
Special Report 869
March 1991

User's Guide for the
Mathematical Model LT3VSI

Denitrification in Nonhomogeneous
Laboratory Scale Aquifers

Agricultural Experiment Station
Oregon State University

Agricultural Experiment. Station
Oregon State University

Special Report 869

User's Guide for the
Mathematical Model LT3VSI

Denitrification in Nonhomogeneous
Laboratory Scale Aquifers

G.A. Bachelor, D.E. Cawlfield, F.T. Lindstrom, and L. Boersma

This is the user's guide for a mathematical model for the steady state
flow field and the transport and fate of chemicals in laboratory scale,

nonhomogeneous aquifers. The model is intended to be used for evaluation
of bioremediation of aquifers with high nitrate concentrations. It also can be used

for the design of more general bioremediation processes.
This model handles four chemicals and two microbial populations.

This guide is a companion document to the report that describes the
mathematical model, LT3VSI (Lindstrom, et al, 1990).

The mention of trade names or commercial products does not constitute endorsement,
nor is any discrimination intended, by Oregon State University.

Authors
G.A. Bachelor and D.E. Cawlfield, senior systems analysts,

F.T. Lindstrom, associate professor, and L. Boersma, professor,
Dept. of Crop and Soil Science, Oregon State University.

FOREWORD

This report provides a user guide for a mathematical model

describing transport and fate processes in laboratory scale model

aquifers. Such model aquifers are constructed to evaluate

strategies for the reclamation of groundwater contaminated with

nitrates and other pollutants. The mathematical model can be

used for evaluations of strategies for injecting chemicals, which

could enhance pollutant degradation, into an aquifer. The model

allows calculation of hydraulic pressure fields and perturbations

of the field by injection and/or extraction wells. It uses the

pressure field to compute the Darcy velocities, which in turn are

used in computing the chemical transport and fate. This model is

LT3VSI, which handles four chemicals and two microbial
populations.

NOTICE

Several changes have been made in the LT3VSI programs since

this manual was written. See Section 1.2 for a description of
the revisions.

ACKNOWLEDGMENT

This publication reports results of studies supported by

Cooperative Agreement CR 814502-01-1 "Transport and Fate of

Solutes in Unsaturated/Saturated Soils." This agreement is

between the Robert S. Kerr Environmental Research Laboratory of

the U.S. Environmental Protection Agency and Oregon State
University.

CONTENTS
PAGE

Foreword 	
Notice 	
Acknowledgment 	

SECTION
I. Introduction 	 	 I-1
I.1 Program overview 	 	 I-1
1.2 Update notice: LT3VSI Version 1.3 	 	 1-4

II. Installing the programs 	 II-1
II.1. Installation 	 II-1

III. List of variables 	 III-1
III.1. Program variables involved in input/output . . . 	 III-1
111.2. Meanings of run control flags NFLAG(I) 	 III-10

IV. Preparation of data files 	 IV-1
IV.l. Preparation of nonhomogeneous data for an example

aquifer 	 IV-1
IV.2. Example input hydrology data file: LT3EXAM.WAD 	 IV-8
IV.3. Example input chemistry data file: LT3EXAM1.CHD . 	 IV-17
IV.3.1. Example schedule data file: LT3EXAM.SCH 	 IV-36
IV.3.2. Lagrangian interpolation 	 IV-38
IV.4. Choosing the SIP method parameters 	 	 IV-38

V. Running the programs and output files 	 	 V-1
V.1. Instructions for running the programs 	 	 V-1
V.2. Modifying the batch files 	 	 V-2
V.3. Running the water program 	 	 V-6
V.4. Output files for water phase. 	 	 V-8
V.5. Making an initial chemistry run 	 V-13
V.6. Output files for chemistry phase 	 V-18
V.7. Continuation runs 	 V-24

VI. Description of the programs 	 VI-1
VI.1. Source files for LT3VSI 	 VI-1
VI.1.1. Source files for LTPREP 	 	 VI-3
VI.2. Running LT3VSI on other computers .	 • • • • •	 VI-3
VI.3. Files used by LT3VSI 	 VI-5
VI.4. General flow diagrams of LT3VSI programs 	 VI-7

References 	 	 R-1

Appendix A. Listing of LT3VSI Programs 	 A-1
Appendix B. Listing of LTPREP Program 	 B-1

ii

I-1

DENITRIFICATION IN NONHOMOGENEOUS LABORATORY SCALE AQUIFERS:

5: USER'S MANUAL FOR THE MATHEMATICAL MODEL LT3VSI

I. Introduction

This report is a companion document to the report (Volume 4)

describing the mathematical model LT3VSI, (Lindstrom, et al,

1990). As the title implies, this volume is the user's guide for

running the model on mainframe computers. Those readers, wishing

to understand the basic science on which the model is built, must

first read Volume 4, (Lindstrom, Boersma, Myrold, and Barlaz,

1990). Those readers wishing only to learn how to set up data

files and run the computer programs need to read this document

thoroughly. This document begins with a brief overview of the

major sections of the computer code including the names of

certain input and output files (Section I). The user is then

walked through a basic installation procedure (Section II). A

listing of the Fortran variables, with mathematical symbols,

definitions, and units is given next . (Section III). This is

followed by a section on the preparation of input data files

(Section IV). A section on the running of the programs and a

discussion of the output files is next (Section V). This is

followed by a section describing the programs (Section VI) and

finally, the references (Section R). The Fortran 77 program

listings end this volume (Appendices A and B).

I.1 Program overview

The programs WATER, CHEMINIT, and CHEMLOOP have been coded in

ANSI Standard Fortran 77. They implement the mathematical model

described by Lindstrom, et al (1990). The programs use three

data files, one of which is optional. One file specifies the

1-2

dimensions and parameters for the hydrology of the aquifer. The

second file specifies the parameters for the chemistry. The

third, optional, file specifies a schedule for changing

concentrations of chemicals in injection wells.

The notation "xxxxxxxx" commonly used in this manual

represents a "root" file name that is chosen by the user. The

3-character extensions such as ".WAD" must be exactly as shown

here.

The water program WATER reads the hydrology file

xxxxxxxx.WAD. It then computes the steady-state fluid flow in .

the aquifer, using Stone's Strongly Implicit System (SIP) method.

The program produces four output files. The file xxxxxxxx.WAO

contains the information read from file xxxxxxxx.WAD together

with computed information. The file xxxxxxxx.WPV contains the

hydraulic pressures and the flow velocities in the aquifer. The

file xxxxxxxx.WDB contains "debugging" outputs selected by

control information in the file xxxxxxxx.WAD. And finally, the

water program writes an unformatted interface file xxxxxxxx.WIF

containing the flow velocities and other information needed by

the chemistry programs.

The chemistry initialization program CHEMINIT reads the

chemistry data file xxxxxxxx.CHD and the interface file produced

by the water program. It does some data processing in

preparation for the loop program. It writes four output files.

The file xxxxxxxx.CHO contains most of the information read from

the file xxxxxxxx.CHD together with computed information. The

file xxxxxxxx.CDB contains "debugging" outputs selected by

control information in the file xxxxxxxx.CHD. The file

LT3VSI.CLD contains data from the file xxxxxxxx.CHD that is not

processed by CHEMINIT. And finally, the unformatted interface

file LT3VSI.CIF contains the information needed by the loop

program.

The chemistry loop program CHEMLOOP is run immediately after

1-3

CHEMINIT has finished. CHEMLOOP reads the interface file

produced by CHEMINIT, the file LT3VSI.CLD, and a schedule file

xxxxxxxx.SCH, if the user provided it. CHEMLOOP computes the

transport and fate of four chemicals and the changing populations

of two microbes in the aquifer for a specified period of time,

using a modified Euler-LaGrange procedure (Lindstrom, et al,

1990). The program produces three output files. The file

xxxxxxxx.CNC contains the four chemical concentration

distributions in the aquifer at selected times, together with the

total chemical mass. This file also contains the populations of

the two microbes at the selected times. Data in the chemistry

input file specify how many times to print this information

during the run. Print times are at equally spaced intervals.

CHEMLOOP also writes additional information on the files

xxxxxxxx.CDB and xxxxxxxx.CHO.

By setting a certain "flag" in the chemistry file

xxxxxxxx.CHD, you can cause CHEMLOOP to write an unformatted file

xxxxxxxx.CUF containing the final chemical concentrations and

microbe populations. This file can be read by CHEMINIT during a

subsequent run of the chemistry programs. The final chemical

concentrations of one run serve as the starting concentration

distributions for the next run. One use of this feature is to

continue a run, if it happens that the first run didn't go far

enough to produce a desired result. A more interesting

possibility is to change some of the chemical parameters and

continue the run. In this case, one would use a different

chemistry data file in the subsequent run or runs.

For example, a simulation run can be made using the Qso slow

leak source term. This can simulate a slowly leaking drum or

canister of waste chemical. After a period of time, the leak is

discovered, dug up, and removed from the aquifer. At this point

in time Qs () is set to zero. The existing concentration plume

constitutes the "initial data" for the remainder of the run.

1-4

It is also possible to change the hydraulic parameters, by
using two or more different water data files and running the
water program on each of them. A subsequent chemistry run can
then use an interface file different from the one used in the
earlier run.

1.2 Update notice: LT3VSI Version 1.3

Some changes have been made in the LT3VSI programs since the

other sections of this manual were written. The three programs

WATER, CHEMINIT, and CHEMLOOP are now Version 1.3. The only

change in the WATER program is the version number. The revisions
in CHEMINIT and CHEMLOOP are described below.

Correction of an error. The principal reason for making a

new version of LT3VSI was to correct an error that was discovered

in the part of CHEMLOOP that computes the new chemical

concentrations (CNEW) from the old concentrations. In Version

1.2, the MLOSS term, which represents the loss due to microbes,

was placed in an expression with several other terms. The sum

was multiplied by several factors, including the old chemical

concentration (COLD). MLOSS should not be multiplied by COLD.
In Version 1.3, this error has been corrected.

Improved time management. In the data file xxxxxxxx.CHD, the

user is allowed to specify TMAX and DTO. DTO is the desired time

increment and TMAX is the length of time the program should run.

The method used in CHEMLOOP is unstable if DTO is too large. The

CHEMINIT program computes bounds on the largest allowable DTO.

There is one bound (DTMAX) for each of the four chemicals. DTO

must be less than the smallest of these four bounds. If the

user-specified DTO is larger than one-half of the minimum bound,

the program sets DTO to this value. In Version 1.2, the output

1-5

file xxxxxxxx.CHO showed the user-specified DTO, followed by the
values of the four DTMAXes. The file did not show the actual DTO
to be used by the program. In Version 1.3, the file xxxxxxxx.CHO
shows the actual DTO, and if the user's DTO was reduced, also
prints a message. If DTO is reduced, Version 1.3 also reduces
TMAX by the same ratio so that the number of iterations will be
the same as would have been performed under the original values.
This avoids the problem of having the program run much longer
than anticipated.

For example, if part of the xxxxxxxx.CHD file is as follows:

NPRT TMAX DTO (DAYS) (RUN CONTROL DATA)
2	 4.0	 0.001

and it happens that DTO = 0.001 is too large, then part of the
xxxxxxxx.CHO file may appear as follows:

RUN CONTROL INFORMATION.

TIMES IN DAYS:

TO= 0.000E+00 TMAX= 6.186E-04 DTO= 1.547E-07
DTO AND TMAX HAVE BEEN REDUCED TO ENSURE STABILITY

COMPUTED	 NUTRIENT	 SUBSTRATE	 OXYGEN	 NITRATE
DTMAX=	 4.722E-05	 1.067E-04	 3.093E-07 7.479E-07

NPRT=	 2; PRINT TIMES (DAYS) ARE:

3.093E-04 6.186E-04

In most places where TIME is printed or displayed, Version
1.2 used fixed format output. Version 1.3 uses "G" format
output, which automatically switches to exponential format if the

value is too large or too small for fixed format.

Reduction of DTO during run. CHEMINIT determines how large
DTO can be for stability under the initial conditions. However,

as the microbial populations change during a run, the maximum
allowable DTO may change. During the computation of CNEW from
COLD in CHEMLOOP, a certain part of the expression is computed
first and tested. If this subexpression is negative, the program
divides DTO by 2.0 to make it smaller, and goes back to the

1-6

beginning of the loop. In Version 1.2, the program displayed a

message and also printed a message on the output file

xxxxxxxx.CDB. In Version 1.3, the program displays more

information when DTO is reduced, including the iteration count

(IC), the current TIME, and the values of I, J, and K. I and J

are the indices that specify a node point in the aquifer, and K

selects one of the four chemicals. Version 1.3 also puts a limit

of ten on the number of times that DTO will be reduced. If this

limit is exceeded, the program terminates with an error message.

Length, of run. Version 1.2's CHEMLOOP program continued
executing, the loop until the elapsed time reached the TMAX

specified by the user. In Version 1.3, the value of TMAX/DTO,

using the user-specified values, determines the number of time

steps that will be performed. This number is not affected by

changes in TMAX or DTO carried out by either CHEMINIT or

CHEMLOOP. The reason for this change is to assure that when the

program is run in "batch" mode, it will not run for a much longer

CPU time than the user had planned.

Anisotropic dispersion. It was discovered that Version 1.2

could not handle anisotropic dispersion, which occurs if the X

and Y components of dispersivity (DISPLX and DISPLY) are

different. Anisotropic dispersion causes negative chemical

concentrations, which causes CHEMLOOP to repeatedly reduce DTO.

Two ad-hoc features were added to Version 1.3 to deal with this

problem. The first feature is that the cross-component of

dispersion (DCHLXY) is set to zero instead of the value specified

by the formula. However, if NFLAG(18) is set to 1 in the

xxxxxxxx.CHD file, the program will compute DCHLXY from the

formula, producing the same results as Version 1.2. The second

feature is that the reduction of DTO can be disabled by setting

NFLAG(19) to 1 in the xxxxxxxx.CHD file. This is risky and is

1-7

not recommended; if the computation in CHEMLOOP becomes unstable,
the results may be wrong.

II. Installing the programs

The programs, as distributed, can be run on an FPS Scientific

computer attached to a VAX computer. They can be modified fairly

easily to run on a VAX or on a PC (AT-class or better). In the

following discussion, we are considering the VAX 780 computer

running the VMS operating system, serving as the "host" computer

for an FPS 264 computer. These computers are installed at the

University Computing Services at Oregon State University (OSU).

We assume the user has a PC or compatible computer running

communication software that provides file transfer capability.

The PC is connected to the VAX system by a communications link.

We assume the user has accounts on the VAX and the FPS.

The programs were developed under DOS 3.10, using Microsoft

Fortran Version 4.01, and initial testing was done under this

system. They were then modified to run on the FPS computer. The

distribution diskette contains an archive file which contains the

Fortran source files for the FPS version. Other archive files

contain the data files and result files for the small example

that is used for illustration in this manual.

There are also files named READ.ME and LT3.HLP on the

diskette that contain instructions for installing and running the

programs. Those instructions are also included in this Guide.

II.1. Installation

The user of LT3VSI should have a PC or compatible computer

with a hard disk that has at least 650K bytes of free space. The

PC should have communications software and a communications link

to a VAX or other computer that is large enough and fast enough
to run LT3VSI.

To begin the installation, create a subdirectory named LT3VSI

on the hard disk. Then copy all of the files on the distribution

11-2

diskette to the subdirectory LT3VSI on the hard disk.

There is a "Browse" program on the diskette for viewing

files. To get information about it, type:

BROWSE BROWSE.DOC

Use PgDn to page through the file; press Esc to quit. Other

file-viewing programs can be used, if preferred.

View or print the file LT3.HLP for further instructions and

information. Or, follow the instructions in this manual.

The diskette contains the files listed below. The files

whose extension is ".ARC" are Archive files. Each of them

contains several files in compressed form. The program ARC.EXE

is used to update ARC files and to list the names of files

contained in them.

File Name	 Contents

ARC.EXE	 The Archive program (see above and below).

BROWSE.COM	 The Browse program, used to view files.

BROWSE.DOC	 Documentation for Browse.

LT3.HLP	 Help information for files on the distribution

diskette.

LT3APV.ARC	 Source code for the include files and the three

programs of LT3VSI.

LT3DATA.ARC	 Data files for a small example that was used to

test LT3VSI.

LT3RESLT.ARC	 Output files containing results of running LT3VSI

on the data files in LT3DATA.ARC.

LTPREP.ARC	 Include file and source code for LTPREP, a

program that helps prepare data files for LT3VSI.

READ.ME	 The file that should be read first.

11-3

Using ARC.

To get a listing of the names of the files in an ARC file,
type:

ARC V [path]filename

The extension can be omitted if it is ".ARC". For example, to

list the names of the files in LT3APV.ARC, type:

ARC V LT3APV

To decompress and extract the files in an ARC file, type:
ARC E [path]filename

As with the "V" command, the extension can be omitted if it is
".ARC".	 For example, to extract all of the files in LT3APV.ARC,
type:

ARC E LT3APV

Both the "V" and the "E" commands can be followed by a list

of filenames to be listed or extracted from the ARC file. To

extract all of the files from LT3RESLT.ARC whose extension is
".CNC" or ".LOG", type:

ARC E LT3RESLT *.CNC *.LOG

If all of the files are extracted from the ARC files, the

extracted files will occupy approximately 400K bytes.

Description of the ARC files.

The file LT3APV.ARC contains the source code for the include

files and the three programs of LT3VSI. The programs are the

Water program WATER.APV, the Chemistry Initialization program

CHEMINIT.APV, and the Chemistry Loop program CHEMLOOP.APV. They

are coded to run on the FPS Scientific Computer with a VAX/VMS

front-end computer. They can be modified fairly easily to run on
a VAX or on a PC (AT-class or better).

11-4

The Water program is run by itself, reading a data file whose

extension is ".WAD". It computes the steady state water pressure

and velocities in the aquifer described by the data file. It

produces printable output files.

The two chemistry programs are run in tandem. The Chemistry

Initialization program is run first; it reads the interface file

(.WIF) produced by the water program, and a chemistry data file

(.CHD) and optionally a schedule file (.SCH). It produces an

interface file (.CIF) and some other files. As soon as it has

finished, the Chemistry Loop program is run. It reads files

produced by the Initialization program and computes the time-

varying concentrations of the four chemicals and the populations

of the two microbes. It produces output files that can be

printed.

The file LTPREP.ARC contains the source code for an include

file and Fortran code for the program named LTPREP, which runs on

PC's and helps prepare data files for LT3VSI. This program does

not detect all of the possible data errors. See Section IV.1 for

more information.

The file LT3DATA.ARC contains the data files for the small

example used to test LT3VSI. The file LT3EXAM.WAD was generated

by LTPREP from the files LT3EXAM.GEO and LT3EXAM.WAG.

LT3EXAM.WAD is used for a water run.

The file LT3EXAM1.CHD was generated by LTPREP from the files

LT3EXAM.GEO and LT3EXAM1.CHG. The file LT3EXAM2.CHD was created

by using a text editor to make a few changes in LT3EXAM1.CHD.

LT3EXAM2.CHD differs from LT3EXAM1.CHD in that the maxtime is 2.0

instead of 4.0, and NFLAG(5) is set to 1 to cause the program to

read a .CUF file. LT3EXAM1.CHD is used for an "initial" run and

LT3EXAM2.CHD is used for a "continuation" run. More information

will be found below.

11-5

The file LT3EXAM.PIX is the picture file produced by LTPREP,
renamed.

Also in LT3EXAM.ARC is the file LT3EXAM.SCH. This is a

"schedule" file that specifies at what times the concentrations

of the wells are to be changed.

The *.COM files in the LT3DATA.ARC file are "batch" files

that run under VMS on a VAX and submit jobs to run on the FPS

Scientific Computer attached to the VAX. WATRUN3.COM runs the

Water program of LT3VSI. CHMRUN3.COM runs the chemistry programs

(Chemistry Initialization followed by Chemistry Loop), in an

"initial" run (starts at time 0.0), which produces a .CUF file to

allow continuing the run. CHMGOON3.COM is similar to

CHMRUN3.COM, but makes a "continuation" run, which reads the .CUF

file produced by an earlier chemistry run and writes a new .CUF

file when it is done.

The file RUNLT3VS.BAT in LT3DATA.ARC is a batch file that was

used to run LT3VSI on an AT-class computer during development and
early testing.

The file LT3RESLT.ARC contains the files that were produced

by running LT3VSI on the example data files.

The *.LOG files show the "console" output from the runs of

the three *.COM files. WATRUN3.LOG is the console output from

the water run, producing the three files LT3EXAM.W*, and the

interface file LT3EXAM.WIF which is not included on the diskette.

There were two chemistry runs. The file CHMRUN3.LOG contains

the console output from the 4.0 day initial chemistry run. The

files LT3EXAM1.* in LT3RESLT.ARC are the result files from this

run.

The file CHMGOON3.LOG is the console output from the

continuation chemistry run of 2.0 days. The files LT3EXAM2.* are

the result files from this run.

11-6

Installing LT3VSI on an FPS computer.

First, install the files on the PC. Create a subdirectory

named LT3VSI on the PC's hard disk, unless this has already been

done. Then, copy the program and data files from the

distribution diskette to the LT3VSI subdirectory on the hard

disk. The files that are needed are:

ARC.EXE, LT3APV.ARC, LT3DATA.ARC, and LTPREP.ARC.

Next, use the ARC program to extract files. Type the

following commands to extract the files that will be needed to

run LT3VSI:

ARC E LT3APV

ARC E LT3DATA LT3EXAM*.* *.COM

ARC E LTPREP

Below is a list of the 30 files that should be extracted by the

commands above:

CBND.SIK CHMRUN3.COM CVELOC.SIB LT3EXAM1.CHD

CCHEM.SIC CNRK.SIL CVELOC.SIK LT3EXAM1.CHG

CCHEM.SIK CPARAM.SIK CWAT.SIW LT3EXAM2.CHD

CCHEM.SIL CPROP.SIB LT3EXAM.GEO LTPREP.FOR

CHEMINIT.APV CRUNC.SIK LT3EXAM.PIX LTPREP.INC

CHEMLOOP.APV CSIZE.SIB LT3EXAM.SCH WATER.APV

CHMAT.SIK CSSIP.SIW LT3EXAM.WAD WATRUN3.COM

CHMGOON3.COM LT3EXAM.WAG

WARNING! The files whose extension is ".COM" are "batch" files

for VMS. They are not executable files for the PC. Do not type

the name of one of them at the DOS prompt on the PC, or

undesirable results may occur!

Now upload the files. Log on to the VAX and use a file

transfer protocol such as Kermit to upload the files described

11-7

below to the VAX. A total of 23 files should be uploaded.
*.APV	 *.SI*	 *.COM	 *.WAD	 *.CHD

Use the FPS software on the VAX to compile and link the three

programs of LT3VSI. To compile the Water program, type the

following command at the VMS prompt:

APFTN64/OPT=3/DEPCHK=WARN WATER.APV

Other options can be used, if desired. There will be several

"warnings" of "potential data dependencies" involving various

arrays. It is not known what causes these warnings; the program

apppears to work correctly. If the compilation is successful,

except for these warnings, link the program by typing the
following command:

APLINK64 WATER

To save file space, delete the object file:

DEL WATER.AOB;*

The executable image file WATER.IMG is 717 blocks long. All

files mentioned here are on the VAX, not the FPS.

Similarly, compile and link the Chemistry Initialization
program:

APFTN64/OPT=3/DEPCHK=WARN CHEMINIT.APV

APLINK64 CHEMINIT

DEL CHEMINIT.AOB;*

There shouldn't be any warnings during compilation of CHEMINIT.

The executable image file CHEMINIT.IMG is 777 blocks long.

Finally, compile and link the Chemistry Loop program:

APFTN64/OPT=3/DEPCHK=WARN CHEMLOOP.APV

APLINK64 CHEMLOOP

DEL CHEMLOOP.A0B;*

There will be several warnings of potential data dependencies

during compilation of CHEMLOOP. There will also be a warning of

11-8

a label defined but not referenced. The executable image file

CHEMLOOP.IMG is 756 blocks long.

See Section V for instructions on running the programs.

The distribution diskette includes the output files that were

generated when the programs were run on an FPS computer with the

given data files. It is possible to see that the programs have

been installed and are working correctly by comparing their

output with the output files supplied.

III. List of variables

Section II1.1 contains a list of the program variables that

are used in input and output. These variables are listed in

alphabetic order. The mathematical symbol corresponding to each

variable from Volume 4 is shown, with a brief description of the

purpose of the variable, and its units. The notation "dimless"

means "dimensionless". There is a list of the meanings of the

run control flags in Section 111.2.

III.1. Program variables involved in input/output

Fortran	 Math
variable	 symbol	 Meaning 	 Units

1
ALFNI1	 ani	 nitrate maintenance rate	 kg nitrate

coefficient for population 1	 kg cells
and anaerobic conditions

ALFO1

ALFO2

1
ao	 oxygen maintenance rate

coefficient for population 1
and aerobic conditions

2
ao	 oxygen maintenance rate

coefficient for population 2
and aerobic conditions

kg oxygen
kg cells

kg oxygen
kg cells

ALPH	 a	 current alpha parameter for SIP	 (dimless)
method

ALPHAS(I)	 ai	 array containing values for ALPH	 (dimless)

CO(K)	 Co	 constant concentration of chemical	 (kg/m3)
in feed stream entering inlet tank

CHNAME(K) array that contains the names of the
four chemicals: NUTRIENT, SUBSTRATE,
OXYGEN, and NITRATE

Cin	 chemical concentration in inlet end (kg/m3)
mixing tank

CIN(K)

free phase chemical concentration
distribution (new values)

free phase chemical concentration
distribution (current values)

new chemical concentrations
for the injection wells at
an event time

CNEW(I,J,K) C

COLD(I,J,K) C

CONC(K)

COUT(K)	 Cout chemical concentration in outlet
end mixing tank

CSWELN(I,J,K) Csour injection well chemical
concentrations

DCHLX(I,J,K) Dxx x-component of dispersion

DCHLXY(I,J,K) Dxy cross component of dispersion

y-component of dispersion

constant for death rate of
population 1

constant for death rate of
population 2

DCHLY(I,J,K) Dyy

DELTA1(I,J)

DELTA2(I,J)
	 62

DISPLX(I,J,K) adispx x-component of dispersivity

DISPLY(I,J,K)y-component of dispersivityadispy

DLO(K)

DTO

DT1(K)

DL

0

At

molecular diffusion coefficient
of compound in free solution

time increment tn+ 1 = to + At

maximum At that satisfies
stability criterion: At � DT1(K)
for all K

111-2

(kg/m3)

(kg/m3)

kg chem
kg solution

(kg/m3)

kg chem
kg solution

(m2/day)

(m2/day)

(m2/day)

(1/day)

(1/day)

(m)

(m)

(m2/day)

(days)

(days)

DX(I)	 Axi	 node spacing in x-direction;	 (in)
DX(I) = XNODE(I+l)-XNODE(I)

DY(J)	 Ayj	 node spacing in y-direction;
DY(J) = YNODE(J+1)-YNODE(J)

EPS(I,J)	 6	 porosity of porous medium

1
ETANI1	 nni	 nitrate use coefficient for

population 1 and anaerobic
conditions

(m)

(m3/m3)

kg nitrate
kg substrate

ETIME	 an event time at which the chemical (days)
concentrations at an injection well
are changed

GAMMO1
1

/o	 oxygen use coefficient for
population 1 and aerobic
conditions

kg oxygen
kg substrate

2
GAMMO2	 -Yo

HEAD1

HEAD2

oxygen use coefficient for
population 2 and aerobic
conditions

first text line read from file
xxxxxxxx.WAD or xxxxxxxx.CHD

second text line read from file
xxxxxxxx.WAD or xxxxxxxx.CHD

kg oxygen
kg substrate

HIN	 Hin	 hydraulic head field at y = 0

HNEW(I,J)	 H	 hydraulic head field (new value)

HOLD(I,J)	 H	 hydraulic head field (current
value)

HOUT	 Hout hydraulic head field at y = Ly

(m water)

(m water)

(m water)

(m water)

I	 index for arrays, x direction

IC	 iteration count in the chemistry loop

ICOUNT	 iteration count for SIP method

constant = maximum value allowed for
NSLXPl; used to dimension arrays

constant = maximum value allowed for
NSLYP1; used to dimension arrays

J	 index for arrays, y direction

K	 index for selecting one of the four
chemicals; see CHNAME(K)

KCLAY(K)	 Ks	 linear equilibrium	 (m3/kg strongly
distribution constant	 sorbing particles)
for strongly sorbing
surfaces (includes clay minerals)

KNI1
	

Kni	 one half maximum nitrate based	 (kg/m3)
saturation constant for population 1
using nitrate

one half maximum nitrate based	 (kg/m3)
saturation constant for population 1
using nutrients

K01	 Ko	 one half maximum saturation	 (kg/m3)
constant for population 1 using
oxygen

2
KO2	 Ko	 one half maximum saturation	 (kg/m3)

constant for population 2 using
oxygen

1
KONI1	 Koni one half maximum nitrate based 	 (kg/m3)

inhibition constant for population 1
using nitrate

1
KONU1	 Konu one half maximum saturation	 (kg/m3)

constant for population 1 using
nutrients

2
KONU2one half maximum saturation	 (kg/m3)Konu

constant for population 2 using
nutrients

KORG(K)	 Korg	 linear equilibrium	 (m3/kg organics)
distribution constant for organics

KSAND(K)	 Kws	 linear equilibrium	 (m3/kg weakly
distribution constant	 sorbing particles)
for mildly sorbing
surfaces

1
KNINUI
	

Kninu

KSATXX(I,J) Ksxx x-component of saturated hydraulic 	 (m/day)
conductivity tensor

111-5

KSATYY(I,J) Ksyy y-component of saturated hydraulic	 (m/day)
conductivity tensor

1
KSNI1	 Ksni one half maximum nitrate based 	 (kg/m3)

saturation constant for population 1
using substrate

1
KS01	 Kso	 one half maximum saturation

constant for population 1 using
substrate

2
KS02	 Kso	 one half maximum saturation

constant for population 2 using
substrate

(kg/m3)

(kg/m3)

KSOM1

KSOM2

1
Ksom

2
Ksom

one half saturation coefficient	 (kg/m3)
for maintenance in population 1

one half saturation coefficient	 (kg/m3)
for maintenance in population 2

LAMDA(I,J,K) A	 overall first order loss coefficient (1/day)

1
MUNI1	 gni	 maximum specific nitrate based

	
(1/day)

growth rate for heterotrophic
population 1

1
MUO1	 go	 maximum specific growth rate	 (1/day)

for heterotrophic population 1
2

MUO2	 go	 maximum specific growth rate	 (1/day)
for heterotrophic population 2

NALPH	 number of ALPHAS

NBSOUR	 number of chemical sources in flow field

NEXTW	 number of extraction wells

NFLAG(I)	 run control flags (see section 111.2)

NINJW	 number of injection wells

NLSOR	 maximum number of iterations allowed
in SIP method

NMOD	 specifies number of times to use
each value of ALPH in SIP method

111-6

NPRT	 number of times to print chemical data

NSLXMI	 Nx_i number of internal nodes on transverse
coordinate

NSLXP1	 Nx+1 total number of nodes on transverse
coordinate

NSLXXX	 Nx	 number of subintervals in the interval
[0 , Lx]

NSLYM1	 Ny_i number of internal nodes on
longitudinal coordinate

NSLYPI	 Ny+1 total number of nodes on
longitudinal coordinate

NSLYYY	 Ny number of subintervals in the interval
[O,Ly]

PCTCLA(I,J) Ms/Mt mass fraction of	 kg strongly sorbing
strongly sorbing particles	 kg soil
in porous medium (includes
clay fraction)

PCTORG(I,J) Mo/Mt mass fraction of
organic matter in porous
medium

PCTSAN(I,J) Mws/Mt mass fraction of
weakly sorbing particles
in porous medium

kg organic matter
kg soil

kg weakly sorbing
kg soil

POP1(I,J)	 N1(t) population 1 cell mass in the unit 	 kg cell
pore volume at time t	 kg soil

POP2(I,J)	 N2(t) population 2 cell mass in the unit 	 kg cell
pore volume at time t	 kg soil

PSIO1	 Oo	 nutrient use coefficient for 	 kg nutrient
population 1 and aerobic	 kg substrate
conditions

2
PSIO2
	

Oo	 nutrient use coefficient for
	 kg nutrient

population 2 and aerobic	 kg substrate
conditions

111-7

QTEMP

QWELIN(I,J) Qinj

QWELOT(I,J) Qout

QCHM1S(I,J,K) Qso source rate density for buried
sources (The program reads kg
chem/day; it divides the input
values by the appropriate volumes)

temporary variable used for reading
QWELIN, QWELOT, CSWELN, and QCHM1S

mass density rate of injection
well (see note under QWELOT below)

mass density rate of extraction
well (For both QWELIN and QWELOT,
the program reads kg water/day; it
divides the input values by the
appropriate volumes)

kg chem
m3-day

kg water
m3-day

kg water
m3-day

RETARD(I,J,K) 1+R
*

 retardation = 1 + retention

RHOBD	 Pb	 average bulk density of porous
medium

(dimless)

(kg/m3)

(kg/m3)

(kg/m3)

(kg/m3)

(kg/m3)

average particle density of
strongly sorbing fraction

average particle density of organic
matter fraction

average particle density of
weakly sorbing fraction

density of water

RHOCLA

RHOORG

RUOSND

RHOWAT

RMSEA

RMSER

Ps

Porg

Pws

tow

actual root mean square error in SIP
method

relative root mean square error in SIP
method

nitrate utilization rate by
microbial population 1

oxygen utilization rate by
microbial population 1

oxygen utilization rate by
microbial population 2

kg substrate
kg cell-day

kg substrate
kg cell-day

kg substrate
kg cell-day

1
RSNINU1(I,J) rsninu

1
RSONU1(I,J)	 rsonu

2
RSONU2(I,J)	 rsonu

111-8

STRING

TO

THENI1

temporarily holds strings of text read
from data files

starting time for chemical processing (days)
(0.0 for an initial run)

1
eni	 nutrient use coefficient for
	

kg nutrient
population I and nitrate	 kg substrate
conditions

TIME
	

t	 elapsed time in days from	 (days)
commencing injection and/or
pumping (days since beginning of
initial run)

TIMEI

TIMES

TLRNWA

TLRNWR

TMAX

cycle time in SIP method	 (seconds CPU time)

startup time in SIP method (seconds CPU time)

tolerance for actual root mean square
error convergence criterion for SIP
method

tolerance for relative root mean square
error convergence criterion for SIP
method

length of time for chemical 	 (days)
processing

TORT(I,J)	 atort tortuosity factor (0.67)

x-component of Darcy velocity

y-component of Darcy velocity
(When VLXX and VLYY are first
computed, they represent qx and qy)

x-component of average seepage
velocity vector

y-component of average seepage
velocity vector (VLXX and VLYY are
subsequently changed to represent
Ux and U)

one of the x-nodes

one of the y-nodes

(dimless)

(m/day)

(m/day)

(m/day)

(m/day)

(m)

(In)

VLXX(I,J)	 qx

VLYY(I,J)	 qy

VLXX(I,J)	 Ux

VLYY(I,J)	 U

XI	 xi

YJ	 Yj

111-9

XLAMIR(I,J,K) Airr first order free phase loss rate	 (1/day)
constant for irreversible loss
processes, e.g. chemical reactions

XLW	 Lw	 vertical dimension of aquifer	 (m)

XLYIN	 Lin	 length of the inlet end mixing tank (m)

XLYOUT	 Lout length of the outlet end mixing tank (m)

XMASIN(K) MInlet(t) cumulative chemical mass inflow	 (kg)
or outflow at inlet end

XMASOT(K) MOutlet(t) cumulative chemical mass inflow	 (kg)
or outflow at outlet end

*
XMASS(K)	 MAq(t)	 total chemical mass in aquifer	 (kg)

XMFONW(K) MLost(t)	 cumulative first order loss of	 (kg)
chemical mass

*
XMSOUR(K) MSource(t) cumulative chemical mass from	 (kg)

buried sources

XNODE(I)	 x	 transverse spatial component	 (n)

XNODE(NSLXP1) Lx	 transverse dimension (width) of 	 (m)
aquifer

s*
XSLMIR(I,J,K) A irr first order sorbed phase loss rate (1/day)

constant for irreversible processes

YNODE(J)	 y	 longitudinal spatial component	 (m)

YNODE(NSLYP1) Ly	 longitudinal dimension (length) of	 (111)
aquifer

YSNI1
1

Ysni yield coefficient for microbial
population 1 using nitrate

kq cells
kg substrate

1
YS01	 Yso	 yield coefficient for microbial	 kq cells

population 1 using oxygen	 kg substrate
2

YS02	 Yso	 yield coefficient for microbial	 kg cells
population 2 using oxygen	 kg substrate

ZTHRSH	 zero threshold: numbers in arrays
whose magnitudes are less than ZTHRSH
are printed as zero.

111.2. Meanings of run control flags NFLAG(I)

"Display" means that the information is shown on the screen

and is not written on a file, unless the screen output is re-

directed to a file. "Write", for NFLAGS 10, 11, 12, 13, 14, and

15, means that the information is written on one of the two files

used for debugging output. See the notes below. Flags not

mentioned, such as NFLAG(7), are not used in this version of the

program. Flags that are used in both water and chemistry phases

have the same function. The only such flag at present is

NFLAG(8).

Flags used during the water phase

NFLAG(1)=0 means: compute the water pressure field only.

The chemistry phases cannot be run in this case.

NFLAG(1)=1 means: compute the water pressure field and the

velocity components.

NFLAG(2)=0 means: compute an initial guess for the water

pressure.

NFLAG(2)=1 means: read an initial guess for the water pressure

from the water data file.

NFLAG(3)=0 means: display ICOUNT, ALPH, RMSEA, RMSER, during the

SIP process.

NFLAG(3)=1 means: display the above information, plus the values

of XDUM and DELX at the four "interior" corners.

NFLAG(8)=0 means: write two-dimensional arrays in narrow

(80 column) format.

NFLAG(8)=1 means: write two-dimensional arrays in wide

(132 column) format.

NFLAG(10)=1 means: write the matrix elements which define the

water pressure field.

NFLAG(10)=0 means: do not write the matrix elements.

NFLAG(11)=1 means: write the adjusted boundary matrix elements.

NFLAG(11)=0 means: do not write the adjusted elements.

NFLAG(12)=1 means: write the source and boundary component

contributions to the over all "known vector".

NFLAG(12)=0 means: do not write the "known vector".

NFLAG(13)=1 means: write the max and min DELX's.

NFLAG(13)=0 means: do not write the DELX's.

Note: the outputs enabled by NFLAG's 10, 11, 12, and 13 are

written on the file 'xxxxxxxx.WDB' during the water phase.

Flags used during the chemistry phases

NFLAG(4)=0 means: do not use a schedule file "xxxxxxxx.SCH".

