in (a).

Notice there are some differences in the general shape of the maps. The main difference is in the magnitude, especially for the more southern dense

areas.
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conclusions could be drawn depending on the model used and

whether or not we ignore the errors-in-variables assumption.

Butwhile explanatory variables that are informative for species

response experienced the ‘double whammy’ of bias and low

power when errors-in-variables were ignored, uninformative

variables appeared to be unaffected.

An important consequence of biased parameter estimates is

biased projections under changes of environmental variables –

for example under different climate change scenarios, as in sec-

tion ‘Additional remarks about utility of errors-in-variables

models’. This result has wide ramifications as it is common to

use SDMs fitted without uncertainty in explanatory variables

for climate change projections, and a reasonably likely conse-

quence of failing to account for such uncertainty is underesti-

mation of climate change effects. The reason being that when

prediction error is ignored, climate responses more often than

not are estimated to be attenuated (as in Fig. 8); thus, pro-

jected climate change effects could also be expected to often be

attenuated.

Producing reliable uncertainty estimates from climate mod-

els is a challenging task but most climate modelling software

does provide uncertainty estimates. We obtained maps of

uncertainty in climate variables from PRISM software. For

most errors-in-variable approaches, some components of the

uncertainty must be assumed known or estimated to a reason-

able degree of accuracy. In our case, we obtained an

upper-bound of the prediction error variance from the PRISM

climate model, which was the best estimate available to us.

Recall that these uncertainty estimates are generated from

some climate model, hence predictions are based on what the

climate model knows and assumes. This is analogous to asking

a student to grade their own final exam (Daly 2006). In our

case, PI from linear regression will only be accurate if the

assumed model is 100% correct. If this assumption fails, it

would be difficult to get reliable PIs from simple linear regres-

sion (i.e. under the normality assumption). In addition, the

form of the uncertainty statistic varies from climate model to

climate model, so they may not be comparable, for example
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PRISM PI70 vs. kriging estimation variance. Obtaining more

accurate and efficient uncertainty estimates remains an issue

for ongoing research, and we hope there will be improvements

in the near future.

On the question of which method to use for fitting

errors-in-variables models, SIMEX is a well-known and

flexible approach: it can be computationally fast and has an

easy to use R-package (Lederer & Kuchenhoff 2006). On

the other hand, MCEM can be more naturally extended to

spatial models (or more general hierarchical structures), and

the design matrix can be easily modified to handle more

general regression structures (e.g. interaction terms) and

shares similar properties to classical maximum likelihood

theory. When considering more sophisticated models, we

recommend SIMEX as a natural first step, unless the model

is inherently hierarchical, in which case MCEM might be

preferable.

POSSIBLE EXTENSIONS

In some cases, the assumption of no spatial autocorrelation in

the response variable may be reasonable; however, recent stud-

ies have discussed the importance of including spatial correla-

tion in SDMs (Record et al. 2013). Further, the spatial

autocorrelation may just be a manifestation of an errors-in-

variables process where the errors are spatially dependent

(Foster, Shimadzu & Darnell 2012). Adding a spatial compo-

nent to prediction error is also important when an estimated

climate map is likely to have a patchy error distribution, with

climate variables being consistently over- or under-estimated

in particular regions. Therefore, the first and perhaps most

important extension to the methods presented in section

‘Incorporating uncertainty from spatial climate variables into

SDMs’ is to include spatiality into the SDM analysis. In

Appendix S2, we show how the hierarchical models given in

section ‘Hierarchical modelling’ can bemodified to: (i) account

for spatial autocorrelation in the response variable and

(ii) include spatially autocorrelated prediction error (see Fos-

ter, Shimadzu & Darnell 2012), or an environmentally struc-

tured error, but further work is needed to implement and

evaluate thesemethods.

We also ignored possible temporal uncertainty in both the

climate mapping variables and presence/absence data, which

of course could vary if the sampling is conducted at different

times. For example, we could follow Xia & Carlin (1998) who

included both spatiotemporal effects with uncertainty in cova-

riates, although in this case the response data were normally

distributed.

Finally, while we considered presence–absence data here,

the issue of prediction error in explanatory variables also arises

in presence-only data, and the methods implemented here can

be readily extended to handle presence-only data. In fact, pres-

ence-only analysis via a point process model can be imple-

mented using GLM software (Baddeley & Turner 2005) and

MaxEnt. Hence, methods developed here can be applied to

presence-only data relatively easily. We hope to explore these

extensions elsewhere.
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