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Active transmission lines, @ generelization of classical trans-

Abstract epproved:

mission lines, eare useful electricel devices, They cen be utilized to
realize distributed emplifiers end to obtein other electricel charec-
teristics unattainable with passive lines. Active lines have histori-
cel significence and model meny physicel processes including heet
conduction in an internelly heated material, a vibreting string, pres-
sure waves in gas, neutron diffusion and fission, end semiconductor
photodetection. This paper fully develops the enalysis and synthesis
of active transmission lines using a network theory epproach,

An active line is cheracterized by distributed series voltage and
shunt current sources in addition to the passive line parameters,
These sources may be of independent and/or dependent type.

It is shown thaet independent sources mey be removed from the line
if appropriate modificetions’in port conditions are made. Extraction
integrals are formulated for this purpose., Exemples of independent
sources include initial condition generators; they also occur in
devices exhibiting active coupling such as the treveling-wave transis-
tor,

Dependent sources however chenge the two-port pareameters of the



active line. These sources have their outputs controlled by either
line voltage or current (a source at position x has an output which
depends on either voltage or current at position x). Two basic types
of lines are therefore possible.

The uniform active line having dependent distributed sources is
completely enalyzed. Its traveling-wave characteristics including
characteristic impedences and propagation functions ere presented.
Leplace transformation techniques are used to analyze the driving-
point and transfer edmittances, gain, bandwidth, step response, rise
and delay time, and sensitivity of uniform rcg active lines.

The general nature of the pole-zero patterns of nonuniform active
lines having distributed dependent sources ere investigated using
several results from differentiel equation theory. Their two-port
parameters are readily expressed using the basic set notation and self-
ad joint properties of the active line equations. Lack of pole-zero
cencellation is noted utilizing the Wronskien of the basic set solu-
tions. Sturm-Liouville theory establishes the general pole-zero
locetions. Many of the powerful theorems concerning lumped passive
networks are seen to parallel those of active lines.

Active transmission lines are readily synthesized directly in the
time or frequency domein using veriational celculus techniques. The
parameter distributions required to produce specified port response for
arbitrary excitations and loadings (consistent with parameter bounds;
etc.) are generated by expressions involving voltage and current along
the originel line end e so-called edjoint line. The method is readily

implemented by digitel and hybrid computers.



At the present time, active transmission lines cennot be reelized
because of the inebility to distribute dependent sources along a
passive line. Therefore artificial active lines ere presently utilized
The topology end two-port paremeter requirements of the iterative two-
port are discussed.

Future edvences in solid-state electronics end thin-film technole
ogy should overcome this difficulty. Severel current reseearch studies
involving semiconductor bulk effects end solid-stete treveling-weve
amplifiers are cited.

Although this thesis is concerned with the class of active distri-
buted network heving an active trensmission line equivelent, the
various considerations are readily extendable to networks having other
differential models. More generally then, this investigation is
concerned with developing methods for analyzing and synthesizing

active distributed networks.
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ANALYSIS AND SYNTHESIS OF ACTIVE TRANSMISSION LINES

I, INTRODUCTION

Active Transmission Lines

The active transmission line is a generalizetion of the classical
transmission line. By introducing distributed voltage end current
sources along a transmission line, the line may be made active and
capable of delivering energy from its ports. Active lines cen be
utilized to realize distributed amplifiers and to obtain other elec-
trical characteristics unatteineble with passive lines.

The active transmission line is characterized by the parameters:
r, the series resistance/unit length (obms/m),
1, the series inductance/unit length (henries/m),
e, the distributed series voltage/unit length (volts/m),
g, the shunt conductance/unit length (mhos/m),
c, the shunt capacitance/unit length (farads/m),
j, the distributed shunt current/unit length (amperes/m).
Parameters r, 1, c, and g are time=invariant and may be functions of
distance. The distributed voltage and current sources are independent
or dependent sources, or a2 combination of both which have time end
spacial dependences. This is explicitly denoted by writing e = e8(x,t)
and j = j(x,t).

Kirchhoff's equations relate port voltage and current of the

active line element of length Ax in Fig. 1 as

v(x+3Ax,t) = v(x=3Ax,t)-e(x,t)Ax-r(x) Axi(x,t)-1(x)Ax ‘Qié%"'tl (1.1)



2

(b Axyt) = 1(xebAx,8)=3(x,8) A xog(x)D xu(x,t)=c(x) A x2LXat) (4 5)
for Ax— 0 where v and i are essumed continuously differentiable in
x and t. This implies that r and g are nonzero, 1 end c are contin-
uous, and r, g, e, and j are continuously differentieble in x and t
along the line. Dividing each side of egs. 1.1 eand 1.2 by Ax and

letting Ax—*0, the active transmission line equetions become

Wlt) . ooet) + rO)ilx,t) + 1(x) ﬁ-l—(a-fﬁ (1.3)

ot

2 A06b) L 5e,8) + glau(x,t) + ofx) 2ubxat) (1.4)

where the differential section is shown in Fig., 2. Active trans-
mission lines have historicel significeance and current importance as

shall be seen in the discussion that follows.

i(x-2Ax,t) e(x,t)ax i(x+3Ax,t)
o—b>— AAA—YYY )Y —p—o0
r(x)Ax 1(x)Ax ~ _L +
1
V(X—%Ax,t) Q(X)AX C(X)AXTj(X,t)AX V(X""f_AX,t)
o— : o
x=% A x x+% Ax

Fige 1. Approximation of an active transmission line of length Axe.

i(x,t) rGo 10 f(x’t) i(x+dx,t)
o_'_____Jv\A,__Jﬁ”YYﬁg__<:>‘ _L ’__f

v(x,t) g(x) c(x)’I‘j(x,t) v(x+dx,t)
o o

Fige 2. Differential section of an active transmission line.



Iterated Networks and Distributed Amplifiers

Any linear active or passive two=-port defined by an admittance
matrix may be represented as the TI network shown in Fige 3. An iter-
ated structure composed of such cesceded TI's is shown in Fige. 4 where
for brevity we let Y = Y11+y22+2y12 and O = Y21 =Y12° - The structure
may alternatively be viewed as composed of L sections shown in Fige 5
(with impedance Y11+ Y19 at the input port). For systems which are
adequately described with =Yqp 85 8 series resistance and inductance,
and Y a shunt conductence end cepacitance as shown in Fig. 6, the
structure becomes artificial or lumped "equivalent" of a section of
active transmission line. Nonuniform structures have -y12n, gmn; and
Yn dependent upon ladder location n. This corresponds to spacially

dependent -y12(x), gm(x), and Y(x) along the active line.

I1 ‘Y12 12
o> AN —40
Vi Y11"Y928 Y212 (y91-v120Y, Vo
> l o

Fige 3, TI representation of any linear two=porte.

AL Y12 Y12 I
A - r <4-°

+ +

gmv'] V? Y ngZ grnvn-'l Vn

-0

Figs 4. Cascaded TI networks,



I Y12 n+1
oPp—AAAN— —eg—o
+ +
Vn Y ngn Vn+1
- -

Fig, 5. "Analogous L section of the iterated structure.

In Rn Ln 0+
oPp— AMNA—TTITL 4o
+ +
oy '}
Vn Gn Cn gmnvnv n+1
o— o

Fige 6o The artificiel active line resulting from a particular choice
of Yq9 and Y,

The loss-pess electrical behavior of an n-section artificiel line
approximates that of an active line d units in length. Since active
distributed networks were not available in the past, iterated struc-
tures were fully exploited. To achieve an overall voltage gain
exceeding unity in such casceded systems having identicel steges,
each section must have e gein greater then unity., For a given active
network end interstege, there is a fixed upper fregquency limit FD
where the gain becomes less then one.

Historicelly, meny factors made large cescaded amplifier systems
impracticel. With a large number of sections, unavoidable introduction
of peresitic inductance and cepacitence deteriorated system perform-
ance at high frequencies. Insufficient redundancy end high failure
rates of electronic tubes meade proper operation largely dependent

upon optimum performance of each stage (18). In an effort to over-

come these besic limitations and obtein emplifiers which would



operate at frequencies greater than FO, additive emplifiers were
conceived. In these systems, outputs from each stage ere added rathér
than multiplied. By peralleling, more stages, greater than unity gein
is possible at frequencies above FD.

An artificial distributed emplifier is an additive amplifier
system.1 It has the form shown in Fig. 7 with its equivalent circuit
in Fige 8. The pentodes actively couple the input line to the output
line vie transconductance gm(amperes/volt). Grid end plaete capaci-
tences ere absorbed in the ertificial lines. Design requirements
include equal phase velocities in input end output lines.and matched
terminating impedences to prevent reflections. Such systems ere
cascaded by connecting the properly matched output line to the input
line of the next stage thereby increasing the overell gein. Improved
frequency response is derived by introducing mutuel coupling between

ad jacent inductors on both linese.

202
| Artificial Output Line - I

+ -
vin (ii Artificial Input Line I

Fige 7o Artificial distributed amplifier.

1W.S. Percival holds a British patent dated July 24, 1936 for
(artificial) distributed esmplifiers using pentodes.



2o LT #gmv’l
. /2

Figo 8.

Transistor ertificiel distributed emplifiers
vestigated (25), but with less successful results
characteristics between pentodes end transistorse.
ficant base-collector capacitive coupling and low
impedancese.
cause of small gate-drain cepacitive coupling and

put impedances.2

Equivalent circuit of the ertificiel distributed emplifier.

have also been in-
due to the differing
These include signi-

input and output

FET or MOS transistors mey be employed to adventage be-

‘high input end out-

In an effort to realize true distributed amplifiers eand thereby

realize higher frequency emplifiers, McIver hes proposed the traveling-

wave transistor (22), shown in Fig. 9 with its equivelent circuit in

Fig. 10,
lines deposited on uniformly doped semiconductors
drein chennels.
matched. g

to echieve useble gain,

Essentielly an insulated-gete FET, strip-type transmission

form the gate end

Rgain phese velocities end terminating impedances are
is to be meximized and the device length made long enough

Others have considered the effect of cepaci=-

%&g. see P.G, Jessel and J.S. Thorpe An emplifier design using MOS

transistorse.

Proceedings of the IEEE 54(11):1581-1582.

1966,
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Fige 9. The traveling-wave transistore.
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:rb———————fT“rY\ _L o
v1(x,t) c

. |

Fige 10, The differential model of the traveling-wave trensistore.

tive coupling between lines on gein (12, 17).

The requirement of equel phese velocities and presence of cepeci-
tive coupling maey be eliminated if single line distributed amplifiers
could be realized, where for example in the active line of Fige 2,
e(x,t) end j(x,t) and ere dependent sources controlled by either v(x,t)
or i(x,t). This thesis is concerned with the generel analysis and
synthesis of such networks. The results mey be extended directly for
networks having differential models other then Fige 2.

Much current eattention is being difected toward reelizing single

line distributed amplifiers. We should note, however, that many of the
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problems encountered with cascaded eamplifiers may today be circumvented
due to the advent of integrated-circuit technology. Iterative struc-
tures having sufficient redundency to insure their two-port cheracter-
istics (10) may be fabriceted with great precision. Currently power
capabilities eppear to be the mejor limitation of integrated circuits.
Due to their microscopic size, when particular networks are iterated to
form systems, their epproximation by e distributed network may lead to
more ready analysis and synthesis results than by using, for example;

chain metrix products.

Rctive Transmission Line Analogs

Active transmission lines can be used to model meny physical
processes and thus form an importent analog to process studies and
simulation. In the illustrative examples that follow, pertinent eque-
tions describing the process are expressed in active transmission line
equation form. By associating appropriate quentities with the active
line parameters, two differential enalogs may be formed. These ana-:
logs are duals and one is readily drawn from the other. Therefore,
only one is dreawn, the choice being determined by the "driving func-
tions" of the process end familarity with a given differential section
type. To indicete how initial and boundary conditions are incorpor-
ated into the model, the heat conduction problem is analyzed in more
deteil to serve as an example. By applying the results of this thesis
to processes not modeled by eactive lines, similer conclusions concern-

ing their nature may be made.



Heat Conduction with Internal Heating (29)

One-dimensional heat conduction in a homogeneous material, inter-
nally heated, for example, by radioactive decay or absorption or by
thermochemical reactions, has a uniform rc or lg trensmission line
analog. Nonhomogeneous materials have nonuniform analogs.

Consider heat conduction along en insulated internally-heated rod.
The diffusion and continuity equations relate heat flow density q

(ical/sec-mz) and temperature T (°C) es

or
-q=kax (1.5)
or _1_ .9a . .
T oot pc (ax 3 (1.6)

where k is the thermal conductivity (cal/sec-mz-Co), P the density
(kg/ms), c the specific heat (cal/kg-C®), end j represents the heating
due to the internal heat generators (cal/sec-mB). Comparing eqse 1.5
end 1.6 with the active transmission line equations (eqs. 1.3 and 1.4),
they are made identical by setting w=T, i=q, r=1/X, and c=pC e This
results in an rc active line analog. £fn lg active line could equally
well be used. Depending on the process involved, j may be an indepen-
dent or dependent source. In some cases of interest jlx,t) =
a(x)T(x,t). Here then, j is a distributed source whose output at point
x is dependent upon the temperature at point x for all time.

The boundary conditions Fix the port terminations. For exemple,

if @ material L units long has temperatures T(0,t) = T, end T(L,t) = T,

maintained at the ends, then voltage sources of T1 and T2 volts eare
placed at the respective ports of the equivalent line. If on the

other hand the material is insulated at x = L, there is no heat
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conduction through the output port end the line is open-circuited at
thet end. Heat mey elso be transferred by convection or rediation of
energy. It is found that for precticel celculations, the heat flow
density is proportionel to the difference in temperetures between the
convective or radietive mediums or
q = h(T_-T,) (1.7)
where h is the convective or radistive coefficient (cal/sec-m2~C°) and
T, end T, the "driving" temperatures of the process (23, 24). Thus,
terminating resistors of ‘I/h1 and 1/h2 ohms form the convective or
radietive heat analog; they relete the port current densities Q4 and
q, to the voltege differences T1-T(B,t) and TZ-T(L,t) across their
terminels,

For nonzero initiel temperature distribution throughout the mate=
rial; initial condition impulse generetors must be introduced. Thus
when the initial tempereature T(x,0) is specified, the source distri-
bution required to esteblish this initial condition is known. The
differential section of the heat conduction analog including the

initial condition generator is shown in Fige. 11.

Q(X,t) 1/k

?_—} -\ —0
T(x,t) pC T PCT(x,U)é(t)
> —

Fige 11, Heat conduction anelog including initiel condition impulse:
genereatore.
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Small Trensverse Vibrations of a Horizontal String (24, 29)

Consider a horizontal, possibly nonuniform string under uniform
tension T experiencing small verticel vibrations. When the string's
stiffness is neglected (i.e. assuming perfect elesticity), the equa;
tions relating transverse momentum P (n-sec) and small transverse
displecements y (m) ere related by Newton's force equation and the

momentum equation as

9y _ 9P

- T ° S (1.8)
a

_-é-E:P%%+By+Pgt-pe (1.9)

where p is the mess/unit length of the string (kg/m), B the viscous
friction of medium surrounding string (n-sec/mz), g the gravitetionel
constent, and Pe the upward distributed momentum along the string
(n=sec/m) where the external force density epplied ealong the string is
f = ape/at. The right hend terms of eq. 1.9 account for inertiel,
demping, gravitational, and external force effects. If in addition
the spring is pleced in en elastic medium, the term K jrdydt is
added to the right side. The differentiel enalog model gs shown in
Fig. 12. Here pgt and Pg represent independent distributed sources
while K dydt is a dependent distributed source.

Longgtudinal vibrations in an elestic bar end (one-dimensionel)
trensverse vibrations of & thin membrane are described by equetions
somewhat similar to eqs. 1.8 and 1.9, However trensverse ber vibra-

tions are described by higher order equations and cennot be identified

as active trensmission lines.
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P(x,t) 1/7
o—p- LYY Y —0
¥ | t
y(x,t) BS p T,ogt P, %) + Kf ydt
o
- | .

Fig. 12. Vertically vibrating horizontael string analog.

Small Longitudinal Pressure Waves in Gas (32)

One-dimensional propagation of sound waves in gas neglecting
viscosity effects exemplify many fluid and gas flow problems. Newton's
force equation and the continuity equation relates the pressure P
(n/mz) and the longitudinal displacement velocity of the medium v
(m/sec) eas

© 9P dv

- R 3; = Po 3t Pore (1.10)
aP _ Q!
-3t Bo ox (1.11)

where Po is the equilibrium mass density (kg/m), B the bulk modulus of
the medium where B_ = p (§E ) (n/mz), A the channel area (mz); and F

) o aPo e
the body force/unit mass due to external forces (n/kg). The differen-

tial section of the analog is shown in Fig. 13,

v(x,t) Po/ﬂ PDFe/A

4

o—p NY Y Y

A U —
P(x,t) T 1/8,

- .

Fig. 13, Small longitudinal pressure waves in gas .analog.
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Neutron Diffusion ard Fission (24)

One-dimensional nuclear reaction problems involving ebsorption and
generation by fission of neutrons have active transmission line ena-
logs.

The diffusion end continuity equetions for neutrons cepable of
producing fission (having speeds less than some criticel velocity VC)
relate neutron current density j(neutrons/mz-sec) and neutron n

(neutrons/m3) as

-j=0D %5 (1.12)
9 8,y _Rh-gq (1.13)

-3t T ox
Qhere D is the neutron diffusion constant (mz/sec), X the absorption
constant (Sec-1), R the reproduction factor (sec-1), and g the epplied
neutron current density arising from sources other then fission., The
differentiel section of the enalog is shown in Fig. 14, g is an inde-
pendent distributed source while Rn is & dependent distributed source.
Sometimes analysis must include the fact that the new neutrons
arising from the fission process are not emitted immediately but in

a delayed manner where T, is the mean deley emission time. The repro-

d
duction term Rn(x,t) is here replaced by Rn(x,t-Td).

jlx,t) 1/D
o—Pp——AAA- 0
+

n(x,t) X 1T Rn q
o | )

Fig. 14, Neutron diffusion end fission analog,
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Photodetection Process

Semiconductor detection of opticel frequency (or less) signals
make use of the photoelectric effect and may be reedily cherecterized
by active transmission lines. Ettenberg end Nedan have found analo-
gous but simplified results when anelyzing gein in solid-state trav-
eling-wave emplifiers (8). Kewamura and Morishite have presented
more involved analysis (14), Problems in physicael chemistry involving
diffusion of solutes undergoing ionization end deionization in e
solvent have similar anelogs.

According to quantum theory, an epparently continuous electro-: =
magnetic wave of frequency f is quantized and consists of discrete
quanta or photons which have energy E = hf joules/photon where h is
Planck'scoonstant, When e photon is absorbed by an atom in & materiel,
its entire enerqy is transferred to an electron. This electron may
be free and so experiences an increased velocity, or more likely the
electron may be excited from the velence bend into the conduction band
(assuming the photon hes sufficient energy to do so). Generally then
additional hole-electron current carriers are created, the spectral
distribution of which is determined by the absorption spectrum of the
meterial (31).

To determine the carrier generation rates, consider a uniform
semiconductor rod of length L with coherent rediation of frequency f
directed longitudinally upon its end. If ID is the rediation intensity
(photons/sec-cmz) just beneath the surface, the intensity at depth x is

I(x) = Ioexp(-kx) ' (1.14)
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where k = k(f) is the ebsorption constent of the material, Since, in
the photoelectric effect, a photon is ennihilated and a hole-electron
pair created, the generation rate of holes and electrons is
G(x) = -n(div I(x)) = nkIOexp(-kx) (1.15)
where n = n(f) is the spectral efficiency of absorption of photons of
energy hf.

These cerriers give rise to photodiffusion, photoconductive, and
photoelectromaegnetic effects for no epplied fields, applied electric
fields, and epplied magnetic fields, respectively. To describe photo-
diffusion end photoconduction, the continuity equation, the momentum
equation, and Poisson's equation ere used (1). These equations
together with their associeted initial and boundary conditions form the
basis for photodetection analysis in semiconducting slabs, diodes, and
transistors,

The continuity equation, in rearranged form, relates the change
in current density to rate of cerrier increase, recombination rate,

and generation rates as

aJ
. —2 = B
ax tp

wl_gz
pers

- (Gp+p0/tp) (1.16)

n an
t + =5 - (G #n /t ) (1.17)

aJ
0
T dx

where

instantaneous hole density (holes/cms) (or free hole concentration)

equilbrium hole density (holes/cm3) (or free hole concentration)

o
hole current density (holes/sec-cmz)

p
p
J
t hole lifetime (sec)
G

hole generation rate (holes/sec-cm3)

P
p
P
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and the corresponding electron definitions,
The momentum equation relating inertiel effects and effects of
collision demping (viscous friction) to distributed forces earising from

the electric field and diffusion pressure (or density gradient) is

D
9 b 3dp
=(m J +vmd = E - 1.18)
5timglp) * Vpmpdp T 9P quaX (
D
3 - _n gn
Sz(ann) tumdJo = gnE + q W (1.19)
where
q = charge of electron (coulomb)
m_ = mass of hole (gm/hole)

v_ = collision frequency of hole (1/sec) (i.e. reciprocal mean free

time 1/t between colllsionsof'a hole with the lattice)

o
1]

hole dlffu51on constant (cm /sec)
Pp * hole mobility (cm /volt-sec)
n

with analogous electron difinitions, Since Ppmp = qtp and RHmoo= aqt_,

eqs. 1.18 and 1.19 may be expressed as

3p _ 1 P Fo
T ox B-Jp vD dt =D pE (1.20)
P PP P
Lo 1 S . RO
%D htvDp 3t b "E (1.21)
n n n

The current derivative terms are usually negligible in which case egs,
1.20 end 1.21 are the familar equetions relaeting drift end diffusion
current densities, Although egs. 1.20 and 1.21 are nonlinear if E and
p or E and n are both variable, this equation may be linearized for

small signals,
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The free carrier densities p and n are related by Poisson's

equation to the electric field as

%5 = % = % (p=n+h =N ) (1.22)

where

semiconductor permittivity (coulomb/volt-cm)

£
p = net charge density (coulomb/cm3)
Nd = donor doping density (electron/cmz) (or bound positive ion

concentration)
N, = acceptor doping density (holes/cms) (or bound negative ion

concentration)

Although eany sample is macroscopically neutral, it is microscopically
or locally non-neutral where P is nonzero., Generally locel charge
neutrality is assumed where the majority cerrier density readjusts to
accomodate minority density gradients, It is clear that eq. 1.22
requires bilateral active coupling between lines if this assumption is
not made. The active transmission line analogs are drawn in Fig, 15.
Since there is no shunt current (leakage current) in the E-line, its
assigned current variable is arbitrary.