The injection well chemical concentrations

specified in the chem data file "xxxxxxxx.CHD"

will remain unchanged throughout the run.

NFLAG(4)=1 means: read a schedule file "xxxxxxxx.SCH" and alter

the injection well chemical concentrations at

the specified event times, as specified by the

data in the file.

NFLAG(5)=0 means: read initial chemical concentrations from the

chemical data file.

NFLAG(5)=1 means: read initial chemical concentrations from the

unformatted file written by a previous run

of the chemistry loop phase. See NFLAG(6) below.

NFLAG(6)=1 means: at the end of a chemistry loop phase run, write

an unformatted file containing the final chemical

concentrations. This file can be read in by

a subsequent chemistry run as initial data.

See NFLAG(5) above.

NFLAG(6)=0 means: do not write the unformatted file described

above.

NFLAG(8)=0 means: write two-dimensional arrays in narrow

(80 column) format.

NFLAG(8)=1 means: write two-dimensional arrays in wide

(132 column) format.

NFLAG(9)=1 means: read a value for ZTHRSH from the chemical

data file, during the chemistry phase.

NFLAG(9)=0 means: do not read ZTHRSH during the chemistry phase;

use the value that was read in during the water phase.

NFLAG(14)=1 means: write the matrix elements defining the

chemical field.

NFLAG(14)=0 means: do not write the matrix elements.

NFLAG(15)=1 means: write the coordinates of the P* points.

NFLAG(15)=0 means: do not write the above.

NFLAG(16)=0 means: use 4-point interpolation method in the

CLAG function, which computes the chemical

concentrations at the P* points.

NFLAG(16)=1 means: use 25-point Lagrange interpolation method

in the CLAG function (this takes much more time).

NFLAG(17)=1 means: compute and write the cumulative chemical

masses (XMASS, and so on) on the file 'xxxxxxxx.CNC'.

NFLAG(17)=0 means: do not compute and do not write the above.

Note: the outputs enabled by NFLAG's 14 and 15 are written on the

file 'xxxxxxxx.CDB' during the chemistry phases.

IV-1

IV. Preparation of data files

Example input data files are presented and described in this

section. These example data files are included on the

distribution diskette. It is recommended that these files be

used as input to the program after installation, to verify that

the program is working properly. The files can then be modified

to describe an actual scenario for model simulation.

J Y (J)
1

0.0
2

0.1
3

0.2
4

0.4
5	 6 	 7

0.6	 0.8	 1.0
8

1.2
9

1.3
10
1.4 X

I
 (I)

1 0.0

2 0 . 1 inj 316 1.0

3 0.3 0 . 1

4 0.5 .032	 .056	 0.1	 .316

5 0.7
0.1

6 0.9

7 1.1 .056	 .316
0.01

8 1.3 0.1

9 1.5 032 ext

10 1.6

IV.1. Preparation of nonhomogeneous data for an example aquifer

The following is a picture of the example aquifer used for

illustration in this manual. Normally, one would use more nodes

than this; the number of nodes was kept small so that the

listings of the files would not take up too much space in the

It also takes less computer time to run a small model.manual.

IV-2

This aquifer has four regions and two wells. The value of a

particular soil property may be different in different regions,

but is constant within a region. This example shows how to set

up the data for the hydraulic conductivity.

The illustration shows the geometry of the aquifer. The

width is 1.4 meters with 10 nodes in the X direction; the length

is 1.6 meters with 10 nodes in the Y direction. There is one

injection well (inj) at X-Y location (0.1,0.1). There is one

extraction well (ext) at X-Y location (1.3,1.5).

The aquifer has two regions of medium conductivity (0.1

m/day) at the upper left and the lower right of the picture, one

region of low conductivity (0.01 m/day) at the lower left, and

one region of high conductivity (1.0 m/day) at the upper right.

The values (0.1, 0.01, and 1.0 m/day) are the values of the X

component of the saturated hydraulic conductivity KSATXX(I,J).

In this example, the Y component KSATYY(I,J) is the same as

KSATXX(I,J).

The picture shows the boundaries between the regions. The

value at a node on a boundary is the geometric mean of the values

at the adjacent nodes on either side, either those on left and

right, or those above and below. For example, along the boundary

from (0.0,0.5) to (0.2,0.5), the value above the boundary is 0.1

and the value below is 0.01. The geometric mean is:

SQRT(0.1 * 0.01),

or 0.0316228, which has been rounded to 0.032. At the corners of

regions, or where there are junctions between boundaries, the

values of nearby boundary points must be computed first and then

used in computing the special points. For example, at the point

(0.4,0.5), the boundary value on the right is 0.1 and the

boundary value on the left is 0.0316228. The geometric mean of

these values is 0.0562341, rounded to 0.056.

The same geometry is used for each of the hydraulic and

chemical parameters that can vary over the aquifer. The values

IV-3

in the regions will be different for each parameter and the

boundary values must be computed as described above. Then these

values must be put into the two data files described in sections

IV.2 and IV.3.

One can compute the values at the various nodes and create

the data files xxxxxxxx.WAD and xxxxxxxx.CHD by using a text

editor. However, this can be VERY tedious labor. To make it

easier to create the data files, the program LTPREP has been

coded. To use LTPREP, you create abbreviated forms of the data

files, together with a "Geometry" file. In this example, the

abbreviated data files have the extensions .WAG and .CHG. The

geometry file has the extension .GEO. LTPREP allows any file

names and extensions for its input and output files.

The geometry is specified in the LT3EXAM.GEO file as follows:

X Y (NO. OF INTERIOR NODES)
8 8
X-COORD POSITIONS (M)
0.0	 0.1	 0.2	 0.4	 0.6	 0.8	 1.0	 1.2
1.3	 1.4

Y-COORD POSITIONS (M)
0.0	 0.1	 0.3	 0.5	 0.7	 0.9	 1.1
1.3	 1.5	 1.6

BOUNDARIES
2	 (0.0,0.5)	 (1.0,0.5)	 (1.0,1.6)
1	 (0.4,0.0)	 (0.4,0.5)
1	 (1.4,1.1)	 (1.0,1.1)
-1

The fourth section of the geometry file specifies internal

boundaries, between regions of different values. The boundaries

must be horizontal or vertical, and are specified by giving the

coordinates of their endpoints. The data for each boundary line

has the form:

(x1,y1)	 (x2,y2)

where x1, y1, x2, and y2 are real numbers representing the

coordinates of nodes specified in the second and third sections

of the file, and either x1 = x2, or y1 = y2. Data in the file

has the form:

IV-4

n (xl,y1)	 (x2,y2)	 (xn+1,yn+1)

where n is an integer (0 <= n <= 10), followed by n+1 pairs of

coordinates. This represents n connected boundary lines:

(xl,yl)	 (x2,y2)

(x2,y2)	 (x3,y3)

• • •

(xn,yn)	 (xn+l,yn+1)

The special case when n = 0:

0	 (xl,yl)

represents a single boundary point. The data is ended by a line

containing a single -1:

-1

In the example above, the data line:

2	 (0.0,0.5)	 (1.0,0.5)	 (1.0,1.6)

represents two of the boundary lines: the line from (0.0,0.5) to

(1.0,0.5), and the line from (1.0,0.5) to (1.0,1.6).

In the abbreviated data files, one uses commands to specify:

(1) where to include the first three parts of the geometry file,

and (2) where to generate data for the LT3VSI program to read.

Here is a listing of the file LT3EXAM.WAG:

IV-5

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 them]
ONE INJECTION WELL; ONE EXTRACTION WELL

NLSOR NMOD NALPH TLRNWA TLRNWR ZTHRSH (RUN CONTROL DATA)
3000	 2	 4	 1.0E-8 1.0E-8 1.0E-8

DECISION FLAGS
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ALPHAS

1.0 0.90 0.95 0.75
#GEOMETRY
AQUIFER THICKNESS (M)
0.3
WATER DENSITY (KG/M-3)
1000.0
X-COMPONENT OF HYDRAULIC CONDUCTIVITY (M/DAY)
#VALUES

(0.1,1.5) 0.010 [low]
(0.1,0.1) 0.100 [medium]
(1.3,1.5) 0.100 [medium]
(1.3,0.1) 1.000 [high]
(0,0) 0
Y-COMPONENT OF HYDRAULIC CONDUCTIVITY (M/DAY)
#VALUES
(0.1,1.5) 0.010 [low]
(0.1,0.1) 0.100 [medium]
(1.3,1.5) 0.100 [medium]
(1.3,0.1) 1.000 [high]
(0,0) 0
NO. OF INJECTION AND EXTRACTION WELLS

1	 1
XI	 YJ STRENGTH OF INJECTION WELLS (KG WATER/DAY)

0.1	 0.1	 7.5
XI	 YJ STRENGTH OF EXTRACTION WELLS (KG WATER/DAY)

1.3 1.5	 4.0
INLET AND EXIT PORTS PRESSURE HEADS (M)
1.0	 0.0

LTPREP copies most of the abbreviated input file to the

output file. Wherever there is an LTPREP command in the input

file, LTPREP replaces the command by other information. LTPREP

commands have a "#" in column 1, followed by a "G" or "V" in

column 2. The rest of the line is ignored by LTPREP. In the

example file above, the line

#GEOMETRY

causes LTPREP to copy the first three parts of the LT3EXAM.GEO

file, up to the BOUNDARIES line, and write them out in place of

the #G command.

The data for the x-component of the conductivity is

specified as follows.

LTPREP Picture File for lt3exam.geo

IV-6

X-COMPONENT OF HYDRAULIC CONDUCTIVITY (M/DAY)
#VALUES
(0.1,1.5) 0.010 [low]
(0.1,0.1) 0.100 [medium]
(1.3,1.5) 0.100 [medium]
(1.3,0.1) 1.000 [high]
(0,0) 0

The line beginning "X-COMPONENT OF" is copied to the .WAD

file. The #V command is followed by a variable number of lines,

specifying values for interiors of regions. There should be one

value in each region. The LTPREP program propagates the value

throughout the region. Each line of data must have the form:

(x,y) val

where x and y are real numbers specifying the location of a nodal

point inside one of the regions, and val is the value to be

assigned to all points within that region. The data is ended by

a line of the form:

(0,0)	 0.0

The notations in brackets such as "[low]" are comments that

are ignored by LTPREP. LTPREP is easy to use; simply type its

name at the DOS prompt, and it will ask for the names of the

geometry file, the input data file, and the output file. In

addition to these files, LTPREP produces a file named LTPICT.XXX,

which is a picture of the aquifer. For the geometry and

LT3EXAM.WAG files shown above, LTPREP writes the following

LTPICT.XXX file:

IV-7

LTPREP detects some errors during its processing and writes

error messages. Other errors are not detected; some of them can

be discovered by examining the picture file. The file shown

above is correct. The "+" symbols around the outside represent

the outside boundary. The "#" symbols represent internal

boundaries between regions. Any "+" symbols inside the diagram

represent unevaluated internal boundary points; these are caused

by data errors. The ":" symbols represent points within regions

whose values have been determined by propagating the values

specified in the data file. Any "?" symbols represent points

within a region which have not been evaluated because no value

was specified in that region. LTPREP does not detect the

situation where more than one value is specified in a region.

Also, the picture file shows the situation resulting from the

last #V command in the data file.

Below is a listing of part of the LT3EXAM.WAD file produced

by LTPREP from the .GEO and .WAG files listed above.

ALPHAS
1.0 0.90 0.95 0.75
X Y (NO. OF INTERIOR NODES)
8 8

X-COORD POSITIONS (M)

	

0.0	 0.1	 0.2	 0.4	 0.6	 0.8	 1.0	 1.2

	

1.3	 1.4
Y-COORD POSITIONS (M)

	

0.0	 0.1	 0.3	 0.5	 0.7	 0.9	 1.1

	

1.3	 1.5	 1.6
AQUIFER THICKNESS (M)
0.3
WATER DENSITY (KG/M-3)
1000.0
X-COMPONENT OF HYDRAULIC CONDUCTIVITY (M/DAY)

	

3*1.00E-01	 1*3.16E-01	 6*1.00E+00

	

3*1.00E-01	 1*3.16E-01	 6*1.00E+00

	

3*1.00E-01	 1*3.16E-01	 6*1.00E+00

	

3*3.16E-02	 1*5.62E-02	 2*1.00E-01	 1*3.16E-01	 3*1.00E+00

	

6*1.00E-02	 1*1.00E-01	 3*1.00E+00

	

6*1.00E-02	 1*1.00E-01	 3*1.00E+00

	

6*1.00E-02	 1*5.62E-02	 3*3.16E-01

	

6*1.00E-02	 1*3.16E-02	 3*1.00E-01

	

6*1.00E-02	 1*3.16E-02	 3*1.00E-01

	

6*1.00E-02	 1*3.16E-02	 3*1.00E-01
Y-COMPONENT OF HYDRAULIC CONDUCTIVITY (M/DAY)

The portion of the file listed above shows the information

IV-8

that replaced the #G command and the first #V command. LTPREP's

output takes advantage of the repeat feature of Fortran's list-

directed input. The complete file is included on the

distribution diskette for LT3VSI and is listed in Section IV.2.

IV.2. Example input hydrology data file: LT3EXAM.WAD

This section shows an example hydrology and aquifer geometry

file. The file must have a name with the extension ".WAD"; it is

read in by subroutine FLOREAD in module RWWSIW.FOR. A complete

listing of the file is shown followed by a detailed discussion of

the data.

DATE	 IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 	 [4 them]
ONE INJECTION WELL; ONE EXTRACTION WELL

NLSOR	 NMOD	 NALPH	 TLRNWA	 TLRNWR	 ZTHRSH	 (RUN CONTROL DATA)
3000	 2	 4	 1.0E-8	 1.0E-8	 1.0E-8

DECISION FLAGS
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ALPHAS
1.0	 0.90	 0.95	 0.75
X	 Y	 (NO. OF INTERIOR NODES)
8	 8
X-COORD POSITIONS (M)
0.0	 0.1	 0.2	 0.4	 0.6	 0.8	 1.0	 1.2
1.3	 1.4

Y-COORD POSITIONS (M)
0.0	 0.1	 0.3	 0.5	 0.7	 0.9	 1.1
1.3	 1.5	 1.6

AQUIFER THICKNESS (M)
0.3

WATER DENSITY (KG/M-3)
1000.0

X-COMPONENT OF HYDRAULIC CONDUCTIVITY (M/DAY)

	

3*1.00E-01	 1*3.16E-01	 6*1.00E+00

	

3*1.00E-01	 1*3.16E-01	 6*1.00E+00

	

3*1.00E-01	 1*3.16E-01	 6*1.00E+00

	

3*3.16E-02	 1*5.62E-02	 2*1.00E-01	 1*3.16E-01	 3*1.00E+00

	

6*1.00E-02	 1*1.00E-01	 3*1.00E+00

	

6*1.00E-02	 1*1.00E-01	 3*1.00E+00

	

6*1.00E-02	 1*5.62E-02	 3*3.16E-01

	

6*1.00E-02	 1*3.16E-02	 3*1.00E-01

	

6*1.00E-02	 1*3.16E-02	 3*1.00E-01

	

6*1.00E-02	 1*3.16E-02	 3*1.00E-01
Y-COMPONENT OF HYDRAULIC CONDUCTIVITY (M/DAY)

	

3*1.00E-01	 1*3.16E-01	 6*1.00E+00

	

3*1.00E-01	 1*3.16E-01	 6*1.00E+00

	

3*1.00E-01	 1*3.16E-01	 6*1.00E+00

	

3*3.16E-02	 1*5.62E-02	 2*1.00E-01	 1*3.16E-01	 3*1.00E+00

	

6*1.00E-02	 1*1.00E-01	 3*1.00E+00

	

6*1.00E-02	 1*1.00E-01	 3*1.00E+00

	

6*1.00E-02	 1*5.62E-02	 3*3.16E-01

	

6*1.00E-02	 1*3.16E-02	 3*1.00E-01

	

6*1.00E-02	 1*3.16E-02	 3*1.00E-01

	

6*1.00E-02	 1*3.16E-02	 3*1.00E-01
NO. OF INJECTION AND EXTRACTION WELLS

1	 1
XI	 YJ STRENGTH (INJECTION WELLS) (KG WATER/DAY)

0.1	 0.1	 7.5
XI	 YJ STRENGTH (EXTRACTION WELLS) (KG WATER/DAY)

1.3	 1.5	 4.0
INLET AND EXIT PORTS PRESSURE HEADS (m)
1.0	 0.0

IV-9

As explained in Section IV.1, the LT3EXAM.WAD file above was

prepared by creating files named LT3EXAM.GEO and LT3EXAM.WAG.

These files were read by the program LTPREP, which produced the

file above. In this small example, LTPREP does not save very

much work. However, for larger data files, it makes data file

preparation much easier than it would be without LTPREP.

IV-10

In the rest of this section, the data read in by subroutine

FLOREAD and the computations it performs are described. For

input data, there is a brief description of the information being

read, as well as the names of the variables being read in. This

is followed by the example data, enclosed in a box. A brief

description of computations is given, along with a description of

the variables involved. The List of Variables in Section III

provides more information about the variables.

There are two kinds of data in the file. The data used by

the program is numerical, either real or integer form. Real

numbers are handled by the program as double-precision. To help

users understand and modify the data file, there is also text

data. The first two lines of text are read by the program and

printed out on the files xxxxxxxx.WAO and xxxxxxxx.WPV. The rest

of the text lines are read and discarded. They may contain any

desired information or may be left blank, but they must be there.

The numerical data is read using Fortran's "list-directed"

input format. This is a "free-form" input: numbers may occupy

any number of positions; they are separated by spaces or commas

or ends-of-lines. However, each Fortran READ statement begins

reading a new line. Any numbers or other data left on a line

when the READ finishes are discarded. Here is the description of

the actions of FLOREAD as it reads the data file xxxxxxxx.WAD:

First, FLOREAD reads a two-line heading HEAD1, HEAD2 that will be

printed out on files xxxxxxxx.WAO and xxxxxxxx.WPV:

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 chem]
ONE INJECTION WELL; ONE EXTRACTION WELL

Next, FLOREAD reads the run control information:

NLSOR NMOD NALPH TLRNWA TLRNWR ZTHRSH (RUN CONTROL DATA) 1

3000	 2	 4	 1.0E-8 1.0E-8 1.0E-8

IV-11

NLSOR, NMOD, NALPH, TLRNWA, and TLRNWR are the SIP method

parameters; they are discussed in Section IV.4. ZTHRSH is the

"zero threshold"; when arrays are printed out, numbers whose

absolute values are less than ZTHRSH are printed as ".00". If

the value specified for ZTHRSH is larger than 0.99, FLOREAD sets

it to 0.99.

FLOREAD next reads the 20 control flags NFLAG(I):

DECISION FLAGS
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In this case:

NFLAG(1) = 1 means compute the water pressure field and the

velocity components. Choose NFLAG(1) = 0 if computation of the

water pressure only is desired. This would be appropriate while

attempting to find suitable values for the SIP method variables.

When NFLAG(1) = 0, the chemistry phase cannot be executed.

NFLAG(8) = 0 means write two-dimensional arrays in narrow (80

column) format. With a printer that can print 132 or more

characters per line, choose NFLAG(8) = 1; with a printer which

can only print 80 characters per line, choose 0. The wider

format allows the program to print more numbers per line. If

NFLAG(8) were changed to 1, the data above would appear as

follows:

DECISION FLAGS

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Some of the other NFLAG's cause various items of information

to be written on the debug file xxxxxxxx.WDB, to aid in testing

and debugging the program. Some of the NFLAG's are not used; the

meanings of those that are used are described in Section 111.2.

IV-12

FLOREAD reads ALPHAS, an array of values for ALPH. NALPH, which

must be in the range 1 to 10, specifies the number of ALPH's to

be read. See Section IV.4 for a discussion of the ALPH's.

ALPHAS

1.0 0.90 0.95 0.75

The grid geometry is read next, and some related variables are

computed. FLOREAD reads the number of interior x and y nodes
NSLXM1, NSLYM1:

X Y (NO. OF INTERIOR NODES)
8 8

In this example, the number of nodes is the same in both the X

and Y directions. The program allows these numbers to be
different.

FLOREAD computes the number of intervals:

NSLXXX = NSLXM1+1

NSLYYY = NSLYM1+1

and the total number of nodes, including boundary nodes:

NSLXP1 = NSLXXX+1

NSLYP1 = NSLYYY+1

If NSLXP1 > IX or NSLYP1 > IY then FLOREAD prints the error
message:

Too many grid points for fixed-size arrays.
Change IX and/or IY, re-compile, & re-link.

and stops.

IX and IY are symbolic constants (parameters) in the Fortran

program that are used to dimension the arrays. The size of the

aquifer grid must not exceed these dimensions. IX and IY can be

increased to accommodate larger grids, by editing the "include"

IV-13

file CSIZE.SIB, re-compiling all modules of the program, and re-

linking. This causes the program to require more computer

memory; if it needs more memory than is available, the program

cannot be run.

FLOREAD sets the arrays QWELIN(I,J) and QWELOT(I,J) to zero.

The nodal positions XNODE(1) through XNODE(NSLXP1) are read in,

remembering that NSLXP1 is two (2) greater than the value NSLXM1

that was read in:

X-COORD POSITIONS (M)

	

0.0	 0.1	 0.2	 0.4	 0.6	 0.8	 1.0	 1.2

	

1.3	 1.4

The nodes do not have to be equally spaced. They should be

closely spaced next to the boundaries and on all sides of each

well and each buried source. The first node XNODE(1) should be

zero.

The nodal positions YNODE(1) through YNODE(NSLYP1) are read in,

remembering that NSLYPI is two (2) greater than the value NSLYM1

that was read in:

Y-COORD POSITIONS (M)

	

0.0	 0.1	 0.3	 0.5	 0.7	 0.9	 1.1

	

1.3	 1.5	 1.6

See the note above under X-COORD POSITIONS. The first node

YNODE(1) should be zero.

FLOREAD reads the aquifer vertical dimension XLW (M):

AQUIFER THICKNESS (M)
0.3

FLOREAD calculates the spacing between the nodes:

DY(J) = YNODE(J+1)-YNODE(J) for J=1 to NSLYYY

DX(I) = XNODE(I+1)-XNODE(I) for I=1 to NSLXXX

X-COMPONENT OF HYDRAULIC CONDUCTIVITY (M/DAY)
3*1.00E-01
3*1.00E-01
3*1.00E-01
3*3.16E-02
6*1.00E-02
6*1.00E-02
6*1.00E-02
6*1.00E-02
6*1.00E-02
6*1.00E-02

1*3.16E-01
1*3.16E-01
1*3.16E-01
1*5.62E-02
1*1.00E-01
1*1.00E-01
1*5.62E-02
1*3.16E-02
1*3.16E-02
1*3.16E-02

6*1.00E+00
6*1.00E+00
6*1.00E+00
2*1.00E-01
3*1.00E+00
3*1.00E+00
3*3.16E-01
3*1.00E-01
3*1.00E-01
3*1.00E-01

1*3.16E-01 3*1.00E+00

IV-14

FLOREAD reads the water density RHOWAT:

WATER DENSITY (KG/M^3)
1000.0

The X-component of the saturated hydraulic conductivity is read
next.	 NSLYP1 rows are read, with row J containing values

KSATXX(1,J) through KSATXX(NSLXP1,J):

There must be NSLYP1 sets of numbers, with each set beginning on

a new line, and each set containing NSLXP1 numbers. In the data

shown above, the "repeat" feature of Fortran list-directed input

has been used. An integer, followed by an asterisk (*), followed

by a data value, represents as many copies of that data value as

the value of the integer. Thus, 6*1.00E-02 represents 6 values

of 1.00E-02. As an example, if one wanted to make the third

number in line 8 have the value 1.23, line 8 above would be

changed to:

2*1.00E-02 1.23 3*1.00E-02 1*3.16E-02 3*1.00E-01

This represents 2 values of 1.00E-02, followed by 1.23, followed

by 3 values of 1.00E-02, followed by 3.16E-02, followed by 3

values of 1.00E-01; a total of 10 numbers. The 1* in front of

3.16E-02 can be omitted; the data file was prepared by the

program LTPREP, which always puts a repeat factor in front of

each value.

Remember that NSLXP1 and NSLYP1 are the total numbers of

nodes in the X and Y directions. They were computed by

subroutine FLOREAD from the values of NSLXM1 and NSLYM1 which

Y-COMPONENT OF HYDRAULIC CONDUCTIVITY (M/DAY)
3*1.00E-01
3*1.00E-01
3*1.00E-01
3*3.16E-02
6*1.00E-02
6*1.00E-02
6*1.00E-02
6*1.00E-02
6*1.00E-02
6*1.00E-02

1*3.16E-01
1*3.16E-01
1*3.16E-01
1*5.62E-02
1*1.00E-01
1*1.00E-01
1*5.62E-02
1*3.16E-02
1*3.16E-02
1*3.16E-02

6*1.00E+00
6*1.00E+00
6*1.00E+00
2*1.00E-01
3*1.00E+00
3*1.00E+00
3*3.16E-01
3*1.00E-01
3*1.00E-01
3*1.00E-01

1*3.16E-01 3*1.00E+00

IV-15

were read in from the xxxxxxxx.WAD file.

The Y-component of the saturated hydraulic conductivity is read

next.	 NSLYP1 rows are read, with row J containing values

KSATYY(1,J) through KSATYY(NSLXP1,J):

FLOREAD reads the number of injection and extraction well

positions NINJW, NEXTW. A minimum of one of each kind is

required, but their strengths may be zero.

NO. OF INJECTION AND EXTRACTION WELLS
1	 1

Next, FLOREAD reads the injection and extraction well strengths.

The minimum is one well of each kind, which may have zero

strength (KG WATER/DAY).

FLOREAD reads NINJW lines containing XI, YJ, and QWELIN(I,J):

XI	 YJ STRENGTH (INJECTION WELLS) (KG WATER/DAY)
0.1 0.1	 7.5

There must be NINJW data lines, following the ONE text line. The

positions of wells are specified by the X and Y coordinates, NOT

by indices. The values of XI and YJ must be the coordinate

values for XNODE(I) and YNODE(J). The input strength data has

units of (kg water/day). The program divides the data by the

appropriate volumes to get units of (kg water/m - 3-day) for

QWELIN.

IV-16

FLOREAD reads NEXTW lines , containing XI, YJ, and QWELOT(I,J):

XI	 YJ STRENGTH (EXTRACTION WELLS) (KG WATER/DAY)
1.3 1.5	 4.0

There must be NEXTW data lines, following the ONE text line. See

the notes above under INJECTION WELLS concerning the coordinates
and the strength data.

If there were no extraction wells, one well of strength 0.0

would be placed at position (0.1,0.1), or any other interior

position. Wells must be at interior nodes, and cannot be on the

boundaries, which is why there could not be a well at position
(0.0,0.0).

FLOREAD reads the inlet and outlet boundary hydraulic heads HIN,
HOUT (Meters):

INLET AND EXIT PORTS PRESSURE HEADS (M)
1.0	 0.0

In the example data file, NFLAG(2) is 0, which causes the program

to compute an initial guess for the water pressure. If NFLAG(2)

= 1, FLOREAD will read an initial guess for the water pressure,

following the HIN and HOUT data shown above. For example, to

make the program begin with an initial guess of 0.0 for the

pressure, set NFLAG(2) to 1 and add the following to the
xxxxxxxx.WAD file:

INITIAL WATER PRESSURE (M WATER)
10*0.0
10*0.0
10*0.0
10*0.0
10*0.0
10*0.0
10*0.0
10*0.0
10*0.0
10*0.0

Like the other arrays that are read in by the program, this data

must consist of NSLYP1 rows with NSLXP1 values per row.

IV-17

IV.3. Example input chemistry data file: LT3EXAM1.CHD

This section shows an example of the chemical parameter data

file. The file must have a name with extension ".CHD"; it is

read in by subroutine CHMREAD in module RWCSIC.FOR. Both the

abbreviated version of the file and the complete version are

listed below. The listings are followed by a detailed discussion

of the data.

The first listing is the abbreviated file LT3EXAM1.CHG, which

is one of the files to be read by LTPREP:

"Sand" stands for the weakly
sorbing fraction, which
includes sand and large silt.

"Clay" stands for the strongly
sorbing fraction, which
includes clay and small silt.

See "sand" note above.

See "clay" note above.

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 chem]
CHEM DATA FILE; ONE INJECTION WELL; ONE EXTRACTION WELL

NPRT TMAX	 DTO (DAYS) (RUN CONTROL DATA)
2	 4.0	 0.001

DECISION FLAGS

1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
INLET AND EXIT PORT TANK LENGTHS (M)
.1	 .1

SAND	 CLAY	 ORGANICS (SOIL PARTICLE DENSITIES KG/M-3)
2660.0 2650.0	 1300.0
TORTUOSITY (DIMLESS)
#VALUES
(0.1,1.5) 0.500 [low]

(0.1,0.1) 0.670 [medium]
(1.3,1.5) 0.670 [medium]
(1.3,0.1) 0.900 [high]
(0,0) 0
POROSITY (EPS) (M - 3 VOIDS/M - 3 POROUS MEDIUM)
#VALUES

(0.1,1.5) 0.465 [low]
(0.1,0.1) 0.365 [medium]
(1.3,1.5) 0.365 [medium]
(1.3,0.1) 0.285 [high]
(0,0) 0
PERCENT SAND (DIMLESS)
#VALUES
(0.1,1.5) 0.800 [low]
(0.1,0.1) 0.950 [medium]
(1.3,1.5) 0.950 [medium]

(1.3,0.1) 1.000 [high]
(0,0) 0
PERCENT CLAY & SILT (DIMLESS)

#VALUES
(0.1,1.5) 0.190 [low]
(0.1,0.1) 0.050 [medium]
(1.3,1.5) 0.050 [medium]
(1.3,0.1) 0.000 [high]
(0,0) 0
PERCENT ORGANICS (DIMLESS)
#VALUES
(0.1,1.5) 0.010 [low]

(0.1,0.1) 0.000 [medium]
(1.3,1.5) 0.000 [medium]
(1.3,0.1) 0.000 [high]
(0,0) 0

IV-18

X-COMPONENT OF DISPERSIVITY FOR NUTRIENT (M)
#VALUES

(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 3.5e-3 [medium]
(1.3,1.5) 3.5e-3 [medium]
(1.3,0.1) 1.2e-3 [high]
(0,0) 0

Y-COMPONENT OF DISPERSIVITY FOR NUTRIENT (M)
#VALUES
(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 3.5e-3 [medium]
(1.3,1.5) 3.5e-3 [medium]
(1.3,0.1) 1.2e-3 [high]
(0,0) 0

X-COMPONENT OF DISPERSIVITY FOR SUBSTRATE (M)
#VALUES

(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 3.5e-3 [medium]
(1.3,1.5) 3.5e-3 [medium]
(1.3,0.1) 1.2e-3 [high]
(0,0) 0
Y-COMPONENT OF DISPERSIVITY FOR SUBSTRATE (M)
#VALUES

(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 3.5e-3 [medium]
(1.3,1.5) 3.5e-3 [medium]
(1.3,0.1) 1.2e-3 [high]
(0,0) 0

X-COMPONENT OF DISPERSIVITY FOR OXYGEN (M)
#VALUES

(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 3.5e-3 [medium]
(1.3,1.5) 3.5e-3 [medium]
(1.3,0.1) 1.2e-3 [high]
(0,0) 0
Y-COMPONENT OF DISPERSIVITY FOR OXYGEN (M)
#VALUES

(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 3.5e-3 [medium]
(1.3,1.5) 3.5e-3 [medium]
(1.3,0.1) 1.2e-3 [high]
(0,0) 0
X-COMPONENT OF DISPERSIVITY FOR NITRATE (M)
#VALUES

(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 3.5e-3 [medium]
(1.3,1.5) 3.5e-3 [medium]
(1.3,0.1) 1.2e-3 [high]
(0,0) 0
Y-COMPONENT OF DISPERSIVITY FOR NITRATE (M)
#VALUES
(0.1,1.5) 1.0e-2	 [low]
(0.1,0.1) 3.5e-3	 [medium]
(1.3,1.5) 3.5e-3	 [medium]
(1.3,0.1) 1.2e-3	 [high]
(0,0)	 0
NUTRIENT SUBSTRATE	 OXYGEN NITRATE
0.000143 0.000143	 0.000143 0.000143 DLO (DIFFUSION)	 (M-2/DAY)
0.0 0.0	 0.0 0.0 KSAND	 (M-3/KG)
0.0 0.0	 0.0 0.0 KCLAY	 (M-3/KG)
0.0 0.0	 0.0 0.0 KORG	 (M-3/KG)
NUTRIENT SUBSTRATE	 OXYGEN NITRATE
3.0E-3 1.5E-2	 5.0E-3 5.0E-3 INLET TANK	 (KG CHEM/M-3)
0.0 0.0	 0.0 0.0 EXIT TANK	 (KG CHEM/M-3)
3.0E-3 1.5E-2	 5.0E-3 5.0E-3 STREAM	 (KG CHEM/M-3)
IRREVERSIBLE LOSS IN FREE PHASE FOR NUTRIENT (1/DAY)

IV-19

#VALUES
(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 1.0e-4 [medium]
(1.3,1.5) 1.0e-4 [medium]
(1.3,0.1) 0.000 [high]
(0,0) 0

IRREVERSIBLE LOSS IN FREE PHASE FOR SUBSTRATE (1/DAY)
#VALUES

(0.1,1.5) 1.0e-2 [Lou]
(0.1,0.1) 1.0e-4 (medium]
(1.3,1.5) 1.0e-4 [medium]

	

(1.3,0.1) 0.000	 [high]
(0,0) 0

IRREVERSIBLE LOSS IN FREE PHASE FOR OXYGEN (1/DAY)
#VALUES
(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 1.0e-4 [medium]
(1.3,1.5) 1.0e-4 [medium]

	

(1.3,0.1) 0.000	 [high]
(0,0) 0

IRREVERSIBLE LOSS IN FREE PHASE FOR NITRATE (1/DAY)
#VALUES

(0.1,1.5) 1.0e-2 [low]
(0.1,0.1) 1.0e-4 [medium]
(1.3,1.5) 1.0e-4 [medium]

	

(1.3,0.1) 0.000	 [high]
(0,0) 0
IRREVERSIBLE LOSS IN SORBED PHASE FOR NUTRIENT (1/DAY)
#VALUES
(0.1,1.5) 0.000 [low]
(0.1,0.1) 0.000 [medium]
(1.3,1.5) 0.000 [medium]
(1.3,0.1) 0.000 [high]
(0,0) 0

IRREVERSIBLE LOSS IN SORBED PHASE FOR SUBSTRATE (1/DAY)
#VALUES
(0.1,1.5) 0.000 [low]
(0.1,0.1) 0.000 [medium]
(1.3,1.5) 0.000 [medium]
(1.3,0.1) 0.000 [high]
(0,0) 0

IRREVERSIBLE LOSS IN SORBED PHASE FOR OXYGEN (1/DAY)
#VALUES
(0.1,1.5) 0.000 [low]
(0.1,0.1) 0.000 [medium]
(1.3,1.5) 0.000 [medium]

(1.3,0.1) 0.000 [high]
(0,0) 0

IRREVERSIBLE LOSS IN SORBED PHASE FOR NITRATE (1/DAY)
#VALUES

(0.1,1.5) 0.000 [low]
(0.1,0.1) 0.000 [medium]
(1.3,1.5) 0.000 [medium]
(1.3,0.1) 0.000 [high]
(0,0) 0
INITIAL DISTRIBUTION OF NUTRIENT (KG CHEM/M-3)

#VALUES
(0.1,1.5) 3.0E-3 [low]

(0.1,0.1) 3.0E-3 [medium]
(1.3,1.5) 3.0E-3 [medium]
(1.3,0.1) 3.0E-3 [high]
(0,0) 0

INITIAL DISTRIBUTION OF SUBSTRATE (KG CHEM/M-3)
#VALUES
(0.1,1.5) 5.0E-3 [low]
(0.1,0.1) 5.0E-3 [medium]

IV-20

(1.3,1.5) 5.0E-3 [medium]
(1.3,0.1) 5.0E-3 [high]
(0,0) 0
INITIAL DISTRIBUTION OF OXYGEN (KG CHEM/M-3)
#VALUES

(0.1,1.5) 5.0E-3 [low]
(0.1,0.1) 5.0E-3 [medium]
(1.3,1.5) 5.0E-3 [medium]
(1.3,0.1) 5.0E-3 [high]
(0,0) 0
INITIAL DISTRIBUTION OF NITRATE (KG CHEM/M-3)
#VALUES

(0.1,1.5) 5.0E-3 [low]
(0.1,0.1) 5.0E-3 [medium]
(1.3,1.5) 5.0E-3 [medium]
(1.3,0.1) 5.0E-3 [high]
(0,0) 0
POPULATION 1 INITIAL VALUE (KG CELLS/KG SOIL)
#VALUES
(0.1,1.5) 1.0E-7 [low]
(0.1,0.1) 1.0E-7 [medium]
(1.3,1.5) 1.0E-7 [medium]
(1.3,0.1) 1.0E-7 [high]
(0,0) 0

POPULATION 2 INITIAL VALUE (KG CELLS/KG SOIL)
#VALUES

(0.1,1.5) 1.0E-7 [low]
(0.1,0.1) 1.0E-7 [medium]
(1.3,1.5) 1.0E-7 [medium]
(1.3,0.1) 1.0E-7 [high]
(0,0) 0
CHEMISTRY USAGE PARAMETERS

