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Routing from a single source node to multiple destination nodes using node

disjoint paths (NDP) has many important applications in parallel systems. For

example, if a source node wants to send distinct messages to distinct destination

nodes, then the one-to-many NDP routing is useful.

Unlike parallel systems with shared-memory, each node in most of the current

parallel systems is a standalone processing unit with a processor and memory.

The nodes communicate with each other by passing messages using a standard

message passing mechanism such as the Message Passing Interface (MPI). The

probability of failure in delivering the messages between the nodes directly affects

the computing performance. This probability increases as the number of nodes

increases. Therefore, it is critical to find a set of mutually node disjoint paths in

order to establish communication routes under such faulty environment. Moreover,

the one-to-many NDP routing increases the throughput of the networks.



In this work, we provide some novel and efficient routing algorithms that con-

struct a set of NDP from a single source node to the maximum number of desti-

nation nodes in three promising interconnection networks. They are Generalized

Hypercube, dense Gaussian, and Hexagonal Mesh networks.

In Chapter two, two efficient algorithms that construct a set of NDP from a

single source node to the maximum number of destination nodes in Generalized

Hypercube networks are given. Also, the lower and upper bounds of the path

length from the source node to any destination node are derived. Finally, some

simulations of the algorithms are performed and the results show that in most

cases the maximum path length is equal to the shortest distance plus one.

In Chapter three and Chapter four, efficient constant time complexity algo-

rithms that construct a set of one-to-many NDP in dense Gaussian and Hexagonal

Mesh networks are given, respectively. For the dense Gaussian network, the lower

and upper bounds of the sum of the NDP lengths are derived. Also, via execu-

tion of the algorithm, it is shown that on average the sum of the lengths of NDP

given by the algorithm is only about 10% more than the sum of the lengths of the

shortest paths.
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Chapter 1: Introduction

1.1 Overview

Since the switching speed of VLSI systems is approaching the maximum limit,

parallel systems play an important role in improving the system performance by

exploiting the inherent parallelism in problems. In the last decade, supercomputers

with thousands of nodes have been built, such as: the Cray Jaguar [6], the IBM

BlueGene [2], etc. The nodes are linked to each other to form an interconnection

network.

Achieving high computing performance critically depends on the interconnec-

tion networks. Designers of the interconnection networks seek desirable attributes

such as low node degree, small diameter, and strong fault tolerance to maximize

the computing performance [13, 14, 24, 34, 41]. As a result, many different topolo-

gies have been extensively investigated in the literature in order to find which ones

yield the best computing performance [1, 5, 12–14, 24, 27, 34, 41].

Unlike the shared-memory parallel systems, each node in most of the current

parallel systems is a standalone processing unit with a processor and memory.

The nodes communicate with each other by passing messages using a standard

message passing mechanism such as the Message Passing Interface (MPI) [2]. The

probability of failure in delivering the messages between the nodes directly affects

the computing performance. This probability increases as the number of nodes

increases. Therefore, it is critical to find a set of mutually node disjoint paths
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Figure 1.1: One-to-one NDP
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Figure 1.2: One-to-many NDP
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Figure 1.3: Many-to-many NDP

(NDP) in order to establish communication routes under such faulty environment.

Finding this set is fundamental and essential for ensuring fault tolerance in parallel

systems. It is used to connect: a source node to a destination node (one-to-

one, see Figure 1.1), a source node to a set of destination nodes (one-to-many,

see Figure 1.2), or a set of source nodes to a set of destination nodes (many-to-

many, see Figure 1.3).

The one-to-many NDP routing problem is described as follows: given a source

node s, a set of distinct destination nodes T = {t1, t2, . . . , tℓ}, where s /∈ T and ℓ
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Source

Node

Destination

Nodes?

Figure 1.4: The source degree equals the maximum number of destination nodes

is the source degree, construct a set of ℓ NDP such that: 1) each path connects

the source node s to one of the destination nodes ti ∈ T , i ∈ {1, 2, . . . , ℓ}, and

2) the only common node between any pair of these paths is the source node s.

The source’s degree ℓ equals the maximum number of destination nodes in any

regular graph because the solution does not exist if the number of destination

nodes is greater than the source’s degree (see Figure 1.4). In this work, we provide

novel and efficient routing algorithms that construct a set of one-to-many NDP

from a source node to the maximum number of destination nodes in Generalized

Hypercube, dense Gaussian, and Hexagonal Mesh networks.

Unlike the existing types of hypercube, the Generalized Hypercube supports

any number of nodes. However, it possesses a small average message distance and

a low traffic density, thereby making it highly fault tolerant. A two-dimensional

Generalized Hypercube which employs optical fibers for wires has been built [43].

The dense Gaussian networks have significant topological advantages over torus

networks in terms of diameter [31]. For example, there is a dense Gaussian network

with 400 nodes and diameter 14, whereas, any 2D toroidal network with 400 nodes

will have a diameter of at least 20. So, compared to torus networks, dense Gaussian

networks can accommodate more nodes with less communication latency and at the

same time maintaining a regular grid-like structure. This makes dense Gaussian
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Figure 1.5: Hierarchical Hypercube [39]

Figure 1.6: 3-ary 3-cube [7, 37]

networks attractive.

1.2 Related Work

The node disjoint paths (NDP) problems have been studied for different inter-

connection networks. The following related works are some examples [8–11, 20–
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Figure 1.7: 4-pancake graph [23]

23, 25, 26, 28–30, 35, 37–40]:

• One-to-One NDP: This problem has been solved for the following in-

terconnection networks: Hierarchical Hypercube [39] (Figure 1.5), k-ary n-

cube [7, 37] (Figure 1.6), Hypercube [38], and (n, k)-Star [40].

• Many-to-Many NDP: This problem has been solved for the following

interconnection networks: Hierarchical Hypercube [8], Metacube [35], Dual-

Cubes [21], and Hypercube [30].

• One-to-Many NDP: This problem has been solved for the following inter-

connection networks: Hierarchical Hypercube [10], Dual-Cubes [20],

Metacube [9], Folded Hypercube [26], Biswapped [28], Hypercube in opti-

mal time [25], Hyper-Star [29], k-ary n-cube [16], Rotator graphs [22], and

pancake graphs [23] (Figure 1.7).

Unlike those previous works, we solve the problem of routing from a single

source node to the maximum number of destination nodes (one-to-many) in Gen-

eralized Hypercube, dense Gaussian, and Hexagonal Mesh networks using NDP.
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1.3 Organization of this Dissertation

The organization of this dissertation is as follows: Chapter 2, Chapter 3, and

Chapter 4 provide the one-to-many NDP in Generalized Hypercube, dense Gaus-

sian, and Hexagonal Mesh networks, respectively. Each chapter starts with some

explanation of the topology, and then the routing algorithm. Chapter 5 concludes

this work and provides some possible future work.
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Chapter 2: One-to-Many Node Disjoint Paths Routing in

Generalized Hypercube Networks

In this chapter, two efficient algorithms that construct a set of node disjoint paths

(NDP) from a single source node to the maximum number of destination nodes

in Generalized Hypercube (GH) networks are given. Then, it is proved that these

algorithms always return a solution. Also, the lower and upper bounds of the path

length from the source node to any destination node are derived. Finally, some

simulation of the algorithms are performed and the results show that most of the

time the upper bound is equal to the shortest distance plus one.

Unlike the existing types of hypercube, the GH supports any number of nodes.

However, it possesses a small average message distance and a low traffic density,

thereby making it highly fault tolerant. A two dimensional GH which employs

optical fibers for wires has been built [43].

The rest of this chapter is organized as follows: Section 2.1 recalls several

preliminaries about the GH, Section 2.2 describes the proposed routing algo-

rithm for two-dimensional GH, Section 2.3 describes the proposed algorithm for

n-dimensional GH, Section 2.4 shows the simulation results, and finally Section 2.5

concludes this chapter.



8

Figure 2.1: The Generalized Hypercube Q2
4,3

2.1 Generalized Hypercube Networks Preliminaries

Unlike the Boolean n-cube structure which is an interconnection of 2n nodes,

a Generalize Hypercube (GH) denoted by Qn
kn−1,...,k1,k0

supports any number of

nodes N such that N =
∏n−1

i=0 ki, where n is the number of dimensions, and ki is

the number of nodes along the i-th dimension. Figure 2.1 shows an example of a

two-dimensional GH that has 12 nodes: three nodes along the 0th dimension and

four nodes along the 1st dimension.

In this work, we assume ki ≥ 3 because the one-to-many node disjoint paths

(NDP) routing problem becomes trivial when ki < 3. In the following, we describe

some properties and concepts that are important for understanding the proposed

algorithms.

Addressing: Any node x in a GH Qn
kn−1,...,k1,k0

can be addressed using an n-tuple

x = (xn−1 . . . x0) ∈ Zkn−1
× · · · × Zk0 . For example in Figure 2.1, the numbers

inside the circles are the addresses. Each node x is addressed using a two-tuble

(x1x0) ∈ Z4 × Z3 where Z4 = {0, 1, 2, 3} and Z3 = {0, 1, 2}.

Connectivity: The Hamming distance DH(x, y) between node x and node y is
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the number of coordinates they differ along their addresses. In the GH, nodes

x and y are neighbors (connected) if and only if the Hamming distance between

them equals one (i.e. DH(x, y) = 1). For example in Figure 2.1, nodes (02) and

(32) are neighbors because DH(02, 32) = 1, while nodes (02) and (11) are not

neighbors because DH(02, 11) = 2.

Diameter: The diameter is the largest possible distance between any two nodes

in a network. In the GH, the diameter is equal to the number of dimensions n,

because the addresses can differ at maximum in all n-coordinates. For example in

Figure 2.1, the diameter equals two.

Degree: The node degree is the number of its neighbors. For any node x in

Qn
kn−1,...,k1,k0

, the node degree ℓ is equal to
∑n−1

i=0 (ki − 1) which is the number

of x’s neighbors. In the GH, all nodes have the same degree. Thus, the total

number of links is L = ℓ.N
2

where each link connects two neighbors. For example

in Figure 2.1, ℓ = 5 and L = 30.

Path: A path from node x to node y is denoted by P (x, y) = 〈x, a1, a2, . . . ,

a(|P (x, y)|−1), y〉where |P (x, y)| is the length and each two consecutive nodes (e.g.

x and a1) along the path are neighbors. The nodes 〈a1, a2, . . . , a(|P (x, y)| − 1)〉

are called internal nodes. Sometimes, we write the path P (x, y) as x → a1 →

a2→ · · · → y. The length of a shortest path from x to y is equal to the Hamming

distance DH(x, y) between them. For example in Figure 2.1, one of the shortest

paths between (00) and (32) is 00→ 30→ 32, its length equals two which is equal

to DH(00, 32). Another example of a longer path P (00, 32) is 00 → 01 → 21 →

22→ 32.

One-to-Many NDP: Given a source node s and a set of distinct destination

nodes T = {t1, t2, . . . , tℓ}, where s /∈ T and ℓ is the node degree, a set of one-to-
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00 10 20 30

01 11 21 31

02 12 22 32

(a)

00 10 20 30

01 11 21 31

02 12 22 32

(b)

Figure 2.2: Different examples of NDP

many NDP connects s to each destination node ti, i ∈ {1, 2, . . . , ℓ}, and satisfy

the condition that the only common node among all paths is the source node s.

Since the degree of each node in GH is ℓ, the maximum of destination nodes for

which a set of NDP can be obtained from a given source node is also ℓ and this is

the case in this work.

For a particular s and T , there are more than one possible set of NDP from

s to T . One of these possible sets is denoted by P(s, T ). For example con-

sider the network in Figure 2.1, let the source node be s = (00) and the set

of destination nodes be T = {(01), (21), (22), (31), (32)}. Then, one possible set

of NDP is P(s, T ) = {〈00, 01〉, 〈00, 20, 21〉 , 〈00, 10, 12, 22〉, 〈00, 30, 31〉, 〈00, 02, 32〉}

(see Figure 2.2a). Another different possible set is P(s, T ) = {〈00, 01〉, 〈00, 20, 21〉,

〈00, 02, 22〉, 〈00, 10, 11, 31〉, 〈00, 30, 32〉} (see Figure 2.2b).

Unreachable Destination Node: A destination node is called unreachable des-

tination node when it is impossible to find a node disjoint path from the source

node to that destination node. Constructing a set of NDP arbitrarily could lead

to having unreachable destination nodes. For example consider the network in
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02 12 22 32

?

Figure 2.3: Example of unreachable destination node

Figure 2.1, let the source node be s = (00) and the set of destination nodes

be T = {(01), (21), (22), (31), (32)}. Suppose the following set of NDP have

been constructed randomly (see Figure 2.3): P (00, 01) as 00 → 01, P (00, 21) as

00→ 10→ 11→ 21, P (00, 22) as 00→ 20→ 22, and P (00, 32) as 00→ 30→ 32.

In this case, the destination node (31) is called unreachable destination node be-

cause we cannot add a path to this particular set without using one of the nodes

more than once. Note that, the set P(s, T ) reaches all destination nodes in T . Our

proposed algorithms always return a solution P(s, T ) to the one-to-many NDP

routing problem without having unreachable destination nodes.

Unavailable Node: Any node in a GH Qn
kn−1,...,k1,k0

is called unavailable node if:

1) it is a destination node in T , or 2) an internal node along a path to one of the

destination nodes. It is unavailable to be used during the process of construct-

ing the NDP. Initially, all destination nodes in T are automatically unavailable

nodes. As the construction process continues, each node that becomes an internal

node also becomes unavailable node. Eventually, all nodes in the set P(s, T ) are

unavailable nodes.
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Figure 2.4: All shortest paths to ti at distance two

In the following section, we introduce the proposed algorithm for two dimen-

sional GH. In Section 2.3, we generalize this algorithm for any number of dimen-

sions.

2.2 Routing in Two-Dimensional Generalized Hypercube

In this section, we propose an algorithm to solve the one-to-many node disjoint

paths (NDP) routing problem in a two-dimensional GH denoted by Q2
k1,k0

. This

problem is described as follows: given any source node s = (s1s0) and a set of

distinct destination nodes T = {ti = (ti1ti0)|1 ≤ i ≤ ℓ} such that s /∈ T and

ℓ = k0 + k1 − 2, find a set of NDP P(s, T ).
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Figure 2.5: Solved example by Algorithm 1

2.2.1 Algorithm 1: Two-Dimensional GH

Before we describe the algorithm, notice that for any destination node ti = (ti1ti0)

at Hamming distance two from the source node s (i.e. DH(s, ti) = 2), there are

only two shortest paths from s to ti (see Figure 2.4): 1) P (s, ti) as (s1s0) →

(ti1s0)→ (ti1ti0), and 2) P (s, ti) as (s1s0)→ (s1ti0)→ (ti1ti0). In this section, the

node (ti1s0) is called the column neighbor of ti (in the same column as ti) while

the node (s1ti0) is called the row neighbor of ti (in the same row as ti).

To explain the algorithm, we use the example in Figure 2.5 where the proposed

algorithm is used to find a solution to this problem. In this example, the source

node is s = (00), the set of destination nodes is T = {(02), (21), (22), (31), (32)},

and the network is Q2
4,3 as shown in Figure 2.1. The following steps describe the

algorithm (see Algorithm 1):
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Step 1 (Reach the source’s neighbors)

In this step, the algorithm constructs a path from the source node to each des-

tination node at Hamming distance one. For each destination node ti such that

DH(s, ti) = 1, the algorithm constructs the path P (s, ti) as (s1s0) → (ti1ti0). For

example in Figure 2.5, the algorithm constructs the path P (00, 02) as 00→ 02 in

this step because DH(00, 02) = 1.

Step 2 (Sort)

After reaching all destination nodes at Hamming distance one, the algorithm sorts

the remaining destination nodes in ascending lexicographical order. For example

in Figure 2.5, the ordered set of the remaining destination nodes (after reaching

(02)) is 〈21, 22, 31, 32〉. This sorting is used to uniquely identify the last destination

node within each column. Also, it is used to traverse the destination nodes in the

network column by column.

Step 3 (Construct all paths)

Starting from the first destination node in the ordered set obtained in Step 2, the

algorithm constructs a path from the source node s to each destination node in

the ordered set ti = (ti1ti0) according to the following cases:

Case 1: In this case: 1) ti is not the last destination node in its column according

to the sorting in Step 2, and 2) the row neighbor (s1ti0) or the column

neighbor (ti1s0) is available.
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Algorithm 1 One-to-Many NDP Routing in 2-Dimensional Generalized Hyper-
cube

Input: Q2
k1,k0

, s = (s1s0), and T = {ti = (ti1ti0)|1 ≤ i ≤ ℓ} where s /∈ T and
ℓ = k0 + k1 − 2
Output: P(s, T )

1: procedure OneToMany 2D(Q2
k1,k0

,s,T )
2: Used = {s, t1, t2, . . . , tℓ}; ⊲ ”Used” nodes
3: DP = ∅; ⊲ ”DP” fully constructed NDP
4: Reached = ∅; ⊲ ”Reached” dest. nodes
5: for 1 ≤ i ≤ ℓ do ⊲ Step 1
6: if DH(s, ti) = 1 then
7: DP = DP ∪

〈

(s1s0), (ti1ti0)
〉

; Reached = Reached ∪ {ti};
8: end if
9: end for

10: Sort RemT = T − Reached ⊲ Step 2
11: for i← 1, |RemT | do ⊲ Step 3
12: if ti is not the last dest. node in its column then
13: if (s1ti0) /∈ Used then
14: DP = DP ∪

〈

(s1s0), (s1ti0), (ti1ti0)
〉

; Used = Used ∪ {(s1ti0)};
15: Reached = Reached ∪ {ti};
16: else if (ti1s0) /∈ Used then
17: DP = DP ∪

〈

(s1s0), (ti1s0), (ti1ti0)
〉

; Used = Used ∪ {(ti1s0)};
18: Reached = Reached ∪ {ti};
19: else
20: FindingPathOfLength 3;
21: end if
22: else ⊲ ti is the last destination node in its column
23: if (ti1s0) /∈ Used then
24: DP = DP ∪

〈

(s1s0), (ti1s0), (ti1ti0)
〉

; Used = Used ∪ {(ti1s0)};
25: Reached = Reached ∪ {ti};
26: else if (s1ti0) /∈ Used then
27: DP = DP ∪

〈

(s1s0), (s1ti0), (ti1ti0)
〉

; Used = Used ∪ {(s1ti0)};
28: Reached = Reached ∪ {ti};
29: else
30: FindingPathOfLength 3;
31: end if
32: end if
33: end for
34: P(s, T ) = DP ;
35: return P(s, T );
36: end procedure
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Algorithm 1 Continued

37: procedure FindingPathOfLength 3

38: j = 0; isFound = false;
39: while j ≤ k0 − 1 and isFound = false do
40: h = (ti1j); r = (s1j);
41: if r /∈ Used and h /∈ Used then
42: DP = DP ∪

〈

(s1s0), (s1j), (ti1j), (ti1ti0)
〉

; Used = Used ∪ {r, h};
43: Reached = Reached ∪ {ti}; isFound = true;
44: end if
45: j = j + 1;
46: end while
47: if isFound = false then
48: j = 0;
49: while j ≤ k1 − 1 and isFound = false do
50: h = (jti0); r = (js0);
51: if r /∈ Used and h /∈ Used then
52: DP = DP ∪

〈

(s1s0), (js0), (jti0), (ti1ti0)
〉

; Used = Used∪{r, h};
53: Reached = Reached ∪ {ti}; isFound = true;
54: end if
55: j = j + 1;
56: end while
57: end if
58: end procedure

To construct a path in this case, the algorithm first checks the availability

of the row neighbor (s1ti0) of ti, meaning that it has not been used so far in

any path. If the row neighbor (s1ti0) is available, the algorithm constructs

the path P (s, ti) as (s1s0)→ (s1ti0)→ (ti1ti0). If the row neighbor (s1ti0) is

not available, the algorithm checks the availability of the column neighbor

(ti1s0) of ti. If it is available, the algorithm constructs the path P (s, ti) as

(s1s0)→ (ti1s0)→ (ti1ti0). If both (row and column) neighbors of ti are not

available, then go to Case 3.

One example of Case 1 is the destination node (21) in Figure 2.5. Since
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the row neighbor (01) is available at this point, the algorithm constructs the

path P (00, 21) as 00 → 01 → 21. Another example is the destination node

(31). Its row neighbor (01) is not available because it is an internal node in

the path P (00, 21). Since the row neighbor is not available, the algorithm

checks the availability of the column neighbor (30) which is available at this

point. So, the algorithm constructs the path P (00, 31) as 00→ 30→ 31.

Case 2: In this case: 1) ti is the last destination node in its column according to

the sorting in Step 2, and 2) the row neighbor (s1ti0) or the column neighbor

(ti1s0) is available.

Unlike the previous case, the algorithm first checks the availability of the

column neighbor (ti1s0) of ti, then the availability of the row neighbor (s1ti0)

of ti. If the column neighbor is available, the algorithm constructs the path

P (s, ti) as (s1s0) → (ti1s0) → (ti1ti0). However, if the column neighbor is

not available but the row neighbor (s1ti0) of ti is available, the algorithm

constructs the path P (s, ti) as (s1s0) → (s1ti0) → (ti1ti0). If both (row and

column) neighbors are not available, then go to Case 3.

For example in Figure 2.5, to reach the destination node (22) which is the

last node in its column, the algorithm first checks the availability of the

column neighbor (20). The node (20) is available at this point. So, the

algorithm constructs the path P (00, 22) as 00→ 20→ 22.

Case 3: In this case the row neighbor (s1ti0) and the column neighbor (ti1s0) are

both not available, meaning that the shortest paths are not available.

The algorithm constructs a path of length three by finding an available neigh-
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(a) Same column (b) Same row

Figure 2.6: A path of length three (Case 3)

bor, h, of ti such that h’s neighbor which is in the same row or column as

of s is also available. Let h = (h1h0) be any available neighbor of ti, then h

and ti are either in the same column or in the same row (see Figure 2.6):

1. Same Column (h = (ti1h0)): If node r = (s1h0) is available, the al-

gorithm constructs the path P (s, ti) as (s1s0) → (s1h0) → (ti1h0) →

(ti1ti0) (see Figure 2.6a).

2. Same Row (h = (h1ti0)): If node r = (h1s0) is available, the algorithm

constructs the path P (s, ti) as (s1s0)→ (h1s0)→ (h1ti0)→ (ti1ti0) (see

Figure 2.6b).

As we prove it later, there is at least one available neighbor h such that its

neighbor (either (h1s0) or (s1h0)) is also available, meaning a path of length

three exists.

For example in Figure 2.5, the shortest paths to the destination node (32)

are not available because its column neighbor (30) is an internal node in the
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Figure 2.7: Solved example by Algorithm 1 (Q2
6,3)

path P (00, 31) and its row neighbor (02) is a destination node. Thus, the

algorithm constructs a path of length three by finding an available neighbor

h. The only available neighbor is h = (12) which is in the same row as

the destination node (32). Then, the algorithm checks the availability of

node (h1s0) = (10) which is available. So, the algorithm constructs the path

P (00, 32) as 00→ 10→ 12→ 32.

Example 2.2.1 provides a complete example of Algorithm 1.

Example 2.2.1. Consider the GH Q2
6,3. The node degree in this GH is ℓ = 7.

Let the source node be s = (00) and the set of the seven destination nodes be

T = {(52), (51), (41), (32), (02), (42), (31)}. Algorithm 1 solves this example as

follows (see Figure 2.7):

Step 1: Construct a path to each destination node at Hamming distance

one:

• P (00, 02) is 00→ 02

Step 2: Sort the remaining destination nodes:

• 〈31, 32, 41, 42, 51, 52〉
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Step 3: Construct a path to each one of the remaining destination nodes:

• P (00, 31) is 00→ 01→ 31 (Case 1: check (01) then (30))

• P (00, 32) is 00→ 30→ 32 (Case 2: check (30) then (02))

• P (00, 41) is 00→ 40→ 41 (Case 1: check (01) then (40), (01) has been

used by P (00, 31))

• P (00, 42) is 00 → 20 → 22 → 42 (Case 3: (22) and its neighbor (20)

are both available)

• P (00, 51) is 00→ 50→ 51 (Case 1: check (01) then (50), (01) has been

used by P (00, 31))

• P (00, 52) is 00 → 10 → 12 → 52 (Case 3: (12) and its neighbor (10)

are both available)

All destination nodes have been reached using a set of NDP.

�

2.2.2 Correctness of Algorithm 1

We prove the correctness of Algorithm 1 by providing the following theorem and

its proof.

Theorem 2.2.1. In a GH Q2
k1,k0

, given any source node s = (s1s0) and a set

of distinct destination nodes T = {ti = (ti1ti0)|1 ≤ i ≤ ℓ} such that s /∈ T and

ℓ = k0 + k1 − 2, Algorithm 1 always finds a set of NDP P(s, T ) with path lengths

at most three.
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Proof. Since the GH is a symmetric network, without loss of generality, assume

that the source node s is (00). Let ti = (ti1ti0) ∈ T be the current destination

node in Algorithm 1. Then, there are three distinct cases:

Case 1: Suppose ti and s are neighbors. In this case (by Step 1 of Algo-

rithm 1), the path P (s, ti) is (00)→ (ti1ti0) and its length is equal to one.

Case 2: Suppose ti and s are not neighbors and the column neighbor (ti10),

the row neighbor (0ti0), or both are available. In this case (by either Case 1 or

Case 2 of Step 3 of Algorithm 1), the path P (s, ti) is (00)→ (0ti0)→ (ti1ti0)

or (00)→ (ti10)→ (ti1ti0) (see Figure 2.4) and its length is equal to two.

Case 3: Suppose ti and s are not neighbors and the column neighbor (ti10)

and the row neighbor (0ti0) are both not available. In this case, we need to

prove that there exists a path of length three from s to ti (Case 3 of Step 3

of Algorithm 1). We prove that by contradiction.

