AN ABSTRACT OF THE DISSERTATION OF

$\underline{\text { Omar I. Alsaleh for the degree of Doctor of Philosophy in Computer Science }}$ presented on December 5, 2013.

Title: One-to-Many Node Disjoint Paths Routing in Generalized Hypercube, Dense Gaussian, and Hexagonal Mesh Networks

Abstract approved: \qquad
Bella Bose
Bechir Hamdaoui

Routing from a single source node to multiple destination nodes using node disjoint paths (NDP) has many important applications in parallel systems. For example, if a source node wants to send distinct messages to distinct destination nodes, then the one-to-many NDP routing is useful.

Unlike parallel systems with shared-memory, each node in most of the current parallel systems is a standalone processing unit with a processor and memory. The nodes communicate with each other by passing messages using a standard message passing mechanism such as the Message Passing Interface (MPI). The probability of failure in delivering the messages between the nodes directly affects the computing performance. This probability increases as the number of nodes increases. Therefore, it is critical to find a set of mutually node disjoint paths in order to establish communication routes under such faulty environment. Moreover, the one-to-many NDP routing increases the throughput of the networks.

In this work, we provide some novel and efficient routing algorithms that construct a set of NDP from a single source node to the maximum number of destination nodes in three promising interconnection networks. They are Generalized Hypercube, dense Gaussian, and Hexagonal Mesh networks.

In Chapter two, two efficient algorithms that construct a set of NDP from a single source node to the maximum number of destination nodes in Generalized Hypercube networks are given. Also, the lower and upper bounds of the path length from the source node to any destination node are derived. Finally, some simulations of the algorithms are performed and the results show that in most cases the maximum path length is equal to the shortest distance plus one.

In Chapter three and Chapter four, efficient constant time complexity algorithms that construct a set of one-to-many NDP in dense Gaussian and Hexagonal Mesh networks are given, respectively. For the dense Gaussian network, the lower and upper bounds of the sum of the NDP lengths are derived. Also, via execution of the algorithm, it is shown that on average the sum of the lengths of NDP given by the algorithm is only about 10% more than the sum of the lengths of the shortest paths.
${ }^{\text {© }}$ Copyright by Omar I. Alsaleh December 5, 2013
All Rights Reserved

One-to-Many Node Disjoint Paths Routing in Generalized Hypercube, Dense Gaussian, and Hexagonal Mesh Networks
 by

Omar I. Alsaleh

A DISSERTATION
submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Doctor of Philosophy dissertation of Omar I. Alsaleh presented on December 5, 2013.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request.

Omar I. Alsaleh, Author

ACKNOWLEDGEMENTS

Earning the doctoral degree has been a very long journey. Many people helped me to reach the end of it. I would like to thank them all especially the following:

- My parents (Ibrahim Alsaleh and Fawziah Alhassoun) for planting the value of education in me and taking good care of their seed over the years. I give them this degree as their harvest and hope it makes them happy and satisfy.
- My wife (Bushra Alsuliman) for supporting me and making lots of sacrifices including living oversees away from her family. Without my wife, I would never have been completed this work.
- My precious kids (Abdullah and Jenna) for spreading happiness around my life.
- My only brother (Abdullah Alsaleh) and sisters for believing in me and looking at me as a good role model.
- My advisors (Dr. Bella Bose and Dr. Bechir Hamdaoui) for not only unconditionally helping me to complete this work, but also for teaching me how to conduct a high quality academic research. I cannot thank them enough. They are good friends of mine for life.
- My doctoral committee members (Dr. Huaping Liu, Dr. Eduardo CotillaSanchez, and Dr. Harold Parks) for cutting from their valuable time to serve in my committee.
- Dr. Prasad Tadepalli and Dr. Alan Fern for supporting and helping me at the beginning of my doctoral study.
- The School of Electrical Engineering and Computer Science in Oregon State University for providing high quality education.
- College of Computer and Information Sciences in King Saud University, Saudi Arabia, for the full paid scholarship.
- My advisor (Dr. Abdulkader Alfantookh, Deputy Minister for Planning and Information Ministry of Higher Education in the Ministry of Higher Education, Saudi Arabia) who supervised my bachelor's and master's theses for building my academic base that I stood on it to earn a doctoral degree.
- My teacher and friend (Dr. Abdullah Aldhelaan, Vice Dean for Graduate Studies and Scientific Research in King Saud University, Saudi Arabia) for the the priceless support before and during the doctoral program.
- My fellow graduate students in the School of Electrical Engineering and Computer Science for all kind of cooperation and supporting each other.
- My best friends (Haitham Alsaqer and Abdulrahman Alkhenifer) who supported me during my master's studies and become the best friends of mine.

Those are what I can remember and I am sure I forgot a lot of other people. I thank them all from the bottom of my heart.

TABLE OF CONTENTS

Page
1 Introduction 1
1.1 Overview 1
1.2 Related Work 4
1.3 Organization of this Dissertation 6
2 One-to-Many Node Disjoint Paths Routing in Generalized Hypercube Net- works 7
2.1 Generalized Hypercube Networks Preliminaries 8
2.2 Routing in Two-Dimensional Generalized Hypercube 12
2.2.1 Algorithm 1: Two-Dimensional GH 13
2.2.2 Correctness of Algorithm 1 20
2.3 Routing in n-Dimensional Generalized Hypercube 24
2.3.1 Algorithm 2: n-Dimensional GH 25
2.3.2 Correctness of Algorithm 2 46
2.3.3 Time Complexity of Algorithm 2 55
2.4 Simulation Results 58
2.5 Conclusion 61
3 One-to-Many Node Disjoint Paths Routing in Dense Gaussian Networks 62
3.1 Dense Gaussian Networks Preliminaries 63
3.1.1 Gaussian Integers 63
3.1.2 Dense Gaussian Networks 64
3.2 One-to-Many Node Disjoint Paths Routing 72
3.2.1 Step 1: Case Determination 72
3.2.2 Step 2: One-to-Many NDP Construction 75
3.2.3 Time Complexity 97
3.3 Algorithm Execution Results 98
3.4 Conclusion 101
4 One-to-Many Node Disjoint Paths Routing in Hexagonal Mesh Networks 102
4.1 Hexagonal Mesh Networks Preliminaries 102
4.1.1 EJ Integers 102
4.1.2 Hexagonal Mesh Networks 103
4.2 One-to-Many Node Disjoint Paths Routing 108
4.2.1 One-to-Many Node Disjoint Paths Routing Algorithm 146

TABLE OF CONTENTS (Continued)

Page
4.3 Conclusion 149
5 Conclusion 151
5.1 Findings 151
5.2 Future Work 153
Bibliography 156

LIST OF FIGURES

Figure Page
1.1 One-to-one NDP 2
1.2 One-to-many NDP 2
1.3 Many-to-many NDP 2
1.4 The source degree equals the maximum number of destination nodes 3
1.5 Hierarchical Hypercube [39] 4
1.6 3-ary 3 -cube $[7,37]$ 4
1.7 4-pancake graph [23] 5
2.1 The Generalized Hypercube $Q_{4,3}^{2}$ 8
2.2 Different examples of NDP 10
2.3 Example of unreachable destination node 11
2.4 All shortest paths to t_{i} at distance two 12
2.5 Solved example by Algorithm 1 13
2.6 A path of length three (Case 3) 18
2.7 Solved example by Algorithm $1\left(Q_{6,3}^{2}\right)$ 19
2.8 Proof of Case 3 22
2.9 The basic idea of Algorithm 2 25
2.10 All nodes of $Q_{3,4,3}^{3}$ (the source node is (000) and the destination nodes are in black) 27
2.11 All ways to partition $Q_{3,4,3}^{3}$ 28
2.12 All cases of Step 4 of Algorithm 2 36
2.13 Iteration-wise of all NDP in Example 2.3.1 42
2.14 Addresses of all unavailable nodes 46
2.15 Simulation results: (a,b) Algorithm $1(n=2),(\mathrm{c}, \mathrm{d})$ Algorithm 2 $(n=4),(\mathrm{e}, \mathrm{f})$ Algorithm $2(n=6)$ 59
3.1 Different representations of Gaussian networks 64

LIST OF FIGURES (Continued)

Figure Page
3.2 DGN $G_{3}(\alpha=3+4 \mathbf{i})$ 65
3.3 Different examples of NDP in G_{3} 70
3.4 Quadrants in G_{5} 72
3.5 Example of Case $1\left(G_{5}\right)$ 76
3.6 Examples of Case $2\left(G_{5}\right)$ 77
3.7 Example of Case $3\left(G_{5}\right)$ 80
3.8 Example of Case $4\left(G_{5}\right)$ 81
3.9 Example of Case $5\left(G_{5}\right)$ 82
3.10 Example of Case $6\left(G_{5}\right)$ 84
3.11 Example of Case $7\left(G_{5}\right)$ 85
3.12 Example of Case $8\left(G_{5}\right)$ 87
3.13 Example of Case $9\left(G_{5}\right)$ 89
3.14 Examples of Case $10\left(G_{5}\right)$ 90
3.15 Examples of Case $10\left(G_{5}\right)$ 91
3.16 Shortest non-NDP vs. actual NDP 98
3.17 Distribution of occurrence $(k=500$, runs $=10,000)$ 99
3.18 Case-wise shortest non-NDP vs. actual NDP $(k=500$, runs $=10,000)$ 99
4.1 Links in H_{2} 103
4.2 Tiling of H_{2} 105
4.3 Different examples of NDP in H_{3} 107
4.4 Sectors in H_{6} 109
4.5 Tiling of H_{2} 110
4.6 Sectors connected to $S_{1}\left(H_{6}\right)$ 111
4.7 NDP outside Sector 1 in Case 1 114

LIST OF FIGURES (Continued)

Figure Page
4.8 Example of Case $1.1\left(H_{10}\right)$ 115
4.9 Examples of Case $1.2\left(H_{10}\right)$ 116
4.10 Examples of Case $1.3\left(H_{10}\right)$ 118
4.11 Examples of Case $1.4\left(H_{10}\right)$ 121
4.12 Example of Case $2.1\left(H_{6}\right)$ 125
4.13 Example of Case 2.2.1 $\left(H_{6}\right)$ 127
4.14 Examples of Case 2.2.2 $\left(H_{6}\right)$ 128
4.15 Example of Case 2.2.3 $\left(H_{6}\right)$ 129
4.16 Example of Case 2.3.1 $\left(H_{6}\right)$ 130
4.17 Example of Case 2.3.2 $\left(H_{6}\right)$ 131
4.18 Example of Case 2.3.3 $\left(H_{6}\right)$ 132
4.19 Example of Case $3.1\left(H_{6}\right)$ 133
4.20 Example of Case 3.7.3 $\left(H_{6}\right)$ 139
4.21 Example of Case 3.9.1 $\left(H_{6}\right)$ 140
4.22 Example of Case 3.2.3.3 $\left(H_{6}\right)$ 140
4.23 Example of Case 3.2.4.1 $\left(H_{6}\right)$ 141
4.24 Example of Case $4.3\left(H_{6}\right)$ 142
4.25 Example of Case 4.9.1 $\left(H_{6}\right)$ 143
4.26 Example of Algorithm 4: Initial network 147
4.27 Example of Algorithm 4: $1^{\text {st }}$ Iteration 148
4.28 Example of Algorithm 4: $2^{\text {nd }}$ Iteration 148
4.29 Example of Algorithm 4: $6^{\text {th }}$ Iteration 149
5.1 Gaussian network ($\alpha=2+7 \mathbf{i}$) 153
5.2 EJ network ($\alpha=2+7 \rho$) 153

LIST OF FIGURES (Continued)

Figure Page
5.3 Higher-dimensional Gaussian network 154
5.4 Many-to-many k-disjoint path cover 155
5.5 Many-to-many k-disjoint path cover in fault network 156

LIST OF TABLES

Table Page
3.1 All cases of $\langle | Q_{N}\left|,\left|Q_{W}\right|,\left|Q_{S}\right|,\left|Q_{E}\right|\right\rangle \ldots ~ . ~ 74$
3.2 All subcases of Case 2 . 79
3.3 Specifying the $1^{\text {st }}$ and $2^{\text {nd }}$ destination nodes in Case $10.5 \ldots 93$
3.4 Specifying the $3^{\text {rd }}$ and $4^{\text {th }}$ destination nodes in Case 10.5 94
3.5 Lower and upper bounds of all cases 96
4.1 Subcases of Case 3: four destination nodes in S_{1}. 134
4.2 Subcases of Case 3.2: $\left(S_{2}, S_{3}, S_{5}\right)$. 135
4.3 Subcases of Case 3.2: $\left(S_{2}, S_{3}, S_{5}\right)$ (Continued) 136
4.4 Subcases of Case 3.7: $\left(S_{3}, S_{4}, S_{5}\right)$. 136
4.5 Subcases of Case 3.9: $\left(S_{3}, S_{5}, S_{6}\right)$. 137
4.6 Subcases of Case 4: three destination nodes in S_{1}. 144
4.7 Subcases of Case 4.9: (S_{4}, S_{6}) . 145
4.8 Subcases of Case 5: two destination nodes in S_{1}. 146

LIST OF ALGORITHMS

Algorithm $\quad \underline{\text { Page }}$

1 One-to-Many NDP Routing in 2-Dimensional Generalized Hypercube 15
2 One-to-Many NDP Routing in n-Dimensional Generalized Hypercube 30

3 One-to-Many NDP Routing in the Dense Gaussian Network G_{k}. . 73

4 One-to-Many NDP Routing in Hexagonal Mesh Network H_{k}. . . . 147

Chapter 1: Introduction

1.1 Overview

Since the switching speed of VLSI systems is approaching the maximum limit, parallel systems play an important role in improving the system performance by exploiting the inherent parallelism in problems. In the last decade, supercomputers with thousands of nodes have been built, such as: the Cray Jaguar [6], the IBM BlueGene [2], etc. The nodes are linked to each other to form an interconnection network.

Achieving high computing performance critically depends on the interconnection networks. Designers of the interconnection networks seek desirable attributes such as low node degree, small diameter, and strong fault tolerance to maximize the computing performance $[13,14,24,34,41]$. As a result, many different topologies have been extensively investigated in the literature in order to find which ones yield the best computing performance [1, 5, 12-14, 24, 27, 34, 41].

Unlike the shared-memory parallel systems, each node in most of the current parallel systems is a standalone processing unit with a processor and memory. The nodes communicate with each other by passing messages using a standard message passing mechanism such as the Message Passing Interface (MPI) [2]. The probability of failure in delivering the messages between the nodes directly affects the computing performance. This probability increases as the number of nodes increases. Therefore, it is critical to find a set of mutually node disjoint paths

Figure 1.1: One-to-one NDP

Figure 1.2: One-to-many NDP

Figure 1.3: Many-to-many NDP
(NDP) in order to establish communication routes under such faulty environment. Finding this set is fundamental and essential for ensuring fault tolerance in parallel systems. It is used to connect: a source node to a destination node (one-toone, see Figure 1.1), a source node to a set of destination nodes (one-to-many, see Figure 1.2), or a set of source nodes to a set of destination nodes (many-tomany, see Figure 1.3).

The one-to-many NDP routing problem is described as follows: given a source node s, a set of distinct destination nodes $T=\left\{t_{1}, t_{2}, \ldots, t_{\ell}\right\}$, where $s \notin T$ and ℓ

Figure 1.4: The source degree equals the maximum number of destination nodes is the source degree, construct a set of ℓ NDP such that: 1) each path connects the source node s to one of the destination nodes $t_{i} \in T, i \in\{1,2, \ldots, \ell\}$, and 2) the only common node between any pair of these paths is the source node s. The source's degree ℓ equals the maximum number of destination nodes in any regular graph because the solution does not exist if the number of destination nodes is greater than the source's degree (see Figure 1.4). In this work, we provide novel and efficient routing algorithms that construct a set of one-to-many NDP from a source node to the maximum number of destination nodes in Generalized Hypercube, dense Gaussian, and Hexagonal Mesh networks.

Unlike the existing types of hypercube, the Generalized Hypercube supports any number of nodes. However, it possesses a small average message distance and a low traffic density, thereby making it highly fault tolerant. A two-dimensional Generalized Hypercube which employs optical fibers for wires has been built [43].

The dense Gaussian networks have significant topological advantages over torus networks in terms of diameter [31]. For example, there is a dense Gaussian network with 400 nodes and diameter 14, whereas, any 2D toroidal network with 400 nodes will have a diameter of at least 20. So, compared to torus networks, dense Gaussian networks can accommodate more nodes with less communication latency and at the same time maintaining a regular grid-like structure. This makes dense Gaussian

Figure 1.5: Hierarchical Hypercube [39]

Figure 1.6: 3-ary 3-cube [7, 37]
networks attractive.

1.2 Related Work

The node disjoint paths (NDP) problems have been studied for different interconnection networks. The following related works are some examples [8-11, 20-

Figure 1.7: 4-pancake graph [23]
$23,25,26,28-30,35,37-40]$:

- One-to-One NDP: This problem has been solved for the following interconnection networks: Hierarchical Hypercube [39] (Figure 1.5), k-ary n cube $[7,37]$ (Figure 1.6), Hypercube [38], and (n, k)-Star [40].
- Many-to-Many NDP: This problem has been solved for the following interconnection networks: Hierarchical Hypercube [8], Metacube [35], DualCubes [21], and Hypercube [30].
- One-to-Many NDP: This problem has been solved for the following interconnection networks: Hierarchical Hypercube [10], Dual-Cubes [20], Metacube [9], Folded Hypercube [26], Biswapped [28], Hypercube in optimal time [25], Hyper-Star [29], k-ary n-cube [16], Rotator graphs [22], and pancake graphs [23] (Figure 1.7).

Unlike those previous works, we solve the problem of routing from a single source node to the maximum number of destination nodes (one-to-many) in Generalized Hypercube, dense Gaussian, and Hexagonal Mesh networks using NDP.

1.3 Organization of this Dissertation

The organization of this dissertation is as follows: Chapter 2, Chapter 3, and Chapter 4 provide the one-to-many NDP in Generalized Hypercube, dense Gaussian, and Hexagonal Mesh networks, respectively. Each chapter starts with some explanation of the topology, and then the routing algorithm. Chapter 5 concludes this work and provides some possible future work.

Chapter 2: One-to-Many Node Disjoint Paths Routing in Generalized Hypercube Networks

In this chapter, two efficient algorithms that construct a set of node disjoint paths (NDP) from a single source node to the maximum number of destination nodes in Generalized Hypercube (GH) networks are given. Then, it is proved that these algorithms always return a solution. Also, the lower and upper bounds of the path length from the source node to any destination node are derived. Finally, some simulation of the algorithms are performed and the results show that most of the time the upper bound is equal to the shortest distance plus one.

Unlike the existing types of hypercube, the GH supports any number of nodes. However, it possesses a small average message distance and a low traffic density, thereby making it highly fault tolerant. A two dimensional GH which employs optical fibers for wires has been built [43].

The rest of this chapter is organized as follows: Section 2.1 recalls several preliminaries about the GH, Section 2.2 describes the proposed routing algorithm for two-dimensional GH, Section 2.3 describes the proposed algorithm for n-dimensional GH, Section 2.4 shows the simulation results, and finally Section 2.5 concludes this chapter.

Figure 2.1: The Generalized Hypercube $Q_{4,3}^{2}$

2.1 Generalized Hypercube Networks Preliminaries

Unlike the Boolean n-cube structure which is an interconnection of 2^{n} nodes, a Generalize Hypercube (GH) denoted by $Q_{k_{n-1}, \ldots, k_{1}, k_{0}}^{n}$ supports any number of nodes N such that $N=\prod_{i=0}^{n-1} k_{i}$, where n is the number of dimensions, and k_{i} is the number of nodes along the i-th dimension. Figure 2.1 shows an example of a two-dimensional GH that has 12 nodes: three nodes along the $0^{\text {th }}$ dimension and four nodes along the $1^{\text {st }}$ dimension.

In this work, we assume $k_{i} \geq 3$ because the one-to-many node disjoint paths (NDP) routing problem becomes trivial when $k_{i}<3$. In the following, we describe some properties and concepts that are important for understanding the proposed algorithms.

Addressing: Any node x in a GH $Q_{k_{n-1}, \ldots . k_{1}, k_{0}}^{n}$ can be addressed using an n-tuple $x=\left(x_{n-1} \ldots x_{0}\right) \in \mathbb{Z}_{k_{n-1}} \times \cdots \times \mathbb{Z}_{k_{0}}$. For example in Figure 2.1, the numbers inside the circles are the addresses. Each node x is addressed using a two-tuble $\left(x_{1} x_{0}\right) \in \mathbb{Z}_{4} \times \mathbb{Z}_{3}$ where $\mathbb{Z}_{4}=\{0,1,2,3\}$ and $\mathbb{Z}_{3}=\{0,1,2\}$.

Connectivity: The Hamming distance $D_{H}(x, y)$ between node x and node y is
the number of coordinates they differ along their addresses. In the GH, nodes x and y are neighbors (connected) if and only if the Hamming distance between them equals one (i.e. $D_{H}(x, y)=1$). For example in Figure 2.1, nodes (02) and (32) are neighbors because $D_{H}(02,32)=1$, while nodes (02) and (11) are not neighbors because $D_{H}(02,11)=2$.

Diameter: The diameter is the largest possible distance between any two nodes in a network. In the GH, the diameter is equal to the number of dimensions n, because the addresses can differ at maximum in all n-coordinates. For example in Figure 2.1, the diameter equals two.

Degree: The node degree is the number of its neighbors. For any node x in $Q_{k_{n-1}, \ldots, k_{1}, k_{0}}^{n}$, the node degree ℓ is equal to $\sum_{i=0}^{n-1}\left(k_{i}-1\right)$ which is the number of x 's neighbors. In the GH, all nodes have the same degree. Thus, the total number of links is $L=\frac{\ell . N}{2}$ where each link connects two neighbors. For example in Figure 2.1, $\ell=5$ and $L=30$.

Path: A path from node x to node y is denoted by $P(x, y)=\langle x, a 1, a 2, \ldots$, $a(|P(x, y)|-1), y\rangle$ where $|P(x, y)|$ is the length and each two consecutive nodes (e.g. x and $a 1$) along the path are neighbors. The nodes $\langle a 1, a 2, \ldots, a(|P(x, y)|-1)\rangle$ are called internal nodes. Sometimes, we write the path $P(x, y)$ as $x \rightarrow a 1 \rightarrow$ $a 2 \rightarrow \cdots \rightarrow y$. The length of a shortest path from x to y is equal to the Hamming distance $D_{H}(x, y)$ between them. For example in Figure 2.1, one of the shortest paths between (00) and (32) is $00 \rightarrow 30 \rightarrow 32$, its length equals two which is equal to $D_{H}(00,32)$. Another example of a longer path $P(00,32)$ is $00 \rightarrow 01 \rightarrow 21 \rightarrow$ $22 \rightarrow 32$.

One-to-Many NDP: Given a source node s and a set of distinct destination nodes $T=\left\{t_{1}, t_{2}, \ldots, t_{\ell}\right\}$, where $s \notin T$ and ℓ is the node degree, a set of one-to-

Figure 2.2: Different examples of NDP
many NDP connects s to each destination node $t_{i}, i \in\{1,2, \ldots, \ell\}$, and satisfy the condition that the only common node among all paths is the source node s. Since the degree of each node in GH is ℓ, the maximum of destination nodes for which a set of NDP can be obtained from a given source node is also ℓ and this is the case in this work.

For a particular s and T, there are more than one possible set of NDP from s to T. One of these possible sets is denoted by $\mathbb{P}(s, T)$. For example consider the network in Figure 2.1, let the source node be $s=(00)$ and the set of destination nodes be $T=\{(01),(21),(22),(31),(32)\}$. Then, one possible set of NDP is $\mathbb{P}(s, T)=\{\langle 00,01\rangle,\langle 00,20,21\rangle,\langle 00,10,12,22\rangle,\langle 00,30,31\rangle,\langle 00,02,32\rangle\}$ (see Figure 2.2a). Another different possible set is $\mathbb{P}(s, T)=\{\langle 00,01\rangle,\langle 00,20,21\rangle$, $\langle 00,02,22\rangle,\langle 00,10,11,31\rangle,\langle 00,30,32\rangle\}$ (see Figure 2.2 b).

Unreachable Destination Node: A destination node is called unreachable destination node when it is impossible to find a node disjoint path from the source node to that destination node. Constructing a set of NDP arbitrarily could lead to having unreachable destination nodes. For example consider the network in

Figure 2.3: Example of unreachable destination node

Figure 2.1, let the source node be $s=(00)$ and the set of destination nodes be $T=\{(01),(21),(22),(31),(32)\}$. Suppose the following set of NDP have been constructed randomly (see Figure 2.3): $P(00,01)$ as $00 \rightarrow 01, P(00,21)$ as $00 \rightarrow 10 \rightarrow 11 \rightarrow 21, P(00,22)$ as $00 \rightarrow 20 \rightarrow 22$, and $P(00,32)$ as $00 \rightarrow 30 \rightarrow 32$. In this case, the destination node (31) is called unreachable destination node because we cannot add a path to this particular set without using one of the nodes more than once. Note that, the set $\mathbb{P}(s, T)$ reaches all destination nodes in T. Our proposed algorithms always return a solution $\mathbb{P}(s, T)$ to the one-to-many NDP routing problem without having unreachable destination nodes.

Unavailable Node: Any node in a GH $Q_{k_{n-1}, \ldots, k_{1}, k_{0}}^{n}$ is called unavailable node if: 1) it is a destination node in T, or 2) an internal node along a path to one of the destination nodes. It is unavailable to be used during the process of constructing the NDP. Initially, all destination nodes in T are automatically unavailable nodes. As the construction process continues, each node that becomes an internal node also becomes unavailable node. Eventually, all nodes in the set $\mathbb{P}(s, T)$ are unavailable nodes.

Figure 2.4: All shortest paths to t_{i} at distance two

In the following section, we introduce the proposed algorithm for two dimensional GH. In Section 2.3, we generalize this algorithm for any number of dimensions.

2.2 Routing in Two-Dimensional Generalized Hypercube

In this section, we propose an algorithm to solve the one-to-many node disjoint paths (NDP) routing problem in a two-dimensional GH denoted by $Q_{k_{1}, k_{0}}^{2}$. This problem is described as follows: given any source node $s=\left(s_{1} s_{0}\right)$ and a set of distinct destination nodes $T=\left\{t_{i}=\left(t_{i_{1}} t_{i_{0}}\right) \mid 1 \leq i \leq \ell\right\}$ such that $s \notin T$ and $\ell=k_{0}+k_{1}-2$, find a set of $\operatorname{NDP} \mathbb{P}(s, T)$.

Figure 2.5: Solved example by Algorithm 1

2.2.1 Algorithm 1: Two-Dimensional GH

Before we describe the algorithm, notice that for any destination node $t_{i}=\left(t_{i_{1}} t_{i_{0}}\right)$ at Hamming distance two from the source node s (i.e. $D_{H}\left(s, t_{i}\right)=2$), there are only two shortest paths from s to t_{i} (see Figure 2.4): 1) $P\left(s, t_{i}\right)$ as $\left(s_{1} s_{0}\right) \rightarrow$ $\left(t_{i_{1}} s_{0}\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$, and 2) $P\left(s, t_{i}\right)$ as $\left(s_{1} s_{0}\right) \rightarrow\left(s_{1} t_{i_{0}}\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$. In this section, the node $\left(t_{i_{1}} s_{0}\right)$ is called the column neighbor of t_{i} (in the same column as t_{i}) while the node $\left(s_{1} t_{i_{0}}\right)$ is called the row neighbor of t_{i} (in the same row as t_{i}).

To explain the algorithm, we use the example in Figure 2.5 where the proposed algorithm is used to find a solution to this problem. In this example, the source node is $s=(00)$, the set of destination nodes is $T=\{(02),(21),(22),(31),(32)\}$, and the network is $Q_{4,3}^{2}$ as shown in Figure 2.1. The following steps describe the algorithm (see Algorithm 1):

Step 1 (Reach the source's neighbors)

In this step, the algorithm constructs a path from the source node to each destination node at Hamming distance one. For each destination node t_{i} such that $D_{H}\left(s, t_{i}\right)=1$, the algorithm constructs the path $P\left(s, t_{i}\right)$ as $\left(s_{1} s_{0}\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$. For example in Figure 2.5, the algorithm constructs the path $P(00,02)$ as $00 \rightarrow 02$ in this step because $D_{H}(00,02)=1$.

Step 2 (Sort)

After reaching all destination nodes at Hamming distance one, the algorithm sorts the remaining destination nodes in ascending lexicographical order. For example in Figure 2.5, the ordered set of the remaining destination nodes (after reaching $(02))$ is $\langle 21,22,31,32\rangle$. This sorting is used to uniquely identify the last destination node within each column. Also, it is used to traverse the destination nodes in the network column by column

Step 3 (Construct all paths)

Starting from the first destination node in the ordered set obtained in Step 2, the algorithm constructs a path from the source node s to each destination node in the ordered set $t_{i}=\left(t_{i_{1}} t_{i_{0}}\right)$ according to the following cases:

Case 1: In this case: 1) t_{i} is not the last destination node in its column according to the sorting in Step 2, and 2) the row neighbor $\left(s_{1} t_{i_{0}}\right)$ or the column neighbor $\left(t_{i_{1}} s_{0}\right)$ is available.

```
Algorithm 1 One-to-Many NDP Routing in 2-Dimensional Generalized Hyper-
cube
    Input: \(Q_{k_{1}, k_{0}}^{2}, s=\left(s_{1} s_{0}\right)\), and \(T=\left\{t_{i}=\left(t_{i_{1}} t_{i_{0}}\right) \mid 1 \leq i \leq \ell\right\}\) where \(s \notin T\) and
    \(\ell=k_{0}+k_{1}-2\)
    Output: \(\mathbb{P}(s, T)\)
    procedure OneToMany_2D \(\left(Q_{k_{1}, k_{0}}^{2}, s, T\right)\)
        \(U\) sed \(=\left\{s, t_{1}, t_{2}, \ldots, t_{\ell}\right\} ; \quad \triangleright " U s e d "\) nodes
        \(D P=\emptyset ; \quad \quad " D P "\) fully constructed NDP
        Reached \(=\emptyset ; \quad \triangleright\) "Reached" dest. nodes
        for \(1 \leq i \leq \ell\) do \(\quad \triangleright\) Step 1
        if \(D_{H}\left(s, t_{i}\right)=1\) then
            \(D P=D P \cup\left\langle\left(s_{1} s_{0}\right),\left(t_{i_{1}} t_{i_{0}}\right)\right\rangle ;\) Reached \(=\) Reached \(\cup\left\{t_{i}\right\} ;\)
        end if
        end for
        Sort RemT \(=T-\) Reached \(\quad \triangleright\) Step 2
        for \(i \leftarrow 1,|\operatorname{Rem} T|\) do
                            \(\triangleright\) Step 3
        if \(t_{i}\) is not the last dest. node in its column then
            if \(\left(s_{1} t_{i_{0}}\right) \notin U\) sed then
                \(D P=D P \cup\left\langle\left(s_{1} s_{0}\right),\left(s_{1} t_{i_{0}}\right),\left(t_{i_{1}} t_{i_{0}}\right)\right\rangle ; \quad U\) sed \(=U \operatorname{sed} \cup\left\{\left(s_{1} t_{i_{0}}\right)\right\} ;\)
                Reached \(=\) Reached \(\cup\left\{t_{i}\right\}\);
            else if \(\left(t_{i_{1}} s_{0}\right) \notin U\) sed then
                \(D P=D P \cup\left\langle\left(s_{1} s_{0}\right),\left(t_{i_{1}} s_{0}\right),\left(t_{i_{1}} t_{i_{0}}\right)\right\rangle ; \quad U\) sed \(=U \operatorname{sed} \cup\left\{\left(t_{i_{1}} s_{0}\right)\right\} ;\)
                Reached \(=\) Reached \(\cup\left\{t_{i}\right\}\);
            else
                FindingPathOfLength_3;
            end if
        else \(\quad \triangleright t_{i}\) is the last destination node in its column
            if \(\left(t_{i_{1}} s_{0}\right) \notin U\) sed then
                \(D P=D P \cup\left\langle\left(s_{1} s_{0}\right),\left(t_{i_{1}} s_{0}\right),\left(t_{i_{1}} t_{i_{0}}\right)\right\rangle ; \quad U\) sed \(=U \operatorname{sed} \cup\left\{\left(t_{i_{1}} s_{0}\right)\right\} ;\)
                        Reached \(=\) Reached \(\cup\left\{t_{i}\right\}\);
            else if \(\left(s_{1} t_{i_{0}}\right) \notin U\) sed then
                \(D P=D P \cup\left\langle\left(s_{1} s_{0}\right),\left(s_{1} t_{i_{0}}\right),\left(t_{i_{1}} t_{i_{0}}\right)\right\rangle ; \quad U\) sed \(=U \operatorname{sed} \cup\left\{\left(s_{1} t_{i_{0}}\right)\right\} ;\)
                        Reached \(=\) Reached \(\cup\left\{t_{i}\right\}\);
            else
                        FindingPathOfLength_3;
                end if
        end if
        end for
        \(\mathbb{P}(s, T)=D P ;\)
        return \(\mathbb{P}(s, T)\);
    end procedure
```

```
Algorithm 1 Continued
    procedure FindingPathOfLength_3
        \(j=0 ; \quad\) isFound \(=\) false;
        while \(j \leq k_{0}-1\) and \(i s\) Found \(=\) false do
            \(h=\left(t_{i_{1}} j\right) ; r=\left(s_{1} j\right)\);
            if \(r \notin U\) sed and \(h \notin U\) sed then
                \(D P=D P \cup\left\langle\left(s_{1} s_{0}\right),\left(s_{1} j\right),\left(t_{i_{1}} j\right),\left(t_{i_{1}} t_{i_{0}}\right)\right\rangle ; \quad U\) sed \(=U \operatorname{sed} \cup\{r, h\} ;\)
                Reached \(=\) Reached \(\cup\left\{t_{i}\right\} ;\) isFound \(=\) true;
            end if
            \(j=j+1 ;\)
        end while
        if isFound \(=\) false then
            \(j=0\);
            while \(j \leq k_{1}-1\) and \(i s F o u n d=\) false do
                \(h=\left(j t_{i_{0}}\right) ; \quad r=\left(j s_{0}\right)\);
                if \(r \notin U\) sed and \(h \notin U\) sed then
                \(D P=D P \cup\left\langle\left(s_{1} s_{0}\right),\left(j s_{0}\right),\left(j t_{i_{0}}\right),\left(t_{i_{1}} t_{i_{0}}\right)\right\rangle ; U\) sed \(=U \operatorname{sed} \cup\{r, h\} ;\)
                    Reached \(=\) Reached \(\cup\left\{t_{i}\right\} ; \quad\) isFound \(=\) true;
                end if
                \(j=j+1 ;\)
            end while
        end if
    end procedure
```

To construct a path in this case, the algorithm first checks the availability of the row neighbor $\left(s_{1} t_{i_{0}}\right)$ of t_{i}, meaning that it has not been used so far in any path. If the row neighbor $\left(s_{1} t_{i_{0}}\right)$ is available, the algorithm constructs the path $P\left(s, t_{i}\right)$ as $\left(s_{1} s_{0}\right) \rightarrow\left(s_{1} t_{i_{0}}\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$. If the row neighbor $\left(s_{1} t_{i_{0}}\right)$ is not available, the algorithm checks the availability of the column neighbor ($t_{i_{1}} s_{0}$) of t_{i}. If it is available, the algorithm constructs the path $P\left(s, t_{i}\right)$ as $\left(s_{1} s_{0}\right) \rightarrow\left(t_{i_{1}} s_{0}\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$. If both (row and column) neighbors of t_{i} are not available, then go to Case 3 .