1.8E-2	 KS01	 = 1/2 MAX SAT CONST POP 1 USING SUB (KG/W3)
1.8E-2	 KS02	 = 1/2 MAX SAT CONST POP 2 USING SUB (KG/M-3)
3.0E-5	 K01	 = 1/2 MAX SAT CONST POP 1 USING OXY (KG4M-3)
3.0E-5	 K02	 = 1/2 MAX SAT CONST POP 2 USING OXY (KG/M-3)
3.0E-4	 KONU1 = 1/2 MAX SAT CONST POP 1 USING NUT (KG/M-3)
3.0E-4	 KONU2 = 1/2 MAX SAT CONST POP 2 USING NUT (KG/M-3)
1.8E-2	 KSNI1 = 1/2 MAX NIT BASE SATCON POP 1 USING SUB (KG/M-3)
2.0E-5	 KNI1	 = 1/2 MAX NIT BASE SATCON POP 1 USING NIT (KG/M-3)
3.0E-4	 KNINU1 = 1/2 MAX NIT BASE SATCON POP 1 USING NUT (KG/M-3)
1.1E-4	 KONI1 = 1/2 MAX NIT BASE INH CON POP 1 USING NIT (KG/M-3)
3.0E-5	 KSOM1 = 1/2 SAT COEF MAINT POP 1 (KG/M-3)
3.0E-5	 KSOM2 = 1/2 SAT COEF MAINT POP 2 (KG/M-3)
0.4	 YS01	 = YIELD COEF POP 1 USING OXY (KG CELLS/KG SUB)
0.4	 YS02	 = YIELD COEF POP 2 USING OXY (KG CELLS/KG SUB)
0.17	 YSNI1 = YIELD COEF POP 1 USING NIT (KG CELLS/KG SUB)
0.004	 ALF01 = OXY MAINT COEF POP 1 AER COND (KG OXY/KG CELLS)
0.004	 ALF02 = OXY MAINT COEF POP 2 AER COND (KG OXY/KG CELLS)
0.002	 ALFNI1 = NIT MAINT COEF POP 1 ANAER COND (KG NIT/KG CELLS)
0.375	 ETANI1 = NIT USE COEF POP 1 ANAER COND (KG NIT/KG SUB)
1.0	 GAMMO1 = OXY USE COEF POP 1 AER COND (KG OXY/KG SUB)
1.0	 GAMMO2 = OXY USE COEF POP 2 AER COND (KG OXY/KG SUB)
0.05	 PS101 = NUT USE COEF POP 1 AER COND (KG NUT/KG SUB)
0.05	 PSIO2 = NUT USE COEF POP 2 AER COND (KG NUT/KG SUB)
0.021	 THENI1 = NUT USE COEF POP 1 NIT COND (KG NUT/KG SUB)
4.0	 MUO1	 = MAX SPEC GROWTH RATE HETERO POP 1 (1/DAY)
4.0	 MUO2	 = MAX SPEC GROWTH RATE HETERO POP 2 (1/DAY)
2.5	 MUNI1 = MAX SPEC NIT BASE GROWTH RATE HETERO POP 1 (1/DAY)
1770.0	 RHOBD = AVE BULK DENSITY OF POROUS MEDIUM (KG/M-3)

CONCENTRATION OF INJECTION WELL (KG CHEM/KG SOLUTION)
XI	 YJ NUTRIENT SUBSTRATE OXYGEN NITRATE
0.1 0.1	 0.0	 0.0	 0.0	 0.0
NUMBER OF BURIED SOURCES

CONCENTRATION OF BURIED SOURCE (KG CHEM/DAY)

IV-21

XI	 YJ NUTRIENT SUBSTRATE OXYGEN NITRATE
0.1 0.1 0.0	 0.0	 0.0	 0.0
END OF CHEM DATA FILE

LTPREP reads the geometry file LT3EXAM.GEO and LT3EXAM1.CHG

listed above, and writes the complete data file LT3EXAM1.CHD,

which is listed below. See Section IV.1 for more information

about geometry files and LTPREP. In this case, LTPREP saves a

considerable amount of work in preparing the data file. Below

is the listing of LT3EXAM1.CHD, which is read by the chemistry
phase of LT3VSI:

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 chem]
CHEM DATA FILE; ONE INJECTION WELL; ONE EXTRACTION WELL

NPRT TMAX	 DTO (DAYS) (RUN CONTROL DATA)
2	 4.0	 0.001

DECISION FLAGS

1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
INLET AND EXIT PORT TANK LENGTHS (M)
.1	 .1
SAND	 CLAY	 ORGANICS (SOIL PARTICLE DENSITIES KG/M-3)
2660.0 2650.0	 1300.0
TORTUOSITY (DIMLESS)

	

3*6.70E-01	 1*7.77E-01	 6*9.00E-01

	

3*6.70E-01	 1*7.77E-01	 6*9.00E-01

	

3*6.70E-01	 1*7.77E-01	 6*9.00E-01

	

3*5.79E-01	 1*6.23E-01	 2*6.71E-01	 1*7.77E-01	 3*9.00E-01

	

6*5.00E-01	 1*6.71E-01	 3*9.00E-01

	

6*5.00E-01	 1*6.71E-01	 3*9.00E-01

	

6*5.00E-01	 1*6.23E-01	 3*7.77E-01

	

6*5.00E-01	 1*5.79E-01	 3*6.70E-01

	

6*5.00E-01	 1*5.79E-01	 3*6.70E-01

	

6*5.00E-01	 1*5.79E-01	 3*6.70E-01
POROSITY (EPS) (M - 3 VOIDS/M - 3 POROUS MEDIUM)

	

3*3.65E-01	 1*3.23E-01	 6*2.85E-01

	

3*3.65E-01	 1*3.23E-01	 6*2.85E-01

	

3*3.65E-01	 1*3.23E-01	 6*2.85E-01

	

3*4.12E-01	 1*3.87E-01	 2*3.64E-01	 1*3.22E-01	 3*2.85E-01

	

6*4.65E-01	 1*3.64E-01	 3*2.85E-01

	

6*4.65E-01	 1*3.64E-01	 3*2.85E-01

	

6*4.65E-01	 1*3.87E-01	 3*3.23E-01

	

6*4.65E-01	 1*4.12E-01	 3*3.65E-01

	

6*4.65E-01	 1*4.12E-01	 3*3.65E-01

	

6*4.65E-01	 1*4.12E-01	 3*3.65E-01
PERCENT SAND (DIMLESS)

	

3*9.50E-01	 1*9.75E-01	 6*1.00E+00

	

3*9.50E-01	 1*9.75E-01	 6*1.00E+00

	

3*9.50E-01	 1*9.75E-01	 6*1.00E+00

	

3*8.72E-01	 1*8.83E-01	 2*8.94E-01	 1*9.46E-01	 3*1.00E+00

	

6*8.00E-01	 1*8.94E-01	 3*1.00E+00

	

6*8.00E-01	 1*8.94E-01	 3*1.00E+00

	

6*8.00E-01	 1*8.83E-01	 3*9.75E-01

	

6*8.00E-01	 1*8.72E-01	 3*9.50E-01

	

6*8.00E-01	 1*8.72E-01	 3*9.50E-01

	

6*8.00E-01	 1*8.72E-01	 3*9.50E-01
PERCENT CLAY & SILT (DIMLESS)

	

3*5.00E-02	 7*0.00E+00

	

3*5.00E-02	 7*0.00E+00

	

3*5.00E-02	 7*0.00E+00

IV-22

	3*9.75E-02	 7*0.00E+00

	

6*1.90E-01	 4*0.00E+00

	

6*1.90E-01	 4*0.00E+00

	

6*1.90E-01	 4*0.00E+00

	

6*1.90E-01	 1*9.75E-02	 3*5.00E-02

	

6*1.90E-01	 1*9.75E-02	 3*5.00E-02

	

6*1.90E-01	 1*9.75E-02	 3*5.00E-02
PERCENT ORGANICS (DIMLESS)

10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00
X-COMPONENT OF DISPERSIVITY FOR NUTRIENT (M)

3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*5.92E-03	 1*4.53E-03 2*3.46E-03 1*2.04E-03 3*1.20E-03
6*1.00E-02	 1*3.46E-03 3*1.20E-03
b*1.00E-02	 1*3.46E-03 3*1.20E-03
6*1.00E-02	 1*4.53E-03 3*2.05E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03

Y-COMPONENT OF DISPERSIVITY FOR NUTRIENT (M)
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*5.92E-03	 1*4.53E-03 2*3.46E-03 1*2.04E-03 3*1.20E-03
6*1.00E-02	 1*3.46E-03 3*1.20E-03
6*1.00E-02	 1*3.46E-03 3*1.20E-03
6*1.00E-02	 1*4.53E-03 3*2.05E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03

X-COMPONENT OF DISPERSIVITY FOR SUBSTRATE (M)
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*5.92E-03	 1*4.53E-03 2*3.46E-03 1*2.04E-03 3*1.20E-03
6*1.00E-02	 1*3.46E-03 3*1.20E-03
6*1.00E-02	 1*3.46E-03 3*1.20E-03
6*1.00E-02	 1*4.53E-03 3*2.05E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03

Y-COMPONENT OF DISPERSIVITY FOR SUBSTRATE (m)
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*5.92E-03	 1*4.53E-03 2*3.46E-03 1*2.04E-03 3*1.20E-03
6*1.00E-02	 1*3.46E-03 3*1.20E-03
6*1.00E-02	 1*3.46E-03 3*1.20E-03
6*1.00E-02	 1*4.53E-03 3*2.05E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03
6*1.00E-02	 1*5.92E-03 3*3.50E-03

X-COMPONENT OF DISPERSIVITY FOR OXYGEN (M)
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03
3*3.50E-03	 1*2.05E-03 6*1.20E-03

IV-23

	3*5.92E-03	 1*4.53E-03	 2*3.46E-03	 1*2.04E-03	 3*1.20E-03

	

6*1.00E-02	 1*3.46E-03	 3*1.20E-03

	

6*1.00E-02	 1*3.46E-03	 3*1.20E-03

	

6*1.00E-02	 1*4.53E-03	 3*2.05E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03
Y-COMPONENT OF DISPERSIVITY FOR OXYGEN (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

	

3*5.92E-03	 1*4.53E-03	 2*3.46E-03	 1*2.04E-03	 3*1.20E-03

	

6*1.00E-02	 1*3.46E-03	 3*1.20E-03

	

6*1.00E-02	 1*3.46E-03	 3*1.20E-03

	

6*1.00E-02	 1*4.53E-03	 3*2.05E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03
X-COMPONENT OF DISPERSIVITY FOR NITRATE (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

	

3*5.92E-03	 1*4.53E-03	 2*3.46E-03	 1*2.04E-03	 3*1.20E-03

	

6*1.00E-02	 1*3.46E-03	 3*1.20E-03

	

6*1.00E-02	 1*3.46E-03	 3*1.20E-03

	

6*1.00E-02	 1*4.53E-03	 3*2.05E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03
Y-COMPONENT OF DISPERSIVITY FOR NITRATE (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

	

3*5.92E-03	 1*4.53E-03	 2*3.46E-03	 1*2.04E-03	 3*1.20E-03

	

6*1.00E-02	 1*3.46E-03	 3*1.20E-03

	

6*1.00E-02	 1*3.46E-03	 3*1.20E-03

	

6*1.00E-02	 1*4.53E-03	 3*2.05E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03

	

6*1.00E-02	 1*5.92E-03	 3*3.50E-03
NUTRIENT	 SUBSTRATE OXYGEN	 NITRATE
0.000143	 0.000143	 0.000143 0.000143 DLO (DIFFUSION) (M-2/DAY)
0.0	 0.0	 0.0	 0.0	 KSAND	 (M-3/KG)
0.0	 0.0	 0.0	 0.0	 KCLAY	 (M-3/KG)
0.0	 0.0	 0.0	 0.0	 KORG	 (M-3/KG)
NUTRIENT	 SUBSTRATE OXYGEN	 NITRATE
3.0E-3	 1.5E-2	 5.0E-3	 5.0E-3	 INLET TANK (KG CHEM/M-3)
0.0	 0.0	 0.0	 0.0	 EXIT TANK	 (KG CHEM/M-3)
3.0E-3	 1.5E-2	 5.0E-3	 5.0E-3	 STREAM	 (KG CHEM/M-3)
IRREVERSIBLE LOSS IN FREE PHASE FOR NUTRIENT (1/DAY)

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-03	 7*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04
IRREVERSIBLE LOSS IN FREE PHASE FOR SUBSTRATE (1/DAY)

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-03	 7*0.00E+00

	

6*1.00E-02	 4*0.00E+00

IV-24

	6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04
IRREVERSIBLE LOSS IN FREE PHASE FOR OXYGEN (1/DAY)

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-03	 7*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04
IRREVERSIBLE LOSS IN FREE PHASE FOR NITRATE (1/DAY)

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-04	 7*0.00E+00

	

3*1.00E-03	 7*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 4*0.00E+00

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04

	

6*1.00E-02	 1*1.00E-03	 3*1.00E-04
IRREVERSIBLE LOSS IN SORBED PHASE FOR NUTRIENT (1/DAY)

10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00

IRREVERSIBLE LOSS IN SORBED PHASE FOR SUBSTRATE (1/DAY)
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00

IRREVERSIBLE LOSS IN SORBED PHASE FOR OXYGEN (1/DAY)
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00

IRREVERSIBLE LOSS IN SORBED PHASE FOR NITRATE (1/DAY)
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00

IV-25

10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00
10*0.00E+00

INITIAL DISTRIBUTION OF NUTRIENT (KG CHEM/M-3)
10*3.00E-03
10*3.00E-03
10*3.00E-03
10*3.00E-03
10*3.00E-03
10*3.00E-03
10*3.00E-03
10*3.00E-03
10*3.00E-03
10*3.00E-03

INITIAL DISTRIBUTION OF SUBSTRATE (KG CHEM/M-3)
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03

10*5.00E-03
INITIAL DISTRIBUTION OF OXYGEN (KG CHEM/M^3)

10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03

INITIAL DISTRIBUTION OF NITRATE (KG CHEM/M-3)
10*5.00E-03
10*5.00E-03
10*5.00E-03

10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03
10*5.00E-03

POPULATION 1 INITIAL VALUE (KG CELLS/KG SOIL)
10*1.00E-07
10*1.00E-07
10*1.00E-07
10*1.00E-07
10*1.00E-07
10*1.00E-07
10*1.00E-07
10*1.00E-07

10*1.00E-07
10*1.00E-07

POPULATION 2 INITIAL VALUE (KG CELLS/KG SOIL)
10*1.00E-07
10*1.00E-07
10*1.00E-07

10*1.00E-07
10*1.00E-07

IV-26

10*1.00E-07
10*1.00E-07
10*1.00E-07
10*1.00E-07
10*1.00E-07

CHEMISTRY USAGE PARAMETERS
1.8E-2	 KS01	 = 1/2 MAX SAT CONST POP 1 USING SUB (KG/M-3)
1.8E-2	 KS02	 = 1/2 MAX SAT CONST POP 2 USING SUB (KG/M-3)
3.0E-5	 KO1	 = 1/2 MAX SAT CONST POP 1 USING OXY (KG/M-3)
3.0E-5	 K02	 = 1/2 MAX SAT CONST POP 2 USING OXY (KG/M-3)
3.0E-4	 KONU1 = 1/2 MAX SAT CONST POP 1 USING NUT (KG/M-3)
3.0E-4	 KONU2 = 1/2 MAX SAT CONST POP 2 USING NUT (KG/M-3)
1.8E-2	 KSNI1 = 1/2 MAX NIT BASE SATCON POP 1 USING SUB (KG/M-3)
2.0E-5	 KNI1	 = 1/2 MAX NIT BASE SATCON POP 1 USING NIT (KG/M-3)
3.0E-4	 KNINU1 = 1/2 MAX NIT BASE SATCON POP 1 USING NUT (KG/M-3)
1.1E-4	 KONI1 = 1/2 MAX NIT BASE INH CON POP 1 USING NIT (KG/M-3)
3.0E-5	 KSOM1 = 1/2 SAT COEF MAINT POP 1 (KG/M-3)
3.0E-5	 KSOM2 = 1/2 SAT COEF MAINT POP 2 (KG/M-3)
0.4	 YS01	 = YIELD COEF POP 1 USING OXY (KG CELLS/KG SUB)
0.4	 YS02	 = YIELD COEF POP 2 USING OXY (KG CELLS/KG SUB)
0.17	 YSNI1 = YIELD COEF POP 1 USING NIT (KG CELLS/KG SUB)
0.004	 ALF01 = OXY MAINT COEF POP 1 AER COND (KG OXY/KG CELLS)
0.004	 ALF02 = OXY MAINT COEF POP 2 AER COND (KG OXY/KG CELLS)
0.002	 ALFNI1 = NIT MAINT COEF POP 1 ANAER COND (KG NIT/KG CELLS)
0.375	 ETANI1 = NIT USE COEF POP 1 ANAER COND (KG NIT/KG SUB)
1.0	 GAMMO1 = OXY USE COEF POP 1 AER COND (KG OXY/KG SUB)
1.0	 GAMMO2 = OXY USE COEF POP 2 AER COND (KG OXY/KG SUB)
0.05	 PS101 = NUT USE COEF POP 1 AER COND (KG NUT/KG SUB)
0.05	 PSIO2 = NUT USE COEF POP 2 AER COND (KG NUT/KG SUB)
0.021	 THENI1 = NUT USE COEF POP 1 NIT COND (KG NUT/KG SUB)
4.0	 MUO1	 = MAX SPEC GROWTH RATE HETERO POP 1 (1/DAY)
4.0	 MUO2	 = MAX SPEC GROWTH RATE HETERO POP 2 (1/DAY)
2.5	 MUNI1 = MAX SPEC NIT BASE GROWTH RATE HETERO POP 1 (1/DAY)
1770.0	 RHOBD = AVE BULK DENSITY OF POROUS MEDIUM (KG/M-3)

CONCENTRATION OF INJECTION WELL (KG CHEM/KG SOLUTION)
XI	 YJ NUTRIENT SUBSTRATE OXYGEN NITRATE

	

0.1 0.1 0.0	 0.0	 0.0	 0.0
NUMBER OF BURIED SOURCES

1

CONCENTRATION OF BURIED SOURCE (KG CHEM/DAY)
XI	 YJ NUTRIENT SUBSTRATE OXYGEN NITRATE

	

0.1 0.1 0.0	 0.0	 0.0	 0.0
END OF CHEM DATA FILE

In the rest of this section, the data read in by subroutine

CHMREAD and the computations that it performs are described. The

description is similar to that used in describing the hydrology

data file (LT3EXAM.WAD), except that most of the values will be

omitted.

IV-27

CHMREAD reads from data file xxxxxxxx.CHD. It first reads a two-

line heading, using variables HEAD1 and HEAD2, which will be

printed out on files xxxxxxxx.CHO and xxxxxxxx.CNC:

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 chem3
CHEM DATA FILE; ONE INJECTION WELL; ONE EXTRACTION WELL

Next, CHMREAD reads the run control data NPRT, TMAX, DTO:

	

NPRT TMAX	 DTO (DAYS) (RUN CONTROL DATA)
2	 4.0	 0.001

NPRT is the number of times to print the distribution of chemical

during the run; TMAX is the amount of simulated time that the

program should run, computing chemical concentrations; and DTO is

the desired time increment. All times are in days.

DTO is the "delta-T"; the increment for TIME in the chemical

processing. As discussed in Volume 4 (Section 5.6), delta-T must

satisfy a certain stability criterion in order for the method to

be stable. The program computes this criterion (DT1) for each of

the four chemicals, and if the delta-T chosen by the user is

greater than one-half of the minimum DT1, the program sets DTO to

one-half of the minimum DT1, thus ensuring that the process will

be stable. The values of the four DT1's are printed out on the

file xxxxxxxx.CHO, as "Computed DTMAX."

CHMREAD reads the 20 control flags NFLAG(1) through NFLAG(20):

DECISION FLAGS
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

The control flags are read by both the water and chemistry

programs; their values are usually different in the two phases.

Most flags are used in either the water or the chemical phase.

Only NFLAG(8) is used in both phases. In the chemistry phase

NFLAG(5) and NFLAG(6) are used to control "continuation" runs;

see the discussion near the end of this section, and also Section

V.7. NFLAG(4) = 1 causes the program to read a schedule file

IV-28

xxxxxxxx.SCH, which specifies at which times the concentrations

of the chemicals in injection wells are changed. See Section

IV.3.1. NFLAG(17) = 1 above, which causes the program to compute

and print the cumulative masses XMASS, etc. See the discussion

of flags in Section 111.2.

If NFLAG(9) = 0, as it is in this example, the chemistry

phase uses the value of ZTHRSH that was read in by FLOREAD in the

water phase. If it is desired to use a different value for

ZTHRSH in the chemistry phase, set NFLAG(9) to 1, and insert two

lines at this point in the xxxxxxxx.CHD file, of the following
form:

ZTHRSH
1.0E-9

XLYIN and XLYOUT, the lengths (in meters) of the inlet and outlet

end tanks are read:

INLET AND EXIT PORT TANK LENGTHS (M)
.1	 .1

These are the lengths of the well-stirred inlet and outlet mixing

tanks.

CHMREAD reads the average particle densities of the soil

components RHOSND, RHOCLA, RHOORG:

SAND	 CLAY	 ORGANICS (SOIL PARTICLE DENSITIES KG/M^3)
2660.0 2650.0	 1300.0

The tortuosity factor is read in. The data consists of NSLYP1

rows, with row J containing values for TORT(l,J) through

TORT(NSLXP1,J):

TORTUOSITY (DIMLESS)
3*6.70E-01	 1*7.77E-01	 6*9.00E-01

For this array and the'following two-dimensional arrays, only

IV-29

the first line of data will be shown. The complete arrays

are shown in the listing of LT3EXAM1.CHD above.

For each two-dimensional array to be read in, there must be

NSLYP1 sets of numbers, with each set beginning on a new line,

and each set containing NSLXP1 numbers. See Section IV.2 for a

discussion of Fortran's "repeat" feature in list-directed input.

Remember that NSLXP1 and NSLYP1 are the total numbers of

nodes in the X and Y directions. They were computed by

subroutine FLOREAD from the values of NSLXM1 and NSLYM1 which

were read in from the xxxxxxxx.WAD file.

The porosity EPS(I,J) is read next:

POROSITY (EPS) (M - 3 VOIDS/M - 3 POROUS MEDIUM)
3*3.65E-01	 1*3.23E-01	 6*2.85E-01

CHMREAD reads PCTSAN(I,J), which means "percent sand"; however,

the correct terminology is "mass fraction of weakly sorbing

particles," which includes sand and large silt.

PERCENT SAND (DIMLESS)
3*9.50E-01	 1*9.75E-01	 6*1.00E+00

PCTCLA(I,J) is read next. The correct terminology is "mass

fraction of strongly sorbing particles," which includes clay and

small silt.

PERCENT CLAY & SILT (DIMLESS)
3*5.00E-02	 7*0.00E+00

PCTORG(I,J) is read in. The correct terminology is "mass

fraction of organic matter."

PERCENT ORGANICS (DIMLESS)
10*0.00E+00

IV-30

CHMREAD reads the X-components and Y-components of dispersivity

for the four chemicals. DISPLX(I,J,K) is the X-component of

dispersivity for chemical K, K=1 to 4; DISPLY(I,J,K) is the Y-

component of dispersivity for chemical K.

X-COMPONENT OF DISPERSIVITY FOR NUTRIENT (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

Y-COMPONENT OF DISPERSIVITY FOR NUTRIENT (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

X-COMPONENT OF DISPERSIVITY FOR SUBSTRATE (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

Y-COMPONENT OF DISPERSIVITY FOR SUBSTRATE (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

X-COMPONENT OF DISPERSIVITY FOR OXYGEN (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

V-COMPONENT OF DISPERSIVITY FOR OXYGEN (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

X-COMPONENT OF DISPERSIVITY FOR NITRATE (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

Y-COMPONENT OF DISPERSIVITY FOR NITRATE (M)

	

3*3.50E-03	 1*2.05E-03	 6*1.20E-03

CHMREAD next reads the chemical parameters; each parameter has

four values, one for each of the four chemicals:

NUTRIENT SUBSTRATE OXYGEN NITRATE
0.000143 0.000143 0.000143 0.000143 DLO (DIFFUSION)	 (M-2/DAY)
0.0 0.0 0.0 0.0 KSAND	 (M-3/KG)
0.0 0.0 0.0 0.0 KCLAY	 (M-3/KG)
0.0 0.0 0.0 0.0 KORG	 (M-3/KG)

DLO(K) is the molecular diffusion coefficient for chemical K;

KSAND(K), KCLAY(K), and KORG(K) are the linear equilibrium

distribution constants. The text at the right side of the second

through fifth lines above is ignored by the program, because it
is excess data.

IV-31

CIN(K), COUT(K), and CO(K) are read next, four values for each:

NUTRIENT SUBSTRATE OXYGEN NITRATE
3.0E-3 1.5E-2 5.0E-3 5.0E-3 INLET TANK (KG CHEM/M-3)
0.0 0.0 0.0 0.0 EXIT TANK (KG CHEM/M-3)
3.0E-3 1.5E-2 5.0E-3 5.0E-3 STREAM (KG CHEM/M-3)

CIN(K) and COUT(K) are the initial chemical concentrations in the
inlet and outlet end tanks, respectively. CO(K) is the constant
concentration of chemical in the feed stream entering the inlet
tank.

CHMREAD next reads the first order loss rate constants
XLAMIR(I,J,K) and XSLMIR(I,J,K).

XLAMIR(I,J,K) is the first order free phase loss rate constant
for irreversible loss processes for chemical K; XSLMIR(I,J,K) is
the first order sorbed phase loss rate constant for irreversible
processes for chemical K.

The free phase constants XLAMIR(I,J,K) are read first:

IRREVERSIBLE LOSS IN FREE PHASE FOR NUTRIENT (1/DAY)
	3*1.00E-04 	7*0.00E+00

IRREVERSIBLE LOSS IN FREE PHASE FOR SUBSTRATE (1/DAY)
	3*1.00E-04 	7*0.00E+00

IRREVERSIBLE LOSS IN FREE PHASE FOR OXYGEN (1/DAY)
	3*1.00E-04 	7*0.00E+00

IRREVERSIBLE LOSS IN FREE PHASE FOR NITRATE (1/DAY)
	3*1.00E-04 	7*0.00E+00

IV-32

The sorbed phase constants XSLMIR(I,J,K) are read next:

IRREVERSIBLE LOSS IN SORBED PHASE FOR NUTRIENT (1/DAY)
10*0.00E+00

IRREV▪ ERSIBLE LOSS IN SORBED PHASE FOR SUBSTRATE (1/DAY)
10*0.00E+00

IRREV▪ ERSIBLE LOSS IN SORBED PHASE FOR OXYGEN (1/DAY)
10*0.00E+00

IRREVERSIBLE LOSS IN SORBED PHASE FOR NITRATE (1/DAY)
10*0.00E+00

At this point, CHMREAD sets TO = 0.0 as the initial TIME and also

sets the cumulative mass arrays XMASS(K), XMFONW(K), XMSOUR(K),

XMASIN(K), and XMASOT(K) to zero. Then it reads the initial

chemical distributions for the four chemicals, using array

COLD(I,J,K):

INITIAL DISTRIBUTION OF NUTRIENT (KG CHEM/M-3)
10*3.00E-03

INITIAL DISTRIBUTION OF SUBSTRATE (KG CHEM/M-3)
10*5.00E-03

INITIAL DISTRIBUTION OF OXYGEN (KG CHEM/M-3)
10*5.00E-03

INITIAL DISTRIBUTION OF NITRATE (KG CHEM/M-3)
10*5.00E-03

The microbial populations POP1(I,J) and POP2(I,J) are read next:

POPULATION 1 INITIAL VALUE (KG CELLS/KG SOIL)
10*1.00E-07

POPULATION 2 INITIAL VALUE (KG CELLS/KG SOIL)
10*1.00E-07

If NFLAG(5) = 0, as it is in this example file, the computations

and input data described following the line above that begins "At

this point," remain as is. This run is an "initial run".

However, if NFLAG(5) = 1, this is a "continuation run".

CHMREAD reads from the unformatted chemical file (extension .CUF)

IV-33

that was written by a previous chemical run that had NFLAG(6) =

1. TO for this run is set equal to the TMAX for the previous run

and the TMAX for the previous run is added to the TMAX that was

read in for this run. The values of CIN(K), COUT(K),

COLD(I,J,K), POP1(I,J), and POP2(I,J) at the end of the previous

run are used as the initial values for this run instead of the

values that were read in from the file xxxxxxxx.CHD.

In other words, the values for these variables in the file

are overwritten by the values from the previous run. It would

not be necessary for the values to be present in the xxxxxxxx.CHD

file, but it is simpler to have all .CHD files have the same

structure. See Section V.7 for detailed information on

"continuation" runs.

CHMREAD now reads the chemistry usage parameters, one per line.

As usual, the text following the value on each line is ignored by

the program. Its purpose is to help users who prepare or read

the file to understand which variables are being defined. See

Section III for a more readable description of the variables.

IV-34

CHEMISTRY USAGE PARAMETERS
1.8E-2	 KS01	 = 1/2 MAX SAT CONST POP 1 USING SUB (KG/M-3)
1.8E-2	 KS02	 = 1/2 MAX SAT CONST POP 2 USING SUB (KG/M-3)
3.0E-5	 KO1	 = 1/2 MAX SAT CONST POP 1 USING OXY (KG/M-3)
3.0E-5	 K02	 = 1/2 MAX SAT CONST POP 2 USING OXY (KG/M-3)
3.0E-4	 KONU1 = 1/2 MAX SAT CONST POP 1 USING NUT (KG/M-3)
3.0E-4	 KONU2 = 1/2 MAX SAT CONST POP 2 USING NUT (KG/M-3)
1.8E-2	 KSNI1 = 1/2 MAX NIT BASE SATCON POP 1 USING SUB (KG/M-3)
2.0E-5	 KNI1	 = 1/2 MAX NIT BASE SATCON POP 1 USING NIT (KG/M-3)
3.0E-4	 KNINU1 = 1/2 MAX NIT BASE SATCON POP 1 USING NUT (KG/M-3)
1.1E-4	 KONI1 = 1/2 MAX NIT BASE INH CON POP 1 USING NIT (KG/M-3)
3.0E-5	 KSOM1 = 1/2 SAT COEF MAINT POP 1 (KG/M-3)
3.0E-5	 KSOM2 = 1/2 SAT COEF MAINT POP 2 (KG/M-3)
0.4	 YS01	 = YIELD COEF POP 1 USING OXY (KG CELLS/KG SUB)
0.4	 YS02	 = YIELD COEF POP 2 USING OXY (KG CELLS/KG SUB)
0.17	 YSNI1 = YIELD COEF POP 1 USING NIT (KG CELLS/KG SUB)
0.004	 ALF01 = OXY MAINT COEF POP 1 AER COND (KG OXY/KG CELLS)
0.004	 ALF02 = OXY MAINT COEF POP 2 AER COND (KG OXY/KG CELLS)
0.002	 ALFNI1 = NIT MAINT COEF POP 1 ANAER COND (KG NIT/KG CELLS)
0.375	 ETANI1 = NIT USE COEF POP 1 ANAER COND (KG NIT/KG SUB)
1.0	 GAMMO1 = OXY USE COEF POP 1 AER COND (KG OXY/KG SUB)
1.0	 GAMMO2 = OXY USE COEF POP 2 AER COND (KG OXY/KG SUB)
0.05	 PS101 = NUT USE COEF POP 1 AER COND (KG NUT/KG SUB)
0.05	 PS102 = NUT USE COEF POP 2 AER COND (KG NUT/KG SUB)
0.021	 THENI1 = NUT USE COEF POP 1 NIT COND (KG NUT/KG SUB)
4.0	 MUO1	 = MAX SPEC GROWTH RATE HETERO POP 1 (1/DAY)
4.0	 MUO2	 = MAX SPEC GROWTH RATE HETERO POP 2 (1/DAY)
2.5	 MUNI1 = MAX SPEC NIT BASE GROWTH RATE HETERO POP 1 (1/DAY)
1770.0	 RHOBD = AVE BULK DENSITY OF POROUS MEDIUM (KG/M-3)

The last activity that CHMREAD performs is to compute the print

times and display them on the console. NPRT, which was read in

near the beginning of the file, specifies how many times the

chemical concentrations and the microbe populations are to be

printed on the file xxxxxxxx.CNC. The print times are equally

spaced during the run.

CHMREAD returns control to the main program of the Chemistry

initialization program, which copies the rest of the xxxxxxxx.CHD

file to a file named LT3VSI.CLD.

Later, during the run of the Chemistry loop program, the

subroutine LOOPIO reads the file LT3VSI.CLD, thereby reading the

last of the data that was in the .CHD file. The following

describes the actions of LOOPIO.

The first thing that LOOPIO does is to set the arrays

IV-35

QCHM1S(I,J,K) and CSWELN(I,J,K) to zero. Then it reads the

injection well chemical concentrations (kg chem/kg solution).

The minimum number is one well, which may have strength zero.

NINJW (number of injection wells) lines are read. Each line

specifies the location of a well and the concentrations of the

four chemicals for that well.

CONCENTRATION OF INJECTION WELL (KG CHEM/KG SOLUTION)
XI	 YJ NUTRIENT SUBSTRATE OXYGEN NITRATE

0.1 0.1 0.0	 0.0	 0.0	 0.0

There must be NINJW data lines, following the TWO text lines.

Remember that NINJW and the node coordinates XNODE(I), YNODE(J)

were read from the xxxxxxxx.WAD file. XI and YJ must be the

coordinates of one of the injection wells specified in the .WAD

file. The concentrations specified here are the initial values.

They are stored in the array CSWELN(I,J,K). Concentrations can

be changed at any time by using a schedule file. See Section

IV.3.1.

Next, LOOPIO reads the number of buried chemical sources NBSOUR.

The minimum is one source, which may have strength zero:

NUMBER OF BURIED SOURCES
1

LOOPIO reads buried source positions and strengths for the NBSOUR

sources:

CONCENTRATION OF BURIED SOURCE (KG CHEM/DAY)
XI	 YJ NUTRIENT SUBSTRATE OXYGEN NITRATE

0.1 0.1	 0.0	 0.0	 0.0	 0.0

There must be NBSOUR data lines, following the TWO text lines.

Note that the location is given by coordinates, not by indices.

The source can not be on the boundary but must be at an interior

point. In this example, there are no buried sources; therefore a

source of strength 0.0 is placed at position (0.1,0.1). Also

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 chem]
SCHEDULE DATA FILE; ONE INJECTION WELL; ONE EXTRACTION WELL

ETIME XI	 YJ	 NUT	 SUB	 OXY	 NIT
0.0 0.1 0.1 0.0 0.0 0.0 0.0 [1]
4.5 0.1 0.1 0.0002 0.0 0.0 0.0 [2]

IV-36

note that the input data gives the concentrations in units of
(kg chem/day); the program divides the data by the appropriate
volumes to get units of (kg chem/m^3 day). The concentrations
are stored in the array QCHM1S(I,J,K).

The last line of the data file is not supposed to be read by the

program. If it is read, there is an error in the data.

END OF CHEM DATA FILE

IV.3.1. Example schedule data file: LT3EXAM.SCH

If NFLAG(4) = 1 in the xxxxxxxx.CHD file, the Chemistry

programs read and process a schedule data file, which specifies

times at which the concentrations of chemicals at injection wells

are to be changed. If NFLAG(4) = 0, no schedule file is read;

the concentrations of chemicals at injection wells remain as

specified by the initial data in the .CHD file.

This section shows an example of a schedule data file.

The file must have a name with extension ".SCH"; it is first read

in by subroutine VALSCH in module LT3VSIC.FOR of the Chemistry

initialization program. This subroutine "validates" the file.

If it detects any errors, it writes messages describing them on

the file xxxxxxxx.CDB; writes a warning message on the console;

and stops. This avoids the problem of having a long time-

consuming chemistry run aborted because of a schedule error.

During the run of the Chemistry loop program, the schedule

file is read by subroutine PREVNT in module LOOPSIL.FOR. This

subroutine processes events in the schedule file.

The first three lines of the file (see example above) are

read and ignored by the programs. Following that come one or

IV-37

more lines specifying events. On each line, the first value
ETIME is the time in days from the beginning of the run at which
the event is to occur. ETIME is the total time from the

beginning of the initial run. In the example above, the initial
run is for 4.0 days. The second event (ETIME = 4.5) occurs 0.5

days into the continuation run.

The second and third values (XI and YJ) on a data line

specify the coordinates of an injection well at which the

concentrations of one or more of the four chemicals are to be

changed. The four remaining values on the line specify the new

concentrations of the chemicals (Kg chemical/Kg solution). The

values are stored in the array CSWELN(I,J,K). The notations such

as [1] are excess data and are not read in by the programs.

There are several requirements on the data in a schedule

file. Subroutine VALSCH verifies these requirements:

1. The data must be valid real numbers.

2. The ETIME in the first line must be non-negative, and the

ETIME in each following line must not be less than that in the

previous line. In other words, ETIME's must be non-decreasing.

3. XI and YJ must be the coordinates of an interior point;

that is, XI must be equal to one the XNODE(I)'s and YJ must be

equal to one of the YNODE(J)'s. Neither of them can be on a

boundary of the aquifer.

4. The concentrations for the four chemicals must be non-

negative.

5. There must be a non-zero injection well at point (XI,YJ).

The amount of fluid being injected at each well must remain
constant throughout the run, because a change in injection rate
would change the hydraulic pressure distribution. Only the
concentrations of the chemicals can be changed.

The actual times at which events are processed will be at the

TIME points (TO, TO+DTO, TO+2*DTO, ...) closest to the specified

IV-38

times. DTO is "small" for the method used in this program, so

that changing the concentrations at the nearest time points is

sufficiently close to the specified times. TO is 0.0 for an

"initial" chemical run. Also see Section V.7.

IV.3.2. LaGrangian interpolation.

If NFLAG(16) = 1 in the chemistry data file xxxxxxxx.CHD, the

chemistry loop program will use a 25-point LaGrangian

interpolation method; if NFLAG(16) = 0, a simpler 4-point method

is used. The 25-point method takes about three times as much

computing time and requires careful preparation of the data, but

should have less numerical dispersion. If the 25-point method is

used, the initial chemical concentrations, wells, and buried

sources should have a Gaussian or Normal Surface distribution.

Even with this form of data, small negative values of chemical

concentration will appear in the results. The formula for a
Gaussian surface is:

G(x,y) = 	 A 	 e-(x-xs)2/(2ax2)-(y-ys)2/(2ay2)
27ra ax y

A is a measure of the peak amplitude of the surface, which occurs

at the point (xs,ys). lax and ay are the standard deviations in

the x and y directions.

IV.4. Choosing the SIP method parameters

The program uses an iterative method, called the SIP method

(Stone, 1968), to compute the steady-state hydraulic head at the

nodal points in the aquifer. The following data (except ZTHRSH)

from the file LT3EXAM.WAD is used to control the SIP process:

IV-39

NLSOR NMOD NALPH TLRNWA TLRNWR ZTHRSH (RUN CONTROL DATA)
3000	 2	 4	 1.0E-8 1.0E-8 1.0E-8

ALPHAS
1.0 0.90 0.95 0.75

NLSOR, NMOD, NALPH, TLRNWA, TLRNWR, and ALPHAS are the SIP

method parameters; ZTHRSH is the "zero threshold" (see Section
IV.2). The user must choose appropriate values for these
parameters.

At each step in the iteration, the SIP method computes an

improved approximation to the hydraulic head. One heuristic

parameter, called ALPH, is used in the process. ALPH must be in

the range 0.0 to 1.0 inclusive. It may happen that using one

value for ALPH will result in convergence of the method. It is

usually better to select several values for ALPH, using one value

for several iterations, then the next value, etc. If convergence

has not been achieved after using the last value, the first one

is used again. In the xxxxxxxx.WAD data file, ALPHAS is an array

of values for ALPH. NALPH specifies the number of ALPHS to be

read; the program allows NALPH to be in the range from 1 to 10.

The value of NMOD specifies how many times to use each value of

ALPH before changing to the next one.