Assume a node disjoint path P (s, ti) of length three does not exist. Then,

we prove that there exist more than k0 + k1 − 2 destination nodes, which

is a contradiction because it is assumed that there are exactly k0 + k1 − 2

destination nodes.

Let us first consider the column that has the destination node ti (ti1-th).

After excluding ti, the number of nodes in this column is equal to k0− 1. In

the following we show that there exists a one-to-one correspondence between

all nodes other than ti in the ti1-th column and distinct destination nodes.

Let a = (ti1a0) be any node in the ti1-th column other than ti (i.e. a0 6= ti0).

We have the following cases:
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(a) Case 3.2

(b) Case 3.3.1
(c) Case 3.3.2

Figure 2.8: Proof of Case 3

Case 3.1: Suppose node a is a destination node. In this case, the corre-

sponding destination node is node a itself.

Case 3.2: Suppose node a is not a destination node but it has not been

used (an available node). Then the node (0a0) must be used to reach a

destination node c = (c1c0) such that 0 < c1 < a1 (see Figure 2.8a). In

this case, the corresponding destination node for a is node c.
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Case 3.3: Suppose node a is not a destination node but it has been used

(an unavailable node). Then there are two cases:

Case 3.3.1: Suppose node a has been used by a path P (s, b) of length

three from s to a destination node b = (b1a0) as (00) → (a10) →

(a1a0) → (b1a0) (see Figure 2.8b). In this case, the corresponding

destination node for node a is node b. Note that the node (0b0)

must be used to reach a destination node c = (c1c0) such that

0 < c1 < b1. So, the corresponding destination node for node (a10)

is node c.

Case 3.3.2: Suppose node a has been used by a path P (s, b) of length

three from s to a destination node b = (a1b0) as (00) → (0a0) →

(a1a0) → (a1b0) (see Figure 2.8c). In this case, the corresponding

destination node for node b is itself. Note that the node (0b0) must

be used to reach a destination node c = (c1c0) such that 0 < c1 < b1.

So, the corresponding destination node for node a is node c.

From the above argument, we have found a one-to-one correspondence be-

tween all nodes other than ti in the ti1-th column and distinct destination

nodes. It follows that we have counted k0 − 1 distinct destination nodes so

far. These k0 − 1 destination nodes are either in the ti1-th column or in the

path from s to that node goes through (ti10) or through a node other than

(0ti0) in the first column.

Using a similar argument, we can prove that there is a one-to-one corre-

spondence between the nodes in the ti0-th row (other than ti) and a set of

k1 − 1 distinct destination nodes. These k1 − 1 destination nodes are either
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in the ti0-th row or in the path from s to that node goes through (0ti0) or

through a node in the first row other than (ti10). Thus, these destination

nodes are different from the k0 − 1 destination nodes obtained in the above

argument. As a result, including the destination node ti, we get a total of

(k0 − 1) + (k1 − 1) + 1 = k0 + k1 − 1 destination nodes. This gives a contra-

diction because it is assumed that there are exactly k0 + k1 − 2 destination

nodes. So, there exists a path P (s, ti) of length three .

This proves that Algorithm 1 is correct.

Corollary 2.2.1. For any node disjoint path P (s, ti) in P(s, T ) generated by Algo-

rithm 1, the upper and lower bounds of the path length are given in Inequation (2.1).

DH(s, ti) ≤ |P (s, ti)| ≤ 3 (2.1)

The time complexity of Algorithm 1 is same as the time complexity of Al-

gorithm 2 with n = 2 (the time complexity analysis for Algorithm 2 is given

in Section 2.3.3). Thus, the time complexity of Algorithm 1 is O(kmax
2) where

kmax = max{k0, k1}.

In the following section, we generalize Algorithm 1 to solve the same problem

for any number of dimensions (i.e n ≥ 2). In Section 2.4, we show the simulation

results for both algorithms.

2.3 Routing in n-Dimensional Generalized Hypercube

In this section, we propose Algorithm 2 which solves the one-to-many node disjoint

paths (NDP) routing problem in n-dimensional GH denoted by Qn
kn−1,...,k1,k0

. This
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Figure 2.9: The basic idea of Algorithm 2

problem is described as follows: given any source node s = (sn−1 . . . s1s0) and a

set of distinct destination nodes T = {ti = (tin−1
. . . ti1ti0)|1 ≤ i ≤ ℓ} such that

s /∈ T and ℓ =
∑n−1

i=0 (ki − 1), find a set of NDP P(s, T ) from s to each destination

node in T .

2.3.1 Algorithm 2: n-Dimensional GH

Before explaining the detailed steps of Algorithm 2, we first give an overview.

Algorithm 2 is an iterative algorithm (see Figure 2.9). Let j = 1, 2, . . . , (n−1) be

the iteration counter. In the first iteration (j = 1), the algorithm partitions the

n-dimensional GH to a number of mutually disjoint (n−1)-dimensional subcubes,
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satisfying some properties to be discussed soon. In the second iteration (j = 2),

the algorithm partitions the (n−1)-dimensional subcube that has the source node

to a number of mutually disjoint (n − 2)-dimensional subcubes, again satisfying

some properties to be discussed soon. Let m = n − (j − 1) be the dimension of

the source’s subcubes (before partitioning) in the current iteration j. So in each

iteration, the algorithm partitions the m-dimensional cube that has the source

node to a number of mutually disjoint (m− 1)-dimensional cubes.

The partitioning process (as explained later) depends on the number of unavail-

able nodes (as defined in Section 2.1) in the subcube that has the source node. Let

U = {ui = (uim−1
. . . ui0)|1 ≤ i ≤∑m−1

j=0 (kj − 1)} be a set of unavailable nodes in

the m-dimensional cube that has the source node. As we have defined earlier, an

unavailable node ui is either a destination node (i.e. ui ∈ T ) or an internal node.

Initially when (j = 1), U contains only all destination nodes in T (i.e. U = T ).

After that, U has different unavailable nodes in each iteration as the algorithm

performs the following operations on the resultant subcubes (after partitioning)

during each iteration (see Figure 2.9 and note that the source node exists exactly

in one of the resultant subcubes after each partitioning):

1. For each subcube other than the source’s subcube, Algorithm 2 designates

one unavailable node; and the path to that node goes from the source node to

the source’s immediate neighbor in that subcube and then to that unavailable

node.

2. For all other unavailable nodes (other than those considered in the above

step and not existed in the source’s subcube), the algorithm maps them (as

explained later) to distinct nodes in the subcube that has the source node.
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000 020 100 120 200 220
001 021 101 121 201 221
002 022 102 122 202 222
010 030 110 130 210 230
011 031 111 131 211 231
012 032 112 132 212 232

Figure 2.10: All nodes of Q3
3,4,3 (the source node is (000) and the destination nodes

are in black)

The mapping process includes adding these distinct nodes to the set of NDP.

So, they become internal nodes and therefore unavailable nodes. Since they

are in the subcube that has the source node, the algorithm adds them to U .

Thus, they will be considered during the next partitioning. Note that, U also

contains any unavailable node that happens to be in the source’s subcube as

a result of the partitioning.

For example in Figure 2.9, as a result of the partitioning and mapping during

the first iteration, the second iteration starts with U that has three destination

nodes and two internal nodes. Similarly, as a result of the partitioning and map-

ping during the second iteration, the third iteration starts with U that has one

destination node and two internal nodes. Algorithm 2 constructs each path start-

ing from the destination node and keeps adding internal node(s) in each iteration

(not necessary in each and every iteration) until the path is fully constructed.

To explain the detailed steps of Algorithm 2, we use the example in Figure 2.10.

In this example, the source node is s = (000), the set of destination nodes is

T = {(001), (021), (031), (002), (022), (032), (102)}, and the network is Q3
3,4,3. The

following steps describe the algorithm in details (see Algorithm 2):
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q2,00 q2,10 q2,20

000 120 001 121 002 122
010 130 011 131 012 132
020 200 021 201 022 202
030 210 031 211 032 212
100 220 101 221 102 222
110 230 111 231 112 232

(a) ě = 0, ℓ0 = 5

q2,01 q2,11 q2,21 q2,31

000 102 010 112 020 122 030 132
001 200 011 210 021 220 031 230
002 201 012 211 022 221 032 231
100 202 110 212 120 222 130 232
101 111 121 131

(b) ě = 1, ℓ1 = 4

q2,02 q2,12 q2,22

000 020 100 120 200 220
001 021 101 121 201 221
002 022 102 122 202 222
010 030 110 130 210 230
011 031 111 131 211 231
012 032 112 132 212 232

(c) ě = 2, ℓ2 = 5

Figure 2.11: All ways to partition Q3
3,4,3

Step 1 (Reach the source’s neighbors)

For each destination node ti such thatDH(s, ti) = 1, the path P (s, ti) as (sn−1 . . . s0)

→ (tin−1
. . . ti0) is constructed in this step. For example in Figure 2.10, the algo-

rithm constructs in this step the paths P (000, 001) as 000→ 001 and P (000, 002)

as 000 → 002 because DH(000, 001) = DH(000, 002) = 1. This step is performed

only once.
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Step 2 (Partition)

In this step, the algorithm partitions the m-dimensional cube , denoted by

Qm
km−1,...,k1,k0

, that has the source node using dimension ě ∈ {0, 1, 2, . . . , m− 1} to

kě mutually disjoint (m − 1)-dimensional subcubes: qm−1,0
ě , qm−1,1

ě , . . . , qm−1,kě−1
ě .

The subcube qm−1,x
ě is obtained by fixing the ě-th coordinate to x where x ∈

{0, 1, . . . , (kě − 1)}. The node degree ℓě in these subcubes is equal to ℓě =

∑m−1
i=0,i 6=ě(ki − 1).

Clearly, there are m different ways to partition the m-dimensional cube. For

example in Figure 2.10, during the first iteration (j = 1, m = n = 3), Q3
3,4,3 can

be partitioned in three different ways (see Figure 2.11):

1. ě = 0 (Figure 2.11a): q2,00 , q2,10 , q2,20 . The node degree in these subcubes is

ℓ0 = 3 + 2 = 5.

2. ě = 1 (Figure 2.11b): q2,01 , q2,11 , q2,21 , q2,31 . The node degree in these subcubes

is ℓ1 = 2 + 2 = 4.

3. ě = 2 (Figure 2.11c): q2,02 , q2,12 , q2,22 . The node degree in these subcubes is

ℓ2 = 2 + 3 = 5.
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Algorithm 2 One-to-Many NDP Routing in n-Dimensional Generalized Hyper-
cube

Input: Qn
kn−1,...,k1,k0

, s = (sn−1 . . . s1s0), and T = {ti = (tin−1
. . . ti1ti0)|1 ≤ i ≤

ℓ} where s /∈ T and ℓ =
∑n−1

i=0 (ki − 1)
Output: P(s, T )

1: procedure OneToMany nD(Qn
kn−1,...,k1,k0

,s,T )
2: Used = {s, t1, t2, . . . , tℓ}; DP = ∅; Reached = ∅;
3: for 1 ≤ i ≤ ℓ do ⊲ Step 1: Reach the Source’s Neighbors
4: if DH(s, ti) = 1 then
5: P (s, ti) =

〈

(sn−1 . . . s0), (tin−1
. . . ti0)

〉

; DP = DP ∪
P (s, ti); Reached = Reached ∪ {ti};

6: end if
7: end for
8: j = 1; m = n; U = T ; ⊲ U is the set of unavailable nodes in the

source’s subcube
9: while |Reached| 6= |T | do

10: e = argmax
0≤ě≤m−1

{

v
(m−1,sě)
ě |v(m−1,x)

ě ≤ ℓě =
∑m−1

i=0,i 6=ě(ki − 1) ∀ x ∈

{0, 1, . . . , (kě − 1)}
}

; ⊲ Step 2: Partition

11: Partition Qm
km−1,...,k1,k0

to qm−1,0
e , qm−1,1

e , . . . , qm−1,ke−1
e ; ⊲ Qm

km−1,...,k1,k0
is

the m-cube that has the source
12: U = U ∩ qm−1,se

e ; ⊲ Reset U to have all unavailable nodes in the new
source’s subcube

13: v
(m−1,se)
e = |U |;

14: Sort the subcubes other than qm−1,se
e in the following order:

qm−1,0
e , qm−1,1

e , . . . , qm−1,ke−1
e ; ⊲ Step 3: Sort

15: Sort the unavailable nodes within each subcube other than qm−1,se
e in

ascending lexicographical order ;
16: Step 4 ; ⊲ Step 4: Construct or Map
17: j = j + 1; m = m− 1;
18: end while
19: P(s, T ) = DP ;
20: return P(s, T );
21: end procedure
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Algorithm 2 Continued

22: procedure Step 4

23: for each subcubes qm−1,0
e , qm−1,1

e , . . . , qm−1,ke−1
e other than qm−1,se

e do
24: for each unavailable node ui in this subcube do
25: if ui is not the last unavailable node in q

m−1,uie
e then

26: if u
(e,se)
i /∈ Used and v

(m−1,se)
e < ℓe then

27: Cases 1 6 ; ⊲ Case 1
28: else if s(e,uie ) /∈ Used then
29: Cases 2 5 ; ⊲ Case 2
30: else
31: Find H

32: if h and h(e,se) exist and v
(m−1,se)
e < ℓe then

33: Cases 3 7 ; ⊲ Case 3
34: else
35: Cases 4 8 ; ⊲ Case 4
36: end if
37: end if
38: else if s(e,uie ) /∈ Used then
39: Cases 2 5 ; ⊲ Case 5
40: else if u

(e,se)
i /∈ Used and and v

(m−1,se)
e < ℓe then

41: Cases 1 6 ; ⊲ Case 6
42: else
43: Find H

44: if h and h(e,se) exist and v
(m−1,se)
e < ℓe then

45: Cases 3 7 ; ⊲ Case 7
46: else
47: Cases 4 8 ; ⊲ Case 8
48: end if
49: end if
50: end for
51: end for
52: end procedure
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Algorithm 2 Continued

53: procedure Find H

54: G = {gi|gi ∈ q
m−1,uie
e and DH(gi, ui) = 1};

55: Sort G in ascending order according to DH(s, gi);
56: for each gi ∈ G do
57: g

(e,se)
i = x s.t. DH(gi, x) = 1 and x ∈ qm−1,se

e ;

58: if gi /∈ Used and g
(e,se)
i /∈ Used then

59: h = gi; h(e,se) = g
(e,se)
i ;

60: end if
61: end for
62: end procedure

Algorithm 2 Continued

63: procedure Cases 1 6

64: P (s, ti) =
〈

(sm−1 . . . s0), . . . , (uim−1
. . . uie+1

seuie−1
. . . ui0), (uim−1

. . . ui0), . . . ,
(tim−1

. . . ti0)
〉

;
65: Used = Used ∪ (uim−1

. . . uie+1
seuie−1

. . . ui0);
66: U = U ∪ (uim−1

. . . uie+1
seuie−1

. . . ui0);

67: v
(m−1,se)
e = v

(m−1,se)
e + 1;

68: if u
(e,se)
i and s are neighbors then

69: DP = DP ∪ P (s, ti);Reached = Reached ∪ {ti};
70: end if
71: end procedure

Algorithm 2 Continued

72: procedure Cases 2 5

73: P (s, ti) =
〈

(sm−1 . . . s0), (sm−1 . . . se+1uiese−1

. . . s0), . . . , (uim−1
. . . ui0), . . . , (tim−1

. . . ti0)
〉

;
74: DP = DP ∪ P (s, ti);Reached = Reached ∪ {ti};
75: Used = Used ∪ all internal nodes in P (s, ui);
76: end procedure
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Algorithm 2 Continued

77: procedure Cases 3 7

78: P (s, ti) =
〈

(sm−1 . . . s0), . . . , (uim−1
. . . uie+1

seuie−1
. . . hj . . . ui0),

(uim−1
. . . uie+1

uieuie−1
. . . hj . . . ui0), (uim−1

. . . ui0), . . . , (tim−1
. . . ti0)

〉

;
79: Used = Used ∪ {(uim−1

. . . uie+1
seuie−1

. . . hj . . . ui0),
(uim−1

. . . uie+1
uieuie−1

. . . hj . . . ui0)};
80: U = U ∪ (uim−1

. . . uie+1
seuie−1

. . . hj . . . ui0);

81: v
(m−1,se)
e = v

(m−1,se)
e + 1;

82: if h(e,se) and s are neighbors then
83: DP = DP ∪ P (s, ti);Reached = Reached ∪ {ti};
84: end if
85: end procedure

Algorithm 2 Continued

86: procedure Cases 4 8

87: P (s, ti) =
〈

(sm−1 . . . s0), (sim−1
. . . sie+1

psie−1
. . . si0), . . . ,

(uim−1
. . . uie+1

puie−1
. . . ui0), (uim−1

. . . ui0), . . . , (tim−1
. . . ti0)

〉

;
88: DP = DP ∪ P (s, ti);Reached = Reached ∪ {ti};
89: Used = Used ∪ all internal nodes in P (s, ti);
90: end procedure

Choosing the partitioning dimension ě is crucial to avoid the unreachable des-

tination node problem. Note that the unavailable nodes are distributed differently

depending on the choice of the partitioning dimension ě. Let v
(m−1,x)
ě be the num-

ber of unavailable nodes in the subcube qm−1,x
ě where x ∈ {0, 1, . . . , (kě − 1)}. So,

v
(m−1,sě)
ě is equal to the number of unavailable nodes in the subcube that has the

source node such that the m-dimensional cube was partitioned using the parti-

tioning dimension ě. For example in Figure 2.11b, since s = (s2s1s0) = (000), the

number of unavailable nodes v
(m−1,s1)
1 = v

(2,0)
1 in the subcube that has the source

node is equal to three. Similarly, v
(2,1)
1 = 0, v

(2,2)
1 = 2, and v

(2,3)
1 = 2. Let
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e = argmax
0≤ě≤m−1

{

v
(m−1,sě)
ě |v(m−1,x)

ě ≤ ℓě ∀ x ∈ {0, 1, . . . , (kě − 1)}
}

(2.2)

Algorithm 2 uses Equation (2.2) to choose the partitioning dimension e. This

equation returns the partitioning dimension e, such that the subcube containing

the source node has the highest but less than or equal ℓe number of unavailable

nodes. Furthermore, all other subcubes contain at most ℓe unavailable nodes.

There exists at least one partitioning dimension e satisfying Equation (2.2) (to be

proved in Section 2.3.2).

For example in Figure 2.11, the 2nd dimension (ě = 2, Figure 2.11c) will not

be chosen because the number of unavailable nodes v
(2,0)
2 = 6 in the subcube q2,02

is more than the node degree ℓ2 = 5. The algorithm will choose the 1st dimension

(i.e. e = 1) because the number of unavailable nodes v
(2,0)
1 = 3 ≤ ℓ1 = 4 in q2,01

is more than the number of unavailable nodes v
(2,0)
0 = 0 ≤ ℓ0 = 5 in q2,00 and all

subcubes q2,01 , q2,11 , q2,21 , and q2,31 have less than or equal ℓ1 = 4 unavailable nodes.

Note that q2,02 can contain at most ℓ1 = 4 unavailable nodes.

Step 3 (Sort)

After the partitioning process, the algorithm creates an ordered set of unavail-

able nodes that are not in the source’s subcube qm−1,se
e by first sorting the sub-

cubes other than qm−1,se
e in the following order: qm−1,0

e , qm−1,1
e , . . . , qm−1,ke−1

e . Then,

within each subcube in this order, the algorithm sorts the unavailable nodes in as-

cending lexicographical order. For example in Figure 2.11b, the resultant ordered

set is 〈021, 022, 031, 032〉. This sorting is used to uniquely identify the last desti-

nation node in each subcube.
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Step 4 (Construct or map)

Starting from the first unavailable node ui in the ordered set obtained in Step 3,

the algorithm either constructs the path P (s, ti) completely as s → · · · → ui →

· · · → ti or adds one or two internal node(s) (mapping) to the portion s→ · · · → ui

of this path, according to the following cases (see Figure 2.12):

Case 1: Suppose the following: 1) ui is not the last unavailable node in its sub-

cube q
m−1,uie
e (according to the ordered set obtained in Step 3), 2) the current

number v
(m−1,se)
e of unavailable nodes in the source’s subcube is less than the

node degree in the source’s subcube (i.e. v
(m−1,se)
e < ℓe), and 3) the neighbor

of ui in the source’s subcube is available. Note that the address of this neigh-

bor is (uim−1
. . . uie+1

seuie−1
. . . ui0), which we represent as u

(e,se)
i (i.e. replace

the e-th coordinate of ui’s address by se).

In Case 1, the algorithm maps ui by adding its neighbor u
(e,se)
i to the path

P (s, ti) as (sm−1 . . . s0)→ · · · → (uim−1
. . . uie+1

seuie−1
. . . ui0)→

(uim−1
. . . ui0) → · · · → (tim−1

. . . ti0). In the next iteration, u
(e,se)
i is one of

the unavailable nodes in U . If s and u
(e,se)
i are neighbors, the path P (s, ti)

has been connected as s → u
(e,se)
i → ui → · · · → ti. This action increases

v
(m−1,se)
e by one because u

(e,se)
i becomes unavailable node.

Case 2: Suppose the following: 1) ui is not the last unavailable node in q
m−1,uie
e ,

2) u
(e,se)
i is not available or v

(m−1,se)
e = ℓe, and 3) the neighbor of s in the

subcube that has ui is available. This neighbor is s
(e,uie ) =

(sm−1 . . . se+1uiese−1 . . . s0).

In Case 2, the algorithm constructs the path P (s, ti) completely as (sm−1 . . .
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is ui the
last un-
available
node in
q
m−1,uie
e ?

is u
(e,se)
i

available
and

v
(m−1,se)
e <

ℓe?

P (s, ti) as s →
· · · → u

(e,se)
i →

ui → · · · → ti
v
(m−1,se)
e ←

v
(m−1,se)
e + 1
(map ui)

is s(e,uie)

available?

P (s, ti) as s →
s(e,uie) → · · · →
ui → · · · → ti

do h and
h(e,se)

exist and
v
(m−1,se)
e <

ℓe?

P (s, ti) as
s → · · · →

h(e,se) → h →
ui → · · · → ti
v
(m−1,se)
e ←

v
(m−1,se)
e + 1
(add and
map h)

P (s, ti) as s → s(e,p) → · · · →
u
(e,p)
i → ui → · · · → ti

is s(e,uie)

available?

is u
(e,se)
i

available
and

v
(m−1,se)
e <

ℓe?

do h and
h(e,se)

exist and
v
(m−1,se)
e <

ℓe?
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No
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No
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No
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Case 6

No

Yes

Case 7

No

Case 8

Figure 2.12: All cases of Step 4 of Algorithm 2
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s0) → (sm−1 . . . se+1uiese−1 . . . s0) → · · · → (uim−1
. . . ui0) → · · · → (tim−1

. . .

ti0), such that the path from s(e,uie) to ui is within the same subcube q
m−1,uie
e .

For example in Figure 2.11b where s = (000), e = 1, and se = 0, consider

the unavailable node ui = (021). Note the following: 1) this unavailable

node is not the last unavailable node in the subcube q2,21 because the un-

available node (022) is after ui = (021) in the ordered set (according to the

sorting in Step 3), 2) its neighbor u
(e,se)
i = (021)(1,0) = (001) in the source’s

subcube is not available (a destination node), and 3) the source’s neighbor

s(e,uie) = (000)(1,2) = (020) in q2,21 is available. So, the algorithm constructs

the path P (000, 021) completely as 000 → 020 → 021. Similarly, the algo-

rithm constructs the path P (000, 031) completely as 000→ 030→ 031.

Case 3: Suppose the following: 1) ui is not the last unavailable node in q
m−1,uie
e ,

2) u
(e,se)
i is not available, 3) s(e,uie) is not available, 4) v

(m−1,se)
e < ℓe, and 5)

within the same subcube q
m−1,uie
e , a neighbor of ui is available and also the

neighbors of this neighbor in the source’s subcube qm−1,se
e is also available.

The number of neighbors of ui in its subcube is equal to ℓe. Let h = (uim−1
. . .

uie+1
uieuie−1

. . . hj . . . ui0) be any neighbor (available or unavailable) of ui in

the same subcube q
m−1,uie
e where j ∈ {0, 1, . . . , e − 1, e + 1, . . . , m− 1} and

hj ∈ {0, 1, . . . , kj − 1}. In this case, the algorithm performs the following

actions:

1. Sort all neighbors of ui in the same subcube q
m−1,uie
e in ascending order

according to the Hamming distance from the source. This sorting is

mainly for minimizing the path length by examining the availability of

the closest neighbor to the source node.
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2. For each node h starting from the top in this list, check whether h

is available; and also check whether its neighbor in the source’s sub-

cube h(e,se) = (uim−1
. . . uie+1

seuie−1
. . . hj . . . ui0) is also available. Note

that by assumption, at least one of ui’s neighbors satisfies the above

condition.

3. Add h and h(e,se) to the path P (s, ti) as s→ · · · → h(e,se) → h→ ui →

· · · → ti. In the next iteration, h(e,se) is one of the unavailable nodes in

U . If s and h(e,se) are neighbors, the path P (s, ti) has been connected

as s → h(e,se) → h → ui → · · · → ti. This action increases v
(m−1,se)
e by

one because h(e,se) becomes unavailable node in the source’s subcube.

Later, an example is given for Case 7 and it is similar to Case 3.

Case 4: Suppose the following: 1) ui is not the last unavailable node in q
m−1,uie
e ,

2) u
(e,se)
i is not available or v

(m−1,se)
e = ℓe, 3) s(e,uie ) is not available, and

4) for each neighbor h of ui, either h is not available or h(e,se) is not avail-

able. In this case, there must exist another subcube (other than qm−1,se
e )

that does not have any unavailable nodes (to be proved in Section 2.3.2).

