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Active transmission lines, a generalization of classical trans-

mission lines, are useful electrical devices. They can be utilized to

realize distributed amplifiers and to obtain other electrical cherac.

teristics unattainable with passive lines. Active lines have histori-

cal significance and model many physical processes including heat

conduction in an internally heated material, a vibrating string, pres-

sure waves in gas, neutron diffusion and fission, and semiconductor

photodetection. This paper fully develops the analysis and synthesis

of active transmission lines using a network theory approach.

An active line is characterized by distributed series voltage and

shunt current sources in addition to the passive line parameters.

These sources may be of independent and/or dependent type.

It is shown that independent sources may be removed from the line

if appropriate modifications' in port conditions are made. Extraction

integrals are formulated for this purpose. Examples of independent

sources include initial condition generators; they also occur in

devices exhibiting active coupling such as the traveling -wave transis-

tor.

Dependent sources however change the two-port parameters of the



active line. These sources have their outputs controlled by either

line voltage or current (a source at position x has an output which

depends on either voltage or current at position x). Two basic types

of lines are therefore possible.

The uniform active line having dependent distributed sources is

completely analyzed. Its traveling-wave characteristics including

characteristic impedances and propagation functions are presented.

Laplace transformation techniques are used to analyze the driving-

point and transfer admittances, gain, bandwidth, step response, rise

and delay time, and sensitivity of uniform rcg active lines.

The general nature of the pole-zero patterns of nonuniform active

lines having distributed dependent sources are investigated using

several results from differential equation theory. Their two-port

parameters are readily expressed using the basic set notation and self-

adjoint properties of the active line equations. Lack of pole-zero

cancellation is noted utilizing the Wronskian of the basic set solu-

tions. Sturm-Liouville theory establishes the general pole-zero

locations. many of the powerful theorems concerning lumped passive

networks are seen to parallel those of active lines.

Active transmission lines are readily synthesized directly in the

time or frequency domain using variational calculus techniques. The

parameter distributions required to produce specified port response for

arbitrary excitations and loadings (consistent with parameter bounds,

etc.) are generated by expressions involving voltage and current along

the original line and a so-called adjoint line. The method is readily

implemented by digital and hybrid computers.



At the present time, active transmission lines cannot be realized

because of the inability to distribute dependent sources along a

passive line. Therefore artificial active lines are presently utilized

The topology and two-port parameter requirements of the iterative two-

port are discussed.

Future advances in solid-state electronics and thin-film technol*

ogy should overcome this difficulty. Several current research studies

involving semiconductor bulk effects and solid-state traveling-wave

amplifiers are cited.

Although this thesis is concerned with the class of active distri-

buted network having an active transmission line equivalent, the

various considerations are readily extendable to networks having other

differential models. more generally then, this investigation is

concerned with developing methods for analyzing and synthesizing

active distributed networks.
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ANALYSIS AND SYNTHESIS OF ACTIVE TRANSMISSION LINES

I. INTRODUCTION

Active Transmission Lines

The active transmission line is a generalization of the classical

transmission line. By introducing distributed voltage and current

sources along a transmission line, the line may be made active and

capable of delivering energy from its ports. Active lines can be

utilized to realize distributed amplifiers and to obtain other elec-

trical characteristics unattainable with passive lines.

The active transmission line is characterized by the parameters:

r, the series resistance/unit length (ohms/m),

1, the series inductance/unit length (henries/m),

e, the distributed series voltage/unit length (volts/m),

g, the shunt conductance/unit length (mhos/m),

c, the shunt capacitance/unit length (farads/m),

j, the distributed shunt current/unit length (amperes/m),

Parameters r, 1, c, and g are time-invariant and may be functions of

distance. The distributed voltage and current sources are independent

or dependent sources, or a combination of both which have time and

spacial dependences. This is explicitly denoted by writing e = e(x,t)

and j = j(x,t).

Kirchhoff's equations relate port voltage and current of the

active line element of length Lx in Fig. 1' as

(x.t)
v(x+--,Lx,t) = v(x4Lx,t)-e(x,t)Lx-r(x),Axi(x,t)-1( )L,x

aiat
(1.1)
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i(x+31Ax,t) = i(x-2Lx,t)-j(x,t)Lx-g(x)Lxv(x,t)-c(x)Lx2/19t) (1.2)

for Axe 0 where v and i are assumed continuously differentiable in

x and t. This implies that r and g are nonzero, 1 and c are contin-

uous, and r, g, e, and j are continuously differentiable in x and t

along the line. Dividing each side of eqs. 1.1 and 1.2 by Ax and

letting Ax---4100, the active transmission line equations become

av(x,t) = e(x,t) r(x)i(x,t) 1(x) ai(x9t)
at

aiax (x,t)
=

av(at x,t)j(x,t) g(x)v(x,t)

(1.3)

(104)

where the differential section is shown in Fig. 2. Active trans-

mission lines have historical significance and current importance as

shall be seen in the discussion that follows.

r( )Ax 1 px

v(x-iAx,t)

0
x -21 x

e(x,t)6x i(x4px,t)01.0
g(x)Ax c(x)Ax lj(x,t)px

v(x+iAx,t)

0
x+i-Px

Fig. 1. Approximation of an active transmission line of length Ax.

r(x) 1(x) e(x,t)

g(x) c( x)

Fig. 2. Differential section of an active transmission line.
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Iterated Networks and Distributed Amplifiers

Any linear active or passive two-port defined by an admittance

matrix may be represented as the TI network shown in Fig. 3. An iter-

ated structure composed of such cascaded TT's is shown in Fig. 4 where

for brevity we let Y = The structure
Y11 +Y22+2Y12

and
gm Y21-112.

may alternatively be viewed as composed of L sections shown in Fig. 5

(with impedance v'11"12 at the input port). For systems which are

adequately described with -y12 as a series resistance and inductance,

and Y a shunt conductance and capacitance as shown in Fig. 6, the

structure becomes artificial or lumped "equivalent" of a section of

active transmission line. Nonuniform structures have -v end
'12n, gm'

Y
n

dependent upon ladder location n. This corresponds to specially

dependent -y12(x), gm(x), and Y(x) along the active line.

Fig. 3. TI representation of any linear two-port.

Fig. 4. Cascaded TI networks.
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Fig. .

I
n

'Analogous L section of the iterated

Rn Ln

structure.

In+1

..1.6.11111E0

V
n+1

-
o

V
n

0

n
C
n

g V
mn n

Fig. 6. The artificial active line resulting from ,a particular choice

of yi2 and Y.

The loss-pass electrical behavior of an n-section artificial line

approximates that of en active line d units in length. Since active

distributed networks were not available in the pest, iterated struc-

tures were fully exploited. To achieve an overall voltage gain

exceeding unity in such cascaded systems having identical stages,

each section must have a gain greater than unity. For a given active

network and interstage, there is a fixed upper frequency limit fo

where the gain becomes less than one.

Historically, many factors made large cascaded amplifier systems

impractical. With a large number of sections, unavoidable introduction

of parasitic inductance and capacitance deteriorated system perform-

ance at high frequencies. Insufficient redundancy and high failure

rates of electronic tubes made proper operation largely dependent

upon optimum performance of each stage (18). In an effort to over-

come these basic limitations and obtain amplifiers which would
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operate at frequencies greater than fo, additive amplifiers were

conceived. In these systems, outputs from each stage are added rather

than multiplied. By paralleling, more stages, greater than unity gain

is possible at frequencies above fo.

An artificial distributed amplifier is an additive amplifier

system.
1 It has the form shown in Fig. 7 with its equivalent circuit

in Fig. 8. The pentodes actively couple the input line to the output

line via transconductance gm(amperes/volt). Grid and plate capaci-

tances are absorbed in the artificial lines. Design requirements

include equal phase velocities in input and output lines and matched

terminating impedances to prevent reflections. Such systems are

cascaded by connecting the properly matched output line to the input

line of the next stage thereby increasing the overall gain. Improved

frequency response is derived by introducing mutual coupling between

adjacent inductors on both lines.

V.
in

ol

Artificial Output Line

o2

Artificial Input Line

Z
i2

Fig. 7. Artificial distributed amplifier.

1 W.S. PerOivel holds a British patent dated July 24, 1936 for
(artificial) distributed amplifiers using pentodes.



o1

L
2
/2 L

2
L
2
/2

Z
i1 1

/2 L1 L1 L1 /2

6

V
out

Fig. 8. Equivalent circuit of the artificial distributed amplifier.

Transistor artificial distributed amplifiers have also been in-

vestigated (25), but with less successful results due to the differing

characteristics between pentodes and transistors. These include signi-

ficant base-collector capacitive coupling and low input and output

impedances. FET or MOS transistors may be employed to advantage be-

cause of smell gate-drain capacitive coupling and high input and out-

put impedances.
2

In an effort to realize true distributed amplifiers and thereby

realize higher frequency amplifiers, McIver has proposed the traveling-

wave transistor (22), shown in Fig. 9 with its equivalent circuit in

Fig. 10. Essentially an insulated-gate FET, strip-type transmission

lines deposited on uniformly doped semiconductors form the gate and

drain channels. Again phase velocities and terminating impedances are

matched. gm is to be maximized and the device length made long enough

to achieve usable gain. Others have considered the effect of capaci-

see P.G. Jessel and J.S. Thorp. An amplifier design using MOS

transistors. Proceedings of the IEEE 54(11)0581-1582. 1966.
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din

Z
o1

Z
o2

Unilaterally actively
coupled output line

Input Line

Fig. 9. The traveling-wave transistor.

Fig. 10. The differential model of the traveling-wave transistor.

tive coupling between lines on gain (12, 17).

The requirement of equal phase velocities and presence of capaci-

tive coupling may be eliminated if single line distributed amplifiers

could be realized, where for example in the active line of Fig. 2,

e(x,t) and j(x,t) and are dependent sources controlled by either v(x,t)

or i(x,t). This thesis is concerned with the general analysis and

synthesis of such networks. The results may be extended directly for

networks having differential models other than Fig. 2.

Much current attention is being directed toward realizing single

line distributed amplifiers. We should note, however, that many of the
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problems encountered with cascaded amplifiers may today be circumvented

due to the advent of integrated-circuit technology. Iterative struc-

tures having sufficient redundancy to insure their two-port character-

istics (10) may be fabricated with great precision. Currently power

capabilities appear to be the major limitation of integrated circuits.

Due to their microscopic size, when particular networks are iterated to

form systems, their approximation by a distributed network may lead to

more ready analysis and synthesis results than by using, for example,

chain matrix products.

Active Transmission Line Analogs

Active transmission lines can be used to model many physical

processes and thus form an important analog to process studies and

simulation. In the illustrative examples that follow, pertinent equa-

tions describing the process are expressed in active transmission line

equation form. By associating appropriate quantities with the active

line parameters, two differential analogs may be formed. These ana-

logs are duals and one is readily drawn from the other. Therefore,

only one is drawn, the choice being determined by the "driving func-

tions" of the process and familarity with a given differential section

type. To indicate how initial and boundary conditions ere incorpor-

ated into the model, the heat conduction problem is analyzed in more

detail to serve as an example. By applying the results of this thesis

to processes not modeled by active lines, similar conclusions concern-

ing their nature may be made.
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Heat Conduction with Internal Heating (29)

One-dimensional heat conduction in a homogeneous material, inter-

nally heated, for example, by radioactive decay or absorption or by

thermochemical reactions, has a uniform rc or lg transmission line

analog. Nonhomogeneous materials have nonuniform analogs.

Consider heat conduction along an insulated internally-heated rod.

The diffusion and continuity equations relate heat flow density q

( cal/sec-m2) and temperature T (oC) as

aT
- q = k- aT- (1.5)

aT

a- t fc (ax
(1.6)

where k is the thermal conductivity (cal /sec-m2 -Co), p the density

(kg/m3), 6 the specific heat (cal/kg-00), and j represents the heating

due to the internal heat generators (cal/sec-m
3
). Comparing eqs. 1.5

and 1.6 with the active transmission line equations (eqs. 1.3 and 1.4),

they are made identical by setting u=1., =q, r;1 /K, and c=pC . This

results in an rc active line analog. An lg active line could equally

well be used. Depending on the process involved, j may be en indepen-

dent or dependent source. In some cases of interest j(x,t) =

a(x)T(x,t). Here then, j is a distributed source whose output at point

x is dependent upon the temperature at point x for all time.

The boundary conditions fix the port terminations. For example,

if a materiel L units long has temperatures T(O,t) = T1 and T(L,t) = T2

maintained at the ends, then voltage sources of Ti and T2 volts are

placed at the respective ports of the equivalent line. If on the

other hand the material is insulated at x = L, there is no heat
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conduction through the output port and the line is open-circuited at

that end. Heat may also be transferred by convection or radiation of

energy. It is found that for practical calculations, the heat flow

density is proportional to the difference in temperatures between the

convective or radiative mediums or

q = h(T
e
-T

b
) (1.7)

where h is the convective or radiative coefficient (cal /sec-m2 -C °) and

T
a

and T
b

the "driving" temperatures of the process (23, 24). Thus,

terminating resistors of 1/h
1

and 1/h
2

ohms form the convective or

radiative heat analog; they relate the port current densities q1 and

q2 to the voltage differences T1-T(0,t) and T2-T(L,t) across their

terminals.

For nonzero initial temperature distribution throughout the mate-

rial, initial condition impulse generators must be introduced. Thus

when the initial temperature T(x,0) is specified, the source distri-

bution required to establish this initial condition is known. The

differential section of the heat conduction analog including the

initial condition generator is shown in Fig. 11.

q(x,t) 1/k

,\AA.

T(x,t) PC

0

FCT(x,0),5(t)

0

Fig. 11. Heat conduction analog including initial condition impulse
generator.



Smell Transverse Vibrations of a Horizontal String (24, 29)

Consider a horizontal, possibly nonuniform string under uniform

tension T experiencing smell vertical vibrations. When the string's

stiffness is neglected (i.e. assuming perfect elasticity), the equa-

tions relating transverse momentum P (n-sec) and small transverse

displacements y (m) are related by Newton's force equation and the

momentum equation as

- T
ax at- aP

ap
ax P at BY Pgt Pe

11

(les)

(1.9)

where F is the mass/unit length of the string (kg/m), B the viscous

friction of medium surrounding string (n;- sec/m2), g the gravitational

constant, and pe the upward distributed momentum along the string

(n-sec/m) where the external force density applied along the string is

f
e

= ap
e
/at. The right hand terms of eq. 1.9 account for inertial,

damping, gravitational, and external force effects, If in addition

Ji

d

the spring is placed in an elastic medium, the term K ydt is
0

added to the right side. The differential analog model is shown in

Fig. 12. Here pgt and p
e
represent independent distributed sources

Ji

d

while X ydt is a dependent distributed source.
0

Longitudinal vibrations in an elastic bar and (one-dimensional)

transverse vibrations of a thin membrane are described by equations

somewhat similar to eqs. 1.8 and 1.9. However transverse bar vibra-

tions are described by higher order equations and cannot be identified

as active transmission lines.



y(x

1/T

0P---r I r t -

..1.

i

,t) B p Pe 0 dt

12

Fig. 12. Vertically vibrating horizontal string analog.

Small Longitudinal Pressure Waves in Gas (32)

One-dimensional propagation of sound waves in gas neglecting

viscosity effects exemplify many fluid and gas flow problems. Newton's

force equation and the continuity equation relates the pressure P

(n/m
2
) and the longitudinal displacement velocity of the medium v

(m/sec) as

ap
=- io io77-

ax loot ThoFe

ap av

Bo T<"

(1.1o)

where p
o
is the equilibrium mass density (kg/m), B the bulk modulus of

ap 2
the medium where B = no (-- ) (n/m

2
), A the channel area (m ), and FBo

i o an
Fe

1 o

the body force/unit mass due to external forces (n/kg). The differen-

tial section of the analog is shown in Fig. 13.

v(x,t) p_iA p_F_/A
o

P(x,t)

a
1/B° 0

Fig. SMall longitudinal: pressure waves. in gat .analog.
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Neutron Diffusion arid Fission, (24)

One-dimensional nuclear reaction problems involving absorption and

generation by fission of neutrons have active transmission line arm-

logs.

The diffusion and continuity equations for neutrons capable of

producing fission (having speeds less than some critical velocity v
c

)

relate neutron current density i(neutrons/m
2
-sec) and neutron n

(neutrons/m
3
) as

- j = D
an

ax

an
at ax

+ Xn - Rn - q

where D is the neutron diffusion constant (m
2
/sec), X the absorption

constant (sec
-1

), R the reproduction factor (sec 1), and g the applied

neutron current density arising from sources other than fission. The

differential section of the analog is shown in Fig. 14. q is an inde-

pendent distributed source while Rn is a dependent distributed source.

Sometimes analysis must include the fact that the new neutrons

arising from the fission process are not emitted immediately but in

a delayed manner where T
d

is the mean delay emission time. The repro-

duction term Rn(x,t) is here replaced by Rn(x,t-Td).

j(x,t) 1/D

Fig. 14. Neutron diffusion and fission analog.
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Photodetection Process

Semiconductor detection of optical frequency (or less) signals

make use of the photoelectric effect and may be readily characterized

by active transmission lines. Ettenberg and Nadan have found analo-

gous but simplified results when analyzing gain in solid-state trav-

eling-wave amplifiers (8). Kawamura and Morishita have presented

more involved analysis (14). Problems in physical chemistry involving

diffusion of solutes undergoing ionization and deionization in a

solvent have similar analogs.

According to quantum theory, an apparently continuous electro-'

magnetic wave of frequency f is quantized and consists of discrete

quanta or photons which have energy E = hf joules/photon where h is

Planbkiscoonstant. When a photon is absorbed by an atom in a material,

its entire energy is transferred to an electron. This electron may

be free and so experiences an increased velocity, or more likely the

electron may be excited from the valence band into the conduction band

(assuming the photon has sufficient energy to do so). Generally then

additional hole-electron current carriers are created, the spectral

distribution of which is determined by the absorption spectrum of the

material (31).

To determine the carrier generation rates, consider a uniform

semiconductor rod of length L with coherent radiation of frequency f

directed longitudinally upon its end. If I0 is the radiation intensity

(photons/sec-cm2) just beneath the surface, the intensity at depth x is

I(x) = I0exp(-kx) (1.14)
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where k = k(f) is the absorption constant of the material. Since, in

the photoelectric effect, a photon is annihilated and a hole-electron

pair created, the generation rate of holes and electrons is

G(x) = -n(div 1(x)) = nkIoexp(-kx) (1.15)

where n = n(f) is the spectral efficiency of absorption of photons of

energy hf.

These carriers give rise to photodiffusion, photoconductive, and

photoelectromagnetic effects for no applied fields, applied electric

fields, and applied magnetic fields, respectively. To describe photo-

diffusion and photoconduction, the continuity equation, the momentum

equation, and Poisson's equation are used (1). These equations

together with their associated initial and boundary conditions form the

basis for photodebection analysis in semiconducting slabs, diodes, and

transistors.

The continuity equation, in rearranged form, relates the change

in current density to rate of carrier increase, recombination rate,

and generation rates as

11 + ( + p /t )

ax t
p

at
-

p o p

n n an
= + - (G +n /t )

t
n

at n o n

where

p = instantaneous hole density (holes/cm
3

) (or free hole concentration)

p
o

= equilbrium hole density (holes/cm
3

) (or free hole concentration)

J = hole current density (holes/sec-cm
2

)

tp = hole lifetime (sec)

G = hole generation rate (holes/sec-cm
3

)
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and the corresponding electron definitions.

The momentum equation relating inertial effects and effects of

collision damping (viscous friction) to distributed forces arising from

the electric field and diffusion pressure (or density gradient) is

7rn.-1 +vmJ =qpE -q-2112
P P) P P P }gyp ax

a

D
n an

at'mn'ni
vnmn-in = qnE + q

yn
ax

where

(1.18)

(1.19)

q = charge of electron (coulomb)

m = mass of hole (gm/hole)

v = collision frequency of hole (1/sec) (i.e. reciprocal mean free

time /tp between collisions of a hole with the lattice)

D = hole diffusion constant (cm
2
/sec)

p = hole mobility (cm
2
/volt-sec)

P

with analogous electron difinitions. Since p
P
m
P

= qtp and p m
n

= qt
n

,

eqs. 1.18 and 1.19 may be expressed as

aJ u

+
I --E. DE

ax D pAJD at D
P P P

an 1 1
&In pn

+ j + - nE=
ax Dn n vnDn at D

n

The current derivative terms are usually negligible in which case eqs.

1.20 and 1.21 are the familar equations relating drift and diffusion

current densities. Although eqs. 1.20 and 1.21 are nonlinear if E and

p or E and n are both variable, this equation may be linearized for

small signals.
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The free carrier densities p and n are related by Poisson's

equation to the electric field as

ax
aE

E
(P_n+Nd-Ne) (1.22)

E

where

E = semiconductor permittivity (coulomb/volt-cm)

p = net charge density (coulomb/cm
3

)

N
d

= donor doping density (electron/cm
3

) (or bound positive ion

concentration)

N
a

= acceptor doping density (holes/cm
3

) (or bound negative ion

concentration)

Although any sample is macroscopically neutral, it is microscopically

or locally non-neutral where p is nonzero. Generally local charge

neutrality is assumed where the majority carrier density readjusts to

accomodate minority density gradients. It is clear that eq. 1.22

requires bilateral active coupling between lines if this assumption is

not made. The active transmission line analogs are drawn in Fig. 15.

Since there is no shunt current (leakage current) in the E-line, its

assigned current variable is arbitrary.

Depending on the problem to be analyzed, several assumptions

allow the coupling to be unilateralized and the differential model

simplified. Linvill and Gibbons have considered the difference

equation form of eqs. 1.16, 1.17, 1.20, 1.21, and 1.22 and developed

lumped, iterated structures analogous to those of Fig. 15 (21).



J p(x,t) /Dp 1/v D Ep/D

+(:)

p(x,t)

Jn(x,t) 1/Dn 1/vnDn pnEn/Dn

+0

1/t Gi-poltp

n(x,t)

0

on

q p/E

0

qn/£

0

0

0

-0

N -Na)/6

Fig. 15. Semiconductor photodetection analog.

Summary

0
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In this discussion, the active transmission line has been placed

in historical perspective and its current importance in realizing

distributed amplifiers noted. In the following chapters it will

become clear that active lines may be used to obtain other useful

electrical characteristics. The importance of active lines in modeling

many physical processes has also been discussed, and several represen-

tative examples presented.

The intent of this thesis is to fully develop the heretofore

uninvestigated theory of active transmission lines, using a network

theory approach. In so doing, the classical transmission line is

generalized into the active line. much of the classical line theory
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may be extended directly. Following the active line analysis, a

general synthesis scheme is presented allowing computerized design of

active lines. Realizations of active lines are discussed in the

concluding chapter.
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II. TRANSMISSION LINES HAVING INDEPENDENT
DISTRIBUTED SOURCES

Independent Distributed Sources

The differential section of the active transmission line drawn in

Fig. 2 is described mathematically by eqs. 1.3 and 1.4. The distri-

buted sources e and j may be independent, dependent, or both. In this

chapter the sources are taken to be independent, that is they are

independent of both voltage and current along the line.