One example of Case 1 is the destination node (21) in Figure 2.5. Since
the row neighbor (01) is available at this point, the algorithm constructs the path $P(00,21)$ as $00 \rightarrow 01 \rightarrow 21$. Another example is the destination node (31). Its row neighbor (01) is not available because it is an internal node in the path $P(00,21)$. Since the row neighbor is not available, the algorithm checks the availability of the column neighbor (30) which is available at this point. So, the algorithm constructs the path $P(00,31)$ as $00 \rightarrow 30 \rightarrow 31$.

Case 2: In this case: 1) t_{i} is the last destination node in its column according to the sorting in Step 2, and 2) the row neighbor $\left(s_{1} t_{i_{0}}\right)$ or the column neighbor ($t_{i_{1}} s_{0}$) is available.

Unlike the previous case, the algorithm first checks the availability of the column neighbor $\left(t_{i_{1}} s_{0}\right)$ of t_{i}, then the availability of the row neighbor $\left(s_{1} t_{i_{0}}\right)$ of t_{i}. If the column neighbor is available, the algorithm constructs the path $P\left(s, t_{i}\right)$ as $\left(s_{1} s_{0}\right) \rightarrow\left(t_{i_{1}} s_{0}\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$. However, if the column neighbor is not available but the row neighbor $\left(s_{1} t_{i_{0}}\right)$ of t_{i} is available, the algorithm constructs the path $P\left(s, t_{i}\right)$ as $\left(s_{1} s_{0}\right) \rightarrow\left(s_{1} t_{i_{0}}\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$. If both (row and column) neighbors are not available, then go to Case 3.

For example in Figure 2.5, to reach the destination node (22) which is the last node in its column, the algorithm first checks the availability of the column neighbor (20). The node (20) is available at this point. So, the algorithm constructs the path $P(00,22)$ as $00 \rightarrow 20 \rightarrow 22$.

Case 3: In this case the row neighbor ($s_{1} t_{i_{0}}$) and the column neighbor $\left(t_{i_{1}} s_{0}\right)$ are both not available, meaning that the shortest paths are not available.

The algorithm constructs a path of length three by finding an available neigh-

(a) Same column

○ ○ ○ $\cdots \circ$ ○ \quad O
(b) Same row

Figure 2.6: A path of length three (Case 3)
bor, h, of t_{i} such that h 's neighbor which is in the same row or column as of s is also available. Let $h=\left(h_{1} h_{0}\right)$ be any available neighbor of t_{i}, then h and t_{i} are either in the same column or in the same row (see Figure 2.6):

1. Same Column $\left(h=\left(t_{i_{1}} h_{0}\right)\right)$: If node $r=\left(s_{1} h_{0}\right)$ is available, the algorithm constructs the path $P\left(s, t_{i}\right)$ as $\left(s_{1} s_{0}\right) \rightarrow\left(s_{1} h_{0}\right) \rightarrow\left(t_{i_{1}} h_{0}\right) \rightarrow$ $\left(t_{i_{1}} t_{i_{0}}\right)$ (see Figure 2.6a).
2. Same Row $\left(h=\left(h_{1} t_{i_{0}}\right)\right)$: If node $r=\left(h_{1} s_{0}\right)$ is available, the algorithm constructs the path $P\left(s, t_{i}\right)$ as $\left(s_{1} s_{0}\right) \rightarrow\left(h_{1} s_{0}\right) \rightarrow\left(h_{1} t_{i_{0}}\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$ (see Figure 2.6b).

As we prove it later, there is at least one available neighbor h such that its neighbor (either $\left(h_{1} s_{0}\right)$ or $\left.\left(s_{1} h_{0}\right)\right)$ is also available, meaning a path of length three exists.

For example in Figure 2.5, the shortest paths to the destination node (32) are not available because its column neighbor (30) is an internal node in the

Figure 2.7: Solved example by Algorithm $1\left(Q_{6,3}^{2}\right)$
path $P(00,31)$ and its row neighbor (02) is a destination node. Thus, the algorithm constructs a path of length three by finding an available neighbor h. The only available neighbor is $h=(12)$ which is in the same row as the destination node (32). Then, the algorithm checks the availability of node $\left(h_{1} s_{0}\right)=(10)$ which is available. So, the algorithm constructs the path $P(00,32)$ as $00 \rightarrow 10 \rightarrow 12 \rightarrow 32$.

Example 2.2.1 provides a complete example of Algorithm 1.

Example 2.2.1. Consider the $G H Q_{6,3}^{2}$. The node degree in this $G H$ is $\ell=7$. Let the source node be $s=(00)$ and the set of the seven destination nodes be $T=\{(52),(51),(41),(32),(02),(42),(31)\}$. Algorithm 1 solves this example as follows (see Figure 2.7):

Step 1: Construct a path to each destination node at Hamming distance one:

- $P(00,02)$ is $00 \rightarrow 02$

Step 2: Sort the remaining destination nodes:

- $\langle 31,32,41,42,51,52\rangle$

Step 3: Construct a path to each one of the remaining destination nodes:

- $P(00,31)$ is $00 \rightarrow 01 \rightarrow 31$ (Case 1: check (01) then (30))
- $P(00,32)$ is $00 \rightarrow 30 \rightarrow 32$ (Case 2: check (30) then (02))
- $P(00,41)$ is $00 \rightarrow 40 \rightarrow 41$ (Case 1: check (01) then (40), (01) has been used by $P(00,31)$)
- $P(00,42)$ is $00 \rightarrow 20 \rightarrow 22 \rightarrow 42$ (Case 3: (22) and its neighbor (20) are both available)
- $P(00,51)$ is $00 \rightarrow 50 \rightarrow 51$ (Case 1: check (01) then (50), (01) has been used by $P(00,31)$)
- $P(00,52)$ is $00 \rightarrow 10 \rightarrow 12 \rightarrow 52$ (Case 3: (12) and its neighbor (10) are both available)

All destination nodes have been reached using a set of NDP.

2.2.2 Correctness of Algorithm 1

We prove the correctness of Algorithm 1 by providing the following theorem and its proof.

Theorem 2.2.1. In a GH $Q_{k_{1}, k_{0}}^{2}$, given any source node $s=\left(s_{1} s_{0}\right)$ and a set of distinct destination nodes $T=\left\{t_{i}=\left(t_{i_{1}} t_{i_{0}}\right) \mid 1 \leq i \leq \ell\right\}$ such that $s \notin T$ and $\ell=k_{0}+k_{1}-2$, Algorithm 1 always finds a set of $N D P \mathbb{P}(s, T)$ with path lengths at most three.

Proof. Since the GH is a symmetric network, without loss of generality, assume that the source node s is (00). Let $t_{i}=\left(t_{i_{1}} t_{i_{0}}\right) \in T$ be the current destination node in Algorithm 1. Then, there are three distinct cases:

Case 1: Suppose t_{i} and s are neighbors. In this case (by Step 1 of Algorithm 1$)$, the path $P\left(s, t_{i}\right)$ is $(00) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$ and its length is equal to one.

Case 2: Suppose t_{i} and s are not neighbors and the column neighbor $\left(t_{i_{1}} 0\right)$, the row neighbor $\left(0 t_{i_{0}}\right)$, or both are available. In this case (by either Case 1 or Case 2 of Step 3 of Algorithm 1), the path $P\left(s, t_{i}\right)$ is $(00) \rightarrow\left(0 t_{i_{0}}\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$ or $(00) \rightarrow\left(t_{i_{1}} 0\right) \rightarrow\left(t_{i_{1}} t_{i_{0}}\right)$ (see Figure 2.4) and its length is equal to two.

Case 3: Suppose t_{i} and s are not neighbors and the column neighbor $\left(t_{i_{1}} 0\right)$ and the row neighbor $\left(0 t_{i_{0}}\right)$ are both not available. In this case, we need to prove that there exists a path of length three from s to t_{i} (Case 3 of Step 3 of Algorithm 1). We prove that by contradiction.

Assume a node disjoint path $P\left(s, t_{i}\right)$ of length three does not exist. Then, we prove that there exist more than $k_{0}+k_{1}-2$ destination nodes, which is a contradiction because it is assumed that there are exactly $k_{0}+k_{1}-2$ destination nodes.

Let us first consider the column that has the destination node $t_{i}\left(t_{i_{1}}\right.$-th $)$. After excluding t_{i}, the number of nodes in this column is equal to $k_{0}-1$. In the following we show that there exists a one-to-one correspondence between all nodes other than t_{i} in the $t_{i_{1}}$-th column and distinct destination nodes. Let $a=\left(t_{i_{1}} a_{0}\right)$ be any node in the $t_{i_{1}}$-th column other than t_{i} (i.e. $a_{0} \neq t_{i_{0}}$). We have the following cases:

Figure 2.8: Proof of Case 3

Case 3.1: Suppose node a is a destination node. In this case, the corresponding destination node is node a itself.

Case 3.2: Suppose node a is not a destination node but it has not been used (an available node). Then the node ($0 a_{0}$) must be used to reach a destination node $c=\left(c_{1} c_{0}\right)$ such that $0<c_{1}<a_{1}$ (see Figure 2.8a). In this case, the corresponding destination node for a is node c.

Case 3.3: Suppose node a is not a destination node but it has been used (an unavailable node). Then there are two cases:

Case 3.3.1: Suppose node a has been used by a path $P(s, b)$ of length three from s to a destination node $b=\left(b_{1} a_{0}\right)$ as $(00) \rightarrow\left(a_{1} 0\right) \rightarrow$ $\left(a_{1} a_{0}\right) \rightarrow\left(b_{1} a_{0}\right)$ (see Figure 2.8b). In this case, the corresponding destination node for node a is node b. Note that the node $\left(0 b_{0}\right)$ must be used to reach a destination node $c=\left(c_{1} c_{0}\right)$ such that $0<c_{1}<b_{1}$. So, the corresponding destination node for node ($a_{1} 0$) is node c.

Case 3.3.2: Suppose node a has been used by a path $P(s, b)$ of length three from s to a destination node $b=\left(a_{1} b_{0}\right)$ as $(00) \rightarrow\left(0 a_{0}\right) \rightarrow$ $\left(a_{1} a_{0}\right) \rightarrow\left(a_{1} b_{0}\right)$ (see Figure 2.8c). In this case, the corresponding destination node for node b is itself. Note that the node $\left(0 b_{0}\right)$ must be used to reach a destination node $c=\left(c_{1} c_{0}\right)$ such that $0<c_{1}<b_{1}$. So, the corresponding destination node for node a is node c.

From the above argument, we have found a one-to-one correspondence between all nodes other than t_{i} in the $t_{i_{1}}$-th column and distinct destination nodes. It follows that we have counted $k_{0}-1$ distinct destination nodes so far. These $k_{0}-1$ destination nodes are either in the $t_{i_{1}}$-th column or in the path from s to that node goes through $\left(t_{i_{1}} 0\right)$ or through a node other than $\left(0 t_{i_{0}}\right)$ in the first column.

Using a similar argument, we can prove that there is a one-to-one correspondence between the nodes in the $t_{i_{0}}$-th row (other than t_{i}) and a set of $k_{1}-1$ distinct destination nodes. These $k_{1}-1$ destination nodes are either
in the $t_{i_{0}}$-th row or in the path from s to that node goes through $\left(0 t_{i_{0}}\right)$ or through a node in the first row other than $\left(t_{i_{1}} 0\right)$. Thus, these destination nodes are different from the $k_{0}-1$ destination nodes obtained in the above argument. As a result, including the destination node t_{i}, we get a total of $\left(k_{0}-1\right)+\left(k_{1}-1\right)+1=k_{0}+k_{1}-1$ destination nodes. This gives a contradiction because it is assumed that there are exactly $k_{0}+k_{1}-2$ destination nodes. So, there exists a path $P\left(s, t_{i}\right)$ of length three.

This proves that Algorithm 1 is correct.
Corollary 2.2.1. For any node disjoint path $P\left(s, t_{i}\right)$ in $\mathbb{P}(s, T)$ generated by Algorithm 1, the upper and lower bounds of the path length are given in Inequation (2.1).

$$
\begin{equation*}
D_{H}\left(s, t_{i}\right) \leq\left|P\left(s, t_{i}\right)\right| \leq 3 \tag{2.1}
\end{equation*}
$$

The time complexity of Algorithm 1 is same as the time complexity of Algorithm 2 with $n=2$ (the time complexity analysis for Algorithm 2 is given in Section 2.3.3). Thus, the time complexity of Algorithm 1 is $O\left(k_{\max }{ }^{2}\right)$ where $k_{\text {max }}=\max \left\{k_{0}, k_{1}\right\}$.

In the following section, we generalize Algorithm 1 to solve the same problem for any number of dimensions (i.e $n \geq 2$). In Section 2.4 , we show the simulation results for both algorithms.

2.3 Routing in n-Dimensional Generalized Hypercube

In this section, we propose Algorithm 2 which solves the one-to-many node disjoint paths (NDP) routing problem in n-dimensional GH denoted by $Q_{k_{n-1}, \ldots, k_{1}, k_{0}}^{n}$. This

Figure 2.9: The basic idea of Algorithm 2
problem is described as follows: given any source node $s=\left(s_{n-1} \ldots s_{1} s_{0}\right)$ and a set of distinct destination nodes $T=\left\{t_{i}=\left(t_{i_{n-1}} \ldots t_{i_{1}} t_{i_{0}}\right) \mid 1 \leq i \leq \ell\right\}$ such that $s \notin T$ and $\ell=\sum_{i=0}^{n-1}\left(k_{i}-1\right)$, find a set of $\operatorname{NDP} \mathbb{P}(s, T)$ from s to each destination node in T.

2.3.1 Algorithm 2: n-Dimensional GH

Before explaining the detailed steps of Algorithm 2, we first give an overview. Algorithm 2 is an iterative algorithm (see Figure 2.9). Let $j=1,2, \ldots,(n-1)$ be the iteration counter. In the first iteration $(j=1)$, the algorithm partitions the n-dimensional GH to a number of mutually disjoint ($n-1$)-dimensional subcubes,
satisfying some properties to be discussed soon. In the second iteration $(j=2)$, the algorithm partitions the $(n-1)$-dimensional subcube that has the source node to a number of mutually disjoint ($n-2$)-dimensional subcubes, again satisfying some properties to be discussed soon. Let $m=n-(j-1)$ be the dimension of the source's subcubes (before partitioning) in the current iteration j. So in each iteration, the algorithm partitions the m-dimensional cube that has the source node to a number of mutually disjoint $(m-1)$-dimensional cubes.

The partitioning process (as explained later) depends on the number of unavailable nodes (as defined in Section 2.1) in the subcube that has the source node. Let $U=\left\{u_{i}=\left(u_{i_{m-1}} \ldots u_{i_{0}}\right) \mid 1 \leq i \leq \sum_{j=0}^{m-1}\left(k_{j}-1\right)\right\}$ be a set of unavailable nodes in the m-dimensional cube that has the source node. As we have defined earlier, an unavailable node u_{i} is either a destination node (i.e. $u_{i} \in T$) or an internal node. Initially when $(j=1), U$ contains only all destination nodes in T (i.e. $U=T$). After that, U has different unavailable nodes in each iteration as the algorithm performs the following operations on the resultant subcubes (after partitioning) during each iteration (see Figure 2.9 and note that the source node exists exactly in one of the resultant subcubes after each partitioning):

1. For each subcube other than the source's subcube, Algorithm 2 designates one unavailable node; and the path to that node goes from the source node to the source's immediate neighbor in that subcube and then to that unavailable node.
2. For all other unavailable nodes (other than those considered in the above step and not existed in the source's subcube), the algorithm maps them (as explained later) to distinct nodes in the subcube that has the source node.

000	020	100	120	200	220
001	021	101	121	201	221
002	022	102	122	202	222
010	030	110	130	210	230
011	031	111	131	211	231
012	032	112	132	212	232

Figure 2.10: All nodes of $Q_{3,4,3}^{3}$ (the source node is (000) and the destination nodes are in black)

The mapping process includes adding these distinct nodes to the set of NDP. So, they become internal nodes and therefore unavailable nodes. Since they are in the subcube that has the source node, the algorithm adds them to U. Thus, they will be considered during the next partitioning. Note that, U also contains any unavailable node that happens to be in the source's subcube as a result of the partitioning.

For example in Figure 2.9, as a result of the partitioning and mapping during the first iteration, the second iteration starts with U that has three destination nodes and two internal nodes. Similarly, as a result of the partitioning and mapping during the second iteration, the third iteration starts with U that has one destination node and two internal nodes. Algorithm 2 constructs each path starting from the destination node and keeps adding internal node(s) in each iteration (not necessary in each and every iteration) until the path is fully constructed.

To explain the detailed steps of Algorithm 2, we use the example in Figure 2.10. In this example, the source node is $s=(000)$, the set of destination nodes is $T=\{(001),(021),(031),(002),(022),(032),(102)\}$, and the network is $Q_{3,4,3}^{3}$. The following steps describe the algorithm in details (see Algorithm 2):

(a) $\check{e}=0, \ell_{0}=5$

(b) $\check{e}=1, \ell_{1}=4$

$q_{2}^{2,0}$	
$\mathbf{0 0 0}$	020
001	021
002	022
010	030
011	031
012	032

$q_{2}^{2,1}$	
100	120
101	121
102	122
110	130
111	131
112	132

c	$q_{2}^{2,2}$
200	220
201	221
202	222
210	230
211	231
212	232

(c) $\check{e}=2, \ell_{2}=5$

Figure 2.11: All ways to partition $Q_{3,4,3}^{3}$
Step 1 (Reach the source's neighbors)

For each destination node t_{i} such that $D_{H}\left(s, t_{i}\right)=1$, the path $P\left(s, t_{i}\right)$ as $\left(s_{n-1} \ldots s_{0}\right)$ $\rightarrow\left(t_{i_{n-1}} \ldots t_{i_{0}}\right)$ is constructed in this step. For example in Figure 2.10, the algorithm constructs in this step the paths $P(000,001)$ as $000 \rightarrow 001$ and $P(000,002)$ as $000 \rightarrow 002$ because $D_{H}(000,001)=D_{H}(000,002)=1$. This step is performed only once.

Step 2 (Partition)

In this step, the algorithm partitions the m-dimensional cube, denoted by
$Q_{k_{m-1}, \ldots, k_{1}, k_{0}}^{m}$, that has the source node using dimension $\check{e} \in\{0,1,2, \ldots, m-1\}$ to $k_{\check{e}}$ mutually disjoint $(m-1)$-dimensional subcubes: $q_{\check{e}}^{m-1,0}, q_{\check{e}}^{m-1,1}, \ldots, q_{\check{e}}^{m-1, k_{\check{e}}-1}$. The subcube $q_{\check{e}}^{m-1, x}$ is obtained by fixing the \check{e}-th coordinate to x where $x \in$ $\left\{0,1, \ldots,\left(k_{\check{e}}-1\right)\right\}$. The node degree $\ell_{\check{e}}$ in these subcubes is equal to $\ell_{\check{e}}=$ $\sum_{i=0, i \neq e}^{m-1}\left(k_{i}-1\right)$.

Clearly, there are m different ways to partition the m-dimensional cube. For example in Figure 2.10, during the first iteration $(j=1, m=n=3), Q_{3,4,3}^{3}$ can be partitioned in three different ways (see Figure 2.11):

1. $\check{e}=0$ (Figure 2.11a): $q_{0}^{2,0}, q_{0}^{2,1}, q_{0}^{2,2}$. The node degree in these subcubes is $\ell_{0}=3+2=5$.
2. $\check{e}=1$ (Figure 2.11b): $q_{1}^{2,0}, q_{1}^{2,1}, q_{1}^{2,2}, q_{1}^{2,3}$. The node degree in these subcubes is $\ell_{1}=2+2=4$.
3. $\check{e}=2$ (Figure 2.11c): $q_{2}^{2,0}, q_{2}^{2,1}, q_{2}^{2,2}$. The node degree in these subcubes is $\ell_{2}=2+3=5$.
```
Algorithm 2 One-to-Many NDP Routing in \(n\)-Dimensional Generalized Hyper-
cube
    Input: \(Q_{k_{n-1}, \ldots, k_{1}, k_{0}}^{n}, s=\left(s_{n-1} \ldots s_{1} s_{0}\right)\), and \(T=\left\{t_{i}=\left(t_{i_{n-1}} \ldots t_{i_{1}} t_{i_{0}}\right) \mid 1 \leq i \leq\right.\)
    \(\ell\}\) where \(s \notin T\) and \(\ell=\sum_{i=0}^{n-1}\left(k_{i}-1\right)\)
    Output: \(\mathbb{P}(s, T)\)
    procedure OneToMany_n \(D\left(Q_{k_{n-1}, \ldots, k_{1}, k_{0}}^{n} s, T\right)\)
        Used \(=\left\{s, t_{1}, t_{2}, \ldots, t_{\ell}\right\} ; \quad D P=\emptyset ; \quad\) Reached \(=\emptyset ;\)
        for \(1 \leq i \leq \ell\) do \(\quad \triangleright\) Step 1: Reach the Source's Neighbors
            if \(D_{H}\left(s, t_{i}\right)=1\) then
                \(P\left(s, t_{i}\right)=\left\langle\left(s_{n-1} \ldots s_{0}\right),\left(t_{i_{n-1}} \ldots t_{i_{0}}\right)\right\rangle ; D P=D P \cup\)
    \(P\left(s, t_{i}\right) ; \quad\) Reached \(=\) Reached \(\cup\left\{t_{i}\right\} ;\)
        end if
        end for
        \(j=1 ; \quad m=n ; \quad U=T ; \quad \triangleright U\) is the set of unavailable nodes in the
    source's subcube
        while \(\mid\) Reached \(|\neq|T|\) do
            \(e=\underset{0 \leq \dot{e} \leq m-1}{\arg \max }\left\{v_{\check{e}}^{\left(m-1, s_{e}\right)} \mid v_{\check{e}}^{(m-1, x)} \leq \ell_{\check{e}}=\sum_{i=0, i \neq \check{e}}^{m-1}\left(k_{i}-1\right) \quad \forall \quad x \in\right.\)
    \(\left.\left\{0,1, \ldots,\left(k_{\check{e}}-1\right)\right\}\right\} ; \quad \triangleright\) Step 2: Partition
            Partition \(Q_{k_{m-1}, \ldots, k_{1}, k_{0}}^{m}\) to \(q_{e}^{m-1,0}, q_{e}^{m-1,1}, \ldots, q_{e}^{m-1, k_{e}-1} ; \triangleright Q_{k_{m-1}, \ldots, k_{1}, k_{0}}^{m}\) is
    the \(m\)-cube that has the source
            \(U=U \cap q_{e}^{m-1, s_{e}} ; \quad \triangleright \operatorname{Reset} U\) to have all unavailable nodes in the new
    source's subcube
            \(v_{e}^{\left(m-1, s_{e}\right)}=|U| ;\)
            Sort the subcubes other than \(q_{e}^{m-1, s_{e}}\) in the following order:
    \(q_{e}^{m-1,0}, q_{e}^{m-1,1}, \ldots, q_{e}^{m-1, k_{e}-1} ; \quad \triangleright\) Step 3: Sort
            Sort the unavailable nodes within each subcube other than \(q_{e}^{m-1, s_{e}}\) in
    ascending lexicographical order ;
            STEP_4; \(\triangleright\) Step 4: Construct or Map
            \(j=j+1 ; \quad m=m-1 ;\)
        end while
        \(\mathbb{P}(s, T)=D P ;\)
        return \(\mathbb{P}(s, T)\);
    end procedure
```

```
Algorithm 2 Continued
    procedure STEP_4
        for each subcubes \(q_{e}^{m-1,0}, q_{e}^{m-1,1}, \ldots, q_{e}^{m-1, k_{e}-1}\) other than \(q_{e}^{m-1, s_{e}}\) do
            for each unavailable node \(u_{i}\) in this subcube do
                        if \(u_{i}\) is not the last unavailable node in \(q_{e}^{m-1, u_{i}}\) then
                        if \(u_{i}^{\left(e, s_{e}\right)} \notin U\) sed and \(v_{e}^{\left(m-1, s_{e}\right)}<\ell_{e}\) then
                                CASES_1_6; \(\triangleright\) Case 1
                            else if \(s^{\left(e, u_{i}\right)} \notin U\) sed then
                            CASES_2_5 ; \(\triangleright\) Case 2
            else
                                    Find_H
                                    if \(h\) and \(h^{\left(e, s_{e}\right)}\) exist and \(v_{e}^{\left(m-1, s_{e}\right)}<\ell_{e}\) then
                                    CASES_3_7; \(\triangleright\) Case 3
                else
                                CASES_4_8; \(\quad\) Case 4
                                end if
                            end if
            else if \(s^{\left(e, u_{i}\right)} \notin U\) sed then
                            CASES_2_5; \(\triangleright\) Case 5
            else if \(u_{i}^{\left(e, s_{e}\right)} \notin U\) sed and and \(v_{e}^{\left(m-1, s_{e}\right)}<\ell_{e}\) then
                            CASES_1_6; \(\triangleright\) Case 6
                else
                            Find_H
                                if \(h\) and \(h^{\left(e, s_{e}\right)}\) exist and \(v_{e}^{\left(m-1, s_{e}\right)}<\ell_{e}\) then
                                    CASES_3_7; \(\triangleright\) Case 7
                else
                                    CASES_4_8; \(\triangleright\) Case 8
                                    end if
                end if
            end for
            end for
    end procedure
```

```
Algorithm 2 Continued
    procedure Find_H
        \(G=\left\{g_{i} \mid g_{i} \in q_{e}^{m-1, u_{i e}} \quad\right.\) and \(\left.\quad D_{H}\left(g_{i}, u_{i}\right)=1\right\} ;\)
        Sort \(G\) in ascending order according to \(D_{H}\left(s, g_{i}\right)\);
        for each \(g_{i} \in G\) do
            \(g_{i}^{\left(e, s_{e}\right)}=x\) s.t. \(D_{H}\left(g_{i}, x\right)=1 \quad\) and \(\quad x \in q_{e}^{m-1, s_{e}} ;\)
            if \(g_{i} \notin U\) sed and \(g_{i}^{\left(e, s_{e}\right)} \notin U\) sed then
                \(h=g_{i} ; \quad h^{\left(e, s_{e}\right)}=g_{i}^{\left(e, s_{e}\right)} ;\)
            end if
        end for
    end procedure
```

```
Algorithm 2 Continued
    procedure CASES_1_6
        \(P\left(s, t_{i}\right)=\left\langle\left(s_{m-1} \ldots s_{0}\right), \ldots,\left(u_{i_{m-1}} \ldots u_{i_{e+1}} s_{e} u_{i_{e-1}} \ldots u_{i_{0}}\right),\left(u_{i_{m-1}} \ldots u_{i_{0}}\right), \ldots\right.\),
    \(\left.\left(t_{i_{m-1}} \ldots t_{i_{0}}\right)\right\rangle ;\)
        \(U\) sed \(=\) U sed \(\cup\left(u_{i_{m-1}} \ldots u_{i_{e+1}} s_{e} u_{i_{e-1}} \ldots u_{i_{0}}\right)\);
        \(U=U \cup\left(u_{i_{m-1}} \ldots u_{i_{e+1}} s_{e} u_{i_{e-1}} \ldots u_{i_{0}}\right)\);
        \(v_{e}^{\left(m-1, s_{e}\right)}=v_{e}^{\left(m-1, s_{e}\right)}+1\);
        if \(u_{i}^{\left(e, s_{e}\right)}\) and \(s\) are neighbors then
            \(D P=D P \cup P\left(s, t_{i}\right) ;\) Reached \(=\) Reached \(\cup\left\{t_{i}\right\} ;\)
        end if
    end procedure
```

```
Algorithm 2 Continued
    procedure CASES_2_5
        \(P\left(s, t_{i}\right) \quad=\quad\left\langle\left(s_{m-1} \ldots s_{0}\right),\left(s_{m-1} \ldots s_{e+1} u_{i_{e}} s_{e-1}\right.\right.\)
    \(\left.\left.\ldots s_{0}\right), \ldots,\left(u_{i_{m-1}} \ldots u_{i_{0}}\right), \ldots,\left(t_{i_{m-1}} \ldots t_{i_{0}}\right)\right\rangle ;\)
        \(D P=D P \cup P\left(s, t_{i}\right) ;\) Reached \(=\) Reached \(\cup\left\{t_{i}\right\} ;\)
        Used \(=U\) sed \(\cup\) all internal nodes in \(P\left(s, u_{i}\right)\);
    end procedure
```

```
Algorithm 2 Continued
    procedure CASES_3_7
        \(P\left(s, t_{i}\right)=\left\langle\left(s_{m-1} \ldots s_{0}\right), \ldots, \quad\left(u_{i_{m-1}} \ldots u_{i_{e+1}} s_{e} u_{i_{e-1}} \ldots h_{j} \ldots u_{i_{0}}\right)\right.\),
    \(\left.\left(u_{i_{m-1}} \ldots u_{i_{e+1}} u_{i_{e}} u_{i_{e-1}} \ldots h_{j} \ldots u_{i_{0}}\right),\left(u_{i_{m-1}} \ldots u_{i_{0}}\right), \ldots,\left(t_{i_{m-1}} \ldots t_{i_{0}}\right)\right\rangle ;\)
        Used \(=\quad\) ssed \(\cup\left\{\left(u_{i_{m-1}} \ldots u_{i_{e+1}} s_{e} u_{i_{e-1}} \ldots h_{j} \ldots u_{i_{0}}\right)\right.\),
    \(\left.\left(u_{i_{m-1}} \ldots u_{i_{e+1}} u_{i_{e}} u_{i_{e-1}} \ldots h_{j} \ldots u_{i_{0}}\right)\right\} ;\)
        \(U=U \cup\left(u_{i_{m-1}} \ldots u_{i_{e+1}} s_{e} u_{i_{e-1}} \ldots h_{j} \ldots u_{i_{0}}\right) ;\)
        \(v_{e}^{\left(m-1, s_{e}\right)}=v_{e}^{\left(m-1, s_{e}\right)}+1\);
        if \(h^{\left(e, s_{e}\right)}\) and \(s\) are neighbors then
            \(D P=D P \cup P\left(s, t_{i}\right) ;\) Reached \(=\) Reached \(\cup\left\{t_{i}\right\} ;\)
        end if
    end procedure
```

```
Algorithm 2 Continued
    procedure CASES_4_8
        \(P\left(s, t_{i}\right) \quad=\quad\left\langle\left(s_{m-1} \ldots s_{0}\right), \quad\left(s_{i_{m-1}} \ldots s_{i_{e+1}} p s_{i_{e-1}} \ldots s_{i_{0}}\right), \ldots\right.\),
    \(\left.\left(u_{i_{m-1}} \ldots u_{i_{e+1}} p u_{i_{e-1}} \ldots u_{i_{0}}\right),\left(u_{i_{m-1}} \ldots u_{i_{0}}\right), \ldots,\left(t_{i_{m-1}} \ldots t_{i_{0}}\right)\right\rangle ;\)
        \(D P=D P \cup P\left(s, t_{i}\right) ;\) Reached \(=\) Reached \(\cup\left\{t_{i}\right\} ;\)
        \(U\) sed \(=U\) sed \(\cup\) all internal nodes in \(P\left(s, t_{i}\right)\);
    end procedure
```

Choosing the partitioning dimension \check{e} is crucial to avoid the unreachable destination node problem. Note that the unavailable nodes are distributed differently depending on the choice of the partitioning dimension ě. Let $v_{e}^{(m-1, x)}$ be the number of unavailable nodes in the subcube $q_{\check{e}}^{m-1, x}$ where $x \in\left\{0,1, \ldots,\left(k_{\check{e}}-1\right)\right\}$. So, $v_{\tilde{e}}^{\left(m-1, s_{e}\right)}$ is equal to the number of unavailable nodes in the subcube that has the source node such that the m-dimensional cube was partitioned using the partitioning dimension ě. For example in Figure 2.11b, since $s=\left(s_{2} s_{1} s_{0}\right)=(000)$, the number of unavailable nodes $v_{1}^{\left(m-1, s_{1}\right)}=v_{1}^{(2,0)}$ in the subcube that has the source node is equal to three. Similarly, $v_{1}^{(2,1)}=0, v_{1}^{(2,2)}=2$, and $v_{1}^{(2,3)}=2$. Let

$$
\begin{equation*}
e=\underset{0 \leq \check{e} \leq m-1}{\arg \max }\left\{v_{\check{e}}^{\left(m-1, s_{\check{e}}\right)} \mid v_{\check{e}}^{(m-1, x)} \leq \ell_{\check{e}} \quad \forall \quad x \in\left\{0,1, \ldots,\left(k_{\check{e}}-1\right)\right\}\right\} \tag{2.2}
\end{equation*}
$$

Algorithm 2 uses Equation (2.2) to choose the partitioning dimension e. This equation returns the partitioning dimension e, such that the subcube containing the source node has the highest but less than or equal ℓ_{e} number of unavailable nodes. Furthermore, all other subcubes contain at most ℓ_{e} unavailable nodes. There exists at least one partitioning dimension e satisfying Equation (2.2) (to be proved in Section 2.3.2).

For example in Figure 2.11, the $2^{\text {nd }}$ dimension ($\check{e}=2$, Figure 2.11c) will not be chosen because the number of unavailable nodes $v_{2}^{(2,0)}=6$ in the subcube $q_{2}^{2,0}$ is more than the node degree $\ell_{2}=5$. The algorithm will choose the $1^{\text {st }}$ dimension (i.e. $e=1$) because the number of unavailable nodes $v_{1}^{(2,0)}=3 \leq \ell_{1}=4$ in $q_{1}^{2,0}$ is more than the number of unavailable nodes $v_{0}^{(2,0)}=0 \leq \ell_{0}=5$ in $q_{0}^{2,0}$ and all subcubes $q_{1}^{2,0}, q_{1}^{2,1}, q_{1}^{2,2}$, and $q_{1}^{2,3}$ have less than or equal $\ell_{1}=4$ unavailable nodes. Note that $q_{2}^{2,0}$ can contain at most $\ell_{1}=4$ unavailable nodes.

Step 3 (Sort)

After the partitioning process, the algorithm creates an ordered set of unavailable nodes that are not in the source's subcube $q_{e}^{m-1, s_{e}}$ by first sorting the subcubes other than $q_{e}^{m-1, s_{e}}$ in the following order: $q_{e}^{m-1,0}, q_{e}^{m-1,1}, \ldots, q_{e}^{m-1, k_{e}-1}$. Then, within each subcube in this order, the algorithm sorts the unavailable nodes in ascending lexicographical order. For example in Figure 2.11b, the resultant ordered set is $\langle 021,022,031,032\rangle$. This sorting is used to uniquely identify the last destination node in each subcube.