Let qm−1,p
e be this subcube such that p ∈ {0, 1, . . . , se − 1, se + 1, . . . , ke −

1}. Let s(e,p) = (sm−1 . . . se+1pse−1 . . . s0) be the source’s neighbor in the

this subcube. Let u
(e,p)
i = (uim−1

. . . uie+1
puie−1

. . . ui0) be the neighbor of

ui in the this subcube. In this case, the algorithm constructs the path

P (s, ti) completely as (sm−1 . . . s0) → (sm−1 . . . se+1pse−1 . . . s0) → · · · →

(uim−1
. . . uie+1

puie−1
. . . ui0)→ (uim−1

. . . ui0)→ · · · → (tim−1
. . . ti0) such that

the path from s(e,p) to u
(e,p)
i is within the subcube qm−1,p

e that has no unavail-

able nodes.
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Later, an example is given for Case 8 and it is similar to Case 4.

Case 5: Suppose the following: 1) ui is the last unavailable node in q
m−1,uie
e , and

2) s(e,uie) is available. In this case, the algorithm performs same actions as

in Case 2. It constructs the path P (s, ti) completely through the source’s

neighbor s(e,uie) in the subcube that has ui as s → s(e,uie ) → · · · → ui →

· · · → ti. Please see the example given for Case 2 which is similar to Case 5.

Case 6: Suppose the following: 1) ui is the last unavailable node in q
m−1,uie
e , 2)

s(e,uie) is not available, 3) u
(e,se)
i is available, and 4) v

(m−1,se)
e < ℓe. In this

case, the algorithm performs same actions as in Case 1. It maps ui by adding

its neighbor u
(e,se)
i in qm−1,se

e to the path P (s, ti) as s→ · · · → u
(e,se)
i → ui →

· · · → ti. In the next iteration, u
(e,se)
i is one of the unavailable nodes in U .

Case 7: Suppose the following: 1) ui is the last unavailable node in q
m−1,uie
e , 2)

s(e,uie) is not available, 3) u
(e,se)
i is not available, 4) v

(m−1,se)
e < ℓe, and 5) a

neighbor h of ui within the same subcube q
m−1,uie
e and h’s neighbor h(e,se)

are both available. In this case, the algorithm performs same actions as in

Case 3. It adds h and h(e,se) to the path P (s, ti) as s→ · · · → h(e,se) → h→

ui → · · · → ti. In the next iteration, h(e,se) is one of the unavailable nodes

in U .

For example in Figure 2.11b where s = (000), e = 1, and se = 0, consider the

unavailable node ui = (022). Note the following: 1) this unavailable node is

the last unavailable node in q2,21 , 2) the source’s neighbor s(e,uie ) = (000)(1,2) =

(020) in q2,21 has been used by the path P (000, 021), 3) the neighbor of (022)

in the source’s subcube q2,01 , which is u
(e,se)
i = (022)(1,0) = (002), is not
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available (a destination node), 4) v
(2,0)
1 = 3 < ℓ1 = 4, and 5) there exists a

neighbor h of (022) in q2,21 that is available and its neighbor h(e,se) = h(1,0)

in q2,01 is also available. In this case, the algorithm performs the following

actions:

1. Sort all neighbors of ui = (022) in q2,21 in ascending order according to

the Hamming distance from the source (000). The resultant ordered set

is 〈020, 021, 122, 222〉.

2. For each node h starting from the top of this list, check the availability

of h and its neighbor h(1,0). (020) and (021) are not available. (122)

is available but its neighbor (122)(1,0) = (102) in q2,01 is unavailable (a

destination node). (222) and its neighbor (222)(1,0) = (202) are both

available, so we add them to the path in the next step.

3. Add h = (222) and h(1,0) = (202) to the path P (000, 022) as 000 →

· · · → 202 → 222 → 022. In the next iteration, h(1,0) = (202) is one

of the unavailable nodes in U . This action increases v
(2,0)
1 by one. So,

v
(2,0)
1 = 4.

Since at this point v
(2,0)
1 = ℓ1 = 4, any further mapping is not possible.

Case 8: Suppose the following: 1) ui is the last unavailable node in q
m−1,uie
e ,

2) s(e,uie) is not available, 3) u
(e,se)
i is not available or v

(m−1,se)
e = ℓe, and

4) for each neighbor h of ui within the same subcube q
m−1,uie
e , either h is

not available or h(e,se) is not available. In this case, there must exist another

subcube qm−1,p
e (other than qm−1,se

e ) that does not have any unavailable nodes

(to be proved in Section 2.3.2). The algorithm performs same actions as in



41

Case 4. It constructs the path P (s, ti) completely through the subcube qm−1,p
e

that has no unavailable nodes as s→ s(e,p) → · · · → u
(e,p)
i → ui → · · · → ti.

For example in Figure 2.11b where s = (000), e = 1, and se = 0, consider

the unavailable node ui = (032). Note the following: 1) this unavailable

node is the last unavailable node in q2,31 , 2) the source’s neighbor s(e,uie) =

(000)(1,3) = (030) in q2,31 has been used by the path P (000, 031), and 3)

v
(2,0)
1 = ℓ1 = 4. In this case note that, the subcube q2,11 (where p = 1) does not

have any unavailable nodes. The algorithm constructs the path P (000, 032)

completely as 000→ 010→ 012→ 032 where s(e,p) = (000)(1,1) = (010) and

u
(e,p)
i = (032)(1,1) = (012).

Step 5 (Iterate)

Unless all destination nodes in T have been reached, go to Step 2.

For example in Figure 2.11b, the algorithm constructs the following paths dur-

ing the next iteration (j = 2):

• P (000, 102) as 000→ 100→ 102.

• P (000, 022) as 000 → 200 → 202 → 222 → 022 (completing the path from

the previous iteration).

Example 2.3.1 provides a complete example of Algorithm 2.

Example 2.3.1. Consider the GH Q4
5,3,2,4. The node degree in this GH is ℓ = 10.

Let the source node be s = (0000) and the set of the ten distinct destination nodes be

T = {0011, 1102, 0212, 1013, 1202, 2012, 0210, 2113, 0113, 1111}. Algorithm 2 finds

a set of NDP from s to each destination node in T as follows:
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0000

1000 1001 1011 1111

3000 3002 3202 1202

2000 2002 2012

4000 4003 4013 4113 2113

0002 0102 1102

0003 0013 1013

0001 0011

0200 0202 0212

0010 0210

0100 0103 0113

1 1 1 1

1 1 1 1

1 1 1

1 1 1 1 1

2 2 1

2 2 2

2 2

2 2 2

3 3

3 3 1

Figure 2.13: Iteration-wise of all NDP in Example 2.3.1

• Step 1 (Reach the source’s neighbors): All destination nodes in T are not

neighbors of the source.

• 1st Iteration (j = 1, m = n = 4):

– Step 2 (Partition Q4
5,3,2,4):

∗ e = argmax
{

{v(3,0)0 = 1|v(3,0)0 = 1, v
(3,1)
0 = 2, v

(3,2)
0 = 4, v

(3,3)
0 =

3 ≤ ℓ0 = 7}, {v(3,0)1 = 2|v(3,0)1 = 2, v
(3,1)
1 = 8 ≤ ℓ1 = 9}, {v(3,0)2 =

3|v(3,0)2 = 3, v
(3,1)
2 = 4, v

(3,2)
2 = 3 ≤ ℓ2 = 8}, {v(3,0)3 = 4|v(3,0)3 =

4, v
(3,1)
3 = 4, v

(3,2)
3 = 2, v

(3,3)
3 = 0, v

(3,4)
3 = 0 ≤ ℓ3 = 6}

}

= 3

∗ Partitions:

· q3,03 has {0011, 0212, 0210, 0113}.
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· q3,13 has {1102, 1013, 1202, 1111}.

· q3,23 has {2012, 2113}.

· q3,33 has no unavailable nodes.

· q3,43 has no unavailable nodes.

– Step 3 (Sort the unavailable nodes that are not in q3,03 ):

∗ 〈1013, 1102, 1111, 1202, 2012, 2113〉

– Step 4 (Construct the path completely or map):

∗ P (0000, 1013) is 0000→ · · · → 0013→ 1013 (Case 1, map (1013))

· v(3,0)3 ← v
(3,0)
3 + 1 = 5

∗ P (0000, 1102) is 0000→ · · · → 0102→ 1102 (Case 1, map (1102))

· v(3,0)3 ← v
(3,0)
3 + 1 = 6 (v

(3,0)
3 = ℓ3, can’t map any more)

∗ P (0000, 1111) is 0000 → 1000 → 1001 → 1011 → 1111 (Case 2,

construct the path completely)

∗ P (0000, 1202) is 0000 → 3000 → 3002 → 3202 → 1202 (Case 4,

construct the path completely through the subcube q3,33 that has no

unavailable nodes)

∗ P (0000, 2012) is 0000 → 2000 → 2002 → 2012 (Case 2, construct

the path completely)

∗ P (0000, 2113) is 0000 → 4000 → 4003 → 4013 → 4113 → 2113

(Case 4, construct the path completely through the subcube q3,43 that

has no unavailable nodes)

• 2nd Iteration (j = 2, m = 3):

– Step 2 (Partition q3,03 ):
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∗ The set of unavailable nodes in q3,03 is {0011, 0212, 0210, 0113, 0013,

0102}.

∗ e = argmax
{

{v(2,0)0 = 1|v(2,0)0 = 1, v
(2,1)
0 = 1, v

(2,2)
0 = 2, v

(2,3)
0 =

2 ≤ ℓ0 = 3}, {v(2,0)1 = 1|v(2,0)1 = 1, v
(2,1)
1 = 5 ≤ ℓ1 = 5}, {v(2,0)2 =

2|v(2,0)2 = 2, v
(2,1)
2 = 2, v

(2,2)
2 = 2 ≤ ℓ2 = 4}

}

= 2

∗ Partitions:

· q2,02 has {0011, 0013}.

· q2,12 has {0113, 0102}.

· q2,22 has {0212, 0210}.

– Step 3 (Sort the unavailable nodes that are not in q2,02 ):

∗ 〈0102, 0113, 0210, 0212〉

– Step 4 (Construct the path completely or map):

∗ P (0000, 1102) is 0000 → 0002 → 0102 → 1102 (Case 1, map

(0102))

· v(2,0)2 ← v
(2,0)
2 + 1 = 3

∗ P (0000, 0113) is 0000 → 0100 → 0103 → 0113 (Case 5, construct

the path completely)

∗ P (0000, 0210) is 0000→ 0010→ 0210 (Case 1, map (0210))

· v(2,0)2 ← v
(2,0)
2 + 1 = 4 (v

(2,0)
2 = ℓ2, can’t map any more)

∗ P (0000, 0212) is 0000 → 0200 → 0202 → 0212 (Case 5, construct

the path completely)

• 3rd Iteration (j = 3, m = 2):

– Step 2 (Partition q2,02 ):
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∗ The set of unavailable nodes in q2,02 is {0011, 0013, 0002, 0010}.

∗ e = argmax
{

{v(1,0)0 = 1|v(1,0)0 = 1, v
(1,1)
0 = 1, v

(1,2)
0 = 1, v

(1,3)
0 = 1

≤ ℓ0 = 1}, {v(1,0)1 = 1|v(1,0)1 = 1, v
(1,1)
1 = 3 ≤ ℓ1 = 3}

}

= 0

∗ Partitions:

· q1,00 has {0010}.

· q1,10 has {0011}.

· q1,20 has {0002}.

· q1,20 has {0013}.

– Step 3 (Sort the unavailable nodes that are not in q1,00 ):

∗ 〈0011, 0013〉

– Step 4 (Construct the path completely or map):

∗ P (0000, 0011) is 0000→ 0001 → 0011 (Case 5, construct the path

completely)

∗ P (0000, 1013) is 0000 → 0003 → 0013 → 1013 (Case 5, construct

the path completely)

All destination nodes in T have been reached using a set of NDP. All paths are

shown in Figure 2.13. Each link was constructed during the iteration number above

it. Note how Algorithm 2 constructs the path (during more than one iteration)

starting from the destination node by adding the internal nodes until the path is

completely connected with the source node. For example, P (0000, 1013) had to wait

until the 3rd iteration even its construction started during the 1st iteration.

�
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m− 1 m− 2 . . . 1 0
u1 m− 1 m− 2 1 6= 0

}

|U | − v
(m−1,0)
0u2 m− 1 m− 2 1 6= 0

. m− 1 m− 2 6= 1
}

|U | − v
(m−1,1)
1

0
. m− 1 m− 2 6= 1 0
. . . . .
. . . . .
. . . . . . . .
. m− 1 6= (m− 2)

}

|U | − v
(m−1,m−2)
m−2

1 0
. m− 1 6= (m− 2) 1 0
. 6= (m− 1)

}

|U | − v
(m−1,m−1)
m−1

m− 2 1 0
u|U | 6= (m− 1) m− 2 1 0

Figure 2.14: Addresses of all unavailable nodes

2.3.2 Correctness of Algorithm 2

Theorem 2.3.3 proves the correctness of Algorithm 2. Theorem 2.3.1 and Theorem

2.3.2 are needed to prove Theorem 2.3.3.

Theorem 2.3.1. In a GH Qm
km−1,...,k0

, given any source node s = (sm−1 . . . s0) and

a set of distinct unavailable nodes U = {ui = (uim−1
. . . ui0)|1 ≤ i ≤∑m−1

j=0 (kj−1)},

Qm
km−1,...,k0

can be partitioned along a dimension, say e ∈ {0, 1, . . . , m − 1}, such

that the number v
(m−1,x)
e of unavailable nodes in the subcube qm−1,x

e is at most

ℓe =
∑m−1

j=0,j 6=e(kj − 1) for all x ∈ {0, 1, . . . , (ke − 1)}.

Proof. We prove the theorem by contradiction. Assume that the statement is

false. That means the number of unavailable nodes v
(m−1,x)
e in qm−1,x

e for some

x ∈ {0, 1, . . . , (ke−1)} is strictly greater than ℓe for all e = 0, 1, . . . , m−1. Consider

the e-th coordinate uie of each unavailable node ui ∈ U . Clearly, the number of

unavailable nodes that has the value x in the e-th coordinate is equal to v
(m−1,x)
e .

So, the number of unavailable nodes that have value 6= x in the e-th coordinate

is equal to |U | − v
(m−1,x)
e (see Figure 2.14). Since we have assumed v

(m−1,x)
e > ℓe,

this is equivalent to |U | − v
(m−1,x)
e < |U | − ℓe for all e = 0, 1, . . . , m − 1. As

shown in Figure 2.14, the number of distinct unavailable nodes is maximum when
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the ’6= x’ elements in each dimension of the unavailable nodes addresses do not

overlap. Thus, the maximum number of unavailable nodes is
∑m−1

e=0 (|U |−v
(m−1,x)
e ).

Since |U | − v
(m−1,x)
e < |U | − ℓe, this is equivalent to

∑m−1
e=0 (|U | − v

(m−1,x)
e ) <

∑m−1
e=0 (|U | − ℓe) =

∑m−1
e=0 (ke− 1) = |U |. This is a contradiction since it is assumed

that the number of unavailable nodes is exactly equal to |U |.

Theorem 2.3.2 provides a set of maximum number of one-to-one NDP from a

source to a destination. In [5], the authors have also given a method to find this

set. However in their method, some nodes are in more than one path and so, the

paths are not node disjoint. Thus, Theorem 2.3.2 is an improvement over their

results. This theorem is useful in order to show that the paths construction in

Case 2 and Case 5 of Step 4 of Algorithm 2 is possible.

Theorem 2.3.2. In a GH Qm
km−1,...,k0

, suppose a = (am−1 . . . a0) and b = (bm−1 . . . b0)

are the source and destination nodes. There is a set of l =
∑m−1

j=0 (kj − 1) NDP as

follows:

1. If DH(a, b) = m, then there are m NDP of length m and l−m NDP of length

m+ 1.

2. If DH(a, b) = d < m and a and b differ in i1, i2, . . . , id positions, then there

are d NDP of length d,
∑d

j=1(kij − 2) NDP of length d + 1, and l − d −
∑d

j=1(kij − 2) NDP of length d+ 2.

Proof. Case 1: Suppose DH(a, b) = m. In this case, there is a set of l NDP

as follows:

1. The m NDP of length m are as follows (correct one digit at a time

starting from the i-th digit going along right to left):
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The i-th path, i = 0, 1, . . . , m− 1, is the following:

(an−1an−2 . . . ai+1aiai−1 . . . a0)→ (an−1an−2 . . . ai+1biai−1 . . . a0)→

(an−1an−2 . . . bi+1biai−1 . . . a0)→ · · · → (bn−1bn−2 . . . bi+1biai−1 . . . a0)→

(bn−1bn−2 . . . bi+1biai−1 . . . a1b0)→ · · · → (bn−1bn−2 . . . bi+1bibi−1 . . . b1b0).

2. The remaining l −m NDP of length m+ 1 are as follows:

For each i-th digit, first change ai to ci where ci 6= bi, ci 6= ai, and

ci ∈ {0, 1, 2, . . . , ki − 1}. Then as before correct one digit at a time

starting from digit i + 1 going from right to left in cyclic order and

finally change ci to bi. These paths have path length of m+ 1.

It can be easily verified that all these l paths are node disjoint. Example 2.3.2

provides an example of this case.

Example 2.3.2. For example, suppose m = 3, k0 = k1 = k2 = 4, a = (021),

and b = (132). In this case DH(a, b) = 3. A set of l = 3+ 3+ 3 = 9 NDP is

as follows:

1. The m = 3 NDP of length m = 3 are (correct one digit at a time going

from right to left in cyclic order):

i) 021→ 022→ 032→ 132

ii) 021→ 031→ 131→ 132

iii) 021→ 121→ 122→ 132

2. The l −m = 9− 3 = 6 NDP of length m+ 1 = 3 + 1 = 4 are:

i) 021→ 020→ 030→ 130→ 132

ii) 021→ 023→ 033→ 133→ 132
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iii) 021→ 001→ 101→ 102→ 132

iv) 021→ 011→ 111→ 112→ 132

v) 021→ 221→ 222→ 232→ 132

vi) 021→ 321→ 322→ 332→ 132

Case 2: Suppose DH(a, b) = d < m. In this case, there is a set of l NDP as

follows:

1. The d NDP of length d can be constructed by correcting one digit at

a time, going from right to left in cyclic order. The i-th path, i =

1, 2, . . . , d, starts with correcting the i-th digit in which they differ.

2. The
∑d

j=1(kij − 2) NDP of length d+ 1 can be constructed as follows:

Suppose i1, i2, . . . , id are the positions in which aij 6= bij for j = 1, 2, . . . ,

d. Change aij to cij where cij 6= aij , cij 6= bij , and cij ∈ {0, 1, . . . , kij−1}.

First go from node a to the node a′ where the node values are same as

a except the ij-th digit of a′ is cij . Then correct one digit at a time

(i.e. at to bt whenever the digits differ) going from right to left in cyclic

order. After correcting all other digits, change cij to bij .

3. The l − d−∑d

j=1(kij − 2) NDP of length d+ 2 are as follows:

Suppose aij = bij for j = 1, 2, . . . , m − d. Change aij to cij where

cij 6= aij and cij ∈ {0, 1, . . . , kij − 1}. In other words, go from a to a′

where the node values are same as a except the ij-th digit of a′ is cij .

From a′, construct the path by correcting one digit at a time where a

and b differ and finally correcting cij to bij .
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It can be easily verified that all those l paths are node disjoint. Example 2.3.3

provides an example of this case.

Example 2.3.3. For example, suppose m = 3, k0 = k1 = k2 = 4, a = (021),

and b = (032). In this case DH(a, b) = d = 2 < m = 3. A set of l =

3 + 3 + 3 = 9 NDP is as follows:

1. The d = 2 NDP of length d = 2 are:

i) 021→ 022→ 032

ii) 021→ 031→ 032

2. The
∑d=2

j=1(kij−2) = (k0−2)+(k1−2) = 4 NDP of length d+1 = 2+1 = 3

are:

i) 021→ 020→ 030→ 032

ii) 021→ 023→ 033→ 032

iii) 021→ 001→ 002→ 032

iv) 021→ 011→ 012→ 032

3. The l− d−∑d

j=1(kij − 2) = 9− 2− 4 = 3 NDP of length d+2 = 4 are:

i) 021→ 121→ 122→ 132→ 032

ii) 021→ 221→ 222→ 232→ 032

iii) 021→ 321→ 322→ 332→ 032

Theorem 2.3.3. In a GH Qn
kn−1,...,k0

, given any source node s = (sn−1 . . . s0) and

a set of distinct destination nodes T = {ti = (tin−1
. . . ti0)|1 ≤ i ≤ ℓ} such that

s /∈ T and ℓ =
∑n−1

j=0 (kj − 1), Algorithm 2 always finds a set of NDP P(s, T ) with

path lengths at most 2n− 1.
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Proof. Since the GH is symmetric network, without loss of generality, assume that

the source node s is (00 . . . 0).

Note that if a destination node ti is at distance one, then the path P (00 . . . 0, ti),

by Step 1 of Algorithm 2, is (00 . . . 0)→ (00 . . . tij . . . 0), j ∈ {0, 1, . . . , n− 1}, and

its length is equal to one. Assume that the destination node ti is at distance more

than one. Let ℓ(n) =
∑n−1

j=0 (kj − 1) be the number of destination nodes in the

n-dimensional GH. ℓ(n) is also equal to the node degree in the n-dimensional GH.

We prove that Algorithm 2 finds a set of NDP to ℓ(n) distinct destination nodes

with path lengths at most 2n − 1 by induction on the dimension n of the GH

Qn
kn−1,...,k0

.

Base Case: When n = 2, Algorithm 2 is equivalent to Algorithm 1. In this case

as proved in Theorem 2.2.1, there are k0 +k1− 2 NDP with lengths at most

2× 2− 1 = 3 in a GH Q2
k1,k0

.

Induction Step: Assume the hypothesis is true for n− 1. In other words, given

a source node s = (00 . . . 0) and ℓ(n−1) =
∑n−2

j=0 (kj − 1) distinct destination

nodes, Algorithm 2 finds a set of NDP from s to these ℓ(n−1) destination

nodes with path lengths at most 2(n− 1)− 1 = 2n− 3.

In Step 2 of Algorithm 2, the algorithm partitions the n-cube to ke mutually

disjoint (n−1)-cubes using the partitioning dimension e such that the node degree

ℓ(n−1) in all subcubes is equal to
∑n−2

j=0 (kj−1) and the number of destination nodes

in the subcube qn−1,0
e that has the source node is at most ℓ(n−1). Theorem 2.3.1

proves that e always exists.

Let the set of distinct destination nodes in the n-cube be U = {ui = (uin−1
. . .

ui0)|1 ≤ i ≤ ℓ(n)}. Suppose that a destination node ui = (uin−1
. . . ui0) ∈ U is in
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qn−1,0
e . Algorithm 2 makes the number v

(m−1,0)
e of destination and internal nodes

in qn−1,0
e exactly equal to ℓ(n−1). Thus by induction hypothesis, there is a path

P (s, ui) of length at most 2n− 3 to this destination node ui. On the other hand,

suppose ui is in a subcube other than qn−1,0
e . Then, there are two cases:

Case 1: Suppose the neighbor (00 . . . 0)(e,uie ) = (00 . . . 0uie0 . . . 0) of the

source node (00 . . . 0) in the subcube qn−1,ui
e that has ui is available. Then,

there are two subcases:

Case 1.1: Suppose v
(m−1,0)
e = ℓ(n−1), meaning the mapping is not possi-

ble. Then by Case 2 or Case 5 of Step 4 of Algorithm 2, the path

P (00 . . .0, ui) is (00 . . . 0) → (00 . . . 0uie0 . . . 0) → · · · → (uin−1
. . . ui0).

By Equation 2.2, the number of destination nodes in the subcube q
n−1,uie
e

that has ui is less than the node degree ℓ(n−1) of this subcube. It follows

that the previous path exists because according to Theorem 2.3.2 there

are ℓ(n−1) NDP from (00 . . . 0uie0 . . . 0) to ui within the same subcube

q
n−1,uie
e . Its length is equal to DH(00 . . . 0uie0 . . . 0, ui) + 1 ≤ 2n− 1.

Case 1.2: Suppose v
(m−1,0)
e < ℓ(n−1), meaning the mapping is possible.

Then, there are two subcases:

Case 1.2.1: Suppose ui is the last destination node in q
n−1,uie
e . Then

by Case 2 of Step 4 of Algorithm 2, the path P (00 . . . 0, ui) is the

same as the path given in Case 1.1.

Case 1.2.2: Suppose ui is not the last destination node in q
n−1,uie
e . In

this case the algorithm performs one of the following mappings:

1. By Case 1 of Step 4 of Algorithm 2, the algorithm maps ui by

adding u
(e,0)
i = (uin−1

. . . uie+1
0uie−1

. . . ui0) to P (00 . . . 0, ui).



53

2. If the above mapping is not possible, then, by Case 3 of Step 4

of Algorithm 2, the algorithm maps the neighbor h = (uin−1
. . .

uie+1
uieuie−1

. . . hj . . . ui0) of ui in q
n−1,uie
e where j ∈ {0, 1, . . .

, n − 1}, j 6= e, and hj ∈ {0, 1, . . . , kj − 1} by adding h(e,0) =

(uin−1
. . . uie+1

0uie−1
. . . hj . . . ui0) to P (00 . . . 0, ui).

At least one of these two mappings is possible. We prove this by

contradiction.

Assume that it is not possible to do any one of the above mappings.

Since v
(m−1,0)
e < ℓ(n−1), it follows u

(e,0)
i and h(e,0) for all h such that

h in q
n−1,uie
e and DH(h, ui) = 1 are not available. There are two

cases:

1) Suppose ui and (00 . . . 0uie0 . . . 0) are neighbors. Then, the num-

ber of neighbors of ui in q
n−1,uie
e other than (00 . . . 0uie0 . . . 0)

is equal to ℓ(n−1) − 1. It follows that v
(m−1,0)
e = ℓ(n−1) − 1 +

1 = ℓ(n−1). This is a contradiction because it is assumed that

v
(m−1,0)
e < ℓ(n−1).