Initial condition generators are this type of source. This is

immediately clear when the Laplace transformations of the active

transmission line equations are written. Eqs. 1.3 and 1.4 become

aV(x,$)
= (r+s1)I(x,$) + E(x,$) - li(x,0)

ax

al )Ls2. = (g+sc)V(x,$) + J(x,$) - cv(x,0)
ax

(2.1)

(2.2)

where V and I are the transformed line voltage and current, E and J

are the (explicitly) transformed distributed voltage and current

source strengths, and i(x,0) and v(x,0) are the initial current and

voltage specified along the line. Since the last two terms in the

equations represent transformed distributed series voltage and shunt

current sources respectively, it is clear that the terms li(x,0) and

cv(x,0) represent initial condition impulse generators. In passing,

we note that V and I are continuously differentiable in x and s when

Z = r + sl and Y = g + sc are nonzero, and Z, Y, E, and J are contin-

uously differentiable in x and s.

Passive and active coupling between lines introduces distributed

sources which although dependent, are not dependent upon voltage and
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current in that line. They are independent sources to the line in

question and thus fell into this category. This is readily seen by

considering the general coupled lines of Fig. 16 and their equivalent

in Fig. 17. Unless coupling is unilateral, solutions become extremely

involved (12, 17).

vi(x,t)
r
1

11

o-A
ii(x,t)

c
1

g
ml

v
2

1

i(x,t)
112

c
I

WeIrrYY
r
2

12

g2 e2

0

gm2v1

0

Fig; 16. Actively and passively coupled transmission line.
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Fig. 17. Coupled line equivalent circuit using distributed
dependent sources.
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It is shown in the discussion that follows that independent

distributed sources may be "extracted" from the line when accompanied

by appropriate modifications of boundary conditions,. To begin, we re-

view two-port theory of linear networks having internal independent

sources. The extension to n-ports is immediate.

Two-Port Theory of Linear Networks

Two-port theory has been employed for many years to characterize

an often complicated electrical system by its port behavior. Various

parameter sets including impedance, admittance, hybrid, and chain

parameters relate port voltages and currents. These parameters are

expressed in matrix form in Fig. 18. Although two-ports containing

independent sources have not received extensive treatment in the past,

they are readily accommodated by including a term corresponding to an

independent source on the left hand side of the matrix equations in

Fig. 18. Note that each two-port representation contains two inde-

pendent sources. Thus the effect of independent sources is to change

the boundary conditions of the two-port. The significance of these

two independent sources may be interpreted in either of two ways.

Viewing the two-port equations as arising from the Taylor series

expansion of port unknowns as functions of port knowns when retaining

only zero and first order terms, it is clear that the independent

sources correspond to the zero order terms.

Alternatively, a two-port network containing n independent

sources may be viewed as an (n+2)-port containing no independent

sources. By linearity and thus superposition, the effects of n
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=
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I
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Fig. 18. Various characterizations of two-ports containing
independent sources.
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specified voltage and current sources at the n ports superimpose at

ports 1 and 2. But by reciprocity, similar effects are produced by the

two equivalent independent sources in Fig. 18 when the n independent

voltage and current sources are set to zero. The type and placement

of the two sources depend upon the parameter set chosen to characterize

the two-port network. The matrix describing the two-port is found with

the internal independent sources set to zero.

These independent port sources may be d.c. sources whose levels

are those of the system in its quiescent state. For example, V1 is the

input voltage, and V1 Utz is the port voltage fluctuation about its

d.c. level V. The sources may be equivalent noise generators of the

network and have a statistical nature, or they may correspond to other

contaminating signals such as hum.

From the matrix relations of Fig. 18, V
1z

and V
2z

are equal to the

open-circuit voltages at ports 1 and 2 respectively. In like manner,

I
1y

and I
2y

are the short-circuit currents of ports 1 and 2 respec-'

tively, with similar interpretations for the hybrid parameters. The

independent sources associated with the chain and inverse chain matrix

characterizations do not equal terminal responses directly however.

These responses must instead be multiplied by the appropriate two-port

parameter. For the chain matrix characterization for example,

VIA = -AV
2

for I
2

= 0 (output opened), or (2.3)

= BI
2

for V
2

= 0 (output shorted)

with the input shorted (V1=0) and

I
1A

= -CV
2

for I
2

= 0, or

(2.4)

(2.5)



= DI
2

for
2

= 0
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(2.6)

with the input open (I1=0).

Relationships 'between these equivalent independent sources may be

derived.3 Consider the relation between (V1z'
V
2z

) and (I
ly'

I
2y

)

using the z matrix description of the network in Fig. 18, Ily and I2y

are the applied port voltages, then from the admittance parameter

definitions

I
1 y

I2y

Y11 Y12

_Y21 "22

-V1
z

-V
2z_

(2.7)

These relations are tabulated in Table 1 where each box represents a

matrix relation between row and column equivalent sources.

This two-port approach may be employed to describe the terminal

behavior of an active transmission line having independent sources

distributed continuously along its length.

Extraction Integrals for Active Transmission Lines

Since active transmission lines are described by linear partial

differential equations, the port responses due to independent distri-

buted sources may be superimposed. By linearity, the terminal behav-

ior of the active line having independent distributed sources is

identical to that of a line having no independent distributed sources

which has two independent sources of proper type and value connected

3
M.F. Moad developed several in: Two-port networks with independent

sources. Proceedings of the IEEE 54(7):1008 -1009. 1966;- Addendum:

Two-port networks with independent sources. Proceedings of the IEEE

54(12)0963-1964. 1966.
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to its ports. The type and placement of these sources is determined by

the matrix chosen to describe the line. For example, if a line is

characterized by its z matrix, then independent voltage sources Viz and

V
2z

are connected in series with its ports.

To find the strengths of these sources, the various parameters of

the matrix are used. These are easily derived and are given in Table'2.

The expression for V
1z

is now derived in detail.

Since V
1

= V
z

and V
2

= V
2z

when I
1

= I
2

= 0, these independent

source strengths correspond to the open-circuit terminal voltages of

each port. To determine V
1z

, we calculate the contribution AV
lz

(x) to

V
lz

due to the sources E(x,$)Ax and J(x,$)Lx acting alone at x,

determine the limiting expression when Ax 0, and integrate these

contributions from x = 0 (the input) to x = d (the output). From

Fig. 19 and two-port theory,

z
12

(x) z
22

(x)

6V
1z

(x) -
z
22

(x) z
11

(d-(x+Ax))+z
zz

(x)

[E(x,$)-z11 (d-(x+Eix))J(x,e)]Ax (2.8)

for Ax 0. Here z
12

(x)/z
22

(x) is the open-circuit voltage trans-

fer ratio of the line-x-units long, z
22
(x)/z

11
(d-(x+Ax))+z

22
(x)] is

the voltage at the output port of the x-unit long line per unit distri-

buted volt at x, and E(x,s )-z11 (d-(x+Ax))J(x,$)] is the disttibuted

voltage at x. The Norton equivalent formed by the shunt current source

and line (d-x)-units long is converted to its Thevenin equivalent.

Therefore, the limiting expression becomes

dV
1z

(

z
12

(x)

[E(x,$)-z11 (d-x)J(x,$)] dx (2.9)
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o +

V
2z

(x)

o

x=d

Fig. 19. Voltage contributions AViz(x) and AV2z(x) due to

independent sources E(x)Ax and J(x)Lx acting alone at x.

where z
11

(d-x) denotes the input impedance of the line to the right of

position x ((d-x)-units in length); and z
22

(x) and z
12

(x) denote the

output and transfer impedances to the line to the left of position x

(x-units in length), respectively. Thus, the open-circuit voltage at

the input port due to independent distributed voltage and current

sources is

Viz(s) =
z12(x)

[E(x,$)-z11 (d-x)J(x,$)]dx (2.10)
0 z11(d-x)'22(x)

Since the general active transmission line has been considered, the

matrix parameters appearing in Table 2 are generally functions of s

(although not written so explicitly) as well as x. The kernels of the

integrals are the Green's functions or differential transfer functions

for this problem.

Although the extraction integrals appear formidable, they are

readily determined when the matrix parameters are expressible in

closed form. Consider for example the uniform transmission line with

independent distributed sources having characteristic impedance Za(s) =

/(r +sl) /(g +sc) = ,577 and propagation function "Y(s) = Ar+s1)(g+sc)

= fiT. Since the impedance matrix [Z(x,$)] for a uniform line x units
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Table 2. Extraction integrals for an active transmission line (19).
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+ J1
A(x) J

Idn
d

d

Jn

D(d)C(x)
D(x)D(d-x)+B(d-x)C(x)

E + au< J1
C(x) J

a(d)e(d-x) r_j tig=?5.1
a(x)a(d-x)+b(d-x)c(x) a(d-x)

d(d)d(d-x)
d(x)d(d-x)+b(x)c(d-x)

dx

E] dx

-
Lr j

c(d-x)
E idx

d(d-x)

Note: A
h
(x) denotes determinant of h matrix of line to left of

position x, etc.
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long is (see the development leading to eq. 3.46)

[Z(x, s
coth 7x csch Ix

= Z

csch "tx coth NN
[

( 2 .11 )

then V
1z

(s) becomes

v
1z

(s) fo
d

cschfyx
coth Nx+coth ry(d-

[E(x,$)-Zocoth ry(d-x)J(x,$)] dx

1

sinh ,yd
[E(x,$)sinh ty(d-x)-ZoJ(x,$)cosh /y(d-x)] dx (2.12)

0

The remaining five basic two-port matrices may be found from

eq. 2.11 using standard matrix conversions. Subsequent parameter sub-

stitution and simplification yield the extraction integrals for the

uniform line in Table 3. To indicate the usefulness and importance of

these results, several examples are now given.

Applications of the Extraction Integral

Problems involving port response to arbitrary initial conditions

with specified terminations are readily analyzed using the extraction

integrals. Suppose a line with characteristic impedance Z = ,57;

and propagation constant = \57, is to have initial voltage V
o
and

zero initial current. Further suppose the input port voltage V1 is

desired under open-circuit conditions at input and output. Since

E(x,$) = - li(x,0) and J(x,$) = -cv(x,0) = ,ocV, the input port voltage

from Table 3 is,

cZ V cZ V cV
o o o

v1z(s)
cosh Pe(d-x)dx =

o

sinh ryd
0

(2.1.3)

The response depends on the form of Y. If Y = sc, then V1(s) = Vo/s



Table 3. Extraction integrals for a uniform active transmission
line (20).

d

V1
- [E sinh ly(d-x)-Z0J cosh ry(d-x) dx

lz sinh rvd

d

V
2z sinh fyd

[E sinh fyx+ZoJ cosh tyx] dx

0

d

I
1y

-
sinh

,ydi [J sinh ty(d-x)-YoE cosh /y(d-x)] dx

d

I - [J sinh yx+YoE cosh tyx dx
2y sinh iydi-

d

V
1h

=
cosh

,y.df [E cosh /y(d-x)-ZoJ sinh ry(d-x)] dx

d

I
d

[J cosh ryx+YoE sinh tyx] dx
2h cosh flt10

d

v
2 cosh yd

[E cosh iyx+ZoJ sinh iyx] dx
g if0

d

I - [J cosh fy (d-x)-YoE sinh fy(d-x)] dx
1 g cosh iydI0

V
111

= f [E cosh iyx+ZoJ sinh fyx dx

0

I
1A

= f [J cosh qx+YoE sinh qx] dx

0

d

V2a = [,.E cosh ry(d-x )+z
OJ

sinh ry(d-x)] dx

0

I
2a

= f [J cosh ry(d,:x)-YoE sinh iy(d-x) ]dx

0
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so v
1
(t) = V

o
u(t). If there is also differential shunt conductance

so Y = g + sc, then V1(s) = Vo/(s+g/c) and v1(t) = Voexp(-gt/c)u(t).

In the first case the port voltage remains constant, while in the sec-

ond it decays exponentially to zero.

Suppose instead that input and output ports are terminated in

matched impedances Zo. Using a chain matrix characterization,

cV

V
2

(s) = -Z I = -e
1 1A o 1A) 2Y

since from Table 3, VIA and Z
o
I
1A

are

cV

V 1A(s) = °(1-cosh d 517)

cV

Z
o

I
lA

(s) = - --2sinh d iZTe

(2.14)

(2.15)

(2.16)

If a delay line is considered, then. Z = sl and Y = sc. Then V1(s) =

-9-(1-e-dfiC; I') and v1 (t ) V
o
[u(o_u(t_d fro)] , so a pulse of V0/2 volts

2s

of time duration d /17 seconds appears at the input port beginning at

t = 0.

Problems involving response to general independent distributed

sources are likewise readily analyzed. Reconsider the traveling-wave

transistor of Fig. 9 in which the input delay line is unilaterally

actively coupled via transconductance/unit length gm to the output

delay line. If each line is terminated in its characteristic imped-

ance,, reflections from the ports of each line are eliminated. Thus

the voltage along the input line is V1(x,$) = V1(0,$)e
six

where

V1(0,$) = V1 is the voltage applied to the input line. Therefore, the

independent distributed current source of Fig. 10 becomes J(x,$)=



g
m
V

1

( )e
-syx

. As before, given the excitation voltage of the input

line port voltages are readily found. These are

V (s) =
m -e-2ryd]

1o1 4sc

g d

V (s) m
2 c 102
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where the propagation constants of input and output lines are assumed

equal.

voltages

vo1(t)

v (t)
02

The v
o1

Thus for a unit step

are

gm
=

4c
"[tu(t)-(t-2d

g d

input voltage v1(t) = u(t), the output

(2.19)

(2.20)

d
= 0 and rises

= u(t-d Vlc)
2 c

response begins at t linearly from 0 to 1-m
2 c

volts in 2d /17 seconds. The v
o2

response is delayed by 2d /IT
d

seconds and rises abruptly from zero to volts. In sinusoidal
2

gm r

c

steady-state, the port 2 voltage gain from eq. 2.18 has magnitude

gmcy r
ircwith phase shift wti-1 radians.

2 c

Thus, the usefulness of the extraction integrals in analyzing

active transmission lines having independent distributed sources should

be clear. To recapitulate, the effects of these sources is to modify

the boundary or port conditions of the line rather than its two-port

parameters.
4

Response and gain calculations are readily made utilizing

the extraction integrals.

It should be pointed out that the presence of independent distri-

4
In the next two chapters parameter modification occurs when dependent
distributed sources are considered.
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buted sources does not necessarily make the line active. In fact,

considering the total line response to initial conditions from t = - a)

to + o4 there is no net energy delivered the line and thus the line

is passive. In current terminology however, the term active is used

generically to indicate the presence of distributed sources along the

line.
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III. UNIFORM TRANSMISSION LINES HAVING DEPENDENT
DISTRIBUTED SOURCES

Dependent Distributed Sources

Active transmission lines having dependent or controlled voltage

and/or current sources distributed continuously along its length are

now analyzed. Four types of dependent sources are considered:

1.e=KA, a current-controlled voltage source,

2. e = K
v
v, a voltage-controlled voltage source,

3. j = L
v
v, a voltage-controlled current source,

4. j = Lii, current-controlled current source.

Parameters K and L generally have spacial dependence. In this chapter

they are considered constant. In the following chapter concerned with

nonuniform active lines, they are variable.

It is convenient to analyze lines having either type 1 and type 3

sources or type 2 and type 4 sources simultaneously. These lines will

be referred to as type 1-3 and type 2-4 lines,respectively. Since the

classification will be clear, for brevity without loss of clarity, the

subscript notation is eliminated which denotes source type. To clearly

establish the difference between the two types of lines, consider the

differential section for each case.

The type 1-3 line is drawn in Fig. 20 with its equivalent in Fig.

21. This type of active line may be analyzed as a line with no distri-

buted sources but having its resistance/unit length, r, and conduct-

ance/unit length, g, values adjusted from r and g to r* and g*, respec-

tively. r* and g* can be adjusted to have any value. Type 1-3 active

lines are therefore readily analyzed using many of the classical
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results for passive lines.

However the type 2-4 line shown in Fig. 22 has no such equivalent

section.

r(x) 1(x) K(x)i(x,t)

g(x) Tc(x) L(x)v(x,t)

Fig. 20. Type 1 -3 active line diffefential section.

i(x,t) 1(x)

0- mr
v(x,t)

0

r*(x)=r(x)+K(x)

g*(x)=g(x)+L(x)

0

Fig. 21. Equivalent differential section of a type
1-3 active line.

r(x) 1(x) K(x)v(x,t)

o-

0

0

g x) L(x)i(x,t)

Fig. 22. Type 2-4 active line differential section.

0
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Active Transmission Line Equations

To begin the discussion, eqs. 1.3 and 1.4 are manipulated into

various forms convenient for subsequent analysis. The Telegrapher's

equations or active transmission line equations describe either volt-

age v or current i along the active line, and result by eliminating

appropriate terms from eqs. 1.3 and 1.4. These are

v
xx

= rgv + (rc+1g)v
t

+ lcv
tt

+ (lj
t
+rj-e

x
) (3.1)

i
xx

= rgi + (rc+1g)i
t

+ lci
tt

+ (cet+ge-j
x

)

for the uniform line. For the nonuniform line, the terms

(3.2)

(vx+e)rx/r + (rx/r - lx/l)lit (3.3)

(ix+j)gx/g + (gx/g Cx/C)CVt (3.4)

are added to the right hand sides of eqs. 3.1 and 3.2 respectively.

For notational convenience, x and t subscripts are employed to indicate

spacial and time partial differentiations.
5

Previous parameter condi-

tions, noted for eqs. 1.1 and 1.2, insure that voltage and current is

twice continuously differentiable so the order of x and t differentia-

tions may be interchanged. Unless 1 and c are constant multiples of r

and g,respectively, the second terms of eqs. 3.3 and 3.4 cannot be

eliminated.

The Laplace transformation of these equations for the constant

parameter line is

vxx = ZYV + (ZJ-Ex) - [(1g+rc+slc)v(x,0) + lcvt(x,0) + 1j(x,0)] (3.5)

ixx = ZYI + (YE-Jx) - [(1g+rc+slc)i(x,0) + lcit(x,0) + ce(x,0)] (3.6)

5
E.g. v

t
= aviat, v

xx
= a

2
v/ax

2
, and v

xt
=

2
v/axat.
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where Z = r + sl and Y = g + sc. Nonuniform lines are described by

eqs. 3.5 and 3.6 with additional right hand terms of

(Vx+E)Zx/Z - i(x,0)(rx/r - lx/1)r1/Z (3.7)

(Ix+J)Yx/Y v(x,0)(gx/g - cx/c)gc/Y (3.8)

respectively. The parameter conditions for eqs. 2.1 and 2.2 insure

that these derivatives exist.

Eqs. 3.1 and 3.2 are readily utilized for traveling-wave and

sinusoidal steady-state analysis, while eqs. 3.5 and 3.6 are convenient

for Laplace transform analysis. For nonzero initial conditions, the

analysis technique of Chapter 2 is used. Thus, only zero initial

condition lines need be considered here.

Traveling-Wave Analysis

Traveling-wave voltage solutions are obtained using the separation

of variables technique by assuming a solution v(x,t) = v1 (x)v2(t). For

the type 1-3 line, eq. 3.1 then becomes

v
xx

= r*g*v + (r*c+g*1)v
t

+ lcv
tt

(3.9)

or

v
2
v
1
" = r*g*v

1
v
2

+ (r*c+g*1)v
1
v
2

+ lcv
1
v
2
" (3.10)

where primes represent differentiation with respect to the function's

argument. Dividing each side of eq. 3.10 by v1v2,

VA r*g*v2 + (r*c+g*,1)V2'

v
1

v2

lcv
2
"

= k
2

(3.11)

where k
2

is an arbitrary complex constant. Rewriting eq. 3.11 yields

the two ordinary differential equations,



v 1" - k
2
v
1

= 0

lcv
2
" + (r*c+g*1)v

2
' + (r*g*-k

2
)v

2
= 0

The specially dependent solution v1 (x) of eq. 3.12 is

v1 (x) = fexp(kx) + Bexp(-kx) (3.14)

To conveniently express the time dependent solution, define constants

a and b where

a = Er*/1 + g*/c) (3.15)

b = 2(r*/1 - g*/c) (3.16)

Eq. 3.13 can then be rewritten as

v
2
" + 2av

2
' + [(a+b)(a-b) - k

2
/lciv

2
= 0 (3.17)

The auxiliary equation of eq. 3.17, formed by assuming a time solution

v
2
(t) = exp(pt) and substituting into eq. 3.17 is

p
2

+ 2ap + a
2

- b
2

- k
2
/1c = 0 (3.18)

Thus, parameter p is found to be

1. 42+k2/1c

Therfore, the time dependent solution v2(t) is

v2(t) = Cexp(- a +
\7102

k2 /lc)t Dexp(- a -
Jb2

+ k2 /lc)t (3.20))t

The general voltage solution of eq. 3.9 is the product of eqs. 3.14

and 3.20.

The steady-state sinusoidal voltage response along the line

results by adjusting k to have the appropriate value. Since this

corresponds p = jw in the v2 solution, k must equal

(3.19)

k = jr*g* + jw(r*c+g*1) + (jw)21c = k*+jw1)(g*+jwc) = a + jp
(3.21)



from eq. 3.18. Alternatively, p =-jw yields the conjugate value

k* = a - jo. Thus from eqs. 3.14 and 3.20, the general voltage

solution v(x,t) is

+

v(x,t) = EdIxe-j"t 0x)
e
ax

e
- j(wt - 0x)

40

(3.22)

where the complex constants E and F are determined by the port condi-

tions of the line. The solution has a traveling-wave characteristic.

The term involving exp[-j(wt+Px)] represents waves which are attenua-

ted by the factor exp( -a) per unit length and travel to the left along

the line with phase velocity v = w/13. The remaining term involving

exp[- + j(wt-Ox), represents waves traveling to the right with the same

velocity and attenuation per unit length.

Using the same analysis procedure for the typEr2=411inelfields

somewhat different results. In this case the line voltage satisfies

v
xx

+ (L+K)v
x

= (rg-LK)v + (rc+1g)vt + lcvtt (3.23)

from eq. 3.J. Separation of variables results in the two ordinary

differential equations,

v1" + (L +K)v1' - k2v1 = 0 (3.24)

lcv2" + (rc +lg)v2" + (rg-LK-k2)v2 = 0 (3.25)

The general spacial solution v1(x) is

vii(L+1024.k2ix
vi(x) = Aexp [4(L+K) (3.26)

The general time solution v2(t) is

1.1.(k2+
v2(t) = Cexp [- 1.

102
LK)/1c]t (3.27)

Since eqs. 3.25 and 3.13 are similar, this results by replacing k
2

by

k
2

+ LK in eq. 3.20.
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In the sinusoidal steady-state, k must equal

k = J(jw)21c + jw(rc +lg) + rg - LK = a j0 (3.28)

for type 2-4 lines. Denoting the radical factor li(L+K)2 + k

jZY+ +'(L -K)2 in eq. 3.26 as 1"
a

+ j1"
0'

the general voltage solution

becomes

v(x,t) = Eexp ii(L+K) + rod)] exp[+ j(wt+rox)]

+ Fexpl(- i(L+K) Ta)x] exp[-j(wt-rox)] (3.29)

Waves traveling to the left with phase velocity vp = 010 are atten-

uated by exp [- ra + W+K)] per unit length while those traveling to

the right have the same velocity but are attenuated by

exp [- Pa - -i(L+K)]. For L +K>O, these latter waves suffer greater

attenuation.