Step 4 (Construct or map)

Starting from the first unavailable node u_{i} in the ordered set obtained in Step 3, the algorithm either constructs the path $P\left(s, t_{i}\right)$ completely as $s \rightarrow \cdots \rightarrow u_{i} \rightarrow$ $\cdots \rightarrow t_{i}$ or adds one or two internal node(s) (mapping) to the portion $s \rightarrow \cdots \rightarrow u_{i}$ of this path, according to the following cases (see Figure 2.12):

Case 1: Suppose the following: 1) u_{i} is not the last unavailable node in its subcube $q_{e}^{m-1, u_{i e}}$ (according to the ordered set obtained in Step 3), 2) the current number $v_{e}^{\left(m-1, s_{e}\right)}$ of unavailable nodes in the source's subcube is less than the node degree in the source's subcube (i.e. $v_{e}^{\left(m-1, s_{e}\right)}<\ell_{e}$), and 3) the neighbor of u_{i} in the source's subcube is available. Note that the address of this neighbor is $\left(u_{i_{m-1}} \ldots u_{i_{e+1}} s_{e} u_{i_{e-1}} \ldots u_{i_{0}}\right)$, which we represent as $u_{i}^{\left(e, s_{e}\right)}$ (i.e. replace the e-th coordinate of u_{i} 's address by s_{e}).

In Case 1, the algorithm maps u_{i} by adding its neighbor $u_{i}^{\left(e, s_{e}\right)}$ to the path $P\left(s, t_{i}\right)$ as $\left(s_{m-1} \ldots s_{0}\right) \rightarrow \cdots \rightarrow\left(u_{i_{m-1}} \ldots u_{i_{e+1}} s_{e} u_{i_{e-1}} \ldots u_{i_{0}}\right) \rightarrow$ $\left(u_{i_{m-1}} \ldots u_{i_{0}}\right) \rightarrow \cdots \rightarrow\left(t_{i_{m-1}} \ldots t_{i_{0}}\right)$. In the next iteration, $u_{i}^{\left(e, s_{e}\right)}$ is one of the unavailable nodes in U. If s and $u_{i}^{\left(e, s_{e}\right)}$ are neighbors, the path $P\left(s, t_{i}\right)$ has been connected as $s \rightarrow u_{i}^{\left(e, s_{e}\right)} \rightarrow u_{i} \rightarrow \cdots \rightarrow t_{i}$. This action increases $v_{e}^{\left(m-1, s_{e}\right)}$ by one because $u_{i}^{\left(e, s_{e}\right)}$ becomes unavailable node.

Case 2: Suppose the following: 1) u_{i} is not the last unavailable node in $q_{e}^{m-1, u_{i e}}$, 2) $u_{i}^{\left(e, s_{e}\right)}$ is not available or $v_{e}^{\left(m-1, s_{e}\right)}=\ell_{e}$, and 3) the neighbor of s in the subcube that has u_{i} is available. This neighbor is $s^{\left(e, u_{i}\right)}=$ $\left(s_{m-1} \ldots s_{e+1} u_{i_{e}} s_{e-1} \ldots s_{0}\right)$.

In Case 2, the algorithm constructs the path $P\left(s, t_{i}\right)$ completely as $\left(s_{m-1} \ldots\right.$

Figure 2.12: All cases of Step 4 of Algorithm 2
$\left.s_{0}\right) \rightarrow\left(s_{m-1} \ldots s_{e+1} u_{i_{e}} s_{e-1} \ldots s_{0}\right) \rightarrow \cdots \rightarrow\left(u_{i_{m-1}} \ldots u_{i_{0}}\right) \rightarrow \cdots \rightarrow\left(t_{i_{m-1}} \ldots\right.$ $t_{i_{0}}$), such that the path from $s^{\left(e, u_{i e}\right)}$ to u_{i} is within the same subcube $q_{e}^{m-1, u_{i_{e}}}$. For example in Figure 2.11b where $s=(000), e=1$, and $s_{e}=0$, consider the unavailable node $u_{i}=(021)$. Note the following: 1) this unavailable node is not the last unavailable node in the subcube $q_{1}^{2,2}$ because the unavailable node (022) is after $u_{i}=(021)$ in the ordered set (according to the sorting in Step 3), 2) its neighbor $u_{i}^{\left(e, s_{e}\right)}=(021)^{(1,0)}=(001)$ in the source's subcube is not available (a destination node), and 3) the source's neighbor $s^{\left(e, u_{i e}\right)}=(000)^{(1,2)}=(020)$ in $q_{1}^{2,2}$ is available. So, the algorithm constructs the path $P(000,021)$ completely as $000 \rightarrow 020 \rightarrow 021$. Similarly, the algorithm constructs the path $P(000,031)$ completely as $000 \rightarrow 030 \rightarrow 031$.

Case 3: Suppose the following: 1) u_{i} is not the last unavailable node in $q_{e}^{m-1, u_{i}}$, 2) $u_{i}^{\left(e, s_{e}\right)}$ is not available, 3) $s^{\left(e, u_{i e}\right)}$ is not available, 4) $v_{e}^{\left(m-1, s_{e}\right)}<\ell_{e}$, and 5) within the same subcube $q_{e}^{m-1, u_{i e}}$, a neighbor of u_{i} is available and also the neighbors of this neighbor in the source's subcube $q_{e}^{m-1, s_{e}}$ is also available.

The number of neighbors of u_{i} in its subcube is equal to ℓ_{e}. Let $h=\left(u_{i_{m-1}} \ldots\right.$ $u_{i_{e+1}} u_{i_{e}} u_{i_{e-1}} \ldots h_{j} \ldots u_{i_{0}}$) be any neighbor (available or unavailable) of u_{i} in the same subcube $q_{e}^{m-1, u_{i}}$ where $j \in\{0,1, \ldots, e-1, e+1, \ldots, m-1\}$ and $h_{j} \in\left\{0,1, \ldots, k_{j}-1\right\}$. In this case, the algorithm performs the following actions:

1. Sort all neighbors of u_{i} in the same subcube $q_{e}^{m-1, u_{i e}}$ in ascending order according to the Hamming distance from the source. This sorting is mainly for minimizing the path length by examining the availability of the closest neighbor to the source node.
2. For each node h starting from the top in this list, check whether h is available; and also check whether its neighbor in the source's subcube $h^{\left(e, s_{e}\right)}=\left(u_{i_{m-1}} \ldots u_{i_{e+1}} s_{e} u_{i_{e-1}} \ldots h_{j} \ldots u_{i_{0}}\right)$ is also available. Note that by assumption, at least one of u_{i} 's neighbors satisfies the above condition.
3. Add h and $h^{\left(e, s_{e}\right)}$ to the path $P\left(s, t_{i}\right)$ as $s \rightarrow \cdots \rightarrow h^{\left(e, s_{e}\right)} \rightarrow h \rightarrow u_{i} \rightarrow$ $\cdots \rightarrow t_{i}$. In the next iteration, $h^{\left(e, s_{e}\right)}$ is one of the unavailable nodes in U. If s and $h^{\left(e, s_{e}\right)}$ are neighbors, the path $P\left(s, t_{i}\right)$ has been connected as $s \rightarrow h^{\left(e, s_{e}\right)} \rightarrow h \rightarrow u_{i} \rightarrow \cdots \rightarrow t_{i}$. This action increases $v_{e}^{\left(m-1, s_{e}\right)}$ by one because $h^{\left(e, s_{e}\right)}$ becomes unavailable node in the source's subcube.

Later, an example is given for Case 7 and it is similar to Case 3.

Case 4: Suppose the following: 1) u_{i} is not the last unavailable node in $q_{e}^{m-1, u_{i_{e}}}$, 2) $u_{i}^{\left(e, s_{e}\right)}$ is not available or $\left.v_{e}^{\left(m-1, s_{e}\right)}=\ell_{e}, 3\right) s^{\left(e, u_{i e}\right)}$ is not available, and 4) for each neighbor h of u_{i}, either h is not available or $h^{\left(e, s_{e}\right)}$ is not available. In this case, there must exist another subcube (other than $q_{e}^{m-1, s_{e}}$) that does not have any unavailable nodes (to be proved in Section 2.3.2). Let $q_{e}^{m-1, p}$ be this subcube such that $p \in\left\{0,1, \ldots, s_{e}-1, s_{e}+1, \ldots, k_{e}-\right.$ $1\}$. Let $s^{(e, p)}=\left(s_{m-1} \ldots s_{e+1} p s_{e-1} \ldots s_{0}\right)$ be the source's neighbor in the this subcube. Let $u_{i}^{(e, p)}=\left(u_{i_{m-1}} \ldots u_{i_{e+1}} p u_{i_{e-1}} \ldots u_{i_{0}}\right)$ be the neighbor of u_{i} in the this subcube. In this case, the algorithm constructs the path $P\left(s, t_{i}\right)$ completely as $\left(s_{m-1} \ldots s_{0}\right) \rightarrow\left(s_{m-1} \ldots s_{e+1} p s_{e-1} \ldots s_{0}\right) \rightarrow \cdots \rightarrow$ $\left(u_{i_{m-1}} \ldots u_{i_{e+1}} p u_{i_{e-1}} \ldots u_{i_{0}}\right) \rightarrow\left(u_{i_{m-1}} \ldots u_{i_{0}}\right) \rightarrow \cdots \rightarrow\left(t_{i_{m-1}} \ldots t_{i_{0}}\right)$ such that the path from $s^{(e, p)}$ to $u_{i}^{(e, p)}$ is within the subcube $q_{e}^{m-1, p}$ that has no unavailable nodes.

Later, an example is given for Case 8 and it is similar to Case 4 .
Case 5: Suppose the following: 1) u_{i} is the last unavailable node in $q_{e}^{m-1, u_{i e}}$, and 2) $s^{\left(e, u_{i}\right)}$ is available. In this case, the algorithm performs same actions as in Case 2. It constructs the path $P\left(s, t_{i}\right)$ completely through the source's neighbor $s^{\left(e, u_{i e}\right)}$ in the subcube that has u_{i} as $s \rightarrow s^{\left(e, u_{i e}\right)} \rightarrow \cdots \rightarrow u_{i} \rightarrow$ $\cdots \rightarrow t_{i}$. Please see the example given for Case 2 which is similar to Case 5.

Case 6: Suppose the following: 1) u_{i} is the last unavailable node in $q_{e}^{m-1, u_{i_{e}}}, 2$) $s^{\left(e, u_{i e}\right)}$ is not available, 3) $u_{i}^{\left(e, s_{e}\right)}$ is available, and 4) $v_{e}^{\left(m-1, s_{e}\right)}<\ell_{e}$. In this case, the algorithm performs same actions as in Case 1. It maps u_{i} by adding its neighbor $u_{i}^{\left(e, s_{e}\right)}$ in $q_{e}^{m-1, s_{e}}$ to the path $P\left(s, t_{i}\right)$ as $s \rightarrow \cdots \rightarrow u_{i}^{\left(e, s_{e}\right)} \rightarrow u_{i} \rightarrow$ $\cdots \rightarrow t_{i}$. In the next iteration, $u_{i}^{\left(e, s_{e}\right)}$ is one of the unavailable nodes in U.

Case 7: Suppose the following: 1) u_{i} is the last unavailable node in $q_{e}^{m-1, u_{i_{e}}}, 2$) $s^{\left(e, u_{i e}\right)}$ is not available, 3) $u_{i}^{\left(e, s_{e}\right)}$ is not available, 4) $v_{e}^{\left(m-1, s_{e}\right)}<\ell_{e}$, and 5) a neighbor h of u_{i} within the same subcube $q_{e}^{m-1, u_{i e}}$ and h 's neighbor $h^{\left(e, s_{e}\right)}$ are both available. In this case, the algorithm performs same actions as in Case 3. It adds h and $h^{\left(e, s_{e}\right)}$ to the path $P\left(s, t_{i}\right)$ as $s \rightarrow \cdots \rightarrow h^{\left(e, s_{e}\right)} \rightarrow h \rightarrow$ $u_{i} \rightarrow \cdots \rightarrow t_{i}$. In the next iteration, $h^{\left(e, s_{e}\right)}$ is one of the unavailable nodes in U.

For example in Figure 2.11b where $s=(000), e=1$, and $s_{e}=0$, consider the unavailable node $u_{i}=(022)$. Note the following: 1) this unavailable node is the last unavailable node in $\left.q_{1}^{2,2}, 2\right)$ the source's neighbor $s^{\left(e, u_{i e}\right)}=(000)^{(1,2)}=$ (020) in $q_{1}^{2,2}$ has been used by the path $\left.P(000,021), 3\right)$ the neighbor of (022) in the source's subcube $q_{1}^{2,0}$, which is $u_{i}^{\left(e, s_{e}\right)}=(022)^{(1,0)}=(002)$, is not
available (a destination node), 4) $v_{1}^{(2,0)}=3<\ell_{1}=4$, and 5) there exists a neighbor h of (022) in $q_{1}^{2,2}$ that is available and its neighbor $h^{\left(e, s_{e}\right)}=h^{(1,0)}$ in $q_{1}^{2,0}$ is also available. In this case, the algorithm performs the following actions:

1. Sort all neighbors of $u_{i}=(022)$ in $q_{1}^{2,2}$ in ascending order according to the Hamming distance from the source (000). The resultant ordered set is $\langle 020,021,122,222\rangle$.
2. For each node h starting from the top of this list, check the availability of h and its neighbor $h^{(1,0)}$. (020) and (021) are not available. (122) is available but its neighbor $(122)^{(1,0)}=(102)$ in $q_{1}^{2,0}$ is unavailable (a destination node). (222) and its neighbor $(222)^{(1,0)}=(202)$ are both available, so we add them to the path in the next step.
3. Add $h=(222)$ and $h^{(1,0)}=(202)$ to the path $P(000,022)$ as $000 \rightarrow$ $\cdots \rightarrow 202 \rightarrow 222 \rightarrow 022$. In the next iteration, $h^{(1,0)}=(202)$ is one of the unavailable nodes in U. This action increases $v_{1}^{(2,0)}$ by one. So, $v_{1}^{(2,0)}=4$.

Since at this point $v_{1}^{(2,0)}=\ell_{1}=4$, any further mapping is not possible.
Case 8: Suppose the following: 1) u_{i} is the last unavailable node in $q_{e}^{m-1, u_{i}}$, 2) $s^{\left(e, u_{i}\right)}$ is not available, 3) $u_{i}^{\left(e, s_{e}\right)}$ is not available or $v_{e}^{\left(m-1, s_{e}\right)}=\ell_{e}$, and 4) for each neighbor h of u_{i} within the same subcube $q_{e}^{m-1, u_{i}}$, either h is not available or $h^{\left(e, s_{e}\right)}$ is not available. In this case, there must exist another subcube $q_{e}^{m-1, p}$ (other than $q_{e}^{m-1, s_{e}}$) that does not have any unavailable nodes (to be proved in Section 2.3.2). The algorithm performs same actions as in

Case 4. It constructs the path $P\left(s, t_{i}\right)$ completely through the subcube $q_{e}^{m-1, p}$ that has no unavailable nodes as $s \rightarrow s^{(e, p)} \rightarrow \cdots \rightarrow u_{i}^{(e, p)} \rightarrow u_{i} \rightarrow \cdots \rightarrow t_{i}$. For example in Figure 2.11b where $s=(000), e=1$, and $s_{e}=0$, consider the unavailable node $u_{i}=(032)$. Note the following: 1) this unavailable node is the last unavailable node in $\left.q_{1}^{2,3}, 2\right)$ the source's neighbor $s^{\left(e, u_{i e}\right)}=$ $(000)^{(1,3)}=(030)$ in $q_{1}^{2,3}$ has been used by the path $P(000,031)$, and 3) $v_{1}^{(2,0)}=\ell_{1}=4$. In this case note that, the subcube $q_{1}^{2,1}$ (where $p=1$) does not have any unavailable nodes. The algorithm constructs the path $P(000,032)$ completely as $000 \rightarrow 010 \rightarrow 012 \rightarrow 032$ where $s^{(e, p)}=(000)^{(1,1)}=(010)$ and $u_{i}^{(e, p)}=(032)^{(1,1)}=(012)$.

Step 5 (Iterate)

Unless all destination nodes in T have been reached, go to Step 2 .
For example in Figure 2.11b, the algorithm constructs the following paths during the next iteration $(j=2)$:

- $P(000,102)$ as $000 \rightarrow 100 \rightarrow 102$.
- $P(000,022)$ as $000 \rightarrow 200 \rightarrow 202 \rightarrow 222 \rightarrow 022$ (completing the path from the previous iteration).

Example 2.3.1 provides a complete example of Algorithm 2.
Example 2.3.1. Consider the $G H Q_{5,3,2,4}^{4}$. The node degree in this $G H$ is $\ell=10$. Let the source node be $s=(0000)$ and the set of the ten distinct destination nodes be $T=\{0011,1102,0212,1013,1202,2012,0210,2113,0113,1111\}$. Algorithm 2 finds a set of NDP from s to each destination node in T as follows:

Figure 2.13: Iteration-wise of all NDP in Example 2.3.1

- Step 1 (Reach the source's neighbors): All destination nodes in T are not neighbors of the source.
- $1^{\text {st }}$ Iteration $(j=1, m=n=4)$:
- Step 2 (Partition $Q_{5,3,2,4}^{4}$):

$$
\begin{gathered}
* e=\arg \max \left\{\left\{v_{0}^{(3,0)}=1 \mid v_{0}^{(3,0)}=1, v_{0}^{(3,1)}=2, v_{0}^{(3,2)}=4, v_{0}^{(3,3)}=\right.\right. \\
\left.3 \leq \ell_{0}=7\right\},\left\{v_{1}^{(3,0)}=2 \mid v_{1}^{(3,0)}=2, v_{1}^{(3,1)}=8 \leq \ell_{1}=9\right\},\left\{v_{2}^{(3,0)}=\right. \\
\left.3 \mid v_{2}^{(3,0)}=3, v_{2}^{(3,1)}=4, v_{2}^{(3,2)}=3 \leq \ell_{2}=8\right\},\left\{v_{3}^{(3,0)}=4 \mid v_{3}^{(3,0)}=\right. \\
\left.\left.4, v_{3}^{(3,1)}=4, v_{3}^{(3,2)}=2, v_{3}^{(3,3)}=0, v_{3}^{(3,4)}=0 \leq \ell_{3}=6\right\}\right\}=3
\end{gathered}
$$

* Partitions:
- $q_{3}^{3,0}$ has $\{0011,0212,0210,0113\}$.
- $q_{3}^{3,1} \operatorname{has}\{1102,1013,1202,1111\}$.
- $q_{3}^{3,2}$ has $\{2012,2113\}$.
- $q_{3}^{3,3}$ has no unavailable nodes.
- $q_{3}^{3,4}$ has no unavailable nodes.
- Step 3 (Sort the unavailable nodes that are not in $q_{3}^{3,0}$):
* $\langle 1013,1102,1111,1202,2012,2113\rangle$
- Step 4 (Construct the path completely or map):
* $P(0000,1013)$ is $0000 \rightarrow \cdots \rightarrow 0013 \rightarrow 1013$ (Case 1, map (1013))
- $v_{3}^{(3,0)} \leftarrow v_{3}^{(3,0)}+1=5$
* $P(0000,1102)$ is $0000 \rightarrow \cdots \rightarrow 0102 \rightarrow 1102$ (Case 1, map (1102))
- $v_{3}^{(3,0)} \leftarrow v_{3}^{(3,0)}+1=6\left(v_{3}^{(3,0)}=\ell_{3}\right.$, can't map any more $)$
* $P(0000,1111)$ is $0000 \rightarrow 1000 \rightarrow 1001 \rightarrow 1011 \rightarrow 1111$ (Case 2, construct the path completely)
* $P(0000,1202)$ is $0000 \rightarrow 3000 \rightarrow 3002 \rightarrow 3202 \rightarrow 1202$ (Case 4, construct the path completely through the subcube $q_{3}^{3,3}$ that has no unavailable nodes)
* $P(0000,2012)$ is $0000 \rightarrow 2000 \rightarrow 2002 \rightarrow 2012$ (Case 2, construct the path completely)
* $P(0000,2113)$ is $0000 \rightarrow 4000 \rightarrow 4003 \rightarrow 4013 \rightarrow 4113 \rightarrow 2113$ (Case 4, construct the path completely through the subcube $q_{3}^{3,4}$ that has no unavailable nodes)
- $\mathscr{2}^{\text {nd }}$ Iteration $(j=2, m=3)$:
- Step 2 (Partition $q_{3}^{3,0}$):
* The set of unavailable nodes in $q_{3}^{3,0}$ is $\{0011,0212,0210,0113,0013$, $0102\}$.
$* e=\arg \max \left\{\left\{v_{0}^{(2,0)}=1 \mid v_{0}^{(2,0)}=1, v_{0}^{(2,1)}=1, v_{0}^{(2,2)}=2, v_{0}^{(2,3)}=\right.\right.$ $\left.2 \leq \ell_{0}=3\right\},\left\{v_{1}^{(2,0)}=1 \mid v_{1}^{(2,0)}=1, v_{1}^{(2,1)}=5 \leq \ell_{1}=5\right\},\left\{v_{2}^{(2,0)}=\right.$ $\left.\left.2 \mid v_{2}^{(2,0)}=2, v_{2}^{(2,1)}=2, v_{2}^{(2,2)}=2 \leq \ell_{2}=4\right\}\right\}=2$
* Partitions:
- $q_{2}^{2,0} \operatorname{has}\{0011,0013\}$.
- $q_{2}^{2,1} \operatorname{has}\{0113,0102\}$.
- $q_{2}^{2,2} h a s\{0212,0210\}$.
- Step 3 (Sort the unavailable nodes that are not in $q_{2}^{2,0}$):
* $\langle 0102,0113,0210,0212\rangle$
- Step 4 (Construct the path completely or map):
* $P(0000,1102)$ is $0000 \rightarrow 0002 \rightarrow 0102 \rightarrow 1102$ (Case 1, map (0102))
- $v_{2}^{(2,0)} \leftarrow v_{2}^{(2,0)}+1=3$
* $P(0000,0113)$ is $0000 \rightarrow 0100 \rightarrow 0103 \rightarrow 0113$ (Case 5, construct the path completely)
* $P(0000,0210)$ is $0000 \rightarrow 0010 \rightarrow 0210$ (Case 1, map (0210))
- $v_{2}^{(2,0)} \leftarrow v_{2}^{(2,0)}+1=4\left(v_{2}^{(2,0)}=\ell_{2}\right.$, can't map any more)
* $P(0000,0212)$ is $0000 \rightarrow 0200 \rightarrow 0202 \rightarrow 0212$ (Case 5, construct the path completely)
- $3^{\text {rd }}$ Iteration $(j=3, m=2)$:
- Step 2 (Partition $q_{2}^{2,0}$):
* The set of unavailable nodes in $q_{2}^{2,0}$ is $\{0011,0013,0002,0010\}$.
* $e=\arg \max \left\{\left\{v_{0}^{(1,0)}=1 \mid v_{0}^{(1,0)}=1, v_{0}^{(1,1)}=1, v_{0}^{(1,2)}=1, v_{0}^{(1,3)}=1\right.\right.$

$$
\left.\left.\leq \ell_{0}=1\right\},\left\{v_{1}^{(1,0)}=1 \mid v_{1}^{(1,0)}=1, v_{1}^{(1,1)}=3 \leq \ell_{1}=3\right\}\right\}=0
$$

* Partitions:
- $q_{0}^{1,0}$ has $\{0010\}$.
- $q_{0}^{1,1}$ has $\{0011\}$.
- $q_{0}^{1,2}$ has $\{0002\}$.
- $q_{0}^{1,2}$ has $\{0013\}$.
- Step 3 (Sort the unavailable nodes that are not in $q_{0}^{1,0}$):
* $\langle 0011,0013\rangle$
- Step 4 (Construct the path completely or map):
* $P(0000,0011)$ is $0000 \rightarrow 0001 \rightarrow 0011$ (Case 5, construct the path completely)
* $P(0000,1013)$ is $0000 \rightarrow 0003 \rightarrow 0013 \rightarrow 1013$ (Case 5, construct the path completely)

All destination nodes in T have been reached using a set of NDP. All paths are shown in Figure 2.13. Each link was constructed during the iteration number above it. Note how Algorithm 2 constructs the path (during more than one iteration) starting from the destination node by adding the internal nodes until the path is completely connected with the source node. For example, $P(0000,1013)$ had to wait until the $3^{\text {rd }}$ iteration even its construction started during the $1^{\text {st }}$ iteration.

Figure 2.14: Addresses of all unavailable nodes

2.3.2 Correctness of Algorithm 2

Theorem 2.3.3 proves the correctness of Algorithm 2. Theorem 2.3.1 and Theorem 2.3.2 are needed to prove Theorem 2.3.3.

Theorem 2.3.1. In a GH $Q_{k_{m-1}, \ldots, k_{0}}^{m}$, given any source node $s=\left(s_{m-1} \ldots s_{0}\right)$ and a set of distinct unavailable nodes $U=\left\{u_{i}=\left(u_{i_{m-1}} \ldots u_{i_{0}}\right) \mid 1 \leq i \leq \sum_{j=0}^{m-1}\left(k_{j}-1\right)\right\}$, $Q_{k_{m-1}, \ldots, k_{0}}^{m}$ can be partitioned along a dimension, say $e \in\{0,1, \ldots, m-1\}$, such that the number $v_{e}^{(m-1, x)}$ of unavailable nodes in the subcube $q_{e}^{m-1, x}$ is at most $\ell_{e}=\sum_{j=0, j \neq e}^{m-1}\left(k_{j}-1\right)$ for all $x \in\left\{0,1, \ldots,\left(k_{e}-1\right)\right\}$.

Proof. We prove the theorem by contradiction. Assume that the statement is false. That means the number of unavailable nodes $v_{e}^{(m-1, x)}$ in $q_{e}^{m-1, x}$ for some $x \in\left\{0,1, \ldots,\left(k_{e}-1\right)\right\}$ is strictly greater than ℓ_{e} for all $e=0,1, \ldots, m-1$. Consider the e-th coordinate $u_{i_{e}}$ of each unavailable node $u_{i} \in U$. Clearly, the number of unavailable nodes that has the value x in the e-th coordinate is equal to $v_{e}^{(m-1, x)}$. So, the number of unavailable nodes that have value $\neq x$ in the e-th coordinate is equal to $|U|-v_{e}^{(m-1, x)}$ (see Figure 2.14). Since we have assumed $v_{e}^{(m-1, x)}>\ell_{e}$, this is equivalent to $|U|-v_{e}^{(m-1, x)}<|U|-\ell_{e}$ for all $e=0,1, \ldots, m-1$. As shown in Figure 2.14, the number of distinct unavailable nodes is maximum when
the ' $\neq x$ ' elements in each dimension of the unavailable nodes addresses do not overlap. Thus, the maximum number of unavailable nodes is $\sum_{e=0}^{m-1}\left(|U|-v_{e}^{(m-1, x)}\right)$. Since $|U|-v_{e}^{(m-1, x)}<|U|-\ell_{e}$, this is equivalent to $\sum_{e=0}^{m-1}\left(|U|-v_{e}^{(m-1, x)}\right)<$ $\sum_{e=0}^{m-1}\left(|U|-\ell_{e}\right)=\sum_{e=0}^{m-1}\left(k_{e}-1\right)=|U|$. This is a contradiction since it is assumed that the number of unavailable nodes is exactly equal to $|U|$.

Theorem 2.3.2 provides a set of maximum number of one-to-one NDP from a source to a destination. In [5], the authors have also given a method to find this set. However in their method, some nodes are in more than one path and so, the paths are not node disjoint. Thus, Theorem 2.3.2 is an improvement over their results. This theorem is useful in order to show that the paths construction in Case 2 and Case 5 of Step 4 of Algorithm 2 is possible.

Theorem 2.3.2. In a $G H Q_{k_{m-1}, \ldots, k_{0}}^{m}$, suppose $a=\left(a_{m-1} \ldots a_{0}\right)$ and $b=\left(b_{m-1} \ldots b_{0}\right)$ are the source and destination nodes. There is a set of $l=\sum_{j=0}^{m-1}\left(k_{j}-1\right)$ NDP as follows:

1. If $D_{H}(a, b)=m$, then there are m NDP of length m and $l-m$ NDP of length $m+1$.
2. If $D_{H}(a, b)=d<m$ and a and b differ in $i_{1}, i_{2}, \ldots, i_{d}$ positions, then there are d NDP of length $d, \sum_{j=1}^{d}\left(k_{i_{j}}-2\right)$ NDP of length $d+1$, and $l-d-$ $\sum_{j=1}^{d}\left(k_{i_{j}}-2\right)$ NDP of length $d+2$.

Proof. Case 1: Suppose $D_{H}(a, b)=m$. In this case, there is a set of l NDP as follows:

1. The m NDP of length m are as follows (correct one digit at a time starting from the i-th digit going along right to left):

The i-th path, $i=0,1, \ldots, m-1$, is the following:

$$
\begin{aligned}
& \left(a_{n-1} a_{n-2} \ldots a_{i+1} a_{i} a_{i-1} \ldots a_{0}\right) \rightarrow\left(a_{n-1} a_{n-2} \ldots a_{i+1} b_{i} a_{i-1} \ldots a_{0}\right) \rightarrow \\
& \left(a_{n-1} a_{n-2} \ldots b_{i+1} b_{i} a_{i-1} \ldots a_{0}\right) \rightarrow \cdots \rightarrow\left(b_{n-1} b_{n-2} \ldots b_{i+1} b_{i} a_{i-1} \ldots a_{0}\right) \rightarrow \\
& \left(b_{n-1} b_{n-2} \ldots b_{i+1} b_{i} a_{i-1} \ldots a_{1} b_{0}\right) \rightarrow \cdots \rightarrow\left(b_{n-1} b_{n-2} \ldots b_{i+1} b_{i} b_{i-1} \ldots b_{1} b_{0}\right) .
\end{aligned}
$$

2. The remaining $l-m$ NDP of length $m+1$ are as follows:

For each i-th digit, first change a_{i} to c_{i} where $c_{i} \neq b_{i}, c_{i} \neq a_{i}$, and $c_{i} \in\left\{0,1,2, \ldots, k_{i}-1\right\}$. Then as before correct one digit at a time starting from digit $i+1$ going from right to left in cyclic order and finally change c_{i} to b_{i}. These paths have path length of $m+1$.

It can be easily verified that all these l paths are node disjoint. Example 2.3.2 provides an example of this case.

Example 2.3.2. For example, suppose $m=3, k_{0}=k_{1}=k_{2}=4$, $a=(021)$, and $b=(132)$. In this case $D_{H}(a, b)=3$. A set of $l=3+3+3=9$ NDP is as follows:

1. The $m=3$ NDP of length $m=3$ are (correct one digit at a time going from right to left in cyclic order):
i) $021 \rightarrow 022 \rightarrow 032 \rightarrow 132$
ii) $021 \rightarrow 031 \rightarrow 131 \rightarrow 132$
iii) $021 \rightarrow 121 \rightarrow 122 \rightarrow 132$
2. The $l-m=9-3=6$ NDP of length $m+1=3+1=4$ are:
i) $021 \rightarrow 020 \rightarrow 030 \rightarrow 130 \rightarrow 132$
ii) $021 \rightarrow 023 \rightarrow 033 \rightarrow 133 \rightarrow 132$

$$
\begin{aligned}
& \text { iii) } 021 \rightarrow 001 \rightarrow 101 \rightarrow 102 \rightarrow 132 \\
& \text { iv) } 021 \rightarrow 011 \rightarrow 111 \rightarrow 112 \rightarrow 132 \\
& \text { v) } 021 \rightarrow 221 \rightarrow 222 \rightarrow 232 \rightarrow 132 \\
& \text { vi) } 021 \rightarrow 321 \rightarrow 322 \rightarrow 332 \rightarrow 132
\end{aligned}
$$

Case 2: Suppose $D_{H}(a, b)=d<m$. In this case, there is a set of l NDP as follows:

1. The d NDP of length d can be constructed by correcting one digit at a time, going from right to left in cyclic order. The i-th path, $i=$ $1,2, \ldots, d$, starts with correcting the i-th digit in which they differ.
2. The $\sum_{j=1}^{d}\left(k_{i_{j}}-2\right)$ NDP of length $d+1$ can be constructed as follows: Suppose $i_{1}, i_{2}, \ldots, i_{d}$ are the positions in which $a_{i_{j}} \neq b_{i_{j}}$ for $j=1,2, \ldots$, d. Change $a_{i_{j}}$ to $c_{i_{j}}$ where $c_{i_{j}} \neq a_{i_{j}}, c_{i_{j}} \neq b_{i_{j}}$, and $c_{i_{j}} \in\left\{0,1, \ldots, k_{i_{j}}-1\right\}$. First go from node a to the node a^{\prime} where the node values are same as a except the i_{j}-th digit of a^{\prime} is $c_{i_{j}}$. Then correct one digit at a time (i.e. a_{t} to b_{t} whenever the digits differ) going from right to left in cyclic order. After correcting all other digits, change $c_{i_{j}}$ to $b_{i_{j}}$.
3. The $l-d-\sum_{j=1}^{d}\left(k_{i_{j}}-2\right)$ NDP of length $d+2$ are as follows: Suppose $a_{i_{j}}=b_{i_{j}}$ for $j=1,2, \ldots, m-d$. Change $a_{i_{j}}$ to $c_{i_{j}}$ where $c_{i_{j}} \neq a_{i_{j}}$ and $c_{i_{j}} \in\left\{0,1, \ldots, k_{i_{j}}-1\right\}$. In other words, go from a to a^{\prime} where the node values are same as a except the i_{j}-th digit of a^{\prime} is $c_{i_{j}}$. From a^{\prime}, construct the path by correcting one digit at a time where a and b differ and finally correcting $c_{i_{j}}$ to $b_{i_{j}}$.

It can be easily verified that all those l paths are node disjoint. Example 2.3.3 provides an example of this case.

Example 2.3.3. For example, suppose $m=3, k_{0}=k_{1}=k_{2}=4$, $a=(021)$, and $b=(032)$. In this case $D_{H}(a, b)=d=2<m=3$. A set of $l=$ $3+3+3=9$ NDP is as follows:

1. The $d=2$ NDP of length $d=2$ are:
i) $021 \rightarrow 022 \rightarrow 032$
ii) $021 \rightarrow 031 \rightarrow 032$
2. The $\sum_{j=1}^{d=2}\left(k_{i_{j}}-2\right)=\left(k_{0}-2\right)+\left(k_{1}-2\right)=4$ NDP of length $d+1=2+1=3$ are:
i) $021 \rightarrow 020 \rightarrow 030 \rightarrow 032$
ii) $021 \rightarrow 023 \rightarrow 033 \rightarrow 032$
iii) $021 \rightarrow 001 \rightarrow 002 \rightarrow 032$
iv) $021 \rightarrow 011 \rightarrow 012 \rightarrow 032$
3. The $l-d-\sum_{j=1}^{d}\left(k_{i_{j}}-2\right)=9-2-4=3 N D P$ of length $d+2=4$ are:
i) $021 \rightarrow 121 \rightarrow 122 \rightarrow 132 \rightarrow 032$
ii) $021 \rightarrow 221 \rightarrow 222 \rightarrow 232 \rightarrow 032$
iii) $021 \rightarrow 321 \rightarrow 322 \rightarrow 332 \rightarrow 032$

Theorem 2.3.3. In a GH $Q_{k_{n-1}, \ldots, k_{0}}^{n}$, given any source node $s=\left(s_{n-1} \ldots s_{0}\right)$ and a set of distinct destination nodes $T=\left\{t_{i}=\left(t_{i_{n-1}} \ldots t_{i_{0}}\right) \mid 1 \leq i \leq \ell\right\}$ such that $s \notin T$ and $\ell=\sum_{j=0}^{n-1}\left(k_{j}-1\right)$, Algorithm 2 always finds a set of $N D P \mathbb{P}(s, T)$ with path lengths at most $2 n-1$.