2) Suppose ui and (00 . . . 0uie0 . . . 0) are not neighbors. Then, the

number of neighbors of ui in q
n−1,uie
e is equal to ℓ(n−1). It follows

that v
(m−1,0)
e = ℓ(n−1) + 1. This is a contradiction because it is

assumed that v
(m−1,0)
e < ℓ(n−1).

Thus, we have gotten a contradiction in both cases. So, at least

one of the above mappings is possible. By the induction hypothesis,

there is a path of length at most 2n − 3 to the mapped node. So,

the path length to ui is at most 2n− 3 + 2 = 2n− 1.
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Case 2: Suppose the neighbor (00 . . . 0)(e,uie ) = (00 . . . 0uie0 . . . 0) of the

source (00 . . . 0) in the subcube qn−1,ui
e that has ui is not available. Then,

there are two subcases:

Case 2.1: Suppose v
(m−1,0)
e = ℓ(n−1). In this case (by Case 4 or Case 8 of

Algorithm 2), the path P (00 . . . 0, ui) is the following such that qn−1,p
e

has no unavailable nodes:

(00 . . . 0)→ (00 . . . 0p0 . . . 0)→ · · · → (uin−1
. . . uie+1

puie−1
. . . ui0)→

(uin−1
. . . ui0).

This subcube exists, which is proven below.

Assume that a subcube that has no unavailable nodes does not exist.

This means there is at least one destination node in each of the sub-

cubes other than the source’s subcube. The number of these subcube

is ke−1 = ℓ(n)− ℓ(n−1). Thus, the number of destination nodes in these

subcubes is at least ℓ(n)− ℓ(n−1). As we have assumed that the source’s

subcube contains ℓ(n−1) destination nodes. Thus, including ui, the total

number of destination nodes is equal to ℓ(n)−ℓ(n−1)+ℓ(n−1)+1 = ℓ(n)+1.

This is a contradiction because it is assumed that the number of destina-

tion nodes is exactly equal to ℓ(n). So, there must exist at least one sub-

cube that has no unavailable nodes which means the above path exists

and its length is equal toDH(00 . . . 0p0 . . . 0, uin−1
. . . uie+1

puie−1
. . . ui0)+

1 + 1 ≤ 2n− 1.

Case 2.2: Suppose v
(m−1,0)
e < ℓ(n−1). Then, this case is similar to Case

1.2.2.

This proves that Algorithm 2 is correct.
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Since it is possible that Algorithm 2 maps along the same path during each

iteration, Corollary 2.3.1 gives the upper and lower bounds of the length of any

node disjoint path generated by Algorithm 2.

Corollary 2.3.1. For any node disjoint path P (s, ti) in P(s, T ) generated by Algo-

rithm 2, the upper and lower bounds of path length are given in Inequation (2.3).

DH(s, ti) ≤ |P (s, ti)| ≤ 2n− 1 (2.3)

2.3.3 Time Complexity of Algorithm 2

In this section, we analyse the time complexity of Algorithm 2. For simplicity,

assume that all dimensions have the same number of nodes. Let k = k0 = k1 =

· · · = kn−1. If ki’s are not equal, we can replace k with kmax where kmax =

max
0≤i≤(n−1)

{ki}. In the following we analyse the time complexity for each step of

Algorithm 2 to find the overall time complexity:

1. In Step 1, Algorithm 2 constructs a path of length one to reach destination

node at Hamming distance one. Since there are ℓ = n(k − 1) destination

nodes and Algorithm 2 checks each and every destination node, Step 1 takes

O(kn) time. Algorithm 2 performs this step one time.

2. In Step 2, Algorithm 2 partitions an m-cube into k subcubes of dimension

(m − 1) where m = n − (j − 1) and j is the iteration counter. Since the

partitioning is based on digit sets of the destination nodes, Algorithm 2 can

use the bucket sort method. Thus, Step 2 takes O(mℓ(m)) time in each

iteration where ℓ(m) = m(k − 1) is the number of destination nodes in the
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m-cube. So, the time complexity in all iterations is
∑(n−1)

j=1 mℓ(m) = (n)ℓ(n)+

(n− 1)ℓ(n−1) + · · ·+ (2)ℓ(2) = (k − 1)[n2 + (n− 1)2 + (n− 2)2 + · · ·+ 22] =

O((k − 1)n3).

3. In Step 3, Algorithm 2 sorts all destination nodes that are not in the source’s

subcube. The number of these destination nodes is at most ℓ(m). Since the

sorting is based on digit sets of the destination nodes, Algorithm 2 can use

the bucket sort method. Thus, Step 3 takes O(mℓ(m)) time in each iteration.

So, it also takes O((k − 1)n3) time in all iterations.

4. In Step 4, for each destination node in all subcubes except the source’s

subcube, Algorithm 2 constructs a complete path to this destination node

or adds one or two internal node(s) to this path according to the eight cases

provided in Step 4 (see Section 2.3.1). Clearly, Case 3 and Case 7 are the

most time consuming cases because they involve finding an available neighbor

within the same subcube that its neighbor in the source’s subcube is also

available.

The number of the destination nodes in all subcubes except the source’s

subcube is at most ℓ(m). However, Algorithm 2 designates (k−1) destination

nodes to be reached through the source’s immediate neighbor in each subcube

(Case 2 or Case 5). So, these (k−1) destination nodes do not follow Case 3 or

Case 7. The remaining number of destination nodes that could follow Case

3 or Case 7 is ℓ(m)− (k−1) = m(k−1)− (k−1) = (m−1)(k−1). The worst

case occurs when these (m − 1)(k − 1) destination nodes have distributed

evenly among the (k − 1) subcubes. In this case, all these (m − 1)(k − 1)

destination nodes follow Case 3 or Case 7.
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In these two cases, Algorithm 2 finds a neighbor of the destination node

within the same subcube that is available and its neighbor in the source’s

subcube is also available. This involves the following operations:

(a) Sort all neighbors of the destination node within the same subcube

according to the Hamming distance from the source to these neighbors.

It can be seen that this Hamming distance is between the Hamming

distance from the source to the destination node ±2. So, we can assume

that this sorting takes linear time.

(b) Check the availability of each neighbor of the destination node within

the same subcube. If it is available, check the availability of its neighbor

in the source’s subcube. Since there are ℓ(m−1) = (m− 1)(k− 1) neigh-

bors of each destination node within the same subcube, this operation

takes O((k − 1)(m− 1)) time for each destination node.

Thus, Step 4 takes O([(k − 1)(m− 1)]2) time in each iteration. So, the time

complexity in all iterations is
∑(n−1)

j=1 ((k− 1)(m− 1))2 = (k− 1)2[(n− 1)2 +

(n− 2)2 + · · ·+ 22] = O(k2n3).

From the above analysis, we can see that Step 4 is the most time consuming

step. So, the overall time complexity of Algorithm 2 is O(k2n3) where k = k0 =

k1 = · · · = kn−1. If ki’s are not equal, the overall time complexity is O(kmax
2n3)

where kmax = max
0≤i≤(n−1)

{ki}.
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2.4 Simulation Results

In this section, we show the results of simulating the proposed algorithms. We

mainly measure the path lengths and compare them to the Hamming distance

DH(s, ti) which is the shortest distance. Our simulation results show that all of

the time our proposed algorithms give a set of node disjoint paths (NDP) and

most of the time the length of the longest path is equal to DH(s, ti) + 1, which is

less than the upper bound, 2n− 1, as defined in Inequation (2.3).

We ran a simulator of Algorithm 1 500 times using 80 nodes in each dimension

(k0 = k1 = 80) which makes the total number of destination nodes equals 2×79 =

158. In each run, the simulator randomly generated these 158 destination nodes

and the source node. It returned a set of NDP for each run. After taking the

average of the path lengths for all runs, the results are shown in Figure 2.15.

Figure 2.15a shows the average of the path lengths as a function of the Ham-

ming distance, along with the lower and upper bounds as defined in Inequa-

tion (2.1). For destination nodes at Hamming distance one (neighbors), Algo-

rithm 1 reached all of them using paths of length one. This was expected because

Algorithm 1 reaches all destination nodes at distance one (Step 1) before consid-

ering any other destination nodes. For destination nodes at Hamming distance

two, the average of the path lengths equals about 2.25 which is very close to the

shortest distance (the lower bound) DH(s, ti).

The path lengths average is close to the shortest distance because Algorithm 1

checks all possible paths of length two (Case 1 and Case 2 of Step 2 of Algorithm 1)

before using a path of length three (Case 3 of Step 3 Algorithm 1). Figure 2.15b

shows more details. It shows the percentage of destination nodes as a function of
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Figure 2.15: Simulation results: (a,b) Algorithm 1 (n = 2), (c,d) Algorithm 2
(n = 4), (e,f) Algorithm 2 (n = 6)

the Hamming distance for all possible lengths. In this figure, 100% of destination

nodes at Hamming distance one have been reached by paths of length one. About

75% of destination nodes at Hamming distance two have been reached by paths of

length two and the rest (about 25%) have been reached by paths of length three.

So, the majority of destination nodes have been reached using the shortest paths.

Thus, the path lengths average is close to the shortest distance.

We ran a simulator of Algorithm 2 to find a set of NDP for each of the following
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networks: 1) a four-dimensional (n = 4) GH with 30 nodes in each dimension

(k0 = · · · = k3 = 30) and 4×29 = 116 destination nodes, and 2) a six-dimensional

(n = 6) GH with 8 nodes in each dimension (k0 = · · · = k5 = 8) and 6 × 7 = 42

destination nodes. We ran the simulator 500 times for each network. For each

one of the 1000 runs, the simulator returned a set of NDP. Figure 2.15 shows the

results.

From these results, we note the following:

1. The actual path length in Figure 2.15c and Figure 2.15e is always between

the lower and upper bounds as defined in Inequation (2.3).

2. The actual path length is always closer to the shortest distance (the lower

bound).

3. The majority of destination nodes (80% to 90%) have been reached using

the shortest paths as shown in Figure 2.15d and Figure 2.15f.

4. Most of the time the maximum length of a path P (s, ti) returned by Algo-

rithm 2 is DH(s, ti) + 1.

Thus, the practical upper bound is DH(s, ti)+1 which is less than the theoret-

ical upper bound 2n− 1. This is because Algorithm 2 minimizes the path lengths

as much as possible by incorporating the following:

1. Algorithm 2 reaches all destination nodes at Hamming distance one before

reaching all other nodes (Step 1).

2. Algorithm 2 checks the source’s neighbor s(e,tie ) in the subcube that has the

destination node ti and the destination node’s neighbor t
(e,se)
i in the subcube
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that has the source node s before using a path going through a neighbor h

of ti within the same subcube or a subcube that has no unavailable nodes.

3. In Case 3 and Case 7 of Step 4, Algorithm 2 chooses the neighbor h of the

destination node ti within the same subcube such that: 1) h is available, 2)

the neighbor h(e,se) of h in the subcube that has the source node s is also

available, and more importantly 3) among all the ti neighbors which are in

the same subcube as ti, Algorithm 2 chooses the neighbor h such that its

neighbor h(e,se) is available and also h has the smallest distance from the

source.

Thus in practice, for any destination node ti, the proposed algorithm finds a

path of length at most DH(s, ti) + 1.

2.5 Conclusion

In this chapter we provide and prove some novel algorithms to find a set of the

maximum number of one-to-many NDP from a source node to a set of destination

nodes in the Generalized Hypercube interconnection networks. We show that the

lower bound of each path is equal to the Hamming distance between the source

node and that destination node, and the upper bound is equal to 2n − 1 where

n is the number of dimensions. In most cases, the proposed algorithms find a set

of NDP with lengths at most one plus the Hamming distance between the source

and destination nodes. We also show that the time complexity of the algorithm is

O(kmax
2n3) where kmax = max

0≤i≤(n−1)
{ki} and ki is the number of nodes in dimension

i.



62

Chapter 3: One-to-Many Node Disjoint Paths Routing in Dense

Gaussian Networks*

In this chapter, an efficient constant time complexity algorithm that constructs

node disjoint paths (NDP) from a single source node to the maximum number of

destination nodes in dense Gaussian networks (DGNs) is given. Then, it is proved

that this algorithm always returns a solution. Also, the lower and upper bounds of

the sum of the NDP lengths are derived. Finally, via execution of the algorithm,

it is shown that on the average the sum of lengths of NDP given by the algorithm

is only about 10% more than the sum of the shortest paths lengths.

DGNs have significant topological advantages over torus networks in terms of

diameter [31]. For example, there is a DGN with 400 nodes and diameter 14,

whereas, any 2D toroidal network with 400 nodes will have a diameter of at least

20. So compare to torus networks, DGNs can accommodate more nodes with

less communication latency and at the same time maintaining a regular grid-like

structure. This makes DGNs attractive networks.

The rest of this chapter is organized as follows: Section 3.1 recalls several

preliminaries about DGNs, Section 3.2 describes the proposed routing algorithm,

Section 3.3 shows the algorithm execution results, and Section 3.4 concludes this

chapter.

*This chapter has been accepted for publication in The Computer Journal.
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3.1 Dense Gaussian Networks Preliminaries

Dense Gaussian Networks (DGNs) are defined in terms of Gaussian integers. The

following subsections explain the Gaussian integers, describe DGNs, and formally

define the one-to-many node disjoint paths (NDP) routing problem in these net-

works.

3.1.1 Gaussian Integers

A Gaussian integer is a complex number whose real and imaginary parts are both

integers. The set of all Gaussian integers, Z[i], is defined as {x + yi|x, y ∈ Z}

where i =
√
−1.

The set Z[i] is a Euclidean domain and the norm of a Gaussian integer ω =

ωx + ωyi is defined as [17]:

N (ω) = ωx
2 + ωy

2.

So, a Euclidean division algorithm for Gaussian integers exists. Let ω1, ω2 ∈ Z[i]

and ω2 6= 0. Then, there exist q, r ∈ Z[i] such that ω1 = qω2+r andN (r) < N (ω2).

Let α = a+bi ∈ Z[i] be nonzero where a and b are integers. Then, ω1, ω2 ∈ Z[i] are

congruent modulo α if there exists γ ∈ Z[i] such that ω2 − ω1 = γα. Congruence

and the Gaussian integers modulo α are denoted by ω2 ≡ ω1(mod α) and Z[i]α

respectively. The number of elements in Z[i]α is equal to N (α) = a2 + b2 [17].
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(a) Two adjacent meshes (α = 6 + 8i)

(b) Leaned square (α = 3 + 4i)

Figure 3.1: Different representations of Gaussian networks

3.1.2 Dense Gaussian Networks

DGNs are two-dimensional networks generated by Gaussian integers and these

were first introduced in [31]. Let α ∈ Z[i] be nonzero. Each node’s address in a

DGN generated by α is a Gaussian integer that belongs to the Gaussian integers

modulo α denoted by Z[i]α. So, the number of nodes in this DGN is equal toN (α).

These nodes can be represented in several ways. One representation is by placing

the nodes on two adjacent square meshes (see Figure 3.1a) [31, 42]. Another repre-
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Figure 3.2: DGN G3 (α = 3 + 4i)

sentation is by placing the nodes on a leaned square (see Figure 3.1b) [15, 42]. In

this work, we use different representation which is explained in [33] (see Figure 3.2).

In this representation, the nodes are placed on a two-dimensional Cartesian plan

where the x-axis and y-axis represent the real and imaginary parts of each node

respectively.

It is proved that for a given diameter k ∈ Z
+, a DGN achieves the largest

network size with k2+(k+1)2 nodes when it is generated by α = k+(k+1)i [31].

This network is referred as DGN and we find NDP in these DGNs. In this work,

we assume the generator of the DGN is α = k + (k + 1)i and denote this DGN by

Gk where k is the network diameter. Figure 3.2 shows the DGN G3 generated by

α = 3+4i. In this example, the number of nodes is equal toN (3+4i) = 32+42 = 25

and the diameter k = 3.

In the following, we explain the representation given in [33] in terms of the

addressing, connectivity, diameter, degree, and shortest distance.

Addressing: Each node in the DGN generated by α = k+(k+1)i is represented
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as ω = ωx +ωyi ∈ Z[i]α. For simplicity, we write ω = (ωx, ωy) to denote node ω in

the network. The set of all nodes in Gk is {ω = (ωx, ωy) ∈ Z×Z | |ωx|+ |ωy| ≤ k}.

In Figure 3.2, the 2-tuples inside each node are the addresses.

Connectivity: Two nodes ω1, ω2 ∈ Z[i]α in Gk are connected (neighbors) if and

only if (ω1− ω2) ≡ ±1,±i (mod α) where α = k + (k+ 1)i is the generator of Gk.

So, each node ω = ωx + ωyi ∈ Z[i]α is connected to four neighbors:

1. the north neighbor ωN = ωx + (ωy + 1)i (mod α),

2. the west neighbor ωW = (ωx − 1) + ωyi (mod α),

3. the south neighbor ωS = ωx + (ωy − 1)i (mod α), and

4. the east neighbor ωE = (ωx + 1) + ωyi (mod α)

where ωN , ωW , ωS, ωE ∈ Z[i]α.

The modulo function (mod α) is used to build the wraparound links. Let

β = βx + βyi ∈ {ωx + (ωy + 1)i, (ωx − 1) + ωyi, ωx + (ωy − 1)i, (ωx + 1) + ωyi} be

one of the neighbors before applying the modulo function where β /∈ Z[i]α. Then,

the modulo function β (mod α) is given by the following [31]:

β (mod α) =



































β − α if (βx ≥ 0) ∧ (βy ≥ 1)

β − iα if (βx ≤ −1) ∧ (βy ≥ 0)

β + α if (βx ≤ 0) ∧ (βy ≤ −1)

β + iα if (βx ≥ 1) ∧ (βy ≤ 0)

(3.1)

In Figure 3.2, the dashed links are the wraparound links built using Equa-

tion 3.1 and these wraparound links always connect two boarder nodes (as defined

in Definition 3.1.1 below) using Equation 3.1. For example, the south neighbor
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of ω = −2 − i is ωS = −2 − 2i (mod 3 + 4i) = (−2 − 2i) + (3 + 4i) = 1 + 2i

where β = −2− 2i. Another example is that the north neighbor of ω = −2 + i is

ωN = −2 + 2i (mod 3 + 4i) = (−2 + 2i)− i (3 + 4i) = (−2 + 2i) + (4− 3i) = 2− i

where β = −2 + 2i.

Diameter: The diameter is the largest possible distance between any two nodes

in a network. The diameter of Gk is equal to k [31]. For example in Figure 3.2,

the diameter of G3 is equal to three.

Degree: The node degree is the number of its neighbors. In DGNs, each node is

adjacent to four other nodes. So, the node degree is equal to four for all nodes [31,

33].

Path: A path from node ω1 to node ω2 is denoted by P (ω1, ω2) = 〈ω1, a1, a2, . . . ,

a|P (ω1,ω2)|−1, ω2〉 where |P (ω1, ω2)| is the length of the path and each two consecutive

nodes (e.g. ω1 and a1) along this path are neighbors. Sometimes, we write the

path P (ω1, ω2) as ω1 → a1 → a2 → · · · → ω2.

Distance: The shortest distance between any two nodes ω1, ω2 ∈ Z[i]α as defined

in [31] is as follows:

Dα(ω1, ω2) = min{|x|+ |y| | (ω1 − ω2) ≡ (x+ yi)(mod α)}.

For example in Figure 3.2, the shortest distance between (0, 1) and (1, 2) is

Dα((0, 1), (1, 2)) = |0− 1|+ |1− 2| = | − 1|+ | − 1| = 2.

The length of the shortest path\paths from ω1 to ω2 equals\equal to the short-

est distance Dα(ω1, ω2) between them. For example in Figure 3.2, one of the

shortest paths between (0, 0) and (1, 1) is (0, 0) → (1, 0) → (1, 1) of length
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Dα((0, 0), (1, 1)) = 2. An example of a longer path P ((0, 0), (1, 1)) is (0, 0) →

(−1, 0)→ (−1, 1)→ (0, 1)→ (1, 1).

Since Gk is a Cayley graph with generator {1,−1, i,−i}, Gk is vertex symmet-

ric [3]. So, the shortest distance between node (0, 0) and node ω = (ωx, ωy) ∈ Z[i]α

is equal to ω’s weight W (ω) ∈ {0, 1, 2, . . . , k}, which is defined as [31]:

W (ω) = |ωx|+ |ωy|. (3.2)

For example in Figure 3.2, the weight of (1, 2) isW ((1, 2)) = 3 which is the shortest

distance between (0, 0) and (1, 2).

Based on the weight, Definition 3.1.1 defines a border node.

Definition 3.1.1. Let ω ∈ Z[i]α be any node. Then, ω is a border node if and

only if W (ω) = k where k is the network diameter.

For example in Figure 3.2, the nodes (1, 2), (3, 0), and (−1,−2) are some of

the border nodes.

The distance distribution of Gk gives the number of nodes H(r) at distance

r ∈ {0, 1, 2, . . . , k} from the (0, 0) node. This distribution is defined as follows [31]:

H(r) =











1 if r = 0

4r if 1 ≤ r ≤ k

For example in G3, H(0) = 1, H(1) = 4, H(2) = 8, and H(3) = 12.

Theorem 3.1.1 gives the shortest distance between node (0, 0) and any other

node ω ∈ Z[i]α through exactly one wraparound link as a function of its weight

W (ω). We use this theorem to calculate the length of some NDP.
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Theorem 3.1.1. In a DGN Gk where k is the network diameter, let ω ∈ Z[i]α be

any node such that ω 6= (0, 0). Then using one and only one wraparound link, the

shortest distance R(ω) from node (0, 0) to node ω is given as follows:

R(ω) = 2k + 1−W (ω) (3.3)

Proof. Since any wraparound link connects two border nodes, let a and b be the

border nodes that are connected using the wraparound link in the path from node

(0, 0) to node ω. It follows that P ((0, 0), ω) is P ((0, 0), a) → P (a, b) → P (b, ω).

To find the lowest length R(ω) of this path , add P (ω, (0, 0)) to the end to be

P ((0, 0), a) → P (a, b) → P (b, ω) → P (ω, (0, 0)). Since we want the length of the

shortest path for each one of these paths, we know that:

1. |P ((0, 0), a)| = W (a) = k,

2. |P (a, b)| = 1 (because they are adjacent),

3. |P (b, ω)|+ |P (ω, (0, 0))| = W (b) = k, and

4. P (ω, (0, 0)) = W (ω).

It follows that R(ω) = 2k + 1−W (ω)

In this work, sometimes we need to use a wraparound link to construct a path

of the NDP. Theorem 3.1.1 is useful to calculate the extra number of hops

δ(ω) = R(ω)−W (ω) = 2k + 1− 2W (ω)

in order to use a wraparound link to reach ω. For example in Figure 3.2, the extra
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Figure 3.3: Different examples of NDP in G3

number of hops in order to use a wraparound link from node (0, 0) to node (1, 1)

equals δ((1, 1)) = 2× 3 + 1− 2− 2 = 3 hops.

In terms of the number of extra hops, the length of path P ((0, 0), ω) is given

by

|P ((0, 0), ω)| = W (ω) + δ(ω).

One-to-Many NDP: As explained in the introduction, the one-to-many NDP

in the DGNs connect the source node s with each destination node in T = {tj =

(tjx , tjy)|1 ≤ j ≤ 4} such that the disjointness condition is satisfied. Under this

condition, the maximum number of NDP in the DGNs from the source node s

is equal to the number of its neighbors (i.e. the node degree). Accordingly, the

maximum number of destination nodes is equal to four. Since the DGN is vertex

symmetric, we assume the source node is s = (0, 0).

For a particular set of destination nodes T , there are more than one pos-

sible NDP from s to T . For example, consider the network G3 in Figure 3.2,
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let the source node be s = (0, 0) and the set of destination nodes be T =

{(1, 2), (−2, 1), (−1,−1), (1,−1)}. Then, two NDP are given in Figure 3.3. In

our work we give one of these NDP and it is denoted by P(s, T ).

In this chapter, we denote the sum of the lengths of the shortest distances by

L(T ) =
4

∑

j=1

W (tj).

For example in Figure 3.3a, L(T ) = 3 + 3 + 2 + 2 = 10. Also, we denote the sum

of the lengths of the NDP in P(s, T ) by

|P(s, T )| =
4

∑

j=1

|P (s, tj)|.

For example in Figure 3.3a, |P(s, T )| = 3 + 3 + 2 + 2 = 10 which means the

NDP in P(s, T ) are the shortest paths because |P(s, T )| = L(T ). In Figure 3.3b,

|P(s, T )| = 3 + 3 + 4 + 2 = 12. Since we assume that s = (0, 0), |P(s, T )| can be

expressed in terms of the sum of the extra hops by

|P(s, T )| = L(T ) +

4
∑

j=1

δ(tj).

We use this expression to compare between the sum of the lengths of the NDP

given by the proposed algorithm and the sum of the lengths of the shortest paths

throughout this chapter.

The following section describes our routing algorithm from the source node s

to each of the four destination nodes in T using NDP.
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Figure 3.4: Quadrants in G5

3.2 One-to-Many Node Disjoint Paths Routing

The basic idea of our routing algorithm is to design a set of distinctive and com-

prehensive cases based on the destination nodes’ locations in the dense Gaussian

networks (DGNs), and then construct the one-to-many node disjoint paths (NDP)

P(s, T ) for each case. The algorithm (see Algorithm 3) consists of two steps: case

determination and NDP construction.