Characteristic Impedance

It has been shown that voltages and currents on active transmis-

sion lines in sinusoidal steady-state have traveling-wave characteris-

tics. Corresponding voltage and current phasors are related by the

characteristic impedance, Zo, of the line. These are readily deter-

mined.

First consider the type 1-3 active line where we relate the

phasors v
1

and -i
1

of voltage and current waves, respectively, trav-

eling to the left. The minus sign occurs because the wave travels

opposite to the assumed current direction in Fig. 2. Substituting the

first voltage term of eq. 3.22 into eq. 1.4 and solving for its asso-

ciated current, we find that the characteristic impedance Z
o1

is



Z = = = L

v
1 r*-1-'w1 K+Z 1+K/Z-

o1 -i
1

g*+jwc L+Y o 1+L/Y
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(3.30)

where Z
o

= /77 is the characteristic impedance of the passive line.

The phasors v2 and i2 of voltage and current waves, respectively, trav-

eling to the right have the same characteristic impedance, i.e. v2/i2 =

Z
o2

= Z
o1*

The characteristic impedance of the active line is that of

the passive line when K = Zo2L (i.e. Z
o1

= Z
o2

= Z
o

= 17). Since

K and L are real, rg, lc, and distortionless active lines can have

their parameters adjusted to satisfy this condition.

Type 2-4 active lines have characteristic impedance which depend

on the direction of wave travel as may be anticipated from the results

of eq. 3.29. Repeating the previous operations using eqs. 3.29 and 1.4

yields the characteristic impedance for voltage and current waves

traveling to the left,

Z =

v1

= Z[Ii(K-L)2+ZY - -4(L-K
o1 -i

1

-1 1[1i(K-L)2+ZY + (L-K)1Y

(3:31)

and the characteristic impedance for waves traveling to the right,

Z = v2 = Z [ii(K-L)2+ZY + i(L-K)] -1 = 1[di(K-02+ZY - 2(L -K)]
02

(3.32)

Using the propagation constantly = g7 and characteristic impedance

Z
o

= )777 for the passive line,

vi(K412.1.1 L4
zo1

1KL12.0 L-K]
Zo2 ZoVI 2y1 2y

(3.33)

(3.34)

Clearly the two impedances differ by the factor - Zo(L-K)/2y. When

K = L, the characteristic impedance of the active line is equal to that
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of the passive line (Z
01

= Z
02

= Z
o
) and is independent of K and L.

Another simplified situation exists in the active delay line at a fre-

quency w satisfying w lc = IK-LI/2 which makes the radical in eqs.

3.33 and 3.34 vanish. At this frequency, Zol
Zo2

= Zo for L>K

while Z
o1

= -Z
o2

= -Z0 for L<K. Thus,at the frequency w, average

power flows only in one direction along the line.

Propagation Constant

The propagation constant, whose real part is the attenuation

function, a(nepers/m), and whose imaginary part is the phase function,

0(radians/m), was determined in the traveling-wave analysis discussion.

Recapitulating, these quantities are independent of wave direction in

the type 1-3 lines. From eqs. 3.21 and 3.22,

a = Re K+Z)(L+Y) (3.35)

0 = Im J(K +Z)(L +Y) (3.36)

Type 2-4 lines have functions which depend on wave direction. From

eq. 3.29, denoting left-traveling and right-traveling wave quantities

by subscripts 1 and 2, respectively,

= Revii(L-K)2+ZY - 2(L+K)

a2 = Revii(L-K)2+ZY +

and

= 02 = Im\ii(L-K)2+ZY

(3.37)

(3.38)

(3.39)

As previously noted, the waves have equal phase velocities since 0

0
2

but attenuation characteristics which differ by - (L+K)/2.

These results have graphical interpretations. For type 1-3 lines,

the propagation constant (a + j0) may lie in three distinct domains
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depending on the values of r* and g* as shown in Figs. 23, 24, and 25.

These figures are readily drawn from eq. 3.21 where domains of

+ j0)
2

points are first considered, and then domains of (a + 0

points.

Since only single propagating modes may exist in type 1-3 lines,

the line is active when CLO>0.
6
Thus, from this viewpoint, active

jR

Fig. 23. Domain of propagation constant values when r*, g*>O.

j Im (a+j13)2

Re (a + j13)2 a

Fig. 24. Domain of propagation constant values when r*, g*<0.

j Im

Fig, 25. Domain of propagation constant values when
r*<0, 944.> 0 or g*<0, r*>0.

6Activity in single mode systems implies special wave growth in the

direction of travel. In multimode systems, activity may be present
although no waves are specially growing (34).
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lines result from their operation in the Open domains of the second

and fourth quadrants of the (a, + j0)- plane. Since r* and g* can be

adjusted to be negative values, active lines can be realized. This

can cause stability problems as will be shown later in the chapter.

Type 2-4 active lines have more complicated propagation constant

expressions given by Ems. 3.37 - 3.39. Following Wohlers' development

(34), this type of line can be shown to be active. The domain in which

propagation constants (a A) and (m2 + j02) values lie is drawn in

Fig. 26.

jf3

Fig. 26. Domain of propagation constant values.

Laplace Transform Analysis and Two-Port Parameters

Two-port parameters are readily determined for active transmis-

sion lines. The port conventions for an active line of length d is

shown in Fig. 27. For type 1-3 active lines, the transformed voltage

from eq. 3.5 satisfies

V
xx '

(x s) = (Z+K)(Y+L)V(x,$) = k2(s)V(x ,$) (3.40)

where k
2
(s) = (Z+K)(L+Y), Z = r + sl, and Y = g + sc. The transformed

voltage solution of eq. 3.40 is

V(x,$) = Va(s)e
-kx

+ Vb(s)e
kx (3.41)
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I =I(0 s)

V
1
=V(0

'

s)

0

Active
Transmission

Line

I
2
=-I(d,$)

0

V
2
=V(d

'
s)

Fig. 27. Port conventions of an active line.

where V
a
(s) and V

b
(s) are arbitrary functions of s determined by port

conditions. Therefore from eq. 3.41, the port voltages of Fig. 27 are

[Vi

2 Le
-kd kdl Va

Vb

Thus, the constants Va and Vb may be expressed as

V
1

e
kd

V
b e

kd
-e

d
-kd

1 V
2

The transformed current solution from eqs. 2.1 and 3.41 is

1 k
V e

kx
I(x,$) = V (x s) -

-kx
V e-Z+K x Z+K a -Z+K b

The port currents of Fig. 27 are

12
Z + K [ -kd

ekd] [ V-e
b

(3.42)

(3.43)

(3.44)

(3.45)

Since the admittance matrix for the two-port is defined to be [I] =

[y] [V], the admittance matrix results from substituting eq. 3.43 and

simplifying

[Y.11

Y21

ekdi.a-kd

-2

-2

e
kd

+e
-kd

Y12] 1iY+L
Z+K

e
kd

-e
-kd

Y22

IY+L
coth kd -csch kd

Z+K -csch kd coth'kd

(3.46)
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where k t \i(Z+10(Y+L). The radical factor is the reciprocal char-

acteristic impedance of the line from eq. 3.30. The line is reciprocal

since y12
Y21

and has identical driving-point admittances. The

other five basic two-port matrices may be easily determined using the

standard conversions.

The admittance matrix of the type 2-4 active line is also readily

found. The transformed voltage from eq. 3.5 satisfies

V
xx

+ (L+K)V
x

- (ZY-LK)V = 0 (3.47)

Letting k1, k2 = -i(L+K) - \J +(L_K)2+ZY, eq. 3.47 has the solution

V(x,$) = Vaek1x
vbak2x

Then the transformed current from eqs. 2.1 and 3.46 is

I(x,$) = -(Vx+KV)/Z = 4k1 +K)Vaek1x+(k2+K )vbek21/z

Repeating the previous manipulations and simplifying,

1

[Y]

(k
2
+K)e

k
1
d

- (k
1
+K)e

k
2
d

k
1

- k
2

ek2d - ek1d ek2d - ek1d

(k1-k2)e
(k

1
+k

2
)d

(k
2
+K)e

k
2
d

- (k
1
+K)e

k
1
d

ek2d - ek1
d

ek2d - ek1d

(3.48)

(3.49)

(3.50)

Because of the symmetrical form of k
1
and k

2
, the matrix elements are

readily simplified to

yil = [i(L-K) + A(L-K)2+ZY coth dii(L-K)2+ZY ]/Z

y
12

= [e(K+L)d/2 li(L-K)2+ZY csch di(L-K)2+ZY ]/z

Y21

ra(K+OdNTI,
kL-K)2+ZY csch dv/i(L-K)2+ZY ]/Z

(3.51)

(3.52)

(3.53)
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Y22
= [i-(K-L) + li(L-K)2+ZY coth d A(L-K)2+ZY 1/Z (3.54)

The network is nonreciprocal since y21
8

-(K+L)d
y
12

except when K =

-L. The driving-point admittances are unequal unless K = L. Standard

matrix conversions may again be used to find other parameter sets.

They parameters for the uniform active line have been derived. In

general, these involve hyperbolic functions having irrational argu

ments. Insight into the voltage gain, bandwidth, stability, and sensi-

tivity of these networks may be gained using infinite product expan-

sions, pole-zero patterns, and Bode plots. For this analysis, rgc

active lines are examined. The results are immediately extendable to

other line types.

Driving-Point Admittance--Type 1-3 RCG Active Lines

Consider the driving point admittances y11 and y22 found in

eq. 3.46 as

Y11 =
v
22

-
r*

coth d r*(g*+sc) (3.55)

where again r* = r + K and g* = g + L. Expressing the coth function as

the ratio of cosh and sinh functions and making use of the product

expansions (3),

4f
2

cosh f(s) = TT 1 +

n=1 (2n-1 )2721

sinh f(s) 72(q 4f
2

f(s) I I

1 +

n=1 (2n)272

then

(3.56)

(3.57)



TT
co

4d
2
r*(1*+sc)

1 n
(2n_1)272

Y =
=1

11 r*d OD 2 ,

4d r*kcl*+sc) ]
1 +

(2n)272
n=1

Therefore, the zeros of y11 are

)2T12/4d2r*c, n = 1,s
z

= - g*/c - (2n-1

while the poles are

s = - g*/c - (2n )2TT2/4d2r*c, n = 1, 2,

49

(3.58)

(3.59)

(3.60)

The poles and zeros alternate along the negative real axis of the s-

plane beginning with a zero closest the origin and have no finite

accumulation point. y11 and y22 are therefore meromorphic functions.

In the following chapter it is shown that the poles and zeros of any

type 1-3 rcg active line have this same character, their exact spacing

being set by the parameter distribution. It is clear from eqs. 3.59

and 3.60 that L acts as a translation factor while K is a modified

scaling factor. Representing normalized s as s
N

where s =

g*/c + s
N

2
/4d

2
rr r*c, the normalized zeros and poles are

s
Nz

= - (2n-1)
2

, n = 1, 2, (3.61)

s
Np

= - (2n)
2

, n = 1, 2, ... (3.62)

respectively. The normalized pole-zero pattern is readily drawn in

Fig. 28. Since r and g are nonnegative in classical transmission

iwN

-4
X

-16 -9 -1

a
N

Fig. 28. Normalized pole-zero pattern of y11 and y22.
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lines, their pole-zero distributions are required to remain in the

left-half plane. However, with type 1-3 active lines, r* and/or g* can

be made negative. Thus, the pattern can be translated along the nega-

tive real axis and/or inverted.

The sinusoidal steady-state behavior of y
11

and y
22

is clearly

shown by constructing the Bode plot of y11(jw). For convenience we use

frequency wN and normalize yil(jwN) against its d.c. value of 1/dr*.

Under the frequency transformation,

y11(sN) rld /TN coth \i\J (3.63)

Approximating 11 + jaw as 1 until frequency 1/a is reached and as

aw
N
from that frequency onward, the magnitude plot of Fig. 29 is

obtained. The phase plot can be obtained from numerical calculation.

[IY11(jwN)11

L 1/r*d db

18

12

+10 db/dec
asymptote

0.4

arg Yll
(jw

N
)

45°

4 9 16 25 36 49

45° asymptote

1

w
N

(log

scale)

w
N

(log

4 9 16 25 36 49 scale)

Fig. 29. Bode plots of driving-point admittance y11 and y22.
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The +10 db/dec high frequency asymptote follows from eq. 3.63.

Since Icoth TriTuN 1-- 1 as uJN--1.-ao, then dr* y11 71571 =

nfu772. The corner frequency of the asymptote is (w
N
)
c

= (7/2)
2

0.405. Since arg y11( jwN) arg y11( Jul
N

) 45o as wN ao.

From these results it is seen that the (unnormalized) driving-

point functions y
11

(jw) and y
22

(jw) have d.c. values of /;;/T; coth

d V;*g *, and a 10 db/dec magnitude asymptote with corner frequency

we = g*/c + 0.40672/4d2r*c. Also the phase of y11 and y22 approabh

as IM

If the entire pole-zero pattern is reflected into the right-half

plane, the magnitude plot is unchanged but the 'phase becomes (180° -

arg yii(jwN)). If only a portion of the pattern is shifted from one

plane to the other, the same high frequency characteristic having a

+10 db/dec magnitude asymptote and 45° or 135° phase asymptote is

obtained. Thus, it is possible to significantly alter the low fre-

quency characteristic of rcg active lines from that obtainable with

rcg passive lines.

Transfer Admittance, Gain, and Bandwidth Type 1-3 RCG Active Lines

The transfer admittance and gain functions are also readily

investigated using Bode plots. From eqs. 3.46 and 3.57,

Y

isc+q*
12 Y21 r*

csch d \ir*( g*+sc)

co , -1
1 4d

2
r*(q*+sc)

=
dr*

n=1 (2n)272

(3.64)



The open-circuit voltage gain and short-circuit current gain T from

eq. 3.46 is

T(s) = -

Y21
= _ y21

Y22 Y11

1

cosh d r*(g*+sc)

2
4d r*Wf+sc)

= [1 ÷

n=1 (2n-1 )2rr
2

52

(3.65)

These functions have only poles distributed along the negative real

axis which are given by eqs. 3.62 and 3.61, respectively. Thus, they

have monotonically decreasing magnitude and phase functions. Consider

for example the gain function T(s). The normalized gain function

T(sN) = 1/cosh rri;; /2 (3.66)

has poles given by eq.3.61. From the corresponding pole-zero pattern

of Fig. 30, the Bode plots of the normalized gain function are readily

drawn in Fig. 31. Except for normalization factors, the y12 and y21

plots are identical to Fig. 31.

If the active line is terminated in some load admittance Y
L'

then

the voltage gain from eq. 3.46 becomes

-Y21
sinh d Jr *(g * +sc)

Tv(s) - - [cosh d jr*(g*+sc) + YLdr*
Y22+YL dVr*(g*+sc)

(3.67)

The gain function has no zeros. Its poles are given by the values of

s satisfying

JWN

-25 -
X
9 -1

aN

Fig. 30. Normalized pole-zero pattern of gain T.
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Fig. 31. Bode plots of gain T.

sinh d Jr *(g * +sc)

cosh d jr*(g*+sc) + Y
L
dr* = 0

d Jr *(g * +sc)

which is an equation of the form F1(s) + YLF2(s) = 0 to which root

locus analysis techniques may be applied. The root locus of this

expression may be determined for Y
L

varying between 0 and a, This

assumes a resistive load but other type loads can equally well be used

(16). Referring to Fig. 32, the normalized root locus begins at the

zeros and travels along the negative real axis to the poles as the

(3.68)

-25

-4 -4

-9 -1

iwN

0-
N

Fig. 32. Normalized root locus for poles of T
v

as Y
L

varies
from 0 to ap.
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load admittance is increased from zero to infinity. Thus, as the load

resistance goes from infinity towards zero, the bandwidth increases'and

the gain decreases.

For the unterminated system, the bandwidth is determined by

setting IT(jwN)I = 0.707 in eq. 3.66 which yields

IT(jw012 = 'cosh (1+j1)0/212 = Ecosh 0+cos 0) = 2 (3.69)

where e = TT fuT/2. Since the response is monotonic, the solution for

0 is unique. Solving by iteration using Orril = cosh
-1

(4-cos 0
n

)

yields 0 = 2.2. Thus, the normalized 3 Bb radian frequency ( )
-wN'3db

0.98. The corresponding3 db Hertzian frequency is
'f(

)
N'3db

0.156.

Therefore, the unnormalized 3 db radian frequency is

w
3db

- g*/c + 0.9811
2
/4d

2
r*c = g*/c + 2.2/d2r*c

or

f
3db

= 0.159g*/c + 0.35/d
2
r*c

(3.70)

(3.71)

for active transmission lines having pole patterns lying entirely in

either half plane. When the pattern lies in both half planes, more

involved calculations are required.

Step Response, Stability, Rise and Delay Time Type 1-3 RCG Active
Lines

Rise time and delay time of the unit step response are important

quantities but quantitatively difficult to find. The unit step

response of the network is found from eq. 3.65 to be

V2(s) = Is cosh d \ir*(g*+sc) 1 1 (3.72)

which may readily be evaluated by the method of residues. Since



d.

cip

(s cosh 5;7;) 1 = [sl-T 1 +
4(bs+a)-1 -1

n=1

.

(2n -1 )272

cosh
n=1

[ s

s _ _
2n-1) 1712

37
,2

co

2e

inh
=

11--1-a b (2j

[ 1

a

cosh

+ 2e_ b
(-1 )n e-

(2

ir-DI

-1)2 L

;

)2
t

]u(t

a a + (2n-1 )2
6=1 7 2n -fit 2

}u(t)
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(3.73)

for all a and b except -a = (2n-1)
2
(u/'2)

2
for n = 1, 2, ... (this

insures a single pole at the origin), the solution is written immedi-

ately as

1

v2(t)
cosh d r*g*

+ 2e

t

co

n
-(2n-1 )2(Ifl2 rifcd2

(-1 )2e
u(t )

n=1
2 Firlq * + (2n-1) Ti

TT 2n-1

(3.74)

Another expression may be found by expressing the cosh function in an

exponential series where

-1 2 CID n -(2n+1) IFci-et,
Re

irs79-
> 0[s cosh 1Fs-711 = k-1) e

n=0

Since (26, p. 255)

-1-1 re -c 117;713i e-c c at

s
2

erfc
2 t

( i2- )
b

c

To-
u(t)erfc (c\iF

e

2 7 t t

(3.75)

(3.76)

for Re s>0 and a, b>0, the voltage solution can also be written in

terms of complementary error functions as



v2(t)

cri

[E (-1 )n

n=0

2n+1 ir*cd 2

[e

-(2n +1 )d\i(r*g*
erfc

c2 t

56

e(2n+1)d\F.3767-
2

erfc
2n+1 2t )1 u(t)

2 t

for r* and ig*>0. Although the involved expressions of eqs. 3.74 and

3.77 represent a function monotonically increasing from 0 to

1/cosh d\/7477, they are tedious to evaluate.

The dominant root and excess phase functions can be used to advan-

tage in approximating network functions such as the unit step response

(9). With this method, the function F(s),

CD

1+ais+a2

2

s
2
+...

TT +sizn)

F(s) = F(0)D ss)) = F(0) 1 = F(0)rill

1+b
1
s+b

2
s +...

Tr (1 +s/pn)

n =1

with an infinite (or finite) number of poles p
n

and zeros z
n

is

approximated by

(i+s/ze) exp(smz/z )

Fa(s) = F(0)(14.sipe) exp(smplpe)

(3.78)

(3.79)

ZE and p
e

are the effective dominant zero and pole, and are numerically

equal to the 3 db radian frequencies,
w3db'

of numerator and denomin-

ator magnitudes, respectively. The excess phase factors, m
z

and m ,

are chosen so the phases of numerator and denominator of F
a
(jw) equal

the phases of the numerator and denominator of F(jw) at w
3db'

respec:..'

tively. Kelly and Chausi have shown that (15)

2
-c2

ze
3

c
1

(3.80)
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2 e 1 14.c2ze/c12]
mz

-c2/c1
-

1

2 +c2 /c1

d
2-d

2
1 2 2

P 3
d
1

m = P

2+d
2
/d 1+d

1

2 e 1
2pe/di

2
I

-d
2
/d

1 1
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( 3 81 )

(3.82)

(3.83)

where c
1

= a
1

2
- 2a2, d

1
= b

1

2
- 2b2, c

2
= a

2

2
- 2a

1
a
3

+ a
4

2
and d

2

b2
2

- 2b1b3 + b4
2

Applying eq. 3.79 to eq. 3.72, the output voltage

V
2
(s) is approximated as

V
2
(s) -

1 1

bosh d17.7fg*
s(1+s/pe) exp (s m

p
/P

e
)

so that

v2(t) -
1

cosh dvrr77

-p t

-e a )U(t-M /p
P

e)

Thus, the approximate response rises exponentially from 0 to

(3.84)

(3.85)

1/cosh d17.7;.; volts with a time constant of 1/pe seconds after a time

delay of m
p
/p

e
seconds. The general expressions for p

e
and m are

prohibitively complicated but can be readily evaluated when numerical

values of r*, g* and c are specified.

Since the response function of a causal linear network can have

no poles in the right-half s-plane if the network is to be stable,

several pertinent points can be made. The type 1-3 active line is

stable if and only if all the poles of T(s) (eq. 3.65) 0.0en bar eq.,

3.59 are in the left-half plane. Therefore,it is necessary that

r*;>0 and g* :> - 7
2
/4d

2
r* for the system to be stable. Returning
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to the step response in eq. 3.74, this condition limits the exponents

of the exponential terms of the sum to be negative so that the response

is bounded.

An empirical result (30) often used for networks having monotonic

frequency response relates the (10-90%) rise time tr to f3db as

f
3db

t
r

= 0.35.
7

Thus, from eq. 3.71, the reciprocal rise time for the

active line is

t
r
-1 = 0.455g*/c + 1/d2r*c (3.86)

From eqs. 3.71, 3.86, and 3.65, increasing g* or decreasing r*

increases the bandwidth, decreases rise time, and decreases or

increases low frequency gain, respectively.

Elmore's method for finding both (0-50%) delay time, t
d'

and rise

time, tr, for networks having monotonic frequency response can also be

used (6). Denoting the normalized gain of the network as

1 + a
1

s +

s +
_ - (131-a1) s + (b12-a

1
b
1

+ -b
2
)s2

0) 1 + b
1

2

it can be shown that (9)

_ 1 - tds (t
d

2 +t
r

2
/21-r)s

2 /2 +

From these results,

td = b1 - a1

tr = F17 [b
1

2
+ 2,(a

2
'2 )] 2

(3.87)

(3.88)

(3.89)

(3.90)

It is an interesting and useful result that the coefficients of s and

7
This follows immediately from the product of f3db = pe/27:in

and t
r

= 2.2/p
e

in eq. 3.105,

3.84
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s in the numerator and denominator polynominals of the normalized

gain function can be used to approximate rise and delay times.