Depending on the problem to be analyzed, several assumptions
allow the coupling to be unilateralized and the differential model
simplified, Linvill and Gibbons have considered the difference
equation form of eqs. 1.16, 1.17, 1.20, 1.21, and 1.22 and developed

lumped, iterated structures analogous to those of Fig. 15 (21).
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J (x,t 1/D 1/v D Ep/D
P( ) ) /p /p p }Jp p/p
+ -
o—p———AAA- YYD J\u )
+
pEx,t) 1/tp 1 T G+p0/tp
o O
Jn(x,t) 1/0n 1/vnDn FQEn/Dn
— -
—<¢ AAA- LYY o
N |\
n(x,t) 1/tn 1 G+n0/tn
o— = -0
ap/€ qn/€
+ + +
g\ N\ il 2N
o Ua U o/ —°
+
q(Nd-Na)/E
E(x,t)
-G- 0
Fig. 15. Semiconductor photodetection analog.
Summary

In this discussion, the active transmission line has been placed
in historical perspective and its current importance in realizing
distributed amplifiers noted. In the following chapters it will
become clear that active lines may be used to obtain other useful
electrical characteristics. The importance of active lines in modeling
many physical processes has also been discussed, and several represen;
tative examples presented.

The intent of this thesis is to fully develop the heretofore
uninvestigated theory of active transmission lines, using a network
theory approach, In so doing, the classical transmission line is

generalized into the active line., Much of the classical line theory
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may be extended directly. Following the active line analysis, @
general synthesis scheme is presented allowing computerized design of
active lines. Realizations of active lines are discussed in the

concluding chapter.
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II. TRANSMISSION LINES HAVING INDEPENDENT
DISTRIBUTED SOURCES

Independent Distributed Sources

The differentiel section of the active transmission line drawn in
Fige 2 is described mathematicelly by eqse. 1.3 and 1.4. The distri-
buted sources e and j may be independent, dependent, or both. In this
chapter the sources are taken to be independent, that is they are
independent of both voltage and current along the line.

Initial condition generators are this type of source. This is
immediately clear when the Laplece transformations of the active

transmission line equations are written. Egs. 1.3 end 1.4 become

- §!é§4§l = (r+sl)I(x,s) + E(x,s) - 1i(x,0) (241)

- _(_'_)'alai ) = (grsc)V(x,s) + J(x,s) = cv(x,0) (2.2)

where V and I are the transformed line voltege and current, E and J
are the (explicitly) transformed distributed voltege and current
source strengths, and i(x,0) and v(x,0) are the initial current and
voltage specified along the line. Since the lest two terms in the
equations represent transformed distributed series voltege end shunt
current sources respectively, it is clear that the terms 1i(x,0) and
cv(x,0) represent initial condition impulse generators. In pessing,
we note that V end I are continuously differentiable in x and s when
Z=r+sleandy =g+ sc are nonzero, and Z, Y, £, and J are contin-
uously differentiable in x and s.

Passive and active coupling between lines introduces distributed

sources which although dependent, are not dependent upon voltage end
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current in that line. They are independent sources to the line in
question and thus fall into this category. This is readily seen by
considering the general coupled lines of Fige. 16 and their equivalent

in Fige 17. Unless coupling is unilateral, solutions become extremely

involved (12, 17).

[o " l -0
v1(x,t) 9 T < 9.4V

+ r1 11

o> AN UANS
i1(x,t) °

g1
\

iz(xot) °

+ T 1

Vz(f’t) 92 ) Im2Y1

O— -0

Figs 16. RActively and passively coupled transmission line.

i, (x,t) r 1,, 2
1% 1 12 53
op——AA—T TN —o
+ 1 + - _l_
1. dv
v, (x,t) g " g .V c 2
1 1 'Tb1+c12 m V2 12 375
O —)
di
i (x,t) 1 1
2 2 12 5
op— A N—1Y"——) -0
+ -
¥ 19 _l_
‘ ov
Vg(x,t) 92 —[b2+c12 gmzv1 012 5{1
e O

Fige 17. Coupled line equivalent circuit using distributed
dependent sources.
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It is shown in the discussion that follows that independent
distributed sources may be "extracted" from the line when accompenied
by appropriate modifications of boundery conditions. To begin, we re-
view two-port theory of linear networks having internal independent

sources. The extension to n-ports is immediate.

Two~Port Theory of Lineer Networks

Two-port theory has been employed for many yeers to characterize
an often complicated electrical system by its port beheviore. Various
parameter sets including impedance, admittance, hybrid, and chain
parameters relate port voltages and currents. These parameters are
expressed in matrix form in Fig. 18. Although two-ports conteining
independent sources have not received extensive treatment in the past,
they are readily accommodated by including a term corresponding to an
independent source on the left hand side of the matrix equations in
Fig. 18. Note that each two-port representetion conteins two inde-
pendent sources. Thus the effect of independent sources is to change
the boundery conditions of the two-port. The significance of these
two independent sources may be interpreted in either of two ways.

Viewing the two-port equations as arising from the Teylor series
expansion of port unknowns as functions of port knowns when reteining
only zero and first order terms, it is cleer that the independent
sources correspond to the zero order terms.

klternatively, a two-port network conteaining n independent
sources may be viewed as an (n+2)-port containing no independent

sources. By linearity and thus superposition, the effects of n
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independent sources,

Various characterizations of two-ports containing
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specified voltege end current sources at the n ports superimpose at
ports 1 and 2. But by reciprocity, similer effects are produced by the
two equivaelent independent sources in Fige 18 when the n independent
voltage and current sources are set to zero. The type and placement
of the two sources depend upon the parameter set chosen to characterize
the two-port network. The matrix describing the two-port is found with
the internal independent sources set to zero.

These independent port sources may be de.c. sources whose levels
are those of the system in its quiescent state. For example, V1 is the
input voltage, and V1 - V1z is the port voltage fluctuation about its
dece level V1z' The sources may be equivalent noise generators of the
network and have a stetisticeal nature, or they may correspond to other
contaminating signals such as hume

From the matrix relations of Fige. 18, V1z and sz are equal to the
open-circuit voltages at ports 1 end 2 respectively. In like manner,
I1y and I2y ere the short-circuit currents of ports 1 and 2 respec-""
tively, with similar interpretations for the hybrid perameters. The
independent sources associated with the chain and inverse cheain matrix
characterizations do not equal terminal responses directly however.
These responses must instead be multiplied by the eppropriate two-port
parameter. For the chein matrix characterization for example,

v -AV_ for I, = 0 (output opened), or (2.3)

10 2 2

812 for V2 = 0 (output shorted) (2.4)

with the input shorted (V1=D) and

I, = -CV, for I, =0, or . (2.5)
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= 012 for V2 =0 (2.6)

with the input open (I1=0).
Reletionships ‘between these equivalent independent sources mey be
» 3 . .
derived.” Consider the relation between (V1z’ sz) and (I1y’ I2y)
using the z metrix description of the network in Fige 18, I1y and I2y

are the applied port volteges, then from the admittance parameter

definitions
Ly Y11 V12| | Y12
- (2.7)
Loy Yo1 Yool | Yoz

These relations are tebulated in Table 1 where each box represents a
matrix relation between row and column equivalent sources.

This two-port approach mey be employed to describe the terminal
behavior of an active transmission line having independent sources

distributed continuously along its length.

Extrection Integrels for Active Transmission Lines

Since sctive transmission lines are described by lineer peartial
differential equations, the port responses due to independent distri-
buted sources may be superimposed. By linearity, the terminal behav-
ior of the active line having independent distributed sources is
identical to that of & line having no independent distributed sources

which has two independent sources of proper type and value connected

3maF. Moad developed several in: Two-port networks with independent
sources, Proceedings of the IEEE 54(7):1008-1009., 19663 Addendum?
Two-port networks with independent sources. Proceedings of the IEEE

54(12):1963-1964, 1966,
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Relationships between the various pairs

of independent

sources in Fig. 18.
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to its ports. The type and placement of these sources is determined by
the metrix chosen to describe the line. For exemple, if a line is
characterized by its z matrix, then independent voltaege sources V1z and

V22 are connected in series with its ports.

To find the strengths of these sources, the verious paremeters of
the matrix are used. These are eesily derived and are given in Table'2,

The expression for V12 is now derived in deteil.

Since V1 =z Vz and V2 = sz when I1 = I2 = 0, these independent

source strengths correspond to the open-circuit terminal voltages of

each port. To determine V1z’ we calculate the contribution Z§V1z(x) to

V12 due to the sources E(x,s)Ax and J(x,s)Ax acting alone at x,
determine the limiting expression when Ax — 0, and integrate these
contributions from x = 0 (the input) to x = d (the output). From
Fige 19 and two-port theory,

_ 2 299X
Bl ) = 2 5T 7, (8-Gr Az, ()

-[E(x,s)-z11 (d-(x+zsx))J(x,s)]zxx (2.8)

for Ax — 0., Here 212(x)/222(x) is the open-circuit voltege trans-
fer ratio of the line-x-units long, zzz(x)/[z11(d-(x+£;x))+222(x)] is
the voltage at the output port of the x-unit long line per unit distri-
buted volt at x, and [E(x,s)-z11(d-(x+£sx))J(x,s)] is the distiibuted
voltage at x. The Norton equivalent formed by the shunt current source
and line (d-x)=-units long is converted to its Thevenin equivalent.
Therefore, the limiting expression becomes

2,,(x)

av, (x) [E(x,s)-z11(d-x)J(x,s)]dx (2.9)

= Ziﬁ(d'x)+222(x)
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2, [(d-(x+Ax))]J(x,s)Ax

Transmission |+ _ - - + Transmission
t o— 1ine with ~  O———O—{ 1ine with —o
AV‘I (x) | independent E(x,8)A x independent AVZz(X)
A sources set sources set 5 -
to zero. to zero. -
x=0 X=X x=d

Fige 19. Voltege contributions AV1z(x) and AV;ZZ(X) due to

independent sources E(x)Ax and J(x)Ax acting alone at x.
where 211(d-x) denotes the input impedence of the line to the right of
position x ((d=-x)-units in length); end 222(x) and 212(x) denote the
output and trensfer impedences to the line to the left of position x
(x=units in length), respectively. Thus, the open-circuit voltege at
the input port due to independent distributed voltage and current

sources is

d (x)
v, (s) = Jr (dz1§+x ™ [E(x,s)-z11(d-x)J(x,s)]dx (2.10)
z 0 24 \O7X/ T2 X

Since the general active trensmission line has been considered, the
matrix paremeters appeering in Teble 2 are generally functions of s
(élthough not written so explicitly) as well as x. The kernals of the
integrals are the Green's functions or differential transfer functions
for this problem.
Although the extraction integrals appear formidable, they are

readily determined when the matrix parameters are expressible in

closed forme Consider for example the uniform trensmission line with
independent distributed sources having characteristic impedance ZB(S) =

V(r+s1)/(g*sc) = JZ/Y and propegation function ¥(s) = /f?IEITTEIEES

= JZY. Since the impedence matrix [Z(x,sﬂ for a uniform line x units
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Table 2. Extraction integrals for an active trensmission line (19).

v, = [ (dnx) - 2( 3 _E - z,l,l(d-x)J] dx
(dwx) )
v, = J( (d-x) Z, (x) £+ ZZZ(X)J] dx
i Vg9 (X x) i
fy [ Yqq (d=x)+y,,(x) - y11(d"‘)E] o
i y21(d-X) )
Loy © jr Yqq (d=x)+y, o (x) L S y22(X)E} dx
(d)h (x)
Uih © f h, (x)+h (d-x)A () [ h11(""‘)“'] dx
(d)h (d -x)
I2h = f IR x) h, (x)A - (d=x) [ hzz(")E] o
) 922(d)921(d -X)
V2g * f 892 (8-)¥3,, (A () (e~ MONES
_ 914 (d)gy5(x) r
lig = f 9,4 (x)*g,, (d-x)A (x) Y- 911(d'X)E] dx
_ A(dIA(x) [ B
V1A - Jr A(x)A(d-x)+B?x)C(d-x) _E ¥ K%f% J] dx
- D(d)C(x) I D
Lin © [ D(x)D(d-x)fB(dnx)C(x) _E ¥ Tti(f)l J] o
_ a(d)a(d-x) [, b{d=x
V2a = J[; a(x)a(d=-x)+b(d=-x)c(x) _-J a(d=-x) E] dx
d
- d(d)d(d=x) I (d=x)
IZa - ~j; d(x)d(d=x)+b(x)c(d=-x) .J - g(dux) E ]dx

Note: Lsh(x) denotes determinant of h matrix of line to left of

position x, etce.
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long is (see the development leading to eqe 3.46)

[Z(x,s)] -7 coth ¥Yx csch Yx (2.11)
®lcsch Yx coth wx

then V1z(s) becomes

"

de csch.yx [E( s)-Z coth ry(d=x)J(x s)]dx
. ) X o ry ’

V1z(s) coth yx+coth ry(d=x

d
= ;E;%:;E .]; [E(x,s)sinh N(d-x)-ZOJ(x,s)cosh N(d-x)]dx (2.,12)

The remaining five basic two-port matrices may be found from
eqe. 2.11 using standard metrix conversions. Subsequent parameter sub-
stitution end simplification yield the extraction integrals for the
uniform line in Table 3. To indicate the usefulness and importance of

these results, several examples are now givene.

Applications of the Extraction Integral

Problems involving port response to erbitrary initial conditions
with specified terminations are readily analyzed using the extraction
integrals. Suppose a line with characteristic impedance ZO = /E;Q
and propagation constent & = JEV; is to have initiel voltege Vo and
zero initiael current. Further suppose the input port voltage V1 is
desired under open-circuit conditions at input and output. Since
E(x,s) = -1i(x,0) and J(x,s) = =cv(x,0) = ucvo, the input port voltage

from Table 3 is,

CZOVU d CZOV0 cV
V1z(s) = ;Z;FTJE -j; cosh M(d-x)dx = " = —?Q (2.13)

The response depends on the form of Y. If Y = sc, then V1(s) = VO/S



Table

1z

22z

I,ly

I1g
1A

1A

2a

2a

S

3. Extraction integrals for a uniform active transmission

line (20).

n1h f [E
si I‘Yd 0
II1|| % [E
n1h N [
si d 0
|I1l ¢ [
1h L' [E
cOoS d 0
1h h'd [
cos d 0
1' N [E
cos d 0
: B ( [
cosn d 0

E cosh fyx+ZOJ sinh Iyx] dx

2

ST S

d

sinh 'Y(d-x)-ZOJ cosh IY(d-x)] dx
sinh /Yx+ZOJ cosh Nx] dx
sinh N(d-x)-YOE cosh /Y(d-x)] dx
sinh fo+Y0E cosh ryx] dx
cosh rY(d-x)-ZO.J sinh rY(d-x)] dx
cosh /Yx+Y0E sinh fo] dx
cosh fY><+ZOJ sinh le] dx

cosh ry(d-x)-YOE sinh fy(d-x)] dx

J cosh fyx+Y0E sinh Iyx] dx

[ £ -cosh /Y(d-f()"-Zox;J, sinh i'y(d-x)] dx

[J cosh ry(de-'x)'-YOE sinh #(d=x) ]dx

31
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so v1(t) = Vou(t). If there is also differential shunt conductence
so Y = g + sc, then V1(s) = Vo/(s+g/c) and v1(t) = Voexp(-gt/c)u(t).
In the first cese the port voltage remains consteant, while in the sec-
ond it decays exponentielly to zero.
Suppose instead that input and output ports are terminated in

matched impedances Zo' Using @& chain matrix characterization,

cV (v
- l - = . 0 - -d ZY
V,(s) = 3V, -2 Ty = y(1-e ) (2.14)
since from Table 3, V1A and ZoI1A are
cV
V,p(s) = —7°-(1-cosh dJzv) (2.15)
CV0
z 1,,(s) = - <"sinh d Jzv (2.16)

If a deley line is considered, then. Z = sl and Y = sc. Then V1(s) =

v

52(1-e-d/2—5'and v1(t) = Vo[u(t)-u(t-d /EE)], so a pulse of VO/Z volts

of time duration d (/lc seconds appears at the input port beginning at
t = 0,

Problems involving response to generel independent distributed
sources are likewise readily analyzed. Reconsider the traveling-wave
transistor of Fige. 9 in which the input delay line is unilaterally
actively coupled vie transconductance/unit length 9, to the output
deley line. If each line is terminated in its characteristic imped-
ance ,. reflections from the ports of each line are eliminated. Thus
the voltage along the input line is V1(x,s) = V,l(l],s)e-s'Yx where

V1(0,s) = V, is the voltage applied to the input line. Therefore, the

1

independent distributed current source of Fige. 10 becomes J(x,s):
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V'(S)e-SYX‘ As before, given the excitation voltage of the input
9mV1 9 g

line port voltages are readily found. These are

g
- M -2y d

V() = 7aa [1'9 ]V1 (2.17)
gmd 1 -yd,.

VOZ(S) = —E—V/;e V1 (2.18)

where the propagation constants of input and output lines are assumed
equal. Thus for a unit step input voltage v1(t) = u(t), the output

voltages are

9 :
= =M (+- -
vy (8) = 22 [eu(t)-(t-20 yTe)u(t-2d /To)] (2.19)
v (t) = E'ﬂ-d- L(t-d J1c) (2.20)
02 2 Ve *

. . . gmg 1
The V,q Tesponse begins at t = 0 and rises linearly from O to e
volts in 2d y/1lc seconds., The v,p Tesponse is delayed by 2d |/ lc

g d

seconds and rises abruptly from zero to -%—' % volts. In sinusoidal

steady-state, the port 2 voltage gain from eg. 2.18 has magnitude
g d
EEL % with phase shift wd4/lc radians.

2

Thus, the usefulness of the extrection integrels in analyzing
active transmission lines having independent distributed sources should
be clear. To recepitulate, the effects of these sources is to modify
the boundary or port conditions of the line rather than its two-port
parameters.4 Response and gain calculations are readily made utilizing

the extraction integrals.

It should be pointed out that the presence of independent distri-

4In the next two chapters parameter modification occurs when dependent
distributed sources are considered,
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buted sources does not necessarily make the line active. In fact,
considering the total line response to initial conditions from t = - @
to + m, there is no net energy delivered by the line and thus the line
is passive. In current terminology however, the term active is used
generically to indicate the presence of distributed sources along the

line,
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III. UNIFORM TRANSMISSION LINES HAVING DEPENDENT
DISTRIBUTED SOURCES

Dependent Distributed Sources

Active transmission lines having dependent or controlled voltage
and/or current sources distributed continuously along its length are

now analyzed., Four types of dependent sources are considered:

1. e =K/, e current-controlled voltage source,
2, e= KVV, a voltage-controlled voltage source,
3, j= LVV, a voltage-controlled current source,
4, j=1L.,i, a current-controlled current source.

1

Parameters K and L generally have spacial dependence. In this chapter
they sre considered constant. In the following chapter concerned with
nonuniform active lines, they are variable.

It is convenient to analyze lines having either type 1 and type 3
sources or type 2 and type 4 sources simultaneously. These lines will
be referred to as type 1-3 and type 2-4 lines, respectively. Since the
classification will be clear, for brevity without loss of clarity, the
subscript notation is eliminated which denotes source type. To clearly
establish the difference between the two types of lines, consider the
differential section for each case.

The type 1-3 line is drawn in Fig. 20 with its equivalent in Fig.
21. This type of active line may be analyzed as a line with no distri-
buted sources but having its resistance/unit length, r, and conduct-
ance/unit length, g, values adjusted from r and g to r* and g¥ respec-
tively. r* and g* can be adjusted to have any value, Type 1-3 active

lines are therefore readily analyzed using many of the classical
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results for passive lines.

However the type 2-4 line shown in Fig. 22 has no such equivalent

section.,
i(x,t) r(x) 1(x) K(x)i(x,t)
—A— ()~ -
+ \ .J—
v(x,t) g(x)-]-c(x) L(x)v(x,t)
o | | -
Fig. 20. Type 1-3 active line differential section.
i(x,t) 1(x) r*(x)=r(x)+K(x)
oPp—"YY T 22" o)
+
v(x,t) c(x) 1 g*(x)=g(x)+L(x)
:> R
Fig. 21. Equivalent differential section of a type
1-3 active line.
i(x,t) r(x) 1(x) K(x)v(x,t)
+ r\_ )
o AAN—TTTN { r 0
v(x,t) g(x) 7= c(x) L(x)i(x,t)
. o

Fig. 22. Type 2-4 active line differential section.
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Active Transmission Line Equations

To begin the discussion, eqs., 1.3 and 1.4 are menipulated into
various forms convenient for subsequent analysis, The Telegrapher's
equations or active transmission line equetions describe either volt-
age v or current i along the active line, and result by eliminating

eppropriate terms from eqs. 1.3 and 1.4. These are

\Y

x rgv + (rc+lg)vt + lcvtt + (ljt+rj-ex) (3.1)

i

x rgi + (rc+lg)it + lcitt + (cet+ge-jx) (3.2)

for the uniform line. For the nonuniform line, the terms

(vx+e)rx/r + (rx/r - lx/l),lit (3.3)
(i,+3)g /9 * (g /g ~ c /e)ov, (3.4)

are added to the right hand sides of eqs. 3.1 and 3.2 respectively,
For notationel convenience, x and t subscripts eare employed to indicate
spacial and time partial dif‘f‘erentiations.5 Previous parameter condi-
tions, noted for eqgs. 1.1 and 1.2, insure that voltage and current is
twice continuously differentiable so the order of x and t differentia-
tions may be interchanged., Unless 1 and c are constant multiples of r
and g, respectively, the second terms of eqs; 3.3 and 3.4 cannot be
eliminated.

The Laplece transformation of these equations for the constant

perameter line is

U = 2W * (Z0-E) - [(lgrrerslo)u(x,0) + lov,(x,0) + 1j(x,0)] (3.5)

XX

I
XX

ZYT + (YE-J,) - [(lg+rc+slc)i(x,0) + 1o, (x,0) + ce(x,D)] (3.6)

EE.g. v, = ov/ot, Voo T Bzv/axz, and v Bzv/axdt.

t
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where Z = + sl and Y = g + sc. Nonuniform lines ere described by

eqs. 3.5 and 3.6 with additional right hand terms of

(VX+E)ZX/Z - i(x,D)(rx/r - 1X/H)r1/z (3.7)
(IX+J)YX/Y - v(x,U)(gx/g - cx/c)gc/Y (3.8)

respectively, The paraemeter conditions for egs. 2.1 and 2.2 insure
that these derivatives exist,

Eqs. 3.1 end 3.2 are readily utilized for traveling-wave and
sinusoidal steady-state analysis, while eqs. 3.5 and 3.6 eare convenient
for Laplace transform analysis., For nonzero initial conditions, the
analysis technique of Chapter 2 is used. Thus, only zero initial

condition lines need be considered here.