3.2.1 Step 1: Case Determination

Any DGN Gk can be partitioned into four non-overlapped quadrants based on the

source node’s address. For any source node s = (sx, sy), these quadrants are:

1. QN = {(x, y) ∈ Gk | (x ≥ sx) ∧ (y ≥ sy + 1)} (The north quadrant)

2. QW = {(x, y) ∈ Gk | (x ≤ sx − 1) ∧ (y ≥ sy)} (The west quadrant)
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Algorithm 3 One-to-Many NDP Routing in the Dense Gaussian Network Gk

Input: Gk, T = {tj = (tjx , tjy)|1 ≤ j ≤ 4}, s = (sx, sy) /∈ T
Output: P(s, T )

1: procedure OneToMany NDP (Gk,T ,s)
2: |QN | = |QW | = |QS| = |QE | = 0;
3: for 1 ≤ j ≤ 4 do ⊲ Step 1
4: if (tjx ≥ sx) ∧ (tjy ≥ sy + 1) then
5: |QN | = |QN |+ 1;
6: else if (tjx ≤ sx − 1) ∧ (tjy ≥ sy) then
7: |QW | = |QW |+ 1;
8: else if (tjx ≤ sx) ∧ (tjy ≤ sy − 1) then
9: |QS| = |QS|+ 1;

10: else
11: |QE| = |QE |+ 1;
12: end if
13: end for
14: switch 〈|QN |, |QW |, |QS|, |QE|〉 ⊲ Step 2
15: 〈1, 1, 1, 1〉 : P(s, T ) = Case1(Gk, T, s);
16: 〈2, 0, 2, 0〉 ∨ 〈0, 2, 0, 2〉 : P(s, T ) = Case2(Gk, T, s);
17: 〈2, 2, 0, 0〉∨〈0, 2, 2, 0〉∨〈0, 0, 2, 2〉∨〈2, 0, 0, 2〉 : P(s, T ) = Case3(Gk, T, s);
18: 〈2, 1, 1, 0〉∨〈0, 2, 1, 1〉∨〈1, 0, 2, 1〉∨〈1, 1, 0, 2〉 : P(s, T ) = Case4(Gk, T, s);
19: 〈2, 0, 1, 1〉∨〈1, 2, 0, 1〉∨〈1, 1, 2, 0〉∨〈0, 1, 1, 2〉 : P(s, T ) = Case5(Gk, T, s);
20: 〈2, 1, 0, 1〉∨〈1, 2, 1, 0〉∨〈0, 1, 2, 1〉∨〈1, 0, 1, 2〉 : P(s, T ) = Case6(Gk, T, s);
21: 〈3, 0, 0, 1〉∨〈1, 3, 0, 0〉∨〈0, 1, 3, 0〉∨〈0, 0, 1, 3〉 : P(s, T ) = Case7(Gk, T, s);
22: 〈3, 1, 0, 0〉∨〈0, 3, 1, 0〉∨〈0, 0, 3, 1〉∨〈1, 0, 0, 3〉 : P(s, T ) = Case8(Gk, T, s);
23: 〈3, 0, 1, 0〉∨〈0, 3, 0, 1〉∨〈1, 0, 3, 0〉∨〈0, 1, 0, 3〉 : P(s, T ) = Case9(Gk, T, s);
24: 〈4, 0, 0, 0〉 ∨ 〈0, 4, 0, 0〉 ∨ 〈0, 0, 4, 0〉 ∨ 〈0, 0, 0, 4〉 : P(s, T ) =

Case10(Gk, T, s);
25: end switch
26: return P(s, T );
27: end procedure

3. QS = {(x, y) ∈ Gk | (x ≤ sx) ∧ (y ≤ sy − 1)} (The south quadrant)

4. QE = {(x, y) ∈ Gk | (x ≥ sx + 1) ∧ (y ≤ sy)} (The east quadrant)

Each quadrant has exactly k(k+1)/2 nodes where k is the network diameter. Fig-

ure 3.4 shows an example where s = (0, 0). In this example, the number of nodes
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Table 3.1: All cases of 〈|QN |, |QW |, |QS|, |QE|〉

Case No. Chosen Cases Equivalent Cases

1 〈1, 1, 1, 1〉 no equivalent case

2 〈2, 0, 2, 0〉 〈0, 2, 0, 2〉
3 〈2, 2, 0, 0〉 〈0, 2, 2, 0〉, 〈0, 0, 2, 2〉, 〈2, 0, 0, 2〉
4 〈2, 1, 1, 0〉 〈0, 2, 1, 1〉, 〈1, 0, 2, 1〉, 〈1, 1, 0, 2〉
5 〈2, 0, 1, 1〉 〈1, 2, 0, 1〉, 〈1, 1, 2, 0〉, 〈0, 1, 1, 2〉
6 〈2, 1, 0, 1〉 〈1, 2, 1, 0〉, 〈0, 1, 2, 1〉, 〈1, 0, 1, 2〉
7 〈3, 0, 0, 1〉 〈1, 3, 0, 0〉, 〈0, 1, 3, 0〉, 〈0, 0, 1, 3〉
8 〈3, 1, 0, 0〉 〈0, 3, 1, 0〉, 〈0, 0, 3, 1〉, 〈1, 0, 0, 3〉
9 〈3, 0, 1, 0〉 〈0, 3, 0, 1〉, 〈1, 0, 3, 0〉, 〈0, 1, 0, 3〉
10 〈4, 0, 0, 0〉 〈0, 4, 0, 0〉, 〈0, 0, 4, 0〉, 〈0, 0, 0, 4〉

in each quadrant is equal to 5(5 + 1)/2 = 15 where the diameter k = 5.

Based on this network partitioning, the algorithm determines the current case.

Let |Qi| ∈ {0, 1, 2, 3, 4} be the number of destination nodes in the quadrant Qi for

i = N,W, S, E. Let the ordered set 〈|QN |, |QW |, |QS|, |QE|〉 represent the number

of destination nodes in each quadrant such that |QN | + |QW | + |QS| + |QE | = 4.

For example, 〈4, 0, 0, 0〉 means all destination nodes are in the north quadrant.

Since there are four destination nodes that are distributed over the four quad-

rants, there are exactly
(

4+4−1
4

)

= 35 possibilities of 〈|QN |, |QW |, |QS|, |QE|〉. The

one-to-many NDP routing algorithm must construct all NDP P(s, T ) for each one

of these 35 possibilities. However, since Gk is vertex symmetric, the solution for

〈x1, x2, x3, x4〉 is equivalent to the solutions for 〈x4, x1, x2, x3〉, 〈x3, x4, x1, x2〉, and

〈x2, x3, x4, x1〉 (by rotation1 ) where x1, x2, x3, x4 ∈ {0, 1, 2, 3, 4} and
∑4

i=1 xi = 4.

So in this work, we show the NDP P(s, T ) for 10 cases. The solutions for these 10

1Multiplying all nodes by i rotates the network in the counterclockwise direction [31].
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cases are equivalent to the solutions for all 35 cases. Table 3.1 shows the chosen

10 cases and the equivalent cases.

Based on the destination nodes’ addresses, the algorithm evaluates 〈|QN |, |QW |,

|QS|, |QE|〉 in the first step. In the second step, the algorithm constructs the NDP

P(s, T ).

3.2.2 Step 2: One-to-Many NDP Construction

In this step, the algorithm constructs four NDP from the source node to the

destination nodes based on the case determined during the first step. In the

following, we describe the NDP construction for each of these 10 cases. Before

that, we need the following definitions.

Definition 3.2.1. In a DGN Gk where k is the diameter, let the source node be

(0, 0). Then, the north, west, south, and east paths start with (0, 0) → (0, 1),

(0, 0)→ (−1, 0), (0, 0)→ (0,−1), and (0, 0)→ (1, 0) respectively.

Definition 3.2.2. In a DGN Gk where k is the diameter, let tj = (tjx, tjy) ∈ Qi

for j = 1, 2, 3, 4 and i = N,W, S, E be any destination node. Then, the destination

node tj is:

• the top destination node of Qi if tjy = max{try |tr = (trx , try) ∈ Qi},

• the bottom destination node of Qi if tjy = min{try |tr = (trx , try) ∈ Qi},

• the left destination node of Qi if tjx = min{trx |tr = (trx , try) ∈ Qi},

• the right destination node of Qi if tjx = max{trx|tr = (trx , try) ∈ Qi},
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Figure 3.5: Example of Case 1 (G5)

• the max-weight destination node of Qi if W (tj) = max{W (tr)|tr = (trx , try) ∈

Qi}, and/or

• the min-weight destination node of Qi if W (tj) = min{W (tr)|tr = (trx , try)

∈ Qi}.

Note that the top, bottom, left, right, max-weight, or min-weight destination

node as defined in Definition 3.2.2 is not necessarily unique. So, we say, for exam-

ple, top/left of Qi to uniquely specify a destination node in case the top destination

node is not unique by choosing the most left destination node among those top

destination nodes.

Now, we explain how to construct the NDP for each case.

Case 1 〈1, 1, 1, 1〉
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Figure 3.6: Examples of Case 2 (G5)

In this case, each quadrant has exactly one destination node; this is the most

simple case.

Lemma 3.2.1. Let the case be 〈1, 1, 1, 1〉. Then, there exist NDP P(s, T ) such

that |P(s, T )| = L(T ).

Proof. The NDP to the destination nodes in the north, west, south, and east

quadrants are connected along the north, west, south, and east paths respectively.

(The paths are straight forward and can be immediately gleaned from the example

shown in Figure 3.5.) Clearly, |P(s, T )| = L(T ).

Case 2 〈2, 0, 2, 0〉

In this case, the north quadrant QN and the south quadrant QS have two

destination nodes each.
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Lemma 3.2.2. Let the case be 〈2, 0, 2, 0〉. Then, there exist NDP P(s, T ) such

that L(T ) ≤ |P(s, T )| ≤ L(T ) + (4k − 6).

Proof. Let t1, t2 ∈ QN and t3, t4 ∈ QS. The NDP to t1 and t2 are connected along

the north and east paths; and the NDP to t3 and t4 are connected along the west

and south paths. Here, we show only the NDP to t1 and t2. The NDP to t3 and

t4 can be similarly constructed. All paths can be gleaned from Figure 3.6.

Depending on the addresses of t1 and t2, we have the following subcases:

Case 2.1 t1x
= t2x

= 0: In this case, we reach the bottom and top destina-

tion nodes using the north and east paths respectively.( Figure 3.6a shows

an example.)

Let t1 and t2 be the bottom and top destination nodes of QN respectively.

Then, the north path is P (s, t1) as (0, 0) → (0, 1) → · · · → (0, t1y). The

east path is P (s, t2) as (0, 0) → (1, 0) → · · · → (k, 0) → (k, 0)E = (0, k) →

(0, k − 1)→ · · · → (0, t2y).

The length of P (s, t1) equals W (t1). For P (s, t2), the minimum and maxi-

mum lengths of this path occur respectively when t2 = (0, k) and t2 = (0, 2).

It follows that the length of P (s, t2) is between W ((0, k)) + δ((0, k)) =

W ((0, k)) + 1 and W ((0, 2)) + δ((0, 2)) = W ((0, 2)) + (2k − 3).

Case 2.2 t1x
6= 0 or t2x

6= 0:

In this case, there exists at least one destination node that its x value is not

equal to zero. We reach this destination node using the east path and the

other destination node using the north path.( Figure 3.6b shows an example.)

If there is a destination node that its x = 0, let it be t1. If there is no such
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Table 3.2: All subcases of Case 2

Case Lower Bound Upper Bound

t1x = t2x = t3x = t4x = 0 L(T ) + 2 L(T ) + (4k − 6)

(t1x 6= 0 or t2x 6= 0)and(t3x 6= 0 or t4x 6= 0) L(T ) L(T )

(t1x = t2x = 0)and(t3x 6= 0 or t4x 6= 0) L(T ) + 1 L(T ) + (2k − 3)

(t1x 6= 0 or t2x 6= 0)and(t3x = t4x = 0) L(T ) + 1 L(T ) + (2k − 3)

a destination node, let the top/left destination node of QN be t1. In either

cases, let the other destination node be t2. Then, the north path is P (s, t1)

and the east path is P (s, t2). (Both paths are straight forward and can

be immediately gleaned from the example shown in Figure 3.6b.) Clearly,

|P (s, t1)| = W (t1) and |P (s, t2)| = W (t2).

Similarly, we can construct all NDP for all possibilities of Case 2. Table 3.2

shows the upper and lower bounds of these possibilities. It follows that for Case

2, L(T ) ≤ |P(s, T )| ≤ L(T ) + (4k − 6).

In the upcoming cases, Case 2 is used to reach two destination nodes in QN

using the east and north paths as long as none of the following nodes is used:

(1, 0), (2, 0), . . . , (k−1, 0), (k, 0). Similarly, Case 2 is used to reach two destination

nodes in QS using the west and south paths as long as none of the following nodes

is used: (−1, 0), (−2, 0), . . . , (−k + 1, 0), (−k, 0).

Case 3: 〈2, 2, 0, 0〉

In this case, the north and west quadrants have two destination nodes each.
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Figure 3.7: Example of Case 3 (G5)

Lemma 3.2.3. Let the case be 〈2, 2, 0, 0〉. Then, there exist NDP P(s, T ) such

that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k − 6).

Proof. Let t1, t2 ∈ QN and t3, t4 ∈ QW . The path to the min-weight/right des-

tination node (say t3) of QW is connected along the west path P (s, t3); and

the path to the max-weight/left destination node (i.e. t4) of QW is connected

along the south path P (s, t4). (These paths can be immediately gleaned from

the example shown in Figure 3.7 where b = (bx, t4y) ∈ QW is a border node and

a = (ax, ay) = bW ∈ QE .) Figure 3.7 shows all possibilities (dashed nodes) of node

a. Clearly there is no node of (1, 0), (2, 0), . . . , (k−1, 0), (k, 0) is used. That means

we can safely apply Case 2 to reach t1 and t2 using the north and east paths. It fol-

lows that (W (t1)+W (t2)) ≤ (|P (s, t1)|+|P (s, t2)|) ≤ (W (t1)+W (t2)+2k−3). The

length of P (s, t3) is equal toW (t3). The length of P (s, t4) is at mostW (t4)+(2k−3)

and this occurs when W (t4) = 2. Also, this length is at least W (t4) + 1 and this

occurs when W (t4) = k. It follows that L(T )+1 ≤ |P(s, T )| ≤ L(T )+(4k−6).
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Figure 3.8: Example of Case 4 (G5)

Case 4: 〈2, 1, 1, 0〉

In this case, there exist two destination nodes in QN , one destination node in

QW , and one destination node in QS.

Lemma 3.2.4. Let the case be 〈2, 1, 1, 0〉. Then, there exist NDP P(s, T ) such

that L(T ) ≤ |P(s, T )| ≤ L(T ) + (2k − 3).

Proof. Let t1, t2 ∈ QN , t3 ∈ QW , and t4 ∈ QS. P (s, t1) and P (s, t2) are obtained

by applying Case 2. It follows that (W (t1) + W (t2)) ≤ (|P (s, t1)| + |P (s, t2)|) ≤

(W (t1) +W (t2) + 2k− 3). (P (s, t3) and P (s, t4) can be immediately gleaned from

the example shown in Figure 3.8.) The sum of their lengths equals W (t3)+W (t4).

It follows that L(T ) ≤ |P(s, T )| ≤ L(T ) + (2k − 3).
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Figure 3.9: Example of Case 5 (G5)

Case 5: 〈2, 0, 1, 1〉

In this case, there exist two destination nodes in QN , one destination node in

QS, and one destination node in QE .

Lemma 3.2.5. Let the case be 〈2, 0, 1, 1〉. Then, there exist NDP P(s, T ) such

that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k − 2).

Proof. Let t1, t2 ∈ QN , t3 ∈ QS, and t4 ∈ QE . The following steps construct the

NDP:

1. Reach the min-weight/left destination node of QN (Say t1) and t4 using the

north and east paths. (Figure 3.9 shows as example for P (s, t1) and P (s, t4).)

The sum of their lengths equals W (t1) +W (t4).

2. Connect the other destination node in QN (i.e. t2) with the border node

b = (bx, t2y) ∈ QN horizontally using the path P (b, t2) as (bx, t2y) → (bx −
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1, t2y)→ · · · → (t2x , t2y).

3. Let a = (ax, ay) be either the east (bE) or north (bN ) neighbor of node b de-

pending on the location of t3 in QS as follows (the dashed nodes in Figure 3.9

represent all possibilities of node a):

a =











bN if bE = t3

bE if bE 6= t3

Note that node a can be either in the west quadrant QW (if t2 = (0, k) and

t3 = (−(k − 1),−1)) or the south quadrant QS (otherwise).

This step is always possible because by the network connectivity each border

node b in QN is connected with two nodes (bN and bE) using the wraparound

links. One of these two nodes must be available to use because there exists

only one destination node in QS. In case a is in QW , step four is still valid

because QW has no destination node.

4. If node a is in the west quadrant QW , the west path P (s, a) and the south

path P (s, t3) are exactly same as the west and south paths in Case 1 respec-

tively. The sum of their lengths equals W (a) +W (t4) = k +W (t4). If node

a is in the south quadrant QS, P (s, a) and P (s, t3) are obtained by applying

Case 2. It follows that (k+W (t3)) ≤ (|P (s, a)|+|P (s, t3)|) ≤ (W (t3)+3k−3).

The length of P (s, t2) as P (s, a)→ P (b, t2) is at most W (t2) + (2k − 2) and

this occurs when W (t2) = 2 and a = (0,−k). Also, this length is at least

W (t2) + 1 and this occurs when W (t2) = k and the following is not true:

ax = t3x = 0.
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Figure 3.10: Example of Case 6 (G5)

It follows that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k − 2).

Case 6: 〈2, 1, 0, 1〉

In this case, there exist two destination nodes in QN , one destination node in

QW , and one destination node in QE .

Lemma 3.2.6. Let the case be 〈2, 1, 0, 1〉. Then, there exist NDP P(s, T ) such

that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k − 3).

Proof. Let t1, t2 ∈ QN , t3 ∈ QW , and t4 ∈ QE . Then, the path to the min-

weight/left destination node (say t1) of QN is connected along the north path

P (s, t1); and the path to the max-weight/right destination node (i.e. t2) of QN

is connected along the south path P (s, t2). The paths to t3 and t4 are connected

along the east and west paths respectively. (All paths can be immediately gleaned
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Figure 3.11: Example of Case 7 (G5)

from the example shown in Figure 3.10 where b = (bx, t2y) ∈ QN is a border node

and a = (ax, ay) = bE ∈ QS.)

The sum of lengths of P (s, t1), P (s, t3), and P (s, t4) is equal toW (t1)+W (t3)+

W (t4). The length of P (s, t2) is at most W (t2) + (2k − 3) and this occurs when

W (t2) = 2. Also, this length is at least W (t2)+1 and this occurs when W (t2) = k.

It follows that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k − 3).

Case 7: 〈3, 0, 0, 1〉

In this case, there exist three destination nodes in QN and one destination node

in QE .

Lemma 3.2.7. Let the case be 〈3, 0, 0, 1〉. Then, there exist NDP P(s, T ) such

that L(T ) + 2 ≤ |P(s, T )| ≤ L(T ) + (4k − 6).
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Proof. Let t1, t2, t3 ∈ QN , and t4 ∈ QE . The following steps construct the NDP

(see Figure 3.11):

1. Reach the min-weight/left destination node of QN (say t1) and t4 using the

north and east paths. (Figure 3.9 shows an example of P (s, t1) and P (s, t4).)

The sum of their lengths equals W (t1) +W (t4).

2. After the previous step, the remaining destination nodes in QN are t2 and

t3. Among these two destination nodes, connect the top/left destination

node of QN (say t2), with the border node b1 = (t2x , b1y ) ∈ QN vertically

using the path P (b1, t2) as (t2x , b1y) → (t2x , b1y − 1) → · · · → (t2x , t2y).

Also, connect the last destination node in QN (i.e t3) with the border node

b2 = (b2x , t3y) ∈ QN horizontally using the path P (b2, t3) as (b2x , t3y) →

(b2x − 1, t3y)→ · · · → (t3x , t3y).

Constructing the path P (b1, t2) vertically and the path P (b2, t3) horizontally

is important to maintain the disjointness condition for two reasons: 1) in QN ,

P (b1, t2) and P (b2, t3) are always node disjoint regardless of the locations of

t2 and t3, and 2) in QS and QW , the north neighbor of b1 and the east

neighbor of b2 are always different nodes.

3. Let the north neighbor of b1 be a1 = bN1 and the east neighbor of b2 be

a2 = bE2 . Figure 3.11 shows all possibilities of a1 and a2 (the dashed nodes).

Note that it is possible that a2 exists in QW . So, apply Case 5 (not Case 2)

to connect the source node with a1 and a2.

The length of P (s, t2) as P (s, a1)→ P (b1, t2) is at most W (t2)+(2k−3) and

this occurs when W (t2) = 2. Also, this length is at least W (t2) + 1 and this
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Figure 3.12: Example of Case 8 (G5)

occurs when W (t2) = k. The length of P (s, t2) as P (s, a1) → P (b1, t2) is at

most W (t2) + (2k − 3) and this occurs when W (t2) = 2. Also, this length is

at least W (t2) + 1 and this occurs when W (t2) = k.

It follows that L(T ) + 2 ≤ |P(s, T )| ≤ L(T ) + (4k − 6).

Case 8: 〈3, 1, 0, 0〉

In this case, there exist three destination nodes in QN and one destination node

in QW .

Lemma 3.2.8. Let the case be 〈3, 1, 0, 0〉. Then, there exist NDP P(s, T ) such

that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k − 6).

Proof. Let t1, t2, t3 ∈ QN , and t4 ∈ QW . Let the destination node t2 be t1y <

t2y < t3y if t1x = t2x = t3x = 0. Otherwise, let the destination node t2 be the
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max-weight/right destination node of QN . Then, t2 and t4 are connected along

the south and west paths respectively. (P (s, t2) and P (s, t4) can be immediately

gleaned from the example shown in Figure 3.12 where b = (bx, t2y) ∈ QW is a border

node and a = (ax, ay) = bE ∈ QS is the east neighbor of b.) Figure 3.12 also shows

all possibilities (dashed nodes) of node a. Using the east neighbor of b is important

because in this way all possibilities of a are in QS which has no destination node. It

follows that, the length of P (s, t2) equals W (t2)+1 ≤ |P (s, t2)| ≤W (t2)+(2k−3)

and the length of P (s, t4) equals W (t4).

The paths to the remaining destination nodes in Q1 (i.e. t1 and t3) are obtained

by applying Case 2. The sum of their lengths is W (t1) + W (t3) ≤ |P (s, t1)| +

|P (s, t3)| ≤ W (t1) + W (t3) + (2k − 3). It follows that L(T ) + 1 ≤ |P(s, T )| ≤

L(T ) + (4k − 6).

Case 9: 〈3, 0, 1, 0〉

In this case, there exist three destination nodes in QN and one destination node

in QS.

Lemma 3.2.9. Let the case be 〈3, 0, 1, 0〉. Then, there exist NDP P(s, T ) such

that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k − 5).

Proof. Let t1, t2, t3 ∈ QN , and t4 ∈ QS. Let the destination node t2 be t1y <

t2y < t3y if t1x = t2x = t3x = 0. Otherwise, let the destination node t2 be the max-

weight/right destination node ofQN . Then, t2 and t4 are connected along the south

and west paths respectively. The process of constructing P (s, t2) and P (s, t4) is

exactly same as the process of constructing P (s, t2) and P (s, t4) in Case 5. It
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Figure 3.13: Example of Case 9 (G5)

follows that the sum of the lengths of P (s, t2) and P (s, t4) is W (t2)+W (t4) + 1 ≤

|P (s, t2)| + |P (s, t4)| ≤ W (t2) + W (t4) + (2k − 2). The paths to the remaining

destination nodes in Q1 (i.e. t1 and t3) are obtained by applying Case 2. The sum

of their lengths isW (t1)+W (t3) ≤ |P (s, t1)|+|P (s, t3)| ≤ W (t1)+W (t3)+(2k−3).

It follows that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k − 5).

Case 10: 〈4, 0, 0, 0〉

In this case, all four destination nodes are in QN ; and this is the most sophis-

ticated case.

Lemma 3.2.10. Let the case be 〈4, 0, 0, 0〉. Then, there exist NDP P(s, T ) such

that L(T ) + 2 ≤ |P(s, T )| ≤ L(T ) + (6k − 11).

Proof. Here, t1, t2, t3, t4 ∈ QN . To show the construction of the NDP precisely, we
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Figure 3.14: Examples of Case 10 (G5)

divide this case into the following subcases:

Case 10.1 Four destination nodes have x = 0:

In this case, t1x = t2x = t3x = t4x = 0. Let t3y < t2y < t1y < t4y . (The

paths are straight forward and can be immediately gleaned from the example

shown in Figure 3.14a where b1 = (b1x , t1y) ∈ QN , b2 = (b2x , t2y) ∈ QN ,
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Figure 3.15: Examples of Case 10 (G5)

a1 = bE1 ∈ QS, and a2 = bE2 ∈ QS.)

The length of P (s, t1) is W (t1)+ 3 ≤ P (s, t1) ≤ W (t1)+ (2k− 5). The lower

and upper bounds occur when t1y = k − 1 and t1y = 3 respectively. The

length of P (s, t2) is W (t2) + 5 ≤ P (s, t2) ≤W (t2) + (2k− 3). The lower and

upper bounds occur when t2y = k − 2 and t2y = 2 respectively. The sum of

lengths of P (s, t3) and P (s, t4) is W (t3)+W (t4)+1 ≤ |P (s, t3)|+ |P (s, t3)| ≤

W (t3)+W (t4)+(2k−7). The upper and lower bounds occur when t4y = 4 and

t4y = k respectively. It follows that L(T )+9 ≤ |P(s, T )| ≤ L(T )+ (6k−15).

Case 10.2 Three destination nodes have x = 0:

Let t1x = t3x = t4x = 0, t2x 6= 0, and t3y < t1y < t4y . (The paths are

straight forward and can be immediately gleaned from the example shown

in Figure 3.14b where b = (b1x , t2y) ∈ QN and a = bE ∈ QS.)

The length of P (s, t2) is W (t2) + 1 ≤ P (s, t2) ≤ W (t2) + (2k − 3). The
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upper bound occurs when W (t2) = 2. The length of P (s, t1) is equal to

W (t1) + 2. The sum of lengths of P (s, t3) and P (s, t4) is W (t3) +W (t4) +

1 ≤ |P (s, t3)| + |P (s, t3)| ≤ W (t3) + W (t4) + (2k − 5). The upper and

lower bounds occur when t4y = 3 and t4y = k respectively. It follows that

L(T ) + 4 ≤ |P(s, T )| ≤ L(T ) + (4k − 8).