In the example data, NALPH = 4, NMOD = 2, and the ALPHS array

consists of the 4 values 1.0, 0.90, 0.95, 0.75. This means that

each of the ALPH values will be used twice; the sequence that

will be used is: 1.0, 1.0, 0.90, 0.90, 0.95, 0.95, 0.75, 0.75,

1.0, 1.0, 0.90, etc. For the example data, this sequence results

in convergence after 22 iterations. The sequence of ALPHS used

in the example data was developed by a series of trials to solve

a particularly difficult scenario. It is recommended that this

sequence be used as a starting point in attempting to solve a

problem. If the program fails to converge, or converges too

slowly, then other values and/or a different number of values can

IV-40

be tried. Stone (1968) gives a method for choosing parameters in
a highly idealized case. A nonhomogeneous problem i not

idealized; all that can be done is to try various sequences.
At each step, the program computes two measures of

convergence. RMSEA is the Root Mean Square (RMS) of the

residuals; RMSER is the RMS of the relative change in the

approximate hydraulic head. The user specifies two tolerances

TLRNWA and TLRNWR. When RMSEA becomes less than TLRNWA, or RMSER

becomes less than TLRNWR, the computed head values are accepted.

In the example data, both TLRNWA and TLRNWR are set to 1.0E-8.

The two tolerances do not have to be the same; the user can

select any appropriate positive values for them.

In addition to the variables mentioned above, the user must

also choose the iteration limit NLSOR. If the number of

iterations ICOUNT exceeds NSLOR, the program stops and displays

an error message. NLSOR = 3000 is a very generous limit; it

should not take that many iterations to reach convergence.

During the SIP process, the program will display the values

of ICOUNT, ALPH, RMSEA, and RMSER after each iteration. RMSEA

and RMSER should continually decrease until one of them becomes

less than its corresponding tolerance TLRNWA or TLRNWR.

Sometimes one or both of them will increase, especially when a

new value is selected for ALPH. Such increases should be only
temporary.

In typical program runs, the time to compute the hydraulic
head by the SIP method is much shorter than the time to do the

chemistry processing; therefore, one should not spend too much
time trying to find the "best" values for the SIP parameters.

V-1

V. Running the programs and output files

V.1. Instructions for running the programs

(1) LT3VSI must have been installed on a VAX/FPS computer

system, as described in Section II. The files are stored on the

VAX and copied to the FPS when a run is made. The executable

image files for the three programs have the names WATER.IMG.

CHEMINIT.IMG, and CHEMLOOP.IMG. The batch files for running the

programs have the names WATRUN3.COM, CHMRUN3.COM, and

CHMGOON3.COM. These files will probably need to be modified.

See Section V.2.

(2) The two required data files xxxxxxxx.WAD and xxxxxxxx.CHD

must be prepared as described in Section IV. If a schedule file

xxxxxxxx.SCH is to be used, it must also be prepared. The data

files for the example shown in this manual are LT3EXAM.WAD,

LT3EXAM1.CHD, LT3EXAM2.CHD, and LT3EXAM.SCH.

(3) The batch files are used to run the programs. The VMS

"SUBMIT" command is used to put a .COM file into an appropriate

batch queue for execution. The batch file submits a job to the

FPS computer to make a water or chemistry run. The form of the

SUBMIT command used on the Oregon State University system is:

SUBMIT/NOPRINT/QUEUE=FPS264 filename

The "NOPRINT" option is used because the VAX at Oregon State

University does not have a printer connected. The queue named

"FPS264" is used for submitting jobs to be run on the FPS

computer. The options may need to be changed if the program is

run on a different VAX/FPS pair of computers.

The "filename" is the name of one of the batch files without

the .COM extension. The job will create a file with the same

base name but an extension of .LOG that will contain the

"console" output from the job. For example, if "filename" in the

V-2

SUBMIT command is "WATRUN3", the batch file WATRUN3.COM is

submitted for execution and the console output is written on a
file named WATRUN3.LOG.

The job will read one or more data files and write several

output files. The batch job includes commands to copy the output

files from the FPS computer to the VAX computer.

See sections V.3 through V.6 for details.

V.2. Modifying the batch files

The *.COM batch files as distributed were used to run LT3VSI

on the O.S.U. VAX/FPS system, using a certain account name. Some

changes will be needed if they are to be run under other

circumstances. This section contains listings of the batch files

with explanations of the commands and data in them. It also

points out what changes will be needed.

The batch file WATRUN3.COM is listed below, with comments at
the right for explanation.

Initiates FPS run
Attaches to FPS
Accesses directory
Copies in the water image

file and executes it
Base name for .WAD file
Copies out the

three result
files

Deletes the two large
result files and
the image file

Detaches from FPS and quits

$SJE/ECHO/TIME/CONTINUE ! LT3VSI
ATT/W/PRIOR.5
ACC :BACHELOR
COPYIN/B WATER.IMG

WATER.IMG
LT3EXAM

COPYOUT LT3EXAM.WDB
COPYOUT LT3EXAM.WAO
COPYOUT LT3EXAM.WPV
DEL LT3EXAM.WAO
DEL LT3EXAM.WPV
DEL WATER.IMG

QUIT

WATER RUN

The spaces at the left of most of the lines in the file are

placed there to make the file more readable. The spaces are

ignored by the computers. The line "LT3EXAM" is data to be read

by the WATER program; there must NOT be leading spaces in this

line. This data is the base name of the water data file whose

extension is .WAD. If the xxxxxxxx.WAD file has a base name

other than LT3EXAM, then the data line must be changed, and all

V-3

commands where the base name appears must also be changed. In

each case, replace "LT3EXAM" by the base name of the .WAD file.

The first line "$SJE/ ..." is a VMS command that calls the

FPS system. All of the other lines are FPS commands, except the

data line "LT3EXAM".

The "ATT" command in the second line attaches the job to an

FPS processor. This command specifies a priority of 5, which is

suitable for running the small example on the O.S.U. system. The

priority number may need to be changed if a larger problem is

run, or if the job is run on another system.

The "ACC" command in the third line selects the user's file

directory on the FPS system. The name in this line will need to

be changed if anyone other than "BACHELOR" is running the job.

The chemistry batch files are listed below. They will need

changes similar to the water batch file above.

The batch file CHMRUN3.COM is listed below. The comment on

the first line has been truncated. Its complete form is:

! LT3VSI INITIAL CHEM RUN; CUF OUTPUT FILE.

$SJE/ECHO/T1ME/CONTINUE ! LT3VSI
ATT/W/PRIOR.5
ACC :BACHELOR
COPYIN/B CHEMINIT.IMG
COPYIN LT3EXAM.SCH

CHEMINIT.IMG
LT3EXAM
LT3EXAM1
LT3EXAMA
LT3EXAM

DEL CHEMINIT.IMG
COPYIN/B CHEMLOOP.IMG

CHEMLOOP.IMG
COPYOUT LT3EXAM1.CDB
COPYOUT LT3EXAM1.CNC
COPYOUT LT3EXAM1.CHO
DEL LT3EXAM1.CHO
DEL LT3EXAM1.CNC
DEL LT3EXAM.SCH
DEL LT3VSI.CLD
DEL LT3VSI.CIF
DEL CHEMLOOP.IMG

QUIT

This batch file is used

Initiates FPS run
Attaches to FPS

Accesses directory
Copies in the chem init

image file and sched file
Executes chem init file
.WIF file base name
.CHD file base name
.CUF output file base name
.SCH file base name
Deletes chem init image
Copies in the chem loop

image file and executes it
Copies out the

three result
files

Deletes the two large
result files,
the schedule file,
the chem loop data file,
the chem interface file,
and the image file

Detaches from FPS and quits

to make an "initial" chemistry run, with

provision for continuing it later. It runs both the CHEMINIT

V-4

and CHEMLOOP programs. The second and third lines may need

changes similar to those described above for WATRUN3.COM.

There are four data lines in this file:
LT3EXAM

LT3EXAM1

LT3EXAMA

LT3EXAM

These lines specify the base file names for the data and

interface files. In order, they are the base names for: (1) the

.WIF water interface file, which is the same as the base name for

the .WAD water data file used in the water run; (2) the .CHD
chemistry data file; (3) the .CUF unformatted chemistry output

file, which is written only if NFLAG(6) in the .CHD file is 1;

(4) the .SCH schedule data file, which is used only if NFLAG(4)

is 1. If NFLAG(6) or NFLAG(4) is 0, the corresponding base file

name must be omitted from the batch file. In other words, if the

program does not read or write a certain file, it does not read a
name for it.

If the base file names are different from those used in this

example, then the data lines and the corresponding commands in
the .COM file must be changed.

V-5

The batch file CHMGOON3.COM is listed below. The comment on

the first line has been truncated. Its complete form is:

! LT3VSI CONTINUATION RUN; CUF INPUT/OUTPUT.

$SJE/ECHO/TIME/CONTINUE ! LT3VSI
ATT/W/PRIOR=5
ACC :BACHELOR
COPYIN/B CHEMINIT.IMG

COPYIN LT3EXAM.SCH
CHEMINIT.IMG

LT3EXAM
LT3EXAM2
LT3EXAMA
LT3EXAMB
LT3EXAM

DEL CHEMINIT.IMG
COPY IN/B CHEMLOOP.IMG

CHEMLOOP.IMG
COPYOUT LT3EXAM2.CDB
COPYOUT LT3EXAM2.CNC
COPYOUT LT3EXAM2.CHO
DEL LT3EXAM2.CHO
DEL LT3EXAM2.CNC
DEL LT3EXAM.SCH
DEL LT3VSI.CLD
DEL LT3VSI.CIF
DEL CHEMLOOP.IMG

QUIT

Initiates FPS run
Attaches to FPS

Accesses directory
Copies in the chem init

image file and sched file
Executes chem init file
.WIF file base name
.CHD file base name
.CUF input file base name
.CUF output file base name
.SCH file base name
Deletes chem init image
Copies in the chem loop

image file and executes it
Copies out the

three result
files

Deletes the two large
result files,
the sched file,
the chem loop data file,
the chem interface file,
and the image file

Detaches from FPS and quits

CHMGOON3.COM is very similar to CHMRUN3.COM. It performs a

"continuation" run, in which the chemicals and microbe

populations are initialized to the state they had at the end of

the previous run. The .CHD file is different; specifically, it

has NFLAG(5) set to 1, to cause the program to read an input .CUF

file. It may also have different time limits and other

parameters. The data lines in the .COM file above are:

LT3EXAM

LT3EXAM2

LT3EXAMA

LT3EXAMB

LT3EXAM

The data lines are the base file names for the .WIF file, the

.CHD file, the input .CUF file, the output .CUF file, and the

.SCH file.

V-6

The following sections explain how to run the example problem

that is used for illustration in this manual. To run other

problems, change the data files and batch files.

V.3. Running the water program.

The file WATRUN3.COM may need to be modified before running

it as a batch job. See Section V.2 for information on the

changes needed. To run the water program, type the following

command at the VMS prompt:

SUBMIT/NOPRINT/QUEUE=FPS264 WATRUN3

The SUBMIT command places the batch file WATRUN3.COM into the

FPS264 queue to be executed. The commands in the .COM file

submit a job to the FPS computer to run the program WATER.IMG

with data file LT3EXAM.WAD as input. As the program executes,

its "console" output is written on a file named WATRUN3.LOG.

After the job has finished, the contents of the .LOG file must be

examined to see whether the job ran without errors. If all goes

well, the WATRUN3.LOG file should be very similar to the file of

the same name in the file LT3RESLT.ARC from the distribution

diskette.

Shown below is part of the file WATRUN3.LOG, the console

output from running WATRUN3.COM with the file LT3EXAM.WAD as

input data:

V-7

TWO-DIMENSIONAL STEADY WATER FLOW IN
THE LONG THIN RSKERL PHYSICAL AQUIFER.

Models a 2 dimensional (horizontal) flow field
for a single layer porous medium. The medium can
be anisotropic as well as nonhomogeneous. Pressure
and velocity components are calculated at each
nodal point. The flow field is confined to
the interior of the rectangular boundaries.
A Finite Difference (space centered) method
is used. An interface file is written which is
used to pass information to the chemistry-
processing program.

++

G. A. Bachelor, Sr. Systems Analyst,
D. E. Cawlfield, Sr. Systems Analyst,
F. T. Lindstrom, Assoc. Prof.,

Soil Science Dept. Oregon State Univ.,
Corvallis, OR., 97331,	 (503) 737-2441
++

Enter base name of WATER data file.

Do not enter the extension, which is ".WAD":
LT3EXAM

Input file 1 is: LT3EXAM.WAD
Output file 2 is: LT3EXAM.WAO
Output file 3 is: LT3EXAM.WPV
Output file 8 is: LT3EXAM.WIF
Output file 9 is: LT3EXAM.WDB

This output is followed by messages telling what the program

is doing: calling subroutines, reading data, writing outputs,

etc. If the program terminates because of an error, the last

message displayed before the error messages will indicate where

the error occurred.

Shown below is the display during the SIP method that

indicates how rapidly the method is converging. If the method

does not converge, the program will usually detect that and

terminate with an error message. If this happens, the SIP

parameters in the .WAD file must be changed and the job re-

submitted. See Section IV.4.

Beginning master loop for the hydraulic field

'COUNT ALPH RMSEA RMSER
Initial 1.0000 0.59332

1 1.0000 8.08087-002 0.41638
2 1.0000 4.52632-002 6.68348-002
3 0.90000 1.27992-002 3.44458-002
4 0.90000 5.06561-003 7.04382-003
5 0.95000 2.42803-003 2.44346-003
6 0.95000 1.21483-003 9.18589-004
7 0.75000 6.41884-004 3.48462-004
8 0.75000 3.98969-004 2.00459-004
9 1.0000 1.65868-004 2.99693-004

10 1.0000 8.18173-005 6.46390-005
11 0.90000 3.54592-005 2.03161-005
12 0.90000 1.67697-005 9.86753-006
13 0.95000 8.24437-006 6.02614-006
14 0.95000 3.99255-006 3.00095-006
15 0.75000 1.87433-006 1.03432-006
16 0.75000 1.11224-006 5.85792-007
17 1.0000 4.77407-007 8.18155-007
18 1.0000 2.39171-007 1.79081-007
19 0.90000 1.03913-007 5.81736-008
20 0.90000 4.96330-008 3.01280-008
21 0.95000 2.47757-008 1.84186-008

Convergence Achieved -- Final Values:
!COUNT=	 22, RMSEA= 1.225534-008, RMSER= 9.291242-009

Cycle Time =	 0.03 (Startup Time =	 0.01)
Total Time =	 0.04

V-8

More messages are displayed, and the program finishes with
the following:

Total integration time was 00 days, 00 hours, 00 minutes, and 00 sec.

Total CPU Clock time was 00 days, 00 hours, 00 minutes, and 00 sec.

STOP	 Normal Fortran Termination

For this small problem, the FPS 264 computer consumes less
than 1 second of CPU time. The .LOG file also contains echoed

commands and messages from the operating system, before and after
the console output from the WATER program.

V.4. Output files for water phase

If the job runs correctly, it will "copy out" the three
result files from the FPS to the VAX and delete the two larger

V-9

files from the FPS. The files copied out are LT3EXAM.WDB,

LT3EXAM.WAO, and LT3EXAM.WPV. They should be very similar to the

files with the same names in LT3RESLT.ARC on the distribution

diskette.

File xxxxxxxx.WAO shows the information read from

xxxxxxxx.WAD, together with computed data. This output file

should be examined to be sure that the data were read in

correctly. All of the numbers in this file are labeled to

indicate what they represent.

The file xxxxxxxx.WPV shows the water pressure and Darcy

velocity fields at all of the node points in the aquifer.

The file xxxxxxxx.WDB shows "debugging" information, if any

of this information was selected by setting certain NFLAG's. See

the discussion of NFLAG's in Section 111.2. If none of these

NFLAG's were set to 1, xxxxxxxx.WDB will show only the final

convergence data from the water run and the timing for the run.

NFLAG(8) affects the output as follows: if this flag is zero,

arrays are printed in a format that uses no more than 80 columns.

If NFLAG(8) is 1, a wider format, but no wider than 132 columns,

is used. The wider format is better, if a printer capable of

printing that many columns is available. "Columns" here means

"print positions". NFLAG(8) was set to 0 in the example file, so

that portions of the output files could be shown in this manual.

When the water program is run with the data file LT3EXAM.WAD

as input, it produces an output file LT3EXAM.WAO, part of which

is shown below. The format of the print-out for the "x-comp

hydraulic conductivity KSATXX(i,j)" is the narrow format,

produced when NFLAG(8) = 0. If NFLAG(8) = 1 in the xxxxxxxx.WAD

data file, a wider format is printed, with 12 columns of the

matrix printed on each "page", instead of 7. Also, when several

consecutive lines of numbers are the same, only the first such

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 chem]
ONE INJECTION WELL; ONE EXTRACTION WELL

** NOTE! SI units are indicated, but any units **
** can be used, as long as they are CONSISTENT. **

RUN CONTROL INFORMATION.
NLSOR=	 3000 NMOD=	 2 NALPH=	 4
TLRNWA= 1.00000-008 TLRNWR= 1.00000-008 ZTHRSH= 1.00000-008

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NFLAG(I) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ALPHAS (array of ALPH's)
1.0000	 0.90000	 0.95000
	

0.75000

NODE COORDINATES (M)

XNODE(I)
1	 2	 3	 4	 5	 6	 7	 8

	

0.	 0.10000	 0.20000	 0.40000	 0.60000	 0.80000	 1.0000	 1.2000

9	 10

	

1.3000	 1.4000

YNODE(J)
1	 2	 3	 4	 5	 6	 7	 8

	

0.	 0.10000	 0.30000	 0.50000	 0.70000	 0.90000	 1.1000	 1.3000

9	 10

	

1.5000	 1.6000

DX(I)
1	 2	 3	 4	 5	 6	 7	 8

	

0.10000	 0.10000	 0.20000	 0.20000	 0.20000	 0.20000	 0.20000	 0.10000

9
0.10000

DY(J)
1	 2	 3	 4	 5	 6	 7	 8

	

0.10000	 0.20000	 0.20000	 0.20000	 0.20000	 0.20000	 0.20000	 0.20000

9
0.10000

WIDTH	 OF AQUIFER (M)= 1.40
LENGTH	 OF AQUIFER (M)= 1.60
THICKNESS OF AQUIFER (M)= 0.300

INLET/OUTLET HYDRAULIC PRESSURES (M WATER)

V-10

line is shown, followed by a message of the form "Line above

repeated 5 times."

Most of the print-outs of matrices are in the same format as

shown below.

V-11

	HIN=	 1.0000	 HOUT= 0.00000

BASIC SOIL CHARACTERIZING PARAMETERS (KG/M-3)

RHOWAT= 1.000+003

TABLE OF SOIL PROPERTIES

X-COMP HYDRAULIC CONDUCTIVITY KSATXX(I,J) (M/DAY)

PAGE 1

	

X	 O.	 .1000	 .2000	 .4000	 .6000	 .8000	 1.000
Y	 1	 2	 3	 4	 5	 6	 7

O.	 1 0.10000	 0.10000	 0.10000	 0.31600	 1.0000	 1.0000	 1.0000
Line above repeated	 2 times.

	

.5000 4 0.03160	 0.03160	 0.03160	 0.05620	 0.10000	 0.10000	 0.31600

	

.7000 5 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.10000

Line above repeated	 1 times.

	

1.100 7 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.05620

	

1.300 8 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.03160
Line above repeated	 2 times.

PAGE 2

	

X	 1.200	 1.300	 1.400
Y	 8	 9	 10

O.	 1 1.0000	 1.0000	 1.0000
Line above repeated	 5 times.

	

1.100 7 0.31600	 0.31600	 0.31600

	

1.300 8 0.10000	 0.10000	 0.10000
Line above repeated	 2 times.

Y-COMP HYDRAULIC CONDUCTIVITY KSATYY(I,J) (M/DAY)

...	
(Listing of the y-component of hydraulic conductivity has been omitted)
...	

TABLE OF INJECTION WELLS (KG WATER/M - 3 DAY)

	

XI
	

YJ	 QWELIN(XI,YJ)

	

0.100
	

0.100	 1666.7

TABLE OF EXTRACTION WELLS (KG WATER/M - 3 DAY)

	

X I
	

YJ	 QWELOT(XI,YJ)

	

1.30
	

1.50	 888.89

The water program, when run with the data file LT3EXAM.WAD as

input, also produces an output file LT3EXAM.WPV, shown below.

The first part of the output is the pressure field, printed in

the same format as other arrays.

The second part shows the Darcy velocity field, in polar

coordinate form. For each point in the aquifer grid, a pair of

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 chem)
ONE INJECTION WELL; ONE EXTRACTION WELL

** NOTE! SI units are indicated, but any units
** can be used, as long as they are CONSISTENT.

OUTPUT DATA FOR FLOW SYSTEM

HYDRAULIC PRESSURE FIELD (M WATER)

PAGE	 1
X	 0.	 .1000	 .2000	 .4000

Y	 1	 2	 3	 4
.6000

5
.8000

6
1.000

7
0. 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
.1000 2 1.1521 1.1237 1.0385 1.0025 0.99724 0.99447 0.99099
.3000 3 1.0488 1.0415 1.0199 ' 0.99783 0.99120 0.98396 0.97285
.5000 4 1.0069 1.0044 0.99701 0.98867 0.98547 0.97191 0.94577
.7000 5 0.91655 0.91692 0.91804 0.93372 0.94826 0.92550 0.89421
.9000 6 0.73066 0.73196 0.73587 0.75298 0.78089 0.81959 0.83182
1.100 7 0.53500 0.53657 0.54129 0.56145 0.60273 0.68513 0.73982
1.300 8 0.32733 0.32861 0.33242 0.34880 0.38346 0.45202 0.51688
1.500 9 0.11000 0.11047 0.11187 0.11787 0.13029 0.15256 0.16691
1.600 10 0. 0. 0. 0. 0. 0. 0.

* *
* *

V-12

numbers is printed. The first number is the magnitude of the
Darcy velocity in meters per day; the second number is the angle
in degrees, as follows:

.08098,-16.6o	 .09058, .000o	 .05954, 19.5o
where the "o" means degrees.

The x coordinate runs across the page, and the y coordinate
runs vertically down the page. The inlet end is at the top; the
outlet end is at the bottom of the page. The fluid flow thus
runs from top to bottom. The convention for the angle is as
follows: zero degrees means parallel to the y coordinate;

negative angles mean that the fluid is flowing toward the left
side (smaller x values); positive angles mean that the fluid is
flowing toward the right side '(larger x values), as follows.

+/-180°

-90° --	 +90°

0 °

V-13

PAGE
X

Y

2
1.200

8
1.300

9
1.400

10
o. 1 1.0000 1.0000 1.0000
.1000 2 0.98768 0.98683 0.98655
.3000 3 0.96140 0.95881 0.95795
.5000 4 0.92674 0.92391 0.92297
.7000 5 0.88293 0.88146 0.88097
.9000 6 0.83476 0.83509 0.83519
1.100 7 0.76353 0.76593 0.76673
1.300 8 0.55672 0.55688 0.55693
1.500 9 0.16110 0.12248 0.10961
1.600 10 O. O. O.

DARCY VELOCITY FIELD
(MAGNITUDE IN M/D,ANGLE IN DEGREES)

PAGE	 1

X	 0.	 .1000
Y	 1	 2

.2000
3

.4000
4

O. 1 0.0,0.000o 0.12370,	 180.o 0.03848,-180.o 0.00782,-180.o
.1000 2 0.0,0.000o 0.08921,	 140.o 0.06674,	 110.o 0.03270, 94.90
.3000 3 0.0,0.000o 0.03313, 25.8o 0.02087, 60.2o 0.02516, 64.3o
.5000 4 0.0,0.000o 0.00997, 9.00o 0.00829, 13.90 0.00915,	 10.2o
.7000 5 0.0,0.000o 0.00681,-.628o 0.00654,-2.95o 0.00594,-7.310
.9000 6 0.0,0.000o 0.00951,-1.57o 0.00943,-3,32o 0.00937,-6.900
1.100 7 0.0,0.000o 0.01009,-1.790 0.01011,-3.690 0.01022,-8.64o
1.300 8 0.0,0.000o 0.01066,-1.37o 0.01075,-2.810 0.01116,-6.56o
1.500 9 0.0,0.000o 0.01100,-.487o 0.01114,-.995o 0.01172,-2.25o
1.600 10 0.0,0.000o 0.01105,0.000o 0.01119,0.000o 0.01179,0.000o

PAGE
X

Y

2
.6000

5
.8000

6
1.000

7
1.200

8
0. 1 0.02762,	 .000o 0.05525,0.000o 0.09009,0.000o 0.12324,0.000o
.1000 2 0.03479, 35.10 0.05655,	 16.0o 0.09189,	 10.7o 0.12645, 5.06o
.3000 3 0.04546, 49.7o 0.07273, 39.10 0.12634, 26.5o 0.15661,	 13.4o
.5000 4 0.01153,	 21.3o 0.01767, 34.2o 0.07164, 29.90 0.20259,	 14.5o
.7000 5 0.00512,	 2.30o 0.00404,	 19.5o 0.03041,	 20.5o 0.23172, 7.090
.9000 6 0.00880,-10.90 0.00614,-12.0o 0.03878,-5.610 0.29859,-1.36o
1.100 7 0.01041,-17.3o 0.00981,-20.5o 0.04560,-14.0o 0.22035,-4.57o
1.300 8 0.01209,-12.3o 0.01373,-14.10 0.04601,-10.4o 0.15076,-2.56o
1.500 9 0.01293,-3.84o 0.01519,-3.46o 0.05360,-.7210 0.17538, 8.76o
1.600 10 0.01303,0.000o 0.01526,0.000o 0.05274,0.000o 0.16110,0.000o

PAGE
X

Y

3
1.300

9
1.400

10
O. 1 0.13167,0.000o 0.0,0.000o
.1000 2 0.13459,	 2.390 0.0,0.0000
.3000 3 0.15825,	 6.25o 0.0,0.000o
.5000 4 0.19431,	 5.57o 0.0,0.000o
.7000 5 0.22227, 2.53o 0.0,0.000o
.9000 6 0.28883,-.4290 0.0,0.000o
1.100 7 0.21984,-1.32o 0.0,0.0000
1.300 8 0.16086,-.038o 0.0,0.0000
1.500 9 0.15619, 9.490 0.0,0.0000
1.600 10 0.12248,0.000o 0.0,0.000o

V.5. Making an initial chemistry run.

The batch file CHMRUN3.COM is used to make an initial

V-14

chemistry run, with a .CUF file output to allow continuation of

the run. The CHMRUN3.COM file may need to be modified, as

explained in Section V.2. When the changes have been made, type

the VMS command:

SUBMIT/NOPRINT/QUEUE=FPS264 CHMRUN3

This submits a job to the FPS computer to run CHEMINIT.IMG and

CHEMLOOP.IMG using the .WIF file produced by the water run, the

data file LT3EXAM1.CHD, and the schedule file LT3EXAM.SCH. The

console output is written on CHMRUN3.LOG. If the job runs

correctly, the three result files LT3EXAM1.CDB, LT3EXAM1.CNC, and

LT3EXAM1.CHO are copied out to the VAX. All of these files

should be very similar to files of the same names in

LT3RESLT.ARC.

Shown below is part of the file CHMRUN3.LOG, the console

output from running CHMRUN3.COM.

TWO-DIMENSIONAL DYNAMIC CHEMICAL
TRANSPORT AND FATE IN THE LONG THIN
RSKERL PHYSICAL AQUIFER.

Models a 2 dimensional (horizontal) flow field
for a single layer porous medium. The medium can
be anisotropic as well as nonhomogeneous. The fluid
velocity components must have been calculated by
the water-processing program and written to an
interface file. This program calculates the
dispersion coefficients and other variables at each
nodal point. Chemical concentrations and microbial
populations are computed at each nodal point at
specified time intervals. They are printed at
selected times. A Finite Difference (space
centered) method is used.

G. A. Bachelor, Sr. Systems Analyst,
D. E. Caulfield, Sr. Systems Analyst,
F. T. Lindstrom, Assoc. Prof.,
Soil Science Dept. Oregon State Univ.,
Corvallis, OR., 97331,	 (503) 737-2441

Enter base name of INTERFACE file, from Water run.
Do not enter the extension, which is ".WIF":
LT3EXAM
Enter base name of CHEMISTRY data file.
Do not enter the extension, which is ".CHD":
LT3EXAM1

Input file 1 is: LT3EXAM1.CHD
Output file 2 is: LT3EXAM1.CHO
Input file 8 is: LT3EXAM.WIF
Output file 9 is: LT3EXAM1.CDB
Output file 15 is: LT3VSI.CIF
Output file 16 is: LT3VSI.CLD

V-15

The portion of CHMRUN3.LOG shown above is the initial output

from the CHEMINIT program. This output is followed by messages

telling what the program is doing. If an error occurs, the

messages will give an indication of where the error happened.

More messages appear between the portions of the .LOG file shown

below.

Enter base name of UNFORMATTED chem OUTPUT file.
Do not enter the extension, which is ".CUF":
LT3EXAMA

The messages above appear if NFLAG(6) = 1; this causes

CHEMINIT to read a base name for an output .CUF file, to allow

continuing the run later.

Input file 15 is:	 LT3VSI.CIF

Reading interface file from LT3VSI.CIF

Interface file successfully read in.

Input file 1 is: LT3VSI.CLD
Output file 2 is: LT3EXAM1.CHO
Output file 3 is: LT3EXAM1.CNC
Input file 4 is: LT3EXAM.SCH
Output file 9 is: LT3EXAM1.CDS
Output file 11 is: LT3EXAMA.CUF

V-16

The print times are as follows:

2.0000	 4.0000

This message displays the times at which the chemical

concentrations and the microbial populations will be printed on
the xxxxxxxx.CNC file.

Enter base name of SCHEDULE data file.
Do not enter the extension, which is ".SCH":
LT3EXAM

Input file 4 is: LT3EXAM.SCH

If NFLAG(4) = 1, these messages appear and the program reads.
the base name of the schedule file.

CPU time for Chem Init was 00 days, 00 hours, 00 minutes, and 03 sec.
End of chemical initialization phase.

STOP	 Normal Fortran Termination

These messages appear at the end of the CHEMINIT run. They

are followed by messages from the operating system. Then comes

the first output from the CHEMLOOP program:

This output is followed by messages telling what

the CHEMLOOP program is doing. When it enters the loop, the
following display appears:

V-17

Beginning master loop for the dynamic chemical field

Computing the P* points.

IC =	 1 Time =	 0.0010
IC =	 2 Time =	 0.0020
IC =	 3 Time =	 0.0030
IC =	 4 Time =	 0.0040
IC =	 5 Time =	 0.0050
IC =	 6 Time =	 0.0060
IC =	 7 Time =	 0.0070
IC =	 8 Time =	 0.0080
IC =	 9 Time =	 0.0090
IC =	 10 Time =	 0.0100
1C =	 20 Time =	 0.0200
IC =	 30 Time =	 0.0300
IC =	 40 Time =	 0.0400
IC =	 50 Time =	 0.0500
IC =	 60 Time =	 0.0600
IC =	 70 Time =	 0.0700
IC =	 80 Time =	 0.0800
IC =	 90 Time =	 0.0900
IC =	 100 Time =	 0.1000
IC =	 200 Time =	 0.2000
IC =	 300 Time =	 0.3000
IC =	 400 Time =	 0.4000
IC =	 500 Time =	 0.5000
IC =	 600 Time =	 0.6000
IC =	 700 Time =	 0.7000
IC =	 800 Time =	 0.8000
IC =	 900 Time =	 0.9000
IC =	 1000 Time =	 1.0000
IC =	 2000 Time =	 2.0000
IC =	 3000 Time =	 3.0000
IC =	 4000 Time =	 4.0000
IC =	 4000 Time =	 4.0000

Time t meets or exceeds TMAX! CEASE COMPUTING!

IC is the iteration count; time is the time in days since the

beginning of the run. As can be seen, the program displays IC

and time less frequently as time goes along; the purpose of this

is avoid large amounts of unnecessary output.

(Integration time was 00 days, 00 hours, 00 minutes, and 53 sec.)

CPU time for Chem Loop was 00 days, 00 hours, 00 minutes, and 54 sec.
End of this simulation run.

STOP	 Normal Fortran Termination

The messages above appear at the end of the CHEMLOOP run.

Messages from the operating system appear before the first

program output and also after the last program output.

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 chem]
CHEM DATA FILE; ONE INJECTION WELL; ONE EXTRACTION WELL

** NOTE! SI units are indicated, but any units **
** can be used, as long as they are CONSISTENT. **

RUN CONTROL INFORMATION.

TIMES IN DAYS:
TO= 0.000	 TMAX=	 4.00	 DT0= 1.000-003
COMPUTED	 NUTRIENT	 SUBSTRATE	 OXYGEN	 NITRATE

DTMAX=	 7.130-002	 7.932-002	 2.350-003	 5.478-003

NPRT=	 2; PRINT TIMES (DAYS) ARE:

2.0000	 4.0000

ZTHRSH= 0.10000-007

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NFLAG(I) 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

LISTING OF SCHEDULE FILE.

V-18

V.6. Output files for chemistry phase

File xxxxxxxx.CHO shows the information read from
xxxxxxxx.CHD, together with computed data. This file should be

examined to be sure that the data were read in correctly. The

numbers in this file are labeled to indicate what they represent.

The file xxxxxxxx.CNC shows the computed chemical

concentrations and microbial populations at selected print times.

The file xxxxxxxx.CDB shows "debugging" information, if any

of this information was selected by setting certain NFLAG's. See
the discussion of NFLAG's in Section 111.2. If none of these
NFLAG's were set to 1, xxxxxxxx.CDB will contain only the timing
data.

When the chemistry programs are run with the data file

LT3EXAM1.CHD as input, they produce an output file LT3EXAM1.CHO,

part of which is shown below. The format of the print-out for

the matrices is the narrow format, produced when NFLAG(8) = 0.

If NFLAG(8) = 1 in the xxxxxxxx.CHD data file, a wider format is

printed, with 12 columns of the matrix printed on each "page",
instead of 7.

V-19

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 14 chem)
SCHEDULE DATA FILE; ONE INJECTION WELL; ONE EXTRACTION WELL

ETIME	 XI	 YJ	 NUTRIENT SUBSTRATE OXYGEN	 NITRATE

O.	 0.10000	 0.10000	 O.	 O.	 O.	 O.
4.5000	 0.10000	 0.10000	 2.00-004 O.	 O.	 O.

INLET PORT TANK LENGTH (M)= 0.100
EXIT PORT TANK LENGTH (M) : 0.100

BASIC SOIL CHARACTERIZING PARAMETERS (KG/M-3)

RHOSND= 2.660+003 RHOCLA= 2.650+003 RHOORG= 1.300+003

TORTUOSITY FACTOR TORT(I,J) (DIMLESS)

PAGE 1
X	 O.	 .1000	 .2000	 .4000	 .6000	 .8000	 1.000

Y	 1	 2	 3	 4	 5	 6	 7
O.	 1 0.67000	 0.67000	 0.67000	 0.77700	 0.90000	 0.90000	 0.90000

Line above repeated 2 times.

	

.5000 4 0.57900	 0.57900	 0.57900	 0.62300	 0.67100	 0.67100	 0.77700

	

.7000 5 0.50000	 0.50000	 0.50000	 0.50000	 0.50000	 0.50000	 0.67100

	

Line above repeated	 1 times.

	

1.100 7 0.50000	 0.50000	 0.50000	 0.50000	 0.50000	 0.50000	 0.62300

	

1.300 8 0.50000	 0.50000	 0.50000	 0.50000	 0.50000	 0.50000	 0.57900

	

Line above repeated	 2 times.

PAGE 2
X	 1.200	 1.300	 1.400

	

8	 9	 10
O.	 1 0.90000	 0.90000	 0.90000

Line above repeated 5 times.

	

1.100 7 0.77700	 0.77700	 0.77700

	

1.300 8 0.67000	 0.67000	 0.67000
Line above repeated 2 times.

... (listings of EPS, PCTSAN, PCTCLA, PCTORG omitted)

DISPERSIVITY COMPONENTS DISPLX(I,J,K) AND DISPLY(I,J,K)

X-COMP DISPERSIVITY FOR NUTRIENT (M)

PAGE 1
X	 O.	 .1000	 .2000	 .4000	 .6000	 .8000	 1.000

Y	 1	 2	 3	 4	 5	 6	 7
O.	 1 0.00350	 0.00350	 0.00350	 0.00205	 0.00120	 0.00120	 0.00120

	

Line above repeated 	 2 times.

	

.5000 4 0.00592	 0.00592	 0.00592	 0.00453	 0.00346	 0.00346	 0.00204

	

.7000 5 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.00346

	

Line above repeated 	 1 times.

	

1.100 7 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.00453

	

1.300 8 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.01000	 0.00592
Line above repeated 2 times.

PAGE 2
X	 1.200	 1.300	 1.400

	

8	 9	 10
O.	 1 0.00120	 0.00120	 0.00120

	

Line above repeated 	 5 times.

	

1.100 7 0.00205	 0.00205	 0.00205

	

1.300 8 0.00350	 0.00350	 0.00350

	

Line above repeated	 2 times.

V-20

(Y-Comp Dispersivity for Nutrient omitted)

(Dispersivities for Substrate, Oxygen, & Nitrate omitted)	 ..

CHEMICAL PARAMETERS

NUTRIENT	 SUBSTRATE OXYGEN NITRATE

DLO= 1.430-004 1.430-004 1.430-004 1.430-004 (M"2/DAY)

KSAND= 0.000 0.000 0.000 0.000 (M-3/KG SAND)
KCLAY= 0.000 0.000 0.000 0.000 (M"3/KG SILT)
KORG= 0.000 0.000 0.000 0.000 (M-3/KG ORGANICS)

CIN= 3.000-003 1.500-002 5.000-003 5.000-003 (KG/M-3)
COUT= 0.000 0.000 0.000 0.000 (KG/1.1'3)
CO= 3.000-003 1.500-002 5.000-003 5.000-003 (KG/W3)

FIRST ORDER LOSS COEFS XLAMIR(I,J,K) & XSLMIR(I,J,K)

IRREVERSIBLE LOSS IN FREE PHASE FOR NUTRIENT (1/DAY)

... (Listing of data omitted)	 .