Traveling-Wave Analysis

Traveling-wave voltage solutions are obtained using the separation
of variables technique by assuming a solution v(x,t) = v1(x)v2(t). For

the type 1-3 line, eq. 3.1 then becomes

v, = T¥g*v + (r*c+g*l)vt * levy, (3.9)
or

| | - 1 "
AR r*g*v1v2 + (r*c+g*l)v1v2 + lcv,lv2 (3.10)

where primes represent differentiation with respect to the function's

argument. Dividing each side of eg. 3.10 by VyVpo

v, " r¥gry, (r*c+g%l)v2' + lev," 5

v1 = ” = k (3.11)
1 2

where k2 is an arbitrary complex constant, Rewriting eq. 3.11 yields

the two ordinary differential equations,
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v," - K2y, =0 (3.12)
lcv2" + (r*c+g*l)v2' + (r*g*-kz)v2 =0 (3.13)
The spacially dependent solution v1(x) of eq. 3.12 is

v1(x) = fexp(kx) + Bexp(-kx) (3.14)

To conveniently express the time dependent solution, define constants

a and b where
3(r*/1 + g*/c) (3.15)

b= 3(r*/1 - g*/c) (3.16)

V]
n

Eq. 3.13 can then be rewritten as

v, " 2av2' + [(a+b)(a-b) - kz/lc]v2 =0 (3.17)

The auxiliary equation of eq. 3.17, formed by assumirig a time solution
vz(t) = exp(pt) end substituting into eq. 3.17 is

p2 + 2ap + a’ - b? - k2/lc =0 (3.18)

Thus, parameter p is found to be

b= -b o b2+k?/1c (3.19)

Therfore, the time dependent solution v2(t) is

vz(t) = Cexp(- a + \/b2 + kz/lc)t + Dexp(- a - b2 kz/lc)t (3.20)

The general voltage solution of eq. 3.9 is the product of egs. 3.14
and 3,20,

The steady-state sinusoidal voltage response along the line
results by adjusting k to have the appropriate value. Since this

corresponds p = jw in the v, solution, k must equal

2

k = [r*g* + ju(r¥c+g*l) + (jw)zlc = JQ;*+jwl)(g*+jwc) =q *+ jB
(3.21)
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from eq. 3.18. Alternatively, p =-jw yields the conjugate value
k¥ = o = jB. Thus from eqs. 3.14 and 3,20, the general voltage

solution v(x,t) is

+ +
vix,t) = Eéxxe'J(wt +Bx) Fe®%e = ut - Bx) (3.22)

where the complex constants E and F are determined by the port condi-
tions of the line, The solution hes a traveling-wave characteristic.
The term involving exp[:j(wt+8x)] represents waves which are attenua-
ted by the factor exp(-a) per unit length and travel to the left along
the line with phesa velocity vp = w/B. The remaining term involving
exp[: j(wt-Bxﬂ represents waves traveling to the right with the same
velocity and attenuation per unit length.
Using the same analysis procedure for the typs’2-4 line yields

somewhat different results, In this case the line voltage satisfies

Voo * (L+K)vX = (rg-LK)v + (rC+lg)Vt + lev (3.23)

X tt

from eq. 3.1. Separation of variables results in the two ordinary

differential equations,
v+ (L+K)v1' - k2v1 =0 (3.24)
lcvz" + (rc+lg)V2" + (rg-LK-kz)V2 =0 (3.25)

The general spacial solution v1(x) is
vp () = Rexp [-B(Lek) I /3(LHO%4k (3.26)

The general time solution vz(t) is

vz(t) = Cexp [- e - J;2+(k2+LK)/lc]t (3.27)

Since eqs. 3.25 and 3.13 are similar, this results by replacing k2 by

k2 + LK in eq. 3.20.
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In the sinusoidal steady-state, k must equal

k = V/(jw)zlc + jw(rctlg) + rg - LK =a++ §B (3.28)

for type 2-4 lines, Denoting the radical fector J;(L+K)2 + K2 =

[7Y+ }(L-K)z in eq. 3.26 as I"a + jI‘B, the general voltage solution

becomes

v(x,t) = Eexp [(- 2(k+K) + I"a)x] exp[:j(wt*f'sx)]

¥ Fexp[- 1(L+K) - I“a)x] explfj(wt-PBx)] (3.29)
Waves traveling to the left with phase velocity vp = w/I"B are atten-
uated by exp [- T, * %(L+Kﬂ per unit length while those traveling to
the right have the same velocity but ere attenuated by
exp [- I"Ct - l(L+K)]. For L+K>0, these latter waves suffer greater

attenuation,

Characteristic Impedance

It has been shown that voltages eand currents on ective transmis-
sion lines in sinusoidal steady-state have traveling-wave characteris-
tics. Corresponding voltage and current phasors are related by the
characteristic impedence, Zo’ of the line, These are readily deter-
mined.

First consider the type 1-3 active line where we relate the
phasors vy and -i1 of voltage and current waves, respectively, trav-.
eling to the left, The minus sign occurs beceuse the wave travels
opposite to the assumed current direction in Fig., 2. Substituting the

first voltage term of eq. 3.22 into eq. 1.4 and solving for its asso-

ciated current, we find that the characteristic impedance Z01 is
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v
Y1 [foeeqel | [xez 1+K/7
2o = -i, - V/9*+jWC - J/L+Y = Loy TN (3.30)

where Z0 = ,/Z/Y is the characteristic impedance of the passive line.

The phasors Vo and 12 of voltage and current waves, respectively, trav-

eling to the right have the same characteristic impedance, i.e. v2/i2 =

Z02 = 201. The characteristic impedaence of the active line is that of
the passive line when K = ZOZL (i.e. Z,=2,* Z0 = JK/L). Since

K end L are real, rg, lc, and distortionless active lines can have
their parameters adjusted to satisfy this condition.

Type 2-4 active lines have characteristic impedance which depend
on the direction of wave travel as may be anticipated from the results
of eq. 3.29, Repeating the previous operations using eqs. 3.29 and 1.4
yields the characteristic impedance for voltage and current waves
traveling to the left,

Y1 2 -1 1 2
2y = T 2[ [rc-0%e2y - 0] 7= L fre0Be sl
(3.31)

and the characteristic impedence for waves traveling to the right,

z, = 2, [ [3(k-L) 242y + %(L-K)]'1 - %[ 3 (k-L)2+2v - %(L-K)]

(3.32)

[
NS

Using the propagation constant /4 = [ZY and characteristic impedance

Z_ = VZ/Y for the passive line,

I Y TR

Z01 - Zo[ ( 2y ¥ ZY] (3.33)
L, [ ez, |

202 - ZU[ ( 2y - ZY] (3.34)

Clearly the two impedances differ by the factor : ZD(L-K)/Zy. When

K = L, the characteristic impedance of the active line is equal to that



43

of the passive line (Z01 = Z02 = Zo) and is independent of K and L.

Another simplified situation exists in the active delay line at & fre-
quency w satisfying w,/lc = |K-L|/2 which makes the radicel in eqgs.

3.33 and 3,34 vanish, At this frequency, Z01 = -Z02 = Z0 for L>K

while Z01 = .Z02 = -Z0 for L<K, Thus,at the frequency w, average

power flows only in one direction along the line,

Propagation Constant

The propagation constant, whose real part is the attenuation-
function, a(nepers/m), and whose imaginary part is the phase function,
B(radians/m), was determined in the traveling-wave analysis discussion,
Recapitulating, these quantities are independent of wave direction in

the type 1-3 lines, From eqs. 3.21 and 3.22,
a = Re \/(K+Z)(L+Y) (3.35)
B = Im /(K+Z)(L+Y) (3.36)

Type 2-4 lines have functions which depend on wave direction. From
eq; 3,29, denoting left-traveling and right-traveling wave quantities

by subscripts 1 and 2, respectively,

, = Re [3(L-K)2+2Y - 3(L+K) (3.37)
, = Re [3(L-K)2+2y + 3(L+K) (3.38)

1 62 = Im,/}(L-K)2+2Y (3.39)

As previously noted, the waves have equal phase velocities since 81 =

3
"

Q
n

w
"

Bz but attenuation characteristics which differ by : (L+K) /2.
These results have grephical interpretations, For type 1-3 lines,

the propagation constant (@ + jB) may lie in three distinct domains
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depending on the values of r* and g* as shown in Figs. 23, 24, and 25.
These figures are readily drawn from eq. 3.21 where domains of
(@ + jB)2 points are first considered, and then domains of (a + jB)
points.
Since only single propagating modes may exist in type 1-3 lines,

the line is active when @ B>CI.6 Thus, from this viewpoint, active

jIm (a+j6)2

\\\\\\fx\\\

Re (a +jB)

jB
AN
2 l a
Fig. 23. Domain of propmgation constant values when r*, g*>0,

5 In (@+58)°

| o @ i8)’ x\\\ﬂ N
A NN\ |

Fig, 24. Domain of propagation constant values when r*, g* <0,

jInm (0 +iB)> iB

\\% Re (a +j 8)2 450 45°

AN

Fig, 25, Domein of propagation constant values when
r*<0, g*>0 or g*<0, r*¥>0,

6!\ctivity in single mode systems implies spacial wave growth in the
direction of travel. In multimode systems, activity may be present
although no waves are spacially growing (34).
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lines result from their operation in the épen domains of the second

and fourth quadrants of the (a + jB)- plane, Since r* and g* cen be

ad justed to be negative values, active lines cen be realized. This

cen ceuse stability problems as will be shown later in the chapter.
Type 2-4 active lines have more compliceted propegeation constant

expressions given by egs. 3.37 - 3,39, Following Wohlers' development

(34), this type of line can be shown to be active. The domein in which

propagation constents (a1+ jB1) and (az + jBZ) values lie is drewn in

Fig. 26.

Fig. 26, Domein of propagation constant values,

Leplace Trensform Anelysis and Two-Port Paremeters

Two-port parameters are readily determined for active trensmis-
sion lines, The port conventions for an active line of length d is

shown in Fig. 27. For type 1-3 ective lines, the trensformed voltege

from eq. 3.5 satisfies

U (x,8) = (Z+K)(Y+L)V(x,8) = k2 (s)V(x,s) (3.40)

where kz(s) = (Z+K)(L+Y), Z = r + sl, and Y = g + sc. The transformed

voltage solution of eq. 3.40 is

V(x,s) = Va(s)e'kx + Vb(s)ekx (3.41)
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I1=I(D?s) I2=-I(d,s)
o—p—— —————— ¢
Active
V1=V(D,s) Transmission V2=V(d,s)
Line

Fig. 27. Port conventions of an active line,

where Va(s) and Vb(s) are erbitrary functions of s determined by port

conditions., Therefore from eq. 3.41, the port voltages of Fig; 27 are

e @ (3.42)

Thus, the constants Va and Vb may be expressed as

kd

v e -1 '}
a |_ 1 1 .

v kd <kd -e-kd 1 v (3.43)
b e =8 2

The trensformed current solution from eqs. 2.1 and 3.41 is

k ~kx k kx
Vx(x,s) =55 % Ve - 737 Vpe (3.44)

1
I(x,s) = - TR

The port currents of Fig. 27 are

I ; 1 1 v,
LT TRk ke (3.45)
2 - & b

Since the admittance matrix for the two-port is defined to be [I] =

[y] [V], the admittance matrix results from substituting eq. 3.43 and

simplifying
kd, -kd
Yo Yz | [¥iL 1 e e -2
" T kd__-kd ) kd, =kd
Y1 Y22 - - ®

coth kd -csch kd
L (3.46)

Z+K | _csch kd coth Kd
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wherse k # J?E:RSZ$113. The radical factor is the reciprocal char-
acteristic impedance of the line from eq. 3.30. The line is reciprocal
since Yoo = You and has identicel driving-point admittances. The
other five basic two-port matrices may be easily determined using the
standard conversions.

The admittance matrix of the type 2-4 active line is also readily

found. The transformed voltage from eq. 3.5 satisfies

v+ (LK = (ZV-LK)V = O (3.47)
Letting k,, k, = -3(L+K) : \/i(L-K)2+ZY, eq. 3.47 has the solution

k, x k. x -
V(x,s) = Ve # Ve 2 (3.48)

Then the transformed current from eqs. 2.1 and 3.46 is
k, x k., % :
I(x,s) = -(VX+KV)/Z = -@k1+K)vae 1 +(k2+K)Vbe 2 ]/z (3.49)

Repeating the previous menipulations and simplifying,

B k. d k.d
(k2+K)e 1 - (k1+K)e 2 k1 - k2
1 ekzd _ 4d ekzd _ ke d |
[y] =3 (3.50)
(|<1-|<2)e('<1+k2)d (k2+K)ek2 - (k*K)e k,d
i Ko qd ekzd j ek1d |

Because of the symmetrical form of k1 and k2, the matrix elements are

readily simplified to

1(L K) + ,/ 4(L- K)2+ZY coth d /4(L- K)2+zY /z (3.51)
[ (K+L)A/2 [301 )22y csch dy/(L-k)2+2Y _/z (3.52)
Yy ® :e'(K+L)d/?/&(L-K)2+2Y csch d /3(L-K)2+zY _/z (3.53)
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Yoo = [%(K-L) + J3(L-K)Z42Y coth d [3(L-K)2+2Y ]/z (3.54)

The network is nonreciprocal since Yoq = e'(KH')dy12 except when K =

-L. The driving-point admittances are unequel unless K = L. Stendard
matrix conversions may again be used to find other parameter sets.
The y parameters for the uniform active line have been derived, In
general, these involve hyperbolic functions having irrationel ergu-
ments, Insight into the voltage gein, bendwidth, stability, and sensi-
tivity of these networks mey be gained using infinite product expan-
sions, pole-zero patterns, and Bode plots, For this enalysis, rgc
active lines are examined, The results are immediately extendable to

other line types.

Driving-Point Admittance—Type 1-3 RCG Active Lines

Consider the driving point edmittances Ya1 and Yoo found in

eq. 3.46 es
*
Y41 = Yoo © 9—%§E coth dV r*(g*+sc) (3.55)

where again r* = r + K and g* = g + L, Expressing the coth function es
the retio of cosh and sinh functions and meking use of the product
expansions (3),

r 2

1 e —4f7 ] (3.56)

cosh f(s)
,(2n-1)2ﬂ2i

sinh F§52
f(s

then

"

3
n
-

- 2 -
1+ —2 (3.57)

(2n)%m? ]

8

3
n
-

-
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x 4d2r*(q*+sc)
I 2 2
O o=l (3.58)
T—l- [1 + 4d r*(q*+sgl}
n=1 (2n)21'r2
Therefore, the zeros of Y1 8re
s, = - g*/c - (2n-1)%n" fidPrre, n = 1, 2, (3.59)
while the poles are
s = -g*/c - (2n)2H2/4d2r*c, n=1,2, ... (3.60)

P

The poles and zeros alternate along the negative real axis of the s«
plene beginning with a zero closest the origin and have no finite
accumuletion point. Y14 and Yoo BTE therefore meromorphic functions.
In the following chapter it is shown that the poles and zeros of any
type 1-3 rcg active line have this same character, their exact spacing
being set by the parameter distribution. It is clear from egs. 3.59
and 3.60 that L acts es a translation factor while K is a modified

scaling factor., Representing normelized s as Sy where s =

- g*/c + an2/4d2r*c, the normalized zeros and poles ere

- (2012, n =1, 2, ... (3.61)

SNz

2
sz s - (2n) ? n = 1, 2, LI ] (3062)

respectively, The normalized pole-zero pattern is readily drawn in

Fig. 28. Since r and g are nonnegative in classical transmission

|

——/\ﬁx\ —O— x"‘ ~f O-N
16 e A

Fig, 28. Normelized pole-zero pattern of Yi1 and Yoo
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lines, their pole-zero distributions are required to remein in the
left-half plane, However, with type 1-3 active lines, r* and/or g* cen
be made negative. Thus, the pattern can be treanslated along the nege-
tive real axis and/or inverted.

The sinusoidal steady-state behavior of Y14 and Yoo is clearly
shown by constructing the Bode plot of y11(jw). For convenience we use
frequency wy end normalize y11(ij) against its d.c. value of 1/dr¥*,

Under the frequency transformetion,

y11(s = r*d 2,/ coth = ,/ (3.63)

Approximating |1 + jawN| as 1 until frequency 1/a is reached end es

ew, from thet frequency onward, the megnitude plot of Fig; 29 is

N

obtained, The phase plot can be obtained from numericel calculation,

[|711(jWN”]
1/r*d db

+10 db/dec

18 4 asymptote
12 4
6 4
v + - | —— iy, (1log
0.4 1 4 9 16 25 36 49 scale)

45° asymptote

0° t t + + +——— (109
] 1 4 9 16 25 36 49 scale)

Fig. 29, Bode plots of‘.driving-point‘admit_tanc:e»y11 and Yoo
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The +10 db/dec high frequency esymptote follows from eq. 3.63.

Since |coth ﬂ,/ij /2|1 es y — @, then dr* |y11('ij)[ ~ TT,/ij /2

: - 2 _
ﬁ/wN /2. The corner frequency of the asymptote 1is (wN)C = (m/2)° =
. s . . o]
0.405., Since arg y11(JwN) ~ \j, arg y11(JwN)——’-45 as u, — @

From these results it is seen that the (unnormalized) driving-
point functions y11(jw) and y22(jw) have d.c. values of \/g*/r* coth
d Jr*g*, and a 10 db/dec magnitude asymptote with corner frequency
w, = g*/c + 0.405n2/4d2r*c. Also the phase of y,, edd y,, appooach 45°
as w—e m

If the entire pole-zero pattern is reflected into the right-half
plene, the magnitude plot is unchanged but the phase becomes (180° -
arg yf1(ij)). If only a portion of the pattern is shifted from one
pleane to the other, the same high frequency characteristic having a
+10 db/dec megnitude asymptote end 45° or 135° phase asymptote is
obteined. Thus, it is possible to significantly alter the low fre-

quency cheracteristic of rcg active lines from that obteinable with

rcg passive lines.

Transfer Admittance, Gain, and Bandwidth—Type 1-3 RCG Active Lines

The transfer admittance and gein functions are also readily

investigated using Bode plots; From eqs. 3.46 and 3.57,

*
- E%%Q_ csch d /r*(g*+sc)

Y19 = Vo1

2 -1
+ 0 [ 4d r*(q*+scz]
S TT (3.64)
* .
de* 1=t (2n)2n?
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The open-circuit voltege gain and short-circuit current gein T from

eq. 3.46 is

fe) = .20tz 1
Y22 Y14 cosh d\/f*(g*+sc)
® 2 =1
- g+ 4d r*(q*;sg) (3.65)
n=1 (2n=1)“m

These functions have only poles distributed along the negative real
exis which are given by egs. 3.62 and 3.61, respectively, Thus, they
heve monotoniceally decreesing magnitude end phese functions, Consider
for example the gein function T(s). The normalized gain function

T(sN) = 1/cosh ﬂ]gg /2 (3.66)

has poles given by eq.3.61. From tre corresponding pole-zero pattern
of Fig. 30, the Bode plots of the normalized gain function are readily
drawn in Fig. 31. Except for normalization factors, the Y10 and Yoq
plots are identical to Fig. 31.

If the active line is terminated in some load admittance YL’ then

the voltege gein from eq. 3.46 becomes

=Yoq sinh d Vr*(g*+sc) 7 -1
T (s) = YontY = |cosh d\/r*(g*+sc) + YLdr* -

d r*(g*+sc)

(3.67)
The gain function has no zeros, Its poles are given by the values of

s satisfying

N
N—X S % Y
25 29 -1|

Fig, 30. Normalized pole-zero pattern of gain T,
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| 7 Cug )
1 i 25 Wy (log scele)
=64
121
=184
arg T(ij)
0° g 42 %5 Wy (log scele)

-90° ¢
-180° ¢
Fig. 31. Bode plots of gein T,

sinh d Jr*(g*+sc)
cosh d‘/r*(g*+sc) + YLdr* =0 (3.68)
d /r*(g*+sc)

which is an equetion of the form F1(s) + YLFZ(S) = 0 to which root

locus analysis techniques may be applied. The root locus of this

expression may be determined for Y, varying between 0 eand o This

L
assumes a resistive load but other type loads can equally well be used
(16). Referring to Fig. 32, the normelized root locus begins at the

zeros and travels along the negative real exis to the poles as the

Wy

— A
=25

I 3

Fige, 32. Normalized root locus for poles of TV as Y, veries

from 0 to m L
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load admittance. is increased from zero to infinity. Thus, as the load
resistance goes from infinity towerds zero, the bandwidth increases ard
the gein decreases.

For the unterminated system, the bandwidth is determined by

setting IT(ij)l = 0.707 in eq. 3.66 which yields
. ! -2 . 2 .l
|T(JwN)| = Icosh (1+J1)6/?l = 3(cosh 6+cos 8) = 2 (3.69)

where § = ﬂ,/wN/Z. Since the response is monotonic, the solution for

§ is unique. Solving by iteration using & ., = cosh -1 (4-cos Gn)

yields 6 = 2,2, Thus, the normalized 3 db radien frequency (WN>3db =
)]

0.98, The corresponding3.db Hertzian frequency is (FN’Sdb = 0,156,

Therefore, the unnormalized 3 db radien frequency is

Wo gy = g*/c + 0;981'r2/4d2r*c = g¥/c + 2;2/d2r*c (3.70)
or
fagp = 0.159g*/c + 0.35/d’r*c (3.71)

for active traensmission lines having pole patterns lying entirely in
either half plane, When the pattern lies in both helf planes, more
involved celculetions are required.

Step Response, Stability, Rise and Delay Time—Type 1-3 RCGC fActive . °
Lines

Rise time and delay time of the unit step response are important
quentities but quantitetively difficult to find. The unit step
response of the network is found from eq. 3.65 to be

-1

VZ(S) = [s cosh d r*(g*+sc)] (3.72)

which mey readily be evaluated by the method of residues., Since
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Lo camn ot = LT [+ ez )]

n=1 (2n -1)

@®

1 ZeSt

= —+Z U(t)

cosh fa (7 sinh Jbste c._2 (2n-1)% ym2 |

J/bs+a T T b " ( )
§2n-122 (E}Zt
- ¢ ( 1) b 2

= }: = — u(t) (3.73)

ey D B g}

for all a and b except -a = (2n.1)2(n/2)2 forn=1, 2, ... (this
insures a single pole at the origin), the solution is written immedi-

ately as
t

-(2n-1)2( )2 rod?

vy(t) = [— Z Ll ()
cosh d r*g* 2 d d r¥*g¥* ™
% S+ (an1) G

(3.74)
Another expression may be found by expressing the cosh function in an

exponential series where
®
=1 2 n_-(2n+1),/ bs+
[-s cosh bs+a] =< nZU(-” e (2n+1) |/ bs 8 Re /bs+ta >0 (3.75)

Since (26, p. 255)
I’1 [e-c bs+a] = [G-C\/; erfc (E/E /.az)
s 2 2yt T\ b
J—
+ eC'2 | erfc (%\/’% + /{‘—t)]u(t) (3.76)

for Re s>0 and a, b>0, the voltage solution cen also be written in

terms of complementary error functions es
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®
/ 2
v2(t) = E:(-1)n [9-(2n+1)dv r*g*erFC( 2”;1 r*:d - ,f%i t) (3.77)
n=0 :
ey Lo 2
+ e(2n+1)d r¥g¥ erfc (2"';1 r:dd + %*t )] u(t)

for r* and g*>0, Although the involved expressions of eqs. 3.74 and
3,77 represent a function monotonicelly increasing from 0 to
1/cosh d J;;_:, they are tedious to evaluate.