Case 10.3 Two destination nodes have x = 0:

Let t3x = t4x = 0 and t1x , t2x 6= 0 (see Figure 3.14c). The following steps

construct the NDP:

1. Apply Case 2.1 to reach t3 and t4 using the north and east paths.

The sum of lengths of P (s, t3) and P (s, t4) is W (t3) + W (t4) + 1 ≤

|P (s, t3)|+ |P (s, t3)| ≤W (t3) +W (t4) + (2k− 3). The upper and lower

bounds occur when t4y = 2 and t4y = k respectively.

2. Apply Case 7 to reach t1 and t2 using the west and south paths.

The sum of lengths of P (s, t3) and P (s, t4) is W (t3) + W (t4) + 2 ≤

|P (s, t3)| + |P (s, t3)| ≤ W (t3) + W (t4) + (4k − 8). The upper bound

occurs when one of these destination nodes is node (1, 1) and the weight

of the other destination node is equal to three. The lower bound occurs

when W (t3) = W (t4) = k.

It follows that L(T ) + 3 ≤ |P(s, T )| ≤ L(T ) + (6k − 11).

Case 10.4: One destination node has x = 0:

Let t4x = 0 and t1x , t2x , t3x 6= 0 (see Figure 3.15a). Also, let t3 be the

min-weight/left destination node among t1,t2, and t3; and let t1 and t2 be
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Table 3.3: Specifying the 1st and 2nd destination nodes in Case 10.5

No. of 1st min-weight No. of 2nd min-weight Choose

1 1 1st and 2nd min-weight

1 > 1 1st min-weight and right of
2nd min-weight

> 1 ≥ 0 1st and 2nd right of 1st min-
weight

respectively the top/left and bottom/right destination nodes only among t1

and t2. Then, the following steps construct the NDP:

1. Apply Case 2.2 to construct P (s, t3) and P (s, t4) using the north and

east paths. The sum of lengths of P (s, t3) and P (s, t4) is equal to

W (t3) +W (t4).

2. Apply Case 7 to construct P (s, t1) and P (s, t2) using the south and west

paths. The sum of lengths of P (s, t1) and P (s, t2) isW (t1)+W (t2)+2 ≤

|P (s, t1)|+ |P (s, t2)| ≤ W (t1)+W (t2)+(4k−10). The upper and lower

bounds occur when W (t1) = W (t2) = 3 and W (t1) = W (t2) = k

respectively.

It follows that L(T ) + 2 ≤ |P(s, T )| ≤ L(T ) + (4k − 10).

Case 10.5 None of the destination nodes has x = 0:

In this case, t1x , t2x , t3x , t4x 6= 0 (see Figure 3.15b). The following steps

construct the NDP:

1. Count the number of destination nodes whose weights are equal to the

minimum weight among all destination nodes (1st min-weight). (For
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Table 3.4: Specifying the 3rd and 4th destination nodes in Case 10.5

No. of 1st max-weight No. of 2nd max-weight Choose

1 1 1st and 2nd max-weight

1 > 1 1st max-weight and left of
2nd max-weight

> 1 ≥ 0 1st and 2nd left of 1st max-
weight

example in Figure 3.15b, the number of destination nodes in the 1st

min-weight equals one (t4).)

2. Count the number of destination nodes in the 2nd min-weight among

all destination nodes. (For example in Figure 3.15b, the number of

destination nodes in the 2nd min-weight equals two (t2 and t3).)

3. Use Table 3.3 to specify two destination nodes. Note that this table

specifies exactly two destination nodes. Let these destination nodes be

t3 and t4. (For the example given in Figure 3.15b, Table 3.3 specifies

the destination node in the 1st min-weight (t4) and the right destination

node among those in the 2nd min-weight (t3).)

4. Apply Case 2.2 to construct P (s, t3) and P (s, t4) using the north and

east paths. The sum of lengths of P (s, t3) and P (s, t4) is equal to

W (t3) +W (t4).

5. Count the number of destination nodes which have the max-weight

among all destination nodes (1st max-weight). (For example in Fig-

ure 3.15b, the number of destination nodes in the 1st max-weight equals

one (t1).)

6. Count the number of destination nodes in the 2nd max-weight among
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all destination nodes. (For example in Figure 3.15b, the number of

destination nodes in the 2nd max-weight equals two (t2 and t3).)

7. Use Table 3.4 to specify two destination nodes. Note that these destina-

tion nodes are different from the destination nodes specified in Step 3.

Let these destination nodes be t1 and t2. (For the example given in Fig-

ure 3.15b, Table 3.4 specifies the destination node in the 1st max-weight

(t1) and the left destination node among those in the 2nd max-weight

(t2).)

8. Apply Case 7 to construct P (s, t1) and P (s, t2) using the south and

west paths with wraparound links. The sum of lengths of P (s, t1) and

P (s, t2) is W (t1)+W (t2)+2 ≤ |P (s, t1)|+ |P (s, t2)| ≤ W (t1)+W (t2)+

(4k − 12). The upper bound occurs when the weight value of one of

these destination nodes is equal to three and the weight value of the

other destination nodes is equal to four. The lower bound occurs when

W (t3) = W (t4) = k.

It follows that L(T ) + 2 ≤ |P(s, T )| ≤ L(T ) + (4k − 12).

After comparing the upper and lower bounds of all subcases of Case 10, the

minimum lower bound and the maximum upper bound occur when the cases are

Case 10.4 (or 10.5) and Case 10.3 respectively. It follows that for Case 10 L(T ) +

2 ≤ |P(s, T )| ≤ L(T ) + (6k − 11).

Now, the main result of this chapter is summarized in the following theorem.

Theorem 3.2.1. In a DGN Gk where k is the network diameter, let the source

node be s = (0, 0) and the set of destination nodes be T = {tj = (tjx , tjy)|1 ≤ j ≤
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Table 3.5: Lower and upper bounds of all cases

Case No. Chosen Cases Lower Bound Upper Bound

1 〈1, 1, 1, 1〉 L(T ) L(T )

2 〈2, 0, 2, 0〉 L(T ) L(T ) + (4k − 6)

3 〈2, 2, 0, 0〉 L(T ) + 1 L(T ) + (4k − 6)

4 〈2, 1, 1, 0〉 L(T ) L(T ) + (2k − 3)

5 〈2, 0, 1, 1〉 L(T ) + 1 L(T ) + (2k − 2)

6 〈2, 1, 0, 1〉 L(T ) + 1 L(T ) + (2k − 3)

7 〈3, 0, 0, 1〉 L(T ) + 2 L(T ) + (4k − 6)

8 〈3, 1, 0, 0〉 L(T ) + 1 L(T ) + (4k − 6)

9 〈3, 0, 1, 0〉 L(T ) + 1 L(T ) + (4k − 5)

10 〈4, 0, 0, 0〉 L(T ) + 2 L(T ) + (6k − 11)

4}. Then, there exist NDP P(s, T ) such that the sum of the lengths of the NDP in

P(s, T ) is

L(T ) ≤ |P(s, T )| ≤ L(T ) + (6k − 11)

Proof. Any DGN Gk can be divided into four non-overlapped quadrants based

on the source node’s address. These quadrants are QN , QW , QS, and QE as de-

fined in Section 3.2.1. The four destination nodes can be distributed in exactly
(

4+4−1
4

)

= 35 ways represented as 〈|QN |, |QW |, |QS|, |QE|〉 where |Qi| is the number

of destination nodes in quadrant i for i = N,W, S, E. To prove the theorem we

need to show that the NDP exist for each one of these 35 cases. However, since

Gk is vertex symmetric, constructing the NDP for only 10 cases is equivalent to

constructing the NDP for the 35 cases. Table 3.1 shows the chosen 10 cases and

the equivalent cases. The total number of these cases is 35. Lemmas 3.2.1 to 3.2.10

prove that the NDP exist for the chosen 10 cases. Table 3.5 shows the upper and
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lower bounds of these 10 cases. It follows that the sum of lengths of the NDP is

L(T ) ≤ |P(s, T )| ≤ L(T ) + (6k − 11).

3.2.3 Time Complexity

The overall time complexity of the proposed algorithm equals the sum of time

complexity of Step 1 and Step 2 (see Algorithm 3). In Step 1, the algorithm

counts the number of destination nodes in each quadrant based on the addresses

of the source and destination nodes. Clearly, this step can be done in a constant

time O(1).

In Step 2, the algorithm constructs the NDP by executing the procedure of one

case out of 10 cases based on the number of destination nodes in each quadrant.

Thus, the time complexity of Step 2 equals the time complexity of the most time

consuming case among the 10 cases.

To construct the NDP, the algorithm needs to know the left, right, top, bottom,

max-weight, and min-weight destination nodes of a specific quadrants as defined

in Definition 3.2.2. That requires sorting the destination node addresses based on

three criteria:

1. the x-coordinate to know the left and right destination nodes,

2. the y-coordinate to know the top and bottom destination nodes, and

3. the weight as defined in Equation 3.2 to know the max-weight, and min-

weight destination nodes.

This sorting can be done using the bucket sorting method. In the worst case, the

number of elements to be sorted equals four (the number of destination nodes)
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Figure 3.16: Shortest non-NDP vs. actual NDP

and that happens in Case 10. So, the time complexity of Step 2 is equal to

O(3 ·4) = O(1). As a result, the overall time complexity of our proposed algorithm

is a constant time O(1).

3.3 Algorithm Execution Results

In this section, we show the results of simulating the proposed algorithm. We

mainly measure the sum of path lengths |P(s, T )| and compare it to the sum of

destination nodes’ weights L(T ) and the lower and upper bounds. The sum of

destination nodes’ weights L(T ) is equal to the sum of the shortest paths lengths

where these paths are not necessarily node disjoint paths (NDP). Our simulation

results show that all of the time the proposed algorithm gives NDP. The results

also show that we need on the average about 10% more hops than the sum of

destination nodes’ weights L(T ) to construct the NDP in Gaussian networks.
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Figure 3.18: Case-wise shortest non-NDP vs. actual NDP (k = 500, runs= 10, 000)

We ran a simulator of the proposed algorithm 10,000 times for each one of the

following networks: G200, G300, G400, andG500. In each run, the simulator randomly

generated the four destination nodes T and the source node s. It returned the
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NDP P(s, T ) for each run. After taking the averages, the results are shown in

Figure 3.16. In this figure, we compare the average number of hops of the sum of

destination nodes’ weights L(T ) and the sum of the actual NDP lengths |P(s, T )|

along with the average of the lower and upper bounds. Clearly, the sum of the

actual NDP lengths constructed by the proposed algorithm is very close to the

sum of destination nodes’ weights. In fact, the algorithm can construct the NDP

with about 10% more hops on the average than the sum of destination nodes’

weights. This result is true regardless of the size of the network because the

number of nodes in the network is irrelevant to the NDP construction process in

the proposed algorithm.

For more clarification on why the difference between the actual NDP lengths

and shortest distances is small, Figure 3.17 shows the distribution of occurrence of

each case for G500 over 10,000 runs. As shown in this figure, Cases 4, 5, and 6 are

the most occurred cases with about 18% each. As shown in Table 3.5, the upper

bounds of these cases are less than the other cases’ upper bounds (except Case 1).

Moreover, Case 10 which has the maximum upper bound occurs the least with 2%

occurrence.

For more insights on the results, Figure 3.18 compares for each case between

the actual NDP lengths and shortest distances along with the lower and upper

bounds for G500 over 10,000 runs. First, notice that the sum of the NDP lengths

of Cases 1, 2, and 4 is equal to the sum of the shortest paths and this sum is equal

to the lower bound. Second, notice that the sum of the NDP lengths is far closer

to the lower bound than the upper bound in all cases except Case 1 where the

upper bound is same as the lower bound.



101

3.4 Conclusion

In this chapter we provide and prove an algorithm to construct all NDP from a

single source node to a set of destination nodes in the dense Gaussian networks

(DGNs). This algorithm constructs four NDP and this is the maximum number of

NDP that can be obtained because the degree of the nodes is four. We show that

the sum of the NDP lengths constructed by the algorithm is bounded between the

sum of the shortest paths and this sum plus (6k − 11) where k is the diameter.

We also show that the time complexity of the algorithm is constant O(1). Finally,

the algorithm execution results show that on the average the sum of NDP lengths

is only about 10% more than the sum of the shortest paths.
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Chapter 4: One-to-Many Node Disjoint Paths Routing in

Hexagonal Mesh Networks

In this chapter, an efficient constant time complexity algorithm that constructs

node disjoint paths (NDP) from a single source node to the maximum number of

destination nodes in Hexagonal Mesh Networks (HMNs) is given.

The rest of this chapter is organized as follows: Section 4.1 recalls several

preliminaries about HMNs, Section 4.2 describes the proposed routing algorithm,

and Section 4.3 concludes this chapter.

4.1 Hexagonal Mesh Networks Preliminaries

Hexagonal Mesh Networks (HMNs) are defined in terms of Eisenstein-Jacobi (EJ)

integers. The following subsections explain the EJ integers, describe HMNs, and

formally define the one-to-many node disjoint paths (NDP) routing problem in

these networks.

4.1.1 EJ Integers

The set of all EJ integers, Z[ρ], is defined as {x+yρ|x, y ∈ Z} where ρ = (1+i
√
3)/2

and i =
√
−1.

The set Z[ρ] is a Euclidean domain and the norm of an EJ integer ω = ωx+ωyρ
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(b) Wraparound links

Figure 4.1: Links in H2

is defined as [17]:

N (ω) = ωx
2 + ωy

2 + ωxωy

So, a Euclidean division algorithm for EJ integers exists. Let ω1, ω2 ∈ Z[ρ] and

ω2 6= 0. Then, there exist q, r ∈ Z[ρ] such that ω1 = qω2 + r and N (r) < N (ω2).

Let α = a + bρ ∈ Z[ρ] be nonzero where a and b are integers. Then, ω1, ω2 ∈

Z[ρ] are congruent modulo α if there exists γ ∈ Z[ρ] such that ω2 − ω1 = γα.

Congruence and the EJ integers modulo α are denoted by ω2 ≡ ω1(mod α) and

Z[ρ]α respectively. The number of elements in Z[ρ]α is equal to N (α) = a2+b2+ab

[17].

4.1.2 Hexagonal Mesh Networks

Hexagonal Mesh Networks (HMNs) are two-dimensional networks generated by

EJ integers and these were first introduced in [32]. Let α ∈ Z[ρ] be nonzero. Each

node in a HMN generated by α represents an EJ integer that belongs to the EJ



104

integers modulo α denoted by Z[ρ]α. So, the number of nodes in this HMN is equal

toN (α). It is proved that for a given diameter k ∈ Z
+, a HMN achieves the largest

network size with 3k2+3k+1 nodes when it is generated by α = (k+1)+kρ [15].

This network is referred as HMN.

In this work, we assume the generator of the HMN is α = (k + 1) + kρ and

denote this HMN by Hk where k is the network diameter. Figure 4.1 shows H2

which is generated by α = 3 + 2ρ. In this example, the number of nodes is equal

to N (3 + 2ρ) = 3× 22 + 3× 2 + 1 = 19 and the diameter k = 2. In the following,

we use this example to explain some properties of HMNs.

Addressing: In this work we use the addressing scheme given in [15]. In this

scheme, the address of each node ω = ωx + ωyρ ∈ Z[ρ]α is (ωx, ωy), where ωx and

ωy represents the signed distance from the origin along the horizontal axis (East)

and the 60 degrees axis (Northeast), respectively. In Figure 4.1, the 2-tuples inside

each node are the addresses.

Connectivity: Two nodes ω1, ω2 ∈ Z[ρ]α in Hk are connected (neighbors) if and

only if (ω1 − ω2) ≡ ±1,±ρ,±ρ2 (mod α) where α = (k + 1) + kρ is the generator

of Hk. So, each node ω = ωx + ωyρ ∈ Z[ρ]α is connected to six neighbors:

1. ωE = (ωx + 1) + ωyρ (mod α),

2. ωNE = ωx + (ωy + 1)ρ (mod α),

3. ωNW = (ωx − 1) + (ωy + 1)ρ (mod α),

4. ωW = (ωx − 1) + ωyρ (mod α),

5. ωSW = ωx + (ωy − 1)ρ (mod α), and

6. ωSE = (ωx + 1) + (ωy − 1)ρ (mod α)
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Figure 4.2: Tiling of H2

where ωN , ωW , ωS, ωE ∈ Z[ρ]α.

The modulo function (mod α) is used to build the wraparound links. Let

β = βx + βyρ be one of the above neighbors before applying the modulo function.

Also, let β /∈ Z[i]α (i.e. β is not one of the network’s nodes). So, we need to apply

the modulo function to translate β to one of the network’s nodes. The modulo
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function β (mod α) is given by the following [32]:

β (mod α) = β − α̂

where α̂ = argmin
αi∈A

{β − αi}

and A = {α, ρα, ρ2α, ρ3α, ρ4α, ρ5α}

(4.1)

The set A contains the centers of all adjacent hexagons in ”the infinite (equilateral)

triangle grid in the plan whose nodes are the vertices of regular hexagons of side

length one centered at the origin and whose edges are all line segments of length

one connecting two nodes” [4]. For example, Figure 4.2 shows the tiling of H2. In

this example, the centers of the adjacent hexagons are A = {3+2ρ,−2+5ρ,−5+

3ρ,−3− 2ρ, 2− 5ρ, 5− 3ρ}.

In Figure 4.1b, the dashed links are the wraparound links built using Equa-

tion 4.1 and these wraparound links always connect two border nodes. For exam-

ple, the NE neighbor of ω = 2ρ is ωNW = 3ρ (mod 3 + 2ρ) = (3ρ)− (−2 + 5ρ) =

2 − 2ρ where β = 3ρ (as shown by the dashed arrow in Figure 4.2). Another

example is that the W neighbor of ω = −2 + ρ is ωW = −3 + ρ (mod 3 + 2ρ) =

(−3 + ρ)− (−5 + 3ρ) = 2− 2ρ where β = −3 + ρ.

Diameter: The diameter is the largest possible distance between any two nodes

in a network. The diameter of Hk is equal to k [32]. For example in Figure 4.1,

the diameter of H2 is equal to two.

Degree: The node degree is the number of its neighbors. In HMNs, each node is

adjacent to six other nodes. So, the node degree is equal to six for all nodes [15, 32].

Path: A path from node ω1 to node ω2 is denoted by P (ω1, ω2) = 〈ω1, a1, a2, . . . ,

a|P (ω1,ω2)|−1, ω2〉 where |P (ω1, ω2)| is the length of the path and each two consecutive
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(a) (b)

Figure 4.3: Different examples of NDP in H3

nodes (e.g. ω1 and a1) are neighbors. Sometimes, we write the path P (ω1, ω2) as

ω1 → a1 → a2 → · · · → ω2. If ω1 and ω2 are not neighbors, we write ω1
dir⇒ ω2 to

denote a straight path from ω1 to ω2 in direction dir ∈ {E,NE,NW,W, SW, SE}.

For example in Figure 4.1, (2,−1) NW⇒ (−1, 2) denotes the path (2,−1)→ (1, 0)→

(0, 1)→ (−1, 2).

One-to-Many NDP: Given a source node s and a set of distinct destination

nodes T = {t1, t2, . . . , t6}, where s /∈ T , a set of one-to-many NDP connects s to

each destination node tj , j ∈ {1, 2, . . . , 6}, and satisfy the condition that the only

common node among all paths is the source node s. Since the degree of each node

in HMN equals six, the maximum number of destination nodes for which a set of

NDP can be obtained from a given source node also equals six and this is the case

in this work.

For a particular s and T , there are more than one possible set of NDP from s

to T . One of these possible sets is denoted by P(s, T ). For example consider the

network in Figure 4.1, let the source node be s = (0, 0) and the set of destination

nodes be T = {(0, 2), (−2, 2), (−2, 0), (0,−2), (2,−2), (2, 0)}. Then, two different
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possible sets of NDP are given in Figure 4.3.

The following section describes our routing algorithm from the source node s

to each of the six destination nodes in T using NDP.

4.2 One-to-Many Node Disjoint Paths Routing

A hexagonal mesh network Hk can be partitioned into six non-overlapped sectors

based on the source node’s address. Definition 4.2.1 defines these sectors.

Definition 4.2.1. In a hexagonal mesh network Hk where k is the diameter, let

the source node be s = (sx, sy). Then, Sector 1, Sector 2, Sector 3, Sector 4, Sector

5, and Sector 6 are respectively defined as follows:

1. S1 = {(x, y) ∈ Hk | (x ≥ sx) ∧ (y > sy)}

2. S2 = {(x, y) ∈ Hk | (x < sx) ∧ (y > sy) ∧ |x| ≤ y}

3. S3 = {(x, y) ∈ Hk | (x < sx) ∧ (y ≥ sy) ∧ |x| > y}

4. S4 = {(x, y) ∈ Hk | (x ≤ sx) ∧ (y < sy)}

5. S5 = {(x, y) ∈ Hk | (x > sx) ∧ (y < sy) ∧ x ≤ |y|}

6. S6 = {(x, y) ∈ Hk | (x > sx) ∧ (y ≤ sy) ∧ x > |y|}

We can easily show that the number of nodes in each sector equals k(k+1)/2.

In case the source node s is (0, 0) (as we assume in this work), the sectors are

defined as follows (see Figure 4.4):

1. S1 = {(x, y) ∈ Hk | (x ≥ 0) ∧ (y > 0)}
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Figure 4.4: Sectors in H6

2. S2 = {(x, y) ∈ Hk | (x < 0) ∧ (y > 0) ∧ |x| ≤ y}

3. S3 = {(x, y) ∈ Hk | (x < 0) ∧ (y ≥ 0) ∧ |x| > y}

4. S4 = {(x, y) ∈ Hk | (x ≤ 0) ∧ (y < 0)}

5. S5 = {(x, y) ∈ Hk | (x > 0) ∧ (y < 0) ∧ x ≤ |y|}

6. S6 = {(x, y) ∈ Hk | (x > 0) ∧ (y ≤ 0) ∧ x > |y|}

For the hexagonal mesh network H6 as shown in Figure 4.4, the number of nodes

in each sector equals 6(6 + 1)/2 = 21 nodes where k = 6.

Figure 4.5 shows the tiling and sectors of H2. Figure 4.6 shows the sectors

connected to each border node in S1. From these two figures, it is important to

notice the following for better understanding of the proposed algorithm:

1. Each sector is connected to all other sectors through one or more nodes. For

example in Figure 4.6, S1 is connected to all other sectors.
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Figure 4.5: Tiling of H2

2. Sector Si, i = 1, 2, . . . , 6, is connected to: 1) sector Si+2 (mod 6) through

exactly two nodes, and 2) sector Si+5 (mod 6) through exactly one node. For

example in Figure 4.5, S1 is connected to: 1) S3 through (0, 2) and (1, 1),

and 2) S5 through (0, 2).

3. The node that connects Si to Si+5 (mod 6) is also used to connect Si to

Si+2 (mod 6). For example in Figure 4.5, (0, 2) is used to connect S1 to both

S3 and S5.

Each sector is a triangle with three sides. In this work, Sr
i denotes a side of sec-
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Figure 4.6: Sectors connected to S1 (H6)

tor Si specified by direction r ∈ {E,N,W, S} where i ∈ {1, 2, . . . , 6}. For example

in Figure 4.4, SS
1 denotes the south side of Sector one (i.e. (0, 1), (1, 1), (2, 1), . . . , (k−

1, 1)). The sides of Sector one are SE
1 , S

W
1 , and SS

1 .

If node ω /∈ Sr
i , then ω

dir⇒ Sr
i denotes a straight path from ω to the sector side

Sr
i in the direction dir. Note that there is one and only one node that is part of

this path and this side. For example in Figure 4.4, (2, 2)
NW⇒ SW

1 denotes the path

starting from (2, 2) and ending in SW
1 going in the NW direction. This path is

(2, 2)→ (1, 3)→ (0, 4) where (0, 4) ∈ SW
1 . Similarly, if node ω /∈ Sr

i but one of its

neighbors is in Sr
i , then we write ω → Sr

i .

After partitioning the network into six sectors, we propose an algorithm that

constructs six node disjoint paths (NDP) P(s, T ) from the source node s to the six

destination nodes in T = {tj = (tjx , tjy)|1 ≤ j ≤ 6} where s /∈ T . The algorithm

consists of two main parts: rotation and construction.

The rotation part rotates the network in the clock-counter direction six times.
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In each time, sector Si becomes Si+1 (mod 6). Each rotation is performed by multi-

plying all nodes in the network by ρ.

The construction part constructs the NDP from the source node to whatever

destination nodes in sector S1 according to the following cases:

• Case 1: S1 contains six destination nodes.

• Case 2: S1 contains five destination nodes.

• Case 3: S1 contains four destination nodes.

• Case 4: S1 contains three destination nodes.

• Case 5: S1 contains two destination nodes.

• Case 6: S1 contains one destination node.

In this section, we explain how to construct the NDP for each one of these

cases. In Section 4.2.1, we explain how the algorithm uses them. Before that, we

need the following definitions.

Definition 4.2.2. In a hexagonal mesh network Hk, where k is the diameter, let

the source node be (0, 0). Then, the E, NE, NW, W, SW, and SE NDP start with

(0, 0)→ (1, 0), (0, 0)→ (0, 1), (0, 0)→ (−1, 1), (0, 0)→ (−1, 0), (0, 0)→ (0,−1),

and (0, 0)→ (1,−1) respectively.