Consider the gain function of eq. 3.65 when g* = 0. The cosh

function of the denominator can be expanded in the series

cosh dF471C
d
2
r*c

= 1 + s +
(d

2
r*c)

2

s
2

+ , isl < CD
2! 4!

59

(3.91)

Compering eq. 3.91 with eqs. 3.89 and 3.90, the delay and rise times

are

t
d

= 0.5d
2
r*c

t [ d2r*c
rir

d2r*c = 1.02d2r*c
3

(3.92)

(3.93)

Note that t
r

is in good agreement with eq. 3.86 for g* = 0. If g* is

nonzero, these expressions become more involved.

Express the denominator of the gain function eq. 3.65 as

)n

cosh 1;71; =
( '

I sl < alp
n=0

where a = d
2
r*g* and b = d

2
r*c. Using the binominal theorem

n
(a+bs)n = Inian-k (bs)k, Isl<471

k=0

eq. 3.94 can be written as

n

cosh 9--.bs =
(2

(bs)
kIn

)!( 1-11< I e
n-k

n=0 k=0

CD CDZ 1 inl bk _n-k] k k

(2n)! tkl 5 S
B

k=0

ks ,

k=0 n=k
1st<

where B
k

is

(3.94)

(3.95)

(3.96)



B =
b
k m

a -
(n+k)! n bk

dk co n+k
bk dk cosh it;

k E (2(n+k))11-0 0
de

k 2: Tit7-1571 kl
dak

n=0 n=0

60

(3.97)

The B
k

coefficients when normalized against B
o

are the b
k

of the

general gain expression eq. 3.87 (the ak=0). Evaluating the first

three B's,

B
o

= cosh

B =
b sinh fa".

1 2
V t:

=
b (12 1 [cosh fa_ sinh Je

2 2
a 8 /;

(3.98)

(3.99)

(3.100)

Normalizing B1 and B2 and substituting into eqs. 3.89 and 3.90 gives

the delay and rise time as

t
d

tanh

ra-

b tanh

[
sech2

VH

Since a d
2
r*g* end b = d

2
r*c,

sic

d 2

t r = dc

tanh d

-

d Jr *g*

(3.101)

a
2

(3./02)

(3.103)

sech
2 2

d fr.-fg* ] (3.104)

Eqs. 3.103 and 3.104 reduce to eqs. 3.92 and 3.93, respectively, as

g*-0- 0.

If the dominant pole and excess phase approximation method is

used, it is readily shown that



r

2.2

Pe

0.69 + mp
td =

Pe

by solving the approximate unit step response (eq. 3.85) for rise and

delay times. Here,the dead time m
P
/p

e
of the system is added to the

calculated delay time.

Sensitivity Type 1-3 RCG Active Lines

A question of considerable importance is the sensitivity of two-

port gain to variations in distributed source strengths. The sensitiv-

ity of dependent variable y with respect to independent variable x is

defined to be

Sy =
y.ay. (ln y )

x 3x x 3(ln x)
(3.107)

and measures the variability of y for variations in x. It is approx-

imately equal to the logarithmic change in y per unit logarithmic

change in x where all other independent variables are held fixed. A

zero sensitivity of y at xo indicates the magnitude plot of ln y versus

ln x has zero slope at xo. Minimizing sensitivity magnitude often

forms a valuable dOsign guide.

The sensitivity of the gain function T(s) given by eq. 3.65 with

respect to K and L from eq. 3.107 is

T K 2
tanh d/(r+K)(g*+sc)

S
K

= - 7 d (g*+sc) (3.108)

d J(r +K)(g * +sc)

tanh dir*(L+g+sc)
S
T

L
=

2

L
d
2
r* (3.109)

d jr*(L+g+sc)
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respectively. These expressions are readily interpreted using pole-

zero patterns and Bode plots. Their zeros are given by eq. 3.60 while

their poles are given by eq. 3.59. They have normalized values given

by eqs. 3.62 and 3.61. S
K
has a additional zero at s = -g*/c or s

N
=

0. Thus the normalized pole-zero patterns of S and S
L

are given in

Fig. 33 and 34,respectively. The normalized Bode plots of the sensi-

tivity magnitudes are readily drawn Figs. 35 and 36.

-4

0
-25 -16 -9 -1

iwN

Fig. 33. Normalized pole-zero pattern of SK.

-25
O
-16

-4

-1

jwN

a
N

Fig. 34. Normalized pole-zero pattern of SL.
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Fig. 35. Bode magnitude plot of sensitivity S.
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Fig. 36. Bode magnitude plot of sensitivity SL.

1ST (jw)I has a d.c. value of

Kd2g* tanh dVg*(r+K)
1ST (0)1 =

2
(3.110)

d Jg *(r +K)

and increases monotonically with asymptotic slope +10 db/dec as w-g-ai

We noted for a stable system that r*;>0 which implies K,>-r and that

29
g*;>-11 /4d

2
r*. Under these conditions, reducing K towards zero

decreases the sensitivity at any frequency towards zero. Thit confitms

the intuitive result that reducing the equivalent series resistance K

reduces the gain sensitivity with respect to K of the two-port.

1ST (jw)I has a d.c. value of

Ld2r* tanh d jr*(g+L)
1ST (0)1 =

2
d r-)(1-77--.+L)

and decreases monotonically with asymptotic slope -10 db/dec as w-Ico.

Again for a stable system,r*>0 and L>-g-it
2
/4d

2
r*. Here, reducing the

equivalent shunt conductance L towards zero decreases the sensitivity

at any frequency towards zero.

This completes consideration of type 1-3 rcg active lines. Type

2-4 rcg active lines are now investigated.
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Driving-Point Admittance--Type 2-4 RCG Active Lines

The driving-point admittances of type 2-4 aCtivelines-were given

in eqs. 3.51. and 3.54. For rcg active lines, the admittances equal

Yll = 7,1-d" [i(L-K) vili(L-K)2+r(g+sc) coth d A(L-K)2+r(g+sc) ] (3.112)

Y22
E= [L-K) + li(L-K)2+r(g+sc) coth d A(L-K)2+r(g+sc)] (3.113)

If K =L, then y11 equals y22 and has the characteristics of eq. 3.55

discussed previously. The more general case where K L can be

expressed as

1
cosh f + id(L-K) sinh f

YII rd sinh f
f

sinh f
cosh f - id(L-K)

Y22 rd sinh f
f

(3.114)

(3.115)

where f = d A(L-K)2+r(g+sc). The poles of the driving-point func-

tions eqs. 3.112 and 3.113 are given by eq. 3.57 as

1 (K) 2 2 rr2
s =

c g" 4r
(2n)2 , n = 1, 2, ... (3,116)

P I 4d rc

The poles of y11 and y22 are translated further from the origin along

the negative real axis by making K i L. This is in contrast with the

reflection and bidirectional translation properties of type 1-3 active

lines. Introducing normalized complex frequency sN where s =

(L-K)
2

]
2

7 [g+

n
4r 4d2

s
N'

the normalized poles of the driving-

rc

point functions are given by eq. 3.62.

The zeros of y11 and y22 are determined from the zeros of



cosh f + -d(L-K)
sinh f =

cosh f - -id(L-K)
sinh f

respectively. Under the frequency normalization, the normalized zeros

satisfy eqs. 3.117 and 3.118 when f = TT //2. A general solution to

the transcendental equations is not expressible in closed form. How-

ever a root locus technique, generalized to account for negative values

of -id(L-K) as well as positive values, can be employed to draw the

normalized root locus of eqs. 3.117 and 3.118. It is instructive to

form the root locus indirectly from graphical considerations.

Letting

N(f) = cosh f +
sinh f =0 (3.119)

where k = -id(L-K) is real, the zeros of N(f) are determined by letting

f = u + jv, and then separating and equating real and imaginary parts

to zero. Examining the resulting equations, it is found that the zeros

must lie on the jv-axis of the complex f-plane. Additionally, there is

a double zero at the origin for k = -1 and two real zeros - u 1 for

k <-1 .

The imaginary roots satisfy

tan v = - k (3./20)

excluding the first pair for k<-1. For k-1, the real root pair

satisfy

tanh u = - (3.121)

Plotting the periodic function tan v and the line (-v/k) having

slope (-1/k) in Fig. 37, the v values at intersection points -v
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-v
2

, are the zeros of eq. 3.120. Note that as -vi--qp. 0,

so that the first pair of imaginary zeros approach the origin. For

k<-1 these zeros move onto the real axis of the f-plane.

Plotting the function tanh u and the line (-u/k) in Fig. 38, the

u values at intersection points -u
1
are the two real zeros of eq. 3./19

for k-1. Thus for k<-1, eq. 3.119 has these two real zeros -u
/

and

an infinite number of imaginary zeros -jv2, -Jv3,

The behavior of the zeros of N(f) is summarized in the root locus

for N(f) drawn in Fig. 39 for k varying between -mend +al The zeros

tan v

Fig. 37. Graphical construction yielding the imaginary zeros
of eq. 3.119 (excluding the first pair for k<-1).

tanh u line (_u /k)

for k <0

u

Fig. 38. Graphical construction yielding the real zero
pair of eq. 3.119 for



f-plane

j 2Tr
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jn

J
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- j

Fig. 39. Root locus for N ( f) as k varies from - ao to + co.

of N(f) are bounded by

(2n-1) < jvn (2n) Ti n = 1 , 2,

for k> 0, and by

(2n-2) I/ < iv
n 2
< (2n-1) n = 2, 3,

2
IT--
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(3.122)

(3.123)

for k <O. The first zeros -+ jvi are imaginary for -1 <k< 0 where

0 < jv1< 2 (3.124)

but have real values -u
1

for k where

0<u1 <m (3.125)

Since N ( f) given by eq. 3.119 does not have an essential singular-

ity in the finite f-plane, it can be expressed as an infinite product



in terms of its zeros using the Weierstrass factor theorem (33).8

Therefore

co co

N(f) = c (f+jv
n
)(f-jvn) = c Tirlf2+v 2

n
n=1 n=1

for k> -1 and

co

N(f) = c(f+u1)(f.,u1) (f2
n
2)

n=2

for k-1, where c is a constant.
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(3.126)

(3.127)

Recalling that normalized complex frequency sN = (2/7)
2
f
2

, the

normalized zeros of y11 and y22 in the s
N
-plane must equal

2 2
s
Nn

= -(2/r),v ==--(2v
n
/a)

2
, n = 1, 2, ... (3.128)

where s
N1

= -(2u
1
/17)

2
if k<-1. Thus, the normalized zeros of theN,

admittance functions y11 (eq. 3.117) and y22 (eq. 3.118) can be

bounded as

- (2n)2" sNn< -(2n-1)2 , n = 1, 2, ...

for k>0, and as

- (2n-1 )2 sNn
(2n-2)2, n =

for k<0. The first zero s
1

is bounded by

1 C sNi< 0

for -1<k<0 and

- 133<sN1< 0

for k-1.

(3.129)

(3.130)

(3.131)

(3.132)

8
A function has an essential singularity at point p

°

if its Laurent

series representation in the region surrounding popossesses an
infinite number of (p-po) terms having negative exponents.



69

The normalized root locus for the zeros of the driving-point

admittances is drawn in Fig. 40 from eq. 3.128 and Fig. 39. The locus

depends on the (L_K) value since k = .id(L-K). The normalized poles of

y11 and y22, given by eq. 3.62, are located at -(2n)2 for n = 1, 2,...

Thus in the root locus, every zero of y11 moves between its adjacent

poles; i.e. z
N2

begins at -4 and terminates at -16, z
N3

begins at -16

and terminates at -25, etc. Note the z
N1

begins at - a4 travels

through the origin (corresponding to unnormalized frequency s =

-g/c -1/d
2
rc), and terminates at -4. y

22
has the same characteristics

with a change in arrow direction.

rr
2

1
Since complex frequency s was normalized so s = - [g+( 02]

+

s
N

, increasing (L_K) from zero has two effects on the (unnormel-
4d

2
rc

ized) pole-zero pattern of y11 and y22. First, the entire pattern is

translated further from the origin along the negative real axis.

Second, the zeros of y11 approach the poles of y11 while the zeros of

y
22

move away from the poles (with the exception of the first zero of

Y22 )

The sinusoidal steady-state character of y11 and y22 can also be

assessed from the root locus diagram. Since the poles and zeros of y11

in Fig. 40 interlace with a zero closest the origin for L_K -4.14/d,

-25

K=L
6

-9 -1

K=L K=L

Fig. 40. Normalized root locus of zeros of yll as (L-K) varies
from - ® to + a3 (or y

22
reversing the arrow direction).
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the. Bode plots have the same monotonic increasing character as Fig. 29.

The poles and zeros of y22 also interlace with a zero closest the

origin for L-K4.14/d. When L-K<-4.14/d
'

y11 has a pole closest the

when L-K >4.14/d' y22origin; has a pole closest the origin. Their

Bode plots must have +10 db/dec magnitude asymptotes and 45° phase

asymptotes. Increasing (L_K) from zero increases the bandwidth of yll

while the bandwidth of y22 decreases slightly and then increases.

From eqs. 3.112 and 3.113, y11 and y22 must have d.c. values of

Y11
(0) =

1
[(1-(L-K) + dli(L-K) 2 -Erg coth dli(L-K)2+rg ]
rd

(3.133)

y
22

(0) =
1 [-d(K-L) 44-,(L-K) 2+rg coth d A(L-K) 2+rg
rd

(3.134)

Clearly, increasing (L_K) from zero to infinity increases the magnitude

of y11(0) indefinitely but decreases y22(0) towards zero. For L-K = 0,

Y11(0) = y22(0) = d
VT6 coth d 176" (3.135)

In passing it should be noted that the series solutions to eq.

3.119 have been investigated (15). Following Kelly and Ghausi, express

the n
th

positive imaginary zero of eq. 3.119 as

vn = (2n-1 )77/2 + cn (3.136)

where c
n

is the correction factor due to nonzero k = 2(:1(L-K). Since

v
n

satisfies eq. 3.120

(2n-1)7/2 + c
n

= - k ten [(2n-1)7/2 + c
n

= k cot c
n

the n
th

correction satisfies

cn = cot
1 1-

[(2n-1 )7/2 + c
n

(3.137)

(3.138)

Using the series expansion for cot
-1
x and solving for c

n
by iteration,



its approximation for Ikl<B, accurate to at least 3%, is

c
n

= (2n-1)
2

(2n-1)
2
(7/2)

2
+ k

so that

v
n

= (2n-1) 2 [1+
4k

2
(2n-1)

2
4k
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(3.139)

(3.140)

Thus, the normalized zeros of y11 eq. 3.114, for Id(L-K)1<16 are

4-
s
Nz

= -(2n-1)2 [1 +
d(L K)

(2n-1)
2

+ 2d(L-K 1 ,
n = 1, 2, ... (3.141)

The normalized zeros of y22 are given by eq. 3.141 by replacing (L-K)

by (K-L). Returning to Fig. 40, these are the zeros when L=4:-.K.

Transfer Admittance, Gain, and Bandwidth Type 2-4 RCG Active Lines

The transfer admittances from eqs. 3.52 and 3.53 are

id(K+L)

Y12 rd e
dii(L-K)2+r(g+sc) csch dA(L-K)2+r(g+sc) (3.142)

4-d(K+L)

y =
1

e
21 rd

d\A(L-K)2+r(g+sc) csch d\ti(L-K)2+r(g+sc) (3.143)

Using the product expansions of eq. 3.57

(3(K+L) co
[ 4d

2
[i(L-K)

2
+r(q+sc)]

(3.144)
Y12 rd e

n=I (2n)
2
n
2

y21 = e
-d(K+L)

Y12
(3.145)

They have d.c. values of

id(K+L)

Y12(0) = i/Te \d/i(L-K) 2 csch d A(L-K +rg (3.146)

Y21(0)

e-d(L+K)
y
12

(0) (3.147)
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It is clear that the transfer admittances have the same poles

and y22 (given by eq. 3.116) and are all-pole functions.

The open-circuit voltage gain Tv(s) from eqs. 3.53 and 3.54 is

Y21 --id(K+L)

T
v
(s) = - = e [cosh f + i-d(K-L)

sinf h fl -1
(3.148)

Y22
j

while the short-circuit gain Ti(s) from eqs. 3.51 and 3.53 is

Y21 --id(K+L)
n

T
I
(S) = - = e [cosh f - id(K-L)

sif h fl -1
(3.149)

Y22

where again f = d A(L-K)2+r(g+sc). Thus, the poles of Tv and T are

the zeros of y22 and y11, respectively. Their normalized values are

bounded in Fig. 40 and are given explicitly by eq. 3.141 for K^,7.:L.

The d. c. gains from eqs. 3.148 and 3.149 are

- d(K +L) sinh d A(L-K) 2 +rg 1-1

T
v
(0) = e cosh d A(L-K)2+rg + -id(K-L)

dji(L-K)2+rgJ

(3.150)

sinh dii(L-K)2+1.9-1
T

I
(0) = e cosh d j(L-K)2+rg - id(K-L)

d A(L-K)

(3./51)

Since the gains are all-pole functions, their Bode magnitude and phase

plots have monotonically decreasing characters similar to Fig. 31. By

adjusting -(K+L) to sufficiently large values, low frequency gain

exceeding unity is achieved. Gain under arbitrary loading is carried

out using root locus techniques as before in eq. 3.67.

Unless other approximations are employed, system bandwidth must

be calculated using iterative techniques. Setting f = rvy2 in eqs.

3.148 and 3.149 to form the frequency normalized gain functions, and



73

setting their magnitudes equal to 0.707 for sN = jwN yields

d(K-L) 2 d(K-L)
(sinh 0 + sin 0)(cosh 0 + cos 0) + (cosh 0 - cos 0) -

+

e ilsi

= 4[1 1-. 4d(K-012 (3.152)

when 0 =7 4
N
/2. The plus sign is used when T

V
is considered, and the

minus sign for T1. Solving this equation for 0, the normalized 3 db

radian frequency is wN Ovri/a. Since complex radian frequency

[

Lr-K)2 2
s = - 1 gl(

4
+ --IT s

N
, the 3 db radian frequency is

c
4d

2
rc

w

1 [ (L-K)2] 0.95

3db '9+ 4r
d
2
rc

(3./53)

with the corresponding Hertzian frequency
f3d13/2TT'

Elmore's results may again be used to advantage for approximating

f
3db*

For networks having normalized gains given by eq. 3.87 and

monotonic frequency response, f3dbtr 0'35'
Thus from eq. 3.90,

these networks have a 3 db frequency of

f
3db

= 0 14[b
1
2-a

1
2+2(a

2
-b

2
), -2 (3.154)

To utilize this result, the denominator of the gain functions,

eqs. 3.148 and 3.149, is expressed in an infinite series of s. The

cosh term was expanded in eq. 3.96. Its first three terms are given

by eqs. 3.98, 3.99, and 3.100. In like manner, the sinh 8.f-ps/a-ps

function can be expanded as

sinh Ja +bs CD

- Bks
' IsI

qb1
V7-171:7; k=0

where

(3.155)



k
(n+k) !T bk dk gym-

n+k
B IL_

k b! L- 2(n+k)+1)1n1 8 k! k
=0

(2(n+k)+1 )1
n=0 de n

bk dk
sinh

dak \f;

Evaluating the first three B
k
Is gives

sinh
Bo =

b
cos

B1
2 8

sinh
=11.3.12

li
B2

21 2a

sinh)sinhii

El fit

3 3
sinh cosh

2 2 r- 2
a V a 8

2

\kt-
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(3.156)

(3.157)

(3.158)

(3.159)

Thus, the denominator D(s) of the gain functions, eqs. 3.148 and 3.149,

becomes

sinh ft3- sinh

D(s) = [cosh 11; id(K-L) + s
2

Ja Vq;

sinh fa
2(1)2

cosh sinh

d(K-L)
a a 2a 2e pi

id(K-L)

sinh IT;

282 re

= B
0

+B
1
's + B

2
's

2
+

(a +3)
cosh fE;

7 Er-- )1'

(3.160)

where the plus is used for Tv and the minus for TI. Normalization

of the Bil and 82' against B0' and substitution into eq. 3.154 immedi-

ately yields f3db for numerical values of a = d2Jrg +(L_K)2 , b = d
2
rc,

and (K_L).
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Step Response, Stability, Rise and Delay Time Type 2-4 RCG Active
Lines

The unit step voltage response of the active line from eq. 3.148

is
-ci(K+L

1
V
2
(s) = e [cosh d A(L-K) 2 +r(g+sc)

sinh d A(L-K)2+r(g+sc)
+

d A(L-K)2+r(g+sc)
(3.161)

If K = L, this equation reduces to eqs. 3.73 or 3.77 when multiplied

by e
-Kd

. Otherwise the poles of eq. 3.161 must be identified either

through graphical techniques or eq. 3.141 when 1_=:=1, as

s - - 91

,
(L K)2

(2n-1)2
TT

2

+cd4r
4d

2
rc

(3.162)

c
n

is the correction factor required when k = id(L-K) is nonzero which

was introduced in eq. 3.136. Then, by the residue method

1
v2(t) = e

cosh i; + -11(K-L)
sinhii

1-13

B
t

CD -(2n-1 )2 ( (1+Cn)2

+ 2e b (-1)ne u(t)

n=1 Dn[a+(2n-1)2 H.12 (1+cn)2]

where

(3.163)

7c 7c
cos (2n-1 id(K-L) sin (2n-1)

2
n

D = 1-
)1] 12(1.1.%).2.

]- id(K-L)
1)2 592(14.cn)2

n (2n-1)(1+cn) (2n-1

(3.164)

with a = d
2 \irg+i(L-K) 2

and b = d
2
rc. The step response rises mono-



7'6

sinh -1

tonically from 0 to e cosh ft; + 2(1(K-L) volts.

Vc:

Simplification results from the dominant-pole, excess-phase

approximation of the step response. Comparing eq. 3.146 with eq. 3.78

and 3.79, the approximate response is

-id(K+L)
e 1

V
2
(s) =

so that

cosh +id(K-L)
sinh %/a sk1+s/pe) exp(emp/Pe)

(3.165)

-id(K+L)

v2(t)
sinh a

(1-e-Pet)u(t-m
P
/p

e
) (3.166)

cosh a + id(K-L)

This exponential response has a time constant l/pe and a dead time of

m
p
/p

e
p
e

and m (given by eqs. 3.82 and 3.83) are determined from

the expansion of eq. 3.160.

The system is absolutely stable since all the poles of eqs. 3.148

and 3.149 are in the left-half s-plane.

The rise and delay time follow immediately from the denominator

expansion of eq. 3.148 using Elmore's results. Reiterating, the coef-

ficients of s and s
2

are

b
sinhAT cosh ,Fa sinh j;

b
1 2

[ + 1d(K-L) ( /B
o

a a ra

= 2
cosh fe; sinh

b

feT

2 2 [ 2a
( 1.

respectively, where

2a

+ 1-d(K-L

sinh

(e+3)
2a2Va

3
cosh ra 1

2 2 I] /Bo
a

(3.167)

(3.168)



B
o
= coshVT + -L)

sinh

77

(3.169)

Rise and delay time follow from substitution into eq. 3.89 for td and

eq. 3.90 for tr. If the dominant pole, excess phase approach is used,

eqs. 3.105 and 3.106 yield tr and td , respectively.