The dominant root and excess phase functions can be used to advan;
tage in approximeting network functions such as the unit step response

(9). With this method, the function F(s),

1+a15+9232+... 1—r(1+5/zn)
F(s) = F(U) ) = F(0) = F(D)

5 (3.78)
1+b,s+b_s *+...
17772 TT (1+s/p)

with an infinite (or finite) number of poles pn and zeros zn is

approximated by

(1+s/z ) EXP(Sm /z )
F ( ) = F(U/(1+s/p ) exp(Sm /P )

(3.79)

ze and p, ere the effective dominant zero and pole, and are numerically
equal to the 3 db radian frequencies, Wa g 9 of numerator and denomin-
ator magnitudes, respectively, The excess phase factors, m, and mp’
are chosen so the phases of numerator and denominator of Fa(jw) equal
the phases of the numerator and denominator of F(jw) at deb,respec;'

tively, Kelly and Ghausi have shown that (15)

_ 2
z, = | —= (3.80)
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2
-C, /C
m = —2/ +2 |la - _ 1 (3.81)
2 94c /c 2 el 1+c,z_/c 2
21 27e’ ™
d1?'d2 3
p. = | — (3.82)
° d
1
'dz/d12 1
mp = > + pe b1 - 2 (3083)
2+d2/d1 1+d2pe/d1
2 L2 _ 2 2 _
where c, =8 - 2a2, d1 = b1 - 2b2, c, =8, - 2a1a3 + 8, and d2 =
b22 - 2b1b3 + b42; Applying eq. 3.79 to eq. 3.72, the output voltage
V2(S) is approximated as
A1 1
V,(s) = — (3.84)
2 cosh d\/r¥*g* S(1+S/pe) exp(s mp/pe)
so that
1 Pt
v, (t) = (1-e )U(t-mp/pe) (3.85)

cosh d/ r*g¥*
Thus, the approximate response rises exponentially from O to
1/cosh dvr;;a; volts with a time constant of 1/pe seconds after a time
delay of mp/pe seconds. The general expressions for Pg and mp are
prohibitively complicated but can be readily eveluated when numerical
values of r¥, g* and c are specified,

Since the response function of a causal linear network can have
no poles in the right-half s-plane if the network is to be stable,
several pertinent points can be made. The type 1-3 active line is
stable if and only if all the poles of T(s) (eq. 3.65) given by eq..
3,59 are in the left-half plane. Therefore,it is necessary that

r*>0 and g* > - 112/4d2r* for the system to be stable. Returning
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to the step response in eq. 3.74, this condition limits the exponents
of the exponential terms of the sum to be negative so that the response
is bounded.

An empiricel result (30) often used for networks having monotonic
frequency response relates the (10-90%) rise time tr to F3db as
FSdbtr = 0.35;7 Thus, from eq; 3.71, the reciprocel rise time for the
active line is
tr'1 = 0.455g*%/c + 1/d%r%c (3.86)
From eqs. 3.71, 3.86, end 3.65, increasing g* or decreasing r*
increases the bendwidth, decreases rise time, end decreases or
increases low frequency gain, respectively.

Elmore's method for finding both (0-50%) delay time, ty» end rise

time, tr, for networks haeving monotonic frequency response can also be

used (6). Denoting the normalized gain of the network as

T(s) _ 1 + a1s t oeee

(o) ~ 1 + bys * ...

2 L
1b1 + az-bz)s +... (3.87)

2
=1 - (b1-a1)s + (b1 -2
it cen be shown that (9)

T(s 2 2 2
T = -ty ¢ (kg *t, /2m)s /2 + ... (3.88)

From these results,

(3.89)

-+
]

7l 2] (.50

It is an interesting end useful result that the coefficients of s and

7This follows immediately from the product of f = p_ /2w in eq.. 3.84
_ : 3db e ’
and tr = 2.2/pe in eq. 3,105,
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52 in the numerator and denominator polynominals of the normelized
gain function can be used to approximate rise and delay times.
Consider the gain function of eq. 3.65 when g* = 0, The cosh

function of the denominator can be expanded in the series

d2r*c . (d2r*c23 s2 .

T il vee s 8| <@ (3.91)

cosh dy/r*c = 1 +

Comparing eq. 3.91 with eqs. 3.89 end 3.90, the delay and rise times

are
td = 0.5d r*c (3.92)
tr = Jom [12 - %]%dzr*c = \/g— dzr*c = 1.02d2r*c (3.93)

Note that tr is in good agreement with eq. 3.86 for g* = 0, If g* is
nonzero, these expressions become more involved.

Express the denominator of the gain function eq. 3.65 eas

® n
cosh \/a+bs = ngo %%EST!L ’ ls|<® (3.94)

where a = dzr*g* and b = dzr*c. Using the binominal theorem

(a+bs)" éin (E)an-k (bs)k, |s|<:|%| (3.95)

eq. 3.94 can be written as

n
™18

0 1 -k
cosh /atbs égﬁ (2n)!(2) an (bs)k

n=0

03] @ 1 n k nek k_ am K .
E[ £ am g £ ot i<l

where Bk is



60

_b_ e (n+k)! o = b_k e n+l< _!_3_ cosh\[_
k! E: 2(n+k))!n! k! E: (P+k))! ™ k! dak

(3.97)

The Bk coefficients when normalized against Bo are the bk of the

general gain expression eq; 3.87 (the ak=0). Evaluating the first

three B's,
BD = cosh Jq; (3.98)
B = b sinh J; (3.99)

1 2 J;

b\2 1 | cosh \/—; sinh ‘/a—]

b\2 1 . - (3.100)
B 3 [t - s

Normalizing B1 and 82 and substituting into eqs; 3.89 and 3,90 gives

2=

the delay and rise time as

tenh o (3.101)

tr = 1—;— \/_tl [ta\;ﬁ \/: - seu:h2 ‘/—a_]% (3.102)
a a

Since a = dzr*g* and b =»d2r*c,

t, =98 /X tanh d /oxg* (3.103)
d -2
I tanh d /T*g* 2 3
t_ = dc = - sech” d /r*g* (3.104)
T g r*g*

Egs. 3.103 and 3,104 reduce to eqs. 3.92 and 3,93, respectively, as
g* —= 0.
If the dominent pole and excess phase approximation method is

used, it is readily shown that
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t = 2.2 (3.105)
r p
e
0.69 + m
ty = —ﬁE—————P (3.106)
e

by solving the approximate unit step response (eq. 3.85) for rise and
delay times, Here,the dead time mp/pe of the system is added to the

calculated delay time.

Sensitivity--Type 1-3 RCG Active Lines

A question of considerable importance is the sensitivity of two-
port gain to variations in distributed source strengths; The sensitiva-
ity of dependent variable y with respect to independent variable x is

defined to be

//1 a(ln 5 (3.107)

and measures the variability of y for variations in x, It is approx-
imately equel to the logarithmic change in y per unit logarithmic
change in x where all other independent variebles are held fixed., R
zero sensitivity of y at L indicates the magnitude plot of 1In y versus
1n x has zero slope at X Minimizing sensitivity magnitude often
forms a valuable design quide,

The sensitivity of the gain function T(s) given by eq. 3.65 with

respect to K and L from eq. 3,107 is

T K 2 tanh d J (£+K) (g¥+sc)
5! = . K g?(gresc) ——= (3.108)

K2 d /(z+K) (g*+sc)
2 tanh d/r*(L+g+sc)

z . % d r* ' (3.109)

d\/r*(L+g+sc)

w
i
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respectively, These expressions are readily interpreted using pole-
zero patterns and Bode plots. Their zeros are given by eq. 3.60 while
their poles are given by eq. 3.59, They have normalized values given
by eqs; 3.62 and 3.61. S; has a additional zero at s = -g*/c or sy =
0. Thus the normelized pole-zero patterns of SE and SI are given in

Fig. 33 and 34, respectively. The normelized Bode plots of the sensi-

tivity magnitudes are readily drawn Figs. 35 and 36.

Jwy
-25 =16 -9

Fig., 34, Normelized pole-zero pattern of SE.

T,.
|5, Cauy) |
2
8(1+r/K) Jd db

] ,//////————-////_-

1
0 # ¥ i v t w (log
,,,,//f"”" 4 g 16 2 N scale)

Fig. 35. Bode magnitude plot of sensitivity Sl.
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T
IS, Cguy)l
d2r*L/2 db
1 4 9 16 25
0 —~ ' : —t wy (log
scale)
-6 4
=12 +
Fig. 36. Bode magnitude plot of sensitivity SI.
T /.
|SK (JW)I has a d.c. value of
7. Kdzg* tanh d \/g*(r+K)
|SK (o] = 5 (3.110)

d Vg*(r+K)
and increases monotonically with asymptotic slope +10 db/dec es w—m
We noted for a stable system that r*>0 which implies K> -r and that
g*;>4n274d2r*. Under these conditions, reducing K towards zero
decreases the sensitivity at any frequency towards zero., This :confitms
the intuitive result that reducing the equivalent series resistance K
reduces the gein sensitivity with respect to K of the two-port,
ISI (jw)| hes & d.c. value of
Ld?r* tenh d r*(g+L)

sT (0)] = (3.111)
L 2 dyr*(r+L)

and decreases monotonically with asymptotic slope -10 db/dec as w—= m.
fgein for & stable system,r*>0 and L>>-g-ﬂ2/4d2r*. Here, reducing the
equivalent shunt conductance L towards zero decreases the sensitivity
at any frequency towards zero.

This completes consideration of type 1-3 rcg active lines. Type

2-4 rcg active lines are now investigated;
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Driving-Point Admittence—Type 2-4 RCG Active Lines

The driving-point admittances of type 2-4 active: lines were given

in eqs., 3.51 and 3.54., For rcg active lines, the admittences equal

Y1 F fE [%(L-K) + \/i(L-K)2+r(g+sc) coth d JQEL-K)2+r(g+SC)] (3.112)

Vpy = [3(Lk) + J3(LK)Z+2(g+sc) coth d \/;(L-K)2+r(g+sc:)] (3.113)

If K =L, then Y14 equals Yoo and has the characteristics of eq; 3,55
discussed previously, The more general case where K # L cen be

expressed as

, cosh £ + 3d(LK) S—lgh—”
Y11 = 2d sinh f (3.114)
f‘
cosh f - dd(L-k) 00T
Voo = f (3.115)
22 rd sinh f *
f‘

where f = d VEEL-K)2+r(g+sc). The poles of the driving-point func-

tions eqs; 3.112 and 3.113 are given by eq. 3.57 as

2 2
s =-'lg+£'L—-& - (2n)2 i e N =1, 2, 4., (3.116)
P c 4r 4d2r0'

The poles of Y11 and Yoo 8TE translated further from the origin along
the negative real eaxis by meking K # L., This is in contrest with the
reflection end bidirectional translation properties of type 1-3 active

lines., Introducing normalized complex frequency Sy where s =

2 2
- 1 [g+ (Z;K) ] + ﬂz S\ ? the normalized poles of the driving-

c 4d“re

point functions are given by eq. 3.62.

The zeros of Ya1 and Yop BTE determined from the zeros of
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cosh f + $d(L-K) Ei%D—f =0 (3.117)

cosh f - 3d(L=K) Eigb—f-= 0 (3.118)

respectively, Under the frequency normalization, the normelized zeros
satisfy eqs. 3.117 and 3.118 when f =T Jg;/?. R general solution to
the trenscendentel equations is not expressible in closed form. How-
ever a root locus technique, generalized to account for negative values
of 3d(L-K) as well as positive vaelues, can be employed to drew the
normelized root locus of eqs. 3.117 and 3,118, It is instructive to
form the root locus indirectly from greaphicel considerations.

Letting

N(F) = cosh £ + Kk Ei%ﬂ—f =0 (3.119)

where k = 3d(L-K) is real, the zeros of N(f) are determined by letting
f = u + jv, and then separating and equeting real and imaginary perts
to zero. Examining the resulting equations, it is found that the zeros
must lie on the jv-axis of the complex f-plane., Additionelly, there is
a double zero et the origin for k = -1 end two reel zeros : u, for
k<-1.

The imeginary roots satisfy

tan v = - (3.120)

x|<

excluding the first peir for k<-1., For k<-1, the real root pair
satisfy
u
tanh u = - T (3.121)
Plotting the periodic function tan v and the line (-v/k) having

slope (-1/k) in Fig. 37, the v values at intersection points iv1,
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ivz, ... are the zeros of eq. 3.120., Note that as k—» =1, :v1——¢-0,

so that the first pair of imeginary zeros approech the origin. For
k<-1 these zeros move onto the real axis of the f-plane,

Plotting the function tenh u end the line (-u/k) in Fig. 38, the
u values at intersection points :Lﬁ-are the two reel zeros of eq. 3.119
for kg-‘l.' Thus for k<-1, eq. 3.119 has these two reel zeros :u1 and
en infinite number of imeginery zeros :jvz, :jVS, e

The behavior of the zeros of N(f) is summerized in the root locus

for N(f) drewn in Fig., 39 for k varying between -m end +“i, The zeros

tan v

RN
—— N

line (=v/k)

Fig. 37. Graphical construction yielding the imeginary zeros
of eq. 3.119 (excluding the first pair for k<-1).

tenh u line (-u/k)
for k<0

-U

4-1

Fig. 38. Graphlcal constructlon yleldlng the real zero
pair of eq. 3.119 for k<-1.
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jv

f-plane

A 4

=21

-jom
Fig. 39. Root locus for N(f) as k veries from - m to + m

+
- v, of N(f) are bounded by

(2n-1) Z<iv g(2) 5y n=1,2, ... (3.122)
for k>0, and by

(2n-2) ggjvn<(2n-1) oo n=2,3,... (3.123)
for k<0, The first zeros :\jv,I are imaginary for -1<k<0 where
0<jv, <5 (3.124)

but have real velues :U‘I for k<=1 where
0gy, <o (3.125)
Since N(f) given by eq. 3.119 does not have an essential singuler-

ity in the finite f-plane, it can be expressed as an infinite product
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in terms of its zeros using the Weierstrass factor theorem (33),8

Therefore
® ® L, 5
N(f) = ¢ ];E (F+Jvn)(F-Jvn) = c ];E(F *V_ )

for k>-1 and

T2
N(F) = e(fru, ) (Fau,) TT (F7+v_

n=2

2y

for k<=1, where c is a constent.

Recalling that normelized complex frequency sy = (2/”)2F

normalized zeros of Y14 and Yoo in the sN-plane must equel

: 2 2 2
SNn = ~(2/TT),Vn“ =:‘-'(2Vn/n) sy N =T1,2, ...

(3.126)

(3.127)

2, the

(3.128)

where Syq = -(2u1/ﬁ)L if k<-1. Thus, the normelized zeros of the

edmittence functions y,, (eq. 3.117) and Yoo (eq. 3.118) cen be

bounded as

2 2
-(2n) gan<-(2n-1) , N =1,2, ...
for k>0, and as

-(2n-1)2<sNr§-(2n-2)2, n=2,3, ..

for k<0, The first zero s, 1is bounded by
-1 SSN1< 0

for -1<k<0 and

-cn<sN1<D

for k5§-1.

(3.129)

(3.130)

(3.131)

(3.132)

8 .
A function has an essential sinqulerity et point p_ if its Laurent
series representation in the region surrounding p_ ~possesses an

infinite number of (p-po) terms having negetive exponents,
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The normelized root locus for the zeros of the driving-point
edmittences is dreawn in Fig, 40 from eq. 3.128 and Fig. 39. The locus
depends on the (L-K) velue since k = %d(L-K). The normelized poles of

Ygq @nd ¥, , given by eq. 3.62, ere loceted at -(2n)2 forn =1, 294..

Thus in the root locus, every zero of Yqq moves between its adjecent

poles; i.e. z begins at -4 end terminetes at -16, 23 begins at -%6

N2

and terminates at -25, etc, Note the Z\4 begins at - m, travels

through the origin (corresponding to unnormelized frequency s =

-g/c -1/d2rc), end terminates at -4. hes the seme cherecteristics

Y22
with a change in errow direction,

( 22
Since complex frequency s was normelized so s = - %[9* LZ? ] *
T2

4d2rc

Sy increesing (L-K) from zero has two effects on the (unnormel-

ized) pole-zero pattern of Y14 and Yoo+ First, the entire pattern is
trenslated further from the origin along the negetive reel exis,
Second; the zeros of Y14 epproach the poles of Y11 while the zeros of
Ypp Move euwey from the poles (with the exception of the first zero of
Yool

The sinusoidel steedy-state cherecter of y,, end y cen also be
1 22

assessed from the root locus diagram; Since the poles and zeros of Ya4

in Fig, 40 interlace with a zero closest the origin for L-K;;-4;14/d,

A 4

—A

A=) —e %* <
-25
K=L =16

Fig. 40. Normelized root locus of zeros of y,, as (L-K) varies
from - @ to + @ (or Yoo reversing the arrow direction).
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the Bode plots have the same monotonic increasing character as Fig. 29.
The poles end zeros of Yoo also interlace with a zero closest the

origin for L-Ks§4.14/d. When L-K<-4,14/d has a pole closest the

» Yqq

origin; when L-K>4,14/d hes a pole closest the origin. Their

H YZZ
Bode plots must have +10 db/dec megnitude asymptotes and 45° phase
esymptotes. Increasing (L-K) from zero increases the bandwidth of Yqq

while the bendwidth of Y90 decreases slightly end then increases.

From eqgs. 3,112 and 3,113, y11 and Yoo must have d.c, values of

fE [%d(L-K) + d/3(L-K)%+rg coth dy$(L-K)%+rg ] (3.133)
Vpp(0) = = [%d(K-L)+r d J3(L-K)?+rg coth d J3(L-K)Z+rg ] (3.134)

Cleerly, increasing (L-K) from zero to infinity increeses the megnitude

y11(0)

of y11(0) indefinitely but decreases y22(0) towards zero., For L-K = O,

¥44(0) = y,,(0) = d \/rg coth d/Tg (3.135)

In pessing it should be noted thet the series solutions to eq.
3.119 have been investigated (15). Following Kelly and Ghausi, express

the nJCh positive imeginery zero of eq. 3,119 as

v, = (2n-1)m/2 + c, (3.136)

where c_ is the correction fector due to nonzero k = 3d(L-K), Since
v satisfies eq. 3.120

(2n-1)1/2 *+ & = - k ten [(2n-1)ﬂ/2 + cn] = k cot ¢ (3.137)
th . . o

the n correction satisfies

c = cot™! 1-[(2n.1)n/2 + C ] (3.138)

n k n ¢

Using the series expansion for cot-1x and solving for c, by iteretion,
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its approximation for |k|<:8, accurate to at least 3%, is

= (2n-1) E-[ k ] (3.139)
°n 2 (2n-1)2(m/2)% + K
so that

= (2na1) T{1s —2K ] (3.140)
n T2 [ (2n-1)%m + 4k

Thus, the normelized zeros of y,,, eq. 3.114, for |d(L-K)| <16 are

S

e ® —(2n-1)2 [1 + 4d(L=K) }, n=1,2, ... (3.141)

(2n-1)%1 + 2d(L-K)
The normelized zeros of y,, ere given by eq. 3.141 by replecing (L-K)

by (K-L). Returning to Fig. 40, these are the zeros when L=K,

Transfer Admittance, Gain, and Bandwidth—Type 2-4 RCG Active Lines

The transfer admittances from eqs, 3.52 and 3,53 are

2d(K+L)
. = 82 d\/%?L-K)2+r(g+sc) csch d\/;(L-K)2+r(g+sc) (3.142)

-3d(K+L)
= —e d J%(L-K)2+r(g+sc) csch d J%(L-K)2+r(g+sc) (3.143)

Using the product expansions of eqg. 3,57

2d(K+L)| o 2 2 -1
7 , 497 [$(L_K)“+r(q*sc)]
12 " xd © i [1 (2n)2ﬁ2r = ] (3149
Yy = e-d(K+L)y12 (3.145)

They bave d.c., values of

2d(K+L)
v (0) = e JE(LoK) Z4rg csch d (JA(L-K)Z+rg (3.146)

.d(L+|<)y

Y04 (0) 12(0) (3.147)



72
It is clear that the trensfer admittances have the same poles
and Yoo (given by eq. 3.116) and ere all-pole functions,

The open-circuit voltage gein TV(S) from eqs. 3.53 and 3.54 is

1
y -jd(K“‘L) s
T(s)e -2z [Cosh £+ 3d(K-L) §3ﬂh—£] -1 (3.148)
v Yoo f
while the short-circuit gein T (s) from egs. 3.51 and 3.53 is
1
Y. -§d(K+L) .
T.(5) = - 2 - ¢ [cosh £ - d(K-L) EEED—f] -1 (3.149)
I y f
22
where again f = d %(L-K)2+r(g+sc). Thus, the poles of T, end T, ere

the zeros of Yoo and Y419 reSpectively; Their normelized velues ere
bounded in Fig. 40 and are given explicitly by eq. 3.141 for K=L,

The d.c. gains from egs. 3.148 end 3.149 are

-1d(K+L) J@T_—_TFT__— » )sinh d,/%(L-K)2+rg‘J-1
T,,(0) h d/3(L-K)“+rg + 2d(K-L
v e [Cos rg * 32 4 /-}TL-K)Zﬂrg

(3.150)
-3d(K+L) inh d/3(L-K)%+2g7-1
e [Cosh d J}(L-K)2+rg - %d(K-L)Sln 7=23]
d Jg(L-K) +rg

(3.451)

Since the geins are all-pole functions, their Bode megnitude end phase

1,(0)

plots have monotonically decreesing characters similer to Fig. 3t. By
adjusting -(K+L) to sufficiently large velues, low frequency gain
exceeding unity is achieved. Gain under erbitrary loading is cerried
out using root locus techniques as before in eq; 3.67,

Unless bther epproximations are employed, system bandwidth must
be celculeted using iterative techniques. Setting f = ﬂvg&/Z in egs.