Definition 4.2.3. In a hexagonal mesh network Hk where k is the diameter, let

tj = (tjx , tjy) ∈ Si for j, i = 1, 2, . . . , 6 be any destination node. Then, the destina-

tion node tj is:

• the top destination node of Si if tjy = max{try |tr = (trx , try) ∈ Si},
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• the bottom destination node of Si if tjy = min{try |tr = (trx , try) ∈ Si},

• the left destination node of Si if tjx = min{trx|tr = (trx , try) ∈ Si},

• the right destination node of Si if tjx = max{trx|tr = (trx , try) ∈ Si},

• the max-weight destination node of Si if W (tj) = max{W (tr)|tr = (trx , try) ∈

Si}, and/or

• the min-weight destination node of Si if W (tj) = min{W (tr)|tr = (trx , try) ∈

Si}.

Note that the top, bottom, left, right, max-weight, or min-weight destination

nodes as defined in Definition 4.2.3 are not necessarily unique. So, we say, for

example, top/2nd left of Si to uniquely specify a destination node by choosing the

most 2nd left destination node among those top destination nodes in case the top

destination node is not unique.

Now, we explain how to construct the NDP for each case.

Case 1: Six destination nodes in S1

In this case, six destination nodes tj , where j = 1, 2, . . . , 6, exist in sector S1.

Theorem 4.2.1 explains the process of constructing the node disjoint paths (NDP)

from the source node s to these destination nodes.

Theorem 4.2.1. In a hexagonal mesh network Hk where k is the network di-

ameter, let the source node be s = (0, 0) and the set of destination nodes be

T = {tj = (tjx , tjy)|1 ≤ j ≤ 6} such that tj ∈ S1. Then, there exist NDP P(s, T ).
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Figure 4.7: NDP outside Sector 1 in Case 1

Proof. To construct the NDP from the source node s to the six destination nodes

in S1, the algorithm connects two destination nodes (say, t1 and t2) to S2, one

destination node (say, t3) to the source’s neighbor (0, 1), one destination node

(say, t4) to S6, and two destination nodes (say, t5 and t6) to S4. These paths have

two portions: inside and outside S1. The following paths are the portions outside

S1 (see Figure 4.7):

• Assuming the border node in SE
2 that is connected to t1 is on top of the

border node in SE
2 that is connected to t2, the path to t1 is t1 → · · · →

SW
1

W⇒ SE
3

SE⇒ (−1, 0)→ s. If node (0, k) is used in t1 → · · · → SW
1 , the path

is t1 → · · · → SW
1 → SE

2
W⇒ SW

2 → SE
3

SE⇒ (−1, 0)→ s.

• The path to t2 is t2 → · · · → SW
1 → SE

2
SW⇒ (−1, 1)→ s.

• The path to t4 is t4 → · · · → SS
1 → SN

6
W⇒ (1, 0)→ s.

• Assuming the border node in SW
4 that is connected to t5 is on top of the
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Figure 4.8: Example of Case 1.1 (H10)

border node in SW
4 that is connected to t6, the path to t5 is t5 → · · · →

SE
1 → SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s.

• The path to t6 is t6 → · · · → SE
1 → SW

4
E⇒ SW

5
NE⇒ (1,−1)→ s.

The previous NDP are the paths outside S1. Next we show the NDP inside

S1. Basically, we need to connect two destination nodes to SE
2 , one destination

node to SN
6 , two destination nodes to SW

4 , and one destination node to the source’s

neighbor (0, 1). The process of constructing the paths inside S1 depends on the

destination node locations as follows:

Case 1.1 (Six destination nodes have y = 1):

In this case, all destination nodes are in SS
1 . The NDP are as follows: the 1st

left destination node is connected to node (0, 1); the 2nd and 3rd left desti-

nation nodes are connected to S2; the 4th left destination node is connected

to S6; and the 5th and 6th left destination nodes are connected to S4. These

paths are straightforward and can be immediately gleaned from the example

shown in Figure 4.8.
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(a) Case 1.2.1 (b) Case 1.2.2

(c) Case 1.2.3 (d) Case 1.2.4

Figure 4.9: Examples of Case 1.2 (H10)

Case 1.2 (Five destination nodes have y = 1):

Let the destination node that its y coordinate equals or greater than two

be t̂ = (t̂x, t̂y). Only among the destination nodes other than t̂, let the 1st

left destination node be tL = (tLx
, 1) and the 1st right destination node be

tR = (tRx
, 1). Then, the NDP for this case depend on the location of t̂ as

follows :

Case 1.2.1 (t̂y = 2 and t̂x ≥ tRx
− 1): In this case, t̂ is connected to S4.

The NDP to the remaining destination nodes are as follows: the 1st

left destination node is connected to node (0, 1); the 2nd and 3rd left
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destination nodes are connected to S2; the 4th left destination node is

connected to S6; and the 5th left destination node (among the ones ) is

connected to S4. These paths are straightforward and can be immedi-

ately gleaned from the example shown in Figure 4.9a where the marked

area represents all possibilities of t̂.

Case 1.2.2 (t̂y = 2 and tLx
< t̂x < tRx

− 1): In this case, t̂ is connected

to S2. The NDP to the remaining destination nodes are as follows:

among the ones in SS
1 , the 1st left destination node is connected to

node (0, 1); the 2nd left destination node is connected to S2; the 3
rd left

destination node is connected to S6; and the 4th and 5th left destination

nodes are connected to S4. These paths are straightforward and can be

immediately gleaned from the example shown in Figure 4.9b.

Case 1.2.3 (t̂y = 2 and t̂x ≤ tLx
): In this case, each destination node

is connected to the same sector as Case 1.2.2. However, the NDP are

slightly different. These paths are straightforward and can be immedi-

ately gleaned from the example shown in Figure 4.9c.

Case 1.2.4 (t̂y > 2): Also in this case, each destination node is connected to

the same sector as Case 1.2.2. However, the NDP are slightly different.

These paths are straightforward and can be immediately gleaned from

the example shown in Figure 4.9d.

That covers all possibilities of t̂.

Case 1.3 (Four destination nodes have y = 1):

Let the two destination nodes that their y coordinates equals or greater than
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(a) Case 1.3.1 (b) Case 1.3.2

(c) Case 1.3.3 (d) Case 1.3.4

(e) Case 1.3.5 (f) Case 1.3.6

Figure 4.10: Examples of Case 1.3 (H10)

two be t̂1 = (t̂1x , t̂1y) and t̂2 = (t̂2x , t̂2y). Among the destination nodes other

than t̂1 and t̂2, let the 1st left destination node be tL = (tLx
, 1) and the 1st
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right destination node be tR = (tRx
, 1). Then, the NDP for this case depend

on the locations of t̂1 and t̂2 as follows :

Case 1.3.1 (t̂1y = t̂2y = 2 and t̂1x > t̂2x and t̂1x ≥ tRx
− 1 and t̂2x > tLx

):

In this case, two destination nodes are on the second bottom row (see

Figure 4.10a). Among them, the x coordinate of the 1st right destination

node is equal or grater then the x coordinate minus one of the 1st right

destination node among the destination nodes in row y = 1. It follows

that we cannot connect the 2nd right destination node in the first bottom

row to sector S4 through the second bottom row. However, we can

connect the 2nd left destination node in the first bottom row to sector

S2 through the second bottom row because of t̂2x > tLx
. Same reasoning

is applied for the following cases of Case 1.3.

In Case 1.3.1, the NDP are as follows: t̂1 and t̂2 are connected to S4

and S2 respectively. Among the remaining destination nodes, the 1st

left destination node is connected to node (0, 1); the 2nd left destina-

tion nodes is connected to S2; the 3rd destination node is connected to

S6; and the 4th left destination node is connected to S4. These paths

are straightforward and can be immediately gleaned from the example

shown in Figure 4.10a.

Case 1.3.2 (t̂1y = t̂2y = 2 and t̂1x > t̂2x and t̂1x ≥ tRx
− 1 and t̂2x ≤ tLx

):

In this case, each destination node is connected to the same sector

as Case 1.3.1. However, the NDP are slightly different. These paths

are straightforward and can be immediately gleaned from the example

shown in Figure 4.10b.
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Case 1.3.3 (t̂1y = t̂2y = 2 and t̂1x > t̂2x and t̂1x < tRx
− 1): In this case,

t̂1 and t̂2 are connected to S2. Among the remaining destination nodes,

the 1st left destination node is connected to node (0, 1); the 2nd left

destination node is connected to S6; the 3
rd and the 4th left destination

nodes are connected to S4. These paths are straightforward and can be

immediately gleaned from the example shown in Figure 4.10c.

Case 1.3.4 (t̂1y = 2 and t̂2y > 2 and t̂1x ≥ tRx
−1): In this case, t̂1 is con-

nected to S4. t̂2 is connected to S2. Among the remaining destination

nodes, the 1st left destination node is connected to node (0, 1); the 2nd

left destination node is connected to S2; the 3
rd left destination node is

connected to S6; and the 4th left destination node is connected to S4.

These paths are straightforward and can be immediately gleaned from

the example shown in Figure 4.10d.

Case 1.3.5 (t̂1y = 2 and t̂2y > 2 and t̂1x < tRx
− 1): In this case, each

destination node is connected to the same sector as Case 1.3.3. However,

the NDP are slightly different. These paths are straightforward and can

be immediately gleaned from the example shown in Figure 4.10e.

Case 1.3.6 (t̂1y , t̂2y > 2): In this case, each destination node is connected to

the same sector as Case 1.3.3. However, the NDP are slightly different.

These paths are straightforward and can be immediately gleaned from

the example shown in Figure 4.10f.

Case 1.4 (Three or less destination nodes have y = 1):

In this case, the following steps construct the NDP (Figure 4.11a shows an

example.):
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(a) Case 1.4 (E) (b) Case 1.4 (SE) (c) Case 1.4 (NE)

!

(d) Case 1.4 (W)

!

(e) Case 1.4 (NW)

! !

(f) Case 1.4 (SW)

Figure 4.11: Examples of Case 1.4 (H10)

1. Among all destination nodes, find the top/2nd left destination node .

Let it be t1. The path to t1 is t1
NW⇒ SW

1 . Now, t1 is connected to S2.

2. Excluding t1, find the top/left destination node. Let it be t2. The path
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to t2 is t2
W⇒ SW

1 . Now, t2 is connected to S2.

3. Excluding t1 and t2, find the min-weight/top destination node. Let it

be t3. The path to t3 is t3
SW⇒ SS

1
W⇒ (0, 1)→ s.

4. Excluding t1, t2, and t3, find the min-weight/bottom destination node.

Let it be t4. The path to t4 is t4
SE⇒ SS

1 . Now, t4 is connected to S6.

5. Excluding t1, t2, t3, and t4, find the max-weight/bottom destination

node. Let it be t5. The path to t5 is t5
E⇒ SE

1 . Now, t5 is connected to

S4.

Clearly, the previous NDP are visible since we make sure that there is

no destination node on the way of the constructed path. For example,

t5 is the max-weight/bottom destination node. It follows that there is

no destination node from t5 to the border node on the same row on the

east direction.

6. Let the remaining destination node be t6. To construct the path to t6,

we check the availability of the following paths in the following order

(if a path is not available because one or more of its nodes have been

used by the previous paths constructed in the above steps, we go to the

next path):

(a) Check the availability of the following path that connects t6 to S4:

t6
E⇒ SE

1 . (Figure 4.11a shows an example.) If this path is not

available, then the destination node that blocks this path must be

t5 because its weight is more than the weight of t6.

(b) Check the availability of the following path that connects t6 to S4:

t6
E⇒ tW5 → tSW5

E⇒ SE
1 . (Figure 4.11b shows an example.)
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(c) Check the availability of the following path that connects t6 to S4:

t6
E⇒ tW5 → tNE

5
E⇒ SE

1 . (Figure 4.11c shows an example.)

(d) Check the availability of the following path that connects t6 to S2:

t6
W⇒ SW

1 . (Figure 4.11d shows an example, the dashed path.) If

this path is available, then there are three destination nodes con-

nected to S2 (i.e. t1, t2, and t6) while there is only one destination

node connected to S4 (i.e. t5). To fix this, we switch between t6

and t1 by connecting t1 to S4 using the following path: t1
E⇒ SE

1 .

This path must be available. Otherwise, one of the previous paths

must be available.

If the above path to t6 is not available, then the destination node

that blocks this path must be t2 because it is the top/left destination

node among all nodes except t1.

(e) Check the availability of the following path that connects t6 to S2:

t6
W⇒ tE2 → tNW

2
W⇒ SW

1 . (Figure 4.11e shows an example.) For the

same reason, we have to switch between t6 and t1 same as before.

(f) If none of the previous paths is available, then the following steps

construct the path (Figure 4.11f shows an example.):

i. Connect t6 to (0, 1) (instead of t3) using the following path:

t6
SW⇒ SS

1
W⇒ (0, 1) → s. This path must be available because

the only destination node that can blocks it is t6 which is block-

ing one of the previous paths.

ii. Connect t3 (the one that was connected to (0, 1)) to S2 using

the following path: t3
W⇒ SW

1 . Now, there are three destination
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nodes connected to S2 (i.e. t1, t2, and t3) while there is only

one destination node connected to S4 (i.e. t5).

iii. Connect t1 to S4 (instead of S2) same as before.

This covers all possible cases and completes the proof.

Case 2: Five destination nodes in S1

In this case, five destination nodes exist in sector S1. Theorem 4.2.2 shows the

NDP for this case.

Theorem 4.2.2. In a hexagonal mesh network Hk where k is the network di-

ameter, let the source node be s = (0, 0) and the set of destination nodes be

T = {tj = (tjx, tjy)|1 ≤ j ≤ 6} such that five destination nodes exist in S1.

Then, there exist NDP P(s, T ).

Proof. In this case, one destination node does not exist in S1. Let it be tS̄1
. Then,

we have the following cases based on which sector contains tS̄1
:

Case 2.1 (tS̄1
in S6):

The solution of this case is similar to the solution of Case 1 except we remove

the step that connects one of the destination node to S6. The details are as

follows:

• If there are five, four, and three destination nodes that their y = 1, then

the NDP are given in Figure 4.8, Figure 4.9, and Figure 4.10b except

that we remove the destination node that is connected to S6.
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Figure 4.12: Example of Case 2.1 (H6)

• If there are two or less destination nodes that their y = 1, then the NDP

are obtained by applying the algorithm given for Case 1.4 except that

we remove Step 4 which is the step that connects one of the destination

nodes to S6.

The NDP outside S1 are exactly as given in Case 1 except that the path

from the source node to tS̄1
within S6 is slightly different. This path is

straightforward and can be immediately gleaned from the example of Case

2.1 shown in Figure 4.12. In this example, one destination node in S1 has

y = 1. So, we apply the algorithm given in Case 1.4 except that we remove

Step 6.

Case 2.2 (tS̄1
in S4 or S5):

Before we show the NDP for this case, it is important to notice from Fig-

ure 4.6 that each border node in SE
1 has two neighbors in S4 except node
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(1, k) which has only one neighbor in S4 (i.e. (−(k − 1),−1)). So, we can

always connect one destination node from S1 to S4 as long as: 1) tS̄1
is not

(−(k − 1),−1), or 2) the border node in S1 that is connected to this desti-

nation node is not (1, k − 1). Since tS̄1
exists in either S4 or S5, the NDP

outside S1 are exactly as given in Case 1 except that we connect only one

destination node to S4. If the above conditions are satisfied, then this is

a special case and we will show its solution later. Otherwise, we connect

the border node to whatever available of its neighbor. Then we connect the

source node to the top/right (among the destination node in S4 (if any) and

the border node along the path to one of the destination node in S1) by going

from the source to (0,−1), then going west to the same x-coordinate as the

top/right node,then going south-west to this node. The other node in S4 is

connected to S5 as explained in Case 1.

Based on the number of destination nodes that have y = 1, we have the

following cases:

Case 2.2.1 (Five destination nodes have y = 1):

The NDP for this case are straightforward and can be immediately

gleaned from Figure 4.13.

Case 2.2.2 (Four destination nodes have y = 1):

In this case, the y-coordinate of one of the destination nodes in S1 does

not equal to one. Let this destination node be t̂. Among the destination

nodes that have y = 1, let the left destination node be tL. If t̂y = 2 and

t̂x ≤ tLx
, then the NDP are given in Figure 4.14a. Otherwise, the NDP

are given in Figure 4.14b.
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Figure 4.13: Example of Case 2.2.1 (H6)

Case 2.2.3 (Three or less destination nodes have y = 1):

The NDP for this case are constructed by the following algorithm:

1. Apply Steps 1 to 5 from the algorithm given for Case 1.4 on the

five destination nodes in S1. As a result of Step 5, one of these

destination nodes is connected to a border node that is adjacent to

S4. Let this border node be c15.

2. If c15 = (1, k− 1) and tS̄1
= (−(k− 1),−1), then we cannot connect

c15 to S4 because the only neighbor of c15 in S4 is tS̄1
. Note that in

this case, (0, k) and (0, k−1) must be destination nodes (otherwise

c15 6= (1, k−1)). To construct the NDP in this case we connect (0, k)

to S5, (0, k − 1) to S2, c
1
5 = (1, k − 1) to S3, the min-weight/top

(out of the remaining two destination nodes) to (0, 1), and the last

destination node to S6. Figure 4.15a shows an example of this case

where all paths can be immediately gleaned.
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(a) t̂y = 2 and t̂x ≤ tLx

(b) Otherwise

Figure 4.14: Examples of Case 2.2.2 (H6)

3. If c15 6= (1, k − 1) or tS̄1
6= (−(k − 1),−1), then we can safely con-

struct the NDP as given in the algorithm for Case 1.4 by applying

the first five steps. Figure 4.15b shows an example of this case where

all paths can be immediately gleaned.
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(a) c15 = (1, k − 1) and tS̄1
= (−(k − 1),−1)

(b) Otherwise

Figure 4.15: Example of Case 2.2.3 (H6)

Case 2.3 (tS̄1
in S2 or S3): Note that node (0, k) in S1 is adjacent to

exactly one node in S2 (i.e. (−1, k)). Moreover, node (0, k) is not adjacent

to S4. So, if (0, k) is a destination node (or a border node along the path to
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Figure 4.16: Example of Case 2.3.1 (H6)

a destination node) and (−1, k) is also a destination node, then we cannot

connect (0, k) to either S2 nor S4. To avoid this case, we connect one of the

destination nodes in S1 to S5 through the node (0, k). It follows that we

need to connect only one destination node to S4. Since tS̄1
is in S2 or S3, we

need to connect only one destination node to S2.

Based on the number of destination nodes that have y = 1, we have the

following cases:

Case 2.3.1 (Five destination nodes have y = 1):

The NDP for this case are very similar to Case 2.2.1 except that we

connect one of the destination node to S5. Figure 4.16 shows an example

where all paths can be immediately gleaned.

Case 2.3.2 (Four destination nodes have y = 1):

Similar to Case 2.2.1, Case 2.3.2 is divided into two cases based on the
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(a) t̂y = 2 and t̂x ≤ tLx

(b) Otherwise

Figure 4.17: Example of Case 2.3.2 (H6)

location of the destination node that is not on y = 1. Figure 4.17 shows

both cases where all paths can be immediately gleaned.

Case 2.3.3 (Three or less destination nodes have y = 1):
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Figure 4.18: Example of Case 2.3.3 (H6)

To construct the NDP for this case, we apply the algorithm given in

Case 1.4 with the following changes:

1. In Step 1 instead of connecting the top/left destination node (i.e

t1) to S2, we connect this destination node to S5 through node

(0, k) using the following path: t1
NW⇒ SW

1
NE⇒ (0, k) → (k,−k) NW⇒

(1,−1)→ s.

2. Remove Step 6 that connects one of the destination nodes to S4.

Figure 4.18 shows an example of this case.

This covers all possible cases and completes this proof.

Case 3: Four destination nodes in S1
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Figure 4.19: Example of Case 3.1 (H6)

In this case, four destination nodes exist in sector S1. Theorem 4.2.3 shows the

NDP for this case.

Theorem 4.2.3. In a hexagonal mesh network Hk where k is the network di-

ameter, let the source node be s = (0, 0) and the set of destination nodes be

T = {tj = (tjx , tjy)|1 ≤ j ≤ 6} such that four destination nodes exist in S1.

Then, there exist NDP P(s, T ).

Proof. In this case, two destination nodes do not exist in S1. It follows that at

least three sectors (out of S2, S3, . . . , S6) do not have any destination nodes. Let

(Sa, Sb, Sc) denote these three sectors where a, b, c ∈ {2, . . . , 6}. Then, there are

10 cases in the form of (Sa, Sb, Sc). Assuming that at most two destination nodes

have y = 1, Table 4.1 lists all cases and provides the NDP for each case. If there

are three or four destination nodes that have y = 1, then the NDP can be easily

constructed.

The following steps show how to construct the NDP using Table 4.1:
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Case
No.

Condition
(Sa, Sb, Sc)

Destination Node Node Disjoint Path
out of ti

3.1 (S2, S3, S4)

all top/2nd left ti
NW⇒ SW

1
NE⇒ (0, k)

E⇒ (−1, 0)→ s

rest top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

3.2 (S2, S3, S5) Look at Table 4.2

3.3 (S2, S3, S6)

all top/2nd left ti
NW⇒ SW

1
NE⇒ (0, k)

E⇒ (−1, 0)→ s

rest top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
SE⇒ SN

6
W⇒ (1, 0)→ s

3.4 (S2, S4, S5)

all top/2nd left ti
NW⇒ SW

1
NE⇒ SE

5
NW⇒ (1,−1)→ s

rest top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

3.5 (S2, S4, S6)

all top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest min-weight/bottom ti
SE⇒ SN

6
W⇒ (1, 0)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

3.6 (S2, S5, S6)

all top/2nd left ti
NW⇒ SW

1
NE⇒ SE

5
NW⇒ (1,−1)→ s

rest top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
SE⇒ SN

6
W⇒ (1, 0)→ s

3.7 (S3, S4, S5) Look at Table 4.4

3.8 (S3, S4, S6)

all top/left ti
NW⇒ SW

1
NE⇒ (0, k)

E⇒ (−1, 0)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest min-weight/bottom ti
SE⇒ SN

6
W⇒ (1, 0)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

3.9 (S3, S5, S6) Look at Table 4.5

3.10 (S4, S5, S6)

all top/2nd left ti
NW⇒ SW

1
NE⇒ SE

5
NW⇒ (1,−1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest min-weight/bottom ti
SE⇒ SN

6
W⇒ (1, 0)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

Table 4.1: Subcases of Case 3: four destination nodes in S1
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Case
No.

Conditions (AND) Destination Node
Node Disjoint Path

1 2 3 out of ti

3.2.1

SE
1 does

not con-
tain dest.
nodes

all top/2nd left ti
NW⇒ SW

1
W⇒ SE

3
SE⇒ (−1, 0)→ s

rest top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest min-weight/bottom ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
E⇒ SE

1
NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

3.2.2.1

SE
1 con-

tains one
dest. node

at most
one dest.
node has
y = 1

the one in SE
1 ti

NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

rest top/2nd left ti
NW⇒ SW

1
W⇒ SE

3
SE⇒ (−1, 0)→ s

rest top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

3.2.2.2.1

exactly
two dest.
nodes
have
y = 1

S4

con-
tains
two
dest.
nodes

the one on SE
1 ti

NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

rest top ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest left ti
W⇒ (0, 1)→ s

rest the last one ti
SW⇒ SN

6
W⇒ (1,−1)→ s

the ones in S4
To connect one dest. node to S3 from S4, rotate; apply
Case 5.5 (S6) from Table 4.8; and rotate back.

3.2.2.2.2

S4

con-
tains
one
dest.
node

the one in SE
1 ti

NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

rest top ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest left ti
W⇒ (0, 1)→ s

rest the last one

If (−1,−(k − 1)) is available, the path is ti
E⇒ (k −

1, 1) → (−1,−(k − 1)). Otherwise, the path is ti
E⇒

(k − 1, 1)→ (−2,−(k − 2)). Then, apply Case 5.5 (S6)
(after rotation) on this dest. node and the one in S4 to
connect one of them to S3.

3.2.2.2.3

S4

does
not
con-
tain
dest.
nodes

the one in SE
1 ti

NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

rest top ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest left ti
W⇒ (0, 1)→ s

rest the last one ti
E⇒ (k−1, 1)→ (−1,−(k−

1))

To connect one dest. node
to S3, rotate; apply Case 5.5
(S6) on (−1,−(k − 1)) and
(0,−k); and rotate back.the ones in S6

To connect one dest. node
to S4, rotate; apply Case 5.4
(S5); and rotate back.

3.2.3.1

SE
1 con-

tains
two dest.
nodes

S4 con-
tains
two dest.
nodes

SE
1

top ti
NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

bottom ti
SE⇒ SN

6
W⇒ (1, 0)→ s

rest top/2ndleft ti
NW⇒ SW

1 → SE
2

SW⇒ (−1, 1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

the ones in S4
To connect one dest. node to S3, rotate; apply Case 5.5
(S6); and rotate back.

3.2.3.2

S4 con-
tains one
dest. node

SE
1

top ti
NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

bottom

If (−1,−(k − 1)) is available, the path is ti
SE⇒ (k −

1, 1) → (−1,−(k − 1)). Otherwise, the path is ti
SE⇒

(k − 1, 1)→ (−2,−(k − 2)). Then, apply Case 5.5 (S6)
(after rotation) on this dest. node and the one in S4 to
connect one of them to S3.

rest top/2ndleft ti
NW⇒ SW

1 → SE
2

SW⇒ (−1, 1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

3.2.3.3

S4 does
not con-
tain dest.
nodes

SE
1

top ti
NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

bottom ti
SE⇒ (k−1, 1)→ (−1,−(k−

1))

To connect one dest. node
to S3, rotate; apply Case 5.5
(S6) on (−1,−(k − 1)) and
(0,−k); and rotate back.the ones in S6

To connect one dest. node
to S4, rotate; apply Case 5.4
(S5); and rotate back.

rest top/2ndleft ti
NW⇒ SW

1 → SE
2

SW⇒ (−1, 1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

Continue on Table 4.3

Table 4.2: Subcases of Case 3.2: (S2, S3, S5)
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Case
No.