Proof. Since the GH is symmetric network, without loss of generality, assume that the source node s is $(00 \ldots 0)$.

Note that if a destination node t_{i} is at distance one, then the path $P\left(00 \ldots 0, t_{i}\right)$, by Step 1 of Algorithm 2, is $(00 \ldots 0) \rightarrow\left(00 \ldots t_{i_{j}} \ldots 0\right), j \in\{0,1, \ldots, n-1\}$, and its length is equal to one. Assume that the destination node t_{i} is at distance more than one. Let $\ell^{(n)}=\sum_{j=0}^{n-1}\left(k_{j}-1\right)$ be the number of destination nodes in the n-dimensional GH. $\ell^{(n)}$ is also equal to the node degree in the n-dimensional GH. We prove that Algorithm 2 finds a set of NDP to $\ell^{(n)}$ distinct destination nodes with path lengths at most $2 n-1$ by induction on the dimension n of the GH $Q_{k_{n-1}, \ldots, k_{0}}^{n}$.

Base Case: When $n=2$, Algorithm 2 is equivalent to Algorithm 1. In this case as proved in Theorem 2.2.1, there are $k_{0}+k_{1}-2$ NDP with lengths at most $2 \times 2-1=3$ in a GH $Q_{k_{1}, k_{0}}^{2}$.

Induction Step: Assume the hypothesis is true for $n-1$. In other words, given a source node $s=(00 \ldots 0)$ and $\ell^{(n-1)}=\sum_{j=0}^{n-2}\left(k_{j}-1\right)$ distinct destination nodes, Algorithm 2 finds a set of NDP from s to these $\ell^{(n-1)}$ destination nodes with path lengths at most $2(n-1)-1=2 n-3$.

In Step 2 of Algorithm 2, the algorithm partitions the n-cube to k_{e} mutually disjoint ($n-1$)-cubes using the partitioning dimension e such that the node degree $\ell^{(n-1)}$ in all subcubes is equal to $\sum_{j=0}^{n-2}\left(k_{j}-1\right)$ and the number of destination nodes in the subcube $q_{e}^{n-1,0}$ that has the source node is at most $\ell^{(n-1)}$. Theorem 2.3.1 proves that e always exists.

Let the set of distinct destination nodes in the n-cube be $U=\left\{u_{i}=\left(u_{i_{n-1}} \ldots\right.\right.$ $\left.\left.u_{i_{0}}\right) \mid 1 \leq i \leq \ell^{(n)}\right\}$. Suppose that a destination node $u_{i}=\left(u_{i_{n-1}} \ldots u_{i_{0}}\right) \in U$ is in
$q_{e}^{n-1,0}$. Algorithm 2 makes the number $v_{e}^{(m-1,0)}$ of destination and internal nodes in $q_{e}^{n-1,0}$ exactly equal to $\ell^{(n-1)}$. Thus by induction hypothesis, there is a path $P\left(s, u_{i}\right)$ of length at most $2 n-3$ to this destination node u_{i}. On the other hand, suppose u_{i} is in a subcube other than $q_{e}^{n-1,0}$. Then, there are two cases:

Case 1: Suppose the neighbor $(00 \ldots 0)^{\left(e, u_{i}\right)}=\left(00 \ldots 0 u_{i_{e}} 0 \ldots 0\right)$ of the source node $(00 \ldots 0)$ in the subcube $q_{e}^{n-1, u_{i}}$ that has u_{i} is available. Then, there are two subcases:

Case 1.1: Suppose $v_{e}^{(m-1,0)}=\ell^{(n-1)}$, meaning the mapping is not possible. Then by Case 2 or Case 5 of Step 4 of Algorithm 2, the path $P\left(00 \ldots 0, u_{i}\right)$ is $(00 \ldots 0) \rightarrow\left(00 \ldots 0 u_{i_{e}} 0 \ldots 0\right) \rightarrow \cdots \rightarrow\left(u_{i_{n-1}} \ldots u_{i_{0}}\right)$. By Equation 2.2, the number of destination nodes in the subcube $q_{e}^{n-1, u_{i e}}$ that has u_{i} is less than the node degree $\ell^{(n-1)}$ of this subcube. It follows that the previous path exists because according to Theorem 2.3.2 there are $\ell^{(n-1)}$ NDP from $\left(00 \ldots 0 u_{i_{e}} 0 \ldots 0\right)$ to u_{i} within the same subcube $q_{e}^{n-1, u_{i}}$. Its length is equal to $D_{H}\left(00 \ldots 0 u_{i_{e}} 0 \ldots 0, u_{i}\right)+1 \leq 2 n-1$.

Case 1.2: Suppose $v_{e}^{(m-1,0)}<\ell^{(n-1)}$, meaning the mapping is possible. Then, there are two subcases:

Case 1.2.1: Suppose u_{i} is the last destination node in $q_{e}^{n-1, u_{i}}$. Then by Case 2 of Step 4 of Algorithm 2, the path $P\left(00 \ldots 0, u_{i}\right)$ is the same as the path given in Case 1.1.

Case 1.2.2: Suppose u_{i} is not the last destination node in $q_{e}^{n-1, u_{i e}}$. In this case the algorithm performs one of the following mappings:

1. By Case 1 of Step 4 of Algorithm 2, the algorithm maps u_{i} by $\operatorname{adding} u_{i}^{(e, 0)}=\left(u_{i_{n-1}} \ldots u_{i_{e+1}} 0 u_{i_{e-1}} \ldots u_{i_{0}}\right)$ to $P\left(00 \ldots 0, u_{i}\right)$.
2. If the above mapping is not possible, then, by Case 3 of Step 4 of Algorithm 2, the algorithm maps the neighbor $h=\left(u_{i_{n-1}} \ldots\right.$ $\left.u_{i_{e+1}} u_{i_{e}} u_{i_{e-1}} \ldots h_{j} \ldots u_{i_{0}}\right)$ of u_{i} in $q_{e}^{n-1, u_{i_{e}}}$ where $j \in\{0,1, \ldots$, $n-1\}, j \neq e$, and $h_{j} \in\left\{0,1, \ldots, k_{j}-1\right\}$ by adding $h^{(e, 0)}=$ $\left(u_{i_{n-1}} \ldots u_{i_{e+1}} 0 u_{i_{e-1}} \ldots h_{j} \ldots u_{i_{0}}\right)$ to $P\left(00 \ldots 0, u_{i}\right)$.

At least one of these two mappings is possible. We prove this by contradiction.

Assume that it is not possible to do any one of the above mappings. Since $v_{e}^{(m-1,0)}<\ell^{(n-1)}$, it follows $u_{i}^{(e, 0)}$ and $h^{(e, 0)}$ for all h such that h in $q_{e}^{n-1, u_{i}}$ and $D_{H}\left(h, u_{i}\right)=1$ are not available. There are two cases:

1) Suppose u_{i} and ($00 \ldots 0 u_{i_{e}} 0 \ldots 0$) are neighbors. Then, the number of neighbors of u_{i} in $q_{e}^{n-1, u_{i e}}$ other than $\left(00 \ldots 0 u_{i_{e}} 0 \ldots 0\right)$ is equal to $\ell^{(n-1)}-1$. It follows that $v_{e}^{(m-1,0)}=\ell^{(n-1)}-1+$ $1=\ell^{(n-1)}$. This is a contradiction because it is assumed that $v_{e}^{(m-1,0)}<\ell^{(n-1)}$.
2) Suppose u_{i} and ($\left.00 \ldots 0 u_{i_{e}} 0 \ldots 0\right)$ are not neighbors. Then, the number of neighbors of u_{i} in $q_{e}^{n-1, u_{i}}$ is equal to $\ell^{(n-1)}$. It follows that $v_{e}^{(m-1,0)}=\ell^{(n-1)}+1$. This is a contradiction because it is assumed that $v_{e}^{(m-1,0)}<\ell^{(n-1)}$.

Thus, we have gotten a contradiction in both cases. So, at least one of the above mappings is possible. By the induction hypothesis, there is a path of length at most $2 n-3$ to the mapped node. So, the path length to u_{i} is at most $2 n-3+2=2 n-1$.

Case 2: Suppose the neighbor $(00 \ldots 0)^{\left(e, u_{i e}\right)}=\left(00 \ldots 0 u_{i_{e}} 0 \ldots 0\right)$ of the source $(00 \ldots 0)$ in the subcube $q_{e}^{n-1, u_{i}}$ that has u_{i} is not available. Then, there are two subcases:

Case 2.1: Suppose $v_{e}^{(m-1,0)}=\ell^{(n-1)}$. In this case (by Case 4 or Case 8 of Algorithm 2), the path $P\left(00 \ldots 0, u_{i}\right)$ is the following such that $q_{e}^{n-1, p}$ has no unavailable nodes:

$$
\begin{aligned}
& (00 \ldots 0) \rightarrow(00 \ldots 0 p 0 \ldots 0) \rightarrow \cdots \rightarrow\left(u_{i_{n-1}} \ldots u_{i_{e+1}} p u_{i_{e-1}} \ldots u_{i_{0}}\right) \rightarrow \\
& \left(u_{i_{n-1}} \ldots u_{i_{0}}\right) .
\end{aligned}
$$

This subcube exists, which is proven below.
Assume that a subcube that has no unavailable nodes does not exist. This means there is at least one destination node in each of the subcubes other than the source's subcube. The number of these subcube is $k_{e}-1=\ell^{(n)}-\ell^{(n-1)}$. Thus, the number of destination nodes in these subcubes is at least $\ell^{(n)}-\ell^{(n-1)}$. As we have assumed that the source's subcube contains $\ell^{(n-1)}$ destination nodes. Thus, including u_{i}, the total number of destination nodes is equal to $\ell^{(n)}-\ell^{(n-1)}+\ell^{(n-1)}+1=\ell^{(n)}+1$. This is a contradiction because it is assumed that the number of destination nodes is exactly equal to $\ell^{(n)}$. So, there must exist at least one subcube that has no unavailable nodes which means the above path exists and its length is equal to $D_{H}\left(00 \ldots 0 p 0 \ldots 0, u_{i_{n-1}} \ldots u_{i_{e+1}} p u_{i_{e-1}} \ldots u_{i_{0}}\right)+$ $1+1 \leq 2 n-1$.

Case 2.2: Suppose $v_{e}^{(m-1,0)}<\ell^{(n-1)}$. Then, this case is similar to Case 1.2.2.

This proves that Algorithm 2 is correct.

Since it is possible that Algorithm 2 maps along the same path during each iteration, Corollary 2.3 .1 gives the upper and lower bounds of the length of any node disjoint path generated by Algorithm 2.

Corollary 2.3.1. For any node disjoint path $P\left(s, t_{i}\right)$ in $\mathbb{P}(s, T)$ generated by Algorithm 2, the upper and lower bounds of path length are given in Inequation (2.3).

$$
\begin{equation*}
D_{H}\left(s, t_{i}\right) \leq\left|P\left(s, t_{i}\right)\right| \leq 2 n-1 \tag{2.3}
\end{equation*}
$$

2.3.3 Time Complexity of Algorithm 2

In this section, we analyse the time complexity of Algorithm 2. For simplicity, assume that all dimensions have the same number of nodes. Let $k=k_{0}=k_{1}=$ $\cdots=k_{n-1}$. If k_{i} 's are not equal, we can replace k with $k_{\max }$ where $k_{\max }=$ $\max _{0 \leq i \leq(n-1)}\left\{k_{i}\right\}$. In the following we analyse the time complexity for each step of Algorithm 2 to find the overall time complexity:

1. In Step 1, Algorithm 2 constructs a path of length one to reach destination node at Hamming distance one. Since there are $\ell=n(k-1)$ destination nodes and Algorithm 2 checks each and every destination node, Step 1 takes $O(k n)$ time. Algorithm 2 performs this step one time.
2. In Step 2, Algorithm 2 partitions an m-cube into k subcubes of dimension ($m-1$) where $m=n-(j-1)$ and j is the iteration counter. Since the partitioning is based on digit sets of the destination nodes, Algorithm 2 can use the bucket sort method. Thus, Step 2 takes $O\left(m \ell^{(m)}\right)$ time in each iteration where $\ell^{(m)}=m(k-1)$ is the number of destination nodes in the
m-cube. So, the time complexity in all iterations is $\sum_{j=1}^{(n-1)} m \ell^{(m)}=(n) \ell^{(n)}+$ $(n-1) \ell^{(n-1)}+\cdots+(2) \ell^{(2)}=(k-1)\left[n^{2}+(n-1)^{2}+(n-2)^{2}+\cdots+2^{2}\right]=$ $O\left((k-1) n^{3}\right)$.
3. In Step 3, Algorithm 2 sorts all destination nodes that are not in the source's subcube. The number of these destination nodes is at most $\ell^{(m)}$. Since the sorting is based on digit sets of the destination nodes, Algorithm 2 can use the bucket sort method. Thus, Step 3 takes $O\left(m \ell^{(m)}\right)$ time in each iteration. So, it also takes $O\left((k-1) n^{3}\right)$ time in all iterations.
4. In Step 4, for each destination node in all subcubes except the source's subcube, Algorithm 2 constructs a complete path to this destination node or adds one or two internal node(s) to this path according to the eight cases provided in Step 4 (see Section 2.3.1). Clearly, Case 3 and Case 7 are the most time consuming cases because they involve finding an available neighbor within the same subcube that its neighbor in the source's subcube is also available.

The number of the destination nodes in all subcubes except the source's subcube is at most $\ell^{(m)}$. However, Algorithm 2 designates $(k-1)$ destination nodes to be reached through the source's immediate neighbor in each subcube (Case 2 or Case 5). So, these ($k-1$) destination nodes do not follow Case 3 or Case 7. The remaining number of destination nodes that could follow Case 3 or Case 7 is $\ell^{(m)}-(k-1)=m(k-1)-(k-1)=(m-1)(k-1)$. The worst case occurs when these $(m-1)(k-1)$ destination nodes have distributed evenly among the $(k-1)$ subcubes. In this case, all these $(m-1)(k-1)$ destination nodes follow Case 3 or Case 7 .

In these two cases, Algorithm 2 finds a neighbor of the destination node within the same subcube that is available and its neighbor in the source's subcube is also available. This involves the following operations:
(a) Sort all neighbors of the destination node within the same subcube according to the Hamming distance from the source to these neighbors. It can be seen that this Hamming distance is between the Hamming distance from the source to the destination node ± 2. So, we can assume that this sorting takes linear time.
(b) Check the availability of each neighbor of the destination node within the same subcube. If it is available, check the availability of its neighbor in the source's subcube. Since there are $\ell^{(m-1)}=(m-1)(k-1)$ neighbors of each destination node within the same subcube, this operation takes $O((k-1)(m-1))$ time for each destination node.

Thus, Step 4 takes $O\left([(k-1)(m-1)]^{2}\right)$ time in each iteration. So, the time complexity in all iterations is $\sum_{j=1}^{(n-1)}((k-1)(m-1))^{2}=(k-1)^{2}\left[(n-1)^{2}+\right.$ $\left.(n-2)^{2}+\cdots+2^{2}\right]=O\left(k^{2} n^{3}\right)$.

From the above analysis, we can see that Step 4 is the most time consuming step. So, the overall time complexity of Algorithm 2 is $O\left(k^{2} n^{3}\right)$ where $k=k_{0}=$ $k_{1}=\cdots=k_{n-1}$. If k_{i} 's are not equal, the overall time complexity is $O\left(k_{\max }{ }^{2} n^{3}\right)$ where $k_{\max }=\max _{0 \leq i \leq(n-1)}\left\{k_{i}\right\}$.

2.4 Simulation Results

In this section, we show the results of simulating the proposed algorithms. We mainly measure the path lengths and compare them to the Hamming distance $D_{H}\left(s, t_{i}\right)$ which is the shortest distance. Our simulation results show that all of the time our proposed algorithms give a set of node disjoint paths (NDP) and most of the time the length of the longest path is equal to $D_{H}\left(s, t_{i}\right)+1$, which is less than the upper bound, $2 n-1$, as defined in Inequation (2.3).

We ran a simulator of Algorithm 1500 times using 80 nodes in each dimension $\left(k_{0}=k_{1}=80\right)$ which makes the total number of destination nodes equals $2 \times 79=$ 158. In each run, the simulator randomly generated these 158 destination nodes and the source node. It returned a set of NDP for each run. After taking the average of the path lengths for all runs, the results are shown in Figure 2.15.

Figure 2.15a shows the average of the path lengths as a function of the Hamming distance, along with the lower and upper bounds as defined in Inequation (2.1). For destination nodes at Hamming distance one (neighbors), Algorithm 1 reached all of them using paths of length one. This was expected because Algorithm 1 reaches all destination nodes at distance one (Step 1) before considering any other destination nodes. For destination nodes at Hamming distance two, the average of the path lengths equals about 2.25 which is very close to the shortest distance (the lower bound) $D_{H}\left(s, t_{i}\right)$.

The path lengths average is close to the shortest distance because Algorithm 1 checks all possible paths of length two (Case 1 and Case 2 of Step 2 of Algorithm 1) before using a path of length three (Case 3 of Step 3 Algorithm 1). Figure 2.15b shows more details. It shows the percentage of destination nodes as a function of

Figure 2.15: Simulation results: (a,b) Algorithm $1(n=2),(\mathrm{c}, \mathrm{d})$ Algorithm 2 ($n=4$), (e,f) Algorithm $2(n=6)$
the Hamming distance for all possible lengths. In this figure, 100% of destination nodes at Hamming distance one have been reached by paths of length one. About 75% of destination nodes at Hamming distance two have been reached by paths of length two and the rest (about 25\%) have been reached by paths of length three. So, the majority of destination nodes have been reached using the shortest paths. Thus, the path lengths average is close to the shortest distance.

We ran a simulator of Algorithm 2 to find a set of NDP for each of the following
networks: 1) a four-dimensional $(n=4) \mathrm{GH}$ with 30 nodes in each dimension $\left(k_{0}=\cdots=k_{3}=30\right)$ and $4 \times 29=116$ destination nodes, and 2$)$ a six-dimensional $(n=6)$ GH with 8 nodes in each dimension $\left(k_{0}=\cdots=k_{5}=8\right)$ and $6 \times 7=42$ destination nodes. We ran the simulator 500 times for each network. For each one of the 1000 runs, the simulator returned a set of NDP. Figure 2.15 shows the results.

From these results, we note the following:

1. The actual path length in Figure 2.15c and Figure 2.15e is always between the lower and upper bounds as defined in Inequation (2.3).
2. The actual path length is always closer to the shortest distance (the lower bound).
3. The majority of destination nodes (80% to 90%) have been reached using the shortest paths as shown in Figure 2.15d and Figure 2.15f.
4. Most of the time the maximum length of a path $P\left(s, t_{i}\right)$ returned by Algorithm 2 is $D_{H}\left(s, t_{i}\right)+1$.

Thus, the practical upper bound is $D_{H}\left(s, t_{i}\right)+1$ which is less than the theoretical upper bound $2 n-1$. This is because Algorithm 2 minimizes the path lengths as much as possible by incorporating the following:

1. Algorithm 2 reaches all destination nodes at Hamming distance one before reaching all other nodes (Step 1).
2. Algorithm 2 checks the source's neighbor $s^{\left(e, t_{i e}\right)}$ in the subcube that has the destination node t_{i} and the destination node's neighbor $t_{i}^{\left(e, s_{e}\right)}$ in the subcube
that has the source node s before using a path going through a neighbor h of t_{i} within the same subcube or a subcube that has no unavailable nodes.
3. In Case 3 and Case 7 of Step 4, Algorithm 2 chooses the neighbor h of the destination node t_{i} within the same subcube such that: 1) h is available, 2) the neighbor $h^{\left(e, s_{e}\right)}$ of h in the subcube that has the source node s is also available, and more importantly 3) among all the t_{i} neighbors which are in the same subcube as t_{i}, Algorithm 2 chooses the neighbor h such that its neighbor $h^{\left(e, s_{e}\right)}$ is available and also h has the smallest distance from the source.

Thus in practice, for any destination node t_{i}, the proposed algorithm finds a path of length at most $D_{H}\left(s, t_{i}\right)+1$.

2.5 Conclusion

In this chapter we provide and prove some novel algorithms to find a set of the maximum number of one-to-many NDP from a source node to a set of destination nodes in the Generalized Hypercube interconnection networks. We show that the lower bound of each path is equal to the Hamming distance between the source node and that destination node, and the upper bound is equal to $2 n-1$ where n is the number of dimensions. In most cases, the proposed algorithms find a set of NDP with lengths at most one plus the Hamming distance between the source and destination nodes. We also show that the time complexity of the algorithm is $O\left(k_{\max }^{2} n^{3}\right)$ where $k_{\max }=\max _{0 \leq i \leq(n-1)}\left\{k_{i}\right\}$ and k_{i} is the number of nodes in dimension i.

Chapter 3: One-to-Many Node Disjoint Paths Routing in Dense Gaussian Networks*

In this chapter, an efficient constant time complexity algorithm that constructs node disjoint paths (NDP) from a single source node to the maximum number of destination nodes in dense Gaussian networks (DGNs) is given. Then, it is proved that this algorithm always returns a solution. Also, the lower and upper bounds of the sum of the NDP lengths are derived. Finally, via execution of the algorithm, it is shown that on the average the sum of lengths of NDP given by the algorithm is only about 10% more than the sum of the shortest paths lengths.

DGNs have significant topological advantages over torus networks in terms of diameter [31]. For example, there is a DGN with 400 nodes and diameter 14, whereas, any 2D toroidal network with 400 nodes will have a diameter of at least 20. So compare to torus networks, DGNs can accommodate more nodes with less communication latency and at the same time maintaining a regular grid-like structure. This makes DGNs attractive networks.

The rest of this chapter is organized as follows: Section 3.1 recalls several preliminaries about DGNs, Section 3.2 describes the proposed routing algorithm, Section 3.3 shows the algorithm execution results, and Section 3.4 concludes this chapter.

[^0]
3.1 Dense Gaussian Networks Preliminaries

Dense Gaussian Networks (DGNs) are defined in terms of Gaussian integers. The following subsections explain the Gaussian integers, describe DGNs, and formally define the one-to-many node disjoint paths (NDP) routing problem in these networks.

3.1.1 Gaussian Integers

A Gaussian integer is a complex number whose real and imaginary parts are both integers. The set of all Gaussian integers, $\mathbb{Z}[\mathbf{i}]$, is defined as $\{x+y \mathbf{i} \mid x, y \in \mathbb{Z}\}$ where $\mathbf{i}=\sqrt{-1}$.

The set $\mathbb{Z}[\mathbf{i}]$ is a Euclidean domain and the norm of a Gaussian integer $\omega=$ $\omega_{x}+\omega_{y} \mathbf{i}$ is defined as [17]:

$$
\mathcal{N}(\omega)=\omega_{x}{ }^{2}+\omega_{y}{ }^{2} .
$$

So, a Euclidean division algorithm for Gaussian integers exists. Let $\omega_{1}, \omega_{2} \in \mathbb{Z}[\mathbf{i}]$ and $\omega_{2} \neq 0$. Then, there exist $q, r \in \mathbb{Z}[\mathbf{i}]$ such that $\omega_{1}=q \omega_{2}+r$ and $\mathcal{N}(r)<\mathcal{N}\left(\omega_{2}\right)$. Let $\alpha=a+b \mathbf{i} \in \mathbb{Z}[\mathbf{i}]$ be nonzero where a and b are integers. Then, $\omega_{1}, \omega_{2} \in \mathbb{Z}[\mathbf{i}]$ are congruent modulo α if there exists $\gamma \in \mathbb{Z}[\mathbf{i}]$ such that $\omega_{2}-\omega_{1}=\gamma \alpha$. Congruence and the Gaussian integers modulo α are denoted by $\omega_{2} \equiv \omega_{1}(\bmod \alpha)$ and $\mathbb{Z}[\mathbf{i}]_{\alpha}$ respectively. The number of elements in $\mathbb{Z}[\mathbf{i}]_{\alpha}$ is equal to $\mathcal{N}(\alpha)=a^{2}+b^{2}$ [17].

(a) Two adiacent meshes $(\alpha=6+8 \mathbf{i})$

(b) Leaned square $(\alpha=3+4 \mathbf{i})$

Figure 3.1: Different representations of Gaussian networks

3.1.2 Dense Gaussian Networks

DGNs are two-dimensional networks generated by Gaussian integers and these were first introduced in [31]. Let $\alpha \in \mathbb{Z}[\mathbf{i}]$ be nonzero. Each node's address in a DGN generated by α is a Gaussian integer that belongs to the Gaussian integers modulo α denoted by $\mathbb{Z}[\mathbf{i}]_{\alpha}$. So, the number of nodes in this DGN is equal to $\mathcal{N}(\alpha)$. These nodes can be represented in several ways. One representation is by placing the nodes on two adjacent square meshes (see Figure 3.1a) [31, 42]. Another repre-

Figure 3.2: $\mathrm{DGN} G_{3}(\alpha=3+4 \mathbf{i})$
sentation is by placing the nodes on a leaned square (see Figure 3.1b) [15, 42]. In this work, we use different representation which is explained in [33] (see Figure 3.2). In this representation, the nodes are placed on a two-dimensional Cartesian plan where the x-axis and y-axis represent the real and imaginary parts of each node respectively.

It is proved that for a given diameter $k \in \mathbb{Z}^{+}$, a DGN achieves the largest network size with $k^{2}+(k+1)^{2}$ nodes when it is generated by $\alpha=k+(k+1) \mathbf{i}[31]$. This network is referred as DGN and we find NDP in these DGNs. In this work, we assume the generator of the DGN is $\alpha=k+(k+1) \mathbf{i}$ and denote this DGN by G_{k} where k is the network diameter. Figure 3.2 shows the DGN G_{3} generated by $\alpha=3+4 \mathbf{i}$. In this example, the number of nodes is equal to $\mathcal{N}(3+4 \mathbf{i})=3^{2}+4^{2}=25$ and the diameter $k=3$.

In the following, we explain the representation given in [33] in terms of the addressing, connectivity, diameter, degree, and shortest distance.

Addressing: Each node in the DGN generated by $\alpha=k+(k+1) \mathbf{i}$ is represented
as $\omega=\omega_{x}+\omega_{y} \mathbf{i} \in \mathbb{Z}[\mathbf{i}]_{\alpha}$. For simplicity, we write $\omega=\left(\omega_{x}, \omega_{y}\right)$ to denote node ω in the network. The set of all nodes in G_{k} is $\left\{\omega=\left(\omega_{x}, \omega_{y}\right) \in \mathbb{Z} \times \mathbb{Z}| | \omega_{x}\left|+\left|\omega_{y}\right| \leq k\right\}\right.$. In Figure 3.2, the 2-tuples inside each node are the addresses.

Connectivity: Two nodes $\omega_{1}, \omega_{2} \in \mathbb{Z}[\mathbf{i}]_{\alpha}$ in G_{k} are connected (neighbors) if and only if $\left(\omega_{1}-\omega_{2}\right) \equiv \pm 1, \pm \mathbf{i}(\bmod \alpha)$ where $\alpha=k+(k+1) \mathbf{i}$ is the generator of G_{k}. So, each node $\omega=\omega_{x}+\omega_{y} \mathbf{i} \in \mathbb{Z}[\mathbf{i}]_{\alpha}$ is connected to four neighbors:

1. the north neighbor $\omega^{N}=\omega_{x}+\left(\omega_{y}+1\right) \mathbf{i}(\bmod \alpha)$,
2. the west neighbor $\omega^{W}=\left(\omega_{x}-1\right)+\omega_{y} \mathbf{i}(\bmod \alpha)$,
3. the south neighbor $\omega^{S}=\omega_{x}+\left(\omega_{y}-1\right) \mathbf{i}(\bmod \alpha)$, and
4. the east neighbor $\omega^{E}=\left(\omega_{x}+1\right)+\omega_{y} \mathbf{i}(\bmod \alpha)$
where $\omega^{N}, \omega^{W}, \omega^{S}, \omega^{E} \in \mathbb{Z}[\mathbf{i}]_{\alpha}$.
The modulo function $(\bmod \alpha)$ is used to build the wraparound links. Let $\beta=\beta_{x}+\beta_{y} \mathbf{i} \in\left\{\omega_{x}+\left(\omega_{y}+1\right) \mathbf{i},\left(\omega_{x}-1\right)+\omega_{y} \mathbf{i}, \omega_{x}+\left(\omega_{y}-1\right) \mathbf{i},\left(\omega_{x}+1\right)+\omega_{y} \mathbf{i}\right\}$ be one of the neighbors before applying the modulo function where $\beta \notin \mathbb{Z}[\mathbf{i}]_{\alpha}$. Then, the modulo function $\beta(\bmod \alpha)$ is given by the following [31]:

$$
\beta(\bmod \alpha)=\left\{\begin{array}{lll}
\beta-\alpha & \text { if } \quad\left(\beta_{x} \geq 0\right) \wedge\left(\beta_{y} \geq 1\right) \tag{3.1}\\
\beta-\mathbf{i} \alpha & \text { if } \quad\left(\beta_{x} \leq-1\right) \wedge\left(\beta_{y} \geq 0\right) \\
\beta+\alpha & \text { if } \quad\left(\beta_{x} \leq 0\right) \wedge\left(\beta_{y} \leq-1\right) \\
\beta+\mathbf{i} \alpha & \text { if } \quad\left(\beta_{x} \geq 1\right) \wedge\left(\beta_{y} \leq 0\right)
\end{array}\right.
$$

In Figure 3.2, the dashed links are the wraparound links built using Equation 3.1 and these wraparound links always connect two boarder nodes (as defined in Definition 3.1.1 below) using Equation 3.1. For example, the south neighbor
of $\omega=-2-\mathbf{i}$ is $\omega^{S}=-2-2 \mathbf{i}(\bmod 3+4 \mathbf{i})=(-2-2 \mathbf{i})+(3+4 \mathbf{i})=1+2 \mathbf{i}$ where $\beta=-2-2 \mathbf{i}$. Another example is that the north neighbor of $\omega=-2+\mathbf{i}$ is $\omega^{N}=-2+2 \mathbf{i}(\bmod 3+4 \mathbf{i})=(-2+2 \mathbf{i})-\mathbf{i}(3+4 \mathbf{i})=(-2+2 \mathbf{i})+(4-3 \mathbf{i})=2-\mathbf{i}$ where $\beta=-2+2 \mathbf{i}$.

Diameter: The diameter is the largest possible distance between any two nodes in a network. The diameter of G_{k} is equal to k [31]. For example in Figure 3.2, the diameter of G_{3} is equal to three.

Degree: The node degree is the number of its neighbors. In DGNs, each node is adjacent to four other nodes. So, the node degree is equal to four for all nodes [31, 33].

Path: A path from node ω_{1} to node ω_{2} is denoted by $P\left(\omega_{1}, \omega_{2}\right)=\left\langle\omega_{1}, a_{1}, a_{2}, \ldots\right.$, $\left.a_{\left|P\left(\omega_{1}, \omega_{2}\right)\right|-1}, \omega_{2}\right\rangle$ where $\left|P\left(\omega_{1}, \omega_{2}\right)\right|$ is the length of the path and each two consecutive nodes (e.g. ω_{1} and a_{1}) along this path are neighbors. Sometimes, we write the path $P\left(\omega_{1}, \omega_{2}\right)$ as $\omega_{1} \rightarrow a_{1} \rightarrow a_{2} \rightarrow \cdots \rightarrow \omega_{2}$.

Distance: The shortest distance between any two nodes $\omega_{1}, \omega_{2} \in \mathbb{Z}[\mathbf{i}]_{\alpha}$ as defined in [31] is as follows:

$$
D_{\alpha}\left(\omega_{1}, \omega_{2}\right)=\min \left\{|x|+|y| \mid\left(\omega_{1}-\omega_{2}\right) \equiv(x+y \mathbf{i})(\bmod \alpha)\right\} .
$$

For example in Figure 3.2, the shortest distance between $(0,1)$ and $(1,2)$ is

$$
D_{\alpha}((0,1),(1,2))=|0-1|+|1-2|=|-1|+|-1|=2 .
$$

The length of the shortest path \backslash paths from ω_{1} to ω_{2} equals \backslash equal to the shortest distance $D_{\alpha}\left(\omega_{1}, \omega_{2}\right)$ between them. For example in Figure 3.2, one of the shortest paths between $(0,0)$ and $(1,1)$ is $(0,0) \rightarrow(1,0) \rightarrow(1,1)$ of length
$D_{\alpha}((0,0),(1,1))=2$. An example of a longer path $P((0,0),(1,1))$ is $(0,0) \rightarrow$ $(-1,0) \rightarrow(-1,1) \rightarrow(0,1) \rightarrow(1,1)$.

Since G_{k} is a Cayley graph with generator $\{1,-1, \mathbf{i},-\mathbf{i}\}, G_{k}$ is vertex symmetric $[3]$. So, the shortest distance between node $(0,0)$ and node $\omega=\left(\omega_{x}, \omega_{y}\right) \in \mathbb{Z}[\mathbf{i}]_{\alpha}$ is equal to ω 's weight $W(\omega) \in\{0,1,2, \ldots, k\}$, which is defined as [31]:

$$
\begin{equation*}
W(\omega)=\left|\omega_{x}\right|+\left|\omega_{y}\right| . \tag{3.2}
\end{equation*}
$$

For example in Figure 3.2, the weight of $(1,2)$ is $W((1,2))=3$ which is the shortest distance between $(0,0)$ and $(1,2)$.

Based on the weight, Definition 3.1.1 defines a border node.

Definition 3.1.1. Let $\omega \in \mathbb{Z}[\mathbf{i}]_{\alpha}$ be any node. Then, ω is a border node if and only if $W(\omega)=k$ where k is the network diameter.

For example in Figure 3.2, the nodes $(1,2),(3,0)$, and $(-1,-2)$ are some of the border nodes.

The distance distribution of G_{k} gives the number of nodes $H(r)$ at distance $r \in\{0,1,2, \ldots, k\}$ from the $(0,0)$ node. This distribution is defined as follows [31]:

$$
H(r)=\left\{\begin{array}{cll}
1 & \text { if } & r=0 \\
4 r & \text { if } & 1 \leq r \leq k
\end{array}\right.
$$

For example in $G_{3}, H(0)=1, H(1)=4, H(2)=8$, and $H(3)=12$.
Theorem 3.1.1 gives the shortest distance between node $(0,0)$ and any other node $\omega \in \mathbb{Z}[\mathbf{i}]_{\alpha}$ through exactly one wraparound link as a function of its weight $W(\omega)$. We use this theorem to calculate the length of some NDP.

Theorem 3.1.1. In a $D G N G_{k}$ where k is the network diameter, let $\omega \in \mathbb{Z}[\mathbf{i}]_{\alpha}$ be any node such that $\omega \neq(0,0)$. Then using one and only one wraparound link, the shortest distance $R(\omega)$ from node $(0,0)$ to node ω is given as follows:

$$
\begin{equation*}
R(\omega)=2 k+1-W(\omega) \tag{3.3}
\end{equation*}
$$

Proof. Since any wraparound link connects two border nodes, let a and b be the border nodes that are connected using the wraparound link in the path from node $(0,0)$ to node ω. It follows that $P((0,0), \omega)$ is $P((0,0), a) \rightarrow P(a, b) \rightarrow P(b, \omega)$. To find the lowest length $R(\omega)$ of this path, add $P(\omega,(0,0))$ to the end to be $P((0,0), a) \rightarrow P(a, b) \rightarrow P(b, \omega) \rightarrow P(\omega,(0,0))$. Since we want the length of the shortest path for each one of these paths, we know that:

1. $|P((0,0), a)|=W(a)=k$,
2. $|P(a, b)|=1$ (because they are adjacent),
3. $|P(b, \omega)|+|P(\omega,(0,0))|=W(b)=k$, and
4. $P(\omega,(0,0))=W(\omega)$.