3.148 and 3,149 to form the frequency normalized geain functions, end
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setting their megnitudes equal to 0.707 for sy = ij yields

(cosh & + cos 6) + d(K-L) |2 (cosh ® - cos 6) : giﬁ:Ll(sinh ® + sin 0)
) /39

= 4[1 : ld(K-L)2]2 (3.152)
when 6 =T wN/Z. The plus sign is used when Tv is considered, and the

minus sign for T Solving this equation for 6, the normalized 3 db

I.
= 6\/§/h. Since complex radian frequency

radian frequency is Wy 2 4h

1 [QAL-QZL 7+

s = - ir > s, , the 3 db redien frequency is
4d rc
2
1 @-k)?]. o.9s
Y3dh T ¢ [9+ 4r ]* 2 0 (3.153)
d rc

with the corresponding Hertzien frequency deb/ZTL

Elmore's results mey again be used to adventage for epproximating
FSdb‘ For networks having normalized geins given by eq:. 3.87 and
monotonic frequency response, F3dbt£_='0.35; Thus from eq. 3.90,

these networks have a 3 db frequency of

2
1

i
=2

Fl = 0.14[b (3.154)

3db -2, 2r2(s,-b,)]

To utilize this result, the denominator of the gain functions,
eqs. 3.148 and 3.149, is expressed in an infinite series of s. The
cosh term was expanded in eq. 3.96. Its first three terms are given

by egs. 3;98, 3,99, and 3,100, In like manner, the sinh /e+bs /Qa+bs

function can be expanded es

sinh atbs

Jat+bs

where

2 K
oo il .15
k=0
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B = b_|< f (n+k)! 2" = i d f gk
k bl n=0 (2(n+k)+1)!In! k! dak =0 (2(n+k)+1)!

k 4k sinh \[a-

2 (
=z — 3.156)
ki dak \/;
Evaluating the first three Bk's gives
sinh a
- 3.157
B, 7 ( )
b cosh /a sinh/a
5 =2 (3.158)
1 2 a a /&

sinh i .
B -_-(-tl 2 /g+% - (3.159)

Thus, the denominator D(s) of the gain functions, eqs. 3.148 end 3.149,

becomes

D(s)

sinh f;'.+8 b [Sinh J;
2

oo e
. cosh [a sin: /f; }+82(E)2[cosh Je sinh e

[CDSh - $d(K-L)

1 - -
- 3d(K-L) a 2 2a 2e Jﬁi
. sinh a 3 cosh a
- 3d(K-L) | —— > (a+3) - 7 —f—) o
2a Jﬁ; a
= BD' +B1's + 32'52 + ... (3.160)

where the plus is used for TV and the minus for TI' Normalizetion

of the B,' and Bz' against B_' and substitution into eq. 3.154 immedi-

1 0
stely yields f . for numericel values of a = dZJrg+é(L-K)2 , b= dzrc,

and (K-L),
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Step Response, Stability, Rise and Delay Time—Type 2-4 RCG Active
Lines

The unit step voltage response of the active line from eq. 3.148

is

2d(K+|_)1 [

VZ(S) = cosh d J@(L K) +r(g+sc)

(3.161)

sinh d /}(L-K)2+r(g+sc) ]
d J%(L-K)7+r(g+sc)
If K = L, this equation reduces to eqs. 3.73 or 3.77 when multiplied

by e-Kd. Otherwise the poles of eq. 3.161 must be identified either

+ %d(KaL)

through grephicel techniques or eq. 3.141 when L=K, as

2 2
s =.1 [g+i£:51-] - (2n-1)2 g [1+cn] (3.162)

P e 4r 4d"rc

c, is the correction factor required when k = 3d(L-K) is nonzero which

was introduced in eq. 3.136, Then, by the residue method

“© -3d(K+L) 1
t) = -
K: ° cosh Ja + 3d(KL) EA?EIE
t
g ® ~(2n-1)% ()% (1+c )% b
-5t E: -N"e u(t) (3.163)
n=1 [a+(2n-1)2 ( )2 n)2]
where
Tc Tc
cos (2n-1)—= 2d(K-L) sin (2n-1)—=2
. m = |- 2(11)\ 2 7 |- 3d(K-L) ;
T (n-G0ee) | (n-n)[G) () (2n-1)7(G) 2 (%5,
(3.164)

with a = dz\/rg+}(L-K)2 and b = dzrc. The step response rises mono-
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tonically from O to e

~3d(K+L) sinh e
cosh + 2d(K-L)
[ ol /o

Simplification results from the dominent-pole, excess-phase

] volts,

approximation of the step response; Comparing eq; 3.146 with eq; 3.78

and 3;79, the approximate response is

- 3d(K+L)

Vz(s) = e 1 (3.165)

cosh /3 ae(Lysinh e s(1+s/p,) explsn /p.)

o

so that

-3d(K+L)
v,(t) = = (1-e” et)u(t-mp/pe) (3.166)

h
cosh f_a- 3d(K- L)Sl;_ \/—

This exponential response has e time constant 1/pe and a dead time of
mp/pe. Pg and mp (given by eqs. 3.82 and 3.83) are determined from
the expansion of eq. 3.160.

The system is absolutely stable since all the poles of eqs; 3.148
and 3.149 are in the left-helf s-plane,

The rise and delay time follow immediately from the denominator
expansion of eq. 3.148 using Elmore's results, Reiterating, the coef-

ficients of s and 82 are

sinh cosh sinh
b, =%[ ul /E+ %d(K-L)( i ﬁ - J—” (3.167)
a 2 a J—
sh inh sinh
b2 _ ( )2 [co /—. s /—.+ 3a (k- L)( /; (a+3)
2a /;
cosh
_ 3 %ﬁ H /8 (3.168)
a

respectively, where
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sinh /;
B, = coshJE'v+ 2d(K-L) ———;———— (3.169)
Rise and delay time follow from substitution into eq. 3.89 for td and

eq. 3.90 for tr' If the dominant pole, excess phese epproach is used,

eqs. 3.105 and 3.106 yield tr and td s respectively,

Sensitivity—Type 2-4 RCG NMctive Lines

The general sensitivity expression for TV or TI is prohibitively
compliceted. Considerable simplificetion results when the source
strengths are equal, i,e. K = L, Here, the open-circuit voltege gain

eand short-circuit current gein from eqs. 3.148 and 3.149 both equel

T(s) = e-Kd/cosh d/r(g+sc) (3.170)

The sensitivity of gain T with respect to K is

Sy = -Kd (3.171)

which is frequency independent., Thus, to minimize the network's gein
sensitivity with respect to parameter K, set K = 0. But this is in
conflict with the requirement of lerge -K for large low-frequency gain;

and hence a compromise must be made.

Mixed-Type Lines

It should now be clear that simply chenging r to r* end g to g* '
in any of the type 2-4 line expressions yields the expressions for
lines having mixed-type sources distributed along its length. These
conversions are thus easily made,

Pertinent system parameters of uniform active lines have been
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examined in this chapter. The admittance paremeters were chosen to
characterize rcqg active lines. The results are readily extended to
other perameter sets (such as z or h), and different types of lines
(e.g. lc active lines).

Both time domein end frequency domeain behavior and s-plane
characteristics have been investigated., Various epproximetions were
introduced to meke anelysis tractable; and to aid in forming useful
design criteria end results.

The question now arises if nonuniform structures have signifi-
cantly different cherecteristics from e pole-zero viewpoint and if
they can be employed to edd flexibility in meeting design require-
ments, This question is investigeted in the following chepter, It is
seen that the very general neture of their pearaméters does not change

significently.
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IV. NONUNIFORM TRANSMISSION LINES HAVING
DEPENDENT DISTRIBUTED SOURCES

Two-Port Parameters

In this chapter, nonunifarm activé trensmisgion lineés are-
examined from a general point of view, The neture of their two-port
parameters is surveyed. Various results from lineesr, second-order,
homogeneous, partial differential equation theony can advantageously
be used for this purpose., The voltage and current along active lines
are described by this class of differential equation., A summary of
the important conclusions and results will give direction to this
development.

The two-port parameters are expressed in terms of the voltage
solution of the partial differentiel equation describing the active
line, They are simplified using the basic set solution end the self-
ad joint properties of the active line equations. Leck of pole-zero
cancellation is shown by utilizing the Wronskian of the basic set
solutions, Sturm-Liouville theory establishes the general pole-zero
locations, Meny of the powerful theorems concerning lumped, passive
networks are seen to parallel those of active lines,

To begin, the partial differential equeations describing voltage
and current along the active line are written. From egs., 2.1 end 2.2,
the transformed voltage V(x,s) and current I(x,s) on initially relaxed

type 1-3 active lines satisfy

12—* vx)x - Y*V =0 (4.1)
1 o -
7% L)y, - 2*1 =0 (4.2)
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where Z*(x,s) = K(x)+r(x)+sl(x) and Y*(x,s) = L(x)+g(x)+sc(x).
Rlternatively, voltage and current on initially relaxed type 2-4 active

lines satisfy

1 K L KL )
(va ! Zv)x Y% 7 - Y)V =0 (4.3)
1 L ) K KL -
(YIx YUY Y - Z]I =0 (4.4)

where Z(x,s) = r(x)+sl(x) and Y(x,s) = g(x)*+sc(x). Both sets of
equations describe voltage and current at every point, x, on the inte=.
riorudf the line for any complex frequency s. This is succinctly
expressed by first defining the domain Q? to be the three-dimensioneal
space formed by the s-plane and the x-exis, where the open domain D° =
{(x,s): 0<x<d, |s|<cn} and the closed domain _QS = {(x,s): 0<xKd,
Is,<ﬁa§. Then, the active line equeations hold for ell (x,s) in DS.

The two-port perameters of an active line ere easily expressed if
either its voltage or current solution is known, For example, consider
the admittence parameters in terms of the voltage solutions, Denote
the port voltages V1(s) = V(0,s) and Vz(s) = V(d,s) of the active line
as V(0) and V(d), respectively,

For type 1-3 active lines, the corresponding port currents from

eqs. 2.1 and 2.2 are

11(8)

12(5)

1(0) = -vx(o)/z*(u) (4.5)

-1(d) = vV _(d)/2*(d) (4.6)

Since the admittance parameters are defined in terms of these port
voltages and currents, the admittance matrix cen be immediately

written as
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I,(s)
I,(s)

v(d)=0

v(d)=0

v(0)=0

v(0)=0 _
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(4.7)

Type 2-4 active lines have port currents, from egs. 2.1 and 2.2,

by

-I1(d)

1(0) = -v (0)/2(0) - K(o)v(o)/z(0)
=V _(d)/Z(d) + K(d)v(d)/Z(d)

Thus, the admittence matrix for the type 2-4 active line is

-

—

ONRIRA

2(0) ~ 2(0) V(0) |y(g) = g
) (@) , 1 Nl

z(d) v(0) ~ z(d) "V(0) |, (gy=g

5

-z

~~|

0

)

(0)
VSD} 1 Vx

v(d) ~ z(0) "v(d)
k(@) , a1 L)
Z2(d) Z(d) v(d)

(4.8)

(4.9)

v(0)=0

v(0)=0

(4.10)

Since active transmission lines are described by partisl differ-

ential equations of second order, the general voltaege solution V can be

expressed as the sum of tiwo linearly independent solutions Vo

V(x,s) = af(s)va(x,S) + az(S)vb(x,S)

where

tions,

parameter expressions result using this generel solution.

a

1

Unless v and v
a b

and a2

and Vs

(4.11)

are arbitrary functions of s determined by port condi-
are properly chosen, complicated two-port

This is

readily demonstrated by writing the driving-point admittence for type

1-3 active lines,

4,11 into the Y11 expression in eq. 4.7 yields

Y11

1

Vax(D)vb(d)'va

(), (0)

= = 7%(0) va(D)vb(d)-va(d)vb(D)

Substituting the general voltage solution of eq.

(4.12)
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As usual, the x subscripts denote partial differentiation with respect
to x; for example, Vox = ava/ax. Since in general, Y14 contains
eight transcendentel functions in s, its pole-zero distribution is
prohibitively compliceted to determine.g Considerable simplificetion
results when the independent solutions Vg and v, ere chosen to have

particular characters at x = 0 or x = d.

The Basic Set

The besic set solution of the active transmission line equations
greetly simplifies the two-port perameter expressions. Express the

voltage V in terms of the two independent basic set solutions vy and

V2,

V(x,s) = &, (s)v, (x,8) + a,(s)v,(x,s) (4.13)

where a, and @, ere determined by port conditions. The basic set has

1 2
the following properties (24): v1(0,s) =1, v1x(0,s) = 0, v2(0,s) = 0,

and sz(U,S) =1, That is, v, has unit value and zero slope at x = O,

1
while 2 has zero value and unit slope at x = 0, It is precisely these
properties which simplifies 2% in eq. 4.12 and the two-port parameters
of the active lines,

Using the basic set results in the edmittence peremeters of eq.

4,7 yields the type 1-3 active line admittance matrix,

9
S.C. Dutta Roy has compiled these expressions for passive lines in:
Matrix parameters of nonuniform trensmission lines. IEEE Transactions
on Circuit Theory 12(3) 1422143, 1965,
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[ v 1 .
z*(0) v, (d) " 7%(0) v, (d)
[v] - 1 V' (@, (@) - v (d)v,'(d) 1 Yp'(d)
RAC) v, (d) z*(d) v,(d) |
R 1 |
z*(0) vz(d) z*(0) vz(d)
- (4.14)
1 1 1 vp'(d)
L-Z*(O) vzid) z*(d) v,(d) |

where, for convenience, primes denote differentistion with respect to

X, The admittance matrix for type 2-4 active lines is

B 1 v1(d) - K(D)vz(d) R n
Z(0) vz(d) - 2(0) Vz(d)
y =
{ ] 1 v1(d)v2'(d) - vz(d)v1'(d) 1 vz'(d) + K(d)vz(d)
~Z(d) vz(d) Z(d) vz(d) ~
i 1 v1(d) - K(D)vz(d) P B
Z(0) vz(d) - z(0) vz(d)
= 4 (4.15)
1/’ (K+L)dx . ,
. 0 ’ 1 v2'(d) + K(d)vz(d)
i - Z(0) Vé(d); Z(d) vz(d) i

The simplification of Yor in egs. 4.14 end 4.15 results from Abel's
identity. This will be shown in the next section.

The complete sets of two-port paremeters for type 1-3 end type
2-4 active lines are tebuleated in Tebles 4 end 5, respectively. For
notationel convenience, the basic set current solutions are occesione’

elly utilized in Table 5, From these tables, it is clear that when
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the zeros of the two basic set solutions v1(d,s) and v2(d,s) and their
spaciel derivetives ere identified, the pole-zero distributions of the
two-port parameters cen be found, Generelly, the two-port paremeters
cennot be expressed in closed form, since closed form voltege end
current solutions exist for only very special paremeter distributions
(11). This will not hinder these results being utilized later in the
chapter, It should be noted that in lieu of closed form expressions,
infinite series solutions and infinite product solutions can be used
to find dominant time eand frequency domein behevior (as wes done in
Chepter 3).

Table 4, Two-port perameters for the type 1-3 active trensmission
line expressed in terms of the basic set voltage solution at x=d (15),

= vt v
2 1 1 1 1 1
z*(0) — 2*(d) — — - 5% —
v, vy Z*(0) v, Z*(0) v,
2] - ] -
v v, "'
1 1 1 1 1 2
Z*(d) —  Z*(d) — - - -
i 2 vl 8 Z*(0) v, Z*(d \/2 ]
- V - [~ v ] 7]
7%(0) =2 (I i _ 1 Zzx(d) 1 _
v v z*(0) v, T 7%(0) v,
[h] _ 1 1 o] - 2 2
g =
v, ! v
1 1 Y1 2x(d) 1 Y2
Y Z*(d) v Z*(0) v.! z*(d) v,!
- 1 1 _ | 2 2 _
[ 7x(0 . ] i ]
Z*(d) V2 Z*(D),V2 V1 Z*(U)V2
"] - [¢] -
1 , 1 . 7¢(0) .,
| () "1 " | Zx(a) "1 z*(d) 2
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Table 5., Two=port parameters for the type 2-4 active transmission line
expressed in terms of the basic set solutions at x = d.

i 1 "(D)iz ]
. - 1 1
Y(0) i, TD)“;
[2] -
eu:(d) 1 1 12' + L(d)i2
| "Y(0) I; Y(d) i, i
[y] = :see eq. 4.15 ]
_ y _
7(0) ——2—— 1
vy = K(D)v, vy - K(O)v,
[hJ = c(d) i
'—E(T Y(d)‘.Tzz—;—
i v1 - K v2 12 L(d 12 ,J
[ iz - Z2(d) 1 i
v(0) i, - L(D)12 = z(0) v2' + K(d)v2
o] = "
2(d) e° Vo
| Z00) v,7 v k(A 2(d) K@Y,
[ ] i gj(%)l e'c(d)(vz' + K(d)vz) . Z(EJ)e'CV('C!)v2 i
Al =
Y(U)e'c(d>i2 e"’(d)v2 .
. vy - K(D)v, 2(0)v,
al =
v(0)1, 28 (u,r+ K(ady,)

d
Note: c(d) = -.}r (K+L)dx
0
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It will prove helpful to review the basic set solution introduced
by Morse and Feshbach (24). Consider the general linear, second-order,
homogeneous, partial differential equation describing the function
F(x,s),

p(xss)Fxx(x9S) + Q(X,S)Fx(x,s) + r(X,S)F(X,S) = Q(f) =0 (4016)

for (x,s) in 0°. The linear, second-order, partial differential opera-
tor, Q, is introduced for notational ease in later equations., The
basic set solution of Q(F) = 0 is the Taylor series solution in x, with
s as a parameter, which is partitioned into two sums of even and odd
powers of .% This is shown in the following manner. F(x,s) is
analytic and has a Taylor series representation at all ordinary points
in D° of eq. 4.16 (this is, all (x,s) in Q? where q(x,s)/p(x,s) and

r(x,s)/p(x,s) are nonsingular).1D Thus, the functions

F(x,s) = a, * (x-a)a1 + (x-a)2a2+ .o (4.17)
p(x,s) = p(a) + (x-a)p'(a) + ... (4.18)
q(x,s) = g(a) + (x-a)g'(a) + ... (4.19)
r(x,s) = r(a) + (x-a)r'(a) + ... | (4.20)

can be expanded in Taylor series where primes denote differentiations

with respect to x and the constants are functions of s, i.e. a =

e (s), p(n)(a) = p(n)(a,S), q(n)(a) = q(n)(a,S), and r(n)(a) =

r(n)(a,s). The an's are determined by substituting eqs. 4.17-4.20

into eq. 4.16 and collecting like powers of x,

10
A function is analytic at a point if its partial derivatives exist

at the point and in a neighborhood about the point. Analytic func-
tions have Taylor series representations. Singular points are points
in the (x,s)-space where the function fails to be analytic.
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0= [2a2p(a)+a1q(a)+a0r(aﬂ + (x-a)[6a3p(a) + 2a2p'(a)+2a2q(a)

+a1q'(a)+a1r(a)+a0r'(a)]+“. (4.21)
A polynomial of infinite degree which is identically equal to zero for
all x in D° has zero coefficients for all powers of (x-a). Therefore

from eq. 4.21,

232p(a) + a1q(a) + aor(a) =0 (4.22)
6a3p(a) + 2a2p'(a) + 2a2q(a) + a1q'(a) + a1r(a) + aDr'(a) =0 (4,23)

and so on, The first equation gives 2, in terms of 8 8y the second

gives a, in terms of 8 @ and a, and thus in terms of 8, 8,3 etc.,

3 1 2
The basic set results by expressing the Taylor series solution as the

sum of two independent solutions,

F(x,s) = a0F1(x,S) + 815(X,S) (4.24)
where
F1(x,s) =1 + (x-a)2 ;Z + (x-a)4 ;ﬂ + .. (4.25)
0 0
and
2 23 4 %
F2(x,s) = (x-2)[1 + (x-a) ;: + (x-a) ;: + ... (4.26)

Clearly F1 has unit value and zero slope at x = a while F2 has zero
value and unit slope at x = a. Boundary conditions determine aoanda1;
This series holds within the sphere of convergence having radius equal
to the distance between (a,s) and the nearest singulear point of the

partial differential equetion, (eq. 4.16). Various methods may be

used to determine the basic set (15). This will not concern us here,
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The Wronskien and Self-Adjoint Systems

The results of Tables 4 and 5 have interesting interpretations,
In later sections, the general location of the poles and zeros of the
two-port parameters are established. This section is concerned with
investigating the possibility of pole-zero ceancellation and two-port
parameter simplification.

Several useful results arise from consideration of the Wronskian
of any two linearly independent voltege solutions, Vo and Vi of the

voltage equation

Q(v) = p(x,s)Vxx(x,s) + q(x,s)Vx(x,s) + r(x,s)V(x,s) = 0 (4.27)

The Wronskian of the two solutions va and Vg is defined as

W(va,vb) “Va _55 “Vp _53 " VaVbx = VbVax (4.28)
for all (x,s) in Ds. The Wronskian is therefore a function of both
x.and s, The pertial differential equation describing the Wronskian
is formed by operating on Vo and Vy in the following manner and
manlpulating the results, .

VaQ(Vb) - vbQ(va) = p(x,s)Wx(x,s) + q(x,s)W(x,s) = 0 (4.29)

The genefal Wronskian solution from eq. 4.29 is

W(x,s) = W(xo,s) exp [_fx[q(x,s)/p(x,s)]dx] (4.,30)
X

]

The Wronskian has the property of being nonzero at all points of
Qé; This fact eliminates the possibility of pole-zero cancellation
between basic set quantities involved in the two-port paremeters, as

described in the next paragraph. Proof by contradiction establishes
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this Wronskien property. From eq. 4.30, W cennot venish at eny point
except perheps at @ singuler point. Thus, W is identically zero in
domeins where q/p is nonsingular if, and only if, WD is zero. But
this would require v, = cv (c is @ constent), so the solutions Vo and

b

v, would not be lineearly independent. Therefore, since Vg and v, ere

b
lineerly independent, the Wronskian W(Va’ vb) is nonzero in domains
where q/p is nonsingular. The pareameter conditions noted for the
active line equetions (egs. 1.1, 1.2, 2.1 end 2.2) insures thet q/p is
nonsinguler in Q?. Thus, W is nonzero in DS, i.e. W# D in D°. By
continuity requirements, W # 0 in Q? as well,

The Wronskian of the basic set solutions from eq. 4.28 is

W(v1, v2) = UV = VoV #0 (4,31)

for all (x,s) in Q?. Therefore, the zeros of v1(d) and sz(d) do not
coincide with the zeros of V1x(d) and vz(d). Applying this result to
the entries in Tebles 4 and 5, it is clear that there cen be no cancel-
letion between besic set zeros in numeretor and denominator. Z* and
Y* in Teble 4 and Z and Y in Teble 5 introduce an additioneal pole or
zero which can ceuse a single pole-zero cencellation, at most. Thus,
the zeros of e two-port paremeter are the zeros of its numerator
function. The poles of a two-port pesrameter are the zeros of its
denominator function. Since the numeretors of Y01 in eqs. 4.14 and
4,15 both involve the Wronskian of the basic set solution at x = d,
this motivetes further examination of the Wronskien,

The Wronskian of eq. 4.30 assumes & pearticularly simple form when
q(x,s) = px(x,s) (4.32)

Such systems are called self-adjoint, and have a Wronskien which
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satisfies
W(x,s) = W(xo,s) exp(-1n p(x,s)/p(xD,s)) = W(xa,s)p(xo,s)/p(x,s)
(4.33)
for all (x,s) in Q?. Rearranging eq. 4.33 results in the identity
(referred to as Abel's identity),
W(x,s)p(x,s) = W(xo,s)p(xo,s) = k(s) (4.34)
where k(s) represents some function in s and is independent of x. This
is an extremely useful result which allows simplificetion in Yo1 and
other two-port parameters,
Since Abel's identity, eq. 4.34, holds for all x in QS, the
function k(s) can be evaluated by judiciously choosirg X e Choose
X, = 0 where from eq. 4.28, the Wronskian of the basic set is equal to
unity; Then eq. 4.34 becomes
W(x,s)p(x,s) = p(0,s) (4.35)
The type 1-3 active line equations (eqs. 4.1 end 4.2) ere in self-
ad joint form. Their comparison with eq. 4.27 shouws that g = Py
where p = 1/Z* in the voltage equation and p = 1/Y* in the current
equation, Thus, the Wronskien of their basic set voltage solutions
must satisfy
W(v1(x,s),vz(x,s))/Z*(x,s) = 1/2*(0,s) (4.36)
from eq. 4.35. An analogous expression is readily written for basic
set current solutions. The ratio of W and the series impedeance any-
where along the line equals the reciprocal series impedance et x = 0.
Therefore, y,, = -W(d)/Z*(d)vz(d) = -1/2*(O)v2(d) in eq. 4.14.
The type 2-4 active line equations (eqs. 4.3 and 4,4) ere not in

self-adjoint form. However, any linear, second-order, homogeneous,
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partial differential equation denoted as
b1(x,s)Fxx(x,s) + bz(x,s)Fx(x,s) + b3(x,s)F(x,s) =0 (4.37)
uhere b, # 0 for all (x,s) in Q?, can be expressed in the following

self-adjoint form
(p(x,8)F (x,8)), + £(x,8)F(x,s) = O (4.38)

by letting

bz(x,so
p(x,s) = p(0,s) exp j; E;z;j;$ dx (4.39)
and
b3(x,s)
r(x,s) = (4.40)

P(02) § 5o

Such & lineer, second-order, equation is celled a Sturm-Liouville
equation., Their properties are utilized in later sections,
The type 2-4 active line equations ere readily expressed in self-

ed joint form as

_ X _
expj (K+L)dx 3
0 7 \/x N + [ ;) + ;L - Y] [epr[- (K+L)dx]v =0 (4.41)
L ] x 0
BXP[ (K+L)dx )
L 0 Y Ix N + [(%) + éh -7 ] [exp.jf (K+L)dx]I = 0 (4.42)
= X 0

X
Here p =[exp ,[. (K+L)dx]/Z in the voltege equation and p
0
X
[expd[- (K+L)dx]/Y in the current equation. Thus, from eq. 4.3%5, the
0

Wronskian of the basic set voltage solutions is
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X
(K+L)dx
W(v1(x,s), v2(x,s))e 0 /Z(x,s) = 1/2(0,s) (4,43)

An analogous expression involving the basic set current solution is
readily written., Eq. 4.43 is used to simplify Y21 in the admittence
matrix of eq. 4.15.