Conditions (AND) Destination Node
Node Disjoint Path

1 2 3 out of ti

3.2.4.1

SE
1 con-

tains
three dest.
nodes

S4 con-
tains
two dest.
nodes

SE
1

top ti
NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

bottom ti
SE⇒ SN

6
W⇒ (1, 0)→ s

rest bottom/right ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

the ones in S4
To connect one dest. node to S3, rotate; apply Case 5.5
(S6); and rotate back.

3.2.4.2

S4 con-
tains one
dest. node

SE
1

top ti
NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

bottom

If (−1,−(k − 1)) is available, the path is ti
SE⇒ (k −

1, 1) → (−1,−(k − 1)). Otherwise, the path is ti
SE⇒

(k − 1, 1)→ (−2,−(k − 2)). Then, apply Case 5.5 (S6)
(after rotation) on this dest. node and the one in S4 to
connect one of them to S3.

rest bottom/right ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

3.2.4.3

S4 does
not con-
tain dest.
nodes

SE
1

top ti
NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

bottom ti
SE⇒ (k−1, 1)→ (−1,−(k−

1))

To connect one dest. node
to S3, rotate; apply Case
5.5 (S6) on (−1,−(k − 1))
and (0,−k); and rotate
back.

the ones in S6

To connect one dest. node
to S4, rotate; apply Case 5.4
(S5); and rotate back.

rest bottom/right ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

3.2.5

SE
1 con-

tains
four dest.
nodes

all top ti
NW⇒ (0, k)→ (k,−k) NW⇒ (1,−1)→ s

rest 2nd top ti
W⇒ SE

3
SE⇒ (−1, 0)→ s

rest 3rd top ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

Table 4.3: Subcases of Case 3.2: (S2, S3, S5) (Continued)

Case
No.

Condition
(Sa, Sb, Sc)

Destination Node Node Disjoint Path
out of ti

3.7.1 tℓ
E⇒ SE

1 is entirely
not used

all top/left ti
NW⇒ SW

1
NE⇒ (0, k)

E⇒ (−1, 0)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest max-weight/top ti
E⇒ SW

4
To connect one dest. node to S5 from S4, rotate; apply
Case 5.1 (S2) from Table 4.8; and rotate back.rest the last one (tℓ) tℓ

E⇒ SW
4

3.7.2
tℓ

E⇒ tWmax →
tNW
max

E⇒ SE
1 is en-

tirely not used

all top/left ti
NW⇒ SW

1
NE⇒ (0, k)

E⇒ (−1, 0)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest max-weight/top
(tmax)

tmax
E⇒ SW

4 To connect one dest. node to S5 from S4, rotate; apply
Case 5.1 (S2); and rotate back.

rest the last one (tℓ) tℓ
E⇒ tWmax →

tNW
max

E⇒ SE
1

3.7.3

Otherwise
(i.e tℓ

E⇒ tWmax →
tSWmax

E⇒ SE
1 is en-

tirely not used)

all top/left ti
NW⇒ SW

1
NE⇒ (0, k)

E⇒ (−1, 0)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest max-weight/top
(tmax)

tmax
E⇒ SW

4 To connect one dest. node to S5 from S4, rotate; apply
Case 5.1 (S2); and rotate back.

rest the last one (tℓ) tℓ
E⇒ tWmax →

tSWmax

E⇒ SE
1

Table 4.4: Subcases of Case 3.7: (S3, S4, S5)
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Case
No.

Condition (Sa, Sb, Sc)
Destination Node Node Disjoint Path

out of ti

3.9.1
x of the top/right
dest. node 6= 0

all top/right ti
NE⇒ SE

1
NW⇒ (1, k − 1)→ (−k, 0) E⇒ (−1, 0)→ s

rest top/left ti
W⇒ SW

1
NE⇒ SE

5
NW⇒ (1,−1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
SE⇒ SN

6
W⇒ (1, 0)→ s

3.9.2 x of the top/right
dest. node = 0

all top/right ti
NE⇒ SE

5
NW⇒ (1,−1)→ s

rest top/right ti
E⇒ SE

1
NW⇒ (1, k − 1)→ (−k, 0) E⇒ (−1, 0)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
SE⇒ SN

6
W⇒ (1, 0)→ s

Table 4.5: Subcases of Case 3.9: (S3, S5, S6)

1. Find the three sectors (Sa, Sb, Sc) that do not have any destination nodes. If

there are more than three sectors of those, arbitrary choose any three sectors.

2. Based on the value of (Sa, Sb, Sc), identify the case number.

3. For this particular case, locate each destination node using column 3 (Desti-

nation Node) in the provided order. In other words, apply each rule on the

destination nodes that have not been located yet. For example in Case 3.1,

we locate the third destination node by applying the rule ”min-weight/top”

on the rest of destination nodes after locating the first two destination nodes.

4. The corresponding path is given in column 4 (Node Disjoint Path).

For example, consider the example shown in Figure 4.19. In this example,

Sectors S2, S3, and S4 do not contain destination nodes (i.e. (S2, S3, S4)). So, the

case is Case 3.1. According to Table 4.1, the first destination node is the top/2nd

left destination node in S1. This node is (1, 3); and the path is (1, 3)→ (0, 4)
NE⇒

(0, 5)
E⇒ (−1, 0)→ s as shown in the figure. Next we locate the second destination

node. Excluding (2, 3), the second destination node is the top/left destination

node in S1. This node is (1, 2). And the path to reach it is (2, 3)
W⇒ (−1, 2) SW⇒
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(−1, 1)→ s. Similarly we locate the last two destination nodes.

All NDP in Table 4.1 exist because each path goes through an area that does

not contain any destination node. This area is enforced by applying the identifi-

cation rule for each destination node. For example in Figure 4.19, the top/2nd left

destination node in S1 is (1, 3). It follows that the triangle with vertices (0, 6),

(0, 4), and (2, 4) does not contain destination nodes. As shown in the figure, the

portion of the path to (1, 3) in S1 is entirely contained in this triangle. The same

idea is applied on all paths.

Node (0, k) (the top node in S1) is a special node. It is connected to S2, S3,

and S5. Because of this, the path to the top destination node is connected to one

of these three sectors. Moreover, (0, k) is the only node in S1 that is connected

to S5; and its neighbor (1, k − 1) is the only node in S1 (other than (0, k)) that is

connected to S3. So, if the path (1, k − 1) → (0, k) is used to go to S5, the way

to S3 will be blocked. Because of this, the cases when S3 and S5 do not contain

destination nodes different from other cases. These cases are Case 3.2 (S2, S3, S5),

Case 3.7 (S3, S4, S5), and Case 3.9 (S3, S5, S6). In the following, we show the NDP

for these cases.

Table 4.4 provides the NDP for Case 3.7 (S3, S4, S5). These NDP connect two

destination nodes from S1 to S4. Then, one of these destination nodes is connected

to S5. So, we do not need to connect one of the destination nodes in S1 directly to

S5 through (0, k); which allows us to use (0, k) to connect the top destination node

to S3. Figure 4.20 shows an example. In this example, the top/left destination

node is (1, 3); the min-weight/top destination node (out of the rest) is (1, 1);

the max-weight/top destination node tmax (out of the rest) is (2, 2); and the last

destination node tℓ is (1, 2). This example does not follow Case 3.7.1 because the
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Figure 4.20: Example of Case 3.7.3 (H6)

path (1, 2)
E⇒ (4, 2) is blocked by tmax. Also, it does not follow Case 3.7.2 because

the path (1, 2)→ (1, 3)
E⇒ (3, 3) is blocked by the top/left destination node (1, 3).

At this point, the path (1, 2)→ (2, 1)
E⇒ (5, 1) must be entirely available because:

1) tmax cannot block it, and 2) we assume there are at most two destination nodes

have y = 1. So, this example follows Case 3.7.3.

Table 4.5 provides the NDP for Case 3.9 (S3, S5, S6). Unlike Case 3.7, we cannot

connect a destination node to S4 because it is possible that this sector contains

one or two destination node(s). Instead, we connect two destination nodes to S3

and S5 directly from S1. To prevent the situation of blocking the way to S3 as

explained above, we enforce a condition based on the x-value of the top/right

destination node (as shown in Table 4.5). Figure 4.21 shows an example. This

example follows Case 3.9.1 because the x-value of the top/right destination node

is not equal to zero.

Case 3.2 (S2, S3, S5) is different. To explain how it is different, consider the
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Figure 4.21: Example of Case 3.9.1 (H6)

Figure 4.22: Example of Case 3.2.3.3 (H6)

example in Figure 4.22. In this example, we want to connect three destination

nodes to sectors S2, S3, and S5. Unlike all other cases, it is impossible to connect

node (5, 1) without going through S4 or S6 which contain two destination nodes.
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Figure 4.23: Example of Case 3.2.4.1 (H6)

To solve this problem, we need to take into consideration the locations of the des-

tination nodes in S4 and S6. Therefore, we provide the NDP for these destination

nodes along with the NDP for the destination nodes in S1. Table 4.2 provides the

NDP for the four destination nodes in S1 if these paths do not go through S4 and

S6 (for example, Case 3.2.1). Otherwise, this table provides the NDP for all six

destination nodes (for example, Case 3.2.2.2). The example shown in Figure 4.22

follows Case 3.2.3.3 because the east side of S1 (i.e. S
E
1 ) has two destination nodes

((4, 2) and (5, 1)) and S4 has no destination nodes. Another example is given in

Figure 4.23. This example follows Case 3.2.4.1 and its NDP are given in Table 4.3.

Tables 4.1, 4.2, 4.3, 4.4, and 4.5 cover all possible cases of Case 3 (four desti-

nation nodes in S1). And this concludes this proof.
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Figure 4.24: Example of Case 4.3 (H6)

Case 4: Three destination nodes in S1

In this case, three destination nodes exist in sector S1. Theorem 4.2.4 shows

the NDP for this case.

Theorem 4.2.4. In a hexagonal mesh network Hk where k is the network di-

ameter, let the source node be s = (0, 0) and the set of destination nodes be

T = {tj = (tjx, tjy)|1 ≤ j ≤ 6} such that three destination nodes exist in S1.

Then, there exist NDP P(s, T ).

Proof. In this case, at least two sectors (out of S2, S3, . . . , S6) do not contain any

destination nodes. Let (Sa, Sb) denote these two sectors where a, b ∈ {2, . . . , 6}.

Then, there are 10 cases in the form of (Sa, Sb). Table 4.6 provides the NDP for

all 10 cases. Similar to Case 3 (four destination nodes in S1), we construct the

NDP for Case 4 taking into consideration the following:
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Figure 4.25: Example of Case 4.9.1 (H6)

1. All paths go through areas that do not contain any destination nodes by

applying the rules given in column Destination Node. For example in Fig-

ure 4.24 which follows Case 4.3 (S2, S5), the path to the destination node

(2, 3) goes through S5 and the triangle with vertices (0, 6), (0, 4), and (2, 4).

Sector S5 does not contain destination nodes because the case is (S2, S5);

and the triangle area does not contain a destination node because (2, 3) is

the top destination node in S1.

2. The top destination node is always connected to S3, S5, or S2 because the

top node (0, k) is connected to these sectors only.

3. The NDP connect two destination nodes from S1 to the sectors specified by

the case identifier (Sa, Sb) without crossing other sectors except in Case 4.9

(S4, S6). In this case, we provide the NDP for all six destination nodes. Ta-

ble 4.7 provides the NDP for Case 4.9 (S4, S6). This case is special because
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Case
No.

Conditions (AND) Destination Node
Node Disjoint Path1

(Sa, Sb)
2 3 out of ti

4.1 (S2, S3)
at most one
dest. node
has y = 1

all top/2nd left ti
NW⇒ SW

1
NE⇒ (0, k)

E⇒ (−1, 0)→ s

rest top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

4.2 (S2, S4)
at most two
dest. nodes
have y = 1

all top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

4.3 (S2, S5)
at most one
dest. node
has y = 1

all top/2nd left ti
NW⇒ SW

1
NE⇒ SE

5
NW⇒ (1,−1)→ s

rest top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

4.4 (S2, S6)
at most two
dest. nodes
have y = 1

all top/left ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
SE⇒ SN

6
W⇒ (1, 0)→ s

4.5 (S3, S4)
all top/2nd left ti

NW⇒ SW
1

NE⇒ (0, k)
E⇒ (−1, 0)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

4.6.1

(S3, S5)

at most one
dest. node
has y = 1

x of the
top/right dest.
node 6= 0

all top/right ti
NE⇒ SE

1
NW⇒ (1, k − 1)→ (−k, 0) E⇒ (−1, 0)→ s

rest top/left ti
W⇒ SW

1
NE⇒ SE

5
NW⇒ (1,−1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

4.6.2
at most two
dest. nodes
have y = 1

x of the
top/right dest.
node = 0

all top/right ti
NE⇒ SE

5
NW⇒ (1,−1)→ s

rest top/right ti
E⇒ SE

1
NW⇒ (1, k − 1)→ (−k, 0) E⇒ (−1, 0)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

4.7 (S3, S6)
all top/2nd left ti

NW⇒ SW
1

NE⇒ (0, k)
E⇒ (−1, 0)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
SE⇒ SN

6
W⇒ (1, 0)→ s

4.8 (S4, S5)
all top/2nd left ti

NW⇒ SW
1

NE⇒ SE
5

NW⇒ (1,−1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

4.9 (S4, S6) Look at Table 4.7

4.10 (S5, S6)
all top/2nd left ti

NW⇒ SW
1

NE⇒ SE
5

NW⇒ (1,−1)→ s

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
SE⇒ SN

6
W⇒ (1, 0)→ s

Table 4.6: Subcases of Case 4: three destination nodes in S1

it is impossible to connect the top destination node to either S4 or S6. In-

stead, we connect this destination node to either S3, S5, or S2 based on the

locations of the destination nodes that are not in S1. Figure 4.25 shows an

example of Case 4.9.1.

Tables 4.6 and 4.7 cover all possible cases of Case 4 (three destination nodes

in S1). And this concludes this proof.
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Case
No.

Conditions (AND) Destination Node
Node Disjoint Path

1 2 out of ti

4.9.1
S5 does
not con-
tain dest.
nodes

all
To connect two dest. nodes from S1 to S5 and S6, apply Case 4.10
(S5, S6) from Table 4.6 on S1.

the ones in S2

and S3

To distribute the remaining destination nodes in S2 and S3 over S2,
S3, and S4, rotate; apply the appropriate case from either Table 4.6
or Table 4.8; and, rotate back. For example, if S3 contains three
dest. nodes, rotate; apply Case 4.4 (S2, S6); and rotate back.

4.9.2
S5 con-
tains one
dest. node

all top/2nd left

If (k,−k) is available, the path is ti
NW⇒ SW

1
NE⇒ (0, k) → (k,−k).

Otherwise, the path is ti
NW⇒ SW

1
NE⇒ (0, k)→ (k− 1,−k). Then, to

connect one dest. node from S5 to S6, rotate; apply Case 5.1 (S2)
on the node at the end of this path and the dest. node in S5; and
rotate back.

rest min-weight/top ti
SW⇒ SS

1
W⇒ (0, 1)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

the ones in
S2 and S3

If both in S2, rotate; apply Case 5.1 (S2); and rotate back. If both
in S3, rotate; apply Case 5.5 (S6); and rotate back.

4.9.3.1 S5 contains
two dest.
nodes

S2 con-
tains a
dest. node

the ones in S1 To connect two dest. nodes to S4 and S5, apply Case 4.5 (S3, S4).

the ones in S5
To connect one dest. node to S6, rotate; apply Case 5.1 (S2); and
rotate back.

4.9.3.2
S3 has a
dest. node

the ones in S1 To connect two dest. nodes to S4 and S5, apply Case 4.2 (S2, S4).

the ones in S5
To connect one dest. node to S6, rotate; apply Case 5.1 ((S2)); and
rotate back.

4.9.4
S5 contains
three dest.
nodes

the ones in S1 To connect two dest. nodes to S2 and S3, apply Case 4.1 (S2, S3).

the ones in S5
To connect two dest. nodes to S4 and S6, rotate; apply Case 4.4
(S2, S6); and rotate back.

Table 4.7: Subcases of Case 4.9: (S4, S6)

Case 5: Two destination nodes in S1

In this case, two destination nodes exist in sector S1. Theorem 4.2.5 shows the

NDP for this case.

Theorem 4.2.5. In a hexagonal mesh network Hk where k is the network di-

ameter, let the source node be s = (0, 0) and the set of destination nodes be

T = {tj = (tjx , tjy)|1 ≤ j ≤ 6} such that two destination nodes exist in S1.

Then, there exist NDP P(s, T ).

Proof. In this case, four destination nodes do not exist in S1. It follows that at

least one sector (out of S2, S3, . . . , S6) does not contain any destination nodes. Let

(Sa) denote this sector where a ∈ {2, . . . , 6} (not to be confused with the sector

number Si). Then, there are 5 cases in the form of (Sa). Table 4.8 provides the
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Case
No.

Conditions (AND) Destination Node
Node Disjoint Path1

(Sa)
2 out of ti

5.1 (S2)
all top/2nd left ti

NW⇒ SW
1 → SE

2
SW⇒ (−1, 1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

5.2 (S3)
all top/2nd left ti

NW⇒ SW
1

NE⇒ (0, k)
E⇒ (−1, 0)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

5.3.1
(S4)

(0, k) is
a dest.
node
and
(1, k−1)
is not
a dest.
node

all top ti → (1, k − 1)
E⇒ (0,−1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

5.3.2
otherwise all min-weight/top ti

SW⇒ SS
1

W⇒ (0, 1)→ s

rest the last one ti
E⇒ SW

4
NE⇒ SN

4
E⇒ (0,−1)→ s

5.4 (S5)
all top/2nd left ti

NW⇒ SW
1

NE⇒ SE
5

NW⇒ (1,−1)→ s

rest the last one ti
SW⇒ SS

1
W⇒ (0, 1)→ s

5.5 (S6)
all min-weight/top ti

SW⇒ SS
1

W⇒ (0, 1)→ s

rest the last one ti
W⇒ SE

2
SW⇒ (−1, 1)→ s

Table 4.8: Subcases of Case 5: two destination nodes in S1

NDP for all 5 cases.

Case 6: One destination node in S1

If S1 contains only one destination node ti, the path is ti
SW⇒ SS

1
W⇒ (0, 1)→ s.

4.2.1 One-to-Many Node Disjoint Paths Routing Algorithm

In the previous section, we provide the NDP for those destination nodes which are

in Sector 1 (i.e. S1). Now, if some nodes are in sector, say Si, i 6= 1, then the
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Algorithm 4 One-to-Many NDP Routing in Hexagonal Mesh Network Hk

Input: Hk, T = {tj = (tjx , tjy)|1 ≤ j ≤ 6}, s = (0, 0) /∈ T
Output: P(s, T )

1: procedure OneToMany NDP (Hk,T ,s)
2: for 1 ≤ i ≤ 6 do
3: switch number of un-reached dest. nodes in S1

4: 6 : P(s, T ) = Case1(Gk, T, s);
5: 5 : P(s, T ) = Case2(Gk, T, s);
6: 4 : P(s, T ) = Case3(Gk, T, s);
7: 3 : P(s, T ) = Case4(Gk, T, s);
8: 2 : P(s, T ) = Case5(Gk, T, s);
9: 1 : P(s, T ) = Case6(Gk, T, s);

10: 0 : Do nothing;
11: end switch
12: Gk = Gk ∗ ρ; ⊲ Rotate in counter-clock direction
13: P(s, T ) = P(s, T ) ∗ ρ;
14: end for
15: return P(s, T );
16: end procedure

Figure 4.26: Example of Algorithm 4: Initial network

network can be rotated such that these nodes become in Sector 1. Then, we apply

the above given NDP algorithm to reach these nodes. After this, the network is

rotated such that these nodes belong to the original location. (see Algorithm 4.)

For example, consider the network provided in Figure 4.26 as an input to the
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(a) NDP
(b) Rotation

Figure 4.27: Example of Algorithm 4: 1st Iteration

(a) NDP (b) Rotation

Figure 4.28: Example of Algorithm 4: 2nd Iteration

algorithm. In this instance, S1, S5, and S6 contain three, one, and two destination

nodes, respectively. In the first iteration, the algorithm constructs the NDP to the

three destination nodes in S1 by applying one of the following cases arbitrary: Case

4.1 (S2, S3), Case 4.2 (S2, S4), or 4.5 (S3, S4) from Table 4.6. These are the cases

because S1 contains three destination nodes and S2, S3, and S4 do not contain

destination or used nodes. Assuming the algorithm chooses Case 4.5 (S3, S4), the
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Figure 4.29: Example of Algorithm 4: 6th Iteration

resultant NDP are shown in Figure 4.27a. Then, the network and those constructed

NDP are rotated as shown in Figure 4.27b. As a result of this rotation, S6 becomes

S1; and now S1 contains two destination nodes. These destination nodes will be

reached in the next iteration.

In the second iteration, the algorithm applies Case 5.2 (S3) from Table 4.8

since S3 is the only sector that does not contain destination or used nodes. The

result is shown in Figure 4.28a. Then, the network is rotated to get the updated

network shown in Figure 4.28b.

After the final rotation in the sixth iteration, the network is returned to its

initial location and all destination nodes have been reached. The final result is

shown in Figure 4.29.

4.3 Conclusion

In this chapter we provide and prove an algorithm to construct all NDP from

a single source node to a set of destination nodes in Hexagonal Mesh Networks

(HMNs). This algorithm constructs six NDP and this is the maximum number of
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NDP that can be obtained because the degree of the nodes is six.
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Chapter 5: Conclusion

Achieving high computing performance in parallel computing systems critically

depends on finding a set of mutually node disjoint paths (NDP). In this work we

provide and prove some novel algorithms to find a set of the maximum number of

one-to-many NDP from a source node to a set of destination nodes in Generalized

Hypercube (GH), dense Gaussian, and Hexagonal Mesh networks.

5.1 Findings

In Chapter 2, the findings are:

1. Proposing an algorithm to solve the one-to-many NDP routing problem for

two-dimensional GH,

2. Proposing another algorithm to solve the same problem for n-dimensional

GH,

3. Theoretically proving that both algorithms always return a solution,

4. Theoretically proving that the length of the path from s to ti returned by

the algorithms is bounded between the shortest distance and 2n− 1, where

n is the dimension of the GH,

5. Showing that the time complexity of the algorithm is O(kmax
2n3) where

kmax = max
0≤i≤(n−1)

{ki} and ki is the number of nodes in dimension i, and
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6. Simulation results showing that the longest path lengths are close to the

shortest distance plus one, which is less than the theoretical upper bound

for n > 2.

In Chapter 3, the findings are:

1. Proposing an efficient algorithm to solve the one-to-many NDP routing prob-

lem in dense Gaussian networks (DGNs) without depending on the network

size,

2. Theoretically proving that the proposed algorithm always returns a solution,

3. Theoretically proving that the sum of NDP lengths from the source node

to the destination nodes constructed by the proposed algorithm is bounded

between the sum of the shortest paths and this sum plus (6k − 11) where k

is the diameter,

4. Analyzing the time complexity to show that the time complexity of the

algorithm is constant O(1), and

5. The algorithm executing results show that on the average the sum of NDP

lengths is only about 10% more than the sum of the shortest paths.

In Chapter 4, the findings are:

1. Proposing an efficient algorithm to solve the one-to-many NDP routing prob-

lem in dense Hexagonal Mesh networks (HMNs) without depending on the

network size, and

2. Theoretically proving that the proposed algorithm always returns a solution.
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Figure 5.1: Gaussian network (α = 2 + 7i)

Figure 5.2: EJ network (α = 2 + 7ρ)

5.2 Future Work

In the following, we list some possible future research directions:

1. One-to-Many Node Disjoint Paths:

In this work, we assume the generators of dense Gaussian and Hexagonal

Mesh networks are α = k + (k + 1)i and α = (k + 1) + kρ where k is

the diameter, respectively. These networks belong to the general classes:
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Figure 5.3: Higher-dimensional Gaussian network

Gaussian and EJ networks. The general Gaussian networks are generated

by α = a + bi where a, b ∈ Z; the general EJ networks are generated by

α = a+bρ where a, b ∈ Z. Figure 5.1 shows an example of Gaussian network

generated by α = 2 + 7i; and Figure 5.2 shows an example of EJ network

generated by α = 2+ 7ρ. Generalizing the NDP routing algorithms given in

this work to cover the general class of Gaussian and EJ networks is one of

the possible future research directions.

Another research direction is finding the shortest NDP as the algorithms

provided in this work do not find the shortest NDP.

Recently, Shamaei, Bose, and Flahive introduced higher dimensional Gaus-
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Source

Nodes

Destination

Nodes

Figure 5.4: Many-to-many k-disjoint path cover

sian networks [36]. These networks support dimensions more than two. Fig-

ure 5.3 shows a Gaussian network, where each node is represented by two

Gaussian integers. Generalizing the one-to-many NDP routing algorithm

proposed in Chapter 3 for the basic dense Gaussian network to support

higher dimensional Gaussian network is one of the possible future research

directions.

2. Paired many-to-many k-disjoint path cover:

A set of many-to-many k-disjoint path cover connects a set of source nodes

with a set of destination nodes using NDP that cover all nodes in the network

(see Figure 5.4). This kind of NDP is useful for the applications that required

full utilization of the nodes. Chen solved this problem for Hypercube [11].

Finding these NDP in Generalized Hypercube, dense Gaussian, or Hexagonal

Mesh networks is not solved yet. Moreover, Paired one-to-one and one-to-

many k-disjoint path cover in these networks are not solved yet. These are

some of the open problems that need further investigation.

3. Paired many-to-many k-disjoint path cover in fault network:

This problem is the same as the previous one except that some nodes are
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Source

Nodes

Destination

Nodes

Figure 5.5: Many-to-many k-disjoint path cover in fault network

faulty and cannot be used by any node disjoint path (see Figure 5.5). This

problem is important because when the number of nodes increases, the proba-

bility of some node failure will increase. Avoiding these faulty nodes improves

the computing performance.
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