It follows that $R(\omega)=2 k+1-W(\omega)$

In this work, sometimes we need to use a wraparound link to construct a path of the NDP. Theorem 3.1.1 is useful to calculate the extra number of hops

$$
\delta(\omega)=R(\omega)-W(\omega)=2 k+1-2 W(\omega)
$$

in order to use a wraparound link to reach ω. For example in Figure 3.2, the extra

Figure 3.3: Different examples of NDP in G_{3}
number of hops in order to use a wraparound link from node $(0,0)$ to node $(1,1)$ equals $\delta((1,1))=2 \times 3+1-2-2=3$ hops.

In terms of the number of extra hops, the length of path $P((0,0), \omega)$ is given by

$$
|P((0,0), \omega)|=W(\omega)+\delta(\omega) .
$$

One-to-Many NDP: As explained in the introduction, the one-to-many NDP in the DGNs connect the source node s with each destination node in $T=\left\{t_{j}=\right.$ $\left.\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq 4\right\}$ such that the disjointness condition is satisfied. Under this condition, the maximum number of NDP in the DGNs from the source node s is equal to the number of its neighbors (i.e. the node degree). Accordingly, the maximum number of destination nodes is equal to four. Since the DGN is vertex symmetric, we assume the source node is $s=(0,0)$.

For a particular set of destination nodes T, there are more than one possible NDP from s to T. For example, consider the network G_{3} in Figure 3.2,
let the source node be $s=(0,0)$ and the set of destination nodes be $T=$ $\{(1,2),(-2,1),(-1,-1),(1,-1)\}$. Then, two NDP are given in Figure 3.3. In our work we give one of these NDP and it is denoted by $\mathbb{P}(s, T)$.

In this chapter, we denote the sum of the lengths of the shortest distances by

$$
L(T)=\sum_{j=1}^{4} W\left(t_{j}\right)
$$

For example in Figure 3.3a, $L(T)=3+3+2+2=10$. Also, we denote the sum of the lengths of the NDP in $\mathbb{P}(s, T)$ by

$$
|\mathbb{P}(s, T)|=\sum_{j=1}^{4}\left|P\left(s, t_{j}\right)\right| .
$$

For example in Figure 3.3a, $|\mathbb{P}(s, T)|=3+3+2+2=10$ which means the NDP in $\mathbb{P}(s, T)$ are the shortest paths because $|\mathbb{P}(s, T)|=L(T)$. In Figure 3.3b, $|\mathbb{P}(s, T)|=3+3+4+2=12$. Since we assume that $s=(0,0),|\mathbb{P}(s, T)|$ can be expressed in terms of the sum of the extra hops by

$$
|\mathbb{P}(s, T)|=L(T)+\sum_{j=1}^{4} \delta\left(t_{j}\right)
$$

We use this expression to compare between the sum of the lengths of the NDP given by the proposed algorithm and the sum of the lengths of the shortest paths throughout this chapter.

The following section describes our routing algorithm from the source node s to each of the four destination nodes in T using NDP.

Figure 3.4: Quadrants in G_{5}

3.2 One-to-Many Node Disjoint Paths Routing

The basic idea of our routing algorithm is to design a set of distinctive and comprehensive cases based on the destination nodes' locations in the dense Gaussian networks (DGNs), and then construct the one-to-many node disjoint paths (NDP) $\mathbb{P}(s, T)$ for each case. The algorithm (see Algorithm 3) consists of two steps: case determination and NDP construction.

3.2.1 Step 1: Case Determination

Any DGN G_{k} can be partitioned into four non-overlapped quadrants based on the source node's address. For any source node $s=\left(s_{x}, s_{y}\right)$, these quadrants are:

1. $Q_{N}=\left\{(x, y) \in G_{k} \mid\left(x \geq s_{x}\right) \wedge\left(y \geq s_{y}+1\right)\right\}$ (The north quadrant)
2. $Q_{W}=\left\{(x, y) \in G_{k} \mid\left(x \leq s_{x}-1\right) \wedge\left(y \geq s_{y}\right)\right\}$ (The west quadrant)
```
Algorithm 3 One-to-Many NDP Routing in the Dense Gaussian Network \(G_{k}\)
    Input: \(G_{k}, T=\left\{t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq 4\right\}, s=\left(s_{x}, s_{y}\right) \notin T\)
    Output: \(\mathbb{P}(s, T)\)
    procedure OneToMany_NDP \(\left(G_{k}, T, s\right)\)
        \(\left|Q_{N}\right|=\left|Q_{W}\right|=\left|Q_{S}\right|=\left|Q_{E}\right|=0 ;\)
        for \(1 \leq j \leq 4\) do
                \(\triangleright\) Step 1
            if \(\left(t_{j_{x}} \geq s_{x}\right) \wedge\left(t_{j_{y}} \geq s_{y}+1\right)\) then
                \(\left|Q_{N}\right|=\left|Q_{N}\right|+1 ;\)
            else if \(\left(t_{j_{x}} \leq s_{x}-1\right) \wedge\left(t_{j_{y}} \geq s_{y}\right)\) then
                \(\left|Q_{W}\right|=\left|Q_{W}\right|+1 ;\)
            else if \(\left(t_{j_{x}} \leq s_{x}\right) \wedge\left(t_{j_{y}} \leq s_{y}-1\right)\) then
                \(\left|Q_{S}\right|=\left|Q_{S}\right|+1 ;\)
            else
                \(\left|Q_{E}\right|=\left|Q_{E}\right|+1 ;\)
            end if
        end for
        switch \(\langle | Q_{N}\left|,\left|Q_{W}\right|,\left|Q_{S}\right|,\left|Q_{E}\right|\right\rangle\)
                            \(\triangleright\) Step 2
            \(\langle 1,1,1,1\rangle: \mathbb{P}(s, T)=\operatorname{Case} 1\left(G_{k}, T, s\right) ;\)
            \(\langle 2,0,2,0\rangle \vee\langle 0,2,0,2\rangle: \mathbb{P}(s, T)=\operatorname{Case} 2\left(G_{k}, T, s\right) ;\)
            \(\langle 2,2,0,0\rangle \vee\langle 0,2,2,0\rangle \vee\langle 0,0,2,2\rangle \vee\langle 2,0,0,2\rangle: \mathbb{P}(s, T)=\operatorname{Case} 3\left(G_{k}, T, s\right) ;\)
            \(\langle 2,1,1,0\rangle \vee\langle 0,2,1,1\rangle \vee\langle 1,0,2,1\rangle \vee\langle 1,1,0,2\rangle: \mathbb{P}(s, T)=\operatorname{Case} 4\left(G_{k}, T, s\right) ;\)
            \(\langle 2,0,1,1\rangle \vee\langle 1,2,0,1\rangle \vee\langle 1,1,2,0\rangle \vee\langle 0,1,1,2\rangle: \mathbb{P}(s, T)=\operatorname{Case} 5\left(G_{k}, T, s\right) ;\)
            \(\langle 2,1,0,1\rangle \vee\langle 1,2,1,0\rangle \vee\langle 0,1,2,1\rangle \vee\langle 1,0,1,2\rangle: \mathbb{P}(s, T)=\operatorname{Case6}\left(G_{k}, T, s\right) ;\)
            \(\langle 3,0,0,1\rangle \vee\langle 1,3,0,0\rangle \vee\langle 0,1,3,0\rangle \vee\langle 0,0,1,3\rangle: \mathbb{P}(s, T)=\operatorname{Case} 7\left(G_{k}, T, s\right) ;\)
            \(\langle 3,1,0,0\rangle \vee\langle 0,3,1,0\rangle \vee\langle 0,0,3,1\rangle \vee\langle 1,0,0,3\rangle: \mathbb{P}(s, T)=\operatorname{Case} 8\left(G_{k}, T, s\right) ;\)
            \(\langle 3,0,1,0\rangle \vee\langle 0,3,0,1\rangle \vee\langle 1,0,3,0\rangle \vee\langle 0,1,0,3\rangle: \mathbb{P}(s, T)=\operatorname{Case} 9\left(G_{k}, T, s\right) ;\)
            \(\langle 4,0,0,0\rangle \vee\langle 0,4,0,0\rangle \vee\langle 0,0,4,0\rangle \vee\langle 0,0,0,4\rangle: \mathbb{P}(s, T)=\)
    Case10( \(\left.G_{k}, T, s\right)\);
        end switch
        return \(\mathbb{P}(s, T)\);
    end procedure
```

3. $Q_{S}=\left\{(x, y) \in G_{k} \mid\left(x \leq s_{x}\right) \wedge\left(y \leq s_{y}-1\right)\right\}$ (The south quadrant)
4. $Q_{E}=\left\{(x, y) \in G_{k} \mid\left(x \geq s_{x}+1\right) \wedge\left(y \leq s_{y}\right)\right\}$ (The east quadrant)

Each quadrant has exactly $k(k+1) / 2$ nodes where k is the network diameter. Figure 3.4 shows an example where $s=(0,0)$. In this example, the number of nodes

Table 3.1: All cases of $\langle | Q_{N}\left|,\left|Q_{W}\right|,\left|Q_{S}\right|,\left|Q_{E}\right|\right\rangle$

Case No.	Chosen Cases	Equivalent Cases
1	$\langle 1,1,1,1\rangle$	no equivalent case
2	$\langle 2,0,2,0\rangle$	$\langle 0,2,0,2\rangle$
3	$\langle 2,2,0,0\rangle$	$\langle 0,2,2,0\rangle,\langle 0,0,2,2\rangle,\langle 2,0,0,2\rangle$
4	$\langle 2,1,1,0\rangle$	$\langle 0,2,1,1\rangle,\langle 1,0,2,1\rangle,\langle 1,1,0,2\rangle$
5	$\langle 2,0,1,1\rangle$	$\langle 1,2,0,1\rangle,\langle 1,1,2,0\rangle,\langle 0,1,1,2\rangle$
6	$\langle 2,1,0,1\rangle$	$\langle 1,2,1,0\rangle,\langle 0,1,2,1\rangle,\langle 1,0,1,2\rangle$
7	$\langle 3,0,0,1\rangle$	$\langle 1,3,0,0\rangle,\langle 0,1,3,0\rangle,\langle 0,0,1,3\rangle$
8	$\langle 3,1,0,0\rangle$	$\langle 0,3,1,0\rangle,\langle 0,0,3,1\rangle,\langle 1,0,0,3\rangle$
9	$\langle 3,0,1,0\rangle$	$\langle 0,3,0,1\rangle,\langle 1,0,3,0\rangle,\langle 0,1,0,3\rangle$
10	$\langle 4,0,0,0\rangle$	$\langle 0,4,0,0\rangle,\langle 0,0,4,0\rangle,\langle 0,0,0,4\rangle$

in each quadrant is equal to $5(5+1) / 2=15$ where the diameter $k=5$.
Based on this network partitioning, the algorithm determines the current case. Let $\left|Q_{i}\right| \in\{0,1,2,3,4\}$ be the number of destination nodes in the quadrant Q_{i} for $i=N, W, S, E$. Let the ordered set $\langle | Q_{N}\left|,\left|Q_{W}\right|,\left|Q_{S}\right|,\left|Q_{E}\right|\right\rangle$ represent the number of destination nodes in each quadrant such that $\left|Q_{N}\right|+\left|Q_{W}\right|+\left|Q_{S}\right|+\left|Q_{E}\right|=4$. For example, $\langle 4,0,0,0\rangle$ means all destination nodes are in the north quadrant.

Since there are four destination nodes that are distributed over the four quadrants, there are exactly $\binom{4+4-1}{4}=35$ possibilities of $\langle | Q_{N}\left|,\left|Q_{W}\right|,\left|Q_{S}\right|,\left|Q_{E}\right|\right\rangle$. The one-to-many NDP routing algorithm must construct all NDP $\mathbb{P}(s, T)$ for each one of these 35 possibilities. However, since G_{k} is vertex symmetric, the solution for $\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ is equivalent to the solutions for $\left\langle x_{4}, x_{1}, x_{2}, x_{3}\right\rangle,\left\langle x_{3}, x_{4}, x_{1}, x_{2}\right\rangle$, and $\left\langle x_{2}, x_{3}, x_{4}, x_{1}\right\rangle$ (by rotation 1) where $x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1,2,3,4\}$ and $\sum_{i=1}^{4} x_{i}=4$. So in this work, we show the NDP $\mathbb{P}(s, T)$ for 10 cases. The solutions for these 10

[^1]cases are equivalent to the solutions for all 35 cases. Table 3.1 shows the chosen 10 cases and the equivalent cases.

Based on the destination nodes' addresses, the algorithm evaluates $\langle | Q_{N}\left|,\left|Q_{W}\right|\right.$, $\left.\left|Q_{S}\right|,\left|Q_{E}\right|\right\rangle$ in the first step. In the second step, the algorithm constructs the NDP $\mathbb{P}(s, T)$.

3.2.2 Step 2: One-to-Many NDP Construction

In this step, the algorithm constructs four NDP from the source node to the destination nodes based on the case determined during the first step. In the following, we describe the NDP construction for each of these 10 cases. Before that, we need the following definitions.

Definition 3.2.1. In a $D G N G_{k}$ where k is the diameter, let the source node be $(0,0)$. Then, the north, west, south, and east paths start with $(0,0) \rightarrow(0,1)$, $(0,0) \rightarrow(-1,0),(0,0) \rightarrow(0,-1)$, and $(0,0) \rightarrow(1,0)$ respectively.

Definition 3.2.2. In a DGN G_{k} where k is the diameter, let $t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \in Q_{i}$ for $j=1,2,3,4$ and $i=N, W, S, E$ be any destination node. Then, the destination node t_{j} is:

- the top destination node of Q_{i} if $t_{j_{y}}=\max \left\{t_{r_{y}} \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in Q_{i}\right\}$,
- the bottom destination node of Q_{i} if $t_{j_{y}}=\min \left\{t_{r_{y}} \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in Q_{i}\right\}$,
- the left destination node of Q_{i} if $t_{j_{x}}=\min \left\{t_{r_{x}} \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in Q_{i}\right\}$,
- the right destination node of Q_{i} if $t_{j_{x}}=\max \left\{t_{r_{x}} \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in Q_{i}\right\}$,

Figure 3.5: Example of Case $1\left(G_{5}\right)$

- the max-weight destination node of Q_{i} if $W\left(t_{j}\right)=\max \left\{W\left(t_{r}\right) \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in\right.$ $\left.Q_{i}\right\}$, and/or
- the min-weight destination node of Q_{i} if $W\left(t_{j}\right)=\min \left\{W\left(t_{r}\right) \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right)\right.$ $\left.\in Q_{i}\right\}$.

Note that the top, bottom, left, right, max-weight, or min-weight destination node as defined in Definition 3.2.2 is not necessarily unique. So, we say, for example, top/left of Q_{i} to uniquely specify a destination node in case the top destination node is not unique by choosing the most left destination node among those top destination nodes.

Now, we explain how to construct the NDP for each case.

Case $1\langle 1,1,1,1\rangle$

Figure 3.6: Examples of Case $2\left(G_{5}\right)$

In this case, each quadrant has exactly one destination node; this is the most simple case.

Lemma 3.2.1. Let the case be $\langle 1,1,1,1\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $|\mathbb{P}(s, T)|=L(T)$.

Proof. The NDP to the destination nodes in the north, west, south, and east quadrants are connected along the north, west, south, and east paths respectively. (The paths are straight forward and can be immediately gleaned from the example shown in Figure 3.5.) Clearly, $|\mathbb{P}(s, T)|=L(T)$.

Case $2\langle 2,0,2,0\rangle$

In this case, the north quadrant Q_{N} and the south quadrant Q_{S} have two destination nodes each.

Lemma 3.2.2. Let the case be $\langle 2,0,2,0\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $L(T) \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-6)$.

Proof. Let $t_{1}, t_{2} \in Q_{N}$ and $t_{3}, t_{4} \in Q_{S}$. The NDP to t_{1} and t_{2} are connected along the north and east paths; and the NDP to t_{3} and t_{4} are connected along the west and south paths. Here, we show only the NDP to t_{1} and t_{2}. The NDP to t_{3} and t_{4} can be similarly constructed. All paths can be gleaned from Figure 3.6.

Depending on the addresses of t_{1} and t_{2}, we have the following subcases:

Case 2.1 $\boldsymbol{t}_{1_{x}}=\boldsymbol{t}_{2_{x}}=0$: In this case, we reach the bottom and top destination nodes using the north and east paths respectively.(Figure 3.6a shows an example.)

Let t_{1} and t_{2} be the bottom and top destination nodes of Q_{N} respectively. Then, the north path is $P\left(s, t_{1}\right)$ as $(0,0) \rightarrow(0,1) \rightarrow \cdots \rightarrow\left(0, t_{1_{y}}\right)$. The east path is $P\left(s, t_{2}\right)$ as $(0,0) \rightarrow(1,0) \rightarrow \cdots \rightarrow(k, 0) \rightarrow(k, 0)^{E}=(0, k) \rightarrow$ $(0, k-1) \rightarrow \cdots \rightarrow\left(0, t_{2_{y}}\right)$.

The length of $P\left(s, t_{1}\right)$ equals $W\left(t_{1}\right)$. For $P\left(s, t_{2}\right)$, the minimum and maximum lengths of this path occur respectively when $t_{2}=(0, k)$ and $t_{2}=(0,2)$. It follows that the length of $P\left(s, t_{2}\right)$ is between $W((0, k))+\delta((0, k))=$ $W((0, k))+1$ and $W((0,2))+\delta((0,2))=W((0,2))+(2 k-3)$.

Case $2.2 t_{1_{x}} \neq 0$ or $t_{2_{x}} \neq 0$:
In this case, there exists at least one destination node that its x value is not equal to zero. We reach this destination node using the east path and the other destination node using the north path. (Figure 3.6b shows an example.) If there is a destination node that its $x=0$, let it be t_{1}. If there is no such

Table 3.2: All subcases of Case 2

Case	Lower Bound	Upper Bound
$t_{1_{x}}=t_{2_{x}}=t_{3_{x}}=t_{4_{x}}=0$	$L(T)+2$	$L(T)+(4 k-6)$
$\left(t_{1_{x}} \neq 0\right.$ or $\left.t_{2_{x}} \neq 0\right) \operatorname{and}\left(t_{3_{x}} \neq 0\right.$ or $\left.t_{4_{x}} \neq 0\right)$	$L(T)$	$L(T)$
$\left(t_{1_{x}}=t_{2_{x}}=0\right) \operatorname{and}\left(t_{3_{x}} \neq 0\right.$ or $\left.t_{4_{x}} \neq 0\right)$	$L(T)+1$	$L(T)+(2 k-3)$
$\left(t_{1_{x}} \neq 0\right.$ or $\left.t_{2_{x}} \neq 0\right) \operatorname{and}\left(t_{3_{x}}=t_{4_{x}}=0\right)$	$L(T)+1$	$L(T)+(2 k-3)$

a destination node, let the top/left destination node of Q_{N} be t_{1}. In either cases, let the other destination node be t_{2}. Then, the north path is $P\left(s, t_{1}\right)$ and the east path is $P\left(s, t_{2}\right)$. (Both paths are straight forward and can be immediately gleaned from the example shown in Figure 3.6b.) Clearly, $\left|P\left(s, t_{1}\right)\right|=W\left(t_{1}\right)$ and $\left|P\left(s, t_{2}\right)\right|=W\left(t_{2}\right)$.

Similarly, we can construct all NDP for all possibilities of Case 2. Table 3.2 shows the upper and lower bounds of these possibilities. It follows that for Case $2, L(T) \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-6)$.

In the upcoming cases, Case 2 is used to reach two destination nodes in Q_{N} using the east and north paths as long as none of the following nodes is used: $(1,0),(2,0), \ldots,(k-1,0),(k, 0)$. Similarly, Case 2 is used to reach two destination nodes in Q_{S} using the west and south paths as long as none of the following nodes is used: $(-1,0),(-2,0), \ldots,(-k+1,0),(-k, 0)$.

Case 3: $\langle 2,2,0,0\rangle$

In this case, the north and west quadrants have two destination nodes each.

Figure 3.7: Example of Case $3\left(G_{5}\right)$

Lemma 3.2.3. Let the case be $\langle 2,2,0,0\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-6)$.

Proof. Let $t_{1}, t_{2} \in Q_{N}$ and $t_{3}, t_{4} \in Q_{W}$. The path to the min-weight/right destination node (say t_{3}) of Q_{W} is connected along the west path $P\left(s, t_{3}\right)$; and the path to the max-weight/left destination node (i.e. t_{4}) of Q_{W} is connected along the south path $P\left(s, t_{4}\right)$. (These paths can be immediately gleaned from the example shown in Figure 3.7 where $b=\left(b_{x}, t_{4_{y}}\right) \in Q_{W}$ is a border node and $a=\left(a_{x}, a_{y}\right)=b^{W} \in Q_{E}$.) Figure 3.7 shows all possibilities (dashed nodes) of node a. Clearly there is no node of $(1,0),(2,0), \ldots,(k-1,0),(k, 0)$ is used. That means we can safely apply Case 2 to reach t_{1} and t_{2} using the north and east paths. It follows that $\left(W\left(t_{1}\right)+W\left(t_{2}\right)\right) \leq\left(\left|P\left(s, t_{1}\right)\right|+\left|P\left(s, t_{2}\right)\right|\right) \leq\left(W\left(t_{1}\right)+W\left(t_{2}\right)+2 k-3\right)$. The length of $P\left(s, t_{3}\right)$ is equal to $W\left(t_{3}\right)$. The length of $P\left(s, t_{4}\right)$ is at most $W\left(t_{4}\right)+(2 k-3)$ and this occurs when $W\left(t_{4}\right)=2$. Also, this length is at least $W\left(t_{4}\right)+1$ and this occurs when $W\left(t_{4}\right)=k$. It follows that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-6)$.

Figure 3.8: Example of Case $4\left(G_{5}\right)$
Case 4: $\langle 2,1,1,0\rangle$

In this case, there exist two destination nodes in Q_{N}, one destination node in Q_{W}, and one destination node in Q_{S}.

Lemma 3.2.4. Let the case be $\langle 2,1,1,0\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $L(T) \leq|\mathbb{P}(s, T)| \leq L(T)+(2 k-3)$.

Proof. Let $t_{1}, t_{2} \in Q_{N}, t_{3} \in Q_{W}$, and $t_{4} \in Q_{S} . P\left(s, t_{1}\right)$ and $P\left(s, t_{2}\right)$ are obtained by applying Case 2. It follows that $\left(W\left(t_{1}\right)+W\left(t_{2}\right)\right) \leq\left(\left|P\left(s, t_{1}\right)\right|+\left|P\left(s, t_{2}\right)\right|\right) \leq$ $\left(W\left(t_{1}\right)+W\left(t_{2}\right)+2 k-3\right) .\left(P\left(s, t_{3}\right)\right.$ and $P\left(s, t_{4}\right)$ can be immediately gleaned from the example shown in Figure 3.8.) The sum of their lengths equals $W\left(t_{3}\right)+W\left(t_{4}\right)$. It follows that $L(T) \leq|\mathbb{P}(s, T)| \leq L(T)+(2 k-3)$.

Figure 3.9: Example of Case $5\left(G_{5}\right)$
Case 5: $\langle 2,0,1,1\rangle$

In this case, there exist two destination nodes in Q_{N}, one destination node in Q_{S}, and one destination node in Q_{E}.

Lemma 3.2.5. Let the case be $\langle 2,0,1,1\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq L(T)+(2 k-2)$.

Proof. Let $t_{1}, t_{2} \in Q_{N}, t_{3} \in Q_{S}$, and $t_{4} \in Q_{E}$. The following steps construct the NDP:

1. Reach the min-weight/left destination node of Q_{N} (Say $\left.t_{1}\right)$ and t_{4} using the north and east paths. (Figure 3.9 shows as example for $P\left(s, t_{1}\right)$ and $P\left(s, t_{4}\right)$.) The sum of their lengths equals $W\left(t_{1}\right)+W\left(t_{4}\right)$.
2. Connect the other destination node in Q_{N} (i.e. t_{2}) with the border node $b=\left(b_{x}, t_{2_{y}}\right) \in Q_{N}$ horizontally using the path $P\left(b, t_{2}\right)$ as $\left(b_{x}, t_{2_{y}}\right) \rightarrow\left(b_{x}-\right.$

$$
\left.1, t_{2_{y}}\right) \rightarrow \cdots \rightarrow\left(t_{2_{x}}, t_{2_{y}}\right) .
$$

3. Let $a=\left(a_{x}, a_{y}\right)$ be either the east $\left(b^{E}\right)$ or north $\left(b^{N}\right)$ neighbor of node b depending on the location of t_{3} in Q_{S} as follows (the dashed nodes in Figure 3.9 represent all possibilities of node a):

$$
a= \begin{cases}b^{N} & \text { if } \quad b^{E}=t_{3} \\ b^{E} & \text { if } \quad b^{E} \neq t_{3}\end{cases}
$$

Note that node a can be either in the west quadrant Q_{W} (if $t_{2}=(0, k)$ and $\left.t_{3}=(-(k-1),-1)\right)$ or the south quadrant Q_{S} (otherwise).

This step is always possible because by the network connectivity each border node b in Q_{N} is connected with two nodes (b^{N} and b^{E}) using the wraparound links. One of these two nodes must be available to use because there exists only one destination node in Q_{S}. In case a is in Q_{W}, step four is still valid because Q_{W} has no destination node.
4. If node a is in the west quadrant Q_{W}, the west path $P(s, a)$ and the south path $P\left(s, t_{3}\right)$ are exactly same as the west and south paths in Case 1 respectively. The sum of their lengths equals $W(a)+W\left(t_{4}\right)=k+W\left(t_{4}\right)$. If node a is in the south quadrant $Q_{S}, P(s, a)$ and $P\left(s, t_{3}\right)$ are obtained by applying Case 2. It follows that $\left(k+W\left(t_{3}\right)\right) \leq\left(|P(s, a)|+\left|P\left(s, t_{3}\right)\right|\right) \leq\left(W\left(t_{3}\right)+3 k-3\right)$. The length of $P\left(s, t_{2}\right)$ as $P(s, a) \rightarrow P\left(b, t_{2}\right)$ is at most $W\left(t_{2}\right)+(2 k-2)$ and this occurs when $W\left(t_{2}\right)=2$ and $a=(0,-k)$. Also, this length is at least $W\left(t_{2}\right)+1$ and this occurs when $W\left(t_{2}\right)=k$ and the following is not true: $a_{x}=t_{3_{x}}=0$.

Figure 3.10: Example of Case $6\left(G_{5}\right)$

It follows that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq L(T)+(2 k-2)$.

Case 6: $\langle 2,1,0,1\rangle$

In this case, there exist two destination nodes in Q_{N}, one destination node in Q_{W}, and one destination node in Q_{E}.

Lemma 3.2.6. Let the case be $\langle 2,1,0,1\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq L(T)+(2 k-3)$.

Proof. Let $t_{1}, t_{2} \in Q_{N}, t_{3} \in Q_{W}$, and $t_{4} \in Q_{E}$. Then, the path to the minweight/left destination node (say t_{1}) of Q_{N} is connected along the north path $P\left(s, t_{1}\right)$; and the path to the max-weight/right destination node (i.e. t_{2}) of Q_{N} is connected along the south path $P\left(s, t_{2}\right)$. The paths to t_{3} and t_{4} are connected along the east and west paths respectively. (All paths can be immediately gleaned

Figure 3.11: Example of Case $7\left(G_{5}\right)$
from the example shown in Figure 3.10 where $b=\left(b_{x}, t_{2_{y}}\right) \in Q_{N}$ is a border node and $a=\left(a_{x}, a_{y}\right)=b^{E} \in Q_{S}$.)

The sum of lengths of $P\left(s, t_{1}\right), P\left(s, t_{3}\right)$, and $P\left(s, t_{4}\right)$ is equal to $W\left(t_{1}\right)+W\left(t_{3}\right)+$ $W\left(t_{4}\right)$. The length of $P\left(s, t_{2}\right)$ is at most $W\left(t_{2}\right)+(2 k-3)$ and this occurs when $W\left(t_{2}\right)=2$. Also, this length is at least $W\left(t_{2}\right)+1$ and this occurs when $W\left(t_{2}\right)=k$. It follows that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq L(T)+(2 k-3)$.

Case 7: $\langle 3,0,0,1\rangle$

In this case, there exist three destination nodes in Q_{N} and one destination node in Q_{E}.

Lemma 3.2.7. Let the case be $\langle 3,0,0,1\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $L(T)+2 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-6)$.

Proof. Let $t_{1}, t_{2}, t_{3} \in Q_{N}$, and $t_{4} \in Q_{E}$. The following steps construct the NDP (see Figure 3.11):

1. Reach the min-weight/left destination node of Q_{N} (say t_{1}) and t_{4} using the north and east paths. (Figure 3.9 shows an example of $P\left(s, t_{1}\right)$ and $P\left(s, t_{4}\right)$.) The sum of their lengths equals $W\left(t_{1}\right)+W\left(t_{4}\right)$.
2. After the previous step, the remaining destination nodes in Q_{N} are t_{2} and t_{3}. Among these two destination nodes, connect the top/left destination node of Q_{N} (say t_{2}), with the border node $b_{1}=\left(t_{2_{x}}, b_{1_{y}}\right) \in Q_{N}$ vertically using the path $P\left(b_{1}, t_{2}\right)$ as $\left(t_{2_{x}}, b_{1_{y}}\right) \rightarrow\left(t_{2_{x}}, b_{1_{y}}-1\right) \rightarrow \cdots \rightarrow\left(t_{2_{x}}, t_{2_{y}}\right)$. Also, connect the last destination node in Q_{N} (i.e t_{3}) with the border node $b_{2}=\left(b_{2_{x}}, t_{3_{y}}\right) \in Q_{N}$ horizontally using the path $P\left(b_{2}, t_{3}\right)$ as $\left(b_{2_{x}}, t_{3_{y}}\right) \rightarrow$ $\left(b_{2_{x}}-1, t_{3_{y}}\right) \rightarrow \cdots \rightarrow\left(t_{3_{x}}, t_{3_{y}}\right)$.

Constructing the path $P\left(b_{1}, t_{2}\right)$ vertically and the path $P\left(b_{2}, t_{3}\right)$ horizontally is important to maintain the disjointness condition for two reasons: 1) in Q_{N}, $P\left(b_{1}, t_{2}\right)$ and $P\left(b_{2}, t_{3}\right)$ are always node disjoint regardless of the locations of t_{2} and t_{3}, and 2) in Q_{S} and Q_{W}, the north neighbor of b_{1} and the east neighbor of b_{2} are always different nodes.
3. Let the north neighbor of b_{1} be $a_{1}=b_{1}^{N}$ and the east neighbor of b_{2} be $a_{2}=b_{2}^{E}$. Figure 3.11 shows all possibilities of a_{1} and a_{2} (the dashed nodes). Note that it is possible that a_{2} exists in Q_{W}. So, apply Case 5 (not Case 2) to connect the source node with a_{1} and a_{2}.

The length of $P\left(s, t_{2}\right)$ as $P\left(s, a_{1}\right) \rightarrow P\left(b_{1}, t_{2}\right)$ is at most $W\left(t_{2}\right)+(2 k-3)$ and this occurs when $W\left(t_{2}\right)=2$. Also, this length is at least $W\left(t_{2}\right)+1$ and this

Figure 3.12: Example of Case $8\left(G_{5}\right)$
occurs when $W\left(t_{2}\right)=k$. The length of $P\left(s, t_{2}\right)$ as $P\left(s, a_{1}\right) \rightarrow P\left(b_{1}, t_{2}\right)$ is at most $W\left(t_{2}\right)+(2 k-3)$ and this occurs when $W\left(t_{2}\right)=2$. Also, this length is at least $W\left(t_{2}\right)+1$ and this occurs when $W\left(t_{2}\right)=k$.

It follows that $L(T)+2 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-6)$.

Case 8: $\langle 3,1,0,0\rangle$

In this case, there exist three destination nodes in Q_{N} and one destination node in Q_{W}.

Lemma 3.2.8. Let the case be $\langle 3,1,0,0\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-6)$.

Proof. Let $t_{1}, t_{2}, t_{3} \in Q_{N}$, and $t_{4} \in Q_{W}$. Let the destination node t_{2} be $t_{1_{y}}<$ $t_{2_{y}}<t_{3_{y}}$ if $t_{1_{x}}=t_{2_{x}}=t_{3_{x}}=0$. Otherwise, let the destination node t_{2} be the
max-weight/right destination node of Q_{N}. Then, t_{2} and t_{4} are connected along the south and west paths respectively. $\left(P\left(s, t_{2}\right)\right.$ and $P\left(s, t_{4}\right)$ can be immediately gleaned from the example shown in Figure 3.12 where $b=\left(b_{x}, t_{2_{y}}\right) \in Q_{W}$ is a border node and $a=\left(a_{x}, a_{y}\right)=b^{E} \in Q_{S}$ is the east neighbor of b.) Figure 3.12 also shows all possibilities (dashed nodes) of node a. Using the east neighbor of b is important because in this way all possibilities of a are in Q_{S} which has no destination node. It follows that, the length of $P\left(s, t_{2}\right)$ equals $W\left(t_{2}\right)+1 \leq\left|P\left(s, t_{2}\right)\right| \leq W\left(t_{2}\right)+(2 k-3)$ and the length of $P\left(s, t_{4}\right)$ equals $W\left(t_{4}\right)$.

The paths to the remaining destination nodes in Q_{1} (i.e. t_{1} and t_{3}) are obtained by applying Case 2. The sum of their lengths is $W\left(t_{1}\right)+W\left(t_{3}\right) \leq\left|P\left(s, t_{1}\right)\right|+$ $\left|P\left(s, t_{3}\right)\right| \leq W\left(t_{1}\right)+W\left(t_{3}\right)+(2 k-3)$. It follows that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq$ $L(T)+(4 k-6)$.

Case 9: $\langle 3,0,1,0\rangle$

In this case, there exist three destination nodes in Q_{N} and one destination node in Q_{S}.

Lemma 3.2.9. Let the case be $\langle 3,0,1,0\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-5)$.

Proof. Let $t_{1}, t_{2}, t_{3} \in Q_{N}$, and $t_{4} \in Q_{S}$. Let the destination node t_{2} be $t_{1_{y}}<$ $t_{2_{y}}<t_{3_{y}}$ if $t_{1_{x}}=t_{2_{x}}=t_{3_{x}}=0$. Otherwise, let the destination node t_{2} be the maxweight/right destination node of Q_{N}. Then, t_{2} and t_{4} are connected along the south and west paths respectively. The process of constructing $P\left(s, t_{2}\right)$ and $P\left(s, t_{4}\right)$ is exactly same as the process of constructing $P\left(s, t_{2}\right)$ and $P\left(s, t_{4}\right)$ in Case 5. It

Figure 3.13: Example of Case $9\left(G_{5}\right)$
follows that the sum of the lengths of $P\left(s, t_{2}\right)$ and $P\left(s, t_{4}\right)$ is $W\left(t_{2}\right)+W\left(t_{4}\right)+1 \leq$ $\left|P\left(s, t_{2}\right)\right|+\left|P\left(s, t_{4}\right)\right| \leq W\left(t_{2}\right)+W\left(t_{4}\right)+(2 k-2)$. The paths to the remaining destination nodes in Q_{1} (i.e. t_{1} and t_{3}) are obtained by applying Case 2 . The sum of their lengths is $W\left(t_{1}\right)+W\left(t_{3}\right) \leq\left|P\left(s, t_{1}\right)\right|+\left|P\left(s, t_{3}\right)\right| \leq W\left(t_{1}\right)+W\left(t_{3}\right)+(2 k-3)$. It follows that $L(T)+1 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-5)$.