It is appropriate here to note reciprocity conditions., Clearly,
from eq. 4.14, type 1-3 active lines are reciprocal since Yi9 = Yoqe

However from eq. 4.15, type 2-4 active lines are nonreciprocal unless

X
exp {-.]ﬁ (K+L)dx] =1 (4.44)
0

or

IX(K+L)dx =0 (4.45)
0

This is consistent with the result observed for uniform type' 2-4 lines

in Chapter 3 where K = -L was required for reciprocity.

Sturm-Liouville Theory

The general location of the poles and zeros of the two-port peram;
eters can be established from the classical Sturm-Liouville theory
for fairly arbitrary active limes. In the remaining chapter, Sturm-
Liouville theory is used to relate the voltage solutions (or current
solutions) and the poles and zeros of the driving-point admittance
functions, Although the theory cannot be used to find the critical
frequencies of the transfer admittance functions, these can be obtained

from previous basic set relations, These results can be directly
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applied to eny of the other two-port paremeters in Tables 4 and 5.
To begin this development, note that any lineer two-port (1umped
or distributed, passive or active) has driving-point (and transfer)

immittance parameters of the form

N
(1+s/zn)

z(s) = ¢ (4.46)

n=1
M
TT+s/p )
m=1

N'
]_[(1+s/zn,)

y(s) = c ] (4.47)

m'
mI:E(1+S/ph.)

where c is a constant, s is the complex frequency, and p and z are the
network poles end zeros., For lumped networks, M, M', N, and N' are
finite integers, while for distributed networks they are infinite.

The product expansion holds for any function which does not have an
essential singularity in the finite (xy8)-space by the Weierstrass
factor theorem (33),

The poles of z(s) and zeros of y(s) ere the open-circuit natural
frequencies of the network (when driven by a current source), while
the zeros of z(s) and poles of y(s) are the short-circuit: natural
frequencies (when driven by a voltage source), Thus, the type of ideal
source (voltage or current) driving the system determines whether the

poles or zeros of z(s) or y(s) are the natural frequencies of the

1An exception was formed by K,W, Heizer, Distributed rc networks with
rational transfer functions. IRE Transactions on Circuit Theory
9(12):356-362. 1962,
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system, For nonideal sources whose Thevenin and Norton equivelents
have the same nonzero, finite input impedance, the natural frequencies
of the network are identical,

Consider the driving-point admittance Yqq of an active line where

I

1
y = - (4.48)
" V1 VZ;D

The zeros of Y41 ere the complex frequencies for which..zero input port
current flows for nonzero input port voltage with the output port
shorted, The poles of Yy, 8re the complex frequencies for which input
port current flows for zero input port voltage with the output port
shorted. These conditions under which the complex frequencies are
determined are shown in Fig. 41. Analogous stetements can be made for
Yoot The problem of determining the criticel frequencies of the net-
work mey alternatively be viewed as the problem of determining the
eigenvalues of the pertiel differentiel equation describing the network
under appropriate boundary  conditions., The criticel frequencies are
directly related to the eigenvalues. To show this, the eigenvalue

problem is now described and several pertinent theorems introduced.

Consider the Sturm-Liouville equation having the (self-edjoint)

form
(p(X)Vx)x -[q(X) + X(s)r(s)]v =0 (4.49)
I =0
T o
v %D Zeros of V=0 V. =0 Poles of V. =0
1 Yq1 2 1 Y11 2
O__.__-

Fig. 41. Conditions under which the zeros and poles of Yqq Te
determined.
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for (x,s) in D° with boundary conditions V(x,s) =0, Vx(x,s) = 0, or

V*(x,s) + aV(x,s) = 0 at x =

0 and x = d, a is a positive constant at

x = d, and a negative (not necessarily equal) constant at x = O,

Coefficients q(x) and r(x) are continuous, p(x) is continuously differ-

entiable, with p(x), r(x)>0 and g(x)>0 for x in QS. The velues of A

for which a nonzero solution exists which satisfies both the partial

differential equation and boundary conditions are the eigenvalues.
corresponding solutions ere the eigenfunctions.
consists of determining these A values,

the properties of the eigenvalues and eigenfunctions (5, 13, 32).

The
The eigenvalue problem
A number of theorems relate

For

our purposes, the following theorems are useful:

Theorem 1.

Theorem 2.

Theorem 3,

Eigenvalues are negative real numbers.

The eigenvalues are simple, isolated, and infinite in
number having no accumulation point along the negative
real axis of the complex A-plane,

Consider the problem having the boundary conditions:at

x = 0 and x = d shown below:
First Set Secdnd Set
A | =0 A% | v=o
n n
2 V=0 5 V=D
-X n | V=0 - n | V +aV=0
U X X
-xs V =0 -XG V +aV=0
n X n X

Denoting the nth eigenvealue as -an where k represents
the boundary condition set, the eigenvalues are separated as

A°

<
n+1 n n n

and
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Theorem 4., In some caeses, A= 0 is an eigenvalue, This is easily
tested.

The type 1-3 active line equetions (eqs. 4.1 and 4,2) and the
type 2-4 active line equations (eqs. 4.41 and 4,42) have the form of
the Sturm-Liouville equetion (eq. 4.49), Different bbundary conditions,
consisting of open and short-circuit combinations, are imposed when
determining critical frequencies. The possible boundery conditions of
type 1-3 active lines are listed in the first set, while those of type
2-4 active lines are listed in the second set. The boundery conditions
on voltege under open-circuit conditions result from eqs. 4.5 and 4.6
and eqs. 4.8 and 4.9, respectively., We now proceed to relate the

parameter A end the complex frequency s in the active line equations.

ODriving-Point Admittance—Type 1-3 Active Lines

Consider first the type 1-3 active transmission line voltage
equation
(v /2%) - Y*V = 0 (4.50)
where Z* = r* + sl and Y* = g¥ + sc, To use the Sturm-Liouville theory
results, the x and s dependencies in Z* and Y* must be separable.

Thus, for the r*lg*c active line:whose local time CQnstants; as
1(x)/r*(x) and b = c(x)/g*(x), are constent along the line, the voltage
equation is

(v, /2%(x)),, - g*(x)[(l+as)(l+bs)]v = 0 (4.51)

Since constent paremeter passive lines having & = b are called distor=-
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tionless lines, this more general active line shall be referred to as
pseudo-distortionless. By comparison with eq. 4,50, this line hes
peremeter A(s) = (1+as)(1+bs),

r*cg* and r*lg* active lines are described by the equations

[ /ex(x)] - [0200 + sc0] v = 0 (4.52)

(4,53)

1]
o

[1/34G0], - 200 + a160] 1
respectively., These lines have parameter A(s) = s, If the voltage
equation rather than the current equation had been written in eq. 4.53,
the more stringent condition requiring thet e = 1(x)/r*(x) be constant
would heve been necessary.

For lc ective lines,

[Vx/l(x)]x - SZC(X)V

0 (4.54)

s2. Here r*(x) = 0 and g*(x) = 0 so that en lc

where paremeter A(s)
active line is formed by setting K(x) = -r(x) end L(x) = -g(x). The
results of eqs. 4.51-4.54 are importent for they relate A end s in the
different types of lines,

The coefficients of the voltege (and current) equations must also
satisfy the coefficient conditions noted for the Sturm-Liouville equa-
tion, eq. 4.49, For the pseudo-distortionless r*lg*c active line of
eq. 4.51, r*(x)>0 end is ¢! (once continuously differentiable for ell
x in D°) and g*(x)>0 end is c® (continuous for all x in D°). For the
r*cg* ective line of eq. 4.52, r*(x)>0 end is C1, g*(x)>0 and is c®,
and c(x)>0 and is CU, with enalogous conditions for the r*lg* active
line of eq. 4.53., For the lc active line of eq. 4.74, 1(x)>0 and is

¢! and c{x)>0 and is CG.
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The distribution of the eigenvalues for the problem follow from
Theorems 1 and 2. The eigenvaelues are negative, real, simple, and may
be erranged in order of decreasing magnitude as -X1, -Xz, ... Where
-kn—o- @ as integer n —e ®. From this infinite-dimensional set
denoted as {-Xn}, the criticel frequency distributions are determined.

For the lc active line of eq. 4.54,

s = Zik =1, 2., (4.55)

so that the criticel frequencies are simple, isolated, and lie along
the jw-exis of the s-plene in conjugate pairs.

For either the r*g*c or r*g*l ective lines of egs, 4.52 end 4.53,
respectively,

s.=-A,n=1,2,.. (4.56)

so these frequencies are simple, isoleted, and lie along the negative
real axis of the s-plane.
For the pseudo-distortionless r*lg*c active line of eq. 4.51,

(1+asn)(l+bsn) = . xn, N=1, 2y vus (4.57)

A root locus conveniently locates the values of s, for any Xn from O

to o. Expressing eq. 4.57 in the usual form for root locus anaelysis,

1
1+ A (1"'88)(1“‘[35) =0 (4.58)

Rssumé without lack of generality thet e>b. Then the locus, having
two brenches, begins at s = -1/8 eand s = -1/b, and terminates on +90°

asymptotes at |s| = o as shown in Fig, 42, The roots ere equal when
2
A=A = (a-b)"/deb (4.59)

and heve values of
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ab Jw

>
1
o

1
X
o
v
LN
X
o]
Q

Fig. 42, The root locus of eq. 4.58 as A veries from 0 to .

s=s_* -(a+b)/2ab (4.60)

where S also forms the branch asympotote. When X:>XC, the critical
frequencies are complex conjugates having a reel part given eq. 4,60

and imaginery parts of

23
8 =i[’;—b--%(9-;% ] (4.61)

Thus, the criticel frequencies of the pseudo-distortionless r*lg*c
active line are simple and isoleted; a finite number may be negative
real while an infinite number are complex conjugates having constant
real parts,

Theorem 3 relates the distributions of eigenvalues to one emother
under different boundary conditions, These criticel frequencies and the
boun dary conditions are directly related to the poles and zeros of the
admittence functions. The zeros of Yqq @re the critical frequencies
which correspond to the voltage equation with boundary conditions V1x=
V2 = 0 or current equations where I1 = IZx = 0., The poles of Yqq BTE

then critical frequencies which correspond to the eigenvalues of the

voltege equation with enother set of boundary conditions, nemely \J1 =



100

\/2 = 0, or the current equation with I1x = 12y = 0, Denote these
z
infinite-dimensional sets of eigenvelues as {} A ;} and {f ng},
z
respectively. Under these conditions, Theorem 3 relates - A n and

- AP es
n

z p z p
- AT <-AT <A < - (4.62)

for any positive integer n., Thet is, - Xpn lies further from the A-
plane origin then does - kzn. Inequalities may be used since there
cen be at most, a single pole and zero which are equal (corresponding
to sz = ka) as previously noted. Applying these results to eqgs,
4,55, 4,56, and 4,57, the driving-point edmittence for the various
lines can be expressed in infinite product form. As noted by Theorem
4, some problems have an eigenvalue A = 0. To establish whether zero
is en eigenvalue, the ective line equetions (eqs. 2.1 and 2.2) eare
examined for nonzero solutions when A = O.
The lc ective line has a driving-point impedance
®

(82+Kzn)
1 (4.63)

y(s) = ¢ &=
® o, o
s T_r(s +\ n)
n=1
from eq. 4.55 where c is a constant and AP <:Xz <:XP <\? . The pole
ne1 n n n+1® ..
at the origin results since the lc active line cen have nonzero current
flow with zero voltage at the input port when the output port is
shorted when s = 0, The pole s = 0O follows also from the driving-point
admittence results of eq. 4.14. Equivelently stated, the lc active
line current equetions, given by eq. 4.54 when I replaces V and 1 and
c are interchanged, has a nonzero solution for A=0 for boundary condi-

tions IX(O) = Ix(d) = 0, Therefore, lc active lines have driving-
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point admitteance charscterized by e pole at the origin end conjugate
imaginary zeros and poles alternating into infinity of the s-plane
(beginning with the zeros),

The r*cg* active line has a driving-point impedance

® Zz
(s+A n)

y(s) = ¢ o (4.64)

Tl'(s+>»pn)

n=

8|n

from eq. 4.56 where AP <A <AP <A? . 1t is cheracterized by
n-1 n n n+1

poles and zeros which alternate along the negetive real exis of the s-
plane with & zero closest the origin. The same equation results for
the driving-point impedance of @ r*lg* active line but with in_1<
Xpn<:kzn<:kpn+1. Thus, these lines have the same pole-zero cheracter=
istic where @ pole is clpsest the origin of the s-plane. Recall that
the current equation, eq. 4.43, weas considered for this line type.

The pseudo-distortionless r*lg*c active line has e driving-point

impedance
k @
T 11 [(ere)? + ®7 )7
y(s) = noct] (4.65)

o
(1+as) ]JT(S+Sp ) jET ks+s ) + (Bp ) ]

from eq. 4.57 when k = max n for which kzn<:kc and kpn<:KC,
respectively, The psrameters are associated with the root locus of
Fig. 42; a = 1(x)/r(x) was one local time constant of the line (eq.
4,51), Sc formed the reel pert of the critical frequencies and the root

locus branch (eq. 4.60),3 was the imaginery part of the critical
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frequency, and XC was the demarcetion eigenvelue which, if exceeded,
yielded complex criticel frequencies. Using the seme reasoning as for
the lc active line, A = 0 is a current eigenvelue. Correspondingly,

s = -1/a (but not s = -1/b) is a pole of y(s). The pole at s = - 1/a
also follows from the driving-point edmittence results of eq. 4.14,
Poles and zeros alternate along the negeative reeal exis (beginning with
pole s = 1/a) on each side of the esymptote (essuming they exist there),
end elong the asymptote itself,

The particuler distribution of the eigenvalues along the negative
real axis of the complex A-plane, and thus the poles and zeros of Yq1
and y,, in the s=plene, depends on the p(x), q(x), and r(x) distri-
butions of eq. 4.49 and the boundary conditions®imposed.

For purposes of comparison, the general driving-point immittence
properties of type 1-3 active lines are now summarized, Their eadmit-
tance functions are given by eqs. 4.63, 4.64, and 4,65, Rpplying the
eigenvalue results of eqs. 4.55, 4,56, and 4.57, anelogous impedence
expressions are readily written., The driving-point impedences are
identical poles. Clearly these immittances are real functions when s
is real. Under the parameter conditions noted for verious lines, they
have no poles or zeros in the right-half s-plane. Since their poles
end zeros interlace, their Bode-plots must have zero or positive reel
parts for D§w<cn for s = jw., Due to the meximum and minimum modulus
theorem, the real part of the immittences must be nonnegative for Re
s>0, Thus, the driving-point immittances ere positive-real functions,
The degrees of numerator and denominator polynominels are infinite,

Driving-point functions of r*lg* and r*cg* lines have poles and zeros
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alternating along the negative real axis, while lc lines have poles
and zeros alternating along the imaginary axis. Driving-point admit-
tance functions of r*cg* and r*lg* lines have a zero and pole, respec-
tively, closest the origin, while lc active lines have a zero at the
origin,

It is interesting to note that these results parallel the follow-
ing generael theorems of lumped, linear, passive networks from network
analysis, Driving-point immittance functions eare positive-reasl func-"
tions, The degrees of numerator and denominator polynomials ere finite
end cennot differ by more thean one, Driving-point functions of recg and
rlg networks have pole-zero patterns alternating along the negative
real exis, and lc networks have them alternating elong the imaginary
axis of the s-plane., Driving-point admittance functions of rcq and rlg
networks have @ zero and a pole closest to the origin, respectively,
perhaps at the origin itself. The lowest criticel frequency of en lc
network is either a pole or a zero at the origin. An lc ladder network
having a topology snalogous to the trensmission line has e zero at the
origin, Two-port driving-point functions have identical poles except

for so-called private poles.

Transfer Admittance and Gain—Type 1-3 Active Lines

The results found for the driving-point admittance parameters can

be used to determine the nature of the transfer admittance. Since

I

= L (4.66)

2 v, .0 .

Y2
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the poles of Y4, re the values of s for which I1 # 0 when V1 = 0 for
V2 = 0, However, the zeros of Yq9 cannot be found by interpreting eq.
4,66 in a similar menner because of the ambiguity of requiring both

V, = 0 (-input shorted) and I, = 0 (zero input current). These condi-

1 1
tions are shown in Fig., 43, The basic set solution expressed in eq.

4,14 resolves this difficulty. Since the trensfer admittances are

1
Yig = Ypq T - 2*205\/2 (4.67)

it is clear that Yy has no zeros but has poles identical to those of
Y11 and Yoo The poles have the form found in egs. 4.63, 4,64 and 4.65
for the various lines, Thus, type 1-3 active lines have transfer func-
tions that are all-pole functions whose denominators are polynominals
of infinite degree. The poles of Yq9 and ypq ore identical with those
of Y41 and Yoor

Rgain, these results parallel’ the following theorems of lumped,
linear, passive network analysis, The order of numerator and denominator
polynominals is finite and may differ by more than one., The poles of
the transfer function ere the same as those of the driving-point func:
tion (unless private poles exist). Zeros may fall anywhere in the s-

plane but must occur in conjugate pairs if complex,

1,=0 11;!0

Zeros of C Poles of
v, =0 V. #0 v, =0 V_=0
! Yo |2 ! SRLY: 2

Fig., 43. Conditions under which the zeros end poles of Y1, @re
determined.
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The open-circuit voltage transfer function TV is

Y21 _ z#(d) 1
1
Yop  2*(d) vy

Tv(s) = - (4.68)

TV has a single zero s = -r*(d)/l(d), and poles which are the zeros of
= .r¥*
Yoo and s r*(0)/1(0).

The short-circuit current transfer function TI is

() =2 L (4.69)

Y19 "

TI is an all-pole function whose poles which are the zeros of Yq1°

For summation purposes, the nonuniform r*cg* line is now compared
with the uniform r*cg* line extensively considered in Chapter 3. The
driving-point admittances have poles and zeros distributed along the
negative real axis of the s-plane with a zero closest the origin.
Thus, the Bode magnitude plot of 2% and Yoo must be monotonically
increasing with phase bounded between 0° and 90°. The trensfer admit=-
tence Yq9 must equel Ypqs CEN have no zeros, and must have poles
identical to those of Y+ Thus, their Bode magnitude and phase plots
are monotonically decreasing. The short-circuit current gain has the
same response form, The open-circuit voltage gain also has a monoton-
ically decreasing response for sufficiently large w., Therefore, the
general pole-zero distribution end frequency response forms do not

differ appreciably., But such quantities as gain, bandwidth, end rise

and delay time may differ appreciably,
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Driving-Point Admitteance—Type 2-4 Active Lines

These considerations ere now applied to type 2-4 active lines,

They are described by the voltage equation, eq. 4.41, as

X
JC (K+L)dx J( (K+L)dx
S }

K KL
v +[Z) =y
X

Z
where Z = r + sl and Y = g + sc, Again x and s dependencies are

0 (4.70)

separated in order to use the Sturm-Liouville theory.

For the rlgc active line with constent locel time constants a =

1(x)/r(x) and b = c(x)/g(x),

X
X
(k+L)dx (K+L)dx

+—_g(‘|+as)(1+bs)] e 0 V=20 (4.71)

0
e ol “13 KL
T X r r
X X

The pseudo-distortionless line has parameter A(s) = (l+as)(l+bs).

rcg and rlg active lines are described by the equations

X
B (K+L)dx 7 JrX(K+L)dx

0
e K KL n}

- v | [(r)+-r -g-sc] e V=0 (4.72)

L <X X

X X
- | (k+L)dx 7 Jf (K+L)dx

0
5 1| o+ (L +K L a1 70 I=0 (4.73)
- g x—'x gX

where parameter A(s) = s.

For the lc active line,

x .
j; (K+L)dx ‘X(K+L)dx

e . K. KL 2 0
1 v, ) + {(1 ;’1 -5 c] & V=0 (4.74)
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so that peremeter A(s) = xS

Most of the conclusions follow those mede previously. The rlgc
active line has e driving-point edmittence given by eq. 4.65. Ageain
A = 0 is a current eigenvalue when IX(U) + L(0)I(0) = Ix(d) + L(d)1(d)=
0 with the result thet s = -1/e:= -r(x)/1(x) is e pole., However, s =
-1/b = -g(x)/c(x) is not e pole. This is consistent with the driving-
point admittence results of eq. 4.15. The poles and zeros alternate
elong the negative reel axis on each side of the esymptote (assuming
they exist there), end along the esymptote itself.

The rcg end rlg ective lines have driving-point edmittences given
by eq. 4.64. They are cheracterized by poles end zeros alterneting
along the negetive reel axis. The patterns begin with e zero closest
the origin for rcg ective lines end e pole closest the origin for rlg
active lines.

The lc active line has driving-point admittances given by eq.
4,63, They have conjugate imegineary poles end zeros elternating into
infinity beginning with e pole at the origin. s = 0 is a pole since
A = 0 is a current eigenvalue when I(0) + L(0)I(0) = Ix(d) + L(d)I(d) =
0. Agein, this result is consistent with the driving-point admittence
results of eq. 4.15.