Sensitivity Type 2-4 RCG Active Lines

The general sensitivity expression for Tv or T1 is prohibitively

complicated. Considerable simplification results when the source

strengths are equal, i.e. K = L. Here, the open-circuit voltage gain

and short-circuit current gain from eqs. 3.148 and 3.149 both equal

T(s) = e
-Kd

/cosh dir(g+sc)

The sensitivity of gain T with respect to K is

S
T

= -Kd

(3.170)

(3.171)

which is frequency independent. Thus, to minimize the network's gain

sensitivity with respect to parameter K, set K = 0. But this is in

conflict with the requirement of large _K for large low-frequency gain,

and hence a compromise must be made.

mixed-Type Lines

It should now be clear that simply changing r to r* and g to g*

in any of the type 2-4 line expressions yields the expressions for

lines having mixed-type sources distributed along its length. These

conversions are thus easily made.

Pertinent system parameters of uniform active lines have been
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examined in this chapter. The admittance parameters were chosen to

characterize rcg active lines. The results are readily extended to

other parameter sets (such as z or h), and different types of lines

(e.g. lc active lines).

Both time domain and frequency domain behavior and s-plane

characteristics have been investigated. Various approximations were

introduced to make analysis tractable, and to aid in forming useful

design criteria and results.

The question now arises if nonuniform structures have signifi-

cantly different characteristics from a pole-zero viewpoint and if

they can be employed to add flexibility in meeting design require-

ments. This question is investigated in the following chapter. It is

seen that the very general nature of their parambters does not change

significantly.
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IV. NONUNIFORM TRANSMISSION LINES HAVING
DEPENDENT DISTRIBUTED SOURCES

Two-Port Parameters

In this chapter, nonunifOrm active transmiseioh lines are

examined from a general point of view. The nature of their two-port

parameters is surveyed. Various results from linear, second-order,

homogeneous, partial differential equation theory can advantageously

be used for this purpose. The voltage and current along active lines

are described by this class of differential equation. A summary of

the important conclusions and results will give direction to this

development.

The two - port parameters are expressed in terms of the voltage

solUtion of the partial differential equation describing the active

line. They are simplified using the basic set solution and the self-

adjoint properties of the active line equations. Lack of pole-zero

cancellation is shown by utilizing the Wronskian of the basic set

solutions. Sturm-Liouville theory establishes the general pole-zero

locations. Many of the powerful theorems concerning lumped, passive

networks are seen to parallel those of active lines.

To begin, the partial differential equations describing voltage

and current along the active line are written. From eqs. 2.1 and 2.2,

the transformed voltage V(x,$) and current I(x,$) on initially relaxed

type 1-3 active lines satisfy

Ch. Vxlx "V =

(471(7 IxIx Z*I =
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where Z *(x,$) = K(x)+r(x)+s1(x) and Y*(x,$) = L(x)+g(x)+sc(x).

Alternatively, voltage and current on initially relaxed type 2-4 active

lines satisfy

(K L KLV + + (Zx Z
V +

x ZVx Z
Y )11 = 0 (4.3)

Z11 = 0 (4.4)(IItY
x

+
Y i

LI)
x

+
Y x

+
IY
KL 1 -

where Z(x,$) = r(x)+s1(x) end Y(x,$) = g(x)+sc(x). Both sets of

equations describe voltage end current at every point, x, on the inter

tiorcidftheline for any complex frequency s. This is succinctly

expressed by first defining the domain DS to be the three-dimensional

space formed by the s-plane and the x-axis, where the open domain Ds =

{(x,$): 0<x<d, Is' < 4 and the closed domain Ds = {(x,$):

Isl<al'o}.
Then, the active line equations hold for all (x,$) in Ds.

The two-port parameters of an active line are easily expressed if

either its voltage or current solution is known. For example, consider

the admittance parameters in terms of the voltage solutions. Denote

the port voltages ys) = V(0,$) and V2(s) = V(d,$) of the active line

as V(0) and V(d), respectively.

For type 1-3 active lines, the corresponding port currents from

eqs. 2.1 and 2.2 are

I1(s) = 1(0) = -Vx(0)/Z*(0) (4.5)

12(s) = -1(d) = Vx(d)/Z*(d) (4.6)

Since the admittance parameters are defined in terms of these port

voltages and currents, the admittance matrix can be immediately

written as



1
Vx(0)

z*(0) v(0)
V(d) =0

1
V (d)

Z*(d) V(Q) v(d)=0

1
vx(o

Z*(0)

1
Vx(d)

Z*(d) V(d)

v(o).o

v(o).o _
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(4.7)

Type 2-4 active lines have port currents, from eqs. 2.1 and 2.2,

given by

I1(s) = I(0) = -Vx(0)/Z(0) - K(0)V(0)/Z(0) (4.8)

I2(s) = -I(d) = Vx(d)/Z(d) + K(d)V(d)/Z(d) (4.9)

Thus, the admittance matrix for the type 2-4 active line is

K(0) 1
v
x
(o

Z(0) 777 V(0)
K(0) V(0) 1

vx(o)

V(d) = 0
Z(0) V(d) 77) 'V(d)

K0) 1 x
(d)

Z(d) V(0) Z(d) 7/107
V(d)=0

K(d) 1
V
x
(d)

Z(d) Z(d) 77-71

v(o).o

v(o).o

(4.10)

Since active transmission lines are described by partial differ-

ential equations of second order, the general voltage solution V can be

expressed as the sum of two linearly independent solutions ve and vb,

V(x,$) = al(s)ve(x,$) + a2(s)vb(x,$) (4.11)

where a
1

and a
2
are arbitrary functions of s determined by port condi-

tions. Unless va and v
b
are properly chosen, complicated two-port

parameter expressions result using this general solution. This is

readily demonstrated by writing the driving-point admittance for type

1-3 active lines. Substituting the general voltage solution of eq.

4.11 into the y11 expression in eq. 4.7 yields

1
vax(0)vb(d)-ve(d)vbx(0)

Yll = Z*(0)v(4.12)el(0)vb(d)-va(d)vb(0)
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As usual, the x subscripts denote partial differentiation with respect

to x; for example, v
BX

= av /ax. Since in general, y
11

contains

eight transcendental functions in s, its pole-zero distribution is

prohibitively complicated to determine.
9

Considerable simplification

results when the independent solutions va and v
b

are chosen to have

particular characters at x = 0 or x = d.

The Basic Set

The basic set solution of the active transmission line equations

greatly simplifies the two-port parameter expressions. Express the

voltage V in terms of the two independent basic set solutions v1 and

v
2

,

V(x,$) = a1(s)v
1
(x,$) + a

2
(s)v

2
(x,$) (4.13)

where a
1

and a2 are determined by port conditions. The basic set has

the following properties (24): v1(0,$) = 1, v1x(0,$) = 0, v2(0,$) = 0,

and v
2x

(0
'

s) = 1. That is, v
1

has unit value and zero slope at x = 0,

while v
2

has zero value and unit slope at x = O. It is precisely these

properties which simplifies y11 in eq. 4.12 and the two-port parameters

of the active lines.

Using the basic set results in the admittance parameters of eq.

4.7 yields the type 1-3 active line admittance matrix,

9
S.C. Dutta Roy has compiled these expressions for passive lines in:
matrix parameters of nonuniform transmission lines. IEEE Transactions
on Circuit Theory 12(3):142-143. 1965.
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v1 (d)

Z*(0) v2(d) Z*(0) v2(d)

1
v1'(d)v2(d) - v

1
(d)v

2
f(d)

1
v
2
'(d)

Z*(d) v2(d) Z*(d) v2(d)

1 v1 (d) 1 1

Z*(0) v2(d) Z*(0) v2(d)

(4.14)

1 1 1 v2'(d)

-z*(0) 7717 Z *(d) v2(d)

where, for convenience, primes denote differentiation with respect to

x. The admittance matrix for type 2-4 active lines is

[Y]

1
v
1
(d) - K(0)v

2
(d)

1 1

Z(0) v2(d)

f(d) f(d)

Z(0) v2(d)

(d) + K(d)v2(d)
1

v
1
(d)v

2
- v

2
(d)v

1
v2'

1

-Z(d) v
2
(d) Z(d) v2(d)

v1(d) - K(0)v2(d)
1 1

Z(0) v2(d)z(o) v2(d)

(K+L)dx
0

1 1

Z(0) v2(d), Z(d)

(d) + K(d)v2(d)

v2(d)

(4.15)

The simplification of v
21

in eqs. 4.14 and 4.15 results from Abel's

identity. This will be shown in the next section.

The complete sets of two-port parameters for type 1-3 and type

2-4 active lines are tabulated in Tables 4 and 5, respectively. For

notational convenience, the basic set current solutions are occasion;--

ally utilized in Table 5. From these tables, it is clear that when
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the zeros of the two basic set solutions v1(d,$) and v2(d,$) and their

spacial derivatives are identified, the pole-zero distributions of the

two-port parameters can be found. Generally, the two-port parameters

cannot be expressed in closed form, since closed form voltage and

current solutions exist for only very special parameter distributions

( ?1). This will not hinder these results being utilized later in the

chapter. It should be noted that in lieu of closed form expressions,

infinite series solutions and infinite product solutions can be used

to find dominant time and frequency domain behavior (as was done in

Chapter 3).

Table 4. Two-port parameters for the type 1-3 active transmission
line expressed in terms of the basic set voltage solution at x=d (15).

z*(o) Z*(d) /
vi vi

Z*(d) 1 ,

1

z*(o)

v1
I,

vi

1

1 1
v1'

v Z*(d)

Z*(o)
z (ON/2Z*(d) v2

1

Z*(d) v1

Cy]

[g

1
v1

1 1

Z*(0) v
2

Z*(0) v2

1 1 1
v
2

Z*(0) v
2

Z*(d) v2

1
v1

Z*(d) 1

z*(o) z*(o) v2'

Z*(d) 1

z*(o) v2'

v1

v,

Z*(d)
v2

z*(o)v2

z*(o)
Z*(d) v1 Z*(d)

v2'
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Table 5. Two=port parameters for the type 2-4 active transmission line
expressed in terms of the basic set solutions at x = d.

[z]

[Y]

[h]

[91

[A] =

Cal

1
i
1

- L(0)i2

Y(0) i2
1 1

Y(0) i
2

e
c(d)

1 121
+ L(d)i2

_
Y(0) i

2
Y(d) i

2

see eq. 4.15 ]

WOO

v
2

Z(0) 1

v
1

- K(0)v
2 v

1
- K(0)v2

e
c(d)

2
Y(d)

v
1

- K(0)v
2

Y(0) 12
Z(d) 1

i
1

- L(0)i
2

Z(0) v2' + K(d)v2

c
z(d)

(d)

Z(0) v2' + K(d)v2

Z(0) -c(d)f

Z(d) e "2
+

v2

Z(d)
v2 + K(d)v2

K(d)v2) Z(0)e-c(d)v2

1

Y(0)e-c(d)1 e
-c(d)

2 2

v
1

- K(0)v
2

Y(o)i2

d

Note: c(d) = - (K+L)dx
0

Z(0)v2

ZZ(0) (v2
''+ K(d)v

2
)

(d) __
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It will prove helpful to review the basic set solution introduced

by Morse and Feshbach (24). Consider the general linear, second-order,

homogeneous, partial differential equation describing the function

F(x,$),

p(x,$)Fxx(x,$) + q(x,$)Fx(x,$) + r(x,$)F(x,$) = Q(f) = 0 (4.16)

for (x,$) in Ds. The linear, second-order, partial differential opera-

tor, Q, is introduced for notational ease in later equations. The

basic set solution of Q(F) = 0 is the Taylor series solution in x, with

s as a parameter, which is partitioned into two sums of even and odd

powers of-*: This is shown in the following manner. F(x,$) is

analytic and has a Taylor series representation at all ordinary points

in Ds of eq. 4.16 (this is, all (x,$) in Ds where q(x,$)/p(x,$) and

r(x,$)/p(x,$) are nonsingular).
10

Thus, the functions

F(x,$) = a
o

+ (x-a)a
1

+ (x-a)
2
a
2

(4.17)

p(x,$) = p(a) + (x-a)p'(a) + (4.18)

q(x,$) = q(a) + (x-a)ql(a) + (4.19)

r(x,$) = r(a) + (x-a)r'(a) (4.20)

can be expanded in Taylor series where primes denote differentiations

with respect to x and the constants are functions of s, i.e. an

p(n)(8) p(n)(a,$), q(n)(a) q(n) (a,$), and r(n)(a) =

r
(n)

(a,$). The a
n
's are determined by substituting eqs. 4.17-4.20

into eq. 4.16 and collecting like powers of x,

10
A function is analytic at a point if its partial derivatives exist
at the point and in a neighborhood about the point. Analytic func-

tions have Taylor series representations. Singular points are points
in the (x,$)-space where the function fails to be analytic.
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0 = [2a2p(a)+a1q(a)+aor(a)] + (x-a)[6a3p(a) + 2a2p'(a) +2a2q(a)

+alq(a)+air(a)+aor'(a)]+... (4.21)

A polynomial of infinite degree which is identically equal to zero for

all x in hashas zero coefficients for all powers of (x-a). Therefore

from eq. 4.21,

2a2p(a) + a1q(a) + aor(a) = 0 (4.22)

6a3p(a) 2a2p'(a) 2a2q(a) + a1q1(a) + air(e) + aorl(a) = 0 (4.23)

and so on. The first equation gives 82 in terms of ao, al; the second

gives a
3

in terms of ao, al and a
2

and thus in terms of ao, a1; etc.

The basic set results by expressing the Taylor series solution as the

sum of two independent solutions,

F(x,$) = a
o
F
1 '

(x s) + a
1 '

t(x s) (4.24)

where

2
a
2 4

a

a
4

F
1 '

(x s) = 1 + (x-a) + (x-a) +
a
0 0

and

F (x ' s) = + (x-a)2 (X-8)4 ...
2

]
al

81

(4.25)

(4.26)

Clearly F
1

has unit value and zero slope at x = a while F
2

has zero

value and unit slope at x = a. Boundary conditions determine ao and a1 .

This series holds within the sphere of convergence having radius equal

to the distance between (a,$) and the nearest singular point of the

partial differential equation, (eq. 4.16). Various methods may be

used to determine the basic set (15). This will not concern us here.
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The Wronskian and Self-Adjoint Systems

The results of Tables 4 and 5 have interesting interpretations.

In later sections, the general location of the poles and zeros of the

two-port parameters are established. This section is concerned with

investigating the possibility of pole-zero cancellation and two-port

parameter simplification.

Several useful results arise from consideration of the Wronskian

of any two linearly independent voltage solutions, ve and vb, of the

voltage equation

Q(V) = p(x,$)Vxx(x,$) + q(x,$)Vx(x,$) + r(x,$)V(x,$) = 0 (4.27)

The Wronskian of the two solutions v
a
and v

b
is defined as

av
b

av
a

W(v ,v ) = v
v b 13X

vv -vv
a b 8 0X a bx b ax

(4.28)

for all (x,$) in Ds. The Wronskian is therefore a function of both

xend s. The partial differential equation describing the Wronskian

is formed by operating on v
a

and v
b

in the following manner and

manipulating the results,

v CI(v
b

) - v
b
Q(v

a
) = p(x,$)W

x
(x,$) + q(x,$)W(x,$) = 0

The general Wronskian solution from eq. 4.29 is

(4.29)

W(x,$) = W(x0,$) exp [-f [q(x,$)/P(x,$)]dx] (4.30)

x
o

The Wronskian has the property of being nonzero at all points of

This fact eliminates the possibility of pole-zero cancellation

between basic set quantities involved in the two-port parameters, as

described in the next paragraph. Proof by contradiction establishes
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this Wronskian property. From eq. 4.30, W cannot vanish at any point

except perhaps at a singular point. Thus, W is identically zero in

domains where q/p is nonsingular if, and only if, *Jo is zero. But

this would require v = cv
b

(c is a constant), so the solutions v and

v
b
would not be linearly independent. Therefore, since v and v

b
are

linearly independent, the Wronskian W(v , v
b
) is nonzero in domains

where q/p is nonsingular. The parameter conditions noted for the

active line equations (eqs. 1.1, 1.2, 2.1 and 2.2) insures that q/p is

nonsingular in D
s

. Thus, W is nonzero in D
s

, i.e. W 0 in D
s

By

continuity requirements, W 1 0 in Ds as well.

The Wronskian of the basic set solutions from eq. 4.28 is

W(v1 , v
2

) = v
1
v
2x

- v
2
v

x
' 0 (4.311

for all (x,$) in D
s

. Therefore, the zeros of v1(d) and v2x(d) do not

coincide with the zeros of v
1x

(d) and v
2
(d). Applying this result to

the entries in Tables 4 and 5, it is clear that there can be no cancel-

lation between basic set zeros in numerator and denominator. Z* and

Y* in Table 4 and Z and Y in Table 5 introduce an additional pole or

zero which can cause a single pole-zero cancellation, at most. Thus,

the zeros of a two-port parameter are the zeros of its numerator

function. The poles of a two-port parameter are the zeros of its

denominator function. Since the numerators of v
21

in eqs. 4.14 and

4.15 both involve the Wronskian of the basic set solution at x = d,

this motivates further examination of the Wronskien.

The Wronskien of eq. 4.30 assumes a particularly simple

q(x,$) = px(x,$) (4.32)

Such systems are called self-adjoint, and have a Wronskian which
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satisfies

W(x,$) = W(x0,$) exp(-1n p(x,$)/P(xo,$)) = W(xo,$)p(xo,$)/P(x,$)

(4.33)

for all (x,$) in Ds. Rearranging eq. 4.33 results in the identity

(referred to as Abel's identity),

W(x,$)p(x,$) = W(xo,$)p(xo,$) = k(s) (4.34)

where k(s) represents some function in s and is independent of x. This

is an extremely useful result which allows simplification in y21 and

other two-port parameters.

Since Abel's identity, eq. 4.34, holds for all x in Ds, the

function k(s) can be evaluated by judiciously choosing xo. Choose

x = 0 where from eq. 4.28, the Wronskian of the basic set is equal to

unity. Then eq. 4.34 becomes

W(x,$)p(x,$) = p(0,$) (4.35)

The type 1-3 active line equations (eqs. 4.1 and 4.2) are in self-

adjoint form. Their comparison with eq. 4.27 shows that q = px,

where p = 1/Z* in the voltage equation and p = 1/Y* in the current

equation. Thus, the Wronskian of their basic set voltage solutions

must satisfy

W(v1(x,$),v2(x,$))/Z*(x,$) = 1/Z*(0,$) (4.36)

from eq. 4.35. An analogous expression is readily written for basic

set current solutions. The ratio of W and the series impedance any-

where along the line equals the reciprocal series impedance at x = 0.

Therefore, y21 W(d)/Z*(d)v2(d) = -1/Z*(0)v2(d) in eq. 4.14.

The type 2-4 active line equations (eqs. 4.3 and 4.4) are not in

self-adjoint form. However, any linear, second-order, homogeneous,
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partial differential equation denoted as

bi(x s)Fxx(x s) + b2(x,$)Fx(x,$) + b3(x,$)F(x,$) = 0 (4.37)

where b
1
/ 0 for all (x,$) in D

s
, can be expressed in the following

self-adjoint form

(p(x,$)Fx(x s))x + r(x,$)F(x s) = 0

by letting

x ,

b2kx,sV

p(x,$) = p(0,$) exp f
0 1 '

and

b3(x,$)

r(x,$) = p(x,$) b
1

(x
'

s)

(4.38)

(4.39)

(4.40)

Such a linear, second-order, equation is called a Sturm-Liouville

equation. Their properties are utilized in later sections.

The type 2-4 active line equations are readily expressed in self-

adjoint form as

(K+L)dx
0

Vx]x [CFI
KL - T, ] [expf (K+L)dx]k/ = 0 (4.41)

0

[expi
x

(K+L)dx
0

Ix x
+ (fl + - Z [exp (K+L)dx I = 0 (4.42)

x 0

x

Jr
Here p [exp (K+L)dx]/Z in the voltage equation and p =

x

Jr
p (K+L)dx]/Y in the current equation. Thus, from eq. 4.35, the

0
[

Wronskian of the basic set voltage solutions is



(K+L)dx

W(v
1
(x s)

0" (x,$))e /Z(x,$) = 1/2(0,$) (4.43)
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An analogous expression involving the basic set current solution is

readily written. Eq. 4.43 is used to simplify y21 in the admittance

matrix of eq. 4.15.

It is appropriate here to note reciprocity conditions. Clearly,

from eq. 4.14, type 1-3 active lines are reciprocal since 12 Y21.

However from eq. 4.15, type 2-4 active lines are nonreciprocal unless

x

exp [-f (K+L)dx] = 1 (4.44)

0

Or

x

(K+L)dx = 0 (4.45)

This is consistent with the result observed for uniform type'2-4 lines

in Chapter 3 where K = -L was required for reciprocity.

Sturm-Liouville Theory

The general location of the poles and zeros of the two-port param-

eters can be established from the classical Sturm-Liouville theory

for fairly arbitrary active lines. In the remaining chapter, Sturm-

Liouville theory is used to relate the voltage solutions (or current

solutions) and the poles and zeros of the driving-point admittance

functions. Although the theory cannot be used to find the critical

frequencies of the transfer admittance functions, these can be obtained

from previous basic set relations. These results can be directly
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applied to any of the other two-port parameters in Tables 4 and 5.

To begin this development, note that any linear two-port (lumped

or distributed, passive or active) has driving-point (and transfer)

immittance parameters of the form

N

(1 +s/zn

z(s) = c n=1

TT (i +s/pm)
m=1

y(

N'

TT (1 ÷s/zn
1)

) = C n=1
M'

TT (l+s/p.
m

1

)

m'=1

(4.46)

(4.47)

where c is a constant, s is the complex frequency, and p and z are the

network poles and zeros. For lumped networks, M, M', N, and N' are

finite integers, while for distributed networks they are infinite.
11

The product expansion holds for any function which does not have an

essential singularity in the finite (x,$)-space by the Weierstrass

factor theorem (33).

The poles of z(s) and zeros of y(s) are the open-circuit natural

frequencies of the network (when driven by a current source), while

the zeros of z(s) and poles of y(s) are the short - circuit : natural

frequencies (when driven by a voltage source). Thus, the type of ideal

source (voltage or current) driving the system determines whether the

poles or zeros of z(s) or y(s) are the natural frequencies of the

11fln
exception was formed by K.W. Heizer. Distributed rc networks with

rational transfer functions. IRE Transactions on Circuit Theory

9(12) :356-362. 1962.
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system. For nonideal sources whose Thevenin and Norton equivalents

have the same nonzero, finite input impedance, the natural frequencies

of the network are identical.