Case 10: $\langle 4,0,0,0\rangle$

In this case, all four destination nodes are in Q_{N}; and this is the most sophisticated case.

Lemma 3.2.10. Let the case be $\langle 4,0,0,0\rangle$. Then, there exist $N D P \mathbb{P}(s, T)$ such that $L(T)+2 \leq|\mathbb{P}(s, T)| \leq L(T)+(6 k-11)$.

Proof. Here, $t_{1}, t_{2}, t_{3}, t_{4} \in Q_{N}$. To show the construction of the NDP precisely, we

Figure 3.14: Examples of Case $10\left(G_{5}\right)$
divide this case into the following subcases:

Case 10.1 Four destination nodes have $x=0$:
In this case, $t_{1_{x}}=t_{2_{x}}=t_{3_{x}}=t_{4_{x}}=0$. Let $t_{3_{y}}<t_{2_{y}}<t_{1_{y}}<t_{4_{y}}$. (The paths are straight forward and can be immediately gleaned from the example shown in Figure 3.14a where $b_{1}=\left(b_{1_{x}}, t_{1_{y}}\right) \in Q_{N}, b_{2}=\left(b_{2_{x}}, t_{2_{y}}\right) \in Q_{N}$,

Figure 3.15: Examples of Case $10\left(G_{5}\right)$
$a_{1}=b_{1}^{E} \in Q_{S}$, and $\left.a_{2}=b_{2}^{E} \in Q_{S}.\right)$
The length of $P\left(s, t_{1}\right)$ is $W\left(t_{1}\right)+3 \leq P\left(s, t_{1}\right) \leq W\left(t_{1}\right)+(2 k-5)$. The lower and upper bounds occur when $t_{1_{y}}=k-1$ and $t_{1_{y}}=3$ respectively. The length of $P\left(s, t_{2}\right)$ is $W\left(t_{2}\right)+5 \leq P\left(s, t_{2}\right) \leq W\left(t_{2}\right)+(2 k-3)$. The lower and upper bounds occur when $t_{2_{y}}=k-2$ and $t_{2_{y}}=2$ respectively. The sum of lengths of $P\left(s, t_{3}\right)$ and $P\left(s, t_{4}\right)$ is $W\left(t_{3}\right)+W\left(t_{4}\right)+1 \leq\left|P\left(s, t_{3}\right)\right|+\left|P\left(s, t_{3}\right)\right| \leq$ $W\left(t_{3}\right)+W\left(t_{4}\right)+(2 k-7)$. The upper and lower bounds occur when $t_{4_{y}}=4$ and $t_{4_{y}}=k$ respectively. It follows that $L(T)+9 \leq|\mathbb{P}(s, T)| \leq L(T)+(6 k-15)$.

Case 10.2 Three destination nodes have $x=0$:

Let $t_{1_{x}}=t_{3_{x}}=t_{4_{x}}=0, t_{2_{x}} \neq 0$, and $t_{3_{y}}<t_{1_{y}}<t_{4_{y}}$. (The paths are straight forward and can be immediately gleaned from the example shown in Figure 3.14b where $b=\left(b_{1_{x}}, t_{2_{y}}\right) \in Q_{N}$ and $a=b^{E} \in Q_{S}$.)

The length of $P\left(s, t_{2}\right)$ is $W\left(t_{2}\right)+1 \leq P\left(s, t_{2}\right) \leq W\left(t_{2}\right)+(2 k-3)$. The
upper bound occurs when $W\left(t_{2}\right)=2$. The length of $P\left(s, t_{1}\right)$ is equal to $W\left(t_{1}\right)+2$. The sum of lengths of $P\left(s, t_{3}\right)$ and $P\left(s, t_{4}\right)$ is $W\left(t_{3}\right)+W\left(t_{4}\right)+$ $1 \leq\left|P\left(s, t_{3}\right)\right|+\left|P\left(s, t_{3}\right)\right| \leq W\left(t_{3}\right)+W\left(t_{4}\right)+(2 k-5)$. The upper and lower bounds occur when $t_{4_{y}}=3$ and $t_{4_{y}}=k$ respectively. It follows that $L(T)+4 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-8)$.

Case 10.3 Two destination nodes have $x=0$:

Let $t_{3_{x}}=t_{4_{x}}=0$ and $t_{1_{x}}, t_{2_{x}} \neq 0$ (see Figure 3.14c). The following steps construct the NDP:

1. Apply Case 2.1 to reach t_{3} and t_{4} using the north and east paths. The sum of lengths of $P\left(s, t_{3}\right)$ and $P\left(s, t_{4}\right)$ is $W\left(t_{3}\right)+W\left(t_{4}\right)+1 \leq$ $\left|P\left(s, t_{3}\right)\right|+\left|P\left(s, t_{3}\right)\right| \leq W\left(t_{3}\right)+W\left(t_{4}\right)+(2 k-3)$. The upper and lower bounds occur when $t_{4_{y}}=2$ and $t_{4_{y}}=k$ respectively.
2. Apply Case 7 to reach t_{1} and t_{2} using the west and south paths. The sum of lengths of $P\left(s, t_{3}\right)$ and $P\left(s, t_{4}\right)$ is $W\left(t_{3}\right)+W\left(t_{4}\right)+2 \leq$ $\left|P\left(s, t_{3}\right)\right|+\left|P\left(s, t_{3}\right)\right| \leq W\left(t_{3}\right)+W\left(t_{4}\right)+(4 k-8)$. The upper bound occurs when one of these destination nodes is node $(1,1)$ and the weight of the other destination node is equal to three. The lower bound occurs when $W\left(t_{3}\right)=W\left(t_{4}\right)=k$.

It follows that $L(T)+3 \leq|\mathbb{P}(s, T)| \leq L(T)+(6 k-11)$.

Case 10.4: One destination node has $x=0$:

Let $t_{4_{x}}=0$ and $t_{1_{x}}, t_{2_{x}}, t_{3_{x}} \neq 0$ (see Figure 3.15a). Also, let t_{3} be the min-weight/left destination node among t_{1}, t_{2}, and t_{3}; and let t_{1} and t_{2} be

Table 3.3: Specifying the $1^{\text {st }}$ and $2^{\text {nd }}$ destination nodes in Case 10.5

No. of $1^{\text {st }}$ min-weight	No. of $2^{\text {nd }} m$ min-weight	Choose
1	1	$1^{\text {st }}$ and $2^{\text {nd }}$ min-weight
1	>1	$1^{\text {st }}$ min-weight and right of $2^{\text {nd }} m$ min-weight
>1	≥ 0	$1^{\text {st }}$ and $2^{\text {nd }}$ right of $1^{\text {st }}$ min- weight

respectively the top/left and bottom/right destination nodes only among t_{1} and t_{2}. Then, the following steps construct the NDP:

1. Apply Case 2.2 to construct $P\left(s, t_{3}\right)$ and $P\left(s, t_{4}\right)$ using the north and east paths. The sum of lengths of $P\left(s, t_{3}\right)$ and $P\left(s, t_{4}\right)$ is equal to $W\left(t_{3}\right)+W\left(t_{4}\right)$.
2. Apply Case 7 to construct $P\left(s, t_{1}\right)$ and $P\left(s, t_{2}\right)$ using the south and west paths. The sum of lengths of $P\left(s, t_{1}\right)$ and $P\left(s, t_{2}\right)$ is $W\left(t_{1}\right)+W\left(t_{2}\right)+2 \leq$ $\left|P\left(s, t_{1}\right)\right|+\left|P\left(s, t_{2}\right)\right| \leq W\left(t_{1}\right)+W\left(t_{2}\right)+(4 k-10)$. The upper and lower bounds occur when $W\left(t_{1}\right)=W\left(t_{2}\right)=3$ and $W\left(t_{1}\right)=W\left(t_{2}\right)=k$ respectively.

It follows that $L(T)+2 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-10)$.

Case 10.5 None of the destination nodes has $x=0$:

In this case, $t_{1_{x}}, t_{2_{x}}, t_{3_{x}}, t_{4_{x}} \neq 0$ (see Figure 3.15b). The following steps construct the NDP:

1. Count the number of destination nodes whose weights are equal to the minimum weight among all destination nodes ($1^{\text {st }}$ min-weight). (For

Table 3.4: Specifying the $3^{\text {rd }}$ and $4^{\text {th }}$ destination nodes in Case 10.5

No. of $1^{\text {st }}$ max-weight	No. of $2^{\text {nd }}$ max-weight	Choose
1	1	$1^{\text {st }}$ and $2^{\text {nd }}$ max-weight
1	>1	$1^{\text {st }}$ max-weight and left of $2^{\text {nd }}$ max-weight
>1	≥ 0	$1^{\text {st }}$ and $2^{\text {nd }}$ left of $1^{\text {st }}$ max- weight

example in Figure 3.15b, the number of destination nodes in the $1^{\text {st }}$ min-weight equals one $\left(t_{4}\right)$.)
2. Count the number of destination nodes in the $2^{\text {nd }}$ min-weight among all destination nodes. (For example in Figure 3.15b, the number of destination nodes in the $2^{\text {nd }}$ min-weight equals two $\left(t_{2}\right.$ and $\left.t_{3}\right)$.)
3. Use Table 3.3 to specify two destination nodes. Note that this table specifies exactly two destination nodes. Let these destination nodes be t_{3} and t_{4}. (For the example given in Figure 3.15b, Table 3.3 specifies the destination node in the $1^{\text {st }}$ min-weight $\left(t_{4}\right)$ and the right destination node among those in the $2^{\text {nd }}$ min-weight $\left(t_{3}\right)$.)
4. Apply Case 2.2 to construct $P\left(s, t_{3}\right)$ and $P\left(s, t_{4}\right)$ using the north and east paths. The sum of lengths of $P\left(s, t_{3}\right)$ and $P\left(s, t_{4}\right)$ is equal to $W\left(t_{3}\right)+W\left(t_{4}\right)$.
5. Count the number of destination nodes which have the max-weight among all destination nodes (1 $1^{\text {st }}$ max-weight). (For example in Figure 3.15 b , the number of destination nodes in the $1^{\text {st }}$ max-weight equals one (t_{1}).)
6. Count the number of destination nodes in the $2^{\text {nd }}$ max-weight among
all destination nodes. (For example in Figure 3.15b, the number of destination nodes in the $2^{\text {nd }}$ max-weight equals two $\left(t_{2}\right.$ and $\left.t_{3}\right)$.)
7. Use Table 3.4 to specify two destination nodes. Note that these destination nodes are different from the destination nodes specified in Step 3. Let these destination nodes be t_{1} and t_{2}. (For the example given in Figure 3.15b, Table 3.4 specifies the destination node in the $1^{\text {st }}$ max-weight $\left(t_{1}\right)$ and the left destination node among those in the $2^{\text {nd }}$ max-weight $\left(t_{2}\right)$.)
8. Apply Case 7 to construct $P\left(s, t_{1}\right)$ and $P\left(s, t_{2}\right)$ using the south and west paths with wraparound links. The sum of lengths of $P\left(s, t_{1}\right)$ and $P\left(s, t_{2}\right)$ is $W\left(t_{1}\right)+W\left(t_{2}\right)+2 \leq\left|P\left(s, t_{1}\right)\right|+\left|P\left(s, t_{2}\right)\right| \leq W\left(t_{1}\right)+W\left(t_{2}\right)+$ $(4 k-12)$. The upper bound occurs when the weight value of one of these destination nodes is equal to three and the weight value of the other destination nodes is equal to four. The lower bound occurs when $W\left(t_{3}\right)=W\left(t_{4}\right)=k$.

It follows that $L(T)+2 \leq|\mathbb{P}(s, T)| \leq L(T)+(4 k-12)$.

After comparing the upper and lower bounds of all subcases of Case 10, the minimum lower bound and the maximum upper bound occur when the cases are Case 10.4 (or 10.5) and Case 10.3 respectively. It follows that for Case $10 L(T)+$ $2 \leq|\mathbb{P}(s, T)| \leq L(T)+(6 k-11)$.

Now, the main result of this chapter is summarized in the following theorem.

Theorem 3.2.1. In a $D G N G_{k}$ where k is the network diameter, let the source node be $s=(0,0)$ and the set of destination nodes be $T=\left\{t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq\right.$

Table 3.5: Lower and upper bounds of all cases

Case No.	Chosen Cases	Lower Bound	Upper Bound
1	$\langle 1,1,1,1\rangle$	$L(T)$	$L(T)$
2	$\langle 2,0,2,0\rangle$	$L(T)$	$L(T)+(4 k-6)$
3	$\langle 2,2,0,0\rangle$	$L(T)+1$	$L(T)+(4 k-6)$
4	$\langle 2,1,1,0\rangle$	$L(T)$	$L(T)+(2 k-3)$
5	$\langle 2,0,1,1\rangle$	$L(T)+1$	$L(T)+(2 k-2)$
6	$\langle 2,1,0,1\rangle$	$L(T)+1$	$L(T)+(2 k-3)$
7	$\langle 3,0,0,1\rangle$	$L(T)+2$	$L(T)+(4 k-6)$
8	$\langle 3,1,0,0\rangle$	$L(T)+1$	$L(T)+(4 k-6)$
9	$\langle 3,0,1,0\rangle$	$L(T)+1$	$L(T)+(4 k-5)$
10	$\langle 4,0,0,0\rangle$	$L(T)+2$	$L(T)+(6 k-11)$

$4\}$. Then, there exist $N D P \mathbb{P}(s, T)$ such that the sum of the lengths of the NDP in $\mathbb{P}(s, T)$ is

$$
L(T) \leq|\mathbb{P}(s, T)| \leq L(T)+(6 k-11)
$$

Proof. Any DGN G_{k} can be divided into four non-overlapped quadrants based on the source node's address. These quadrants are Q_{N}, Q_{W}, Q_{S}, and Q_{E} as defined in Section 3.2.1. The four destination nodes can be distributed in exactly $\binom{4+4-1}{4}=35$ ways represented as $\langle | Q_{N}\left|,\left|Q_{W}\right|,\left|Q_{S}\right|,\left|Q_{E}\right|\right\rangle$ where $\left|Q_{i}\right|$ is the number of destination nodes in quadrant i for $i=N, W, S, E$. To prove the theorem we need to show that the NDP exist for each one of these 35 cases. However, since G_{k} is vertex symmetric, constructing the NDP for only 10 cases is equivalent to constructing the NDP for the 35 cases. Table 3.1 shows the chosen 10 cases and the equivalent cases. The total number of these cases is 35 . Lemmas 3.2.1 to 3.2.10 prove that the NDP exist for the chosen 10 cases. Table 3.5 shows the upper and
lower bounds of these 10 cases. It follows that the sum of lengths of the NDP is $L(T) \leq|\mathbb{P}(s, T)| \leq L(T)+(6 k-11)$.

3.2.3 Time Complexity

The overall time complexity of the proposed algorithm equals the sum of time complexity of Step 1 and Step 2 (see Algorithm 3). In Step 1, the algorithm counts the number of destination nodes in each quadrant based on the addresses of the source and destination nodes. Clearly, this step can be done in a constant time $O(1)$.

In Step 2, the algorithm constructs the NDP by executing the procedure of one case out of 10 cases based on the number of destination nodes in each quadrant. Thus, the time complexity of Step 2 equals the time complexity of the most time consuming case among the 10 cases.

To construct the NDP, the algorithm needs to know the left, right, top, bottom, max-weight, and min-weight destination nodes of a specific quadrants as defined in Definition 3.2.2. That requires sorting the destination node addresses based on three criteria:

1. the x-coordinate to know the left and right destination nodes,
2. the y-coordinate to know the top and bottom destination nodes, and
3. the weight as defined in Equation 3.2 to know the max-weight, and minweight destination nodes.

This sorting can be done using the bucket sorting method. In the worst case, the number of elements to be sorted equals four (the number of destination nodes)

Figure 3.16: Shortest non-NDP vs. actual NDP
and that happens in Case 10. So, the time complexity of Step 2 is equal to $O(3 \cdot 4)=O(1)$. As a result, the overall time complexity of our proposed algorithm is a constant time $O(1)$.

3.3 Algorithm Execution Results

In this section, we show the results of simulating the proposed algorithm. We mainly measure the sum of path lengths $|\mathbb{P}(s, T)|$ and compare it to the sum of destination nodes' weights $L(T)$ and the lower and upper bounds. The sum of destination nodes' weights $L(T)$ is equal to the sum of the shortest paths lengths where these paths are not necessarily node disjoint paths (NDP). Our simulation results show that all of the time the proposed algorithm gives NDP. The results also show that we need on the average about 10% more hops than the sum of destination nodes' weights $L(T)$ to construct the NDP in Gaussian networks.

Figure 3.17: Distribution of occurrence $(k=500$, runs $=10,000)$

Figure 3.18: Case-wise shortest non-NDP vs. actual NDP ($k=500$, runs $=10,000)$

We ran a simulator of the proposed algorithm 10,000 times for each one of the following networks: $G_{200}, G_{300}, G_{400}$, and G_{500}. In each run, the simulator randomly generated the four destination nodes T and the source node s. It returned the

NDP $\mathbb{P}(s, T)$ for each run. After taking the averages, the results are shown in Figure 3.16. In this figure, we compare the average number of hops of the sum of destination nodes' weights $L(T)$ and the sum of the actual NDP lengths $|\mathbb{P}(s, T)|$ along with the average of the lower and upper bounds. Clearly, the sum of the actual NDP lengths constructed by the proposed algorithm is very close to the sum of destination nodes' weights. In fact, the algorithm can construct the NDP with about 10% more hops on the average than the sum of destination nodes' weights. This result is true regardless of the size of the network because the number of nodes in the network is irrelevant to the NDP construction process in the proposed algorithm.

For more clarification on why the difference between the actual NDP lengths and shortest distances is small, Figure 3.17 shows the distribution of occurrence of each case for G_{500} over 10,000 runs. As shown in this figure, Cases 4,5 , and 6 are the most occurred cases with about 18% each. As shown in Table 3.5, the upper bounds of these cases are less than the other cases' upper bounds (except Case 1). Moreover, Case 10 which has the maximum upper bound occurs the least with 2% occurrence.

For more insights on the results, Figure 3.18 compares for each case between the actual NDP lengths and shortest distances along with the lower and upper bounds for G_{500} over 10,000 runs. First, notice that the sum of the NDP lengths of Cases 1,2 , and 4 is equal to the sum of the shortest paths and this sum is equal to the lower bound. Second, notice that the sum of the NDP lengths is far closer to the lower bound than the upper bound in all cases except Case 1 where the upper bound is same as the lower bound.

3.4 Conclusion

In this chapter we provide and prove an algorithm to construct all NDP from a single source node to a set of destination nodes in the dense Gaussian networks (DGNs). This algorithm constructs four NDP and this is the maximum number of NDP that can be obtained because the degree of the nodes is four. We show that the sum of the NDP lengths constructed by the algorithm is bounded between the sum of the shortest paths and this sum plus $(6 k-11)$ where k is the diameter. We also show that the time complexity of the algorithm is constant $O(1)$. Finally, the algorithm execution results show that on the average the sum of NDP lengths is only about 10% more than the sum of the shortest paths.

Chapter 4: One-to-Many Node Disjoint Paths Routing in Hexagonal Mesh Networks

In this chapter, an efficient constant time complexity algorithm that constructs node disjoint paths (NDP) from a single source node to the maximum number of destination nodes in Hexagonal Mesh Networks (HMNs) is given.

The rest of this chapter is organized as follows: Section 4.1 recalls several preliminaries about HMNs, Section 4.2 describes the proposed routing algorithm, and Section 4.3 concludes this chapter.

4.1 Hexagonal Mesh Networks Preliminaries

Hexagonal Mesh Networks (HMNs) are defined in terms of Eisenstein-Jacobi (EJ) integers. The following subsections explain the EJ integers, describe HMNs, and formally define the one-to-many node disjoint paths (NDP) routing problem in these networks.

4.1.1 EJ Integers

The set of all EJ integers, $\mathbb{Z}[\rho]$, is defined as $\{x+y \rho \mid x, y \in \mathbb{Z}\}$ where $\rho=(1+\mathbf{i} \sqrt{3}) / 2$ and $\mathbf{i}=\sqrt{-1}$.

The set $\mathbb{Z}[\rho]$ is a Euclidean domain and the norm of an EJ integer $\omega=\omega_{x}+\omega_{y} \rho$

Figure 4.1: Links in H_{2}
is defined as [17]:

$$
\mathcal{N}(\omega)=\omega_{x}{ }^{2}+\omega_{y}{ }^{2}+\omega_{x} \omega_{y}
$$

So, a Euclidean division algorithm for EJ integers exists. Let $\omega_{1}, \omega_{2} \in \mathbb{Z}[\rho]$ and $\omega_{2} \neq 0$. Then, there exist $q, r \in \mathbb{Z}[\rho]$ such that $\omega_{1}=q \omega_{2}+r$ and $\mathcal{N}(r)<\mathcal{N}\left(\omega_{2}\right)$. Let $\alpha=a+b \rho \in \mathbb{Z}[\rho]$ be nonzero where a and b are integers. Then, $\omega_{1}, \omega_{2} \in$ $\mathbb{Z}[\rho]$ are congruent modulo α if there exists $\gamma \in \mathbb{Z}[\rho]$ such that $\omega_{2}-\omega_{1}=\gamma \alpha$. Congruence and the EJ integers modulo α are denoted by $\omega_{2} \equiv \omega_{1}(\bmod \alpha)$ and $\mathbb{Z}[\rho]_{\alpha}$ respectively. The number of elements in $\mathbb{Z}[\rho]_{\alpha}$ is equal to $\mathcal{N}(\alpha)=a^{2}+b^{2}+a b$ [17].

4.1.2 Hexagonal Mesh Networks

Hexagonal Mesh Networks (HMNs) are two-dimensional networks generated by EJ integers and these were first introduced in [32]. Let $\alpha \in \mathbb{Z}[\rho]$ be nonzero. Each node in a HMN generated by α represents an EJ integer that belongs to the EJ
integers modulo α denoted by $\mathbb{Z}[\rho]_{\alpha}$. So, the number of nodes in this HMN is equal to $\mathcal{N}(\alpha)$. It is proved that for a given diameter $k \in \mathbb{Z}^{+}$, a HMN achieves the largest network size with $3 k^{2}+3 k+1$ nodes when it is generated by $\alpha=(k+1)+k \rho$ [15]. This network is referred as HMN.

In this work, we assume the generator of the HMN is $\alpha=(k+1)+k \rho$ and denote this HMN by H_{k} where k is the network diameter. Figure 4.1 shows H_{2} which is generated by $\alpha=3+2 \rho$. In this example, the number of nodes is equal to $\mathcal{N}(3+2 \rho)=3 \times 2^{2}+3 \times 2+1=19$ and the diameter $k=2$. In the following, we use this example to explain some properties of HMNs.

Addressing: In this work we use the addressing scheme given in [15]. In this scheme, the address of each node $\omega=\omega_{x}+\omega_{y} \rho \in \mathbb{Z}[\rho]_{\alpha}$ is $\left(\omega_{x}, \omega_{y}\right)$, where ω_{x} and ω_{y} represents the signed distance from the origin along the horizontal axis (East) and the 60 degrees axis (Northeast), respectively. In Figure 4.1, the 2-tuples inside each node are the addresses.

Connectivity: Two nodes $\omega_{1}, \omega_{2} \in \mathbb{Z}[\rho]_{\alpha}$ in H_{k} are connected (neighbors) if and only if $\left(\omega_{1}-\omega_{2}\right) \equiv \pm 1, \pm \rho, \pm \rho^{2}(\bmod \alpha)$ where $\alpha=(k+1)+k \rho$ is the generator of H_{k}. So, each node $\omega=\omega_{x}+\omega_{y} \rho \in \mathbb{Z}[\rho]_{\alpha}$ is connected to six neighbors:

1. $\omega^{E}=\left(\omega_{x}+1\right)+\omega_{y} \rho(\bmod \alpha)$,
2. $\omega^{N E}=\omega_{x}+\left(\omega_{y}+1\right) \rho(\bmod \alpha)$,
3. $\omega^{N W}=\left(\omega_{x}-1\right)+\left(\omega_{y}+1\right) \rho(\bmod \alpha)$,
4. $\omega^{W}=\left(\omega_{x}-1\right)+\omega_{y} \rho(\bmod \alpha)$,
5. $\omega^{S W}=\omega_{x}+\left(\omega_{y}-1\right) \rho(\bmod \alpha)$, and
6. $\omega^{S E}=\left(\omega_{x}+1\right)+\left(\omega_{y}-1\right) \rho(\bmod \alpha)$

Figure 4.2: Tiling of H_{2}
where $\omega^{N}, \omega^{W}, \omega^{S}, \omega^{E} \in \mathbb{Z}[\rho]_{\alpha}$.
The modulo function $(\bmod \alpha)$ is used to build the wraparound links. Let $\beta=\beta_{x}+\beta_{y} \rho$ be one of the above neighbors before applying the modulo function. Also, let $\beta \notin \mathbb{Z}[\mathbf{i}]_{\alpha}$ (i.e. β is not one of the network's nodes). So, we need to apply the modulo function to translate β to one of the network's nodes. The modulo
function $\beta(\bmod \alpha)$ is given by the following [32]:

$$
\begin{align*}
\beta(\bmod \alpha) & =\beta-\hat{\alpha} \\
\text { where } \hat{\alpha} & =\underset{\alpha_{i} \in A}{\operatorname{argmin}}\left\{\beta-\alpha_{i}\right\} \tag{4.1}\\
\text { and } A & =\left\{\alpha, \rho \alpha, \rho^{2} \alpha, \rho^{3} \alpha, \rho^{4} \alpha, \rho^{5} \alpha\right\}
\end{align*}
$$

The set A contains the centers of all adjacent hexagons in "the infinite (equilateral) triangle grid in the plan whose nodes are the vertices of regular hexagons of side length one centered at the origin and whose edges are all line segments of length one connecting two nodes" [4]. For example, Figure 4.2 shows the tiling of H_{2}. In this example, the centers of the adjacent hexagons are $A=\{3+2 \rho,-2+5 \rho,-5+$ $3 \rho,-3-2 \rho, 2-5 \rho, 5-3 \rho\}$.

In Figure 4.1b, the dashed links are the wraparound links built using Equation 4.1 and these wraparound links always connect two border nodes. For example, the NE neighbor of $\omega=2 \rho$ is $\omega^{N W}=3 \rho(\bmod 3+2 \rho)=(3 \rho)-(-2+5 \rho)=$ $2-2 \rho$ where $\beta=3 \rho$ (as shown by the dashed arrow in Figure 4.2). Another example is that the W neighbor of $\omega=-2+\rho$ is $\omega^{W}=-3+\rho(\bmod 3+2 \rho)=$ $(-3+\rho)-(-5+3 \rho)=2-2 \rho$ where $\beta=-3+\rho$.

Diameter: The diameter is the largest possible distance between any two nodes in a network. The diameter of H_{k} is equal to k [32]. For example in Figure 4.1, the diameter of H_{2} is equal to two.

Degree: The node degree is the number of its neighbors. In HMNs, each node is adjacent to six other nodes. So, the node degree is equal to six for all nodes $[15,32]$. Path: A path from node ω_{1} to node ω_{2} is denoted by $P\left(\omega_{1}, \omega_{2}\right)=\left\langle\omega_{1}, a_{1}, a_{2}, \ldots\right.$, $\left.a_{\left|P\left(\omega_{1}, \omega_{2}\right)\right|-1}, \omega_{2}\right\rangle$ where $\left|P\left(\omega_{1}, \omega_{2}\right)\right|$ is the length of the path and each two consecutive

Figure 4.3: Different examples of NDP in H_{3}
nodes (e.g. ω_{1} and a_{1}) are neighbors. Sometimes, we write the path $P\left(\omega_{1}, \omega_{2}\right)$ as $\omega_{1} \rightarrow a_{1} \rightarrow a_{2} \rightarrow \cdots \rightarrow \omega_{2}$. If ω_{1} and ω_{2} are not neighbors, we write $\omega_{1} \stackrel{\text { dir }}{\Rightarrow} \omega_{2}$ to denote a straight path from ω_{1} to ω_{2} in direction $\operatorname{dir} \in\{E, N E, N W, W, S W, S E\}$. For example in Figure 4.1, $(2,-1) \stackrel{N W}{\Rightarrow}(-1,2)$ denotes the path $(2,-1) \rightarrow(1,0) \rightarrow$ $(0,1) \rightarrow(-1,2)$.

One-to-Many NDP: Given a source node s and a set of distinct destination nodes $T=\left\{t_{1}, t_{2}, \ldots, t_{6}\right\}$, where $s \notin T$, a set of one-to-many NDP connects s to each destination node $t_{j}, j \in\{1,2, \ldots, 6\}$, and satisfy the condition that the only common node among all paths is the source node s. Since the degree of each node in HMN equals six, the maximum number of destination nodes for which a set of NDP can be obtained from a given source node also equals six and this is the case in this work.

For a particular s and T, there are more than one possible set of NDP from s to T. One of these possible sets is denoted by $\mathbb{P}(s, T)$. For example consider the network in Figure 4.1, let the source node be $s=(0,0)$ and the set of destination nodes be $T=\{(0,2),(-2,2),(-2,0),(0,-2),(2,-2),(2,0)\}$. Then, two different
possible sets of NDP are given in Figure 4.3.
The following section describes our routing algorithm from the source node s to each of the six destination nodes in T using NDP.

4.2 One-to-Many Node Disjoint Paths Routing

A hexagonal mesh network H_{k} can be partitioned into six non-overlapped sectors based on the source node's address. Definition 4.2.1 defines these sectors.

Definition 4.2.1. In a hexagonal mesh network H_{k} where k is the diameter, let the source node be s $=\left(s_{x}, s_{y}\right)$. Then, Sector 1, Sector 2, Sector 3, Sector 4, Sector 5, and Sector 6 are respectively defined as follows:

1. $S_{1}=\left\{(x, y) \in H_{k} \mid\left(x \geq s_{x}\right) \wedge\left(y>s_{y}\right)\right\}$
2. $S_{2}=\left\{(x, y) \in H_{k}\left|\left(x<s_{x}\right) \wedge\left(y>s_{y}\right) \wedge\right| x \mid \leq y\right\}$
3. $S_{3}=\left\{(x, y) \in H_{k}\left|\left(x<s_{x}\right) \wedge\left(y \geq s_{y}\right) \wedge\right| x \mid>y\right\}$
4. $S_{4}=\left\{(x, y) \in H_{k} \mid\left(x \leq s_{x}\right) \wedge\left(y<s_{y}\right)\right\}$
5. $S_{5}=\left\{(x, y) \in H_{k}\left|\left(x>s_{x}\right) \wedge\left(y<s_{y}\right) \wedge x \leq|y|\right\}\right.$
6. $S_{6}=\left\{(x, y) \in H_{k}\left|\left(x>s_{x}\right) \wedge\left(y \leq s_{y}\right) \wedge x>|y|\right\}\right.$

We can easily show that the number of nodes in each sector equals $k(k+1) / 2$. In case the source node s is $(0,0)$ (as we assume in this work), the sectors are defined as follows (see Figure 4.4):

1. $S_{1}=\left\{(x, y) \in H_{k} \mid(x \geq 0) \wedge(y>0)\right\}$

Figure 4.4: Sectors in H_{6}
2. $S_{2}=\left\{(x, y) \in H_{k}|(x<0) \wedge(y>0) \wedge| x \mid \leq y\right\}$
3. $S_{3}=\left\{(x, y) \in H_{k}|(x<0) \wedge(y \geq 0) \wedge| x \mid>y\right\}$
4. $S_{4}=\left\{(x, y) \in H_{k} \mid(x \leq 0) \wedge(y<0)\right\}$
5. $S_{5}=\left\{(x, y) \in H_{k}|(x>0) \wedge(y<0) \wedge x \leq|y|\}\right.$
6. $S_{6}=\left\{(x, y) \in H_{k}|(x>0) \wedge(y \leq 0) \wedge x>|y|\}\right.$

For the hexagonal mesh network H_{6} as shown in Figure 4.4, the number of nodes in each sector equals $6(6+1) / 2=21$ nodes where $k=6$.

Figure 4.5 shows the tiling and sectors of H_{2}. Figure 4.6 shows the sectors connected to each border node in S_{1}. From these two figures, it is important to notice the following for better understanding of the proposed algorithm:

1. Each sector is connected to all other sectors through one or more nodes. For example in Figure 4.6, S_{1} is connected to all other sectors.

Figure 4.5: Tiling of H_{2}
2. Sector $S_{i}, i=1,2, \ldots, 6$, is connected to: 1) sector $S_{i+2}(\bmod 6)$ through exactly two nodes, and 2$)$ sector $S_{i+5}(\bmod 6)$ through exactly one node. For example in Figure 4.5, S_{1} is connected to: 1) S_{3} through $(0,2)$ and $(1,1)$, and 2) S_{5} through $(0,2)$.
3. The node that connects S_{i} to $S_{i+5}(\bmod 6)$ is also used to connect S_{i} to $S_{i+2(\bmod 6)}$. For example in Figure 4.5, $(0,2)$ is used to connect S_{1} to both S_{3} and S_{5}.

Each sector is a triangle with three sides. In this work, S_{i}^{r} denotes a side of sec-

Figure 4.6: Sectors connected to $S_{1}\left(H_{6}\right)$
tor S_{i} specified by direction $r \in\{E, N, W, S\}$ where $i \in\{1,2, \ldots, 6\}$. For example in Figure 4.4, S_{1}^{S} denotes the south side of Sector one (i.e. $(0,1),(1,1),(2,1), \ldots,(k-$ $1,1)$). The sides of Sector one are S_{1}^{E}, S_{1}^{W}, and S_{1}^{S}.

If node $\omega \notin S_{i}^{r}$, then $\omega \stackrel{\text { dir }}{\Rightarrow} S_{i}^{r}$ denotes a straight path from ω to the sector side S_{i}^{r} in the direction dir. Note that there is one and only one node that is part of this path and this side. For example in Figure 4.4, $(2,2) \stackrel{N W}{\Rightarrow} S_{1}^{W}$ denotes the path starting from $(2,2)$ and ending in S_{1}^{W} going in the NW direction. This path is $(2,2) \rightarrow(1,3) \rightarrow(0,4)$ where $(0,4) \in S_{1}^{W}$. Similarly, if node $\omega \notin S_{i}^{r}$ but one of its neighbors is in S_{i}^{r}, then we write $\omega \rightarrow S_{i}^{r}$.

After partitioning the network into six sectors, we propose an algorithm that constructs six node disjoint paths (NDP) $\mathbb{P}(s, T)$ from the source node s to the six destination nodes in $T=\left\{t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq 6\right\}$ where $s \notin T$. The algorithm consists of two main parts: rotation and construction.

The rotation part rotates the network in the clock-counter direction six times.

In each time, sector S_{i} becomes $S_{i+1}(\bmod 6)$. Each rotation is performed by multiplying all nodes in the network by ρ.