... (Free phase losses for Substrate, Oxygen, Nitrate omitted)

IRREVERSIBLE LOSS IN SORBED PHASE FOR NUTRIENT (1/DAY)

PAGE 1
X	 O.	 .1000	 .2000	 .4000	 .6000	 .8000	 1.000

Y	 1	 2	 3	 4	 5	 6	 7

	

O.	 1	 O.	 O.	 O.	 O.	 O.	 0.	 O.
Line above repeated 9 times.

PAGE 2
X	 1.200	 1.300	 1.400

Y	 8	 9	 10

	

O.	 1	 O.	 O.	 O.
Line above repeated 9 times.

... (Sorbed phase losses for Substrate, Oxygen, Nitrate omitted)

INITIAL CHEMICAL DISTRIBUTION OF NUTRIENT (KG/M-3)

PAGE 1
X	 O.	 .1000	 .2000	 .4000	 .6000	 .8000	 1.000

	

Y	 1	 2	 3	 4	 5	 6	 7

	

O.	 1 0.00300	 0.00300	 0.00300	 0.00300	 0.00300	 0.00300	 0.00300
Line above repeated	 9 times.

PAGE 2
X	 1.200	 1.300	 1.400

8	 9	 10

	

O.	 1 0.00300	 0.00300	 0.00300
Line above repeated 9 times.

(Chemical distr of substrate, oxygen, nitrate omitted)

1+RETENTION(I,J,K) FOR NUTRIENT (DIMLESS)

... (Listing of data omitted)	 ...

(1+Retention for Substrate, Oxygen, Nitrate omitted) ...

V-21

OVER ALL FIRST ORDER LOSS COEF LAMDA(I,J,K) FOR NUTRIENT (1/DAY)

... (Listing of data omitted)	 ..

(Over all loss coef for Substrate, Oxygen, Nitrate omitted) ...

INITIAL DISTRIBUTION OF MICROBE POPULATION #1 (KG CELLS/KG SOIL)

PAGE 1

	

X	 O.	 .1000	 .2000	 .4000	 .6000	 .8000	 1.000
Y	 1	 2	 3	 4	 5	 6	 7

O.	 1 1.00-007 1.00-007 1.00-007 1.00-007 1.00-007 1.00-007 1.00-007
Line above repeated 9 times.

PAGE 2

	

X	 1.200	 1.300	 1.400
Y	 8	 9	 10

O.	 1 1.00-007 1.00-007 1.00-007
Line above repeated 9 times.

INITIAL DISTRIBUTION OF MICROBE POPULATION #2 (KG CELLS/KG SOIL)

... (Listing of data omitted)

CHEMISTRY USAGE PARAMETERS

	

KS01	 • 1.8000-002 (KG/M-3)

	

KS02	 • 1.8000-002 (KG/M-3)
KO1	 = 3.0000-005 (KG/M-3)

... (Part of listing omitted)

	

YS01	 = 0.4000	 (KG CELLS/KG SUB)

	

YS02	 = 0.4000	 (KG CELLS/KG SUB)

... (Part of listing omitted)

MUNI1 =	 2.500	 (1/DAY)
RHOBD =	 1770.	 (KG/M-3)

INJECTION WELLS CHEMICAL CONC. CSWELN(XI,YJ,K) (KG CHEM/KG SOLUTION)

XI
	

YJ	 NUTRIENT	 SUBSTRATE OXYGEN	 NITRATE

NO NON-ZERO INJECTION WELLS.

BURIED CHEMICAL SOURCE CONC. OCHM1S(XI,YJ,K) (KG CHEM/M - 3 DAY)

XI
	

YJ	 NUTRIENT	 SUBSTRATE OXYGEN	 NITRATE

NO NON-ZERO BURIED SOURCES.

The chemistry programs, when run with the data file

LT3EXAM1.CHD as input, also produce an output file LT3EXAM1.CNC,

part of which is shown below. Most of the output is devoted to

showing the chemical concentrations and the microbial populations

at the nodal points of the aquifer, at each of the print times

V-22

listed near the beginning of the xxxxxxxx.CHO file. In two-

dimensional arrays, as printed in this file and the files

mentioned previously, the numbers are printed in a variable

format. In the first row below are examples from the

PC/Microsoft Fortran version; in the second row are examples from

the FPS APFTN64 version. The FORMAT statements are identical in

the two versions, but the support libraries for the two systems
produce different forms:

O. .00 8.65E-05 .00189 .99447 1.1521
O. 0.00 8.65-005 0.00189 0.99447 1.1521

When a number is within a certain range, it is printed in

fixed-point format, with the decimal point in its proper

position. Numbers outside this range are printed in exponential

format, with two exceptions. Numbers that are actually zero are

printed as "0.". Numbers that are non-zero, but whose magnitudes

are smaller than the value of ZTHRSH in the xxxxxxxx.WAD data

file or the xxxxxxxx.CHD data file, are printed as ".00" or

"0.00". In this manner, the format of the output helps to

distinguish between regions in the aquifer: usually, fixed-point

numbers show where the value is relatively large; exponential

numbers show where it is smaller; and zeroes show where the value
is very small.

Other output in the file includes messages telling when the

chemical concentrations at the wells are changed by scheduled

"events". If NFLAG(17) = 1, the cumulative masses are also
printed.

DATE IS 9/21/1990 - EXAMPLE DATA FOR MODEL LT3VSI V1.2 [4 chem)
CHEM DATA FILE; ONE INJECTION WELL; ONE EXTRACTION WELL

** NOTE! SI units are indicated, but any units **
** can be used, as long as they are CONSISTENT. **

OUTPUT DATA FOR CHEMICAL SYSTEM

ZTHRSH= 0.10000-007

NFLAG(16) = 0; USING 4-POINT INTERPOLATION METHOD.

V-23

AT TIME T=	 0.0000 (DAYS), CONCENTRATIONS OF THE
INJECTION WELL AT (0.100 	 , 0.100) WERE CHANGED TO:
NUTRIENT	 SUBSTRATE	 OXYGEN	 NITRATE
0.000	 0.000	 0.000	 0.000	 (KG CHEM/KG SOLN)

TIME T=	 2.0000 (DAYS)

CUMULATIVE CHEMICAL MASSES (KG) FOR NUTRIENT

XMASS=	 7.30283-004 XMFONW= 7.30081-006 XMSOUR= 0.00000
XMASIN= 8.45006-005 XMASOT= 1.05283-004

CHEMICAL CONCENTRATION DISTRIBUTION (KG/M^3) FOR NUTRIENT

PAGE	 1
X	 0.

1

.1000
2

.2000
3

.4000
4

.6000
5

.8000
6

1.000
7

0.	 1	 0.00298 0.00298 0.00298 0.00298 0.00298 0.00298 0.00298
.1000	 2	 1.22-004 2.78-004 7.48-004 0.00195 0.00282 0.00297 0.00298
.3000	 3 0.00129 0.00152 0.00218 0.00271 0.00290 0.00297 0.00299
.5000	 4 0.00278 0.00282 0.00293 0.00298 0.00299 0.00300 0.00299
.7000	 5 0.00293 0.00294 0.00294 0.00294 0.00294 0.00294 0.00299
.9000	 6 0.00294 0.00294 0.00294 0.00294 0.00294 0.00294 0.00300
1.100	 7 0.00294 0.00294 0.00294 0.00294 0.00294 0.00294 0.00300
1.300	 8 0.00294 0.00294 0.00294 0.00294 0.00294 0.00294 0.00299
1.500	 9 0.00287 0.00287 0.00287 0.00287 0.00286 0.00286 0.00289
1.600 10 0.00170 0.00170 0.00170 0.00170 0.00170 0.00170 0.00170

PAGE	 2
X	 1.200 1.300 1.400

8 9 10
0.	 1 0.00298 0.00298 0.00298
.1000	 2 0.00298 0.00298 0.00298
.3000	 3 0.00299 0.00299 0.00299
.5000	 4 0.00299 0.00299 0.00299
.7000	 5 0.00299 0.00299 0.00299
.9000	 6 0.00299 0.00299 0.00299
1.100	 7 0.00300 0.00300 0.00300
1.300	 8 0.00300 0.00300 0.00300
1.500	 9 0.00292 0.00293 0.00293
1.600 10 0.00170 0.00170 0.00170

(Listings of chem concentrations of Substrate, Oxygen and Nitrate omitted)

DISTRIBUTION OF MICROBE POPULATION #1 (KG CELLS/KG SOIL)

PAGE

X
1
0.

1

.1000
2

.2000
3

.4000
4

.6000
5

.8000
6

1.000
7

0.	 1 5.62-007 5.62-007 5.62-007 5.62-007 5.62-007 5.62-007 5.62-007
.1000	 2 2.34-008 2.78-008 4.83-008 8.51-008 2.60-007 3.76-007 4.43-007
.3000	 3 6.44-008 6.96-008 8.67-008 9.68-008 1.30-007 1.87-007 2.73-007
.5000	 4 9.66-008 9.72-008 9.90-008 9.98-008 1.02-007 1.09-007 1.55-007
.7000	 5 9.85-008 9.85-008 9.86-008 9.86-008 9.87-008 9.88-008 1.10-007
.9000	 6 9.85-008 9.85-008 9.86-008 9.86-008 9.86-008 9.86-008 1.04-007
1.100	 7 9.86-008 9.86-008 9.86-008 9.86-008 9.86-008 9.87-008 1.04-007
1.300	 8 9.85-008 9.85-008 9.85-008 9.85-008 9.85-008 9.86-008 1.01-007
1.500	 9 9.67-008 9.67-008 9.66-008 9.66-008 9.64-008 9.62-008 9.65-008
1.600	 10 3.46-008 3.46-008 3.46-008 3.46-008 3.46-008 3.46-008 3.46-008

PAGE 2
X 1.200 1.300 1.400

8 9 10
0.	 1 5.62-007 5.62-007 5.62-007
.1000	 2 4.76-007 4.82-007 4.84-007

V-24

.3000 3 3.44-007 3.62-007 3.69-007

.5000 4 2.53-007 2.83-007 2.93-007

.7000 5 2.03-007 2.31-007 2.41-007

.9000 6 1.81-007 2.00-007 2.07-007
1.100 7 1.55-007 1.66-007 1.70-007
1.300 8 1.28-007 1.34-007 1.36-007
1.500 9 1.09-007 1.12-007 1.13-007
1.600 10 3.46-008 3.46-008 3.46-008

...	 (Listing of Microbe Population #2 omitted) ...

..	 (Listings of chemicals & microbes for Time = 4.0 days omitted)	 ...

V.7. Continuation runs

Runs of the chemistry programs can take considerable amounts

of computer time. It is desirable to be able to stop such runs

"temporarily" and resume them later. The "continuation" feature

is provided to make this possible. As will be discussed below,

this feature also makes evaluation of other interesting scenarios
possible.

If NFLAG(6) is set to 1 in the chemistry data file
xxxxxxxx.CHD, the CHEMLOOP program will write an unformatted file
xxxxxxxx.CUF containing the final chemical concentration at the
end of the run. If NFLAG(5) = 1 in the xxxxxxxx.CHD file for a

subsequent run of the chemistry programs, the xxxxxxxx.CUF file

will be read in and the programs will use the final chemical

concentration of the previous run as the starting concentration

of the current run.

One use of this feature is to continue a run, if it happens

that the first run didn't go far enough to produce a desired

result. Another possibility is to change some of the chemical

parameters and continue the run; in this case, one would use a

different chemistry data file in the subsequent run or runs. It

is also possible to change the hydraulic parameters, by using two

or more different water data files with the same node coordinates

and running the water program on each of them. A subsequent

chemistry run can then use an interface file xxxxxxxx.WIF that is

different from the one used in the earlier run.

V-25

The "initial" run for a sequence of chemistry runs must have

NFLAG(5) = 0 and NFLAG(6) = 1 in the chemistry data file

xxxxxxxx.CHD. The two differences between this run and a

"normal" run with both of these NFLAGs = 0 are:

(1) After reading the base names for the water interface file

xxxxxxxx.WIF and the chemistry data file, the CHEMINIT program

reads a base name for the xxxxxxxx.CUF output file, which can be

the same as the base names for other files, or can be different.

(2) At the end of the run, the CHEMLOOP program will write

the xxxxxxxx.CUF file, which contains the final chemical

concentrations in the aquifer, the final microbial populations,

the final simulated time TMAX, the final chemical concentrations

in the inlet and outlet tanks (CIN and COUT), and the final

cumulative masses (XMASS, XMFONW, XMSOUR, XMASIN, and XMASOT).

All of this information except CIN and COUT is also shown in

printable form in the xxxxxxxx.CNC file.

A "continuation" run for a sequence of chemistry runs must

have NFLAG(5) = 1 in the chemistry data file xxxxxxxx.CHD. It

may have NFLAG(6) set to either 0 or 1. If this flag is 1, this

run will write a xxxxxxxx.CUF file when it finishes, and a

further continuation is possible. If NFLAG(6) = 0, no

xxxxxxxx.CUF file will be written and no continuation is

possible.

The three differences between a continuation run and a normal

run are:

(1) After reading the base names for the interface file and

the chemistry data file, the CHEMINIT program reads the base name

for the xxxxxxxx.CUF file that was written by the previous

chemistry run. If NFLAG(6) in the xxxxxxxx.CHD file is also set

to 1, the program reads a base name for the xxxxxxxx.CUF output

file, which must be different from the base name for the

xxxxxxxx.CUF input file.

V-26

(2) The CHEMINIT program reads the chemistry data file

xxxxxxxx.CHD as usual, until it has read the initial microbial

populations. At this point, an initial run sets the initial time

TO to 0.0 and sets the cumulative masses XMASS, XMFONW, XMSOUR,

XMASIN, XMASOT to 0.0. It then goes on to read the rest of the

data from the xxxxxxxx.CHD file. A continuation run reads the

chemical concentrations and microbial populations from the

xxxxxxxx.CHD file, just like the normal run. However, because

NFLAG(5) =1, it then reads the xxxxxxxx.CUF input file specified

by the user. It sets CIN and COUT to the values in this file,

replacing the values that were read in from the xxxxxxxx.CHD

file; it sets the initial time TO for this run equal to the TMAX

from the xxxxxxxx.CUF file; it adds the TMAX read from the

xxxxxxxx.CUF file to the TMAX read from the xxxxxxxx.CHD file; it

sets the cumulative masses XMASS etc. to the values in the

xxxxxxxx.CUF file; it sets the initial chemical concentrations to

the values in the xxxxxxxx.CUF file; and it sets the initial

microbial populations to the values in the xxxxxxxx.CUF file.

The values that were read from the xxxxxxxx.CHD file are

overwritten by the data from the xxxxxxxx.CUF file. Then the

program reads the rest of the xxxxxxxx.CHD file. If an initial

run and a continuation run read the same interface file and read

xxxxxxxx.CHD files that are the same except for the NFLAGs, NPRT,

and/or TMAX, then the final results will be the same as a single

run for the total time specified by the sum of the TMAX'es in the
xxxxxxxx.CHD files.

(3) If NFLAG(6) = 1, the CHEMLOOP program will write the

xxxxxxxx.CUF output file at the end of the run, as described

above for an initial run. This file can be used as a

xxxxxxxx.CUF input file for another continuation run.

The small example problem that is included on the

distribution diskette and is used as an example in this manual

V-27

includes a continuation run. The water data file is the file

LT3EXAM.WAD shown in Section IV.2. The chemistry data file for

the initial run is the file LT3EXAM1.CHD of Section IV.3. The

name of the unformatted chemical concentration output file is

LT3EXAMA.CUF. For the continuation run, the file named

LT3EXAM2.CHD is used. It is like LT3EXAM1.CHD, except that

NFLAG(5) is 1 instead of 0, and TMAX is 2.0 instead of 4.0. The

schedule file LT3EXAM.SCH specifies that the injection well has

zero concentrations for the four chemicals at time 0.0; at time

4.5 days the concentration of nutrient in the well is changed to

2.0E-4 (kg chem/kg soln), with the other chemicals remaining at

zero concentration. Thus, the initial run computes for 4 days

with no chemical being injected. The continuation run computes

for 0.5 days with no chemical being injected. Then it computes

for 1.5 days with nutrient being injected. The chemical

concentrations and microbial populations are printed at 2, 4, 5,

and 6 days.

The input and output files for each run are shown below.

The description lists all files used, except the "debug" files

xxxxxxxx.WDB and xxxxxxxx.CDB, and the files LT3VSI.CIF and

LT3VSI.CLD used as interfaces between CHEMINIT and CHEMLOOP.

Water run
Input file	 Output files
LT3EXAM.WAD LT3EXAM.WAO

LT3EXAM.WPV
LT3EXAM.WIF

Initial chemistry run
NFLAG(4)=1, NFLAG(5)=0, NFLAG(6)=1, NPRT=2, TMAX=4.0

Input files
LT3EXAM.WIF
LT3EXAM1.CHD
LT3EXAM.SCH

Output files
LT3EXAM1.CHO
LT3EXAM1.CNC
LT3EXAMA.CUF

Time: 0 to 4 days
No chemical injected

V-28

Continuation chemistry run
NFLAG(4)=l, NFLAG(5)=1, NFLAG(6)=1, NPRT=2, TMAX=2.0

Input files
LT3EXAM.WIF
LT3EXAM2.CHD
LT3EXAMA.CUF
LT3EXAM.SCH

Output files
LT3EXAM2.CHO
LT3EXAM2.CNC
LT3EXAMB.CUF

Time: 4 to 6 days
Nutrient injected

4.5 to 6 days

Because each continuation run reads a xxxxxxxx.CHD file, it

is possible to change the chemistry parameters included in this

file, by creating different xxxxxxxx.CHD files for each run. To

change the parameters in the xxxxxxxx.WAD file for a continuation

run, one must create a new xxxxxxxx.WAD file and make another

hydraulic head field run on it. When the continuation run reads

the base name of the interface file, enter the base name of the

new xxxxxxxx.WAD file. The various water data files in a

sequence of runs must all have the same number and values of node

coordinates. There may, however, be a different number and

placement of wells.

To make the example continuation run, modify the batch file

CHMGOON3.COM if necessary, and type the VMS command:

SUBMIT/NOPRINT/QUEUE=FPS264 CHMGOON3

This submits a job to the FPS computer that is very similar to

the CHMRUN3 job. However, it reads the file LT3EXAMA.CUF that

was written by the CHMRUN3 job so that it can continue the

processing from the point where the previous job quit. It reads

the data file LT3EXAM2.CHD and the schedule file LT3EXAM.SCH.

CHMGOON3 writes a new file LT3EXAMB.CUF to allow another

continuation run to be made. The output files CHMGOON3.LOG,

LT3EXAM2.CDB, LT3EXAM2.CNC, and LT3EXAM2.CHO should be very

similar to the files in LT3RESLT.ARC.

To make other runs of LT3VSI, it will be necessary to modify

V-29

or make new versions of the .COM files and the data files .WAD,

.CHD, and .SCH. The LTPREP program can save a considerable

amount of editing in creating new versions of the data files .WAD

and .CHD. To run LTPREP, compile and link LTPREP.FOR with

LTPREP.INC in the same subdirectory, using Microsoft Fortran

Version 4.01 or later. Prepare a geometry file .GEO and

abbreviated data files .WAG and .CHG. Then type LTPREP at the

MSDOS prompt. The program will ask for the names of the geometry

file and an abbreviated data file. Then it asks for the name of

the output file. Run LTPREP twice, once with the .GEO and .WAG

files as input, and .WAD as output file; then with .GEO and .CHG

as input and .CHD as output. See Section IV.1 for more

information on using LTPREP.

VI-1

VI. Description of the programs

LT3VSI is the LT (Long Thin aquifer) series 3 program that:
(1) Allows spatially variable hydraulic conductivity, porosity,

etc

(2) Uses the SIP method to solve the steady-state hydraulic

problem.

(3) Is split into three programs, one that computes the hydraulic

pressures & velocities, one that initializes the chemistry

data, and one that computes the dynamic chemical

concentrations.

(4) Handles four chemicals and two microbe populations.

VI.1. Source files for LT3VSI.

Common block definitions and a few constants (parameters) are

defined in include files; there are 14 include files. The

Fortran code was divided into 22 separate files during

development of the programs. Each of these original files is

called a "module" and may contain one or more subroutines or

functions. Three of the modules contain the main programs for

the three phases of LT3VSI. For convenience in handling the

source code on the mainframe computers, the modules were combined

into three large files, one for each of the three programs.

The chart below shows the include files and Fortran modules

used in the three programs of LT3VSI, Ver. 1.2. Some include

files and some modules are used in more than one phase.

VI-2

Water phase Chem init phase Chem loop phase

Include CSIZE.SIB CSIZE.SIB CSIZE.SIB
Files CPROP.SIB CPROP.SIB CPROP.SIB

CVELOC.SIB CVELOC.SIB CVELOC.SIB
(14 CSSIP.SIW CCHEM.SIC CBND.SIK

distinct CWAT.SIW CBND.SIK CCHEM.SIK
files) CCHEM.SIK CHMAT.SIK

CHMAT.SIK CPARAM.SIK
CPARAM.SIK CRUNC.SIK
CRUNC.SIK CVELOC.SIK
CVELOC.SIK CCHEM.SIL

CNRK.SIL

Program WATER.APV CHEMINIT.APV CHEMLOOP.APV
Name

LT3VSIW.FOR LT3VSIC.FOR LT3VSIL.FOR
Fortran FSECOND.FOR BDATSIK.FOR BDATSIK.FOR
Modules ITGRSIW.FOR CHMSIC.FOR CSUBSIL.FOR

LUFSIW.FOR FSECOND.FOR FSECOND.FOR
(22 OUTSIB.FOR INITSIC.FOR LOOPSIL.FOR

distinct RWWSIW.FOR OUTSIB.FOR NEWTWO.FOR
modules) SIPSIW.FOR RATSIK.FOR OUTSIB.FOR

SUBSIB.FOR RWCSIC.FOR PSTARSIL.FOR
WATSIW.FOR SUBSIB.FOR RATSIK.FOR

RWCSIL.FOR
SUBSIB.FOR
TCMSIL.FOR

On the distribution diskette, the Archive file LT3APV.ARC

contains the source code for the include files and the three

programs of LT3VSI. The programs are the Water program

WATER.APV, the Chemistry Initialization program CHEMINIT.APF, and

the Chemistry Loop program CHEMLOOP.APV. They are coded to run

on the FPS Scientific Computer with a VAX/VMS front-end computer.

They can be modified fairly easily to run on a VAX or on a PC

(AT-class or better).

The Water program is run by itself, reading a data file whose

extension is ".WAD". It computes the steady state water pressure

and velocities in the aquifer described by the data file. It

produces printable output files and an interface file for the

VI-3

chemistry programs.

The two chemistry programs are run in tandem. The Chemistry

Initialization program is run first; it reads the interface file

(.WIF) produced by the water program and a chemistry data file

(.CHD), and optionally a schedule file (.SCH)

interface file (.CIF) as well as other files.

finished, the Chemistry Loop program is run.

. It produces an

As soon as it has

It reads files

produced by the Initialization program and computes the time-

varying concentrations of the 4 chemicals and the populations of

the 2 microbes. It produces output files that can be printed.

VI.1.1. Source files for LTPREP.

The file LTPREP.ARC on the distribution diskette contains the

source code for an include file and Fortran code for the program

named LTPREP, which runs on PC's and helps prepare data files for

LT3VSI. This program does not detect all of the possible data

errors. See Section IV.1 for more information.

VI.2. Running LT3VSI on other computers.

If LT3VSI is to be run on computers other than the FPS, it

will be necessary to make changes in the source files before

compiling them. Two kinds of changes may be needed.

(1) Source language changes. The programs are written in

Standard Fortran 77, with a few exceptions. The 3 programs use

"Include" statements to cause the compiler to read the "include"

files that contain common block declarations. These statements

may have to be changed to the form required by another Fortran

compiler. If the other compiler does not have an "include"

feature, then a text editor must be used to substitute the

include files in place of the include statements.

Standard Fortran 77 allows only upper case letters in Fortran

programs. The LT3VSI programs have lower case letters in

comments and in character strings. These can be changed to

VI-4

uppper case, if needed.

Standard Fortran 77 allows a maximum of 6 characters in

programmer-chosen names. In the LT3VSI programs, some subroutine

names are more than 6 characters long. These names can be

truncated to 6 characters if needed.

(2) Run-time changes. The programs may compile without

errors on another compiler, but refuse to run because of

incompatibility with the other system's run-time support library.

One change that will be surely be needed is to remove the feature

that allows a program on the FPS computer to read a file directly

from the host VAX computer. This feature is used in the WATER

and CHEMINIT programs, but not in the CHEMLOOP program. In the

WATER program, change the line

OPEN(UNIT=1,FILE=':HOSTCHAR:' // FILBAS // '.WAD',

to
OPEN (UNIT=1 , FILE=FILBAS // ' . WAD ' ,

In the CHEMINIT program, change the line

OPEN(UNIT=1,FILE=':HOSTCHAR:' // FILBAS // '.CHD',

to

OPEN(UNIT=1,FILE=FILBAS // '.CHD',

Another change that will be needed is in the SECOND function

in the FSECOND module used in all three programs. The SECOND

function returns the number of seconds of CPU time used by the

program, as a real number. This function is used only to display

the amount of CPU time used by the programs, so it is not

critical to the computations carried out. The code for SECOND

contains three sections for getting the CPU time from the

operating system. One section is for use under Microsoft Fortran

4.01 or later on PC, XT, AT, etc., computers; another section is

for use under VMS Fortran on a VAX computer; and the third

section is for use under APFTN64 on an FPS computer. In the

VI-5

programs as distributed, the first two sections are "commented

out"; only the FPS code is compiled. If the programs are to be

run on a PC, etc., or on a VAX running VMS, all that is necessary

is to "comment out" the FPS code and remove the comment flags (C

in column 1) from the appropriate section of code. If the

programs are to be run on other compilers or computers, it will

be necessary to comment out or delete the existing sections of

code and insert appropriate code. If the system to be used does

not have any way for a Fortran program to obtain the CPU time,

simply insert code to set SECOND to zero.

If the system to be used has different file name conventions

from those used on PC's, VAX'es, and FPS'es, then all references

to file names in OPEN statements will have to be changed. If the

file name formats are VERY different, it may also be necessary to

change some of the code.

VI.3. Files used by LT3VSI

The tables below show the input and output files used by the

three programs of LT3VSI. The notations "filbas", "wifbas",

etc., are "file base names" selected and typed in by the user.

The extensions

File name

"WAD",	 "WAO",	 etc.,

Water Phase

are required by the programs.

PurposeUnit no. I/O
filbas.WAD 1 in Water data
filbas.WAO 2 out Water listing
filbas.WPV 3 out Pressure & velocity
filbas.WIF 8 out Water-chem interface
filbas.WDB 9 out Water debug

Chem Initialization Phase
File name	 Unit no.	 I/O	 Purpose
filbas.CHD
filbas.CHO
schbas.SCH
wifbas.WIF
filbas.CDB
cufin .CUF
LT3VSI.CIF
LT3VSI.CLD

	

1	 in	 Chemistry data

	

2	 out	 Chemistry listing

	

4	 in	 Schedule

	

8	 in	 Water-chem interface

	

9	 out	 Chemistry debug

	

10	 in	 Chemistry unformatted

	

15	 out	 Chemistry interface

	

16	 out	 Chemistry loop data

VI-6

Chemistry Loop Phase
PurposeUnit no.	 I/O

1 in Chemistry
2 out Chemistry
3 out Chemical
4 in Schedule
9 out Chemistry

11 out Chemistry
15 in Chemistry

File name
LT3VSI.CLD
filbas.CHO
filbas.CNC
schbas.SCH
filbas.CDB
cufout.CUF
LT3VSI.CIF

loop data
listing

concentrations

debug
unformatted
interface

The following diagram depicts graphically the relationships

between the programs and files.

Chem Init
Phase

Chem Debug
xxx.CDB

Chem Data
xxx.CHD

Water
Phase

Water-Chem
Interface
xxx.WIF

Water List
xxx.WAO

Pressure &
Velocity
xxx.WPV

Water Debug
xxx.WDB

Water Data
xxx.WAD

Chem
Unformatted

xxx.CUF

Schedule
xxx.SCH

Chem
Interface
LT3VSI.CIF

Chem Loop
Data

LT3VSI.CLD

Chem List
xxx.CHO

Chem Loop
Phase

Chem
Unformatted

xxx.CUF

Chem
Concentration

xxx.CNC

VI-7

Data flow diagram for LT3VSI

Input files	 Programs &
Interfaces

Output files

VI.4. General flow diagrams of LT3VSI programs

These diagrams show the two major loops, one in the water-

processing program and one in the chemistry loop program. There

VI-8

are many small loops that are not shown. When the same

subroutine is called more than once in a "short" section of code,

only one call is shown. Calls to the subroutines DATERR and

SCHERR, to the function SECOND, and to subroutines in the module
OUTSIB.FOR are not shown.

LT3VSIW is the main program for the water phase. LT3VSIC is

the main program for the chemistry initialization phase. LT3VSIL

is the main program for the chemistry loop phase. The other

boxes represent subroutines and functions. The flow is: first

downward, then to the right. Thus, LT3VSIW calls RDBASE, then

FLOREAD. FLOREAD calls TESTIJ, which calls INDX. When FLOREAD

returns, LT3VSIW calls FLOOUT, then INTGRL. 	 INTGRL calls FLUID,

then SIP. SIP calls LUFACT, RESID, and DRMSEA. Then it enters a

loop during which it calls FORSUB, BAKSUB, RESID, DRMSEA, and

DELMAX. This loop computes the steady-state hydraulic pressure

field. When the loop terminates, INTGRL calls FLOWRT.

In the second diagram, LT3VSIC calls RDBASE, then CHMREAD.

CHMREAD calls GETCUF, which calls RDBASE. When CHMREAD returns,

LT3VSIC calls CHINIT, which calls COMRAT, etc.

In the third diagram, LT3VSIL calls LOOPIO, which calls

TESTIJ, etc. Then LT3VSIL calls CHLOOP. Here a choice is made:

either CHLOOP calls PREVNT, which calls INDX and COMSRC, or

CHLOOP calls COMSRC. CHLOOP then enters the major loop, which

computes the time-varying chemical concentrations and microbial

populations. Normally, PSTAR is called once, and CHLOOP calls

PREVNT, COMRAT, CLAG, MLOSS, TCMIA, and CHMWRT for each time

step. However, a test for stability is made after the call to

MLOSS; if necessary, delta T is reduced, COMSRC is called, and

CHLOOP goes back to call PSTAR again.

VI-9

	 	
Water-processing program

LT3VSIW

RDBASE FLOREAD FLOOUT INTGRL

TESTIJ
FLUID SIP FLOWRT

INDX

LUFACT RESID DRMSEA1

I
FORSUB BAKSUB	 RESID	 DRMSEA DE LMAX

Chemistry initialization program
LT3VSIC

RDBASE CHMREAD CHINIT

GETCUF
COMRAT LOSBND CHMOUT

RDBASE
VALSCH

RDBASE

CHEM

VI-3.0

	 	
Chemistry loop program

LT3VSIL

LOOPIO CHLOOP

TESTIJ

1

INDX

NZERO PREVNT

INDX COMSRC

COMSRC

PSTAR

1

NEWTWO

FEVAL

PREVNT COMRAT1 CLAG MLOSS

INDX COMSRC COMSRC

TCMIA
1

CHMWRT

R-1

REFERENCES

Lindstrom, F. T., L. Boersma, D. Myrold, and M. Barlaz. 1990.

Denitrification in nonhomogeneous laboratory scale aquifers:

4. Hydraulics, nitrogen chemistry, and microbiology in a

single layer. To be published by U.S. EPA.

Stone, Herbert L. 1968. Iterative Solution of Implicit

Approximations of Multidimensional Partial Differential

Equations. Soc. Ind. Appl. Math. Journal Numer. Anal.

5, 3 (Sept. 1968) pp. 530-558.

A-1

Appendix A. Listing of LT3VSI Programs

Notice: this listing shows Version 1.3; see Section 1.2 for
information about the changes that were made in Version 1.2 to produce
this version.

The source code for LT3VSI is on the installation diskette, in the
file LT3APV.ARC. There are files named READ.ME and LT3.HLP that tell
how to install and run the programs. The listings below are divided
into two groups: (1) the "include" files are listed in alphabetic order;
(2) the Fortran modules are listed in alphabetic order. See Section VI
for more information.

Section	 contains a chart showing which include files and
modules are used in each of the three programs. The chart below is a
brief description of the file naming convention. For example, files
whose names contain the string "SIB", either in the base name or in the
extension, are used in all 3 programs. Files whose names contain "SIW"
are used only in the water program, and so on for the other strings.
There are two exceptions to this convention: the module FSECOND.APV is
used in all three programs, and the module NEWTWO.APV is used only in
the chemistry loop program.

Filename	 File is used in
contains	 WATER CHEMINIT CHEMLOOP

...SIB...	 X	 X	 X

...S1W...

...SIC...	 X

...SIK...	 X	 X

...S1L...	 X

The table below shows which Module contains each of the subroutines,
functions, or main programs used in LT3VSI. "subr" means SUBROUTINE,
"func" means FUNCTION, "d.p." means DOUBLE PRECISION, "int" means
INTEGER, "logic" means LOGICAL, "real" means REAL, and "program" means
PROGRAM. As mentioned above, the source listings of the Modules are in
alphabetic order to make them easy to find.

A-2

Subroutine
or Function	 Module

subr ARYPOL	 OUTSIB.APV
subr ARYSTR	 OUTSIB.APV
subr BAKSUB	 SIPSIW.APV
subr CHEM	 CHMSIC.APV
subr CHINIT	 INITSIC.APV
subr CHLOOP	 LOOPSIL.APV
subr CHMOUT	 RWCSIC.APV
subr CHMREAD	 RWCSIC.APV
subr CHMWRT	 CSUBSIL.APV

d.p. func CLAG	 CSUBSIL.APV
subr COMRAT	 RATSIK.APV
subr COMSRC	 LOOPSIL.APV
subr CONVTIM	 FSECOND.APV
subr DATERR	 SUBSIB.APV
subr DELMAX	 SIPSIW.APV

d.p. func DRMSEA	 SIPSIW.APV
subr FEVAL	 PSTARSIL.APV
subr FLOOUT	 RWWSIW.APV
subr FLOREAD	 RWWSIW.APV
subr FLOWRT	 RWWSIW.APV
subr FLUID	 WATSIW.APV
subr FORSUB	 SIPSIW.APV
subr GETCUF	 LT3VSIC.APV

int func INDX	 SUBSIB.APV
subr INTGRL	 ITGRSIW.APV
subr LOOPIO	 RWCSIL.APV

Subroutine
or Function	 Module

	

d.p. func LOSBND	 INITSIC.APV

	

program LT3VSIC	 LT3VSIC.APV

	

program LT3VSIL	 LT3VSIL.APV

	

program LT3VSIW	 LT3VSIW.APV

	

subr LUFACT	 LUFSIW.APV

	

d.p. func MLOSS	 LOOPSIL.APV

	

subr NEWTWO	 NEWTWO.APV

	

subr NUMFIX	 OUTSIB.APV

	

subr NUMSTR	 OUTSIB.APV

	

logic func NZERO	 RWCSIL.APV

	

subr POLAR	 OUTSIB.APV

	

subr PREVNT	 LOOPSIL.APV

	

subr PRIN3S	 OUTSIB.APV

	

subr PRINTI	 OUTSIB.APV

	

subr PRINT2	 OUTSIB.APV

	

subr PRINT3	 OUTSIB.APV

	

subr PRINT4	 OUTSIB.APV

	

subr PSTAR	 PSTARSIL.APV

	

subr RDBASE	 SUBSIB.APV

	

subr RESID	 SIPSIW.APV

	

subr SCHERR	 LT3VSIC.APV

	

real func SECOND	 FSECOND.APV
subr SIP	 SIPSIW.APV

	

subr TCMIA	 TCMSIL.APV

	

subr TESTIJ	 SUBSIB.APV

	

subr VALSCH	 LT3VSIC.APV

INCLUDE	 FILES

* Include file: CBND.SIK	 Last revision: October 9, 1990
For both chem init & chem loop phases of LT3VSI.

C
DOUBLE PRECISION ECIN, 	 ECOUT,	 EEIN,	 EEOUT,

& UIN1,	 UIN2,	 UIN3,
& UOUT1,	 UOUT2
COMMON /BOUND/ ECIN(NC), ECOUT(NC), EEIN(NC), EEOUT(NC),

& UIN1,	 UIN2(NC), UIN3(NC),
& UOUT1(NC), UOUT2(NC)

C
DOUBLE PRECISION XLYIN, XLYOUT
COMMON /GEOM3 / XLYIN, XLYOUT

* Include file: CCHEM.SIC	 Last revision: March 14, 1990
For chem init phase of LT3VSI.

C
DOUBLE PRECISION

COMMON /CHEM3 /

A-3

DLO,	 KSAND,	 KCLAY,	 KORG,
RHOSND,RHOORG,RHOCLA
DLO(NC),KSAND(NC),KCLAY(NC),KORG(NC),
RHOSND,RHOORG,RHOCLA

DOUBLE
COMMON

DOUBLE
COMMON

DOUBLE

COMMON

DOUBLE
COMMON

PRECISION DCHLX,	 DCHLXY
/CHEM5 / DCHLX(IX,IY,NC),DCHLXY(IX,IY,NC)

PRECISION XLAMIR, 	 XSLMIR
/CHEM7 / XLAMIR(IX,IY,NC), XSLMIR(IX,IY,NC)

PRECISION TORT,
PCTSAN,	 PCTCLA,	 PCTORG

/SOIL1 / TORT(IX,IY),
PCTSAN(IX,IY),PCTCLA(IX,IY),PCTORG(IX,IY)

PRECISION DISPLX,	 DISPLY
/SOIL3	 DISPLX(IX,IY,NC),DISPLY(IX,IY,NC)

* Include fi
*
C

le: CCHEM.SIK	 Last revision: October 9, 1990
For both chem init & chem loop phases of LT3VSI.

PRECISION COLD
/CHEM1 / COLD(IX,IY,NC)

PRECISION DCHLY
/CHEM6 / DCHLY(IX,IY,NC)

PRECISION RETARD,	 LAMDA
/CHEM10/ RETARD(IX,IY,NC),LAMDA(IX,IY,NC)

PRECISION CIN,	 LOUT,	 CO
/CHEM11/ CIN(NC),COUT(NC),CO(NC)

PRECISION EPS
/SOIL2 / EPS(IX,IY)

DOUBLE
COMMON

C
DOUBLE
COMMON

C
DOUBLE
COMMON

C
DOUBLE
COMMON

C
DOUBLE
COMMON

A-4

* Include file: CCHEM.SIL 	 Last revision: March 14, 1990
*	 For chem loop phase of LT3VSI.
C

DOUBLE PRECISION CNEW
COMMON /CHEM2 / CNEW(IX,IY,NC)

C
DOUBLE PRECISION CSWELN,	 QCHM1S
COMMON /CHEM4 / CSWELN(IX,IY,NC),QCHM1S(IX,IY,NC)

C
LOGICAL	 SCHED
DOUBLE PRECISION	 SOURC
COMMON /CHEM12/ SCHED, SOURC(IX,IY,NC)

* Include file: CHMAT.SIK	 Last revision: October 9, 1990
For both chem init & chem loop phases of LT3VSI.