Consider the driving-point admittance yil of an active line where

V2 =0

(4.48)

The zeros of y11 are the complex frequencies for which zero input port

current flows for nonzero input port voltage with the output port

shorted. The poles of y11 are the complex frequencies for which input

port current flows for zero input port voltage with the output port

shorted. These conditions under which the complex frequencies are

determined are shown in Fig. 41. Analogous statements can be made for

The problem of determining the critical frequencies of the net-
Y22.

work may alternatively be viewed as the problem of determining the

eigenvalues of the partial differential equation describing the network

under appropriate boundary conditions. The critical frequencies are

directly related to the eigenvalues. To show this, the eigenvalue

problem is now described and several pertinent theorems introduced.

Consider the Sturm-Liouville equation having the (self-adjoint)

form

(p(x)Vx)x -[q(x) k(s)r(s)]V = 0

=0 V1 =0
Poles of

Y11

Fig. 41. Conditions under which the zeros and poles of y11 are
determined.

(4.49)

V
2
=0
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for (x,$) in Ds with boundary conditions V (x,$) = 0, Vx(x,$) = 0, or

V (x,$) + aV(x,$) = 0 at x = 0 and x = d. a is a positive constant at

x = d, and a negative (not necessarily equal) constant at x = 0.

Coefficients q(x) and r(x) are continuous, p(x) is continuously differ-

entiable, with p(x), r(x)>0 and q(x);0 for x in Ds. The values of X.

for which a nonzero solution exists which satisfies both the partial

differential equation and boundary conditions are the eigenvalues. The

corresponding solutions are the eigenfunctions. The eigenvalue problem

consists of determining these X. values. A number of theorems relate

the properties of the eigenvalues and eigenfunctions (5, 13, 32). For

our purposes, the following theorems are useful:

Theorem 1. Eigenvalues are negative real numbers.

Theorem 2. The eigenvalues are simple, isolated, and infinite in
number having no accumulation point along the negative
real axis of the complex X- plane.

Theorem 3. Consider the problem having the boundary conditions,at
x = 0 and x = d shown below:

First Set

1

-k
n

V=0

V=0
V =0
x

-X.
3

n
V
x
=0

SecOnd Set

_-k
4

n
'V=0

-X.
5

n

V=0
V +aV=0
x

-X.6
n

V
x
+EIV=0

Denoting the n
th

eigenvalue as -k
k

n
where k represents

the boundary condition set, the eigenvalues are separated as

-X.3
n+1

< 1
-X.

2
- -A3 n< X./

n-1

and
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6 <, _x6 < _x4
n+1' n n n'' n-1

Theorem 4. In some cases, X= 0 is an eigenvalue. This is easily
tested.

The type 1-3 active line equations (eqs. 4.1 and 4.2) and the

type 2-4 active line equations (eqs. 4.41 and 4.42) have the form of

the Sturm-Liouville equation (eq. 4.49) Different boundary conditions,

consisting of open and short-circuit combinations, are imposed when

determining critical frequencies. The possible boundary conditions of

type 1-3 active lines are listed in the first set, while those of type

2-4 active lines are listed in the second set. The boundary conditions

on voltage under open-circuit conditions result from eqs. 4.5 and 4.6

and eqs. 4.8 and 4.9, respectively. We now proceed to relate the

parameter). and the complex frequency s in the active line equations.

Driving-Point Admittance--Type 1-3 Active Lines

Consider first the type 1-3 active transmission line voltage

equation

(Vx/Z*)x - Y*V = 0 (4.50)

where Z* = r* + sl and Y* = g* + sc. To use the Sturm-Liouville theory

results, the x and s dependencies in Z* and Y* must be separable.

Thus, for the r*lecactiVe line;whose lobe), time constants, a=

1(x)/r*(x) and b = c(x)/g*(x), are constant along the line, the voltage

equation is

(Vx/r*(x))x - g*(x)[(1+as)(1+bs)11/ = 0 (4.51)

Since constant parameter passive lines having a = b are called distor-
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tionless lines, this more general active line shell be referred to as

pseudo-distortionless. By comparison with eq. 4.50, this line has

parameter k(s) = (1+as)(1+bs).

r*cg* and r*lg* active lines are described by the equations

[Vx/r*(x)] - [g*(x) + sc(x)i V = 0 (4.52)

[Ix/g*(x)] - [r*(x) + sl(x)] I = 0 (4.53)

respectively. These lines have parameter k(s) = s. If the voltage

equation rather than the current equation had been written in eq. 4.53,

the more stringent condition requiring that a = 1(x)/r*(x) be constant

would have been necessary.

For lc active lines,

kw/l(x)]x - s2c(x)V = 0 (4.54)

where parameter k(s) = s
2

. Here r*(x) = 0 and g*(x) = 0 so that an lc

active line is formed by setting K(x) = -r(x) and L(x) = -g(x). The

results of eqs. 4.51-4.54 are important for they relate A. and s in the

different types of lines.

The coefficients of the voltage (and current) equations must also

satisfy the coefficient conditions noted for the Sturm-Liouville equa-

tion, eq. 4.49. For the pseudo-distortionless r*lg*c active line of

eq. 4.51, r*(x)>0 and is C
1 (once continuously differentiable for all

x in D
s
) and g*(x):>0 and is CO (continuous for all x in D

s
). For the

r*cg* active line of eq. 4.52, r*(x):>0 and is C
1

, g*(x)>0 and is C
o

,

and c(x):>0 and is CO, with analogous conditions for the r*lg* active

line of eq. 4.53. For the lc active line of eq. 4.74, 1(x)>0 and is

Ci and c(x):>0 and is CO.
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The distribution of the eigenvalues for the problem follow from

Theorems 1 and 2. The eigenvalues are negative, real, simple, and may

be arranged in order of decreasing magnitude as -XI, -X2, ... where

-X
n

w as integer n .cp. From this infinite-dimensional set

denoted as {-X }, the critical frequency distributions are determined.

For the lc active line of eq. 4.54,

sn = - j V Xn, n = 1, 2 , (4.55)

so that the critical frequencies are simple, isolated, and lie along

the jw-axis of the s-plane in conjugate pairs.

For either the r*g*c or r*g*1 active lines of eqs. 4.52 and 4.53,

respectively,

s
n
= -A

n
, n = 1, 2, ... (4.56)

so these frequencies are simple, isolated, and lie along the negative

real axis of the s-plane.

For the pseudo-distortionless r*lg*c active line of eq. 4,51,

(1+as
n
)(1+bs ) = - X

n
, n = 1, 2, ... (4.57)

A root locus conveniently locates the values of sn for any A. from 0

to w. Expressing eq. 4.57 in the usual form for root locus analysis,

1
1 +

(1 +as)(1+bs)
(4.58)

Assume mahout lack of generality that a, Then the locus, having

two branches, begins at s = -1 /a end s = -1 /b, and terminates on +90°

asymptotes at Isl = a) as shown in Fig. 42. The roots are equal when

X = X
c

= (a-b)
2
/4ab

and have values of

(4.59)



Re s = -
ab

a+b

A =0

jw

-1 /b

k=A.c,

-1/a

Fig. 42. The root locus of eq. 4.58 as X. varies from 0 to m.

s = s
c

= -(e+b)/2ab

99

(4.60)

where s
c

also forms the branch asympotote. When X.:>k
c
, the critical

frequencies are complex conjugates having &real part given eq. 4.60

and imaginary parts of

[k 1 (e-bl 2
13

ab 2 ab
(4.61 )

Thus, the critical frequencies of the pseudo-distortionless r*lg*c

active line are simple and isolated; a finite number may be negative

real while an infinite number are complex conjugates having constant

reel parts.

Theorem 3 relates the distributions of eigenvalues to one amother

under different boundary conditions. These critical frequencies and the

boundary conditions are directly related to the poles and zeros of the

admittance functions. The zeros of y11 are the critical frequencies

which correspond to the voltage equation with boundary conditions V 1x=

V
2

= 0 or current equations where I
1

= I
2x

= 0. The poles of y
11

are

then critical frequencies which correspond to the eigenvalues of the

voltage equation with another set of boundary conditions, namely V1 =



V
2

= 0, or the current equation with I
lx

= I
2y

= 0. Denote these

infinite-dimensional sets of eigenvalues as
z

and {7 0 n},

respectively. Under these conditions, Theorem 3 relates -
z

n
and

- kPn as

kz kr) kz xp
n+1 n-1

100

(4.62)

for any positive integer n. That is, - On lies further from the A.-

plane origin than does -
z

n
Inequalities may be used since there

can be at most, a single pole and zero which are equal (corresponding

to kz
k

=
k
) as previously noted. Applying these results to eqs.

4.55, 4.56, and 4.57, the driving-point admittance for the various

lines can be expressed in infinite product form. As noted by Theorem

4, some problems have an eigenvalue k = 0. To establish whether zero

is an eigenvalue, the active line equations (eqs. 2.1 and 2.2) are

examined for nonzero solutions when A. = 0.

The lc active line has a driving-point impedance
ad
77(s24.xzn)

y(s) = c nlop (4.63)

s TT (s2+0)
n=1

from eq. 4.55 where c is a constant and kP
n-1 n

<X.P
n
<:kz

n+1.
The pole

at the origin results since the lc active line can have nonzero current

flow with zero voltage at the input port when the output port is

shorted when s = 0. The pole s = 0 follows also from the driving-point

admittance results of eq. 4.14. Equivalently stated, the lc active

line current equations, given by eq. 4.54 when I replaces V and 1 and

c are interchanged, has a nonzero solution for A. =0 fot boundery condi-

tions I
x
(0) = I

x
(d) = 0. Therefore, lc active lines have driving-



point admittance characterized by a pole at the origin and conjugate

imaginary zeros and poles alternating into infinity of the s-plane

(beginning with the zeros).

The r*cg* active line has a driving-point impedance

ao

1r(s+Xzn)
y(s) = c n=1

1r(s+XP )
n=1 n
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(4.64)

from eq. 4.56 where XPn-
1
<X7n<Xpn<Xzn+1. It is characterized by

poles and zeros which alternate along the negative real axis of the s-

plane with a zero closest the origin. The same equation results for

the driving-point impedance of a r*lg* active line but with X
z
n_i,

xp <:xz <:x P Thus, these lines have the same pole-zero character-

istic where a pole is closest the origin of the s- plane. Recall that

the current equation, eq. 4.43, was considered for this line type.

The pseudo-distortionless r*lg*c active line has a driving-point

impedance

17(s+szn) 1-T [(s+sc)2 (3'n)2]

Y(s) =
c n=1 n=k +1

1.77e7z-

(s+sPn) [(..,..c)2 03pn)2]

n=1 n= j +1

from eq. 4.57 when k = max n for which Xzn<;Xc and On<:Xc,

respectively. The parameters are associated with the root locus of

Fig. 42; a = 1(x)/r(x) was one local time constant of the line (eq.

4.51), sc formed the real part of the critical frequencies and the root

locus branch (eq. 4.60) 0 was the imaginary part of the critical

(4.65)
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frequency, and Xc was the demarcation eigenvalue which, if exceeded,

yielded complex critical frequencies. Using the same reasoning as for

the lc active line, X = 0 is a current eigenvalue. Correspondingly,

s = -1/a (but not s = -1/b) is a pole of y(s) . The pole at s = - 1/0

also follows from the driving-point admittance results of eq. 4.14.

Poles and zeros alternate along the negative reel axis (beginning with

pole s = 1/a) on each side of the asymptote (assuming they exist there),

and along the asymptote itself.

The particular distribution of the eigenvalues along the negative

real axis of the complex X-plane, and thus the poles and zeros of
Y11

and y22 in the sl:plane, depends on the p(x), q(x), and r(x) distri-

butions of eq. 4.49 and the boundary conditions*imposed.

For purposes of comparison, the general driving-point immittance

properties of type 1-3 active lines are now summarized. Their admit-

tance functions are given by eqs. 4.63, 4.64, and 4.65. Applying the

eigenvalue results of eqs. 4.55, 4.56, and 4.57, analogous impedance

expressions are readily written. The driving-point impedances are

identical poles. Clearly these immittances are reel functions when s

is real. Under the parameter conditions noted for various lines, they

have no poles or zeros in the right-half s- plane. Since their poles

and zeros interlace, their Bode-plots must have zero or positive real

parts for (:),w< co for s = jw. Due to the maximum and minimum modulus

theorem, the real part of the immittances must be nonnegative for Re

s>0. Thus, the driving-point immittances are positive-real functions.

The degrees of numerator and denominator polynominals are infinite.

Driving-point functions of r*lg* and r*cg* lines have poles and zeros
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alternating along the negative real axis, while lc lines have poles

and zeros alternating along the imaginary axis. Driving-point admit-

tance functions of r*cg* and r*lg* lines have a zero and pole, respec-

tively, closest the origin, while lc active lines have a zero at the

origin.

It is interesting to note that these results parallel the follow-

ing general theorems of lumped, linear, passive networks from network

analysis. Driving-point immittance functions are positive-real func-'

tions. The degrees of numerator and denominator polynomials are finite

and cannot differ by more than one. Driving-point functions of rcg and

rlg networks have pole-zero patterns alternating along the negative

reel axis, and lc networks have them alternating along the imaginary

axis of the s-plane. Driving-point admittance functions of rcg and rlg

networks have a zero and a pole closest to the origin, respectively,

perhaps at the origin itself. The lowest critical frequency of an lc

network is either a pole or a zero at the origin. An lc ladder network

having a topology analogous to the transmission line has a zero at the

origin. Two-port driving-point functions have identical poles except

for so-called private poles.

Transfer Admittance and Gain--Type 1-3 Active Lines

The results found for the driving-point admittance parameters can

be used to determine the nature of the transfer admittance. Since

Y12 V2

V1=0

(4.66)
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the poles of y12 are the values of s for which LI 0 when V1 = 0 for

V
2

= 0. However, the zeros of y
12

cannot be found by interpretin eq.

4.66 in a similar manner because of the ambiguity of requiring both

V
1

= 0 (,input shorted) and I. = 0 (zero input current). These condi-

tions are shown in Fig. 43. The basic set solution expressed in eq.

4.14 resolves this difficulty. Since the transfer admittances are

1
y y21
1 2 21

2

(4.67)

it is clear that y12 has no zeros but has poles identical to those of

y11
and y22. The poles have the form found in eqs. 4.63, 4.64 and 4.65

for the various lines. Thus, type 1-3 active lines have transfer func-

tions that are all-pole functions whose denominators are polynominals

of infinite degree. The poles of y12 and y21 are identical with those

of y11 and y22.

Again, these results parallel the following theorems of lumped,

linear, passive network analysis. The order of numerator and denominator

polynominals is finite and may differ by more than one. The poles of

the transfer function are the same as those of the driving-point fune..

tion (unless private poles exist). Zeros may fall anywhere in the s-

plane but must occur in conjugate pairs if complex.

I
i
=0

V =

I /0

V
1
=0

Poles of

Y12
V
2
=0

Fig. 43. Conditions under which the zeros and poles of y12 are
determined.



The open-circuit voltage transfer function T
v

is

T(s) Y21 Z*(d) 1

Y22
Z*(d) v

2
'

105

(4.68)

T
v

has a single zero s = -r*(d)/1(d), and poles which are the zeros of

y
22

and s = -r*(0)/1(0).

The short-circuit current transfer function T
I

is

T (s) = -
I y11

v1

Y21
1 (4.69)

T
I
is an all -pole function whose poles which are the zeros of y11.

For summation purposes, the nonuniform r*cg* line is now compared

with the uniform r*cg* line extensively considered in Chapter 3. The

driving-point admittances have poles and zeros distributed along the

negative real axis of the s-plane with a zero closest the origin.

Thus, the Bode magnitude plot of
Y11

and y22 must be monotonically

increasing with phase bounded between 0° and 90°. The transfer admit-

tance y
12

must equal y
21

, can have no zeros, and must have poles

identical to those of y11. Thus, their Bode magnitude and phase plots

are monotonically decreasing. The short-circuit current gain has the

same response form. The open-circuit voltage gain also has a monoton-

ically decreasing response for sufficiently large w. Therefore, the

general pole-zero distribution and frequency response forms do not

differ appreciably. But such quantities as gain, bandwidth, and rise

and delay time may differ appreciably.



Driving-Point Admittance--Type 2-4 Active Lines

These considerations are now applied to type 2-4 active lines.

They are described by the voltage equation, eq. 4.41, as

x

0

(K+L)dx

Ix
(K+L)dx

[11.<1 KL y] 0
V = 0

X ZIX Z
X
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(4.70)

where Z = r + sl and Y = g + sc, Again x and s dependencies are

separated in order to use the Sturm-Liouville theory.

For the rlgc active line with constant local time constants a =

1(x)/r(x) and b = c(x)/g(x),

[E.)

(K+L)dx

x

(K+L)dx

V
x

+ [(L)+-5-1--/-g(1+as)(1+bsd e
r r r

0
V = 0 (4.71)

r

The pseudo-distortionless line has parameter ?.(s) = (1+as)(1+bs).

fo
(K+L)dx

rcg and rlg active lines are described by the equations

x

(K+L)dx

[e [(1) e

x x
r r

v = 0
0

[e f°x

(K+L)dx

g

]

(K+L)dx

1 + [(L) +12=-r-si] e O 1 = 0
x 9 9x x

where parameter X(s) = s.

[a

I

For the lc active line,

x

(K L.)(71)S

1
V + [(i+

11 1L S2c

rx (K+L)dx

V = 0

(4.72)

(4.73)

(4.74)
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so that parameter X(s) = s
2

.

Most of the conclusions follow those made previously. The rlgc

active line has a driving-point admittance given by eq. 4.65. Again

X = 0 is a current eigenvalue when Ix(0) + L(0)I(0) = Ix(d) + L(d)I(d)=

0 with the result that s = -1/a: = -r(x)/1(x) is a pole. However, s =

-1/b = -g(x)/c(x) is not a pole. This is consistent with the driving-

point admittance results of eq. 4.15. The poles and zeros alternate

along the negative real axis on each side of the asymptote (assuming

they exist there), and along the asymptote itself.

The rcg end rlg active lines have driving-point admittances given

by eq. 4.64. They are characterized by poles and zeros alternating

along the negative real axis. The patterns begin with a zero closest

the origin for rcg active lines and a pole closest the origin for rlg

active lines.

The lc active line has driving-point admittances given by eq.

4.63, They have conjugate imaginary poles and zeros alternating into

infinity beginning with a pole at the origin. s = 0 is a pole since

X = 0 is a current eigenvalue when I(0) + L(0)I(0) = Ix(d) + L(d)I(d) =

0. Again, this result is consistent with the driving-point admittance

results of eq. 4.15.

The coefficients of the voltage (and current) equations must

satisfy the coefficient conditions of eq. 4.49. Thus, for the pseudo-

distortionless rlgc active line, r(x):>0 and r(x) and K(x) are C
1

,

g(x)>0 and g(x) and L(x) are CO, and ln(K(x)/r(x))x;- L(x). For the

rcg active line of eq. 4.72, r(x),, 0 and r(x) and K(x) are C1; c(x):>0

a n d c (x) , g (x) , and L(x) are C0; and ln(K(x)r(x))) cl(x1)<I(V-L(x).
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Analogous conditions follow for the rlg active line of eq. 4.73. For

the lc active line of eq. 4.74, 1(x)>0 and 1(k) and K(x) are CI, c(x)

>0 and c(x) and L(x) are CO, and ln(K(x)/1(x))x- L(x).

The comparisons of the driving-point immittance properties with

those of lumped, linear, passive networks are the same as those made

before. They are therefore not repeated here.

Transfer Admittances and Gain Type 2-4 Active Lines

Since the transfer admittances for type 2-4 active lines from

eq. 4.15 are

1 1

Y12 Tr077d7
2

x

-jr (K+L)dx

y21 = - e
0

/Z(0)v
2
(d)

(4.75)

(4.76)

Y11.
they have no zeros and have the same poles as Therefore, their

Bode magnitude and phase plots must have monotonic decreasing charac-

teristics. The same transfer admittance comparisons may be made as

before.

Since the open-circuit voltage gain is

(K+L)dx
0

T
v

y
21 T) e

(4.77)
Y22

Z 0) v
2
1(d) + K(d)v

2
(d)

the only zero of Tv is s = - r(d)/1(d). The poles of Tv are the zeros

of y22 and s = - r(0)/1(0).

The short-circuit current gain is



7)r- (K+L)dx

4.0
Y21 Z(1 e 0

I y
11

Z(0 v
1
(d) - K(0)v

2
(d)
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(4.78)

which has only one zero at s = - r(d)/1(d). The poles of T1 are the

zeros of y11 and s = - r(0)/1(0).

Again for summation purposes, the results for the nonuniform type

2-4 rcg active line are compared to those of the uniform rcg line of

Chapter 3. The general characters of their pole-zero distributions are

similar. Their driving-point admittances have poles and zeros alter-

nating along the negative real axis of the s-plane with a zero closest

the origin. The Bode magnitude plots of y11 and y22 must be monoton-

ically increasing with phase bounded between 0° and 90°. The transfer

admittances are all-pole functions. The poles are distributed along

the negative reel axis in the s- plane. Their Bode magnitude and phase

plots decrease monotonically. The gain functions exhibit similar

characteristics at high frequencies. Low frequency gain can be

Ji

d

achieved by adjusting - (K+L)dx to be sufficiently large.
0

Active Transmission Line AnalysisConcludino Remarks

It has been the purpose of this chapter to examine the general

nature of active transmission lines. Two-port parameters expressed in

terms of general voltage and current solutions were formulated. To

make these expressions amenable for analysis, the basic set was intro-

duced which reduced the parameter equations to rather sithple form. By

considering the Wronskian and self-adjoint nature of the active line,

parameter simplifications resulted and pole-zero cancellation was
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examined. To gain some physical insight into pole-zero locations, the

class of active lines which fulfilled the parameter conditions of the

Sturm-Liouville equation were considered. This allowed the general

root locus of the poles and zeros of the parameters to be drawn and

interpreted. Finally, these results were compared with those of the

uniform active lines of Chapter 3. Nonuniform lines can be employed

to add flexibility in meeting design requirements as the next chapter

will show.

Having now completed the analysis of active lines, the synthesis

of active lines is reviewed. In the next chapter, a general synthesis

scheme allowing computerized design is presented.
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V. SYNTHESIS OF ACTIVE TRANSMISSION LINES

Synthesis Using Variational Calculus

Synthesis of active transmission lines requires appropriate param-

eter distributions be found to fulfill consistent design requirements.

Initial design is often affected by consulting design tables to

ascertain whether any of the "standard" distributions (i.e. distribu-

tions of lines with readily expressible two-port parameters and other

properties of interest) can be employed to meet requirements. If some

exist, then economic and technological considerations dictate whether

these lines can actually be realized.

Generally however, the realization will not require one of these

specific tapers. Thus, a synthesis scheme for lines with arbitrary

parameter distribution is required. A synthesis method using varia-

tional calculus has been introduced by Rohrer (27). This method is

particularly well-suited for synthesizing active lines. In this

approach, economic and technological limitations of parameter distri-

butions are established a priori. Then parameter distributions are

generated consistent with these limitations which satisfy the design

requirements in some "optimum" manner. The snythesis is performed

directly in either the time domain or frequency domain.