The coefficients of the voltege (eand current) equations must
satisfy the coefficient conditions of eq. 4.49. Thus, for the pseudo-
distortionless rlgc ective line, r(x)>0 end r(x) end K(x) ére C1,
g(x)>0 and g(x) end L(x) ere CO, and ln(K(x)/r(x))XSQ- L(x). For the
rcg ective line of eq. 4.72, r(x)>0 end r(x) end K(x) are C1; c(x)>0

and c(x), g(x), and L(x) ere CD; and ln(K(x)r(x))X$;915%%§§)-L(xl
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Rnalogous conditions follow for the rlg ective line of eq. 4.73. For
the lc ective line of eq. 4.74, 1(x)>0 and 1(x) and K(x) are C1, c(x)
>0 end c(x) end L(x) ere CO, and ln(K(x)/l(x))Xg- L(x).
The comperisons of the driving-point immittence properties with
those of lumped, lineer, pessive networks are the same ®s those made

before, They are therefore not repeeted here.

Transfer Admittances and Gein—Type 2-4 Active Lines

Since the trensfer admittences for type 2-4 active lines from

eq. 4.15 are

1 1
Yi2 = = Z(0) vzid) (4,75)

X
f}r (K+L)dx
- 8 0

they have no zeros and heave the same poles es Yeq° Therefore, their

Yoy * /2(0)v,(d) (4.76)

Bode meagnitude and phase plots must have monotonic decreesing charac-
teristics, The same transfer admittance comperisons meay be made as
before,

Since the open-circuit voltage gain is

X
- [ (K+L)dx
Y21 _z2(d) e~ °
= [}
Ype 2(0) v,'(d) + K(d)v,(d)

T = -

v (4,77)

the only zero of T is s = - r(d)/1(d). The poles of T, are the zeros
of y,, end s = - r(0)/1(0).

The short-circuit current gein is
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X
ij’ (K+L)dx
y 0
T = 720 _2(d) e

" yyq 2(0) v () - k(0)v,(d) (4.78)

which has only one zero at s = - r(d)/1(d). The poles of T, ere the
zeros of y,, and s = - r(0)/1(0),

Rgain for summation purposes, the results for the nonuniform type
2-4 rcg ective line are compared to those of the uniform rcg line of
Chepter 3. The general characters of their pole-zero distributions ere
similar, Their driving-point admittances have poles and zeros alter-
nating along the negative real axis of the s-plane with a zero closest
the origin, The Bode meagnitude plots of 2% and Y0 must be monoton-
ically increasing with phase bounded between 0° end 90°, The trensfer
admittences are mll-pole functions. The poles are distributed along
the negative real exis in the s-plene. Their Bode magnitude and phase
plots decrease monotonically, The gain functions exhibit similer
characteristics at high frequencies., Low frequency gain can be

d
achiesved by adjusting ijr (K+L)dx to be sufficiently large.
0

Actiﬁe Transmission Line Anelysis—Concluding Remarks

It has been the purpose of this chapter to examine the generel
nature of active transmission lines, Two-port parameters expressed in
terms of generel voltage and current solutions were formulated, To
make these expressions amenable for analysis, the besic set was intro-
duced which reduced the psremeter equetions to rather simple form, By

considering the Wronskian and self-adjoint nature of the active line,

peremeter simplifications resulted and pole-zero cancellation was
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examined. To gain some physical insight into pole-zero locetions, the
class of active lines which fulfilled the parameter conditions of the
Sturm-Liouville equation were considered, This allowed the general
root locus of the poles and zeros of the psrameters to be drawn and
interpreted, Finslly, these results were compared with those of the
uniform active lines of Chapter 3, Nonuniform lines cen be employed
to add flexibility in meeting design requirements as the next chapter
will show,

Having now completed the analysis of sctive lines, the synthesis
of active lines is reviewed, In the next chepter, a generel synthesis

scheme allowing computerized design is presented.
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V., SYNTHESIS OF ACTIVE TRANSMISSION LINES

Synthesis Using Variational Calculus

Synthesis of active transmission lines requires appropriate param-
eter distributions be found to fulfill consistent design requirements,
Initial design is often affected by consulting design tables to
escertain whether any of the "standard" distributions (i.e., distribu-
tions of lines with readily expressible two-port parameters and other
properties of interest) can be employed to meet requirements, If some
exist, then economic and technological considereations dictate whether
these lines can actually be realized.

Generally however, the realization will not require one of these
specific tapers. Thus, a synthesis scheme for lines with arbitrary
parameter distribution is required. A synthesis method using varia-
tional calculus has been introduced by Rohrer (27). This method is
particularly well-suited for synthesizing active lines. In this
approach, economic and technological limitations of parameter distri-
butions are established a priori, Then parameter distributions are
generated consistent with these limitations which satisfy the design
requirements in some "optimum" manner. The snythesis is performed
directly in either the time domain or frequency domeain.

Rohrer has developed this synthesis method for general passive
transmission lines (28). With simple notational change, it applies to
type 1-3 active lines., The method is readily extendable to type 2-4

active lines,
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Tihe Domain Synthesis—Type 1-3 Active Lines

Consider the active transmission line embedded between voltage
sources e, and e, and resistances R1 and R2 in Fig., 44. A design
problem of common interest is to obtain specific port voltages by
adjusting parameter distributions accordingly. There is, of course,
no guarantee that this can be done exactly,

Thus, the following is chosen to be the optimization criterion:

Minimize the quadratic error integral

[a 8]
E* = jr %[w1(t)(k1v1(t)-v(o,t))2 + u(t) kzvz(t)-v(d,t))z]dt (5.1)
0

consistent with various conditions by adjusting r*, 1, g*, and c to
their "optimum" values, v1(t) and vz(t) are the input and output
voltages required by the design, and v(0,t) and v(d,t) are the actual
input and output voltages of the active line, Thus, (v1-v(0,t)) and
(vz-v(d,t)) are "error" voltages at the ports. Nonnegative functions
w1(t) and wz(t) together with constants k, and k, allow specification
compromises to be made and therefore introduce design flexibility.

The minimization must be consistent with the active transmission

line equations, port conditions, and parameter limitations. The

internal behavior of the line is described by eqs, 1.3 and 1.4 as

i(o,t) i(d,t)
+ ¥
91(t) v(0,t) Ac?ive
- - Line

Fig. 44, General active line embedded between
voltage sources ' and loeds.
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—v, = p*i + i, (5.2)

-i, = g*v + ovy (5.3)

for (x,t) in 0% where domein p* = {(x,t): 0<x<d, t}U}. From Fig.
44, the port conditions are related to voltage sources 8, and & and

resistances R1 and R, &s

2
91(t) = v(0,t) + R1i(0,t) (5.4)
8, (t) = v(d,t) - Rzi(d,t) (5.5)

Physical limitations, technologicel cepabilities, end economic

considerations dictete lower and upper parameter bounds. Therefore,

r* o*(x) o |
PR (5.6)
1 Slix) [ S |

| © minw.F(x) Cvf max

or simply

Em:’mgg(x)sgmax (5.7)

where the.parameter matrix P is introduced for notational convenience.
The parameter distributions to be generated must lie within these
bounds. A convenient but unnecessary requirement is initial line
relaxation where

v(x,0) = i(x,0) = 0 (5.8)
Subsequent mathematicel operations require the time inveriance of the
network parameters to be explicitly constrained,

r* - g*t = 1 = Cc = 0 (509)

although this was assumed when the active transmission line equations
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were written, These constraints are sufficient for our purposes
although additional requirements cen be imposed if deemed importent.

The problem is now to minimize the error integrel (eq. 5.1) under
the conditions of egs. 5.2-5.9. It is convenient to use Lagrenge's
method of multipliers in this minimization (5), © Using this method, the
error integrel is appended with several of the constreints utilizing
Lagrange multipliers. The problem of minimizing the error integrel
(eq; 5.1) under the constraints of egqs. 5.2-5.9 is equivalent to

minimizing the augmented error integral

d rom
= [* *3i+13 3 *
E=E +-j;.j; {e[vx+r 1+11t] + ﬂ[1x+g v+cvt]

+ er*t + ng*t + Kllt + hcct)dtdx (5.10)

under the conditions of eqs. 5.4-5.8, Lagrange multipliers 8(x,t),
Blx,t), AT (x,t), A9(x,t), Xl(x,t), and AS(x,t) of the constraints of
eqs; 5.2, 5.3, and 5.9, respectively, are independent functions

whose solutions arise from, and become pert of, the synthesis process.
It is convenient in writing later equations to remove partiel derive-
tives of v, i, r*¥, g%, 1, and c in the augmented error integral. After

integration by pearts, the integrel becomes

d [m
E = j; j; ([-va+9r*i-6tli]+ [-ﬁxi+ﬂg*v-¢tcv]
r q 1 4 C
- A LT - A tg* - A tl”' A tc)dtdx

+ jl;m(i‘uh(t)[k1V1(t)-v(0,t)]2 * %Wz(t)[kzvz(t)'v(d’t)]z +[ev+¢i’].:=0)dt

(an]

t=D)dx (5.11)

d
+[ ([eli + fev + ATo* + A9g* + A1+ xcc]
0
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For a (local) minimum in E, the fundamental theorem of the celcu-
lus of veriations requires that the first veriation in E, denoted as
8E, setisfy 8E>0 (2,7). Suppose E is a functionel involving n inde-
pendent functions, i.e. E = E (X1""’Zn)' The first variation 6E is

then
n
Z g_ (5.12)

Writing Yi =Y + éyi where y; are the functions minimizing E, then
the first veriation of yi,-denoted as éyi, is the fluctuation of Y3
about Yse Since the n functions are independent, their first varia-
tions ere independent. Thus, any of the éyi can be set equal to zero.
Setting the éyi equal to zero except for i = j , the fundemental
theorem requires BE/Byj;ZO. But since the sign of éyj is arbitrary,
BE/ayj = 0. If however yj is constreined between yjﬁih;and yjméx
and assumes & bounding velue, then its first variation Gyj;ZO or
ango, respectively, This is reflected in that BE/Byj>D when y‘j =
yjmin and aE/ayj<:0 when Y = yjmax (27). These form the basic tof=
cepts which are now utilized in forming the synthesis method.

6E may be written in terms of the first verietions of v, i, r¥,
g*, 1, and c, denoted as v, 6i, 6r*, 6g*, 61, and &c, respectively.
When Lagreange multipliers ere used, v, i, r*, g*, 1, and c are treated

as independent functions., Their first veriations are therefore inde-

pendent. Thus from eq. 5.11, O8E is

- I[Ddl/:(av(x,t)[-ex+¢g*-¢tcj r 610c,t) [, +8rx-8,1] + ar*(x){ei-xrt]

+ 59+ [pur9, | + al(x‘)[._e'fi-ﬁt] + o(x) [-B;uA°, ||atax
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o [ svta ) [y ey (01-u(8,00) = 6(8,00] + 83(8, 01, o
0

+ J[tn(dv(ﬂ,t)[-WT(t)(k1v1(t)-v(U,t)) - G(Oit)] - ai(O;t)ﬁ(D;t))dt
0

d
! .[ (GV(x, ®)B(x, @)c(x) + 8i(x, @)0(x, @)1(x) + dr*(x)A"(x, &)
0

+ ég*(x)kg(x, ®m) + 61(x)[e(x, @)1(x) + Xl(x, CD)] + 6c(x)[ﬂ(x, @)c(x)

+ X%(x; cn)] )Hx

d
-'jr (same as the above integral changing o to D)dx (5.13)
0 |

Surveying eq. 5.13, there ere six differential equations (celled
Euler's differential equations) which arise from coefficients of the
first veriations within the surface (double) integral., Boundary condi-
tions for these differential equations arise from the corresponding
first variations within boundery integrels. Interpretation of eq. 5.13
leads to a set of equations which describe an "adjoint" active trans-
mission line (shown in Fig. 45) whose solution is used in the optimi-
zation process. This will now be made clear in the following
discussion,

The coefficients of 8v(x,t) and 6i(x,t) equel zero,

0 (5.14)

"

- ﬁx v ot 0l

(5.15)

]
o

- * . =
o * fg* - f.c
for all (x,t) in bt since dv(x,t) and 8i(x,t) ere arbitrery. These

"ad joint line" equations are analogous to the active line equations,
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eqs. 5.2 and 5,3, when x and t are negative.

The boundary canditions of the adjoint line follow from the coeffi-
cients of the variations dv(0,t) and 6v(d,t) on the x-bounderies (x=0,
end x=d). Since dv(0,t) end dv(d,t) ere arbitrery, their coefficients
must equal zero so

y () [l (£)-v(0,)] + 0(083 - O 4D/, = (5.16)

n
o

(5.17)

n
o

wz(t)[kzvz(t)-v(d,t)] - 8(d,t) - #(d,t)/R,

Here, it is recognized that the port voltage and current variations on

the origineal line ere constrained by eqs., 5.4 and 5.5 es

dv(o,t) + R16i(0,t) 0 (5.18)

0 (5.19)

dv(d,t) - RBi(d,t)

The voltage and current along the adjoint line et t = @ follow
from the coefficients of variations 6v(x, @) and 8i(x, @) along the
t = o boundary integrel., Since dv(x, @) end 8i(x, @) are arbitrary,
#(x, o) = 6(x, @) = 0 (5.20)

Since the initial conditions along the original line ere specified
by eq. 5.8, the initial condition variations are constrained to be
dv(x,0) = 8i(x,0) = O (5.21)
Therefore, from the integral along the t = 0 bourdary, the coefficients
of &v(x,0) end 6i(x,0) which are #(x,0) and @(x,0), respectively, are
erbitrary,

The various adjoint line characteristics are summarized with the
originel line characteristics in Fig, 45, The internal behavior of the
ad joint line is described by egs. 5.14 and 5.15. The port behavior is

given by eqs. 5.16 and 5.17, Here arises the interesting fact that the

"error volteges" previously mentioned energize or drive the adjoint



118

1 2
e, v(0,t) fetive v(8,t) B
t
v(x, m), i(x, m) arbitrary
2}
5 \\\\\\\\
N \
-V =r¥*i+lj
V(D’t)=B1-R1i(U,t) \ VX o 1t E V(dyt)=52+R21(d’t)
:t? -ix=g*v+cvt N
0 \\\\\\\\ d
0 X
v(x,0)=i(x,0)=0
R, 6(0,t) o(d,t) R,
+ + fdjoint + *
R, W, (k, v, g(o,t) "E*i;\e/e g(d,t) R W, (k, v,
-V(U,t)) - = = - -V(d’t))

t

B(x, @)=6(x, m)=0

ﬂ(U,t)=R1W1 (l<1v1 -v(0,t))
+R19(D,t)

BN
N\ \
\\\ ¢x=r*6-let ::: Bdot)
iif 6, =g*f-cf, :i

0 }\\\\\\\\C x

Fig. 45.

#(x,0),6(x,0) arbitrary

=R2w2(k2v2-v(d,t))

-Rze(d,t)

Time domein veriational synthesis requires time domein

solution of the originel active line and the eadjoint line

shown,

Their constraints are labelled on the (x,t)-plane.
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line., Physicelly, as the error voltages become smeller, the adjoint
line responses become smaller, It will be seen that this is reflected
mathematically in thet the parameter distributions are approaching
their optimum distributions. If we consider time as running backward
from @ to 0, the adjoint line has zero initial conditions and erbi-
trary final conditions, Thus, there is a symmetry between the origineal
active line and the edjoint line,

"It remeins to interpret the A Legrange multipliers end the param-
eter bounds given by egq. 5.7. The partiel differentisl equetions
describing the Lagrenge multipliers .f, ﬁ, %, and X follow from the
coefficients of Or*, Og*, 81, end &c in tﬁe sﬁrface integral, As was

noted before, the veriations ere required to possess a certein sign

when the paremeters assume limiting velues. Thus,

(01 - F

-

t _
ﬂv )\g < Q, E(X) = Emax
- A, i
0 i A?\.l =5 PﬁninSE’(x)g-&nax (5.22)
BAE A -

>Q, E,(X) =

ROERYY
for (x,t) in Dt, where for notationeal convenience the P metrix of
eq. 5.7 is used,

The boundary velues of these A arise from the coefficients of the
perameter veristions &r¥, 8g*, 61, and dc on the t = 0 end t = ®

bounderies, From eq. 5.13, these are
- -
)\. (X,O) <g’ E.(X) -

Xg(x,U) -
: =0, B, <BGOSE (5.23)
A (X,U)

>_[_J.9 E(X) =P

_XC(X ,U)—
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and

[\ (x, @) |
<3, E_(X) =

_ )\.g(x, CD) -max

- )Ll(x ®) "o Emingg(x)sgmax (5.24)
>0, P(x) =P,

- )\C(x, cD)_ - =min

Combining these results yields

-)\r(x, ®) - )\r(x,O)q o)

<0, P(x) =P

A 9(x, @) - AT (x,0) - —max
=0, P . <P(x)KP

AL(x, @) - A1 (x,0) Tmin =7 Smax (5.25)

:>Q; E(x) = Emin

A%(x, @) - A%(x,0)
which is extremely useful. When eq. 5.22 is integrated with respect to

t, eq. 5.25 can be utilized to yield

oy -
e < 2 200 = Py
o || T BnanSEOOSE (5.26)
Tt
N R - #

This is the peremeter optimization criteria from which the optimum
distributions of r*, g*, 1, and c can be found. Since for interior
parameter solutions, the various integrals of eq. 5.26 are identically
zero, they may be differentiated any number of times with respect to x.
Differentiating once end simplifying yields the result that r*(x)/1(x)=
g*(x)/c(x) for the optimum line. 2 For the general synthesis however,
optimality is not essumed,

The general synthesis method follows directly from these various

12From this result and the results related to eq. 4.65 in Chapter 4, it
is interesting to note that the poles eand zeros of the immittance
paremeters of an optimum active line have constent negative real parts
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results. If the adjoint transmission line equetions (egs. 5.14, 5.15)
ere satisfied along with their boundary conditions (eqs.5.16, 5.17) end
"initial" conditions (eq. 5.20), then the first veriation of the

sugmented error integral eq. 5.13 is

[ 0i [Sr*(x)]T"
d rmo | Bv 8g*(x)
SE =f (f d’c) dx (5.27)
o ‘Yo -6,1 81(x)
'ﬁtY_ dc(x)

where T denotes the transpose. The gradient of the augmented error

integral, eq. 5.11, with respect to the paremeters is

01
. d ro| gv
§7,_5=[%—E—; ’STET = g—E]T =ff dt dx (5.28)
0Jo |01
| A,

The first varietion of eq. 5.13 mey be expressed as

d
65.=:[-(jz;) 5P dx (5.29)
0 X
so that
o1
o | Pv
(VE) = ]f dt (5.30)
* Jo |-e.1
t
Py

is the local gradient metrix for

dr*(x)
5P(x) = §?Z§§? (5.31)

&c(x)
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Employing the local gradient to alter parameter values in the direction
of steepest descent to reduce the error, @ practical iterative synthe="

sis method results, Here then, we let

p—

r*n+1(x)— _r*n(X)_ —arn_ _Gn(x,t)in(x,t) a7

9*n+1(x) ; g*n(x) ] a?n chn ﬂn(x,t)vn(x,t) N (5 32)
ln41(x) ln(x) a 0 -th(x,t)in(x,t)

_Cn41(X)J _Cn(x)_ _acn_ _-ﬁtn(x,t)vn(x,tl

for all x in Dt to generate the parameter distributions., The a's ere
nonnegetive numbers that control step size.

The flow chart of the synthesis procedure is shown in Fig. 46.
The source voltages (91, ez) end their internal resistances (R1, R2)
are given and the constants (W1, W,y Ky, k2) of the optimization inte-
gral chosen, The maximum acceptable value Emax of the augmented error
integral for program termination is set., The desired port responses
v1(t) and vz(t) are specified, The parameters P are bounded and con-
stants a of eq. 5.32 chosen.

Upon choosing the initial parameter distribution, the voltages
v(x,t) and currents i(x,t) slong the active line are determined. The
error voltages w1(k1v1-v(0,t)) and wz(k2V2°V(d’t)) are calculated and
the approximation criterion tested to determine whether the optimum
solution has been attained, If En is less than Emax’ the optimum
parameter distribution is En(x). Otherwise the program continues and
the adjoint voltage B(x,t) end current 9(x,t) are found,

Since the adjoint line is described by equations identical with
those solved previously, the same analysis program may be used with

only slight modification., Time and distance sre mede negetive and
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bound,

[u 8]
o, 00 - 2%, [ B G,
0
1 [@ .
ln(x) - a “JE -etn(x,t)ln(x,t)dt

@
c (x) - acnjg g, (x,t)v_(x,t)dt

If parameter bound is exceeded, use paremeter

(x,t)dt

(x,t)dt

Fig, 46, Flow chart of time domain celculations to determine optimum
parameter distributions for type 1-3 active lines.
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voltage source 8, is replaced by R1W1(k1v1-v(0,t)) and source e, by
R W, (kyv,-v(d,t)).
The r*, g*, 1, and c peresmeter distributions ere found from v, i,
# and © in eq. 5.32. If the paremeter bounds of eq; 5.6 are exceeded,

the peremeter assumes the velue of the bound. This process reiterates

until an acceptable distribution is determined.

Frequency Domain Synthésis—Type 1-3 Active Lines

Frequency domain synthesis cen equally well be cerried out, Its
development using phasor notation is analogous to that of the time
domain synthesis. Denoting the source voltages as E1(w) end Ez(w) with

port impedances 21(w) and Zz(w), the quadratic error integral is

m - 2 )
E* = jr (% W (w) [y Uy (w)=V(0,w)| “+u, (w) [ kU, (w) -V (dw) | )dw (5.33)
-m

Again, real nonnegative functions w1 and W2 and constants k1 and k2
introduce design flexibility.

The trensmission line equations (eqs. 2.1 and 2.2) in the fre~
quericy' domain are

-V
X

(p*+jwl)I (5.34)

-1
X

(g*+ juc)V (5.35)

for (x,uw) in DY where D" = {(x,w): 0<x<d, |ul <u:}. The port
conditions are

E1(w) = V(0O,w) + 21(w)1(0,w) (5.36)
Ez(w) = V(d,w) - Zz(w)I(d,w) (5.37)

where port impedences Z1 and 22 are real functions (this insures the
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optimum network elements are realizeble), The paremeter velues are
bounded as before in eq. 5.7 and are explicitly constrained to be
frequency independent
r* =g* =1 =¢ =0 (5.38)

The error inteqrel is augmented to include the constraints imposed
by the active line equations and frequency independence of the param-
eters by introducing Lagrenge multipliers #(x,w), 8(x,w), A (x,w),

xg(x,w), xl(x,w), and xc(x,w) to obtein

E = E% + fd f ® e[Vx+(r*+jwl)I] . ¢[1X+(g*+jwc)v]
0 - M

T . 9 4 1 c )
*AT¥ o ATg* o+ AL+ ATc [dudx (5.39)
After integration by parts to remave partial derivatives of V, I, r¥,
g*, 1, and c, we express the first veariation of the sugmented error

integrel as
d (a8

OF = Jr 'jf (6V(x,w)[-9x+(g*-jwc)¢] +‘61(x,w)[-¢x+(r*-jwl)9]
0 -m

+ ore(a) [1o-n7, ] + 89700 [, | + 8100 [-gutean? ] + e
[. jwV]ZI-)\cw ])dwdx

+[ m(év(d,w)[-Wz(kzvz-v(d,w))+e(d,w)] * ax(d,wm(d,w))dw
- @D

a
+ Jf (6V(O,w)[-W1(k1V1-V(Q,w))-6(D,w)] - 6I(D,w)¢(0,w))dw
- D

d
. f (62 GONT(x, @) + 8g* (xRS, @) * 6L (x, @) + 80(xN°(x, @) dx
0

d
- Jr (same as the above integrel changing @ to - m}dx (5.40)
0
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Interpretation of eq. 5.40 again leads to equations which describe the
adjoint active transmission line shown in Fig. 47.