C
DOUBLE PRECISION ALTI,	 ALT2,	 ALT3
COMMON /CMAT1 / ALT1(IX,IY,NC),ALT2(,IX,IY,NC),ALT3(IX,IY,NC)

C
DOUBLE PRECISION ADT1, 	 ADT2,	 ADT3
COMMON /CMAT2 / ADT1(IX,IY,NC),ADT2(IX,IY,NC),ADT3(IX,IY,NC)

C
DOUBLE PRECISION AUT1, 	 AUT2,	 AUT3
COMMON /CMAT3 / AUT1(IX,IY,NC),AUT2(IX,IY,NC),AUT3(IX,IY,NC)

* Include file: CNRK.SIL 	 Last revision: April 10, 1990
*	 For chem loop phase of LT3VSI.
C

DOUBLE PRECISION DT, XI, YJ, COEF
COMMON /NRK/ 	 DT, XI, YJ, COEF(8)

* Include file: CPARAM.SIK 	 Last revision: October 9, 1990

A-5

For both chem init & chem loop phases of LT3VSI.
C

DOUBLE PRECISION ALFNI1, ALF01, ALF02,
ETANI1, GAMM01, GAMMO2,
KNI1,	 KNINU1, K01,	 K02,
KONI1, KONU1, KONU2,
KSNI1, KSO1,	 KS02, KSOM1, KSOM2,
MUNI1, MU01,	 MUO2, PSI01, PSIO2,
RHOBD, THENI1, YSNI1, YSO1,	 YS02

COMMON /CPARAM/ ALFNI1, ALFO1, ALF02,
ETANI1, GAMMO1, GAMMO2,
KNI1,	 KNINU1, K01,	 K02,
KONI1, KONU1, KONU2,
KSNI1, KSO1,	 KS02, KSOM1, KSOM2,
MUNI1, MUO1,	 MUO2, PSIO1, PSIO2,
RHOBD, THENI1, YSNI1, YSO1,	 YS02

* Include file: CPROP.SIB
	

Last revision: January 31, 1990
*	 For all three phases of LT3VSI.
C
C PROPERTIES OF THE AQUIFER AND THE SOIL.
C

C

C

DOUBLE PRECISION

COMMON /GEOM1 /

INTEGER
COMMON /INDEX2/

INTEGER
DOUBLE PRECISION
COMMON /WETT.91/

XNODE,	 YNODE,	 DX,	 DY,
CONST1,CONST2,CONST3,CONST4,
RHOWAT, XLW
XNODE(IX),YNODE(IY),DX(IX),DY(IY),
CONST1,CONST2,CONST3,CONST4,
RHOWAT, XLW

NSLXM1,NSLYM1,NSLXXX,NSLYYY,NSLXP1,NSLYP1
NSLXM1,NSLYM1,NSLXXX,NSLYYY,NSLXP1,NSLYP1

NINJW
QWELIN

NINJW,QWELIN(IX,IY)

* Include file: CRUNC.SIK 	 Last revision: October 9, 1990
For both chem init & chem loop phases of LT3VSI.

CHARACTER*8	 CUFIN,CUFOUT,FILBAS,SCHBAS,WIFBAS,CHNAME(NC)*9
COMMON /CHARS / CUFIN,CUFOUT,FILBAS,SCHBAS,WIFBAS,CHNAME

DOUBLE PRECISION PSTARX,	 PSTARY
COMMON /GEOM4 / PSTARX(IX,IY,NC),PSTARY(IX,IY,NC)

DOUBLE PRECISION

COMMON /MASSES/

XMASS,
XMASIN,
XMASS(NC),
XMASIN(NC)

XMFONW,	 XMSOUR,
XMASOT
XMFONW(NC),XMSOUR(NC),
,XMASOT(NC)

DOUBLE PRECISION

COMMON /POPS /

DELTA1,
POP',
DELTA1(IX,IY)
POP1(IX,IY),

DELTA2,
POP2

, DELTA2(IX,IY),
POP2(IX,IY)

DOUBLE PRECISION RSNINU1, 	 RSONU1,	 RSONU2
COMMON /RATES / RSNINU1(IX,IY), RSONU1(IX,IY), RSONU2(IX,IY)

A-6

C
INTEGER	 NC
PARAMETER (NC=4)

C

C

C

C

C

C
INTEGER	 NPRT
DOUBLE PRECISION	 TO,TMAX,DTO,DT1
COMMON /RUNCT3/ NPRT,TO,TMAX,DT0,DT1(NC)

* Include file: CSIZE.SIB	 Last revision: August 29, 1990
*	 For all three phases of LT3VSI.
C

INTEGER	 IX,	 IY,	 JX,	 JY
PARAMETER (IX=50,IY=50,JX=IX-1,JY=IY-1)

C
INTEGER	 NFLAG
DOUBLE PRECISION	 ZTHRSH
COMMON /RUNCT1/ NFLAG(20),ZTHRSH

* Include file: CSSIP.SIW 	 Last revision: January , 1990

A-7

For Water phase of LT3VSI.
C

DOUBLE PRECISION ALT2,	 AUT2
COMMON /SSIP1 / ALT2(2:JX,2:JY),AUT2(2:JX,2:JY)

C
DOUBLE PRECISION ADT1,	 ADT3
COMMON /SSIP2 / ADT1(2:JX,2:JY),ACT3(2:JX,2:JY)

C
DOUBLE PRECISION ADT2X,	 ADT2Y
COMMON /SSIP3 / ADT2X(2:JX,2:JY),ADT2Y(2:JX,2:JY)

C
DOUBLE PRECISION B, 	 C,
COMMON /SSIP4 / B(2:JX,2:JY),C(2:JX,2:JY),D(2:JX,2:JY)

C
DOUBLE PRECISION E,
COMMON /SSIP5 / E(2:JX,2:JY),F(2:JX,2:JY)

C
DOUBLE PRECISION XDUM, 	 YDUM
COMMON /SSIP6 / XDUM(2:JX,2:JY),YDUM(2:JX,2:JY)

C
DOUBLE PRECISION DELX, 	 DELY
COMMON /SSIP7 / DELX(2:JX,2:JY),DELY(2:JX,2:JY)

C
INTEGER	 NLSOR,NMOD,NALPH
DOUBLE PRECISION	 TLRNWA,TLRNWR,ALPH,ALPHAS
COMMON /RUNCT2/ NLSOR,NMOD,NALPH,TLRNWA,TLRNWR,ALPH,ALPHAS(0:9)

* Include file: CVELOC.SIB	 Last revision: January 31, 1990
*	 For all three phases of LT3VSI.
C

INTEGER	 NFUNC
DOUBLE PRECISION	 VLXX,	 VLYY
COMMON /VELCT1/ NFUNC(IX,IY),VLXX(IX,IY),VLYY(IX,IY)

	

* Include file: CVELOC.SIK	 Last revision: October 9, 1990
For both chem init & chem loop phases of LT3VSI.

C

	

DOUBLE PRECISION UX,	 UY

A-8

COMMON /VELCT2/ UX(IX,IY,NC),UY(IX,IY,NC)

* Include file: CWAT.SIW	 Last revision: January 4, 1990
*	 For water'phase of LT3VSI.
C

CHARACTER*80	 HEAD1, HEAD2, FILBAS*8
COMMON /CHARS/ HEAD1, HEAD2, FILBAS

C
DOUBLE PRECISION HIN,HOUT,PHNEWX, 	 PHNEWY
COMMON /PRESS1/ HIN,HOUT,PHNEWX(IX,IY),PHNEWY(IX,IY)

C
DOUBLE PRECISION HOLD,	 HNEW
COMMON /STATVI/ HOLD(IX,IY),HNEW(IX,IY)

C
DOUBLE PRECISION KSATXX,	 KSATYY
COMMON /SOIL4 / KSATXX(IX,IY),KSATYY(IX,IY)

C
INTEGER	 NEXTW
DOUBLE PRECISION	 QWELOT
COMMON /WELTS2/ NEXTW,QWELOT(IX,IY)

A-9

FORTRAN MODULES

*	 File: BDATSIK.FOR	 Last revision: October 9, 1990
*

	

	
For both chem init & chem loop phases of LT3VSI.

BLOCK DATA
C

include 'CSIZE.SIB'
include 'CRUNC.SIK'

C
C
	

DEFINE NAMES OF CHEMICALS IN CHNAME ARRAY.
C

DATA CHNAME/'NUTRIENT','SUBSTRATE','OXYGEN','NITRATE'/
C

END

*	 File: CHMSIC.FOR	 Last revision: August 29, 1990
C

	

	
For chem init phase of LT3VSI.

SUBROUTINE CHEM
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIC'
include 'CCHEM.SIK'
include 'CHMAT.SIK'

C
INTEGER I, J, K
DOUBLE PRECISION CONSTX, CONSTY
DOUBLE PRECISION DXYIM, DXYIP, DXYIM, DXYJP
DOUBLE PRECISION DXXIM, DXXIP, DYYJM, DYYJP
DOUBLE PRECISION FACTOR

C
C	 DEFINE MATRIX ELEMENTS FOR CHEMICAL FIELD TIME MARCHING MATRIX.
C

DO 30, K=1,NC
DO 30, I=2,NSLXXX

CONSTX=(DX(I-1)+DX(I))/2.0D0
DO 30, J=2,NSLYYY

CONSTY=(DY(J-1)+DY(J))/2.0D0

DXYIM=(EPS(I-1,J)*DCHLXY(I-1,J,K)+

C

C

C

C

A-10

EPS(I,J)* DCHLXY(I,J,K))/(8.0D0)
DXYIP= (EPS(I,J)* DCHLXY(I,J,K) +

EPS(I+1,J)*DCHLXY(I+1,J,K))/(8.0D0)
DXYJM=(EPS(I,J-1)*DCHLXY(I,J-1,K)+

EPS(I,J)* DCHLXY(I,J,K))/(8.0D0)
DXYJP= (EPS(I,J)* DCHLXY(I,J,K) +

EPS(I,J+1)*DCHLXY(I,J+1,K))/(8.0D0)
C

DXXIM=(EPS(I-1,J)
EPS(I,J)*

DXXIP=(EPS(I,J)*
EPS(I+1,J)

*DCHLX(I-1,J,K)+
DCHLX(I,J,K))/(2.
DCHLX(I,J,K) +
*DCHLX(I+1,J,K))/(2.

ODO*DX(I-1))

ODO*DX(I))

ODO*DY(J-1))

ODO*DY(J))

C
DYYJM=(EPS(I,J-1)*DCHLY(I,J-1,K)+

EPS(I,J)* DCHLY(I,J,K))/(2.
DYYJP= (EPS(I,J)* DCHLY(I,J,K) +

EPS(I,J+1)*DCHLY(I,J+1,K))/(2.

FACTOR=1.0D0/(EPS(I,J)*CONSTX*CONSTY)

ALT1(I,J,K)= FACTOR*(DXY1M+DXYJM)
ALT2(I,J,K)= FACTOR*(CONSTY*DXXIM+(DXYJM-DXYJP))
AIT3(I,J,K)=-FACTOR*(DXYJP+DXYIM)

ADT1(I,J,K)= FACTOR*(CONSTX*DYYJM+(DXYIM-DXYIP))
ADT2(I,J,K)=-FACTOR*(CONSTY*(DXXIP+DXXIM)+

CONSTX*(DYYJP+DYYJM))
ADT3(I,J,K)= FACTOR*(CONSTX*DYYJP+(DXYIP-DXYIM))

AUT1(I,J,K)=-FACTOR*(DXYIP+DXYJM)
AUT2(I,J,K)= FACTOR*(CONSTY*DXXIP+(DXYJP-DXYJM))
AUT3(I,J,K)= FACTOR*(DXYIP+DXYJP)

C
30 CONTINUE

C
IF(NFLAG(14).EQ.0) GO TO 950

C
C++

WRITE(9,*)
WRITE(9,*)'Raw matrix elements'
WRITE(9,*)
DO 800, K=1,NC
WRITE(9,803) K
DO 800, I=2,NSLXXX

DO 800, J=2,NSLYYY
WRITE(9,802) I,J,

ALT1(I,J,K),ALT2(I,J,K),ALT3(I,J,K),
ADT1(I,J,K),ACT2(I,J,K),ADT3(I,J,K),
AUT1(I,J,K),AUT2(I,J,K),AUT3(I,J,K)

800 CONTINUE

A-11

802 FORMAT(1X,2I3,9E12.6)
803 FORMAT(1X,'K= ',I2)

WRITE(9,*)
C+++
C

950 CONTINUE
C

RETURN
END

*	 File: CSUBSIL.FOR	 Last revision: December 17, 1990
*	 Subroutines for chem loop phase of LT3VSI.
C

SUBROUTINE CHMWRT(TIME)
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
DOUBLE PRECISION TIME
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIL'

C
INTEGER K

C
2000 FORMAT(/,5X,'TIME T=',1P,G11.4,' (DAYS)',/)
2500 FORMAT(5X,'CUMULATIVE CHEMICAL MASSES (KG) FOR ',A,/

1P,/,5X,'XMASS= ',G12.5,2X,'XMFONW= ',G12.5,2X,
'XMSOUR= ',G12.5,

/,5X,'XMASIN= ',G12.5,2X,'XMASOT= ',G12.5,/)
3000 FORMAT(10X,'CHEMICAL CONCENTRATION DISTRIBUTION (KG/M- 3) FOR ',

A,/)

DO 40, K=1,NC
WRITE(3,2000) TIME
IF (NFLAG(17).NE.0)

WRITE(3,2500) CHNAME(K),XMASS(K),XMFONW(K),
XMSOUR(K),XMASIN(K),XMASOT(K)

WRITE(3,3000) CHNAME(K)
CALL PRINT3(3,NSLXP1,NSLYP1,CNEW(1,1,K))

40 CONTINUE
C

3500 FORMAT(/,10X,'DISTRIBUTION OF MICROBE POPULATION #',I1,
' (KG CELLS/KG SOIL)',/)

C
WRITE(3,3500) 1

A-12

CALL PRINT3(3,NSLXP1,NSLYP1,P0P1)
WRITE(3,3500) 2
CALL PRINT3(3,NSLXP1,NSLYP1,P0P2)

C
RETURN
END

C
C **
C
C CLAG function computes COLD(P*(i,j,n))
C Coded by Gilbert A. Bachelor, Dec. 1988.
C Modified by Gilbert A. Bachelor, Apr. 1990; Aug. 1990.
C

DOUBLE PRECISION FUNCTION CLAG(I,J,K)
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
INTEGER I, J, K
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CVELOC.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIK'
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
INTEGER P, Q

ALF,BET,GAM,DEL
DDX,DDY
P1X, P2X, P3X, P4X, P5X.
P1Y, P2Y, P3Y, P4Y, P5Y
X, Y
XX(5), YY(5)

C
C DEFINITIONS OF STATEMENT FUNCTIONS FOR 25-POINT
C LAGRANGE INTERPOLATION:
C

PlX(X)=(X-XNODE(I-1))*(X-XNODE(I))*(X-XNODE(I+1))*(X-XNODE(I+2))
P2X(X)=(X-XNODE(I-2))*(X-XNODE(I))*(X-XNODE(I+1))*(X-XNODE(I+2))
P3X(X)=(X-XNODE(I-2))*(X-XNODE(I-1))*(X-XNODE(I+1))*(X-XNODE(I+2))
P4X(X)=(X-XNODE(I-2))*(X-XNODE(I-1))*(X-XNODE(I))*(X-XNODE(I+2))
P5X(X)=(X-XMODE(I-2))*(X-XNODE(I-1))*(X-XNODE(I))*(X-XNODE(I+1))

C
P1Y(Y)=(Y-YNODE(J-1))*(Y-YNODE(J))*(Y-YNODE(J+1))*(Y-YNODE(J+2))
P2Y(Y)=(Y-YNODE(J-2))*(Y-YNODE(J))*(Y-YNODE(J+1))*(Y-YNODE(J+2))
P3Y(Y)=(Y-YNODE(J-2))*(Y-YNODE(J-1))*(Y-YNODE(J+1))*(Y-YNODE(J+2))
P4Y(Y)=(Y-YNODE(J-2))*(Y-YNODE(J-1))*(Y-YNODE(J))*(Y-YNODE(J+2))
P5Y (Y) = (Y-YNODE(J-2))*(Y-YNODE(J-1))*(Y-YNODE(J))*(Y-Y NODE(J+l))

C
C IF POINT (I,J) IS JUST INSIDE THE BOUNDARY, USE A 4-POINT METHOD
C OF INTERPOLATION; OTHERWISE, USE A 25-POINT LAGRANGE INTERPOLATION
C METHOD. HOWEVER, IF NFLAG(16) = 0, USE THE 4-POINT METHOD FOR
C ALL POINTS.

A-13

IF (NFLAG(16).EQ.0 .OR.
& I.EQ.2 .OR. I.EQ.NSLXXX .0R. J.EQ.2 .OR. J.EQ.NSLYYY) THEN

C
C COMPUTE THE COEFFICIENTS FOR THE 4-POINT METHOD, ACCORDING TO WHICH
C QUADRANT P*(I,J) IS IN.
C

ALF=COLD(I,J,K)
C

GOTO (100,200,300,400), NFUNC(I,J)
PRINT 1300,NFUNC(I,J),I,J

1300 FORMAT(1X,'NFUNC =',I4,'at I=',I3,', J=',I3)
STOP ' NFUNC OUT OF RANGE!'

C
C QUADRANT 1.
C

100 CONTINUE
BET=(COLD(I,J,K)-COLD(I-1,J,K))/DX(I-1)
GAM=(COLD(I,J,K)-COLD(I,J-1,K))/DY(J-1)
DEL=(COLD(I,J,K)+COLD(I-1,J-1,K)-COLD(I-1,J,K)-COLD(I,J-1,K))/
& (DX(I-1)*DY(J-1))

GOTO 500
C
C QUADRANT 2.
C

200 CONTINUE
BET=(COLD(I+1,J,K)-COLD(I,J,K))/DX(I)
GAM=(COLD(I,J,K)-COLD(I,J-1,K))/DY(J-1)
DEL=(COLD(I,J-1,K)+COLD(I+1,J,K)-COLD(I,J,K)-COLD(I+1,J-1,K))/
& (DX(I)*DY(J-1))

GOTO 500
C
C QUADRANT 3.
C

300 CONTINUE
BET=(COLD(I,J,K)-COLD(I-1,J,K))/DX(I-1)
GAM=(COLD(I,J+1,K)-COLD(I,J,K))/DY(J)
DEL=(COLD(I-1,J,K)+COLD(I,J+1,K)-COLD(I,J,K)-COLD(I-1,J+1,K))/
& (DX(I-1)*DY(J))

GOTO 500
C
C QUADRANT 4.
C

400 CONTINUE
BET=(COLD(I+1,J,K)-COLD(I,J,K))/DX(I)
GAM=(COLD(I,J+1,K)-COLD(I,J,K))/DY(J)
DEL=(COLD(I+1,J+1,K)+COLD(I,J,K)-COLD(I+1,J,K)-COLD(I,J+1,K))/
& (DX(I)*DY(J))

C
C ALL FOUR BRANCHES COME TOGETHER HERE.

A-14

500 CONTINUE
C
C NOW COMPUTE THE CLAG FUNCTION.
C

DDX = PSTARX(I,J,K) - XNODE(I)
DDY = PSTARY(I,J,K) - YNODE(J)

C
CLAG = ALF + . BET*DDX + GAM*DDY + DEL*DDX*DDY

C
ELSE

C
C COMPUTE QUOTIENTS USED IN COEFFICIENTS FOR 25-POINT METHOD.
C

XX(1)=P1X(PSTARX(I,J,K))/P1X(XNODE(I-2))
XX(2)=P2X(PSTARX(I,J,K))/P2X(XNODE(I-1))
XX(3)=P3X(PSTARX(I,J,K))/P3X(XNODE(I))
XX(4)=P4X(PSTARX(I,J,K))/P4X(XNODE(I+1))
XX(5)=P5X(PSTARX(I,J,K))/P5X(XMODE(I+2))

C
YY(1)=P1Y(PSTARY(I,J,K))/P1y(YNODE(J-2))
YY(2)=P2Y(PSTARY(I,J,K))/P2Y(yNODE(J-1))
YY(3)=P3Y(PSTARY(I,J,K))/P3Y(YNODE(J))
YY(4)=P4Y(PSTARY(I,J,K))/P4Y(YNODE(J+1))
YY(5)=P5Y(PSTARY(I,J,K))/P5Y(yNODE(J+2))

C
C COMPUTE CLAG.
C

CLAG=0.0D0
DO 900, P=1,5

DO 900, Q=1,5
CLAG=CLAG+COLD(I-3+P,J-3+Q,K)*XX(P)*YY(Q)

900 CONTINUE
C

ENDIF
C

RETURN
END

*	 File: FSECOND.FOR	 Last Revision: August 29, 1990
C	 For all three phases of LT3VSI

REAL FUNCTION SECOND()
*

* Interface to the appropriate system timer. At present, there is no *
* method of getting timing information which is uniform across the
* various Fortran dialects. This is to be remedied in Fortran '90.

A-15

* This routine returns the current CPU time, in seconds. This value *
* is not critical, as it is used only in an informative timing 	 *
* message. This routine must be modified to conform with whatever
* system dependent clock/timer calls are available. We have included *
* those calls which work on several systems --
* *
* If you are using Microsoft Optimizing Fortran 4.xx + invoke the
* following lines 	 	 MICROSOFT
c***
C Returns the number of seconds and hundredths of seconds elapsed
C since midnight. D. E. Cawlfield, July '89.
c***
C	 INTEGER*2 IH, IM, IS, IHU
C	 REAL	 START, DAY
C	 SAVE	 START, DAY
C	 DATA START, DAY/ 2*0.0 /
C	 CALL GETTIM(IH, IM, IS, IHU)
C	 SECOND = 3600.*IH + 60.*IM + IS + 0.01*IHU
C	 IF (SECOND+DAY+1.0 .LT. START) DAY = DAY + 86400.
C	 SECOND = SECOND + DAY
C	 START = SECOND
C	 RETURN
C	
* If you are using VMS Fortran on a VAX (or a MicroVax), invoke the
* following lines 	 	 VAX/VMS
**
* Returns the current seconds since midnight. The Vax call to
* SECNDS(X) returns the seconds since midnight minus X. 	 *
**
C	 REAL X, SECNDS
C	 X = 0.0
C	 SECOND = SECNDS(X)
C	 RETURN
C	 *
* If you are using a Floating Point Systems Scientific Computer (FPS) *
* invoke the following lines 	 FPS 	
C	 *
**
* Returns the number of current CPU seconds (the current Wall Clock *
* seconds are also available. 	 D. E. Cawlfield, July '89.
**

REAL	 CPUTIME, WCLTIME
CALL SYS $GETTIME (CPUTIME, WCLTIME)
SECOND = CPUTIME
RETURN

C
END

C
C**

*
*

*
*
*

C

A-16

SUBROUTINE CONVTIM(TOOK, IDAY, IHRS, IMIN, ISEC)
REAL	 TOOK
INTEGER IDAY, IHRS, IMIN, ISEC

**
* Conversion routine to change real TOOK into integer IDAY, IHRS, etc. *
**

IDAY = TOOK / 86400.
TOOK = MOD(TOOK, 86400.)
IHRS = TOOK / 3600.
TOOK = MOD(TOOK, 3600.)
IMIN = TOOK / 60.
ISEC = MOD(TOOK, 60.)
RETURN
END

*	 File: INITSIC.FOR	 Last revision: January 30, 1991
C

	

	
For chem init phase of LT3VSI.

SUBROUTINE CHINIT
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CVELOC.SIB'
include 'CRUNC.SIK'
include 'CBND.SIK'
include 'CCHEM.SIC'
include 'CCHEM.SIK'
include 'CPARAM.SIK'
include 'CVELOC.SIK'

C
INTEGER I, J, K
DOUBLE PRECISION LOSBND
EXTERNAL LOSBND
DOUBLE PRECISION OLDDTO, RETENT
DOUBLE PRECISION SUIN1, SUIN2(NC), SUOUT1(NC)
DOUBLE PRECISION TEMP
DOUBLE PRECISION XMAG

C SECTION 3: DYNAMIC CHEMICAL FIELD DISTRIBUTION.
C

WRITE(*,*)' A dynamic modeling of the chemical field follows.'
WRITE(*,*)

C
C SUB SECTION 3.A: COMPUTATION OF EFFECTIVE CHEMICAL-POROUS
C	 MEDIUM PROPERTIES.

A-17

C RETARDATION AND FIRST ORDER LOSS PROCESS COEFFICIENTS.
C

DO 302, K=1,NC
DO 302, I=1,NSLXP1

DO 302, J=1,NSLYPI
RETENT=(1.0DO-EPS(I,J))/EPS(I,J)*

(PCTSAN(I,J)*RHOSND*KSAND(K)+
PCTCLA(I,J)*RHOCLA*KCLAY(K)+
PCTORG (I , J) *RHOORG*KORG (K))

LAMDA(I,J,K) =RETENT*XSLMIR(I,J,K) + XLAMIR(I,J,K)
RETARD(I,J,K)=1.0DO+RETENT

302 CONTINUE
C
C CHANGE VLXX AND VLYY TO REPRESENT Ux AND Uy.
C

DO 311, I=1,NSLXP1
DO 310, J=1,NSLYP1

VLXX(I,J)=VLXX(I,J)/EPS(I,J)
VLYY(I,J)=VLYY(I,J)/EPS(I,J)

310 CONTINUE
311 CONTINUE

C
C DISPERSION COEFFICIENTS.
C

DO 300, K=1,NC
DO 300, I=2,NSLXXX
DO 300, J=1,NSLYP1

TEMP=TORT(I,J)*DLO(K)
XMAG=DSQRT(VLXX(I,J)*VLXX(I,J)+VLYY(I,J)*VLYY(I,J))
DCHLX(I,J,K)=TEMP+(DISPLY(I,J,K)*VLXX(I,J)*VLXX(I,J)+

DISPLX(I,J,K)*VLYY(I,J)*VLYY(I,J))/XMAG
DCHLY(I,J,K)=TEMP+(DISPLX(I,J,K)*VLXX(I,J)*VLXX(I,J)+

DISPLY (1 , J, K) *VLYY (1 , J) *VLYY (1 ,J)) /XMAG
IF (NFLAG(18) .NE. 0) THEN

DCHLXY(I,J,K)=(DISPLY(I,J,K)-DISPLX(I,J,K))*
VLXX(I,J)*VLYY(I,J)/XMAG

ELSE
DCHLXY(I,J,K)=0.0D0

ENDIF
300 CONTINUE

C
DO 305, K=1,NC
DO 305, J=1,NSLYP1

DCHLX(1,J,K)=TORT(1,J) *DLO(K)
DCHLY(1,J,K)=TORT(1,J)*DLO(K)
DCHLXY(1,J,K)=0.0D0
DCHLX(NSLXP1,J,K)=TORT(NSLXP1,J)*DLO(K)
DCHLY(NSLXP1,J,K)=TORT(NSLXP1,J)*DLO(K)
DCHLXY(NSLXP1,J,K)=0.0D0

305 CONTINUE

A-18

C
C COMPUTE RATES AND DELTAS.
C

CALL COMRAT
C

DO 320, I=1,NSLXP1
DO 320, J=1,NSLYP1

DELTA1(I,J) =YS01*RSONU1(I,J) + YSNI1*RSNINUI(I,J)
DELTA2(I,J)=YS02*RSONU2(I,j)

320 CONTINUE
C
C COMPUTE DTI'S (MAXIMUM DELTA-T); STABILITY CRITERION.
C

DO 341, K=1,NC
DT1(K) = 0.0D0
DO 340, I=1,NSLXXX

DO 340, J=1,NSLYYY
TEMP = (LAMDA(I,J,K)+LOSBND(I,J,K)+QWELIN(I,J)/

(EPS(I,J)*RHOWAT) +
2.0D0*(ABS(VLXX(I,J))/DX(I) +

ABS(VLYY(I,J))/DY(J) +
DCHLX(I,J,K)/DX(I)**2 +
DCHLY (I , J , K) /DY (J) **2)) /RETARD (I , J , K)

IF (TEMP .GT. DT1(K)) DT1(K) = TEMP
340 CONTINUE

IF (DT1(K) .NE. 0.0D0) THEN
DT1(K) = 1.0D0 / DT1(K)

ELSE
WRITE(*,*) ' DT1(K) = INFINITY???'
STOP 1

ENDIF
341 CONTINUE

C
C TO ENSURE STABILITY, SET DTO TO MINIMUM OF DTO AND
C DT1(K)/2 FOR K=1,...,NC. ADJUST TMAX CORRESPONDINGLY.
C

OLDDTO=DTO
DO 342, K=1,NC

IF (DT1(K)*0.5D0 .LT. DTO) DTO=DT1(K)*0.5D0
342 CONTINUE

TMAX= (TMAX-T0)*DTO/OLDDTO + TO
C
C PRINT CHEMICAL PROPERTIES ON FILE 'xxxxxxxx.CHO'
C

CALL. CHMOUT(DTO/OLDDTO)
C
C COMPUTE Ux*(.) AND Uy*(.).
C

DO 318, K=1,NC
DO 318, I=1,NSLXP1

A-19

DO 318, J=1,NSLYP1
UX(I,J,K)=VLXX(I,J)/RETARD(I,J,K)
UY(I,J,K)=VLYY(I,J)/RETARD(I,J,K)

318 CONTINUE
C

WRITE(*,*)' Setting up inlet/outlet chemical field boundary data'
WRITE(*,*)

C
C SUB SECTION 3.B: INLET AND OUTLET BOUNDARY DATA
C

SUIN1 =0.0D0
DO 350, K=1,NC

SUIN2(K) =0.0D0
SUOUT1(K)=0.0D0

350 CONTINUE
C

DO 352 I=1,NSLXXX
SUIN1=SUIN1+

DX(I)*(EPS(I,1)*VLYY(I,1)+EPS(I+1,1)*VLYY(I+1,1))/2.0D0
DO 352, K=1,NC

SUIN2(K)=SUIN2(K)+DX(I)*
(EPS(I,1)*(DCHLY(I,1,K)/DY(1)+VLYY(I,1)) +
EPS(I+1,1)*(DCHLY(I+1,1,K)/DY(1)+VLYY(I+1,1))

)/2.0D0
SUOUT1(K)=SUOUT1(K)+DX(I)*

(EPS(I,NSLYP1)*
(DCHLY(I,NSLYP1,K)/DY(NSLYYY)+VLYY(I,NSLYP1))

EPS(I+l,NSLYP1)*
(DCHLY(I+1,NSLYP1,K)/DY(NSLYYY)+VLYY(I+1,NSLYP1))

)/2.0D0
352 CONTINUE

UIN1 =SUIN1 /XNODE(NSLXP1)
DO 354, K=1,NC

UIN2(K) =SUIN2(K) /XNODE(NSLXP1)
UOUT1(K)=SUOUT1(K)/XNODE(NSLXP1)

354 CONTINUE

CALL CHEM

RETURN
END

C
C ******* ************ ** ************* * **********
C

DOUBLE PRECISION FUNCTION LOSBND(I,J,K)
C
C COMPUTES BOUND ON MICROBIAL LOSS MLOSS AT POINT (I,J) FOR
C CHEMICAL K.

C

C

C

A-20

include 'CSIZE.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIK'
include 'CPARAM.SIK'

C
INTEGER I, J, K

C
C USE ONE OF FOUR FORMULAS TO COMPUTE LOSBND, DEPENDING ON WHICH
C CHEMICAL IS INVOLVED.
C
C NUTRIENT (K=1)

IF (K .EQ. 1) THEN
LOSBNE(RHOBD/EPS(I,J))*

((PSIO1*MUO1/(YSO1*KONU1) + THENI1*MUNI1/
(YSNI1*KNINU1))*POP1(I,J) +

PSIO2*MUO2/(YS02*KONU2)*POP2(I,J))
C SUBSTRATE (K=2)

ELSEIF (K .EQ. 2) THEN
LOSBND=(RHOBD/EPS(I,J))*

((MUO1/(YSO1*KSO1) + MUNI1/(YSNI1*KSNI1))*POP1(I,J) +
MUO2/(YS02*KS02)*POP2(I,J))

C OXYGEN (K=3)
ELSEIF (K .EQ. 3) THEN

LOSBND=(RHOBD/EPS(I,J))*
((GAMM01*MU01/(YS01*K01) + ALFO1*DELTA1(I,J)/

KSOM1)*POP1(I,J) +
(GAMMO2*MUO2/(YS02*K02) + ALF02*DELTA2(I,J)/

KSOM2)*POP2(I,J))
C NITRATE (K=4)

ELSEIF (K .EQ. 4) THEN
LOSBND=(RHOBD/EPS(I,J))*

NETANI1*MUNI1/(YSNI1*KNI1) + ALFNI1*DELTA1(I,J)/
KSNI1)*POP1(I,J))

C OTHERWISE, ERROR.
ELSE
WRITE(*,*) ' Error in LOSBND: K=',K
STOP 1

ENDIF
C

RETURN
END

*	 File: ITGRSIW.FOR 	 Last revision: August 29, 1990
C

	

	
For water phase of LT3VSI.

SUBROUTINE INTGRL

A-21

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CVELOC.SIB'
include 'CSSIP.SIW'
include 'CWAT.SIW'

INTEGER I, J, IALPH
DOUBLE PRECISION CON1, CON2, CON3, CON4, CON5, CON6
LOGICAL DONE

WRITE(*,*)' Setting up inlet and exit flow field boundary data'
WRITE(*,*)

C
C SECTION 1: INLET AND EXIT PORTS (BOUNDARY DATA).
C

DO 100, I=1,NSLXP1
HOLD(I,1)=HIN
HOLD(I,NSLYPI)=HOUT
HNEW(I,1)=HIN
HNEW(I,NSLYP1)=HOUT

100 CONTINUE
C

WRITE(*,*)' Beginning master loop for the hydraulic field'
WRITE(*,*)

C
C SECTION 2: MASTER LOOP FOR THE HYDRAULIC FIELD.
C
C SUB SECTION 2A: CALL TO SUBROUTINE FLUID.
C

CALL FLUID
C
C DONE IS TRUE WHEN THE METHOD HAS CONVERGED. IALPH IS USED TO
C SELECT THE NEXT VALUE OF ALPH FROM THE ARRAY ALPHAS. THIS IS
C ONLY DONE WHEN NALPH IS > 1. THAT IS, SIP SHOULD NEVER
C RETURN WITH DONE = FALSE IF NALPH = 1.
C

IF(NFLAG(3).EQ.0) WRITE(*,2000)
2000 FORMAT(1X,'ICOUNT',T14,'ALPH',T27,1RMSEA',T41,'RMSER')

IALPH = 0
ALPH = ALPHAS(IALPH)
CALL SIP(DONE)

50 IF (.NOT. DONE) THEN
IALPH = MOD(IALPH+1, NALPH)
ALPH = ALPHAS(IALPH)
CALL SIP(DONE)
GO TO 50

ENDIF

C

C

C

A-22

WRITE(*,*)
WRITE(*,*)' Redefining hydraulic head variables'
WRITE(*,*)

C
C SUB SECTION 2B: REDEFINITION OF HYDRAULIC HEAD VARIABLES.
C

DO 201, I=2,NSLXXX
DO 200, J=2,NSLYYY

HNEW(I,J)=XDUM(I,J)
200 CONTINUE
201 CONTINUE

C
DO 210, J=2,NSLYYY
HNEW(1,J)=CONST1*HNEW(2,J)-CONST2*HNEW(3,J)
HNEW(NSLXP1,J)=-CONST4*HNEW(NSLXM1,J)+CONST3*BNEW(NSLXXX,J)

210 CONTINUE
C

WRITE(*,*)' Steady state hydraulic head calculated'
WRITE(*,*)

C
C SUBSECTION 2C: SELECT OTHER COMPONENTS AND/OR FIELDS FOR
C	 COMPUTING.
C

IF(NFLAG(1).EQ.0) GO TO 1000
C

WRITE(*,*)' Calculating required hydraulic field gradients'
WRITE(*,*)

C SUBSECTION 2D: CALCULATE REQUIRED HYDRAULIC FIELD GRADIENTS.
C
C TOP-CENTRAL-BOTTOM BOUNDARY NODES.
C

DO 231, I=2,NSLXXX
C
C TOP BOUNDARY NODES
C

CON1=-DX(I)/(DX(I-1)*(DX(I-1)+DX(I)))
CON2=1.0DO/DX(I-1)-1.0DO/DX(I)
CON3=DX(I-1)/(DX(I)*(DX(I-1)+DX(I)))
PHNEWX(I,1)=CON1*HNEW(I-1,1)+CON2*HNEW(I,1)+CON3*BNEW(I+1,1)
PHNEWY(I,1)=(HNEW(I,2)-HNEW(I,1))/Dy(1)

C
C CENTRAL NODES.
C

DO 230, J=2,NSLYYY
PHNEWX(I,J)=CON1*HNEW(I-1,J)+CON2*HNEW(I,J)+CON3*

HNEW(I+1,J)
CON4=-DY(J)/(DY(J-1)*(DY(J-1)+DY(J)))
CON5=1.0DO/DY(J-1)-1.0DO/DY(J)
CON6=DY(J-1)/(DY(J)*(DY(J-1)+DY(J)))
PHNEWY(I,J)=CON4*HNEW(I,J-1)+CON5*HNEW(I,J)+CON6*

A-23

HNEW(I,J+1)
230 CONTINUE

C
C BOTTOM BOUNDARY NODES.
C

PHNEWX(I,NSLYP1)=CON1*HNEW(I-1,NSLYP1)+CON2*HNEW(I,NSLYP1)
+CON3*HNEW(I+1,NSLYP1)

PHNEWY(I,NSLYP1)=(HNEW(I,NSLYP1)-HNEW(I,NSLYYY))/DY(NSLYYY)
231 CONTINUE

C
DO 240, J=1,NSLYP1
PHNEWX(1,J)=0.0D0
PHNEWY(1,J)=0.0D0
PHNEWX(NSLXP1,J)=0.0D0
PHNEWY(NSLXP1,J)=0.0D0

240 CONTINUE
C
C SUB SECTION 2E: CALCULATE ALL THE VELOCITY COMPONENTS
C

WRITE(*,*)' Calculating Darcy velocity components'
WRITE(*,*)

C
C DARCY VELOCITY COMPONENTS.
C

DO 251, I=1,NSLXP1
DO 250, J=1,NSLYP1

VLXX(I,J)=-KSATXX(I,J)*PHNEWX(I,J)
VLYY(I,J)=-KSATYY(I,J)*PHNEWY(I,J)

250 CONTINUE
251 CONTINUE

C
C COMPUTE APPROPRIATE VELOCITY FIELD FLAG AT EACH INTERIOR
C NODAL POINT; DEFINES NFUNC ARRAY, AS FOLLOWS:
C VLXX(I,J) > 0 AND VLYY(I,J) > 0 : NFUNC(I,J) = 1
C VLXX(I,J) < 0 AND VLYY(I,J) > 0 : NFUNC(I,J) = 2
C VLXX(I,J) > 0 AND VLYY(I,J) < 0 : NFUNC(I,J) = 3
C VLXX(I,J) < 0 AND VLYY(I,J) < 0 : NFUNC(I,J) = 4
C

DO 261, I=2,NSLXXX
DO 260, J=2,NSLYYY

NFUNC(I,J)=1
IF (VLXX(I,J).LT.0.0D0) NFUNC(I,J)=2
IF (VLYY(I,J).LT.0.0D0) NFUNC(I,J)=NFUNC(I,J)+2

260 CONTINUE
261 CONTINUE

C
C WRITE OUT THE STEADY STATE FLOW FIELD VELOCITY COMPONENTS
C

WRITE(*,*)' Printing the steady state flow field velocity comps.'
WRITE(*,*)

C

C

C

A-24

C
1000 CALL FLOWRT

C
RETURN
END

*
C

C

File: LOOPSIL.FOR

SUBROUTINE CHLOOP

Last revision: January 30, 1991
For chem loop phase of LT3VSI.