Rohrer has developed this synthesis method for general passive

transmission lines (28). With simple notational change, it applies to

type 1-3 active lines. The method is readily extendable to type 2-4

active lines.
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Time Domain Synthesis Type 1-3 Active Lines

Consider the active transmission line embedded between voltage

sources e
1

and e
2

and resistances R
1

and R
2

in Fig. 44. A design

problem of common interest is to obtain specific port voltages by

adjusting parameter distributions accordingly. There is, of course,

no guarantee that this can be done exactly.

Thus, the following is chosen to be the optimization criterion:

Minimize the quadratic error integral

co

E* = Jr iEW
1
(t)(k

1
v
1
(t)-v(0,t))2 + W

2
(t)(k

2
v
2
(t)-v(d,t))21dt (5.1)

0

consistent with various conditions by adjusting r*, 1, g*, and c to

their "optimum" values. v
1
(t) and v

2
(t) are the input and output

voltages required by the design, and v(0,t) and v(d,t) are the actual

input and output voltages of the active line. Thus, (v1-v(0,t)) and

(v
2
-v(d,t)) are "error" voltages at the ports. Nonnegative functions

W
1

(t) and w2(t) together with constants k
1

and k
2

allow specification

compromises to be made and therefore introduce design flexibility.

The minimization must be consistent with the active transmission

line equations, port conditions, and parameter limitations. The

internal behavior of the line is described by eqs. 1.3 and 1.4 as

Active
Line

(d,t)

v(d,t)

Fig. 44. General active line embedded between
voltage sources and loads.



- v
x

= r*i +
t

x
= g*v + cv

t
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(5.2)

(5.3)

for (x,t) in Dt where domain Dt = {(x,t): 0<x<d, t;;0}. From Fig.

44, the port conditions are related to voltage sources el and e2 and

resistances R
I

and R
2

as

e1 (t) = v(0,t) + Rl i(0,t) (5.4)

e2(t) = v(d,t) R
2
i(d,t)

Physical limitations, technological capabilities, and economic

(5.5)

considerations

r*

g*

1

or simply

P

min

< P(x)<

r*(x)

g*(x)

1(x)

c(x)

Pmax

dictate

r*

9*

1

lower and upper parameter bounds. Therefore,

(5.6)

MEW

(5.7)

where the parameter matrix P is introduced for notational convenience.

The parameter distributions to be generated must lie within these

bounds. A convenient but unnecessary requirement is initial line

relaxation where

v(x,0) = i(x,0) = 0 (5.8)

Subsequent mathematical operations require the time invariance of the

network parameters to be explicitly constrained,

r*
t

= g*
t

= It = ct = 0 (5.9)

although this was assumed when the active transmission line equations
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were written. These constraints are sufficient for our purposes

although additional requirements can be imposed if deemed important.

The problem is now to minimize the error integral (eq. 5.1) under

the conditions of eqs. 5.2-5.9. It is convenient to use Lagrange's

method of multipliers in this minimization (5). Using this method, the

error integral is appended with several of the constraints utilizing

Lagrange multipliers. The problem of minimizing the error integral

(eq. 5.1) under the constraints of eqs. 5.2-5.9 is equivalent to

minimizing the augmented error integral

d w
E = E* + f (O[vx+r*i+lit] + O[ix+g*v+cvt]

0 0

,r_*
t

, g_*

t
, 11t 1

dtdx (5.10)

under the conditions of eqs. 5.4-5.8. Lagrange multipliers 0(x,t),

0(x,t), kr(x,t), kg(x,t), X1(x,t), and kc(x,t) of the constraints of

eqs. 5.2, 5.3, and 5.9, respectively, are independent functions

whose solutions arise from, and become part of, the synthesis process.

It is convenient in writing later equations to remove partial deriva-

tives of v, i, r*, g*, 1, and c in the augmented error integral. After

integration by parts, the integral becomes

721
E = ([-Oxv+Or*I-Otlii+ [-Oxi+Og*v-Otcv]

0 0

- kr
t
r* - kg

t
g* - Xi

t
1- kc c)dtdx

r,
M1 (t)[kiv1(o_v(0,01 2 + (t) [k v v(d 4.[Ov+Oijd 1dt

2 2 2 2 ' x=0
0

loo

+ ([eli + Cv + krr* + kgg* + + Ocit=o)dx
0

(5.11)
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For a (local) minimum in E, the fundamental theorem of the calcu-

lus of variations requires that the first variation in E, denoted as

6E, satisfy SE; (3 (2,7). Suppose E is a functional involving n inde-

pendent functions, i.e. E = E n ) The first variation SE is

then
n

SE =
ay Yi

j=1 I

(5.12)

Writing yi = yi + oyi where yi are the functions minimizing E, then

the first variation of yi, denoted as Oyi, is the fluctuation of yi

about y
i

. Since the n functions are independent, their first varia-

tions are independent. Thus, any of the ayi can be set equal to zero.

Setting the Syi equal to zero except for i = j , the fundamental

theorem requires aE/ayj;;O. But since the sign of Sy. is arbitrary,

aE/4. = 0. If however y. is constrained between y. and y.
j j Ma X

and assumes a bounding value, then its first variation Sy.;;0 or

Sy .:0, respectively. This is reflected in that aE/ay.>0 when y. =

Yjranand aE/ay.<0 when y. = y. (27). These form the basic bah-
jmax

cepts which are now utilized in forming the synthesis method.

SE may be written in terms of the first variations of v, i, r*,

g*, 1, and c, denoted as ov, Si, Sr *, Sg*, 61, and Sc, respectively.

When Lagrange multipliers are used, v, i, r*, g*, 1, and c are treated

as independent functions. Their first variations are therefore inde-

pendent. Thus from eq. 5.11, SE is

SE = fo (6v(x,t)[-ex+0g*-91tc] + 6i(x,t) + Sr*(x)[ei-Xrt]

+ Sg*(x)[0V-kgt] + 61( )[- ti-Ot] + 8c(x)[-Otv-kcadtdx



,av(d,t) W2(t)(k2v2(t)-v(d,t)) e(d,t)] oi(d,00(d,t) dt

co

ji (Ov(0,0[-W1(t)(k1v1(t)-v(0,0) - Q(0,1 - 6i(0,t)0(0,01dt
0

)1 (elv(x,co)0(x,co)c(x) + Oi(x,co)B(x,co)1(x) + Or*(x)kr(x,t0)

0

+ Og*(x)0(x,co) + 61(x)[0(x,co)1(x) + Xl(x,co)] + Oc(x)[0(x,co)c(x)

+ kc(x., w)] Idx

Ji

d

- (same as the above integral changing co to O)dx

0
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(5.13)

Surveying eq. 5.13, there are six differential equations (called

Euler's differential equations) which arise from coefficients of the

first variations within the surface (double) integral. Boundary condi-

tions for these differential equations arise from the corresponding

first variations within boundary integrals. Interpretation of eq. 5.13

leads to a set of equations which describe an "adjoint" active trans-

mission line (shown in Fig. 45) whose solution is used in the optimi-

zation process. This will now be made clear in the following

discussion.

The coefficients of Ov(x,t) and Oi(x,t) equal zero,

ox e'* et = 0 (5.14)

_ e
x

Og* - 0
t
c = 0 (5.15)

for all (x,t) in D
t

since Ov(x,t) and Oi(x,t) are arbitrary. These

"adjoint line" equations are analogous to the active line equations,
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eqs. 5.2 and 5.3, when x and t are negative.

The boundary conditions of the adjoint line follow from the coeffi-

cients of the variations Ov(0,t) and Ov(d,t) on the x-bounderies (x=0,

and x=d). Since Ov(°,t) and Ov(d,t) are arbitrary, their coefficients

must equal zero so

W,t(t)[kivi(t)-v(0,t)] + 8(0,),-00,0/K1 =,.0 (5.16)

W2(t)[k2v2(t)-v(d,t)] - 0(d,t) - 0(d,t)/R2 = 0 (5.17)

Here, it is recognized that the port voltage and current variations on

the original line are constrained by eqs. 5.4 and 5.5 as

ov(o,t) + R1oi(0,t) = 0 (5.18)

6v(d,t) - R26i(d,t) = 0 (5.19)

The voltage and current along the adjoint line at t = co follow

from the coefficients of variations Ov(x,cp) and Oi(x,cn) along the

t = co boundary integral, Since Ov(x,cp) and Oi(x,cp) are arbitrary,

0(x, co) = 0(x, co) = 0 (5.20)

Since the initial conditions along the original line are specified

by eq. 5.8, the initial condition variations are constrained to be

ov(x,o) = 5i(x,0) = 0 (5.21)

Therefore, from the integral along the t = 0 boundary, the coefficients

of ov(x,o) and oi(x,0) which are 0(x,0) and 0(x,0), respectively, are

arbitrary.

The various adjoint line characteristics are summarized with the

original line characteristics in Fig. 45. The internal behavior of the

adjoint line is described by eqs. 5.14 and 5.15. The port behavior is

given by eqs. 5.16 and 5.17. Here arises the interesting fact that the

"error voltages" previously mentioned energize or drive the adjoint
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2
W
2
(k

2
v
2

-v(d,t))
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\N

0x=r*e-iet
0(d,t)=R2W2(k2v2-v(d,t))

ex =g1-4t -R20(d,t)

\\\:\\\\\NNN
0 d x

0(x,0),e(x,0) arbitrary

Fig. 45. Time domain variational synthesis requires time domain
solution of the original active line and the adjoint line
shown. Their constraints are labelled on the (x,t)-plane.
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line. Physically, as the error voltages become smaller, the adjoint

line responses become smaller. It will be seen that this is reflected

mathematically in that the parameter distributions are approaching

their optimum distributions. If we consider time as running backward

from a to 0, the adjoint line has zero initial conditions and arbi-

trary final conditions. Thus, there is a symmetry between the original

active line and the adjoint line.

-It remains to interpret the A. Lagrange multipliers and the param-

eter bounds given by eq. 5.7. The partial differential equations

describing the Lagrange multipliers k, x?, Al:, and f follow from the

coefficients of Sr *, 6g*, 61, and Sc in the surface integral. As was

noted before, the variations are required to possess a certain sign

when the parameters assume limiting values. Thus,

Ai -
t

Ov - Xgt

-6
t
i -

t

C

t_

< 0, P(x) = P
-max

= 0, P P(x)<P (5.22)
min -1119 X

At
_

> 0, P(x) = P

for (x,t) in D , where for notational convenience the P matrix of

eq. 5.7 is used.

The boundary values of these X arise from the coefficients of the

parameter variations 6r*, 6g*, 61, and Sc on the t = 0 and t = co

boundaries, From eq. 5.13, these are

< 0, P(x) = P
-max

0,
-min (x) ax

> 0, P(x) = P

(5.23)



and

kr(x,

X9(x, CD)

- A. (x,

- A.c(x,

< 0, P(x) = P

= 0, P

>0, P(x) = min

Combining these results yields

kr(x00D)
kr(x,0)."

kg(x,c0) - kr(x,0)

Xi(x,coo) - k1(x,0)

A. (x, - kcix,ON

<2, P(x) = P

= 0, P . <P(x)<Pmax

>0, P(x) P .
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(5.24)

(5.25)

which is extremely useful. When eq. 5.22 is integrated with respect to

t, eq. 5.25 can be utilized to yield

ei

Øv

- 0
t
i

sty_

This is the parameter optimization criteria from which the optimum

distributions of r*, g*, 1, and c can be found. Since for interior

parameter solutions, the various integrals of eq. 5.26 are identically

zero, they may be differentiated any number of times with respect to x.

Differentiating once and simplifying yields the result that r*(x)/1(x)=

g*(x)/c(x) for the optimum line.12 For the general synthesis however,

optimality is not assumed.

The general synthesis method follows directly from these various

< 0, P(x) = P
-max

dt = 0, P < P(x)< Pmax

> 0, P(x) = Pm.

(5.26)

12 From this result and the results related to eq. 4.65 in Chapter 4, it
is interesting to note that the poles and zeros of the immittance
parameters of an optimum active line have constant negative real parts.
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results. If the adjoint transmission line equations (eqs. 5.14, 5.15)

are satisfied along with their boundary conditions (eqs.5.16, 5.17) and

"initial" conditions (eq. 5.20), then the first variation of the

augmented error integral eq. 5.13 is

ei

d f- m gv

6E
-eti

0
_ t

v

dt) dx (5.27)

where T denotes the transpose. The gradient of the augmented error

integral, eq. 5.11, with respect to the parameters is

vE,. [at aE aE aE T focifo

ar* ag* al ac

ei

0v

_e
t

-0 v
t _

The first variation of eq. 5.13 may be expressed as

dt dx (5.28)

d

6E fri (VE)
x

6P
T
dx

0

so that

(5.29)

(N7E) =

co

0

gradient

-6r*(x)
6g*(x)
61(0'
6c(x)

ei

Ov

-0
t
i

_ Otv
_

dt

matrix for

(5.30)

(5.31)

x

is the local

ELI< I:



122

Employing the local gradient to alter parameter values in the direction

of steepest descent to reduce the error, a practical iterative synthe-'

sis method results. Here then, we let

r
r*

n+1
(x) r*

n
(x) a

n
en(x,t)in(x,t)

g*n+1(x) g*
n
(x) lag

n
clo On(x,t)vn(x,t)

T

81
dt (5.32)

1 (x)
n+1

1
n
(x) 0 -0

tn
(x,t)i

n
(x,t)

c (X)
n+1

c
n
(x) a -0,n(x,t)vn(x,t)

_ u

for all x in D
t

to generate the parameter distributions. The a's are

nonnegative numbers that control step size.

The flow chart of the synthesis procedure is shown in Fig. 46.

The source voltages (e1, e
2
) and their internal resistances (R

1'
R
2

)

are given and the constants (W
1'

W2, k
1'

k
2
) of the optimization inte-

gral chosen. The maximum acceptable value E
M8X

of the augmented error

integral for program termination is set. The desired port responses

v
1
(t) and v

2
(t) are specified. The parameters P are bounded and con-

stants a of eq. 5.32 chosen.

Upon choosing the initial parameter distribution, the voltages

v(x,t) and currents i(x,t) along the active line are determined. The

error voltages W1(k1v1-v(0,0) and W2(k2v2-v(d,t)) are calculated and

the approximation criterion tested to determine whether the optimum

solution has been attained. If E
n

is less than E
Max

, the optimum

parameter distribution is P
1

(x). Otherwise the program continues and
-7

the adjoint voltage 0(x,t) and current e(x,t) are found.

Since the adjoint line is described by equations identical with

those solved previously, the same analysis program may be used with

only slight modification. Time and distance are made negative and



Specify

e1 (t), e2(t)

v2(t)

R1' R2

W1' W2' k
1,

k
2

E , a
max --n

r*, g*, 1, c bounds

Choose for n=1
r*

n
(x), g*

n
(x), 1

n
(x), c

n
(x)

For Active Line

Decry ine v
n
(x,t),

n
(x,t)
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Optimum Solution is
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n
(x), g*

n
(x), 1

n
(x), c

n
(x)

For Adjoint Active Line

Determine 0
n
(x,t),

n
(x,t

r*
n+1

(x) = r*
n
(x) - ar

n
0

n(x,t)in(x,t)dt

g*n+1(x) = g*n(x) ag Jr 0 (x t)v
n

(x Odt
n 0 n

1n +1 (x) = ln(x) - al
n
f -0

tn
(x,t)i

n
(x,t)dt

0

oo

cnil(x) = cn(x) - acno -Otn(x,t)vn(x,t)dt

If parameter bound is exceeded, use parameter
bound.

Fig, 46. Flow chart of time domain calculations to determine optimum
parameter distributions for type 1-3 active lines.
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voltage source e1 is replaced by R1 W1 (k1 v1-v(0,0) and source e2 by

R2W2(k2v2-v(d,t)).

The r*, g*, 1, and c parameter distributions are found from v,

0 and e in eq. 5.32. If the parameter bounds of eq. 5.6 are exceeded,

the parameter assumes the value of the bound. This process reiterates

until an acceptable distribution is determined.

Frequency Domain Synthesis. Type 1-3 Active Lines

Frequency domain synthesis can equally well be carried out. Its

development using phasor notation is analogous to that of the time

domain synthesis. Denoting the source voltages as E1(w) and E2(w) with

port impedances Z
1
(w) and Z2(w), the quadratic error integral is

03

E* = j( W
1
(w)lk

1
V
1
(w)-V(0,w)i +W

2
(w)lk

2
V
2
(w)-V(d,w)I

2
Idw (5.33)

CD

Again, real nonnegative functions WI and W
2

and constants k
1

and k
2

introduce design flexibility.

The transmission line equations (eqs. 2.1 and 2.2) in the fre,

quericy' domain are

_Vx = (r * +jwl)I (5.34)

-I
x

= (g*+jwc)V

for (x,w) in Dw where Dw = {.(x,w): 0<x4(d, lwl <;a;.. The port

conditions are

E
1
(0 = V(0,0 + Z

1
(w)I(0,w)

E
2
(w) = V(d,w) - Z2(w)I(d,w)

(5.35)

(5.36)

(5.37)

where port impedances Z1 and Z
2

are real functions (this insures the



optimum network elements are realizable). The parameter values are

bounded as before in eq. 5.7 and are explicitly constrained to be

frequency independent

r*
w

= g*
w

= lw = cw = 0
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(5.38)

The error integral is augmented to include the constraints imposed

by the active line equations and frequency independence of the param-

eters by introducing Lagrange multipliers 0(x,w), e(x,w),
r
(x,w),

, ,

kg(x,w),
1kx,w),

and X.
c
kx,w) to obtain

dE = E* + f 0[V
x
-1-(r*-1-jw1)I] + 0[1

x
+(g*+jwc)V]

0 -cn
krr* xg,..* kll _cc

k
w
Idwdx9 (5.39)

After integration by parts to remove partial derivatives of V, I, r*,

g*, 1, and c, we express the first variation of the augmented error

integral as

dSE = ji Jr (OV(x,w)[-ex+(g*_j c)0] + oI(x,w)[-Ox+(r*-jw1)01

0 CD

or*(X)Pkrwl og*(X)[VOkgw] ol(X)[-iWIO-Ow] oC(X)*

PWVO-OwndWdX

f
co

(61/(d,w)[-W2(k21/2-V(d,w))+A(d,w)] OI(d,w)0(d,w))clw
- a3

fco

(oV(0,w)[-W1 (k1V1-V(9,w))-0(0,w)1 - 6I(0,w)0(0,w)) dw

- co

+ (or*(x)kr(x, cn) Og*(x)kg(w, a)) + o1(X)0(X, OD) + oC(X)X.C(X, CD)) dx
0

i0
d

- (same as the above integral changing a3 to -co)dx (5.40)
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Interpretation of eq. 5.40 again leads to equations which describe the

adjoint active transmission line shown in Fig. 47.

The internal behavior is described by

-0)(4-(r*-jwl)e = 0 (5.41)

- e
x
+(g*-jwc)0 = 0 (5.42)

which are the coefficients of OV (x,w) and oI(x,w) for (x,w) in Duj.

Thus, the adjoint line equations are analogous to the line equations

(eqs. 5.34 and 5.35) when x and w are negative.

The boundary conditions arise from 6V(000 and OV(d,w) coefficients

as

Wi[kiVi -V(0,w)] + e(0,w) - 0(0,w)/Z1(w) = 0 (5.43)

W2[k2V2 -V(d,w)] - e(d,w),-4('d,w)/Z2(w) = 0 (5.44)

since port variations are constrained by eqs. 5.36 and 5.37 to be

Ov(o,w) + Z1(w)60I(0,w) = 0 (5.45)

6V(d,w) - Z2(w)6I(d,w) = 0 (5.46)

From the first variation of the parameters within and on the

boundary, the following criteria is obtain d,
13

AI < 0, P(x) = P

r co dw = 0, P <:P(x)<:P (5.47)
ap jtmeI

minim max

- jwY11/ > 0, P(x) = P
-

The iterative synthesis scheme in Fig. 46 is carried out as

before by employing the local gradient of E to change parameter values

in the direction of steepest descent as

13The same optimum condition r*(x)/1(x) = g*(x)/c(x) results from
these equations consistent with the previous result.
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V(d,w)=E
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I(d,w)
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'
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W
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d -V(d,w))-Z20(d,w)

Fig. 47. Frequency domain synthesis requires frequency domain solution
of the original active line and the adjoint line shown.
Their constraints are labelled on the (x,w)-plane.
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r*
n+1

r*
n

am 0 n(x,w)In(x,w) T
n

'
n*

n+1 '
n*

n a9 ri a)
0 (x,w)V

n
(x,w)

= -
-a

dw (5.48)
1
n+1

1
1

101]

jule (x,w)I (x,w)
In n .- n n

c
n+1 _

a
c

c -jw0 (x,w)V (x,w)
n _ _ n_ _ n n _

The only change is that frequency domain quantities are used rather

than time domain quantities, and frequency runs from -cn to to rather

than time from 0 to to.

Having presented the time and frequency domain synthesis of

general type 1-3 active lines, the same methods are now used to synthe-

size type 2-4 active lines.

Time Domain Synthesis--Type 2-4 Active Lines

The minimization of the quadratic error integral must be consis-

tent with the type 2-4 active line equations, port conditions, and

parameter limitations. The active line equations are

-v
x

= ri +
t

+ Kv (5.49)

-ix = gv + cvt + Li (5.50)

for (x,t) in D
t

The port conditions as before are

e1 (t) = v(0,t) + R1 i(0,t)

e2(t) = v(d,t) - R2i(d,t)

The network is specified to be initially relaxed

v(x 0) = i(x,0) = 0

The parameters are bounded as

(5.51)

(5.52)

(5.53)



r

1

K

Amin

r

1

K

L
max

or, utilizing the parameter matrix, simply

P < P(x)< P
ma x

Again the time-invariance of the parameter values is explicitly

constrained,

r
t

= gt = lt = ct = = L
t

= 0
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(5.54)

(5.55)

(5.56)

The minimization of the error integral under the conditions of

eqs. 5.49-5.56 is equivalent to minimizing the augmented error integral

E = E* + (Olvx+ri+lit+Kv] + gqix+gv+cvt+Lii
0 0

lr_
t A c

xl,
acct A

, _
KK

t
+ XLL

t
Idtdx (5.57)

consistent with eqs. 5.51-5.55. Again 0(x,t), 0(x,t), Xr(x,t), X9(x,t),

Xi(x,t), 0(x,t), 0(x,t), and XL(x,t) are the Lagrange multipliers of

the active line equations and time-invariance constraints. Performing

integration by parts to remove partial derivatives of v, i, and the

parameters, results in

rip
E = f ([7 xv Ori-Otli+OKv1+ [-OxitOgy-Otcv+Oti]

0 0

_rxr ,Ig 1x1 ,,L

t '31" t t
u ux



di

ji (f Ali + Ocv + krr kgg x.11
kcc

XKK
0

1 co

1t=0

The first variation of the augmented error functional is
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dx (5.58)

dOE = fi(Ov(x,t)[-ex+eK+Og-gitc] + Si(x,t)[-Ox+0L+Or-etl]
0 0

+ 6r(x)[ei-krt] + og(x)[0v-X9t] + 61(x) [-,eti-Xit] + oc(x)[-Otv-Xct]

+ 6K(x)[ev-Ot] + 6L(x)[0i-kLt])dtdx

f
co

(ov(cl,t)[-W2(k2v2-v(d,t))+0(d,t)] +6,i(d,t)0(d,t)Idt
0

+1
co

(6v(0,t)[-W1(k1 v1-v(0 0)-0(0,01-61(0,00(0,01dt
0

+ (6v(x, 03)c(x)0(x, a3) + 6i(x, 03)1(x)0(x, co) + 6r(x)kr(x, co)
0

+ 6g(x)kg(x, op) + 6K(x)XK(x, co) + 6L(x)X.L(x, co) + 61(x)[X1(x, co)

+ i(x, a3)0(x, co)] + 6c(x)[0(x, a) +v(x, co)0(x, co)] )dx

Ji

d

- (same as the above integral changing co to 0) dx
0

(5.59)

The ad joint active line equations result from 6v(x,t) and 6i(x,t)

coefficients as

-0x + re - let + OL = 0 (5.60)

- ex -E. g0 - cot + eK = o (5.61)

for (x,t) in Dt.