The construction part constructs the NDP from the source node to whatever destination nodes in sector S_{1} according to the following cases:

- Case 1: S_{1} contains six destination nodes.
- Case 2: S_{1} contains five destination nodes.
- Case 3: S_{1} contains four destination nodes.
- Case 4: S_{1} contains three destination nodes.
- Case 5: S_{1} contains two destination nodes.
- Case 6: S_{1} contains one destination node.

In this section, we explain how to construct the NDP for each one of these cases. In Section 4.2.1, we explain how the algorithm uses them. Before that, we need the following definitions.

Definition 4.2.2. In a hexagonal mesh network H_{k}, where k is the diameter, let the source node be $(0,0)$. Then, the $E, N E, N W, W, S W$, and SE NDP start with $(0,0) \rightarrow(1,0),(0,0) \rightarrow(0,1),(0,0) \rightarrow(-1,1),(0,0) \rightarrow(-1,0),(0,0) \rightarrow(0,-1)$, and $(0,0) \rightarrow(1,-1)$ respectively.

Definition 4.2.3. In a hexagonal mesh network H_{k} where k is the diameter, let $t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \in S_{i}$ for $j, i=1,2, \ldots, 6$ be any destination node. Then, the destination node t_{j} is:

- the top destination node of S_{i} if $t_{j_{y}}=\max \left\{t_{r_{y}} \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in S_{i}\right\}$,
- the bottom destination node of S_{i} if $t_{j_{y}}=\min \left\{t_{r_{y}} \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in S_{i}\right\}$,
- the left destination node of S_{i} if $t_{j_{x}}=\min \left\{t_{r_{x}} \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in S_{i}\right\}$,
- the right destination node of S_{i} if $t_{j_{x}}=\max \left\{t_{r_{x}} \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in S_{i}\right\}$,
- the max-weight destination node of S_{i} if $W\left(t_{j}\right)=\max \left\{W\left(t_{r}\right) \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in\right.$ $\left.S_{i}\right\}$, and/or
- the min-weight destination node of S_{i} if $W\left(t_{j}\right)=\min \left\{W\left(t_{r}\right) \mid t_{r}=\left(t_{r_{x}}, t_{r_{y}}\right) \in\right.$ $\left.S_{i}\right\}$.

Note that the top, bottom, left, right, max-weight, or min-weight destination nodes as defined in Definition 4.2.3 are not necessarily unique. So, we say, for example, top $/ 2^{\text {nd }}$ left of S_{i} to uniquely specify a destination node by choosing the most $2^{\text {nd }}$ left destination node among those top destination nodes in case the top destination node is not unique.

Now, we explain how to construct the NDP for each case.

Case 1: Six destination nodes in S_{1}

In this case, six destination nodes t_{j}, where $j=1,2, \ldots, 6$, exist in sector S_{1}. Theorem 4.2.1 explains the process of constructing the node disjoint paths (NDP) from the source node s to these destination nodes.

Theorem 4.2.1. In a hexagonal mesh network H_{k} where k is the network diameter, let the source node be $s=(0,0)$ and the set of destination nodes be $T=\left\{t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq 6\right\}$ such that $t_{j} \in S_{1}$. Then, there exist $N D P \mathbb{P}(s, T)$.

Figure 4.7: NDP outside Sector 1 in Case 1

Proof. To construct the NDP from the source node s to the six destination nodes in S_{1}, the algorithm connects two destination nodes (say, t_{1} and t_{2}) to S_{2}, one destination node (say, t_{3}) to the source's neighbor $(0,1)$, one destination node (say, t_{4}) to S_{6}, and two destination nodes (say, t_{5} and t_{6}) to S_{4}. These paths have two portions: inside and outside S_{1}. The following paths are the portions outside S_{1} (see Figure 4.7):

- Assuming the border node in S_{2}^{E} that is connected to t_{1} is on top of the border node in S_{2}^{E} that is connected to t_{2}, the path to t_{1} is $t_{1} \rightarrow \cdots \rightarrow$ $S_{1}^{W} \stackrel{W}{\Rightarrow} S_{3}^{E} \stackrel{S E}{\Rightarrow}(-1,0) \rightarrow s$. If node $(0, k)$ is used in $t_{1} \rightarrow \cdots \rightarrow S_{1}^{W}$, the path is $t_{1} \rightarrow \cdots \rightarrow S_{1}^{W} \rightarrow S_{2}^{E} \stackrel{W}{\Rightarrow} S_{2}^{W} \rightarrow S_{3}^{E} \stackrel{S E}{\Rightarrow}(-1,0) \rightarrow s$.
- The path to t_{2} is $t_{2} \rightarrow \cdots \rightarrow S_{1}^{W} \rightarrow S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$.
- The path to t_{4} is $t_{4} \rightarrow \cdots \rightarrow S_{1}^{S} \rightarrow S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$.
- Assuming the border node in S_{4}^{W} that is connected to t_{5} is on top of the

Figure 4.8: Example of Case $1.1\left(H_{10}\right)$
border node in S_{4}^{W} that is connected to t_{6}, the path to t_{5} is $t_{5} \rightarrow \cdots \rightarrow$ $S_{1}^{E} \rightarrow S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$.

- The path to t_{6} is $t_{6} \rightarrow \cdots \rightarrow S_{1}^{E} \rightarrow S_{4}^{W} \stackrel{E}{\Rightarrow} S_{5}^{W} \stackrel{N E}{\Rightarrow}(1,-1) \rightarrow s$.

The previous NDP are the paths outside S_{1}. Next we show the NDP inside S_{1}. Basically, we need to connect two destination nodes to S_{2}^{E}, one destination node to S_{6}^{N}, two destination nodes to S_{4}^{W}, and one destination node to the source's neighbor $(0,1)$. The process of constructing the paths inside S_{1} depends on the destination node locations as follows:

Case 1.1 (Six destination nodes have $y=1$):
In this case, all destination nodes are in S_{1}^{S}. The NDP are as follows: the $1^{\text {st }}$ left destination node is connected to node $(0,1)$; the $2^{\text {nd }}$ and $3^{\text {rd }}$ left destination nodes are connected to S_{2}; the $4^{\text {th }}$ left destination node is connected to S_{6}; and the $5^{\text {th }}$ and $6^{\text {th }}$ left destination nodes are connected to S_{4}. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.8.

Figure 4.9: Examples of Case $1.2\left(H_{10}\right)$

Case 1.2 (Five destination nodes have $y=1$):

Let the destination node that its y coordinate equals or greater than two be $\hat{t}=\left(\hat{t}_{x}, \hat{t}_{y}\right)$. Only among the destination nodes other than \hat{t}, let the $1^{\text {st }}$ left destination node be $t_{L}=\left(t_{L_{x}}, 1\right)$ and the $1^{\text {st }}$ right destination node be $t_{R}=\left(t_{R_{x}}, 1\right)$. Then, the NDP for this case depend on the location of \hat{t} as follows:

Case 1.2.1 ($\hat{t}_{y}=2$ and $\hat{t}_{x} \geq t_{R_{x}}-1$): In this case, \hat{t} is connected to S_{4}. The NDP to the remaining destination nodes are as follows: the $1^{\text {st }}$ left destination node is connected to node $(0,1)$; the $2^{\text {nd }}$ and $3^{\text {rd }}$ left
destination nodes are connected to S_{2}; the $4^{\text {th }}$ left destination node is connected to S_{6}; and the $5^{\text {th }}$ left destination node (among the ones) is connected to S_{4}. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.9a where the marked area represents all possibilities of \hat{t}.

Case 1.2.2 ($\hat{t}_{y}=2$ and $\left.t_{L_{x}}<\hat{t}_{x}<t_{R_{x}}-1\right)$: In this case, \hat{t} is connected to S_{2}. The NDP to the remaining destination nodes are as follows: among the ones in S_{1}^{S}, the $1^{\text {st }}$ left destination node is connected to node $(0,1)$; the $2^{\text {nd }}$ left destination node is connected to S_{2}; the $3^{\text {rd }}$ left destination node is connected to S_{6}; and the $4^{\text {th }}$ and $5^{\text {th }}$ left destination nodes are connected to S_{4}. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.9b.

Case 1.2.3 $\left(\hat{t}_{y}=2\right.$ and $\left.\hat{t}_{x} \leq t_{L_{x}}\right)$: In this case, each destination node is connected to the same sector as Case 1.2.2. However, the NDP are slightly different. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.9c.

Case 1.2.4 $\left(\hat{t}_{y}>2\right)$: Also in this case, each destination node is connected to the same sector as Case 1.2.2. However, the NDP are slightly different. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.9d.

That covers all possibilities of \hat{t}.

Case 1.3 (Four destination nodes have $y=1$):
Let the two destination nodes that their y coordinates equals or greater than

(a) Case 1.3.1

(c) Case 1.3.3

(e) Case 1.3.5

(b) Case 1.3.2

(d) Case 1.3.4

(f) Case 1.3.6

Figure 4.10: Examples of Case $1.3\left(H_{10}\right)$
two be $\hat{t}_{1}=\left(\hat{t}_{1_{x}}, \hat{t}_{1_{y}}\right)$ and $\hat{t}_{2}=\left(\hat{t}_{2_{x}}, \hat{t}_{2_{y}}\right)$. Among the destination nodes other than \hat{t}_{1} and \hat{t}_{2}, let the $1^{\text {st }}$ left destination node be $t_{L}=\left(t_{L_{x}}, 1\right)$ and the $1^{\text {st }}$
right destination node be $t_{R}=\left(t_{R_{x}}, 1\right)$. Then, the NDP for this case depend on the locations of \hat{t}_{1} and \hat{t}_{2} as follows:

Case 1.3.1 $\left(\hat{t}_{1_{y}}=\hat{t}_{2_{y}}=2\right.$ and $\hat{t}_{1_{x}}>\hat{t}_{2_{x}}$ and $\hat{t}_{1_{x}} \geq t_{R_{x}}-1$ and $\left.\hat{t}_{2_{x}}>t_{L_{x}}\right)$: In this case, two destination nodes are on the second bottom row (see Figure 4.10a). Among them, the x coordinate of the $1^{\text {st }}$ right destination node is equal or grater then the x coordinate minus one of the $1^{\text {st }}$ right destination node among the destination nodes in row $y=1$. It follows that we cannot connect the $2^{\text {nd }}$ right destination node in the first bottom row to sector S_{4} through the second bottom row. However, we can connect the $2^{\text {nd }}$ left destination node in the first bottom row to sector S_{2} through the second bottom row because of $\hat{t}_{2_{x}}>t_{L_{x}}$. Same reasoning is applied for the following cases of Case 1.3.

In Case 1.3.1, the NDP are as follows: \hat{t}_{1} and \hat{t}_{2} are connected to S_{4} and S_{2} respectively. Among the remaining destination nodes, the $1^{\text {st }}$ left destination node is connected to node $(0,1)$; the $2^{\text {nd }}$ left destination nodes is connected to S_{2}; the $3^{\text {rd }}$ destination node is connected to S_{6}; and the $4^{\text {th }}$ left destination node is connected to S_{4}. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.10a.

Case 1.3.2 $\left(\hat{t}_{1_{y}}=\hat{t}_{2_{y}}=2\right.$ and $\hat{t}_{1_{x}}>\hat{t}_{2_{x}}$ and $\hat{t}_{1_{x}} \geq t_{R_{x}}-1$ and $\left.\hat{t}_{2_{x}} \leq t_{L_{x}}\right)$: In this case, each destination node is connected to the same sector as Case 1.3.1. However, the NDP are slightly different. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.10b.

Case 1.3.3 ($\hat{t}_{1_{y}}=\hat{t}_{2_{y}}=2$ and $\hat{t}_{1_{x}}>\hat{t}_{2_{x}}$ and $\left.\hat{t}_{1_{x}}<t_{R_{x}}-1\right)$: In this case, \hat{t}_{1} and \hat{t}_{2} are connected to S_{2}. Among the remaining destination nodes, the $1^{\text {st }}$ left destination node is connected to node $(0,1)$; the $2^{\text {nd }}$ left destination node is connected to S_{6}; the $3^{\text {rd }}$ and the $4^{\text {th }}$ left destination nodes are connected to S_{4}. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.10c.

Case 1.3.4 ($\hat{t}_{1_{y}}=2$ and $\hat{t}_{2 y}>2$ and $\left.\hat{t}_{1_{x}} \geq t_{R_{x}}-1\right)$: In this case, \hat{t}_{1} is connected to $S_{4} . \hat{t}_{2}$ is connected to S_{2}. Among the remaining destination nodes, the $1^{\text {st }}$ left destination node is connected to node $(0,1)$; the $2^{\text {nd }}$ left destination node is connected to S_{2}; the $3^{\text {rd }}$ left destination node is connected to S_{6}; and the $4^{\text {th }}$ left destination node is connected to S_{4}. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.10d.

Case 1.3.5 $\left(\hat{t}_{1_{y}}=2\right.$ and $\hat{t}_{2_{y}}>2$ and $\left.\hat{t}_{1_{x}}<t_{R_{x}}-1\right)$: In this case, each destination node is connected to the same sector as Case 1.3.3. However, the NDP are slightly different. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.10e.

Case 1.3.6 ($\left.\hat{t}_{1 y}, \hat{t}_{2_{y}}>2\right)$: In this case, each destination node is connected to the same sector as Case 1.3.3. However, the NDP are slightly different. These paths are straightforward and can be immediately gleaned from the example shown in Figure 4.10f.

Case 1.4 (Three or less destination nodes have $y=1$):
In this case, the following steps construct the NDP (Figure 4.11a shows an example.):

Figure 4.11: Examples of Case $1.4\left(H_{10}\right)$

1. Among all destination nodes, find the top/2nd left destination node.

Let it be t_{1}. The path to t_{1} is $t_{1} \stackrel{N W}{\Rightarrow} S_{1}^{W}$. Now, t_{1} is connected to S_{2}.
2. Excluding t_{1}, find the top/left destination node. Let it be t_{2}. The path
to t_{2} is $t_{2} \stackrel{W}{\Rightarrow} S_{1}^{W}$. Now, t_{2} is connected to S_{2}.
3. Excluding t_{1} and t_{2}, find the min-weight/top destination node. Let it be t_{3}. The path to t_{3} is $t_{3} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$.
4. Excluding t_{1}, t_{2}, and t_{3}, find the min-weight/bottom destination node. Let it be t_{4}. The path to t_{4} is $t_{4} \stackrel{S E}{\Rightarrow} S_{1}^{S}$. Now, t_{4} is connected to S_{6}.
5. Excluding t_{1}, t_{2}, t_{3}, and t_{4}, find the max-weight/bottom destination node. Let it be t_{5}. The path to t_{5} is $t_{5} \stackrel{E}{\Rightarrow} S_{1}^{E}$. Now, t_{5} is connected to S_{4}.

Clearly, the previous NDP are visible since we make sure that there is no destination node on the way of the constructed path. For example, t_{5} is the max-weight/bottom destination node. It follows that there is no destination node from t_{5} to the border node on the same row on the east direction.
6. Let the remaining destination node be t_{6}. To construct the path to t_{6}, we check the availability of the following paths in the following order (if a path is not available because one or more of its nodes have been used by the previous paths constructed in the above steps, we go to the next path):
(a) Check the availability of the following path that connects t_{6} to S_{4} : $t_{6} \stackrel{E}{\Rightarrow} S_{1}^{E}$. (Figure 4.11a shows an example.) If this path is not available, then the destination node that blocks this path must be t_{5} because its weight is more than the weight of t_{6}.
(b) Check the availability of the following path that connects t_{6} to S_{4} : $t_{6} \stackrel{E}{\Rightarrow} t_{5}^{W} \rightarrow t_{5}^{S W} \stackrel{E}{\Rightarrow} S_{1}^{E}$. (Figure 4.11b shows an example.)
(c) Check the availability of the following path that connects t_{6} to S_{4} : $t_{6} \stackrel{E}{\Rightarrow} t_{5}^{W} \rightarrow t_{5}^{N E} \stackrel{E}{\Rightarrow} S_{1}^{E}$. (Figure 4.11 c shows an example.)
(d) Check the availability of the following path that connects t_{6} to S_{2} : $t_{6} \stackrel{W}{\Rightarrow} S_{1}^{W}$. (Figure 4.11d shows an example, the dashed path.) If this path is available, then there are three destination nodes connected to S_{2} (i.e. t_{1}, t_{2}, and t_{6}) while there is only one destination node connected to S_{4} (i.e. t_{5}). To fix this, we switch between t_{6} and t_{1} by connecting t_{1} to S_{4} using the following path: $t_{1} \stackrel{E}{\Rightarrow} S_{1}^{E}$. This path must be available. Otherwise, one of the previous paths must be available.

If the above path to t_{6} is not available, then the destination node that blocks this path must be t_{2} because it is the top/left destination node among all nodes except t_{1}.
(e) Check the availability of the following path that connects t_{6} to S_{2} : $t_{6} \stackrel{W}{\Rightarrow} t_{2}^{E} \rightarrow t_{2}^{N W} \stackrel{W}{\Rightarrow} S_{1}^{W}$. (Figure 4.11e shows an example.) For the same reason, we have to switch between t_{6} and t_{1} same as before.
(f) If none of the previous paths is available, then the following steps construct the path (Figure 4.11f shows an example.):
i. Connect t_{6} to $(0,1)$ (instead of t_{3}) using the following path: $t_{6} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$. This path must be available because the only destination node that can blocks it is t_{6} which is blocking one of the previous paths.
ii. Connect t_{3} (the one that was connected to $\left.(0,1)\right)$ to S_{2} using the following path: $t_{3} \xrightarrow{W} S_{1}^{W}$. Now, there are three destination
nodes connected to S_{2} (i.e. t_{1}, t_{2}, and t_{3}) while there is only one destination node connected to S_{4} (i.e. t_{5}).
iii. Connect t_{1} to S_{4} (instead of S_{2}) same as before.

This covers all possible cases and completes the proof.

Case 2: Five destination nodes in S_{1}

In this case, five destination nodes exist in sector S_{1}. Theorem 4.2.2 shows the NDP for this case.

Theorem 4.2.2. In a hexagonal mesh network H_{k} where k is the network diameter, let the source node be $s=(0,0)$ and the set of destination nodes be $T=\left\{t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq 6\right\}$ such that five destination nodes exist in S_{1}. Then, there exist $N D P \mathbb{P}(s, T)$.

Proof. In this case, one destination node does not exist in S_{1}. Let it be $t_{\bar{S}_{1}}$. Then, we have the following cases based on which sector contains $t_{\bar{S}_{1}}$:

Case $2.1\left(t_{\bar{S}_{1}}\right.$ in $\left.S_{6}\right)$:

The solution of this case is similar to the solution of Case 1 except we remove the step that connects one of the destination node to S_{6}. The details are as follows:

- If there are five, four, and three destination nodes that their $y=1$, then the NDP are given in Figure 4.8, Figure 4.9, and Figure 4.10b except that we remove the destination node that is connected to S_{6}.

Figure 4.12: Example of Case $2.1\left(H_{6}\right)$

- If there are two or less destination nodes that their $y=1$, then the NDP are obtained by applying the algorithm given for Case 1.4 except that we remove Step 4 which is the step that connects one of the destination nodes to S_{6}.

The NDP outside S_{1} are exactly as given in Case 1 except that the path from the source node to $t_{\bar{S}_{1}}$ within S_{6} is slightly different. This path is straightforward and can be immediately gleaned from the example of Case 2.1 shown in Figure 4.12. In this example, one destination node in S_{1} has $y=1$. So, we apply the algorithm given in Case 1.4 except that we remove Step 6.

Case $2.2\left(t_{\bar{S}_{1}}\right.$ in S_{4} or $\left.S_{5}\right)$:
Before we show the NDP for this case, it is important to notice from Figure 4.6 that each border node in S_{1}^{E} has two neighbors in S_{4} except node
$(1, k)$ which has only one neighbor in S_{4} (i.e. $\left.(-(k-1),-1)\right)$. So, we can always connect one destination node from S_{1} to S_{4} as long as: 1) $t_{\bar{S}_{1}}$ is not $(-(k-1),-1)$, or 2$)$ the border node in S_{1} that is connected to this destination node is not $(1, k-1)$. Since $t_{\bar{S}_{1}}$ exists in either S_{4} or S_{5}, the NDP outside S_{1} are exactly as given in Case 1 except that we connect only one destination node to S_{4}. If the above conditions are satisfied, then this is a special case and we will show its solution later. Otherwise, we connect the border node to whatever available of its neighbor. Then we connect the source node to the top/right (among the destination node in S_{4} (if any) and the border node along the path to one of the destination node in S_{1}) by going from the source to $(0,-1)$, then going west to the same x-coordinate as the top/right node,then going south-west to this node. The other node in S_{4} is connected to S_{5} as explained in Case 1.

Based on the number of destination nodes that have $y=1$, we have the following cases:

Case 2.2.1 (Five destination nodes have $y=1$):

The NDP for this case are straightforward and can be immediately gleaned from Figure 4.13.

Case 2.2.2 (Four destination nodes have $y=1$):

In this case, the y-coordinate of one of the destination nodes in S_{1} does not equal to one. Let this destination node be \hat{t}. Among the destination nodes that have $y=1$, let the left destination node be t_{L}. If $\hat{t}_{y}=2$ and $\hat{t}_{x} \leq t_{L_{x}}$, then the NDP are given in Figure 4.14a. Otherwise, the NDP are given in Figure 4.14b.

Figure 4.13: Example of Case 2.2.1 $\left(H_{6}\right)$

Case 2.2.3 (Three or less destination nodes have $y=1$):

The NDP for this case are constructed by the following algorithm:

1. Apply Steps 1 to 5 from the algorithm given for Case 1.4 on the five destination nodes in S_{1}. As a result of Step 5, one of these destination nodes is connected to a border node that is adjacent to S_{4}. Let this border node be c_{5}^{1}.
2. If $c_{5}^{1}=(1, k-1)$ and $t_{\bar{S}_{1}}=(-(k-1),-1)$, then we cannot connect c_{5}^{1} to S_{4} because the only neighbor of c_{5}^{1} in S_{4} is $t_{\bar{S}_{1}}$. Note that in this case, $(0, k)$ and ($0, k-1$) must be destination nodes (otherwise $\left.c_{5}^{1} \neq(1, k-1)\right)$. To construct the NDP in this case we connect $(0, k)$ to $S_{5},(0, k-1)$ to $S_{2}, c_{5}^{1}=(1, k-1)$ to S_{3}, the min-weight/top (out of the remaining two destination nodes) to $(0,1)$, and the last destination node to S_{6}. Figure 4.15a shows an example of this case where all paths can be immediately gleaned.

(a) $\hat{t}_{y}=2$ and $\hat{t}_{x} \leq t_{L_{x}}$

(b) Otherwise

Figure 4.14: Examples of Case 2.2.2 $\left(H_{6}\right)$
3. If $c_{5}^{1} \neq(1, k-1)$ or $t_{\bar{S}_{1}} \neq(-(k-1),-1)$, then we can safely construct the NDP as given in the algorithm for Case 1.4 by applying the first five steps. Figure 4.15b shows an example of this case where all paths can be immediately gleaned.

Figure 4.15: Example of Case 2.2.3 $\left(H_{6}\right)$

Case $2.3\left(\boldsymbol{t}_{\bar{S}_{1}}\right.$ in $\boldsymbol{S}_{\mathbf{2}}$ or $\left.\boldsymbol{S}_{\mathbf{3}}\right)$: Note that node $(0, k)$ in S_{1} is adjacent to exactly one node in S_{2} (i.e. $(-1, k)$). Moreover, node $(0, k)$ is not adjacent to S_{4}. So, if $(0, k)$ is a destination node (or a border node along the path to

Figure 4.16: Example of Case 2.3.1 $\left(H_{6}\right)$
a destination node) and $(-1, k)$ is also a destination node, then we cannot connect $(0, k)$ to either S_{2} nor S_{4}. To avoid this case, we connect one of the destination nodes in S_{1} to S_{5} through the node $(0, k)$. It follows that we need to connect only one destination node to S_{4}. Since $t_{\bar{S}_{1}}$ is in S_{2} or S_{3}, we need to connect only one destination node to S_{2}.

Based on the number of destination nodes that have $y=1$, we have the following cases:

Case 2.3.1 (Five destination nodes have $y=1$):

The NDP for this case are very similar to Case 2.2.1 except that we connect one of the destination node to S_{5}. Figure 4.16 shows an example where all paths can be immediately gleaned.

Case 2.3.2 (Four destination nodes have $y=1$):

Similar to Case 2.2.1, Case 2.3.2 is divided into two cases based on the

(a) $\hat{t}_{y}=2$ and $\hat{t}_{x} \leq t_{L_{x}}$

(b) Otherwise

Figure 4.17: Example of Case 2.3.2 $\left(H_{6}\right)$
location of the destination node that is not on $y=1$. Figure 4.17 shows both cases where all paths can be immediately gleaned.

Case 2.3.3 (Three or less destination nodes have $y=1$):

Figure 4.18: Example of Case 2.3.3 $\left(H_{6}\right)$

To construct the NDP for this case, we apply the algorithm given in Case 1.4 with the following changes:

1. In Step 1 instead of connecting the top/left destination node (i.e t_{1}) to S_{2}, we connect this destination node to S_{5} through node $(0, k)$ using the following path: $t_{1} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}$ $(1,-1) \rightarrow s$.
2. Remove Step 6 that connects one of the destination nodes to S_{4}.

Figure 4.18 shows an example of this case.

This covers all possible cases and completes this proof.

Case 3: Four destination nodes in S_{1}

Figure 4.19: Example of Case $3.1\left(H_{6}\right)$

In this case, four destination nodes exist in sector S_{1}. Theorem 4.2.3 shows the NDP for this case.

Theorem 4.2.3. In a hexagonal mesh network H_{k} where k is the network diameter, let the source node be $s=(0,0)$ and the set of destination nodes be $T=\left\{t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq 6\right\}$ such that four destination nodes exist in S_{1}. Then, there exist $N D P \mathbb{P}(s, T)$.

Proof. In this case, two destination nodes do not exist in S_{1}. It follows that at least three sectors (out of $S_{2}, S_{3}, \ldots, S_{6}$) do not have any destination nodes. Let $\left(S_{a}, S_{b}, S_{c}\right)$ denote these three sectors where $a, b, c \in\{2, \ldots, 6\}$. Then, there are 10 cases in the form of (S_{a}, S_{b}, S_{c}). Assuming that at most two destination nodes have $y=1$, Table 4.1 lists all cases and provides the NDP for each case. If there are three or four destination nodes that have $y=1$, then the NDP can be easily constructed.

The following steps show how to construct the NDP using Table 4.1:

Case No.	$\begin{array}{\|l} \hline \text { Condition } \\ \left(S_{a}, S_{b}, S_{c}\right) \\ \hline \end{array}$	Destination Node		Node Disjoint Path
		out of	t_{i}	
3.1	$\left(S_{2}, S_{3}, S_{4}\right)$	all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
		rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
		rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{w}{\Rightarrow}(0,1) \rightarrow s$
		rest	the last one	$t_{i} \stackrel{E}{\Rightarrow} S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$
3.2	$\left(S_{2}, S_{3}, S_{5}\right)$		Loo	Table 4.2
3.3	$\left(S_{2}, S_{3}, S_{6}\right)$	all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
		rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
		rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\#}(0,1) \rightarrow s$
		rest	the last one	$t_{i} \stackrel{S E}{\Rightarrow} S_{6}^{N} \stackrel{W}{\#}(1,0) \rightarrow s$
3.4	$\left(S_{2}, S_{4}, S_{5}\right)$	all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
		rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
		rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
		rest	the last one	$t_{i} \stackrel{E}{\Rightarrow} S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$
3.5	$\left(S_{2}, S_{4}, S_{6}\right)$	all	top/left	$t_{i} \stackrel{W}{\#} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
		rest	min-weight/top	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
		rest	min-weight/bottom	$t_{i} \stackrel{S E}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$
		rest	the last one	$t_{i} \stackrel{E}{¢} S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$
3.6	$\left(S_{2}, S_{5}, S_{6}\right)$	all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
		rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
		rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\#}(0,1) \rightarrow s$
		rest	the last one	$t_{i} \stackrel{\text { SE }}{\Rightarrow} S_{6}^{N} \stackrel{W}{\#}(1,0) \rightarrow s$
3.7	$\left(S_{3}, S_{4}, S_{5}\right)$	Look at Table 4.4		
3.8	$\left(S_{3}, S_{4}, S_{6}\right)$	all	top/left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
		rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
		rest	min-weight/bottom	$t_{i} \stackrel{S E}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$
		rest	the last one	$t_{i} \stackrel{E}{\Rightarrow} S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$
3.9	$\left(S_{3}, S_{5}, S_{6}\right)$	Look at Table 4.5		
3.10	$\left(S_{4}, S_{5}, S_{6}\right)$	all	top/2 ${ }^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
		rest	min-weight/top	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
		rest	min-weight/bottom	$t_{i} \stackrel{S E}{\Rightarrow} S_{6}^{N} \stackrel{W}{\#}(1,0) \rightarrow s$
		rest	the last one	$t_{i} \stackrel{E}{\Rightarrow} S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$

Table 4.1: Subcases of Case 3: four destination nodes in S_{1}

Case No.	Conditions (AND)			Destination Node		Node Disjoint Path
	1	2	3	out of	t_{i}	
3.2.1	S_{1}^{E} does not con- tain dest. nodes			all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{W}{\Rightarrow} S_{3}^{E} \stackrel{S E}{\Rightarrow}(-1,0) \rightarrow s$
				rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	min-weight/bottom	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{E}{\Rightarrow} S_{1}^{E} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
3.2.2.1	$S_{1}^{E} \quad$ contains one dest. node	at most one dest. node has $y=1$			the one in S_{1}^{E}	$t_{i} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N N}{\Rightarrow}(1,-1) \rightarrow s$
				rest	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{W}{\Rightarrow} S_{3}^{E} \stackrel{S E}{\Rightarrow}(-1,0) \rightarrow s$
				rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \xrightarrow{W}(0,1) \rightarrow s$
3.2.2.2.1		exactly two dest. nodes have$y=1$	S_{4} con- tains two dest. nodes		the one on S_{1}^{E}	$t_{i}{ }^{N W}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
				rest	top	$t_{i} \stackrel{W}{\Longrightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	left	$t_{i} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,-1) \rightarrow s$
					the ones in S_{4}	To connect one dest. node to S_{3} from S_{4}, rotate; apply Case $5.5\left(S_{6}\right)$ from Table 4.8; and rotate back.
3.2.2.2.2			S_{4} con- tains one dest. node		the one in S_{1}^{E}	$t_{i} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
				rest	top	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{\text { SW }}{\Rightarrow}(-1,1) \rightarrow s$
				rest	left	$t_{i} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	If $(-1,-(k-1))$ is available, the path is $t_{i} \stackrel{E}{\Rightarrow}(k-$ $1,1) \rightarrow(-1,-(k-1))$. Otherwise, the path is $t_{i} \stackrel{E}{\Rightarrow}$ $(k-1,1) \rightarrow(-2,-(k-2))$. Then, apply Case $5.5\left(S_{6}\right)$ (after rotation) on this dest. node and the one in S_{4} to connect one of them to S_{3}.
3.2.2.2.3			S_{4} does not con- tain dest. nodes		the one in S_{1}^{E}	$t_{i} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N O}{\Rightarrow}(1,-1) \rightarrow s$
				rest	top	$t_{i} \stackrel{W}{\#} S_{2}^{E} \stackrel{\text { SW }}{\Rightarrow}(-1,1) \rightarrow s$
				rest	left	$t_{i} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{E}{\leftrightarrows}$ $1)$ $(k-1,1) \rightarrow(-1,-(k-$ To connect one dest. node to S_{3}, rotate; apply Case 5.5
					the ones in S_{6}	To connect one dest. node to S_{4}, rotate; apply Case 5.4 $\left(S_{5}\right)$; and rotate back. $\left(S_{6}\right)$ on $(-1,-(k-1))$ and $(0,-k)$; and rotate back.
3.2.3.1	$\begin{aligned} & S_{1}^{E} \text { con- } \\ & \text { tains } \\ & \text { two dest. } \\ & \text { nodes } \end{aligned}$	$\begin{aligned} & S_{4} \text { con- } \\ & \text { tains } \\ & \text { two dest. } \\ & \text { nodes } \end{aligned}$		S_{1}^{E}	top	$t_{i} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
					bottom	$t_{i} \stackrel{S E}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$
				rest	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \rightarrow S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
					the ones in S_{4}	To connect one dest. node to S_{3}, rotate; apply Case 5.5 $\left(S_{6}\right)$; and rotate back.
3.2.3.2		S_{4} contains one dest. node		S_{1}^{E}	top	$t_{i} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N N}{\Rightarrow}(1,-1) \rightarrow s$
					bottom	If $(-1,-(k-1))$ is available, the path is $t_{i} \stackrel{S E}{\Rightarrow}(k-$ $1,1) \rightarrow(-1,-(k-1))$. Otherwise, the path is $t_{i} \xrightarrow{S E}$ $(k-1,1) \rightarrow(-2,-(k-2))$. Then, apply Case $5.5\left(S_{6}\right)$ (after rotation) on this dest. node and the one in S_{4} to connect one of them to S_{3}.
				rest	top/2 $2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \rightarrow S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
3.2.3.3		$\begin{array}{lc} \hline S_{4} & \text { does } \\ \text { not } & \text { con- } \\ \text { tain } & \text { dest. } \\ \text { nodes } \end{array}$		S_{1}^{E}	top	$t_{i} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
					bottom	To connect one dest. node to S_{3}, rotate; apply Case 5.5 $\left(S_{6}\right)$ on $(-1,-(k-1))$ and $(0,-k)$; and rotate back.
					the ones in S_{6}	To connect one dest. node to S_{4}, rotate; apply Case 5.4 $\left(S_{5}\right)$; and rotate back. $\left(S_{6}\right)$ on $(-1,-(k-1))$ and $(0,-k)$; and rotate back.
				rest	top/ $2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \rightarrow S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
Continue on Table 4.3						

Table 4.2: Subcases of Case 3.2: $\left(S_{2}, S_{3}, S_{5}\right)$

Case No.	Conditions (AND)			Destination Node		Node Disjoint Path
	1	2	3	out of	t_{i}	
3.2.4.1	$S_{1}^{E} \quad$ contains three dest. nodes	$\begin{aligned} & S_{4} \text { con- } \\ & \text { tains } \\ & \text { two dest. } \\ & \text { nodes } \end{aligned}$		S_{1}^{E}	top	$t_{i} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
					bottom	$t_{i} \stackrel{S E}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$
				rest	bottom/right	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
					the ones in S_{4}	To connect one dest. node to S_{3}, rotate; apply Case 5.5 $\left(S_{6}\right)$; and rotate back.
3.2.4.2		$S_{4} \quad$ contains one dest. node		S_{1}^{E}	top	$t_{i} \stackrel{\text { NVW }}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
					bottom	If $(-1,-(k-1))$ is available, the path is $t_{i} \stackrel{S E}{\Rightarrow}(k-$ $1,1) \rightarrow(-1,-(k-1))$. Otherwise, the path is $t_{i} \stackrel{S E}{\Rightarrow}$ $(k-1,1) \rightarrow(-2,-(k-2))$. Then, apply Case $5.5\left(S_{6}\right)$ (after rotation) on this dest. node and the one in S_{4} to connect one of them to S_{3}.
				rest	bottom/right	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
3.2.4.3		S_{4} does not contain dest. nodes		S_{1}^{E}	top	$t_{i} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
					bottom	To connect one dest. node to S_{3}, rotate; apply Case $5.5\left(S_{6}\right)$ on $(-1,-(k-1))$ and $(0,-k)$; and rotate back.
					the ones in S_{6}	
				rest	bottom/right	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
3.2.5	$\begin{aligned} & \hline S_{1}^{E} \text { con- } \\ & \text { tains } \\ & \text { four dest. } \\ & \text { nodes } \end{aligned}$			all	top	$t_{i} \stackrel{N W}{\Rightarrow}(0, k) \rightarrow(k,-k) \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
				rest	$2^{\text {nd }}$ top	$t_{i} \stackrel{W}{\Rightarrow} S_{3}^{E} \stackrel{S E}{\Rightarrow}(-1,0) \rightarrow s$
				rest	$3^{\text {rd }}$ top	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$

Table 4.3: Subcases of Case 3.2: $\left(S_{2}, S_{3}, S_{5}\right)$ (Continued)

Case No.	$\begin{array}{\|l} \hline \text { Condition } \\ \left(S_{a}, S_{b}, S_{c}\right) \\ \hline \end{array}$	Destination Node		Node Disjoint Path		
		out of	t_{i}			
3.7.1	$t_{\ell} \stackrel{E}{\Rightarrow} S_{1}^{E}$ is entirely not used	all	top/left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$		
		rest	min-weight/top	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$		
		rest	max-weight/top	$t_{i} \stackrel{E}{\Rightarrow} S_{4}^{W}$	To connect one dest. node to S_{5} from S_{4}, rotate; apply Case $5.1\left(S_{2}\right)$ from Table 4.8; and rotate back.	
		rest	the last one (t_{ℓ})	$t_{\ell} \stackrel{E}{\Rightarrow} S_{4}^{W}$		
3.7.2	$t_{\ell} \stackrel{E}{\Rightarrow} t_{\max }^{W} \rightarrow$ $t_{\max }^{N W} \stackrel{E}{\Rightarrow} S_{1}^{E}$ is entirely not used	all	top/left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$		
		rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$		
		rest	$\begin{aligned} & \text { max-weight/top } \\ & \left(t_{\max }\right) \end{aligned}$	$t_{\text {max }} \stackrel{E}{\Rightarrow} S_{4}^{W}$	To connect one dest. node to S_{5} from S_{4}, rotate; apply Case $5.1\left(S_{2}\right)$; and rotate back.	
		rest	the last one (t_{ℓ})	$\begin{aligned} & t_{\ell} \stackrel{E}{\Rightarrow} t_{\text {max }}^{W} \rightarrow \\ & t_{\max }^{=} S_{1}^{E} \\ & \hline \end{aligned}$		
3.7.3	Otherwise (i.e $t_{\ell} \stackrel{E}{\Rightarrow} t_{\max }^{W} \rightarrow$ $t_{\text {max }}^{S W} \stackrel{E}{\Rightarrow} S_{1}^{E}$ is entirely not used)	all	top/left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$		
		rest	min-weight/top			
		rest	$\begin{aligned} & \text { max-weight/top } \\ & \left(t_{\max }\right) \end{aligned}$	$t_{\text {max }} \stackrel{E}{\Rightarrow} S_{4}^{W}$	To connect one dest. node to S_{5} from S_{4}, rotate; apply Case $5.1\left(S_{2}\right)$; and rotate back.	
		rest	the last one (t_{ℓ})	$\begin{aligned} & t_{\ell} \stackrel{E}{\Rightarrow} t_{\text {max }}^{W} \rightarrow \\ & t_{\text {max }}^{S W}{ }_{=}^{E} S_{1}^{E} \\ & \hline \end{aligned}$		

Table 4.4: Subcases of Case 3.7: $\left(S_{3}, S_{4}, S_{5}\right)$

Case No.	Condition $\left(S_{a}, S_{b}, S_{c}\right)$	Destination Node		Node Disjoint Path
		out of	t_{i}	
3.9.1	x of the top/right dest. node $\neq 0$	all	top/right	$t_{i} \stackrel{N E}{\Rightarrow} S_{1}^{E} \stackrel{N W}{\Rightarrow}(1, k-1) \rightarrow(-k, 0) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
		rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
		rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
		rest	the last one	$t_{i} \stackrel{S E}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$
3.9.2	x of the top/right dest. node $=0$	all	top/right	$t_{i} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
		rest	top/right	$t_{i} \stackrel{E}{\Rightarrow} S_{1}^{E} \stackrel{N W}{\Rightarrow}(1, k-1) \rightarrow(-k, 0) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
		rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
		rest	the last one	$t_{i} \stackrel{S E}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$

Table 4.5: Subcases of Case 3.9: $\left(S_{3}, S_{5}, S_{6}\right)$

1. Find the three sectors $\left(S_{a}, S_{b}, S_{c}\right)$ that do not have any destination nodes. If there are more than three sectors of those, arbitrary choose any three sectors.
2. Based on the value of (S_{a}, S_{b}, S_{c}), identify the case number.
3. For this particular case, locate each destination node using column 3 (Destination Node) in the provided order. In other words, apply each rule on the destination nodes that have not been located yet. For example in Case 3.1, we locate the third destination node by applying the rule "min-weight/top" on the rest of destination nodes after locating the first two destination nodes.