The internal behavior is described by

0 (5.41)

_ﬂx-i-(r*_ jwl)e

-9x+(g*-jwc)¢ 0 (5.42)

which are the coefficients of 8V(x,w) and 8I(x,w) for (x,w) in 0¥,
Thus, the adjoint line equations are enalogous to the line equations

(eqs. 5.34 and 5.35) when x and w are negative,

The boundary conditions arise from 6V(0O,w) and 8V(d,w) coefficients

as
u, [|<1v1 -v(o,w)] + 0(0,u) - B(0,u)/2,(w) = 0 (5.43)
u, (k¥ ~U(d,w)] - ©(d,u), - Bd,w)/Z,(w) = O (5.44)

since port variations are constrained by egs. 5.36 and 5.37 to be

0 (5.45)

dv(o,w) + Z1(w)51(0,w)

dv(d,w) - Zz(w)él(d,w) 0 (5.46)
From the first variation of the parameters within and on the

boundery, the following criteria is obt'ained,13

o1 ] <o B0 by,
i L PP <B(x)KP (5.47)
: = TninX =V Tex )
-m |-jwdl

-jugv] >0, P(x) =P .
The iterative synthesis scheme in Fig. 46 is carried out as

before by employing the local gradient of E to change perameter values

in the direction of steepest descsent as

1::"The same optimum condition r*(x)/1(x) = g*(x)/c(x) results from

these equations consistent with the previous result,
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=v(o,w)) ~ = = T =v(dyw))
w
o
z\\\\\\ N
. N
ﬂ(U,w)=Z1W1(k1V1 _g_ésg_ﬂx=(r*ajwl)9 .:3___-x ﬂ(d,w)=22W2(k2V2
d
U (0,w))*2,6(0,w) R &=(a-jue) N ~V(d,u))-Z,8(d,u)
\
o ONONNNNNN
Fig, 47. Frequency domain synthesis requires frequency domein solution
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V(d,w)=E2+22I(d,w)

of the originel active line and the adjoint line shown,
Their constraints are labelled on the (x,w)-plane.
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_ 9 e - - -

T* ¥ al en(x,w)In(x,w) T
g

* *
9 h+1 9 ®h ® ﬂn(x,w)vn(x,w)
= - 1 . d 5.48

1 1 8 -/:az -Jwen(x,w)ln(x,w) W ( )
c s

cer | 1] L® Al _-Jwﬂn(x,w)vn(x,wl

The only chenge is that frequency domain quantities are used rather
then time domein quantities, and frequency runs from -m to o rather
than time from 0 to .

Having presented the time and frequency domain synthesis of
general type 1-3 active lines, the same methods are now used to synthe-

size type 2-4 active lines,

Time Domain Synthesis—Type 2-4 Active Lines

The minimization of the quadratic error integral must be consis-
tent with the type 2-4 active line equations, port conditions, and
parameter limitations., The active line equations are

-V, = ri + lit + Kv (5.49)

-i =gv *ov * Li (5.50)

for (x,t) in p*. The port conditions as before are

91(t)

ez(t)

v(0,t) + R1i(0,t) (5.51)

1]

v(d,t) - Rzi(d,t) (5.52)

The network is specified to be initially relaxed
v(x,0) = i(x,0) = O (5.53)

The parameters are bounded as
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[ (x)]

T r
9 g(x) g

c SN lex)| Y le

K K(x) K

-F_min _L(x)_ _L_max

or, utilizing the perameter matrix, simply

SEOISE (5.55)

Again the time-invarience of the parameter velues is explicitly
constrained,

r, =g =1 =¢c =K = L, =0 (5.56)

The minimizetion of the error integrel under the conditions of

eqs. 5.49-5.56 is equivelent to minimizing the augmented error integreal

E = E* + J( J[ ( v tritli +Kv] + ﬂ[ix*gv+cvt+Li]

c

Tr kggt wal L+ A, + XKKt + XLLt]dtdx (5.57)

t t
consistent with eqs. 5.51-5.55. Agein F(x,t), 0(x,t), AT(x,t), A%(x,t),
Xl(x,t), AC(x,t), KK(x,t), and XL(x,t) are the Lagrange multipliers of
the active line equations and time-invariance constraints. Performing

integration by parts to remove partiel derivatives of v, i, and the

parameters, results in

= ‘[Odfum([-exv*eyri-etli‘+9Kv]+ [-ﬂxiﬂﬂgv-ﬂtcv+ﬂLi]

T q 1 c K L
T R L I It t)dtdx

' JE(D(%W1[k1V1'V(U’t)]2 lwz[ 2Vp-v(ds t)] [9V+¢i]:énlﬁt
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d
+ Jf (Pli + gov +ATr + 2% +al1 + 0% +aKk + xLL]th)dx (5.58)
0 . , =

The first veriation of the augmented error functionel is

d rmo )
&€ =.j; J[; (6v(x,t)[-ex+ek+¢g-¢tc] + 61(x,t)[-¢x+¢L+9r-6tl]

+on(0) (0147, | + 85608, ] + 6100 [0 141 ] + 800 [-AvA%, ]

» 8k [ounS, | + 5L(x) [pir", )| ot

@
O R Y C RS R R ERS DI RETERS IR
JQ QICRI EACRY ] 01 )
@
[ [ov0,) [y yvy-u(0,)-0(0,0)] 10, 0380, )
0

d
+f [év(x,m)c(x)ﬂ(X,m) + 8i(x, @)1(x)8(x, @ + 6r(x\"(x, @)
0 ,

+ 590N (x, @) + 8K (x, @) + BLOGA (x, @) + 5100 (x, @)

+ 10x, @)8(x, @)] + 600A(x, @) +u(x, @B(x, @)] o
d
- J[ (same as the ebove integrel chenging o to D) dx (5.59)
0

The edjoint ective line equations result from §v(x,t) and §i(x,t)
coefficients es
-¢x +ro -1, +fL=0 (5.60)
-6, +of - Cﬂt + 0K = O (5.61)

for (x,t) in Dt.

w1(t)[k1v1-v(0,t)] + 0(0,t) - ;d(o,t)/R1 =0 (5.62)
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Wz(t)[kzvz-v(d,t)] - 8(d,t) - #(d,t)/R, = O (5.63)
since the port veriations ere constreined from eqs. 5.51 and 5.52 es

6v(0,t) + R6i(0,t) = O (5.64)
s(d,t) - RBi(d,t) = O (5.65)

"Initiel" conditions elong the adjoint line result from dv(x, m)
and 8i(x, m) coefficients as
B(x, @) = 6(x, m) = 0O (5.66)
while the final conditions ere arbitrery since dv(x,0) and 8i(x,0) ere
zero. The two lines with their boundery conditions are shown in Fig.,
48, The partial differential equetions describing the originel line
and adjoint line are enelogous with sign reversal of x and t, where K
end L are interchenged. Their initiel conditions ere identicel end
port conditions similar,

The parameter optimizetion follows as before as14

— —_

0i
v <8, Blx) = gnax
@ -etl
fu o dt = 0, P, SRGOKR (5.67)
t
Ov
o | LR sy

When the adjoint line equations, and boundary and initial condi-
tions are setisfied, the first varietion of the augmented functionel

becomes

14DiFf‘erentiating eq. 5.67 once with respect to x and simplifying

yields the result that r(x)/1(x) = g(x)/c(x); differentiating twice
results in $(L-K) = (lx/I--cx/c) for the optimum ective line,

Ngain, from eq. 4.65, the poles &nd zeros of the immittance param-
eters of the optimum line have constent negative real parts.
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Fig, 48, Time domein synthesis requires time domein solution of the
original line and the adjoint line shown, Their constraints
eare labelled on the (x,t)-plane.
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01 | - [er(x)]T
Pv 69(x)
§E = jrdbfuj 01 dt) 010) | 4y (5.68)
0“0 ¢V 8c(x)
ov 5K(x)
| gi ] | 8L (x) |

Again forming the local gradient to alter parameter values in the
direction of steepest descent to reduce the error; the iteration

parameter matrix becomes

0] [r o] [o5 ] [e Got)s (o) T
I CON I - CO ) I CAN B I R CPO VR ERY
1 .
1 ,q(x) ] 1 (x) % Jcn -0, (x,t)i(x,t) N (5.69)
cn+1(x) cn(x) acn 0 -ﬂtn(x,t)v(x,t)
Kn+1(X) Kn(x) aKn en(x,t)vn(x,t)
_Ln+1 (x)- _Ln(X)J _aLn_ _ﬁn(x,t)in(x,t) 1

for all x in Dt. If parameter bounds are exceeded, the appropriate
bound in eq. 5.54 is chosen for the parameter value. It is interesting
to note that the first four entries are identicel to those of eqg. 5.32
for type 1-3 active lines.,

The basic flow chart for the synthesis procedure is identical to

that for type 1-3 active lines (Fig. 46).

Frequency Domain Synthesis—-Type 2-4 Active Lines

The frequency domain synthesis using phasor quantities follows

that in the time domain. The active line equations are

[}
<
n

(p+jwl)I + KV (5.70)

]
—
n

(g+jwc)v + LI (5.71)
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for (x,w) in D%, with port conditions

E,(w) = v(o,w) + Z, (w)I(0,w) (5.72)

Ez(w) V(d,w) - Zz(w)I(d,w) (5.73)

The elements are bounded as before (eq. 5.54). The frequency invariance

of the pareameters is explicitly constrained as

r,*9,%1,=¢c, =K, =L, =0 (5.74)

Cerrying out the minimizetion procedure leads to the first

varistion of the augmented error integrel as

6E = chj[csn(év(x,cn)[-9x+6K+(g-jwc)¢]+ 61(x,w)[-¢x+ﬂL+(r-jwl)6]

+ 6r(x) [01A7 ] + 8a(x)[BUA9, ] + 810 -jure1n’ ]

. Gc(x):-jwc¢V-ch] R 6K(x)[9V-XKw] + LG g1-A" JJouax

+ J[(D 6V(d,w)[-W2(kZV2-V(d,w)) + e(d;w)] +‘6I(d;w)¢(d,w))dw
- @
(e8]

. Jf (8v(0,w) [-u, (e, v, -v(0,u)) - 0(0,w) ] - 51(0,w)(0,u) | cu

d
+[ (Gr(x))».r(x, o) + 8g(x)A%(x, @) + 6K(x))\K(x, ®)
0

+5L(an(x,m)-+61(xnﬁ(x,m)-+acoox°(x,m))dx

d
-.jr (same as the above integral changing @ to -ID) dx (5.75)
0

Thus, the adjoint line equations are
- HLgagul)e ¢ g = 0 (5.76)

-ex + (g-jwc)@ + K6 = 0 (5.77)



for (x,w) in Dw, with boundery conditions

uy [k Uy =V (0,w)] + 0(0,w) - P(O,u)/2, (w) = O
wz[kzvz-v(d,w)] - o(d,w) - #(dw)/Z,(w) = 0
These conditions are summerized in Fig. 49.

x and w, the equations are analogous.
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(5.78)

(5.79)

With the chenge in sign of

15

The parameter optimization criteria follows directly eas,

°L ] <o e =P
gy °
i dt = G, Emingg(x)ggmax
- - jwgy
eV _
ﬂI >g, E(X) - Emin

(5.80)

The flow graph of the synthesis procedure is the same as before

except that frequency domain quantities replace time domain quantities.

The reiteration parameter matrix is

— e

r_W

T (X) _rn(XfW Lol —On(x,w)ln(x,w)
949 (%) g,(x) agn g Oxu)V(x,yw)
SN CS] N A EY) I J[tn - w0 _Cxyu) T Gepw)
Craq (X) c (x) a® |- | -jug (x,w)v_(x,w)
K | | GO | 8_(x,uV_(x,u)
L (][] _aLn_ FACHRIRERD

Variational Synthesis in Retrospect

Use of verietional calculus has resulted in a

synthesis procedure readily implemented by digital

dw (5.81)

direct and general

computers. It may

15The same optimum condition results from these equations consistent

with the previous result,
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Fig. 49, Frequency domain synthesis requires frequency domain
solution of the original ective line and the adjoint line
shown. Their constraints are labelled on the (x,w)-plane.
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well be that hybrid computers can carry out the necessery calculations
with greater efficiency without loss of accuracy. An efficient general
active line analysis program is required to solve for peremeter genera-
ting functions v, i, 0, .end f.

The necessary condition that the first variation of the error
functional 6E>0 for a local minimum yielded the paremeter generating
expressions, The condition that the second variation 62E:>U to insure
a locealiminimum be attained was not employed. Likewise we tacitly
assumed that the local minimum was also the global minimum of the error
functioneal,

The analysis and synthesis of active lines has been fully devel-
oped and presented. In the next and concluding chaepter, possible

realizations for active transmission lines are proposed.
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VI, REALIZATIONS OF ACTIVE TRANSMISSION LINES

Summary

The preceding chapter presented a synthesis method for general
active trensmission lines. O0Obviously such lines require fabrication
techniques in which the various parameters can be independently
controlled and distributed. This requirement is difficult to satisfy
even today with passive rcg thin-film circuitry. This, however, does
not pose any serious limitation to the synthesis technique since the
original equations may be amended with appropriate additional
constraints and an analogous procedure tabulated.,

The fundamental problem at this time is the inability to distri-
bute dependent or controlled sources along a passive transmission line,
This is not the case for multiple lines., For example, two transmission
lines actively (and passively) coupled eppeared in Chapters 1 and 2.
The simplified model of the traveling-wave transistor consisted of two
delay lines, one unilaterally actively coupled to the other via 9’
the transconductance/unit length (see Fig. 10)., Passive coupling
complicated the analysis as noted by Jutzi (12). However this more
general model represents many of the classical coupled mode devices
such as the traveling-wave tube, etc. Semiconductor photodetectors
and solid-state traveling-weve amplifiers also have coupled line models
(see Fig. 15). Kewamura and Morishita considered a similar problem
involving semiconductor bulk effects (14). Various higher order modes
complicate the model as noted by Copeland (4).

These studies exemplify much of the research currently underway
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in solid-state electronics, Through this research, new semiconductor
effects leading to ective materials ere being discovered., Thin-film
technology is also making rapid strides in miniaturization of existing
devices and realization of new thin-film devices. It may well be that
advances in the solid-stete and thin-film arees will result in the
ability to produce active trensmission lines in the not too distant
future.

At the present time, artificial active lines must be relied upon.
In the following two sections, the topology and characteristics that

the iterative two-port must possess are briefly outlined.

Artificial Type 1-3 Active Lines

The lumped network approximating a type 1-3 active line of length
D is shown in Fig. 50. It is enticipated that an n-fold iteretive
structure mede up of these two-ports will heve low-pass cheracteristics
approximating those of an active line of length d = nD, The lumped
approximation of uniform active lines have parameters which are con-
stant with section number, while the approximation network of nonuni-
form lines have parameters which depend upon section number.

Each controlled source of the approximetion network of Fig, 50
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Fig. 50. Lumped approximation of the type 1-3"active
line of length D,



must be realized by a two-port network.

output is controlled by input current is denoted as the KDI1 voltage

source, and the two-port whose current output is controlled by input

voltage as the LDV

1

current source,

The two-port whose voltage

Then, the approximation network

cean be realized by interconnecting the voltege source eand current

source two-ports-as: shown'in. Figs. 51: and 52,

Fig. 51.
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Fig. 52. Second realization of the
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‘differ in that the first has the LDV1 current source dependent on V1'

rather then V1 (due to the voltage drop across the input to the KDI1

voltage source); the second has the KDI1 voltage source dependent on

11' rather than I1 (due to the current input into the LDV1 current
source). It is how shown that the latter reelization leads to more
flexible design requirements. It will be seen thet impedance Z' =
(rD)' + s(1D)" end admittance Y' = (gD)' + s(cD)' combine with two-
port parameters to form impedance Z = rD + slD and admittance Y =
gD + scD, respectively,

| The first reelization has the equivalent circuit shown in Fig. 53,
where the KDI, voltage source two-port is represented by its z equive-

1

lent circuit and the LDV1' current source two-port by its y equivalent

circuit, Clearly V1 and V1' differ by the voltage across the input to

the KDI1 voltege source two-port. From one point of view, this equiva-
lent circuit consists of two cascaded networks which have series volt-
age sources controlled by series currents and shunt current sources
controlled by shunt voltages. Thus, each section with appropriate
parameters appeers to realize the type 1-3 active line of Fig., 50, But
the first section has sources controlled by quantities to its right

rether then its left which is unsuitable., z,. and Yqo @8re therefore

12

Fig., 53. Two-port equivalent of the first realization.
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set equel to zero.. Thus, to realize the type 1-3 active line with

this topology, the two-port parameters must equel:

Y99 = O

299 % V4 = 0

ey 7 (6.1)
+ Y!
KD = 2

LD =

1

' current source two-port.

Rgain, the z parameters characterize the KDI,’ voltage source two-port

end the y parameters cheracterize the LDV1

The type 1-3 active line may elso be formed using the realization
shown in Fig, 52, Its equivelent circuit is shown in Fig. 54 where as

before, the KDI,' voltage source two-port is represented by its z

1

equivalent circuit and the LDV, current source two-port by its y

1
equivalent circuit. Clearly I1 and I1' differ by the current entering
the LDV1 current source two-port. Since the y12V2 current source is

dependent upon a voltage to its right, Yqo is set equel to zero. Thus,

we let

Fig. 54, Two-port equivalent of the second realization.,
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Y14 =0

Y1 = 0

Z=zgq vzt 2! (6.2)
Y=yt V!

KD = 245 * 2y

LD = v,

This set of design equations is more flexible then those of eq. 6.1
since 24 and z,, cen be nonzero. It should be noted here that when
the approximetion networks are cescaded and viewed as cascaded L

sections, adjacent admittances combine so Y = Yi1 + + Y', There=-

Y22
fore, yqq con be nonzero in Figs. 53 and 54, with corresponding Y14
and Y changes in eqs. 6.1 and 6.2,

Thus, the problem of constructing an artificial type 1-3 active
line consisting of cescaded sections shown in Fig, 50 becomes one of

cascading the interconnected two-ports shown in Fig, 52 which have the

respective properties listed in eq. 6.2.

RArtificial Type 2-4 RActive Lines

The lumped network approximating a type 2-4 active line of length

D is shown in Fig. 55, Agein it is expected that an n-fold iterative
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Fig. 55, Lumped approXimafioh of the type 2-4 active
line of length D,
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structure made up of these two-ports will have low-pass characteristics
that epproximate those of an active line of length d = nD.

As before, each controlled source of Fig, 55 is realized by a two-
port network., The two=port whose output voltage is controlled by the
input voltege is denoted as the KDV1 voltege source, and the two-port
whose output c¢urrent is controlled by the input current as the LDI1

current source, Either of the two realizations of Figs. 56 and 57 may

|
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Fig., 56, First realization of the artificiel type 2-4 active line.
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Fig. 57, Second realization of the artificiel type 2-4 active line.
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be used to realize the approximation network.. Impedances Z and Z!'

admittences Y and Y' were previously defined., The volteages V, and V1'

1

and currents 11 and 11' differ in the same manner as before., The

latter realizetion leads to more flexible design requirements as will
now be shown,

The first realizetion has the equivalent circuit shown in Fig, 58,
where the KDV1' voltage source two-port is represented by its g equive-

lent circuit and the LDI1 current source two-port by its h equivalent

circuit, In the first half-section of the network, source values are
dependent on voltege end current to their right which is unsuitabls,
Thus, this helf-section is eliminated end the ertificial types 2-4
active line realized by setting

M1 = 9

h 0

12 = 92 T

2% 9y 1

= 1
Y h22 +Y

KD = g,

(6.3)

LD = h21
,

Rgain, the g paremeters characterize the KDV1 voltage source two-port

2
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h2111 h22 Y -
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Fig. 58. Two-port equivalent of the first realization,
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and the h parameters characterize the LDI, current source two-port;

1
The realization in Fig. 57 may also be used. Its equivalent
circuit is shown in Fig. 59. As before, the KDV1 voltage source two-

port is represented by its g equivalent circuit and the LDI1'current
source two-port by its h equivelent circuit, The sources in the first
helf-section of the network have values depending on voltages and
currents to their right which is unacceptable, 99 and h12 are there=-
fore set equal to zero. The artificial type 2-4 active line is

realized by adjusting the parameters as:

94 =0

"

=
1]

o

992 = M1 ©

Z=hyy * 9y (6.4)

Y

n
T
+
<
-

LD

n
=

Comparing these velues with those of eq. 6.3, the latter realization
is more flexible since the input impedance h11 may be nonzero. It
should again be noted that if cescaded L sections are considered, then
94 cen be nonzero in which case Y = 941 + h,, t+tY',

22

Therefore, the problem of constructing an artificial type 2-4

Fig, 59. Two-port equivalent of the second realization.



147
active line consisting of cascaded sections shown in Fig, 55 becomes
one of cascading the interconnected two-ports shown in Fig, 57 which
have the properties listed in eq. 6.4.

In the pest, artificial distributed emplifiers were built with
rather large discrete components, Parasitic elements limited high
frequency operation, Todey with the advent of thin-film end integrated
circuit technology, iterated structures of minute size are manufactured
with greet precision. ARAccompanying size reduction is a corresponding
decrease in pareasitic element velues, If the gain blocks of each stage
ere of sufficient magnitude, higher frequency operation appears possi-
ble. Redundency may be beneficial to insure characteristics., However,
the failure of severel controlled voltage and current sources along the
ertificiel active line composed of meny sections should not signifi-

cently impeir its performence.

Conclusion

In the preceding chapters, the active trensmission line has been
fully investigeted. The active line was viewed in historical perspec-
tive end its current usefulness discussed. It was seen to be a useful
device and to model meny physicel processes. The active line wes
fully enalyzed end @ general synthesis scheme was presented. Current
investigations in high frequency devices were noted and the artificial
active line was reviewed.,

In concluding it should be pointed out that although this thesis
has been concerned with the class of active distributed networks having

an-active transmission line equivalent, the considerations are readily
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extendable to networks having other differentiel length models. Thus
in ® more general context, this thesis is concerned with developing

methods for analyzing and synthesizing active distributed networks,
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