Boundary conditions result from 6v(0,d) and ov(d,t) coefficients es

W
1
(t)[k1 v

1
-v(0,0] + 0(0,0 - 0(0,t)/R

1
= 0 (5.62)
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W2(t)[k2v2-v(d,t)] - e(d,t) - 0(d,t)/R2 = 0 (5.63)

since the port variations are constrained from eqs. 5.51 and 5.52 as

5v(0,t) + R1oi(0,t) = 0 (5.64)

ov(d,t) - R26i(d,t) = 0 (5.65)

"Initial" conditions along the adjoint line result from Ov(x, co)

and oi(x,co) coefficients as

O(x, co) = e(x, co) = 0 (5.66)

while the final conditions are arbitrary since Ov(x,0) and 6i(x,0) are

zero. The two lines with their boundary conditions are shown in Fig.

48. The partial differential equations describing the original line

and adjoint line are analogous with sign reversal of x and t, where K

and L are interchanged. Their initial conditions are identical and

port conditions similar.

The parameter optimization follows as before as
14

-0i

ov

r m -eti

J0
-0tv

ev

Oi

When the adjoint line equations, and boundary and initial condi-

tions are satisfied, the first variation of the augmented functional

becomes

< 0, P(x) = Pmax

dt = 0, P <P(x)<min Pmax

> 0, P(x) = Pmin

(5.67)

14
Differentiating eq. 5.67 once with respect to x and simplifying
yields the result that r(x) /l(x) = g(x)/c(x); differentiating twice
results in W-K) = (1.x /r- cx/c) for the optimum active line.

Again, from eq. 4.65, the poles and zeros of the immittance param-
eters of the optimum line have constant negative real parts.
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Fig. 48. Time domain synthesis requires time domain solution of the
original line and the adjoint line shown. Their constraints
are labelled on the (x,t)-plane.
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dx (5.68)

Again forming the local gradient to alter parameter values in the

direction of steepest descent to reduce the error, the iteration

parameter matrix becomes

rn +1 (x)

g
n+1

(x)

1
n+1

(x)

c
n+1

(x)

K
n+1

(x)

L
n+1

(x)

rn(x)
r

gn(x)
ag

n

1
n
(x) a

1

cn(x) a
c

K
n
(x)

aKn

L (x) a
L

n _ _

OM

en(x,t)in(x,t)

On(x,Ovn(x,t)

co -e
tn '

(x Oi(x

Jo -Otn(x,t)v(x,t)

en(x,t)vn(x,t)

On(x,t)in(x,t)

T

dt (5.69)

for all x in D
t

. If parameter bounds are exceeded, the appropriate

bound in eq. 5.54 is chosen for the parameter value. It is interesting

to note that the first four entries are identical to those of eq. 5.32

for type 1-3 active lines.

The basic flow chart for the synthesis procedure is identical to

that for type 1-3 active lines (Fig. 46).

Frequency Domain Synthesis--Type 2-4 Active Lines

The frequency domain synthesis using phasor quantities follows

that in the time domain. The active line equations are

-V
x

= (r +jwl)I + KV (5.70)

-I
x

= (g+jwc)V + LI (5.71)



for (x,w) in Dw, with port conditions

E
1
(w) = V(0,w) + Z

1
(w)I(0,w)

E
2
(w) = V(d,w) - Z

2 '

(w)I(d w)
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(5.72)

(5,73)

The elements are bounded as before (eq. 5.54). The frequency invariance

of the parameters is explicitly constrained as

rw = gw = lw = cw = Kw = Lw = 0 (5.74)

Carrying out the minimization procedure leads to the first

variation of the augmented error integral as

d

6E = Jr (ov(x,00)[-e +OK+(g-jwc)0]+ oflx,w)[-Ox+0L+(r-jw1)0]
0 ...CD

+ 8r(x) 0I-Xrw] + 6g(x)[0V-Ow] + 61(x)[-jw1eI-X1
w

+ oc(x)[-jwc0V-kc
w

+ oK(x)[OV-Ow] + oL(x)[0I-XL
w
])dwdx

Jra,

(ov(d,w)[_W2(k2V2-V(d,w)) + e(d,w)] + OI(d,w)0(d,Oldw

ao

+ (5v(0,w)[-W1(k1V1-V(00)) - 0(0,0] - oi(0,00(0,0) dw
-co

(or(x)kr(x, co) + og(x)Xg(x, m) + SK(x)0(x, w)
0

+ oL(x)XL(x w) + 61(x)0(x,ao) + Oc(x)0(x,0101 dx

f
d

- (same as the above integral changing ao to -CD) dx

0

Thus, the ad joint line equations are

-0x --44*:j4)8 + = 0

- 0
x

+ (g-jwc)0 + KA = 0

(5.75)

(5.76)

(5.77)



for (x,w) in Dw, with boundary conditions

W1 [k1 V1-V(0,w)] + 0(0,w) - 0(0,w)/Z1 (w) = 0

W2Ik2V2-V(d,w)] - 0(d w) - 0(d,w)/Z2(w) = 0

135

(5.78)

(5.79)

These conditions are summarized in Fig. 49. With the change in sign of

x and w, the equations are analogous.

co

-m

The parameter optimization criteria follows directly as,
15

0I

Ov

-jw0I

-jw0V

OV

0'

<0, P(x) = P

dt = 0, P in;P(x).,P
BX

>0, P(x) = Pmin

(5.80)

The flow graph of the synthesis procedure is the same as before

except that frequency domain quantities replace time domain quantities.

The reiteration parameter matrix is

r
n+1

(x)

9n +1 (x)

1n+1 (x)

c
n+1

(x)

K (x)
n+1

L
n+1

(x)

r
n
(x) 0

n
(x,w)I

n
(x,w)

eg
n

0
n
(x,w)V

n
(x,w)9n(x)

e
1

-jw0
n
(x,w)I

n
(x,w)ln(x)

cn(x) acn - 03 -jw0
n
(x,w)V

n
(x,w)

Kn(x) aK 0
n
(x,w)V

n
(x,w)

L-n(x)
0
n
(x,w)I

n
(x,w)

Variational Synthesis in Retrospect

dw (5.81)

Use of variational calculus has resulted in a direct and general

synthesis procedure readily implemented by digital computers. It may

15
The same optimum condition results from these equations consistent
with the previous result.
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Fig. 49. Frequency domain synthesis requires frequency domain
solution of the original active line and the adjoint line
shown. Their constraints are labelled on the (x,w)-plane.



137

well be that hybrid computers can carry out the necessary calculations

with greater efficiency without loss of accuracy. An efficient general

active line analysis program is required to solve for parameter genera-

ting functions v, i, 0, end 0.

The necessary condition that the first variation of the error

functional oE;3 for a local minimum yielded the parameter generating

expressions. The condition that the second variation
2
E>0 to insure

a local minimum be attained was not employed. Likewise we tacitly

assumed that the local minimum was also the global minimum of the error

functional.

The analysis and synthesis of active lines has been fully devel-

oped and presented. In the next and concluding chapter, possible

realizations for active transmission lines are proposed.
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The preceding chapter presented a synthesis method for general

active transmission lines. Obviously such lines require fabrication

techniques in which the various parameters can be independently

controlled and distributed. This requirement is difficult to satisfy

even today with passive rcg thin-film circuitry. This, however, does

not pose any serious limitation to the synthesis technique since the

original equations may be amended with appropriate additional

constraints and an analogous procedure tabulated.

The fundamental problem at this time is the inability to distri-

bute dependent or controlled sources along a passive transmission line.

This is not the case for multiple lines. For example, two transmission

lines actively (end passively) coupled appeared in Chapters 1 and 2.

The simplified model of the traveling-wave transistor consisted of two

delay lines, one unilaterally actively coupled to the other via gm,

the transconductance/unit length (see Fig. 10). Passive coupling

complicated the analysis as noted by Jutzi (12). However this more

general model represents many of the classical coupled mode devices

such as the traveling-wave tube, etc. Semiconductor photodetectors

and solid-state traveling-wave amplifiers also have coupled line models

(see Fig. 15). Kawamura and Morishita considered a similar problem

involving semiconductor bulk effects (14). Various higher order modes

complicate the model as noted by Copeland (4).

These studies exemplify much of the research currently underway
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in solid-state electronics. Through this research, new semiconductor

effects leading to active materials are being discovered. Thin-film

technology is also making rapid strides in miniaturization of existing

devices and realization of new thin-film devices. It may well be that

advances in the solid-state and thin-film areas will result in the

ability to produce active transmission lines in the not too distant

future.

At the present time, artificial active lines must be relied upon.

In the following two sections, the topology and characteristics that

the iterative two-port must possess are briefly outlined.

Artificial Type 1-3 Active Lines

The lumped network approximating a type 1-3 active line of length

D is shown in Fig. 50. It is anticipated that an n-fold iterative

structure made up of these two-ports will have low-pass characteristics

approximating those of an active line of length d = nD. The lumped

approximation of uniform active lines have parameters which are con-

stant with section number, while the approximation network of nonuni-

form lines have parameters which depend upon section number.

Each controlled source of the approximation network of Fig. 50

II

V
1

0-

Fig. 50. Lumped approximation of the type 1-3"ective
line of length D.



must be realized by a two-port network. The two-port whose voltage

output is controlled by input current is denoted as the KDI
1

voltage

source, and the two-port whose current output is controlled by input

voltage as the LDV
1

current source. Then, the approximation network

can be realized by interconnecting the voltage source and current

source two-ports'as shown in Figs. 51 and 52. These realizations

I
1

o

V
1

KDI
1

Voltage
Source

J

LDV
1

'

Current
Source

-I
2

b. 0

Y V
2

Fig. 51. First realization of the artificial type 1-3 active line.

VI

0

KDI1'

Voltage
Source

111
LDV

1

Current
Source

Z
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Fig. 52. Second realization of the artificial type 1 -3 active line.
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differ in that the first has the LDV
1

current source dependent on V1'

rather than V
1

(due to the voltage drop across the input to the KDI1

voltage source); the second has the KDI
1

voltage source dependent on

I
1

' rather than I
1

(due to the current input into the LDV
1

current

source). It is now shown that the latter realization leads to more

flexible design requirements. It will be seen that impedance Z' =

(rD)' + s(1D)1 and admittance Y' = (gD)' + s(cD)' combine with two-

port parameters to form impedance Z = rD + slD and admittance Y =

gD + scD, respectively.

The first realization has the equivalent circuit shown in Fig. 53,

where the KDI
1

voltage source two-port is represented by its z equiva-

lent circuit and the LDV1' current source two-port by its y equivalent

circuit. Clearly V1 and V1' differ by the voltage across the input to

the KDI
1

voltage source two-port. From one point of view, this equiva-

lent circuit consists of two cascaded networks which have series volt-

age sources controlled by series currents and shunt current sources

controlled by shunt voltages. Thus, each section with appropriate

parameters appears to realize the type 1-3 active line of Fig. 50. But

the first section has sources controlled by quantities to its right

rather than its left which is unsuitable. z
12

and y
12

are therefore

Fig, 53. Two-port equivalent of the first realization.



set equal to zero., Thus, to realize the type 1-3 active line with

this topology, the two-port parameters must equal:

z
11

= y
11

= 0

z
12

= y12 = 0

Z-= z
22

+ Z'

Y Y22 Y1

KD z21

LD v
21
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(6.1)

Again, the z parameters characterize the KDI1' voltage source two-port

and the y parameters characterize the LDV1' current source two-port.

The type 1-3 active line may also be formed using the realization

shown in Fig. 52. Its equivalent circuit is shown in Fig. 54 where as

before, the KDI
1
' voltage source two-port is represented by its z

equivalent circuit and the LDV
1

current source two-port by its y

equivalent circuit. Clearly I1 and II' differ by the current entering

the LDV1 current source two-port. Since the y
12

V
2

current source is

dependent upon a voltage to its right

we let

V

MP

, y12 is set equal to zero. Thus,

1I (212 +221 )11'
-I

2

1

Fig. 54. Two-port equivalent of the second realization.



y
11

= 0

y
12

= 0

Z = z
11

+ z
22

+ Z1

Y22 Y'

KD = z
12

+ z
21
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(6.2)

LD = y
'21

This set of design equations is more flexible than those of eq. 6.1

since z
11

and z
12

can be nonzero. It should be noted here that when

the approximation networks are cascaded and viewed as cascaded L

sections, adjacent admittances combine so Y = Y11
y22 + Y1.

There-

fore, y11 can be nonzero in Figs. 53 and 54, with corresponding
Y11

and Y changes in eqs. 6.1 and 6.2.

Thus, the problem of constructing an artificial type 1-3 active

line consisting of cascaded sections shown in Fig. 50 becomes one of

cascading the interconnected two-ports shown in Fig. 52 which have the

respective properties listed in eq. 6.2.

Artificial Type 2-4 Active Lines

The lumped network approximating et type 2-4 active line of length

D is shown in Fig. 55. Again it is expected that an n-fold iterative

NO

0

rD 1D KDV
1

-I
2

gD LDI

T
V

0

Fig. 55. Lumped approximation of the type 2-4 active
line of length D.

2



'144

structure made up of these two-ports will have low-pass characteristics

that approximate those of an active line of length d = nD.

As before, each controlled source of Fig. 55 is realized by a two-

port network. The two-port whose output voltage is controlled by the

input voltage is denoted as the KDV
1

voltage source, and the two-port

whose output current is controlled by the input current as the LDI1

current source. Either of the two realizations of Figs. 56 and 57 may

J
KDV

1
'

Voltage

Source Z'

LDI
1

Current
Source

Fig. 56. First realization of the artificial type 2-4 active line.

VI

0

KDV1

Voltage
Source

LDI
1

'

Current
Source

z

I,
0 4

Y'
2

0

Fig. 57. Second realization of the artificial type 2-4 active line.



145

be used to realize the approximation network.. Impedances Z and Z'

admittances Y end Y1 were previously defined. The voltages V1 and V1'

and currents I
1

and I
1

' differ in the same manner as before. The

latter realization leads to more flexible design requirements as will

now be shown.

The first realization has the equivalent circuit shown in Fig. 58,

where the KDV
1
' voltage source two-port is represented by its g equiva-

lent circuit and the LDI
1

current source two-port by its h equivalent

circuit. In the first half-section of the network, source values are

dependent on voltage and current to their right which is unsuitable.

Thus, this half-section is eliminated and the artificial type 2-4

active line realized by setting

h
11

= g
11

= 0

h
12

= g
12

= 0

Z
g22

Z'

(6.3)
Y = h

22
+ Y'

KD = g21

LD = h
21

Again, the g parameters characterize the KDV voltage source two-port

I1 h
11

h
1 2

V2 g21 VI -I
2

Fig. 58. Two-port equivalent of the first realization.
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and the h parameters characterize the LDI1 current source two-port.

The realization in Fig. 57 may also be used. Its equivalent

circuit is shown in Fig. 59. As before, the. KDV1 voltage source two-

port is represented by its g equivalent circuit and the LD1
1
'current

source two-port by its h equivalent circuit. The sources in the first

half-section of the network have values depending on voltages and

currents to their right which is unacceptable. g12 and h12 are there-

fore set equal to zero. The artificial type 2-4 active line is

realized by adjusting the parameters as:

g11
= 0

g
12

= h
21

=0

Z h1 1 4. g22 ZI (6.4)

Y = h
22

+ Y1

KD =
921

LD = h
21

Comparing these values with those of eq. 6.3, the latter realization

is more flexible since the input impedance h
11

may be nonzero. It

should again be noted that if cascaded L sections are considered, then

g11 can be nonzero in which case Y = g11
h22

+ yt.

Therefore, the problem of constructing an artifiCial. type 2.4

II II h
12

V
2

-1
2

Fig. 59. Two-port equivalent of the second realization.

2
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active line consisting of cascaded sections shown in Fig. 55 becomes

one of cascading the interconnected two-ports shown in Fig. 57 which

have the properties listed in eq. 6.4.

In the past, artificial distributed amplifiers were built with

rather large discrete components. Parasitic elements limited high

frequency operation. Today with the advent of thin-film and integrated

circuit technology, iterated structures of minute size are manufactured

with great precision. Accompanying size reduction is a corresponding

decrease in parasitic element values. If the gain blocks of each stage

are of sufficient magnitude, higher frequency operation appears possi-

ble. Redundancy may be beneficial to insure characteristics. However,

the failure of several controlled voltage and current sources along the

artificial active line composed of many sections should not signifi-

cantly impair its performance.

Conclusion

In the preceding chapters, the active transmission line has been

fully investigated. The active line was viewed in historical perspec-

tive and its current usefulness discussed. It was seen to be a useful

device and to model many physical processes. The active line was

fully analyzed and a general synthesis scheme was presented. Current

investigations in high frequency devices were noted and the artificial

active line was reviewed.

In concluding it should be pointed out that although this thesis

has been concerned with the class of active distributed networks having

en active transmission line equivalent, the considerations are readily
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extendable to networks having other differential length models. Thus

in a more general context, this thesis is concerned with developing

methods for analyzing and synthesizing active distributed networks.



149

BIBLIOGRAPHY

1. Beam, W.R. Electronics of solids. New York, McGraw-Hill, 1965.
633 p.

2. Bolza, Oskar. Lectures on the calculus of variations. New York,

Dover, 1961. 271 p.

3. Chrystal, G. Algebra. Part 1. London, Adam and Charles Bleck,

1886. 571 p.

4. Copeland, J.A. A new mode of operation for bulk negative resis-
tance oscillators. Proceedings of the IEEE 54(10)0479-1480.
1966.

5. Courant, R. and D. Hilbert. Methods of mathematical physics.
New York, Interscience, 1953. 2 vols.

6. Elmore, W.C. The transient response of damped linear networks
with particular regard to wideband amplifiers. Journal of

Applied Physics 19(1):55-63. 1948.

7. Elsgolc, L.E. Calculus of variations. Reading, Addison-Wesley,

1962. 178 p.

8. Ettenberg, M. and J. Nadan. Gain in solid-state traveling-wave
amplifiers. Proceedings of the IEEE 56(4):741-742. 1968.

9. Ghausi, M.S. Principles and design of linear active circuits.
New York, McGraw-Hill, 1965. 621 p.

10. Golembeski, John et al. A class of minimum sensitivity ampli-
fiers. IEEE Transactions on Circuit Theory 14(3):69-74. 1967.

11. Gough, K.J. and R.N. Gould. Nonuniform rc and lossless trans-.
mission lines. IEEE Transactions on Circuit Theory 13(12);453-
455. 1966.

12. Jutzi, W. Uniform distributed amplifier analysis with fast and
slow waves. Proceedings of the IEEE 56(1):66-67. 1968.

13. Kamke, E. Differentialgleichungen, Lbsungsmethoden and
Liistingem; Vol. 1.. J.W. Edwards, Ann Arbor, 1945. 642 p.

14. Kawamura, M. and S. Morishita. A new negative resistance of semi-
conductor bulk. Proceedings of the IEEE 56(7)0213-1215. 1968.

15. Kelly, J. and M.S. Ghausi. Network properties of distributed rc
networks with arbitrary geometric shapes. New York, 1965. 172 p.

(New York University. Dept. of Electrical Engineering. Technical
Report 400-107)



150

16. Kelly, J., M.S. Ghausi and J.H. Mulligan, Jr. On the analysis
of lumped-distributed systems. In: Circuit theory; information
theory; basic sciences; electrostatic processes. IEEE Inter-

national Convention Record Part 7. New York, Institute of Elec-
trical and Electronic Engineers, 1966. p. 308-318.

17. Kohn, G. and R. Landauer. Distributed field-effect amplifiers.
Proceedings of the IEEE 56(6)0136-1137. 1968.

18. Lindquist, C.S. A mathematical method of evaluating the reli-
ability of electronic equipment. Master's thesis. Corvallis,
Oregon State University, 1964. 84 numb. leaves.

19. Transmission line response to independent
distributed sources. Proceedings of the IEEE 56(8):1353-1354.
1968.

20. Uniform transmission line response to inde-
pendent distributed sources. Proceedings of the IEEE 56(f0;
1740-1741. 1968.

21. Linvill, J.G. and J.F. Gibbons. Transistors and active circuits.
McGraw-Hill, 1961. 515 p.

22. McIver, G.W. A traveling-wave transistor. Proceedings of the
IEEE 53(11)0747-1748. 1965.

23. Mooney, D.A. Introduction to thermodynamics and heat transfer.
Englewood Cliffs, Prentice-Hall, 1953. 429 p.

24. Morse, P.M. and H. Feshback. Methods of theoretical physics.
New York, McGrew-Hill, 1953. 2 vols.

25. Pederson, D.O. and D.D. Thornton. Analysis of transistor distri-
buted amplifiers. Berkeley, 1960. (University of California.
Electronics Research Laboratory. Issue 312) (Cited in: Ghausi,
M.S. Principles and design of linear active circuits. New York,
McGraw-Hill, 1965. p. 349)

26. Roberts, G.E. and H. Kaufman. Table of Laplace transforms.
Philadelphia, W.B. Saunders, 1966. 367 p.

27. Rohrer, R.A. Distributed network synthesis: a variational
approach. Ithaca, 1965. 80 p. (Cornell University. Electrical
Engineering Research Laboratory. Research Report EERL 45)

28. Synthesis of arbitrarily tapered lossy trans-
mission lines. In: Proceedings of the Symposium on Generalized
Networks, Brooklyn, 1966. Brooklyn, Polytechnic Institute, 1966,

P. 115-135.



151

29. Sneddon, I.N. Fourier transforms. New York, McGraw-Hill, 1951.

542 p.

30. Valley, G.E., Jr. and H. Wellman. Vacuum tube amplifiers. New

York, McGraw-Hill, 1948. 743 p.

31, Weidner, R.T. and R.L. Sells. Elementary modern physics. Boston,

Allyn and Bacon, 1960. 513 p.

32. Weinberger, H.F. Partial differential equations. New York,

Blaisdell, 1965. 446 p.

33. Whittaker, E.T. and G.N. Watson. A course in modern analysis.

4th ed. Cambridge University, 1927. 608 p.

34. Wohlers, W.R. On electromagnetic gain mechanisms in solid-state
plasmas. Proceedings of the IEEE 55(7):1230-1231. 1967.