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CVELOC.SIB'
include 'CRUNC.SIK'
include 'CBND.SIK'
include 'CCHEM.SIK'
include 'CCHEM.SIL'
include 'CHMAT.SIK'
include 'CPARAM.SIK'

DOUBLE PRECISION TINY
PARAMETER (TINY=1.0D-60)

INTEGER DIVLIM
INTEGER I, J, K, KPRT
INTEGER IC, ICMAX, ICMOD, ICPRT, ICUP
DOUBLE PRECISION SUIN3(NC), SUOUT2(NC)
DOUBLE PRECISION CTEMP, TEMP, TIME

DOUBLE PRECISION CLAG, MLOSS
EXTERNAL	 CLAG, MLOSS

C
C DEFINE CHEMICAL CONCENTRATION ALONG SIDES.
C

DO 355, K=1,NC
DO 355, J=2,NSLYYY

COLD(1,J,K)=CONST1*COLD(2,J,K)-CONST2*COLD(3,J,K)
COLD(NSLXP1,J,K)=-CONST4*COLD(NSLXM1,J,K)+

CONST3*COLD(NSLXXX,J,K)
355 CONTINUE

C
C SUB SECTION 3.C: MASTER LOOP FOR THE DYNAMIC CHEMICAL FIELD.
C
C LOOP INITIALIZATION

A-25

C
WRITE(*,*)' Beginning master loop for the dynamic chemical field'
WRITE(*,*)
TIME=TO
KPRT=1
DIVLIM=10

C
C IC = ITERATION COUNT.
C ICMOD = MODULUS TELLING HOW OFTEN TO DISPLAY IC & TIME.
C ICUP = VALUE OF IC WHEN ICMOD SHOULD BE INCREASED.
C ICMAX = NUMBER OF ITERATIONS TO BE PERFORMED.
C ICPRT = VALUE OF IC FOR NEXT PRINT TIME.
C

IC=1
ICMOD=1
ICUP=10
ICMAX= (TMAX-TO)/DTO + 0.5
ICPRT=(ICMAX*KPRT + NPRT/2)/NPRT

C
IF (SCHED) THEN

CALL PREVNT(.TRUE.,TIME)
ELSE

CALL COMSRC
ENDIF

C
C INITIALIZATION THAT MUST BE REPEATED WHEN DTO IS CHANGED.
C
2900 CALL PSTAR

DO 360, K=1,NC
EEIN(K) =DEXP(-DTO*UIN2(K) /XLYIN)
EEOUT(K)=DEXP(-DTO*UOUT1(K)/XLYOUT)
ECIN(K) =1.0DO-EEIN(K)
ECOUT(K)=1.0DO-EEOUT(K)

360 CONTINUE
C
C BEGIN LOOP
C
3000 CONTINUE

C
IF (SCHED) CALL PREVNT(.FALSE.,TIME)

C
CALL COMRAT

C
C SUB SECTION 3.D: COMPUTE CHEMICAL FIELD VARIABLES.
C

DO 370, K=1,NC
DO 370, I=2,NSLXXX

DO 370, J=2,NSLYYY
TEMP=(LAMDA(I,J,K)-ADT2(I,J,K)+QWELIN(I,J)/

(RHOWAT*EPS(I,J))

A-26

)*COLD(I,J,K)
CTEMP=CLAG(I,J,K)
TEMP=CTEMP-(TEMP+MLOSS(I,J,K))*DTO/RETARD(I,J,K)
IF (TEMP.LT.O.ODO .AND. NFLAG(19).EQ.0) THEN

DTO=DTO*0.5D0
WRITE(*,9800) DTO,IC,TIME,I,J,K
WRITE(3,9800) DTO,IC,TIME,I,J,K

9800 FORMAT(1X,'DTO REDUCED TO ',1P,G11.4,' AT IC = ',I6,', TIME=',
G11.4,/,1X,'WHERE I=',I5,' J=',I5,' K=',I5)
CALL COMSRC
DIVLIM=DIVLIM-1
IF (DIVLIM.LT.0) THEN
WRITE(*,*) 'DTO reduced too many times!'
WRITE(3,*) 'DTO reduced too many times!'
STOP 1

ENDIF
GOTO 2900

ENDIF
CNEW(I,J,K)=TEMP+(DTO/RETARD(I,J,K))*

(ALT1(I,J,K)*COLD(I-1,J-1,K)+ALT2(I,J,K)*COLD(I-1,J,K)+
ALT3(I,J,K)*COLD(I-1,J+1,K)+ADT1(I,J,K)*COLD(I,J-1,K)+
ADT3(I,J,K)*COLD(I,J+1,K)+AUT1(I,J,K)*COLD(I+1,J-1,K)+
AUT2(I,J,K)*COLD(I+1,J,K)+AUT3(I,J,K)*COLD(I+1,J+1,K)+
SOURC(I,J,K))

IF (ABS(CNEW(I,J,K)) .LT. TINY) CNEW(I,J,K)=0.0D0
370 CONTINUE

C
DO 379, K=1,NC

SUIN3(K) =0.0D0
SUOUT2(K)=0.0D0

379 CONTINUE
C

DO 380, K=1,NC
DO 380, I=1,NSLXXX

SUIN3(K)=SUIN3(K)+DX(I)*
(EPS(I,1)*(DCHLY(I,1,K)/DY(1))*COLD(I,2,K)+
EPS(I+1,1)*(DCHLY(I+1,1,K)/DY(1))*COLD(I+1,2,K))/2.0D0

SUOUT2(K)=SUOUT2(K)+DX(I)*
(EPS(I,NSLYP1)*

(DCHLY(I,NSLYP1,K)/Dy(NSLyyY)+VLyy(I,NSUP1))*
COLD(I,NSLYYY,K)+

EPS(I+1,NSLYP1)*
(DCHLY(I+1,NSLYP1,K)/DY(NSLYYY)+VLYY(I+1,NSLYP1))*
COLD(I+1,NSLYYY,K)

)/2.0D0
380 CONTINUE

C
DO 381, K=1,NC

UIN3(K) =SUIN3(K) /XNODE(NSLXPI)
UOUT2(K)=SUOUT2(K)/XNODE(NSLXp1)

C

C

C

C

C

A-27

CIN(K)= CIN(K)*EEIN(K)+((CO(K)*UIN1+UIN3(K))/UIN2(K))*ECIN(K)
IF (ABS(CIN(K)) .LT. TINY) CIN(K)=0.0D0
COUT(K)=COUT(K)*EEOUT(K)+(UOUT2(K)/UOUT1(K))*ECOUT(K)
IF (ABS(COUT(K)) .LT. TINY) COUT(K)=0.0D0

381 CONTINUE
C

DO 388, K=1,NC
DO 385 I=1,NSLXP1

CNEW(I,1,K)=CIN(K)
CNEW(I,NSLYP1,K)=COUT(K)

385 CONTINUE
C

DO 388, J=1,NSLYP1
CNEW(1,J,K)=CONST1*CNEW(2,J,K)-CONST2*CNEW(3,J,K)
IF (ABS(CNEW(1,J,K)) .LT. TINY) CNEW(1,J,K)=0.0D0
CNEW(NSLXP1,J,K)=-CONST4*CNEW(NSLXM1,J,K)+

CONST3*CNEW(NSLXXX,J,K)
IF (ABS(CNEW(NSLXP1,J,K)) .LT. TINY) CNEW(NSLXP1,J,K)=0.0D0

388 CONTINUE
C
C COMPUTE NEW MICROBIAL POPULATIONS.
C

DO 400, I=1,NSLXP1
DO 400, J=1,NSLYP1

POP1(I,J)=POP1(I,J)*EXP(DT0*(YS01*RSONUMI,J)-DELTA1(I,J)+
YSNI1*RSNINU1(I,J)))

POP2(I,J)=POP2(I,J)*EXP(DT0*(Y$02*RSONU2(I,J)-DELTA2(I,J)))
400 CONTINUE

TIME=TIME+DTO

IF (NFLAG(17).NE.0) CALL TCMIA

IF (MOD(IC,ICMOD) .EQ. 0) WRITE(*,9900) IC,TIME
9900 FORMAT(1X,'IC = ',I7,' Time = ',1P,G11.4)

IC=IC+1
IF (IC .EQ. ICUP) THEN

ICMOD=ICUP
ICUP=10*ICUP

ENDIF

IF(IC.GT.ICPRT) THEN
CALL CHMWRT(TIME)
KPRT=KPRT+1
ICPRT= (ICMAX*KPRT + NPRT/2)/NPRT

ENDIF

DO 410, K=1,NC
DO 410, I=1,NSLXPI

DO 410, J=1,NSLYP1

C

C

C

A-28

COLD(I,J,K)=CNEW(I,J,K)
410 CONTINUE

C
IF(KPRT.LE.NPRT) GO TO 3000

C
TMAX=TIME
WRITE(*,9900) IC-1,TIME
WRITE(*,*)
WRITE(*,*)' Time t meets or exceeds TMAX! CEASE COMPUTING! '
WRITE(*,*)

C
RETURN
END

C
C ***** *** **** ******* *** **** ****** **** *********
C

SUBROUTINE COMSRC
C
C COMPUTES ELEMENTS OF SOURC ARRAY. CALL COMSRC AT BEGINNING OF
C CHEMICAL PROCESSING, AND WHENEVER THE CHEMICAL CONCENTRATIONS
C OF THE WELTS ARE CHANGED.
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIK'
include 'CCHEM.SIL'

INTEGER I, J, K

DO 20, K=1,NC
DO 20, I=2,NSLXXX

DO 20, J=2,NSLYYY
SOURC(I,J,K)=(QCHM1S(I,J,K)+QWELIN(I,J)*CSWELN(I,J,K))/

EPS(I,J)
20 CONTINUE

RETURN
END

C
C ******** ** ***** ** ***** ** **** ** ***** ** ***** ** *
C

SUBROUTINE PREVNT(FIRST,TIME)
C
C PROCESSES EVENTS IN SCHEDULE FILE. ALL EVENTS (IF ANY) WHOSE
C EVENT TIMES ARE LESS THAN HALF OF DELTA-T (DT0/2) AHEAD OR
C WITHIN HALF OF DELTA-T IN THE PAST ARE PROCESSED. ARGUMENT
C FIRST MUST BE .TRUE. ON THE FIRST CALL TO PREVNT, AND .FALSE.
C ON SUBSEQUENT CALLS. COMSRC IS CALLED IF FIRST IS TRUE ON

A-29

C ENTRY, OR IF ANY EVENTS ARE PROCESSED.
C THIS SUBROUTINE MUST BE CALLED *ONLY* IF THERE IS A SCHEDULE FILE.
C NO ERROR CHECKING IS DONE; VALSCH IN THE INITIALIZATION PHASE
C HAS ALREADY VALIDATED THE SCHEDULE FILE.
C

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIL'

C
DOUBLE PRECISION CONC(NC), ETIME, XI, YJ
SAVE	 CONC,	 ETIME, XI, YJ
DOUBLE PRECISION TIME
INTEGER I, J, K, INDX
EXTERNAL	 INDX
LOGICAL CHANGE, FIRST

C
10000 FORMAT(/,5X,'AT TIME T= ',1P,G11.4,

& ' (DAYS), CONCENTRATIONS OF THE',/,5X,1P,
& ' INJECTION WELL AT (1,G10.3,1,',G10.3,') WERE CHANGED TO:',
& /,3X,4(3X,A9),/,5X,4(G10.3,2X),'(KG CHEM/KG SOLN)')

C
C READ FIRST EVENT DESCRIPTION IF "FIRST" IS TRUE ON ENTRY.
C

CHANGE=FIRST
IF (FIRST) READ(4,*,END=99) ETIME,XI,YJ,(CONC(K),K=1,NC)

C
C LOOP TO PROCESS ALL ELIGIBLE EVENTS.
C

30 IF ((ETIME-TIME)	 (DTO*0.5D0)) THEN
I=INDX(NSLXP1,XNODE,XI)
J=INDX(NSLYP1,YNODE,YJ)
DO 40, K=1,NC

CSWELN(I,J,K)=CONC(K)
40	 CONTINUE

WRITE(3,10000) TIME, XI, YJ, (CHNAME(K),K=1,NC),
(CONC(K),K=1,NC)

CHANGE=.TRUE.
READ(4,*,END=99) ETIME,XI,YJ,(CONC(K),K=1,NC)
GOTO 30

ENDIF
GOTO 120

C
C AT END OF FILE, SET NEXT EVENT TIME BEYOND THE END OF RUN (TMAX).
C

99 ETIME=TMAX+DTO
C

120 IF (CHANGE) CALL COMSRC
C

RETURN

A-30

END
C
C ***
C

DOUBLE PRECISION FUNCTION MLOSS(I,J,K)
C
C COMPUTES MICROBIAL LOSS AT POINT (I,J) FOR CHEMICAL K.
C MATHEMATICAL FUNCTION NAME IS LAMBDA*(x,y,t).
C

include 'CSIZE.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIK'
include 'CPARAM.SIK'

INTEGER I, J, K, OXY
PARAMETER (OXY=3)

C
C USE ONE OF FOUR FORMULAS TO COMPUTE MLOSS, DEPENDING ON WHICH
C CHEMICAL IS INVOLVED.
C
C NUTRIENT (K=1)

IF (K .EQ. 1) THEN
MLOSS=RHOBD*(

(PSIO1*RSONU1(I,J)+THENI1*RSNINU1(I,J))*POP1(I,J)+
PSIO2*RSONU2(I,J)*POP2(I,J))

C SUBSTRATE (K=2)
ELSEIF (K .EQ. 2) THEN

MLOSS=RHOBD*(
(RSONU1(I,J)+RSNINU1(I,J))*POP1(I,J)+
RSONU2(I,J)*POP2(I,J))

C OXYGEN (K=3)
ELSEIF (K .EQ. 3) THEN

MLOSS=RHOBD*(
(GAMMOl*RSONU1(I,J)+ALF01*DELTA1(I,J)*COLD(I,J,K)/

(KSOM1+COLD(I,J,K)))*POP1(I,J)+
(GAMMO2*RSONU2(I,J)+ALF02*DELTA2(I,J)*COLD(I,J,K)/

(KSOM2+COLD(I,J,K)))*POP2(I,J))
C NITRATE (K=4)

ELSEIF (K .EQ. 4) THEN
MLOSS=RHOBD*(

(ETANI1*RSNINU1(I,J)+ALFNI1*DELTA1(I,J)*
(COLD(I,J,K)/(KNI1+COLD(I,J,K))) /

(1.0DO+COLD(I,J,OXY)/KONI1))*POP1(I,J))
C OTHERWISE, ERROR.

ELSE
WRITE(*,*) ' Error in MLOSS: K=', K
STOP 1

ENDIF
C

'RETURN

A-31

END

I	

File: LT3VSIC.FOR	 Last revision: December 14, 1990
C

	

	
For chem init phase of LT3VSI.

PROGRAM LT3VSIC
C
C ++
C
C LT3VSI : Two Dimensional Water and Chemical Transport in the
C long thin RSKERL physical aquifer. (Version 1.3)
C	 In this version, water & chemistry processing are split
C into three programs: LT3VSIW, LT3VSIC, and LT3VSIL. These
C programs allow hydraulic conductivity, porosity, and other soil
C parameters to vary in space.
C
C ++
C Nonhomogeneous and anisotropic confined aquifer - continuously
C differentiable saturated water conductivity function - no flow
C boundaries as shown in the figure (see diagram in header
C comment of the water-processing program).
C
C ++
C
C	 THIS IS A MATHEMATICAL MODEL OF THE TWO-DIMENSIONAL
C (HORIZONTAL) TRANSPORT AND FATE OF LOW WATER SOLUBILITY CHEMICALS
C IN AN AQUIFER.
C	 THESE THREE PROGRAMS ARE MODULAR IN DESIGN. COMMON BLOCKS
C AND SOME CONSTANTS (PARAMETERS) ARE DEFINED IN "INCLUDE" FILES.
C INCLUDE FILES THAT ARE USED BY ALL THREE PROGRAMS HAVE FILENAMES
C WITH THE EXTENSION "SIB". THOSE USED ONLY BY THE WATER-PROCESSING
C PROGRAM HAVE THE EXTENSION "SIW". THOSE USED ONLY BY THE
C CHEMISTRY INITIALIZATION PROGRAM HAVE THE EXTENSION "SIC".
C THOSE USED ONLY BY THE CHEMISTRY LOOP PROGRAM HAVE THE EXTENSION
C "SIL", AND THOSE USED BY BOTH CHEMISTRY PROGRAMS HAVE THE
C EXTENSION "SIK".
C	 THE MAJOR SECTIONS OF THIS, THE CHEMISTRY INITIALIZATION
C PROGRAM ARE:
C	 1) PROGRAM LT3VSIC. THE MAIN PROGRAM, WHICH DEFINES INPUT AND
C OUTPUT UNITS, READS THE "WATER INTERFACE" FILE PRODUCED BY THE
C WATER-PROCESSING PROGRAM, CALLS THE PROCESSING SUBROUTINES, AND
C
C
C
C
C THE TIME INTEGRATION OF THE DYNAMIC CHEMICAL FIELD DISTRIBUTION.

WRITES THE "CHEMISTRY INTERFACE" FILE.
2) CHMREAD. INPUT OF ALL CHEMICAL SYSTEM PARAMETERS.
3) CHMOUT. OUTPUT OF ALL CHEMICAL SYSTEM PARAMETERS.
4) CHINIT. INITIALIZES VARIABLES AND ARRAYS FOR COMPUTING

A-32

C	 5) COMRAT. COMPUTES THE UTILIZATION RATES.
C	 6) CHEM. COMPUTES MATRICES USED IN SOLVING THE CHEMICAL SYSTEM.
C	 7) VALSCH. READS AND VALIDATES THE SCHEDULE FILE.
C	 8) PRINT1, PRINT2, PRINT3, PRINT4, ARYSTR, ARYPOL, NUMSTR,
C NUMFIX, POLAR. SUBROUTINES TO PRODUCE VARIABLE-FORMAT OUTPUT.
C THESE SUBROUTINES ARE USED ALL THREE PROGRAMS.
C	 9) RDBASE, TESTIJ, INDX, DATERR. SUBROUTINES AND FUNCTIONS
C USED BY ALL THREE PROGRAMS.
C ++
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CVELOC.SIB'
include 'CRUNC.SIK'
include 'CBND.SIK'
include 'CCHEM.SIK'
include 'CHMAT.SIK'
include 'CPARAM.SIK'
include 'CVELOC.SIK'

C
INTEGER LINWID
PARAMETER (LINWIE=120)
CHARACTER HEAD1*75, HEAD2*75, IDMESS*33, LINE*(LINWID)
INTEGER I, J, K, IOERR, LENCIF
REAL CIFVER, WIFVER, IWIFVR

C..The following are for Timing purposes
INTEGER IDAY, IHRS, IMIN, ISEC
REAL	 TIMET, SECOND
EXTERNAL SECOND

C
C	 WELCOME MESSAGE
C

TIMET = SECOND()
WRITE(*,*)'	 TWO-DIMENSIONAL DYNAMIC CHEMICAL'
WRITE(*,*)'	 TRANSPORT AND FATE IN THE LONG THIN'
WRITE(*,*)'	 RSKERL PHYSICAL AQUIFER.'
WRITE(*,*)'
WRITE(*,*)
WRITE(*,*)'	 Models a 2 dimensional (horizontal) flow field'
WRITE(*,*)' for a single layer porous medium. The medium can'
WRITE(*,*)' be anisotropic as well as nonhomogeneous. The fluid'
WRITE(*,*)' velocity components must have been calculated by'
WRITE(*,*)' the water-processing program and written to an'
WRITE(*,*)' interface file. This program calculates the'
WRITE(*,*)' dispersion coefficients and other variables at each'
WRITE(*,*)' nodal point. Chemical concentrations and microbial'
WRITE(*,*)' populations are computed at each nodal point at'
WRITE(*,*)' specified time intervals. They are printed at'
WRITE(*,*)' selected times. A Finite Difference (space'

A-33

WRITE(*,*)' centered) method is used.'
WRITE(*,*)
WRITE(*,*), ++1
WRITE(*,*)' G. A. Bachelor, Sr. Systems Analyst,'
WRITE(*,*)' D. E. Cawlfield, Sr. Systems Analyst,'
WRITE(*,*)' F. T. Lindstrom, Assoc. Prof.,'
WRITE(*,*)' Soil Science Dept. Oregon State Univ.,'
WRITE(*,*)' Corvallis, OR., 97331,	 (503) 737-2441'
WRITE(*,*), ++,

C
WRITE(*,*) 'Enter base name of INTERFACE file, from Water run.'
CALL RDBASE(WIFBAS,'WIF')

C
WRITE(*,*) 'Enter base name of CHEMISTRY data file.'
CALL RDBASE(FILBAS,'CHD')

C
WRITE(*,*)

C
C UNITS 2, 9, 15, AND 16 USED FOR OUTPUT, UNITS 1 AND 8 FOR INPUT
C

C

WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)

Input file 1 is: ',FILBAS,'.CHD'
Output file 2 is: ',FILBAS,'.CHO'
Input file 8 is: ',WIFBAS,'.WIF'
Output file 9 is: ',FILBAS,'.CDB'
Output file 15 is:	 LT3VSI.CIF'
Output file 16 is:	 LT3VSI.CLD'

OPEN(UNIT=1,FILE=':HOSTCHAR:' // FILBAS // '.CHD',
STATUS='OLD')

OPEN(UNIT=2,FILE=FILBAS//'.CHO',STATUS=1UNKNOWN')
OPEN(UNIT=8,FILE=WIFBAS//'.WIF',FORM='UNFORMATTED',

ACCESS='SEQUENTIAL',STATUS='OLD',IOSTAT=I0ERR)
IF (IOERR .NE. 0) THEN

WRITE(*,*) ' Trouble Re-Opening WIF file!'
STOP 50

ENDIF
OPEN(UNIT=9,FILE=FILBAS//'.CDW,STATUS='UNKNOWN')
OPEN(UNIT=16,FILE='LT3VSI.CLD',STATUS=IUNKNOWN')

C
WRITE(*,*)' Reading interface file from ',WIFBAS,'.WIF'
WRITE(*,*)

C
WIFVER=31.0
READ(8) IWIFVR
IF (WIFVER .NE. IWIFVR) THEN

WRITE(*,*) 'Interface file is version ',IWIFVR
WRITE(*,*) 'It should be version ',WIFVER
STOP 1

ENDIF

A-34

READ(8) IDMESS
READ(8) NSLXM1,NSLYM1,NSLXXX,NSLYYY,NSLXP1,NSLYP1,NINJW
IF (NSLXPl.GT.IX .OR. NSLYP1.GT.IY) THEN

WRITE(*,*) 'Size of grid in Interface file is'
WRITE(*,*) NSLXP1,' by ',NSLYPl,', which is larger than'
WRITE(*,*) 'the maximum dimensions ',IX,' by ',IY
STOP 1

ENDIF
READ(8) NFLAG,ZTHRSH
IF (NFLAG(1) .EQ. 0) THEN

WRITE(*,*) 'NFLAG(1) = 0 in Interface file; hydraulic'
WRITE(*,*) 'velocities were not computed, so chemistry'
WRITE(*,*) 'phase cannot be run.'
STOP 1

ENDIF
READ(8) CONST1,CONST2,CONST3,CONST4,RHOWAT,XLW
READ(8) (XNODE(I),I=1,NSLXP1)
READ(8) (YNODE(J),J=1,NSLYP1)
READ(8) (DX(I),I=1,NSLXP1)
READ(8) (DY(J),J=1,NSLYP1)
DO 40, I=1,NSLXP1

READ(8) (QWELIN(I,J),J=1,NSLYP1)
READ(8) (NFUNC(I,J),J=1,NSLYP1)
READ(8) (VLXX(I,J),J=1,NSLYP1)
READ(8) (VLYY(I,J),J=1,NSLYP1)

40 CONTINUE
CLOSE(UNIT=8)

WRITE(*,*)' Interface file successfully read in.'
WRITE(*,*)

LENCIF=MAX(NSLXP1,NSLYP1,30)*8 + 4
OPEN(UNIT=15,FILE='LT3VSI.CIF',FORM='UNFORMATTED',

&	 ACCESS='SEQUENTIAL',STATUS='UNKNOWN',
RECL=LENCIF, IOSTAT=I0ERR)

IF (IOERR .NE. 0) THEN
WRITE(*,*) ' Trouble opening CIF file!'
STOP 50

ENDIF

WRITE(*,*)' Calling subroutine CHMREAD'
WRITE(*,*)
WRITE(*,*)' Reading from data file ',FILBAS,'.CHD'
WRITE(*,*)

CALL CHMREAD(HEAD1,HEAD2)
WRITE(*,*)' Chemical initialization data successfully read in°
WRITE(*,*)

WRITE(*,*)' Copying chem loop data to file LT3VSI.CLD'

A-35

WRITE(*,*)
1000 FORMAT(A)
50	 CONTINUE

READ(1,1000,END=56) LINE
DO 52, I=LINWID,2,-1

IF (LINE(I:I) .NE. ") GOTO 54
52	 CONTINUE
54	 WRITE(16,1000) LINE(1:I)

GOTO 50
56	 WRITE(*,*)' Chem loop data copied to file LT3VSI.CLD'

WRITE(*,*)
CLOSE(UNIT=1)
CLOSE(UNIT=16)

WRITE(*,*)' Writing input and calculated params. to '
FILBAS,'.CHO'

WRITE(*,*)
CALL CHINIT
WRITE(2,'(/)')
CLOSE(UNIT=2)

WRITE(*,*)' Writing interface file to LT3VSI.CIF'
WRITE(*,*)

CIFVER=83.0
WRITE(15) CIFVER
WRITE(15) ' LT3VSI.CIF CHEM INTERFACE FILE VER. 83.0 '
WRITE(15) NSLXM1,NSLYM1,NSLXXX,NSLYYY,NSLXP1,NSLYP1,NINJW
WRITE(15) NFLAG,ZTHRSH
WRITE(15) CONST1,CONST2,CONST3,CONST4,RHOWAT,XLW
WRITE(15) (XNODE(I),I=1,NSLXP1)
WRITE(15) (YNODE(J),J=1,NSLYP1)
WRITE(15) (DX(I),I=1,NSLXP1)
WRITE(15) (DY(J),J=1,NSLYP1)
WRITE(15) CUFIN,CUFOUT,FILBAS,SCHBAS,WIFBAS
WRITE(15) HEAD1,HEAD2
WRITE(15) NPRT,TO,TMAX,DTO,UIN1,XLYIN,XLYOUT
WRITE(15) ALFNI1, ALF01, ALF02,

ETANI1, GAMM01, GAMMO2,
KNI1,	 KNINU1, K01,	 K02

WRITE(15) KONI1, KONU1, KONU2,
KSNI1, KS01,	 KS02, KSOM1, KSOM2

WRITE(15) MUNI1, MU01, 	 MUO2, PSI01, PSIO2,
RHOBD, THENI1, YSNI1, YSO1, 	 YS02

DO 60, I=1,
WRITE(15)
WRITE(15)
WRITE(15)
WRITE(15)

NSLXP1
(QWELIN(I,J),J=1,NSLYP1)
(NFUNC(I,J),J=1,NSLYP1)
(VLXX(I,J),J=1,NSLYP1)
(VLYY(I,J),J=1,NSLYP1)

A-36

C

WRITE(15)
WRITE(15)
WRITE(15)
WRITE(15)
WRITE(15)
WRITE(15)
WRITE(15)
WRITE(15)

60 CONTINUE

(EPS(I,J),J=1,NSLYP1)
(POP1(I,J),J=1,NSLYP1)
(POP2(I,J),J=1,NSLYP1)
(DELTA1(I,J),J=1,NSLYP1)
(DELTA2(I,J),J=1,NSLYP1)
(RSNINU1(I,J),J=1,NSLYP1)
(RSONU1(I,J),J=1,NSLYP1)
(RSONU2(I,J),J=1,NSLYP1)

DO 70, K=1,NC
WRITE(15) DT1 (K)
WRITE(15) XMASS(K),XMFONW(K),XMSOUR(K),XMASIN(K),XMASOT(K)
WRITE(15) ECIN(K),ECOUT(K),EEIN(K),EEOUT(K),

UIN2 (K) , UIN3 (K) ,UOUT1 (K) ,UOUT2 (K)
WRITE(15) CIN(K),COUT(K),CO(K)
DO 70, I=1,NSLXP1

WRITE(15) (PSTARX(I,J,K),J=1,NSLYP1)
WRITE(15) (PSTARY(I,J,K),J=1,NSLYP1)
WRITE(15) (COLD(I,J,K),J=1,NSLYP1)
WRITE(15) (DCHLY(I,J,K),J=1,NSLYP1)
WRITE(15) (RETARD(I,J,K),J=1,NSLYP1)
WRITE(15) (LAMDA(I,J,K),J=1,NSLYP1)
WRITE(15) (ALT1(I,J,K),J=1,NSLYP1)
WRITE(15) (ALT2(I,J,K),J=1,NSLYP1)
WRITE(15) (ALT3(I,J,K),J=1,NSLYP1)
WRITE(15) (ADT1 (I , J, K) , J=1 , NSLYP1)
WRITE(15) (ADT2(I,J,K),J=1,NSLYP1)
WRITE(15) (ADT3(I,J,K),J=1,NSLYP1)
WRITE(15) (AUT1 (I , J , K) , J=1 , NSLYP1)
WRITE(15) (AUT2(I,J,K),J=1,NSLYP1)
WRITE(15) (AUT3(I,J,K),J=1,NSLYP1)
WRITE(15) (UX(I,J,K),J=1,NSLYP1)
WRITE(15) (UY(I,J,K),J=1,NSLYP1)

70 CONTINUE
CLOSE(UNIT=15)

TIMET = SECOND() - TIMET
CALL CONVTIM(TIMET, IDAY, IHRS, IMIN, ISEC)
WRITE(*,2210) IDAY, IHRS, IMIN, ISEC
WRITE(9,2210) IDAY, IHRS, IMIN, ISEC
WRITE(9,'(/)')
CLOSE(UNIT=9)
WRITE(*,*)' End of chemical initialization phase.'
STOP' Normal Fortran Termination'

2210 FORMAT(/,1X,'CPU time for Chem Init was ', 12.2, ' days, ',
& 12.2, ' hours, ', 12.2, ' minutes, and ', 12.2, ' sec. ')

END

C

C

C

C

C

C

C

A-37

C ** ****** ****** ****** ******** ***** ****** * *
C

SUBROUTINE GETCUF
C
C READ BASE NAMES FOR INPUT AND/OR OUTPUT UNFORMATTED CHEMICAL
C CONCENTRATION FILES, IF SPECIFIED BY NFLAGS.
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CRUNC.SIK'

INTEGER IOERR

IF(NFLAG(5).NE.0) THEN
WRITE(*,*) 'Enter base name of UNFORMATTED chem INPUT file.'
CALL RDBASE(CUFIN,'CUF')
WRITE(*,*) ' Input file 10 is: ',CUFIN,'.CUF'
OPEN(UNIT=10,FILE=CUFIN//'.CUF',FORM='UNFORMATTED',

ACCESS='SEQUENTIAL',STATUS='OLD',IOSTAT=I0ERR)
IF (IOERR .NE. 0) THEN

WRITE(*,*) ' Cannot re-open input CUF file?'
STOP 50

ENDIF
ENDIF

IF(NFLAG(6).NE.0) THEN
WRITE(*,*) 'Enter base name of UNFORMATTED chem OUTPUT file.'
CALL RDBASE(CUFOUT,'CUF')

ENDIF

RETURN
END

C
C ***'
C

SUBROUTINE VALSCH
C
C READ AND VALIDATE THE SCHEDULE FILE; PRINT LISTING ON .CHO FILE.
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CRUNC.SIK'
CHARACTER STRING*75
DOUBLE PRECISION DATA(NC+3), ETIME, PTIME, XI, YJ
EQUIVALENCE (ETIME,DATA(1)), (XI,DATA(2)), (YJ,DATA(3))
INTEGER I, J, INDX, K
EXTERNAL INDX
LOGICAL ERR, NEG

C

A-38

1000 FORMAT(A)
1010 FORMAT(5X,A)
C

WRITE(*,*) 'Enter base name of SCHEDULE data file.'
CALL RDBASE(SCHBAS,'SCH')
WRITE(*,*) ' Input file 4 is: ',SCHBAS,'.SCH'
OPEN(UNIT=4,FILE=SCHBAS/p.SCH',STATUS='OLD')

C
WRITE(*,*) ' Validating the Schedule file.'
WRITE(*,*)

C
WRITE(2,2000)

2000 FORMAT(/,10X,'LISTING OF SCHEDULE FILE.',/)
C

READ (4,1000) STRING
WRITE(2,1010) STRING
READ (4,1000) STRING
WRITE(2,1010) STRING

C
READ (4,1000) STRING

C
WRITE(2,2010) (CHNAME(K),K=1,NC)

2010 FORMAT(/,T8,'ETIME',T18,'XI',T28,1yJ',T36,4(1X,A9),/)
PTIME=0.0D0
ERR=.FALSE.

C
C LOOP UNTIL END-OF-FILE
C
20	 CONTINUE

READ(4,*,END=99,ERR=50) (DATA(K),K=1,NC+3)
CALL ARYSTR(DATA,1,NC+3,1,10,STRING)
WRITE(2,1010) STRING
IF (ETIME.LT.PTIME)

CALL SCHERR('*** Event time less than previous event time.',
STRING,ERR)

PTIME=ETIME
I=INDX(NSLXP1,XNODE,XI)
J=INDX(NSLYP1,YNODE,YJ)
IF (I.LT.1 .OR. J.LT.1)

CALL SCHERR('*** Invalid coordinates (XI and/or YJ).',
STRING,ERR)

NEG=.FALSE.
DO 30, K=4,NC

IF (DATA(K).LT.0.0D0) NEG=.TRUE.
30	 CONTINUE

IF (NEG)
CALL SCHERR('*** Negative Concentration(s).',

STRING,ERR)
IF (I.GE.1 .AND. J.GE.1 .AND. QWELIN(I,J).EQ.0.0D0)

CALL SCHERR('*** No injection well at location (XI,YJ).',

A-39

STRING, ERR)
GOTO 20

C
C FORMAT ERROR IN DATA.
C
50	 IF (.NOT. ERR) WRITE(9,2030)
2030 FORMAT(1X,'*** Errors in Schedule File ***')

BACKSPACE(UNIT=4)
READ (4,1000) STRING
WRITE(2,1010) STRING
WRITE(9,1010) STRING
WRITE(2,2040) NC+3
WRITE(9,2040) NC+3

2040 FORMAT('*** Invalid data: should be ',I2,' numbers.
ERR=.TRUE.

GOTO 20
C
C END OF FILE
C
99	 IF (ERR) THEN

WRITE(*,*) ' *** Errors in Schedule File. See ',
FILBAS,'.CDB file. ***'

STOP 1
ENDIF

C
CLOSE(UNIT=4)
RETURN
END

C
C ***
C

SUBROUTINE SCHERR(MESS,STRING,ERR)
C
C WRITE ERROR MESSAGE ON .CHO FILE (UNIT 2) AND ON .CDB FILE (UNIT 9),
C AND SET ERR FLAG.
C

CHARACTER MESS*(*), STRING*(*)
LOGICAL ERR

C
IF (.NOT. ERR) WRITE(9,4000)

4000 FORMAT(1X, 1 *** Errors in Schedule File
WRITE(9,4010) STRING

4010 FORMAT(5X,A)
WRITE(9,*) MESS
WRITE(2,*) MESS
ERR=.TRUE.

C
RETURN
END

A-40

*	 File: LT3VSIL.FOR
	 Last revision: December 17, 1990

C

	

	 For chem loop phase of LT3VSI.
PROGRAM LT3VSIL

C
C ++
C
C LT3VSI : Two Dimensional Water and Chemical Transport in the
C long thin RSKERL physical aquifer. (Version 1.3)
C	 In this version, water & chemistry processing are split
C into three programs: LT3VSIW, LT3VSIC, and LT3VSIL. These
C programs allow hydraulic conductivity, porosity, and other soil
C parameters to vary in space.
C
C ++
C Nonhomogeneous and anisotropic confined aquifer - continuously
C differentiable saturated water conductivity function - no flow
C boundaries as shown in the figure (see diagram in header
C comment of the water-processing program).
C
C ++
C
C	 THIS IS A MATHEMATICAL MODEL OF THE TWO-DIMENSIONAL
C (HORIZONTAL) TRANSPORT AND FATE OF LOW WATER SOLUBILITY CHEMICALS
C IN AN AQUIFER.
C	 THESE THREE PROGRAMS ARE MODULAR IN DESIGN. COMMON BLOCKS
C AND SOME CONSTANTS (PARAMETERS) ARE DEFINED IN "INCLUDE" FILES.
C :INCLUDE FILES THAT ARE USED BY ALL THREE PROGRAMS HAVE FILENAMES
C WITH THE EXTENSION "SIB". THOSE USED ONLY BY THE WATER-PROCESSING
C PROGRAM HAVE THE EXTENSION "SIW". THOSE USED ONLY BY THE
C CHEMISTRY INITIALIZATION PROGRAM HAVE THE EXTENSION "SIC".
C WHOSE USED ONLY BY THE CHEMISTRY LOOP PROGRAM HAVE THE EXTENSION
C "SIL", AND THOSE USED BY BOTH CHEMISTRY PROGRAMS HAVE THE
C EXTENSION "SIK".
C	 THE MAJOR SECTIONS OF THIS, THE CHEMISTRY LOOP PROGRAM ARE:
C	 1) PROGRAM LT3VSIL. THE MAIN PROGRAM, WHICH DEFINES INPUT AND
C OUTPUT UNITS, READS THE "CHEMISTRY INTERFACE" FILE PRODUCED BY THE
C CHEMISTRY INITIALIZATION PROGRAM, AND CALLS THE CHLOOP SUBROUTINE.
C	 2) CHLOOP. COMPUTES TIME INTEGRATION OF THE DYNAMIC CHEMICAL
C FIELD DISTRIBUTION.
C	 3) LOOPIO. READS DATA FOR THE CHEMICAL LOOP AND LISTS IT.
C	 4) CHMWRT. OUTPUT OF THE DYNAMIC CHEMICAL DISTRIBUTION AT
C SELECTED VALUES OF TIME.
C	 5) COMSRC. COMPUTES ELEMENTS OF SOURC ARRAY.
C	 6) PREVNT. PROCESSES "EVENTS" IN THE SCHEDULE FILE, TO CHANGE
C CONCENTRATIONS OF CHEMICALS AT THE INJECTION WELLS.
C	 7) PSTAR. COMPUTES COORDINATES OF P* POINTS FOR CHEMICAL

A-41

C CONCENTRATION.
C	 8) NEWTWO. SOLVES TWO-DIMENSIONAL NON-LINEAR SYSTEM BY
C NEWTON-RAPHSON METHOD.
C	 9) FEVAL. COMPUTES VALUES OF FUNCTIONS AND DERIVATIVES FOR
C NEWTWO.
C	 10) COMRAT. COMPUTES THE UTILIZATION RATES.
C	 11) MIOSS. COMPUTES MICROBIAL LOSSES.
C	 12) CLAG. A FUNCTION USED BY CHLOOP TO COMPUTE CHEMICAL
C CONCENTRATIONS AT THE P* POINTS.
C	 13) TCMIA. COMPUTES TOTAL CHEMICAL MASS IN AQUIFER, ETC.
C	 14) PRINT1, PRINT2, PRINT3, PRINT4, ARYSTR, ARYPOL, NUMSTR,
C NUMFIX, POLAR. SUBROUTINES TO PRODUCE VARIABLE-FORMAT OUTPUT.
C THESE SUBROUTINES ARE USED BY BOTH PROGRAMS.
C	 15) RDBASE, TESTIJ, INDX, DATERR. SUBROUTINES AND FUNCTIONS
C USED BY ALL THREE PROGRAMS.
C ++
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CVELOC.SIB'
include 'CRUNC.SIK'
include 'CBND.SIK'
include 'CCHEM.SIK'
include 'CCHEM.SIL'
include 'CHMAT.SIK'
include 'CPARAM.SIK'
include 'CVELOC.SIK'

C
CHARACTER HEAD1*75, HEAD2*75, IDMESS*42
INTEGER I, J, K, IOERR, LENCUF
REAL'CIFVER, CUFVER, ICIFVR

C..The following are for Timing purposes
INTEGER IDAY, IHRS, IMIN, ISEC
REAL	 TIMEI, TIMET, SECOND
EXTERNAL SECOND

C
TIMET = SECOND()

WRITE(*,*)
C
C UNIT 15 USED TO READ INTERFACE FILE
C

WRITE(*,*) ' Input file 15 is: 	 LT3VSI.CIF'
WRITE(*,*)

C
OPEN(UNIT=15,FILE='LT3VSI.CIF',FORM='UNFORMATTED',

ACCESS='SEQUENTIAL',STATUS='OLD',IOSTAT=I0ERR)
IF (IOERR .NE. 0) THEN

WRITE(*,*) ' Trouble Re-Opening CIF file!'