4. The corresponding path is given in column 4 (Node Disjoint Path).

For example, consider the example shown in Figure 4.19. In this example, Sectors S_{2}, S_{3}, and S_{4} do not contain destination nodes (i.e. $\left(S_{2}, S_{3}, S_{4}\right)$). So, the case is Case 3.1. According to Table 4.1, the first destination node is the top $/ 2^{\text {nd }}$ left destination node in S_{1}. This node is $(1,3)$; and the path is $(1,3) \rightarrow(0,4) \stackrel{N E}{\Rightarrow}$ $(0,5) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$ as shown in the figure. Next we locate the second destination node. Excluding (2,3), the second destination node is the top/left destination node in S_{1}. This node is $(1,2)$. And the path to reach it is $(2,3) \stackrel{W}{\Rightarrow}(-1,2) \stackrel{S W}{\Rightarrow}$
$(-1,1) \rightarrow s$. Similarly we locate the last two destination nodes.
All NDP in Table 4.1 exist because each path goes through an area that does not contain any destination node. This area is enforced by applying the identification rule for each destination node. For example in Figure 4.19, the top $/ 2^{\text {nd }}$ left destination node in S_{1} is $(1,3)$. It follows that the triangle with vertices $(0,6)$, $(0,4)$, and $(2,4)$ does not contain destination nodes. As shown in the figure, the portion of the path to $(1,3)$ in S_{1} is entirely contained in this triangle. The same idea is applied on all paths.

Node $(0, k)$ (the top node in $\left.S_{1}\right)$ is a special node. It is connected to S_{2}, S_{3}, and S_{5}. Because of this, the path to the top destination node is connected to one of these three sectors. Moreover, $(0, k)$ is the only node in S_{1} that is connected to S_{5}; and its neighbor $(1, k-1)$ is the only node in S_{1} (other than $(0, k)$) that is connected to S_{3}. So, if the path $(1, k-1) \rightarrow(0, k)$ is used to go to S_{5}, the way to S_{3} will be blocked. Because of this, the cases when S_{3} and S_{5} do not contain destination nodes different from other cases. These cases are Case $3.2\left(S_{2}, S_{3}, S_{5}\right)$, Case $3.7\left(S_{3}, S_{4}, S_{5}\right)$, and Case $3.9\left(S_{3}, S_{5}, S_{6}\right)$. In the following, we show the NDP for these cases.

Table 4.4 provides the NDP for Case $3.7\left(S_{3}, S_{4}, S_{5}\right)$. These NDP connect two destination nodes from S_{1} to S_{4}. Then, one of these destination nodes is connected to S_{5}. So, we do not need to connect one of the destination nodes in S_{1} directly to S_{5} through $(0, k)$; which allows us to use $(0, k)$ to connect the top destination node to S_{3}. Figure 4.20 shows an example. In this example, the top/left destination node is $(1,3)$; the min-weight/top destination node (out of the rest) is $(1,1)$; the max-weight/top destination node $t_{\max }$ (out of the rest) is $(2,2)$; and the last destination node t_{ℓ} is $(1,2)$. This example does not follow Case 3.7.1 because the

Figure 4.20: Example of Case 3.7.3 $\left(H_{6}\right)$
path $(1,2) \stackrel{E}{\Rightarrow}(4,2)$ is blocked by $t_{\max }$. Also, it does not follow Case 3.7.2 because the path $(1,2) \rightarrow(1,3) \stackrel{E}{\Rightarrow}(3,3)$ is blocked by the top/left destination node $(1,3)$. At this point, the path $(1,2) \rightarrow(2,1) \stackrel{E}{\Rightarrow}(5,1)$ must be entirely available because: 1) $t_{\max }$ cannot block it, and 2) we assume there are at most two destination nodes have $y=1$. So, this example follows Case 3.7.3.

Table 4.5 provides the NDP for Case $3.9\left(S_{3}, S_{5}, S_{6}\right)$. Unlike Case 3.7, we cannot connect a destination node to S_{4} because it is possible that this sector contains one or two destination node(s). Instead, we connect two destination nodes to S_{3} and S_{5} directly from S_{1}. To prevent the situation of blocking the way to S_{3} as explained above, we enforce a condition based on the x-value of the top/right destination node (as shown in Table 4.5). Figure 4.21 shows an example. This example follows Case 3.9 .1 because the x-value of the top/right destination node is not equal to zero.

Case $3.2\left(S_{2}, S_{3}, S_{5}\right)$ is different. To explain how it is different, consider the

Figure 4.21: Example of Case 3.9.1 $\left(H_{6}\right)$

Figure 4.22: Example of Case 3.2.3.3 $\left(H_{6}\right)$
example in Figure 4.22. In this example, we want to connect three destination nodes to sectors S_{2}, S_{3}, and S_{5}. Unlike all other cases, it is impossible to connect node $(5,1)$ without going through S_{4} or S_{6} which contain two destination nodes.

Figure 4.23: Example of Case 3.2.4.1 $\left(H_{6}\right)$

To solve this problem, we need to take into consideration the locations of the destination nodes in S_{4} and S_{6}. Therefore, we provide the NDP for these destination nodes along with the NDP for the destination nodes in S_{1}. Table 4.2 provides the NDP for the four destination nodes in S_{1} if these paths do not go through S_{4} and S_{6} (for example, Case 3.2.1). Otherwise, this table provides the NDP for all six destination nodes (for example, Case 3.2.2.2). The example shown in Figure 4.22 follows Case 3.2.3.3 because the east side of S_{1} (i.e. S_{1}^{E}) has two destination nodes $((4,2)$ and $(5,1))$ and S_{4} has no destination nodes. Another example is given in Figure 4.23. This example follows Case 3.2.4.1 and its NDP are given in Table 4.3.

Tables 4.1, 4.2, 4.3, 4.4, and 4.5 cover all possible cases of Case 3 (four destination nodes in S_{1}). And this concludes this proof.

Figure 4.24: Example of Case $4.3\left(H_{6}\right)$

Case 4: Three destination nodes in S_{1}

In this case, three destination nodes exist in sector S_{1}. Theorem 4.2.4 shows the NDP for this case.

Theorem 4.2.4. In a hexagonal mesh network H_{k} where k is the network diameter, let the source node be $s=(0,0)$ and the set of destination nodes be $T=\left\{t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq 6\right\}$ such that three destination nodes exist in S_{1}. Then, there exist $N D P \mathbb{P}(s, T)$.

Proof. In this case, at least two sectors (out of $S_{2}, S_{3}, \ldots, S_{6}$) do not contain any destination nodes. Let $\left(S_{a}, S_{b}\right)$ denote these two sectors where $a, b \in\{2, \ldots, 6\}$. Then, there are 10 cases in the form of $\left(S_{a}, S_{b}\right)$. Table 4.6 provides the NDP for all 10 cases. Similar to Case 3 (four destination nodes in S_{1}), we construct the NDP for Case 4 taking into consideration the following:

Figure 4.25: Example of Case 4.9.1 $\left(H_{6}\right)$

1. All paths go through areas that do not contain any destination nodes by applying the rules given in column Destination Node. For example in Figure 4.24 which follows Case $4.3\left(S_{2}, S_{5}\right)$, the path to the destination node $(2,3)$ goes through S_{5} and the triangle with vertices $(0,6),(0,4)$, and $(2,4)$. Sector S_{5} does not contain destination nodes because the case is $\left(S_{2}, S_{5}\right)$; and the triangle area does not contain a destination node because $(2,3)$ is the top destination node in S_{1}.
2. The top destination node is always connected to S_{3}, S_{5}, or S_{2} because the top node $(0, k)$ is connected to these sectors only.
3. The NDP connect two destination nodes from S_{1} to the sectors specified by the case identifier $\left(S_{a}, S_{b}\right)$ without crossing other sectors except in Case 4.9 $\left(S_{4}, S_{6}\right)$. In this case, we provide the NDP for all six destination nodes. Table 4.7 provides the NDP for Case $4.9\left(S_{4}, S_{6}\right)$. This case is special because

Case No.	Conditions (AND)			Destination Node		Node Disjoint Path
	$\left(S_{a}, S_{b}\right)$	2	3	out of	t_{i}	
4.1	$\left(S_{2}, S_{3}\right)$	at most one dest. node has $y=1$		all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
				rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
4.2	$\left(S_{2}, S_{4}\right)$	at most two dest. nodes have $y=1$		all	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{E}{\Rightarrow} S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$
4.3	$\left(S_{2}, S_{5}\right)$	at most one dest. node has $y=1$		all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
				rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{\text { SW }}{\Rightarrow}(-1,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
4.4	$\left(S_{2}, S_{6}\right)$	at most two dest. nodes have $y=1$		all	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
				rest	min-weight/top	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{\text { SE }}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$
4.5	$\left(S_{3}, S_{4}\right)$			all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
				rest	min-weight/top	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{E}{\Rightarrow} S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$
4.6.1	$\left(S_{3}, S_{5}\right)$	at most one dest. node has $y=1$	x of the top/right dest. node $\neq 0$	all	top/right	$t_{i} \stackrel{N E}{\Rightarrow} S_{1}^{E} \xlongequal{N W}(1, k-1) \rightarrow(-k, 0) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
				rest	top/left	$t_{i} \stackrel{W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
4.6.2		at most two dest. nodes have $y=1$	x of the top/right dest. node $=0$	all	top/right	$t_{i} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
				rest	top/right	$t_{i} \stackrel{E}{\Rightarrow} S_{1}^{E} \stackrel{N N}{\Rightarrow}(1, k-1) \rightarrow(-k, 0) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
4.7	$\left(S_{3}, S_{6}\right)$			all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
				rest	min-weight/top	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{\text { SE }}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$
4.8	$\left(S_{4}, S_{5}\right)$			all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
				rest	min-weight/top	$t_{i} \stackrel{\text { SW }}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{E}{\Rightarrow} S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$
4.9	$\left(S_{4}, S_{6}\right)$					Look at Table 4.7
4.10	$\left(S_{5}, S_{6}\right)$			all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
				rest	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
				rest	the last one	$t_{i} \stackrel{\text { SE }}{\Rightarrow} S_{6}^{N} \stackrel{W}{\Rightarrow}(1,0) \rightarrow s$

Table 4.6: Subcases of Case 4: three destination nodes in S_{1}
it is impossible to connect the top destination node to either S_{4} or S_{6}. Instead, we connect this destination node to either S_{3}, S_{5}, or S_{2} based on the locations of the destination nodes that are not in S_{1}. Figure 4.25 shows an example of Case 4.9.1.

Tables 4.6 and 4.7 cover all possible cases of Case 4 (three destination nodes in S_{1}). And this concludes this proof.

Table 4.7: Subcases of Case 4.9: $\left(S_{4}, S_{6}\right)$

Case 5: Two destination nodes in S_{1}

In this case, two destination nodes exist in sector S_{1}. Theorem 4.2 .5 shows the NDP for this case.

Theorem 4.2.5. In a hexagonal mesh network H_{k} where k is the network diameter, let the source node be $s=(0,0)$ and the set of destination nodes be $T=\left\{t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq 6\right\}$ such that two destination nodes exist in S_{1}. Then, there exist $N D P \mathbb{P}(s, T)$.

Proof. In this case, four destination nodes do not exist in S_{1}. It follows that at least one sector (out of $S_{2}, S_{3}, \ldots, S_{6}$) does not contain any destination nodes. Let (S_{a}) denote this sector where $a \in\{2, \ldots, 6\}$ (not to be confused with the sector number S_{i}). Then, there are 5 cases in the form of $\left(S_{a}\right)$. Table 4.8 provides the

Case No.	Conditions (AND)		Destination Node		Node Disjoint Path
	$\begin{aligned} & 1 \\ & \left(S_{a}\right) \end{aligned}$	2	out of	t_{i}	
5.1	$\left(S_{2}\right)$		all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \rightarrow S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$
			rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
5.2	$\left(S_{3}\right)$		all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow}(0, k) \stackrel{E}{\Rightarrow}(-1,0) \rightarrow s$
			rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
5.3.1	$\left(S_{4}\right)$	$(0, k) \text { is }$ a dest. node and $(1, k-1)$ is not a dest. node	all	top	
			rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \xrightarrow{W}(0,1) \rightarrow s$
5.3.2		otherwise	all	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \xrightarrow{W}(0,1) \rightarrow s$
			rest	the last one	$t_{i} \stackrel{E}{\Rightarrow} S_{4}^{W} \stackrel{N E}{\Rightarrow} S_{4}^{N} \stackrel{E}{\Rightarrow}(0,-1) \rightarrow s$
5.4	$\left(S_{5}\right)$		all	top $/ 2^{\text {nd }}$ left	$t_{i} \stackrel{N W}{\Rightarrow} S_{1}^{W} \stackrel{N E}{\Rightarrow} S_{5}^{E} \stackrel{N W}{\Rightarrow}(1,-1) \rightarrow s$
			rest	the last one	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
5.5	$\left(S_{6}\right)$		all	min-weight/top	$t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$
			rest	the last one	$t_{i} \stackrel{W}{\Rightarrow} S_{2}^{E} \stackrel{S W}{\Rightarrow}(-1,1) \rightarrow s$

Table 4.8: Subcases of Case 5: two destination nodes in S_{1}

NDP for all 5 cases.

Case 6: One destination node in S_{1}

If S_{1} contains only one destination node t_{i}, the path is $t_{i} \stackrel{S W}{\Rightarrow} S_{1}^{S} \stackrel{W}{\Rightarrow}(0,1) \rightarrow s$.

4.2.1 One-to-Many Node Disjoint Paths Routing Algorithm

In the previous section, we provide the NDP for those destination nodes which are in Sector 1 (i.e. S_{1}). Now, if some nodes are in sector, say $S_{i}, i \neq 1$, then the

```
Algorithm 4 One-to-Many NDP Routing in Hexagonal Mesh Network \(H_{k}\)
    Input: \(H_{k}, T=\left\{t_{j}=\left(t_{j_{x}}, t_{j_{y}}\right) \mid 1 \leq j \leq 6\right\}, s=(0,0) \notin T\)
    Output: \(\mathbb{P}(s, T)\)
    procedure OneToMany_NDP( \(\left.H_{k}, T, s\right)\)
        for \(1 \leq i \leq 6\) do
            switch number of un-reached dest. nodes in \(S_{1}\)
                    \(6: \mathbb{P}(s, T)=\operatorname{Case} 1\left(G_{k}, T, s\right)\);
                    \(5: \mathbb{P}(s, T)=\operatorname{Case} 2\left(G_{k}, T, s\right)\);
                    \(4: \mathbb{P}(s, T)=\operatorname{Case} 3\left(G_{k}, T, s\right)\);
                    \(3: \mathbb{P}(s, T)=\operatorname{Case} 4\left(G_{k}, T, s\right)\);
                    \(2: \mathbb{P}(s, T)=\operatorname{Case} 5\left(G_{k}, T, s\right)\);
                    \(1: \mathbb{P}(s, T)=\operatorname{Case} 6\left(G_{k}, T, s\right)\);
                    0 : Do nothing;
            end switch
            \(G_{k}=G_{k} * \rho ; \quad \triangleright\) Rotate in counter-clock direction
            \(\mathbb{P}(s, T)=\mathbb{P}(s, T) * \rho ;\)
        end for
        return \(\mathbb{P}(s, T)\);
    end procedure
```


Figure 4.26: Example of Algorithm 4: Initial network
network can be rotated such that these nodes become in Sector 1. Then, we apply the above given NDP algorithm to reach these nodes. After this, the network is rotated such that these nodes belong to the original location. (see Algorithm 4.)

For example, consider the network provided in Figure 4.26 as an input to the

Figure 4.27: Example of Algorithm 4: $1^{\text {st }}$ Iteration

Figure 4.28: Example of Algorithm 4: $2^{\text {nd }}$ Iteration
algorithm. In this instance, S_{1}, S_{5}, and S_{6} contain three, one, and two destination nodes, respectively. In the first iteration, the algorithm constructs the NDP to the three destination nodes in S_{1} by applying one of the following cases arbitrary: Case $4.1\left(S_{2}, S_{3}\right)$, Case $4.2\left(S_{2}, S_{4}\right)$, or $4.5\left(S_{3}, S_{4}\right)$ from Table 4.6. These are the cases because S_{1} contains three destination nodes and S_{2}, S_{3}, and S_{4} do not contain destination or used nodes. Assuming the algorithm chooses Case $4.5\left(S_{3}, S_{4}\right)$, the

Figure 4.29: Example of Algorithm 4: $6^{\text {th }}$ Iteration
resultant NDP are shown in Figure 4.27a. Then, the network and those constructed NDP are rotated as shown in Figure 4.27b. As a result of this rotation, S_{6} becomes S_{1}; and now S_{1} contains two destination nodes. These destination nodes will be reached in the next iteration.

In the second iteration, the algorithm applies Case $5.2\left(S_{3}\right)$ from Table 4.8 since S_{3} is the only sector that does not contain destination or used nodes. The result is shown in Figure 4.28a. Then, the network is rotated to get the updated network shown in Figure 4.28b.

After the final rotation in the sixth iteration, the network is returned to its initial location and all destination nodes have been reached. The final result is shown in Figure 4.29.

4.3 Conclusion

In this chapter we provide and prove an algorithm to construct all NDP from a single source node to a set of destination nodes in Hexagonal Mesh Networks (HMNs). This algorithm constructs six NDP and this is the maximum number of

NDP that can be obtained because the degree of the nodes is six.

Chapter 5: Conclusion

Achieving high computing performance in parallel computing systems critically depends on finding a set of mutually node disjoint paths (NDP). In this work we provide and prove some novel algorithms to find a set of the maximum number of one-to-many NDP from a source node to a set of destination nodes in Generalized Hypercube (GH), dense Gaussian, and Hexagonal Mesh networks.

5.1 Findings

In Chapter 2, the findings are:

1. Proposing an algorithm to solve the one-to-many NDP routing problem for two-dimensional GH,
2. Proposing another algorithm to solve the same problem for n-dimensional GH,
3. Theoretically proving that both algorithms always return a solution,
4. Theoretically proving that the length of the path from s to t_{i} returned by the algorithms is bounded between the shortest distance and $2 n-1$, where n is the dimension of the GH,
5. Showing that the time complexity of the algorithm is $O\left(k_{\max }{ }^{2} n^{3}\right)$ where $k_{\text {max }}=\max _{0 \leq i \leq(n-1)}\left\{k_{i}\right\}$ and k_{i} is the number of nodes in dimension i, and
6. Simulation results showing that the longest path lengths are close to the shortest distance plus one, which is less than the theoretical upper bound for $n>2$.

In Chapter 3, the findings are:

1. Proposing an efficient algorithm to solve the one-to-many NDP routing problem in dense Gaussian networks (DGNs) without depending on the network size,
2. Theoretically proving that the proposed algorithm always returns a solution,
3. Theoretically proving that the sum of NDP lengths from the source node to the destination nodes constructed by the proposed algorithm is bounded between the sum of the shortest paths and this sum plus $(6 k-11)$ where k is the diameter,
4. Analyzing the time complexity to show that the time complexity of the algorithm is constant $O(1)$, and
5. The algorithm executing results show that on the average the sum of NDP lengths is only about 10% more than the sum of the shortest paths.

In Chapter 4, the findings are:

1. Proposing an efficient algorithm to solve the one-to-many NDP routing problem in dense Hexagonal Mesh networks (HMNs) without depending on the network size, and
2. Theoretically proving that the proposed algorithm always returns a solution.

Figure 5.1: Gaussian network $(\alpha=2+7 \mathbf{i})$

Figure 5.2: EJ network $(\alpha=2+7 \rho)$

5.2 Future Work

In the following, we list some possible future research directions:

1. One-to-Many Node Disjoint Paths:

In this work, we assume the generators of dense Gaussian and Hexagonal Mesh networks are $\alpha=k+(k+1) \mathbf{i}$ and $\alpha=(k+1)+k \rho$ where k is the diameter, respectively. These networks belong to the general classes:

Figure 5.3: Higher-dimensional Gaussian network

Gaussian and EJ networks. The general Gaussian networks are generated by $\alpha=a+b \mathbf{i}$ where $a, b \in \mathbb{Z}$; the general EJ networks are generated by $\alpha=a+b \rho$ where $a, b \in \mathbb{Z}$. Figure 5.1 shows an example of Gaussian network generated by $\alpha=2+7 \mathbf{i}$; and Figure 5.2 shows an example of EJ network generated by $\alpha=2+7 \rho$. Generalizing the NDP routing algorithms given in this work to cover the general class of Gaussian and EJ networks is one of the possible future research directions.

Another research direction is finding the shortest NDP as the algorithms provided in this work do not find the shortest NDP.

Recently, Shamaei, Bose, and Flahive introduced higher dimensional Gaus-

Figure 5.4: Many-to-many k-disjoint path cover
sian networks [36]. These networks support dimensions more than two. Figure 5.3 shows a Gaussian network, where each node is represented by two Gaussian integers. Generalizing the one-to-many NDP routing algorithm proposed in Chapter 3 for the basic dense Gaussian network to support higher dimensional Gaussian network is one of the possible future research directions.

2. Paired many-to-many k-disjoint path cover:

A set of many-to-many k-disjoint path cover connects a set of source nodes with a set of destination nodes using NDP that cover all nodes in the network (see Figure 5.4). This kind of NDP is useful for the applications that required full utilization of the nodes. Chen solved this problem for Hypercube [11]. Finding these NDP in Generalized Hypercube, dense Gaussian, or Hexagonal Mesh networks is not solved yet. Moreover, Paired one-to-one and one-tomany k-disjoint path cover in these networks are not solved yet. These are some of the open problems that need further investigation.

3. Paired many-to-many k-disjoint path cover in fault network:

This problem is the same as the previous one except that some nodes are

Figure 5.5: Many-to-many k-disjoint path cover in fault network
faulty and cannot be used by any node disjoint path (see Figure 5.5). This problem is important because when the number of nodes increases, the probability of some node failure will increase. Avoiding these faulty nodes improves the computing performance.

Bibliography

[1] Nibdita Adhikari and CR Tripathy. Folded dualcube: A new interconnection topology for parallel systems. In International Conference on Information Technology, pages 75-78, Chengdu, 21-24 April 2008. IEEE Computer Society Press, Washington, DC.
[2] Narasimha R Adiga et al. An overview of the BlueGene/L supercomputer. In ACM/IEEE 2002 Supercomputing Conference, pages 60-60, Baltimore, Maryland, 16-22 November 2002. IEEE Computer Society Press, Washington, DC.
[3] Sheldon B Akers and Balakrishnan Krishnamurthy. A group-theoretic model for symmetric interconnection networks. IEEE Transactions on Computers, 38(4):555-566, 1989.
[4] Bader Albader, Bella Bose, and Mary Flahive. Efficient communication algorithms in hexagonal mesh interconnection networks. Parallel and Distributed Systems, IEEE Transactions on, 23(1):69-77, 2012.
[5] L.N. Bhuyan and D.P. Agrawal. Generalized hypercube and hyperbus structures for a computer network. IEEE Transactions on Computers, C-33(4):323 -333 , Apr. 1984.
[6] Arthur S Bland, Ricky A Kendall, Douglas B Kothe, James H Rogers, and Galen M Shipman. Jaguar: The worlds most powerful computer. Memory (TB), 300(62):362, 2009.
[7] Bella Bose, Bob Broeg, Younggeun Kwon, and Yaagoub Ashir. Lee distance and topological properties of k -ary n-cubes. IEEE Transactions on Computers, 44(8):1021-1030, 1995.
[8] Antoine Bossard and Keiichi Kaneko. The set-to-set disjoint-path problem in perfect hierarchical hypercubes. The Computer Journal, 55(6):769-775, 2012.
[9] Antoine Bossard, Keiichi Kaneko, and Shietung Peng. Node-to-set disjointpath routing in metacube. In International Conference on Parallel and Distributed Computing, Applications and Technologies, pages 57-62, Hiroshima, 8-11 December 2009. IEEE Computer Society Press, Washington, DC.
[10] Antoine Bossard, Keiichi Kaneko, and Shietung Peng. A new node-to-set disjoint-path algorithm in perfect hierarchical hypercubes. The Computer Journal, 54(8):1372-1381, 2011.
[11] Xie-Bin Chen. Paired many-to-many disjoint path covers of the hypercubes. Information Sciences, 236(0):218-223, 2013.
[12] P.F. Corbett. Rotator graphs: An efficient topology for point-to-point multiprocessor networks. IEEE Transactions on Parallel and Distributed Systems, 3(5):622-626, Sep. 1992.
[13] William James Dally and Brian Patrick Towles. Principles and Practices of Interconnection Networks. Morgan Kaufmann, Burlington, Massachusetts, 2004.
[14] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks. Morgan Kaufmann, Burlington, Massachusetts, 2003.
[15] M. Flahive and B. Bose. The topology of Gaussian and Eisenstein-Jacobi interconnection networks. IEEE Transactions on Parallel and Distributed Systems, 21(8):1132-1142, Aug. 2010.
[16] Qian-Ping Gu and Shietung Peng. Fault tolerant routing in toroidal networks. In First Aizu International Symposium on Parallel Algorithms/Architecture Synthesis, pages 162-168, Fukushima, 15-17 March 1995. IEEE Computer Society Press, Washington, DC.
[17] G Godfrey Harold Hardy and Edward M Wright. An Introduction to the Theory of Numbers. Oxford University Press, Oxford, 1979.
[18] Zaid Hussain. On shortest disjoint paths and hamiltonian cycles in some interconnection networks. PhD thesis, Oregon State University, Corvallis, 2011.
[19] JH Jordan and CJ Potratz. Complete residue systems in the Gaussian integers. Mathematics Magazine, 38(1):1-12, 1965.
[20] Keiichi Kaneko and Shietung Peng. Node-to-set disjoint paths routing in dualcube. In International Symposium on Parallel Architectures, Algorithms, and Networks, pages 77-82, Sydney, 7-9 May 2008. IEEE Computer Society Press, Washington, DC.
[21] Keiichi Kaneko and Shietung Peng. Set-to-set disjoint paths routing in dualcubes. In Parallel and Distributed Computing, Applications and Technologies, 2008. PDCAT 2008. Ninth International Conference on, pages 129-136, 2008.
[22] Keiichi Kaneko and Yasuto Suzuki. An algorithm for node-to-set disjoint paths problem in rotator graphs. IEICE Transaction on Information and Systems, 84(9):1155-1163, 2001.
[23] Keiichi Kaneko and Yasuto Suzuki. Node-to-set disjoint paths problem in pancake graphs. IEICE Transaction on Information and Systems, 86(9):16281633, 2003.
[24] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parallel Computing, volume 110. Benjamin Cummings, Redwood City, 1994.
[25] Cheng-Nan Lai. Optimal construction of all shortest node-disjoint paths in hypercubes with applications. IEEE Transactions on Parallel and Distributed Systems, 23(6):1129-1134, 2012.
[26] Cheng-Nan Lai, Gen-Huey Chen, and Dyi-Rong Duh. Constructing one-tomany disjoint paths in folded hypercubes. IEEE Transactions on Computers, 51(1):33-45, Jan. 2002.
[27] Yamin Li and Shietung Peng. Dual-cubes: A new interconnection network for high-performance computer clusters. In Proceedings of the International Computer Architecture, pages 51-57, Vancouver, British Columbia, 10-14 June 2000. IEEE Computer Society Press, Washington, DC.
[28] Shan Ling and Weidong Chen. Node-to-set disjoint paths in biswapped networks. The Computer Journal, 2013.
[29] László Lipták, Eddie Cheng, Jong-Seok Kim, and Sung Won Kim. One-tomany node-disjoint paths of hyper-star networks. Discrete Applied Mathematics, 160(13):2006-2014, 2012.
[30] Di Liu and Jing Li. Many-to-many n-disjoint path covers in n-dimensional hypercubes. Inf. Process. Lett., 110(0):580-584, July 2010.
[31] C. Martínez, R. Beivide, E. Stafford, M. Moreto, and E.M. Gabidulin. Modeling toroidal networks with the Gaussian integers. IEEE Transactions on Computers, 57(8):1046-1056, Aug. 2008.
[32] C. Martínez, E. Stafford, R. Beivide, and E.M. Gabidulin. Modeling hexagonal constellations with Eisenstein-Jacobi graphs. Problems of Information Transmission, 44(1):1-11, 2008.
[33] Carmen Martínez, Enrique Vallejo, Ramón Beivide, Cruz Izu, and Miquel Moretó. Dense Gaussian networks: Suitable topologies for on-chip multiprocessors. International Journal of Parallel Programming, 34(3):193-211, 2006.
[34] Behrooz Parhami. Introduction to Parallel Processing: Algorithms and Architectures. Springer, New York, 1999.
[35] Shietung Peng and Keiichi Kaneko. Set-to-set disjoint-path routing in metacube. In Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2010 International Conference on, pages 128-137, 2010.
[36] Arash Shamaei, Bella Bose, and Mary Flahive. Higher dimensional Gaussian networks. In The 28th IEEE International Parallel and Distributed Processing Symposium [submitted], 2014.
[37] Yuan-Kang Shih and Shin-Shin Kao. One-to-one disjoint path covers on k-ary n-cubes. Theoretical Computer Science, 412(35):4513-4530, 2011.
[38] O. Sinanoglu, M.H. Karaata, and B. AlBdaiwi. An inherently stabilizing algorithm for node-to-node routing over all shortest node-disjoint paths in hypercube networks. IEEE Transactions on Computers, 59(7):995-999, 2010.
[39] R. Wu, G. Chen, Y. Kuo, and G. Chang. Node-disjoint paths in hierarchical hypercube networks. Information Sciences, 177(19):4200-4207, 2007.
[40] Yonghong Xiang and Iain A Stewart. One-to-many node-disjoint paths in (n, k)-star graphs. Discrete Applied Mathematics, 158(1):62-70, 2010.
[41] J. Xu. Topological Structure and Analysis of Interconnection Networks. Kluwer Academic, Dordrecht, 2001.
[42] Z. Zhang, Z. Guo, and Y. Yang. Efficient all-to-all broadcast in Gaussian on-chip-networks. IEEE Transactions on Computers, PP(99):1, 2012.
[43] Sotirios G Ziavras and Sanjay Krishnamurthy. Evaluating the communications capabilities of the generalized hypercube interconnection network. Concurrency Practice and Experience, 11(6):281-300, 1999.

[^0]: *This chapter has been accepted for publication in The Computer Journal.

[^1]: ${ }^{1}$ Multiplying all nodes by i rotates the network in the counterclockwise direction [31].