A-42

STOP 50
ENDIF

WRITE(*,*)' Reading interface file from LT3VSI.CIF'
WRITE(*,*)

CIFVER=83.0
READ(15) ICIFVR
IF (CIFVER .NE. ICIFVR) THEN

WRITE(*,*) 'Interface file is version ',ICIFVR
WRITE(*,*) 'It should be version ',CIFVER
STOP 1

ENDIF
READ(15) IDMESS
READ(15) NSLXM1,NSLYM1,NSLXXX,NSLYYY,NSLXP1,NSLyP1,NINJW
IF (NSLXPl.GT.IX .OR. NSLYP1.GT.IY) THEN

WRITE(*,*) 'Size of grid in Interface file is'
WRITE(*,*) NSLXP1,' by ',NSLYP1,', which is larger than'
WRITE(*,*) 'the maximum dimensions ',IX,' by ',IY
STOP 1

ENDIF
READ(15) NFLAG,ZTHRSH
READ(15) CONST1,CONST2,CONST3,CONST4,RHOWAT,XLW
READ(15) (XNODE(I),I=1,NSLXP1)
READ(15) (YNODE(J),J=1,NSLYP1)
READ(15) (DX(I),I=1,NSLXP1)
READ(15) (DY(J),J=1,NSLYP1)
READ(15) CUFIN,CUFOUT,FILBAS,SCHBAS,WIFBAS
READ(15) HEAD1,HEAD2
READ(15) NPRT,TO,TMAX,DTO,UIN1,XLYIN,XLYOUT
READ(15) ALFNI1, ALFO1, ALFO2,

ETANI1, GAMM01, GAMMO2,
KNI1,	 KNINU1, K01,	 KO2

READ(15) KONI1, KONU1, KONU2,
KSNI1, KSO1,	 KSO2, KSOM1, KSOM2

READ(15) MUNI1, MUO1,	 MUO2, PSIO1, PSIO2,
RHOBD, THENI1, YSNI1, YSO1, 	 YSO2

DO 60, I=1,NSLXP1
READ(15) (QWELIN(I,J),J=1,NSLYP1)
READ(15) (NFUNC(I,J),J=1,NSLYP1)
READ(15) (VLXX(I,J),J=1,NSLYP1)
READ(15) (VLYY(I,J),J=1,NSLYP1)
READ(15) (EPS(I,J),J=1,NSLYP1)
READ(15) (POP1(I,J),J=1,NSLYP1)
READ(15) (POP2(I,J),J=1,NSLYP1)
READ(15) (DELTA1(I,J),J=1,NSLYP1)
READ(15) (DELTA2(I,J),J=1,NSLYP1)
READ(15) (RSNINU1(I,J),J=1,NSLYP1)
READ(15) (RSONU1(I,J),J=1,NSLYP1)

A-43

READ(15) (RSONU2(I,J),J=1,NSLYP1)
60 CONTINUE

C
DO 70, K=1,NC

READ(15) DT1(K)
READ(15) XMASS(K),XMFONW(K),XMSOUR(K),XMASIN(K),XMASOT(K)
READ(15) ECIN(K),ECOUT(K),EEIN(K),EEOUT(K),

UIN2(K),UIN3(K),UOUT1(K),UOUT2(K)
READ(15) CIN(K) ,COUT(K) ,CO(K)
DO 70, I=1,NSLXP1

READ(15) (PSTARX(I,J,K),J=1,NSLYP1)
READ(15) (PSTARY(I,J,K),J=1,NSLYP1)
READ(15) (COLD(I,J,K),J=1,NSLYP1)
READ(15) (DCHLY(I,J,K),J=1,NSLYP1)
READ(15) (RETARD(I,J,K),J=1,NSLYP1)
READ(15) (LAMDA(I,J,K),J=1,NSLYP1)
READ(15) (ALT1(I,J,K),J=1,NSLYP1)
READ(15) (ALT2(I,J,K),J=1,NSLYP1)
READ(15) (ALT3(I,J,K),J=1,NSLYP1)
READ(15) (ADT1(I,J,K),J=1,NSLYP1)
READ(15) (ADT2(I,J,K),J=1,NSLYP1)
READ(15) (ADT3(I,J,K),J=1,NSLYP1)
READ(15) (AUT1(I,J,K),J=1,NSLYP1)
READ(15) (AUT2(I,J,K),J=1,NSLYP1)
READ(15) (AUT3(I,J,K),J=1,NSLYP1)
READ(15) (UX(I,J,K),J=1,NSLYP1)
READ(15) (UY(I,J,K),J=1,NSLYP1)

70 CONTINUE
CLOSE(UNIT=15)

C
WRITE(*,*)' Interface file successfully read in.'
WRITE(*,*)

C
C UNITS 2, 3, 9, AND 11 USED FOR OUTPUT, UNITS 1 AND 4 FOR INPUT
C

WRITE(*,*) ' Input file 1 is: 	 LT3VSI.CLD'
OPEN(UNIT=1,FILE='LT3VSI.CLD',STATUS='OLD')

C
WRITE(*,*) ' Output file 2 is: ',FILBAS,'.CHO'
OPEN(UNIT=2,FILE=FILBAS//'.CHO',STATUS='OLD')

40 CONTINUE
READ(2,'()',END=44)

GOTO 40
44 BACKSPACE(UNIT=2)

C
WRITE(*,*) ' Output file 3 is: ',FILBAS,'.CNC'
OPEN(UNIT=3,FILE=FILBAS//'.CNC',STATUS='UNKNOWN')

C
IF (NFLAG(4).NE.0 .AND. NINJW.NE.0) THEN

WRITE(*,*) ' Input file 4 is: ',SCHBAS,'.SCH'

C

C

A-44

OPEN(UNIT=4,FILE=SCHBAS//'.SCH',STATUS='OLD')
READ(4,'(//)')
SCHEE=.TRUE.

ELSE
SCHED.FALSE.

ENDIF

WRITE(*,*) ' Output file 9 is: ',FILBAS,'.CDB'
OPEN(UNIT=9,FILE=FILBAS/p.CDIP,STATUS='OLD')

50 CONTINUE
READ(9,'()',END=54)

GOTO 50
54 BACKSPACE(UNIT=9)

IF (NFLAG(6).NE.0) THEN
WRITE(*,*) ' Output file 11 is: ',CUFOUT,'.CUF'
LENCUF = MAX(NSLXP1,20)*8 + 4
OPEN(UNIT=11,FILE=CUFOUT//'.CUF',FORM='UNFORMATTED',

ACCESS='SEQUENTIAL',STATUS='UNKNOWN',
RECL=LENCUF, IOSTAT=I0ERR)

IF (IOERR .NE. 0) THEN
WRITE(*,*) ' Cannot open output CUF file?'
STOP 60

ENDIF
ENDIF
WRITE(*,*)

C
C READ CHEM LOOP DATA AND PRINT IT.
C

WRITE(*,*) ' Calling subroutine LOOPIO to read from data file'
WRITE(*,*) ' LT3VSI.CLD and write on output file ',FILBAS,'.CHO'
WRITE(*,*)
CALL LOOPIO
CLOSE(UNIT=1)
CLOSE(UNIT=2)
WRITE(*,*) ' Chemical loop data successfully read in'
WRITE(*,*)

C
C WRITE HEADINGS ON FILE txxxxxxxx.CNC'
C

WRITE(3,2300) HEAD1
WRITE(3,2300) HEAD2

2300 FORMAT(5X,A)
WRITE(3,98765)

98765 FORMAT(/,
& 5X,'** NOTE! SI units are indicated, but any units **
& /,5X,'** can be used, as long as they are CONSISTENT. **')
WRITE(3,9400)

9400 FORMAT(/,10X,'OUTPUT DATA FOR CHEMICAL SYSTEM')
WRITE(3,9410) ZTHRSH

A-45

9410 FORMAT(/,5X,'ZTHRSH= ',G12.5)
IF (NFLAG(16).EQ.0) J=4
IF (NFLAG(16).NE.0) J=25
WRITE(3,9500) NFLAG(16), J

9500 FORMAT(/,5X,'NFLAG(16) =',I2,'; USING °,12,
'-POINT INTERPOLATION METHOD.')

IF (NFLAG(17).EQ.0) WRITE(3,9600)
9600 FORMAT(/,5X,'NFLAG(17) = 0; XMASS ET AL WILL NOT ',

'BE COMPUTED OR PRINTED.')
C
C CALL CHLOOP SUBROUTINE TO COMPUTE THE CHEMICAL CONCENTRATIONS
C AT TIME STEPS SPECIFIED BY TO, DTO, TMAX.
C

WRITE(*,*)' Calling CHLOOP subroutine.'
WRITE(*,*)

C..Time integration time separately
TIMEI = SECOND()
CALL CHLOOP
TIMEI = SECOND() - TIMEI

C
WRITE(*,*)' Chemical conc. distrib. written to ',FILBAS,'.CNC'
WRITE(*,*)
CUFVER=132.0
IF (NFLAG(6).NE.0) THEN

WRITE(*,*)' Writing final chem. conc. distr. to '
CUFOUT,'.CUF°

WRITE(11) CUFVER
WRITE(11) NSLXP1,NSLYP1,TMAX
DO 80, K=1,NC

WRITE(11) CIN(K),COUT(K),XMASS(K),XMFONW(K),XMSOUR(K),
XMASIN(K),XMASOT(K)

DO 80, J=1,NSLYP1
WRITE(11) (CNEW(I,J,K),I=1,NSLXP1)

80	 CONTINUE
DO 90, J=1,NSLYP1

WRITE(11) (POP1(I,J),I=1,NSLXP1)
WRITE(11) (POP2(I,J),I=1,NSLXP1)

90	 CONTINUE
WRITE(*,*)

ENDIF
C

TIMET = SECOND() - TIMET
CALL CONVTIM(TIMEI, IDAY, IHRS, IMIN, ISEC)
WRITE(*,2200) IDAY, IHRS, IMIN, ISEC
WRITE(9,2200) IDAY, IHRS, IMIN, ISEC
CALL CONVTIM(TIMET, IDAY, IHRS, IMIN, ISEC)
WRITE(*,2210) IDAY, IHRS, IMIN, ISEC
WRITE(9,2210) IDAY, IHRS, IMIN, ISEC
WRITE(*,*)' End of this simulation run.'
STOP' Normal Fortran Termination'

A-46

C
2200 FORMAT(/ ,1X,'(Integration time was ', 12.2,

&	 12.2,	 ' hours,	 ',	 12.2,	 ' minutes,	 and	 ',
' days,
12.2,	 '

',
sec.)')

2210 FORMAT(/ ,1X,'CPU time for Chem Loop was ',
&	 12.2,	 ' hours,	 ',	 12.2,	 ' minutes,	 and	 ',

12.2,
12.2,

'
'
days,	 ',
sec.')

END

File: LT3VSIW.FOR	 Last revision: December 17, 1990
C

	

	
For water phase of LT3VSI.

PROGRAM LT3VSIW
C
C ++
C
C LT3VSI : Two Dimensional Water and Chemical Transport in the
C long thin RSKERL physical aquifer. (Version 1.3)
C	 In this version, water & chemistry processing are split
C into three programs: LT3VSIW, LT3VSIC, and LT3VSIL. These
C programs allow hydraulic conductivity, porosity, and other soil
C parameters to vary in space. This version uses the Strongly
C Implicit (SIP) method to solve the steady-state hydraulic
C problem.
C
C ++
C Nonhomogeneous and anisotropic confined aquifer - continuously
C differentiable saturated water conductivity function - no flow
C boundaries as shown in the figure:
C
C ++
C
C	 no flux (right hand) boundary
C	 x=Lx
C
C
C
C
C
C
C prescribed	 prescribed
C entrance	 high permeability layer 	 exit
C hydraulic	 hydraulic
C head .	 head
C
C
C
C

injection wells and extraction
wells (if any present)

A-47

C	 x=0 . 	
C	 no flux (left hand) boundary
C
C	

1

y=0	 y=Ly
C

• C
C 	
C Finite difference- linear equilibrium sorption.
C 	
C
C	 THIS IS A MATHEMATICAL MODEL OF THE TWO-DIMENSIONAL
C (HORIZONTAL) TRANSPORT AND FATE OF LOW WATER SOLUBILITY CHEMICALS
C IN AN AQUIFER.
C	 THESE THREE PROGRAMS ARE MODULAR IN DESIGN. COMMON BLOCKS
C AND SOME CONSTANTS (PARAMETERS) ARE DEFINED IN "INCLUDE" FILES.
C INCLUDE FILES THAT ARE USED BY ALL THREE PROGRAMS HAVE FILENAMES
C WITH THE EXTENSION "SIB". THOSE USED ONLY BY THE WATER-PROCESSING
C PROGRAM HAVE THE EXTENSION "SIW", AND THOSE USED ONLY BY THE
C CHEMISTRY-PROCESSING PROGRAMS HAVE EXTENSIONS "SIC", "SIK", AND
C "SIL".
C	 THE MAJOR SECTIONS OF THIS, THE WATER-PROCESSING PROGRAM ARE:
C	 1) PROGRAM LT3VSIW. THE MAIN PROGRAM, WHICH DEFINES THE INPUT
C AND OUTPUT FILES, CALLS THE PROCESSING SUBROUTINES, AND WRITES
C THE "WATER INTERFACE" FILE WHICH PASSES INFORMATION TO THE
C CHEMISTRY-PROCESSING PROGRAMS.
C	 2) FLOREAD. INPUT OF ALL FLOW SYSTEM PARAMETERS, VARIABLE
C INITIALIZATION, ETC...
C	 3) FLOOUT. OUTPUT OF ALL FLOW SYSTEM PARAMETERS.
C	 4) FLOWRT. OUTPUT OF PRESSURE FIELD; ALSO VELOCITY COMPONENTS
C IF REQUESTED.
C	 5) INTGRL. ORGANIZES THE SYSTEM FOR SOLVING THE STEADY STATE
C FLOW SYSTEM. COMPUTES VELOCITY COMPONENTS IF REQUESTED.
C	 6) FLUID. DEFINES ELEMENTS OF WATER PRESSURE FIELD MATRIX,
C AND CALCULATES THE "KNOWN" VECTOR FOR THE WATER PRESSURE
C DISTRIBUTION.
C	 7) SIP. SOLVES WATER PRESSURE HEAD SYSTEM IN THE STEADY
C STATE, USING THE STRONGLY IMPLICIT METHOD (SIP).
C	 8) LUFACT. PERFORMS AN INCOMPLETE LU FACTORIZATION.
C	 9) RESID, DRMSEA, FORSUB, BAKSUB, DELMAX. SUBROUTINES AND
C FUNCTIONS USED BY SIP.
C 10) PRINT1, PRINT2, PRINT3, PRIN3S, PRINT4, ARYSTR, ARYPOL,
C NUMSTR, NUMFIX, POLAR. SUBROUTINES TO PRODUCE VARIABLE-FORMAT
C OUTPUT. THESE SUBROUTINES ARE USED BY ALL THREE PROGRAMS.
C	 11) RDBASE, TESTIJ, INDX, DATERR. SUBROUTINES AND FUNCTIONS
C USED BY ALL THREE PROGRAMS.
C ++
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'

A-48

include 'CVELOC.SIB'
include 'CWAT.SIW'

C
INTEGER I, J, LENWIF, WIFERR
REAL WIFVER

C..The following variables are for Timing purposes . .
INTEGER IDAY, IHRS, IMIN, ISEC
REAL	 TIMEI, TIMET, SECOND
EXTERNAL SECOND

C
C	 WELCOME MESSAGE
C

TIMET = SECOND()
WRITE(*,*)'	 TWO-DIMENSIONAL STEADY WATER FLOW IN'
WRITE(*,*)'	 THE LONG THIN RSKERL PHYSICAL AQUIFER.'
WRITE(*,*)'
WRITE(*,*)
WRITE(*,*)'	 Models a 2 dimensional (horizontal) flow field'
WRITE(*,*)' for a single layer porous medium. The medium can'
WRITE(*,*)' be anisotropic as well as nonhomogeneous. Pressure '
WRITE(*,*)' and velocity components are calculated at each '
WRITE(*,*)' nodal point. The flow field is confined to '
WRITE(*,*)' the interior of the rectangular boundaries. '
WRITE(*,*)° A Finite Difference (space centered) method'
WRITE(*,*)' is used. An interface file is written which is'
WRITE(*,*)' used to pass information to the chemistry-'
WRITE(*,*)' processing programs.'
WRITE(*,*)
WRITE(*,*)' ++,
WRITE(*,*)' G. A. Bachelor, Sr. Systems Analyst,'
WRITE(*,*)' D. E. Cawlfield, Sr. Systems Analyst,'
WRITE(*,*)' F. T. Lindstrom, Assoc. Prof.,'
WRITE(*,*)' Soil Science Dept. Oregon State Univ.,'
WRITE(*,*)' Corvallis, OR., 97331, 	 (503) 737-2441'
WRITE(*,*)' ++'

C
WRITE(*,*)' Enter base name of WATER data file.'
CALL RDBASE(FILBAS,'WAD')
WRITE(*,*)

C
C UNITS 2, 3, 8, AND 9 USED FOR OUTPUT, UNIT 1 FOR INPUT
C

WRITE(*,*) ' Input file 1 is: ',FILBAS,'.WAD'
WRITE(*,*) ' Output file 2 is: ',FILBAS,'.WAO'
WRITE(*,*) ' Output file 3 is: ',FILBAS,'.WPV'
WRITE(*,*) ' Output file 8 is: ',FILBAS,'.WIF'
WRITE(*,*) ' Output file 9 is: ',FILBAS,'.WDB'
WRITE(*,*)

C
OPEN(UNIT=1,FILE= 1 :HOSTCHAR:' // FILBAS // '.WAD',

A-49

STATUS='OLD')
OPEN(UNIT=2,FILE=FILBAS//' •WAO" ,STATUS = 'UNKNOWN')
OPEN(UNIT=3,FILE=FILBAS//'.WPV',STATUS='UNKNOWN')
OPEN(UNIT=9,FILE=FILBAS/p.WDB',STATUS='UNKNOWN')

WRITE(*,*)' Calling subroutine FLOPEAD'
WRITE(*,*)
WRITE(*,*)' Reading from data file ',FILBAS,'.WAD'
CALL FLOREAD
WRITE(*,*)' All flow field data successfully read in.'
WRITE(*,*)
LENWIF=MAX(NSLXP1,NSLYP1,30)*8 + 4
OPEN(UNIT=8,FILE=FILBAS//'.WIF1,FORM='UNFORMATTED',

ACCESS='SEQUENTIAL',STATUS='UNKNOWN',
RECL=LENWIF, IOSTAT=WIFERR)

IF (WIFERR .NE. 0) THEN
WRITE(*,*) ' Trouble opening WIF file!'
STOP 50

ENDIF
C

WRITE(*,*)' Writing input and calculated params. to
FILBAS,'.WAO'

CALL FLOOUT
WRITE(*,*)

C
C BEGIN WATER PROCESSING.
C

WRITE(*,*)' Beginning water processing.'
WRITE(*,*)

C
C..Compute the *integration time* (startup is ignored). • •
C

TIMEI = SECOND()
CALL INTGRL
TIMEI = SECOND() - TIMEI

WRITE(*,*)' Pressure and velocity fields written to
FILBAS,'.WPV'

WRITE(*,*)

WRITE(*,*)' Writing interface file to ',FILBAS,'.WIF'
WRITE(*,*)

WIFVER=31.0
WRITE(8) WIFVER
WRITE(8) ' LT3VSI INTERFACE FILE VER. 31.0 '
WRITE(8) NSLXM1,NSLYM1,NSLXXX,NSLYYY,NSLXP1,NSLYP1,NINJW
WRITE(8) NFLAG,ZTHRSH
WRITE(8) CONST1,CONST2,CONST3,CONST4,RHOWAT,XLW
WRITE(8) (XNODE(I),I=1,NSLXP1)

C

C

C

C

A-50

WRITE(8) (YNODE(J),J=1,NSLYP1)
WRITE(8) (DX(I),I=1,NSLXP1)
WRITE(8) (DY(J),J=1,NSLYP1)
DO 40, I=1,NSLXP1

WRITE(8) (QWELIN(I,J),J=1,NSLYP1)
WRITE(8) (NFUNC(I,J),J=1,NSLYP1)
WRITE(8) (VLXX(I,J),J=1,NSLYP1)
WRITE(8) (VLYY(I,J),J=1,NSLYP1)

40 CONTINUE
C

TIMET = SECOND() - TIMET
CALL CONVTIM(TIMEI, IDAY, IHRS, IMIN, ISEC)
WRITE(*,2200) IDAY, IHRS, IMIN, ISEC
WRITE(9,2200) IDAY, IHRS, IMIN, ISEC
CALL CONVTIM(TIMET, IDAY, IHRS, IMIN, ISEC)
WRITE(*,2210) IDAY, IHRS, IMIN, ISEC
WRITE(9,2210) IDAY, IHRS, IMIN, ISEC
STOP ' Normal Fortran Termination'

2200 FORMAT(1X,'Total integration time was ', 12.2, ' days, ',
&	 12.2,	 '	 hours,	 ',	 12.2,	 ' minutes,	 and	 ', 12.2, ' sec. ')

2210 FORMAT(/,1X,'Total CPU	 Clock	 time was ', 12.2, ' days, ',
&	 12.2,	 ' hours,	 ',	 12.2,	 ' minutes, and ', 12.2, ' sec. ',/)

END

*	 File: LUFSIW.FOR 	 Last revision: August 29, 1990
C	 For water phase of LT3VSI.

SUBROUTINE LUFACT

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CSSIP.SIW'

INTEGER	 I, J, II, JJ
DOUBLE PRECISION SAXY

C
C The following is a STATEMENT FUNCTION.
C

SAXY(II,JJ) = ADT2X(II,JJ) + ADT2Y(II,JJ)
C
**
* Perform a one-pass incomplete LU factorization (Stone, 1968).
* Variables --
* B(i,j)	 - small b-ij, lower band

C(i,j)	 11	 c-ij, lower off-diagonal

C

C

A-51
•

D(i,j)	 -	 "	 d-ij, diagonal
E(i,j)	 -	 "	 e-ij, upper off-diagonal
F(i,j)	 "	 f-ij, upper band
ALPH	 - The Stone "weighting parameter", 0 <= ALPH <= 1

*
* The original LHS array ("A") is stored in banded form in the
* ADT3, ALT2 and AUT2 arrays.

David E. Cawlfield, July '89
**
C
C FIRST ROW
C

B(2,2) = 0.D0
C(2,2) = 0.D0
D(2,2) = SAXY(2,2)
E(2,2) = AET3(2,2) / D(2,2)
F(2,2) = AUT2(2,2) / D(2,2)

C
C REST OF LEFT CENTRAL BLOCK
C

DO 10, J = 3, NSLYM1
B(2,J) = 0.D0
C(2,J) = ADT1(2,J) / (1.D0 + ALPH*F(2,J-1))
D(2,J) = SAXY(2,J) + C(2,J)*(ALPH*F(2,J-1) - E(2,J-1))
E(2,J) = ADT3(2,J) / D(2,J)
F(2,J) = (AUT2(2,J) - ALPH*C(2,J)*F(2,J-1)) / D(2,J)

10 CONTINUE
C
C REST OF LEFT BOTTOM
C

B(2,NSLYYY) = 0.D0
C(2,NSLYYY) = ADT1(2,NSLYYY) / (1.D0 + ALPH*F(2,NSLYM1))
D(2,NSLYYY) = SAXY(2,NSLYYY) +

&	 C(2,NSLYYY)*(ALPH*F(2,NSLYM1) - E(2,NSLYM1))
E(2,NSLYYY) = 0.D0
F(2,NSLYYY) = (AUT2(2,NSLYYY) - ALPH*C(2,NSLYYY)*F(2,NSLYM1)) /

D(2,NSLYYY)
C
C INSIDE TOP
C

DO 30, I = 3, NSLXM1
B(I,2) = ALT2(I,2) / (1.D0 + ALPH*E(I-1,2))
C(I,2) = 0.D0
D(I,2) = SAXY(I,2) + B(I,2)*(ALPH*E(I-1,2) - F(I-1,2))
E(I,2) = (ADT3(I,2) - ALPH*B(I,2)*E(I-1,2)) / D(I,2)
F(I,2) = AUT2(I,2) / D(I,2)

C
C CENTRAL
C

DO 20, J = 3, NSLYM1

A-52

B(I,J)
C(I,J)
D(I,J)

B(I,
C(I,

E(I,J)
F(I,J)

20	 CONTINUE

= ALT2(I,J) / (1.D0 + ALPH*E(I-1,J))
= ADT1(I,J) / (1.D0 + ALPH*F(I,J-1))
= SAXY(I,J) +

J)*(ALPH*E(I-1,J) - F(I-1,J)) +
J)*(ALPH*F(I,J-1) - E(I,J-1))
= (ADT3(I,J) - ALPH*B(I,J)*E(I-1,J)) / D(I,J)
= (AUT2(I,J) - ALPH*C(I,J)*F(I,J-1)) / D(I,J)

B(I,NSLYYY) = ALT2(I,NSLYYY)
C(I,NSLYYY) = ADT1(I,NSLYYY) / (1.D0 + ALPH*F(I,NSLYM1))
D(I,NSLYYY) = SAXY(I,NSLYYY) +
& C(I,NSLYYY)*(ALPH*F(I,NSLYM1) - E(I,NSLYM1•) -
& B(I,NSLYYY)*F(I-1,NSLYYY)
E(I,NSLYYY) = 0.D0
F(I,NSLYYY) = (AUT2(I,NSLYYY) - ALPH*C(I,NSLYYY)*F(I,NSLYM1)) /

D(I,NSLYYY)
30 CONTINUE

C
C RIGHT HAND TOP
C

B(NSLXXX,2) = ALT2(NSLXXX,2) / (1.D0 + ALPH*E(NSLXM1,2))
C(NSLXXX,2) = 0.D0
D(NSLXXX,2) = SAXY(NSLXXX,2) +

B(NSLXXX,2)*(ALPH*E(NSLXM1,2) - F(NSLXM1,2))
E(NSLXXX,2) = (ADT3(NSLXXX,2) - ALPH*B(NSLXXX,2)*E(NSLXM1,2)) /

D(NSLXXX,2)
F(NSLXXX,2) = 0.D0

C
C RIGHT CENTRAL
C

DO 40, J = 3, NSLYM1
B(NSLXXX,J) = ALT2(NSLXXX,J) / (1.D0 + ALPH*E(NSLXM1,J))
C(NSLXXX,J) = ADT1(NSLXXX,J)
D(NSLXXX,J) = SAXY(NSLXXX,J) +

B(NSLXXX,J)*(ALPH*E(NSLXM1,J) - F(NSLXM1,J)) -
C(NSLXXX,J)*E(NSLXXX,J-1)

E(NSLXXX,J) = (ADT3(NSLXXX,J) - ALPH*B(NSLXXX,J)*E(NSLXMI,J)) /
D(NSLXXX,J)

F(NSLXXX,J) = 0.D0
40 CONTINUE

C
C BOTTOM ROW OF BOTTOM BLOCK
C

B(NSLXXX,NSLYYY) = ALT2(NSLXXX,NSLYYY)
C(NSLXXX,NSLYYY) = ADT1(NSLXXX,NSLYYY)
D(NSLXXX,NSLYYY) = SAXY(NSLXXX,NSLYYY) -
& C (NS LX>a , NSLYYY) *E (NS DOCX , NS LYM1) -
& B(NSLXXX,NSLYYY)*F(NSLXM1,NSLYYY)
E(NSLXXX,NSLYYY) = O.DO
F(NSLXXX,NSLYYY) = 0.D0

A-53

C
RETURN
END

*	 File: NEWTWO.FOR	 Last revision: August 29, 1990
C	 For chem loop phase of LT3VSI.
C

SUBROUTINE NEWTWO(NDIM,X,RHS,AJAC,FCT,PAR,TOLER,MITER,IERR)
INTEGER NDIM, MITER, IERR
DOUBLE PRECISION X(NDIM), RHS(NDIM), AJAC(NDIM,NDIM), PAR(*)
DOUBLE PRECISION TOLER, TOLRAN
INTEGER	 MDIM, ITER
PARAMETER (MDIM = 2)
DOUBLE PRECISION XO(MDIM), DELX(MDIM), TEST, DENOM, EPS
PARAMETER (EPS = 1.D-10)
EXTERNAL FCT

* *
NEWTWO -- Two-Dimensional Newton-Raphson Routine

* *
The two-dimensional sub-set of the GENEWT (generalized)

• Newton-Raphson Routine.
* *
• Parameters:

NDIM	 - Size of problem; number of variables & functions.
X	 - Array of independent variables, size NDIM.
RHS	 - Array of dependent function values (the right hand *

side).
AJAC	 - Array of Jacobian elements, dimension NDIM by NDIM. *
FCT	 - A user supplied external subroutine which evaluates *

both RHS and AJAC. Called with
CALL FCT(NDIM, X, RHS, AJAC, PAR)

PAR	 - An array for passing parameters into FCT, if
needed. Should be dimensioned (1) or (*) in FCT. 	 *
Not used in this version.

TOLER	 - The tolerance for convergence. A local variable, *
TOLRAN, is set equal to the square of TOLER.
TOLRAN is compared with the square of the distance *
between the old and new values of X.

MITER	 - The maximum number of iterations allowed. If
this limit is reached, the process is terminated,
and an error is indicated.

IERR	 - An error flag:
+ n = No error, number of iterations taken
+ 0 = NDIM was <= zero.
- 1 = Singular Jacobian. (not used here)

A-54

*	 - 2 = Too many iterations.
*	 - 3 = NDIM > MDIM (up MDIM & re-compile).
*
* Externals:
*

FCT(NDIM, X, RHS, AJAC, PAR)
DIMENSION X(NDIM), RHS(NDIM), AJAC(NDIM,NDIM), PAR(*)
A user supplied external subroutine (FCT) is required to fill in *

* the RHS and Jacobian elements, as described above.
*
**

IF (NDIM .LE. 0) THEN
WRITE(*,2000)
IERR = 0
RETURN

ENDIF
IF (NDIM .GT. MDIM) THEN

WRITE(*,2001)
IERR = -3

C
C
C
*

ENDIF
TOLRAN = TOLER * TOLER
WRITE(*,2050)
WRITE(*,2060)	 0 ,	 0.D0,	 (X(I),	 I=1, NDIM)

*
* Two variable case. *
*
* Iterate: *
*
*

X(n+1) = F(X(n),Y(n)) = X(n) + d(1), and
Y(n+1) = G(X(n),Y(n))	 = Y(n) + d(2).

*
*

* d(1) and d(2) are found by solving the system: *
* Fx * d(1) +	 Fy * d(2) = -F *
* Gx * d(1) +	 Gy * d(2) = -G
*
*

which arises from the Taylor series expansion
etc.	 See any numerical analysis text.

of F(X+d(1),Y+d(2)),

* *
X0(1) = X(1)
X0(2) = X(2)
DO 200, ITER = 1, MITER

CALL FCT(NDIM, X, RHS, AJAC, PAR)
DENOM = (AJAC(l,l)*AJAC(2,2) - AJAC(1,2)*AJAC(2,1))
IF (ABS(DENOM) .LT. EPS) THEN

WRITE(*,2020) DENOM
IERR = -1
GO TO 999

ENDIF
DELX(1) = (RHS(2)*AJAC(1,2) - RHS(1)*AJAC(2,2)) / DENOM
DELX(2) = (RHS(1)*AJAC(2,1) - RHS(2)*AJAC(l,l))	 DENOM

C Need a -RHS and *add* DELX, or will +RHS let us *sub* DELX?
X(1) = X0(1) + DELX(1)

A-55

X(2) = X0(2)
TEST = (X(1)

(X(2)
C WRITE(*,2060)

X0(1) = X(1)
X0(2) = X(2)
IF (TEST .LT.

200	 CONTINUE
WRITE(*,2010) MIT
IERR = -2
GO TO 999
IERR = ITER250

C
999 RETURN

C

+ DELX(2)
- XO(1))**2 +
- XO(2))**2
ITER, TEST, X(1), X(2)

TOLRAN) GO TO 250

ER

2000 FORMAT(1X,'*NEWTWO* - NDIM was <= zero. Iterate a constant?')
2001 FORMAT(1X,'*NEWTWO* - NDIM > MDIM. Fix & re-compile.')
2010 FORMAT(1X,'*NEWTWO* -- Caution. Max iterations (',

& 13, ') exceeded.',/,
& T10,'Solution may be unstable or TOLER too small.')

2020 FORMAT(1X,'*NEWTWO* -- The denominator was small enough (',
& 1P,G13.6,' to be zero.',/,
& T10,'This may or may not be the solution.')

C2030 FORMAT(1X,'*NEWTWO* - Singular Jacobian Matrix. Bye.')
C2040 FORMAT(1X,'*NEWTWO* - The impossible has happened (case).')
C2050 FORMAT(/,1X,'ITER	 '	 TEST', '	 X(N)')
C2060 FORMAT(1X,I3, 2X, 1P, 4(1X,G13.6), /, (T20,3(1X,G13.6)))

END

File: OUTSIB.FOR	 Last revision: August 29, 1990
C	 For all three phases of LT3VSI.
C
C These subroutines provide a variable-format output that is clearer
C than the G-format of *certain* versions of Fortran.
C Coded by Gilbert A. Bachelor, Febr..Aug 1989
C

SUBROUTINE PRINT1(LUN,N,ARY)
INTEGER C1, C2, LUN, N
DOUBLE PRECISION ARY(*)
CHARACTER LINE*81

C
C PRINTS ELEMENTS 1 THRU N OF ARRAY ARY ON UNIT LUN, USING
C VARIABLE FORMAT; 8 ELEMENTS PER LINE.
C
1000 FORMAT(A)

A-56

C1=1
C2=MIN(8,N)

10	 CONTINUE
CALL ARYSTR(ARY,C1,C2,2,10,LINE)
WRITE(LUN,1000) LINE(1:(C2-C1+1)*10)
IF (C2.LT.N) THEN

C1=C2+1
C2=MIN(C2+8,N)
GOTO 10

ENDIF
RETURN
END

C
C ***
C

SUBROUTINE PRINT2(LUN,N,ARY)
INTEGER Cl, C2, I, LUN, N
DOUBLE PRECISION ARY(*)
CHARACTER LINE*81

C
C PRINTS ELEMENTS 1 THRU N OF ARRAY ARY ON UNIT LUN, USING
C VARIABLE FORMAT; 8 ELEMENTS PER LINE. ALSO PRINTS INDEX
C ON LINE ABOVE.
C
1000 FORMAT(1X,8(2X,I3,5X))
1001 FORMAT(A,/)

C1=1
C2=MIN(8,N)

10	 CONTINUE
WRITE(LUN,1000) (I,I=C1,C2)
CALL ARYSTR(ARY,C1,C2,2,10,LINE)
WRITE(LUN,1001) LINE(1:(C2-C1+1)*10)
IF (C2.LT.N) THEN

C1=C2+1
C2=MIN(C2+8,N)
GOTO 10

ENDIF
RETURN
END

C
C ***
C

SUBROUTINE PRINT3(LUN,NX,NY,ARY)
C

include 'CSIZE.SIB'
include 'CPROP.SIB'

INTEGER C1,C2,I,J,LUN,NCP,NX,NY,PAGE
CHARACTER CHARY(12)*5, LINE*121, TEMP*5
DOUBLE PRECISION ARY(IX,IY)

A-57

C
C PRINTS (ON UNIT LUN) NX ROWS BY NY COLUMNS OF ARRAY ARY, WHOSE
C DECLARED SIZE IS IX BY IY. PRINTS I AND XNODE(I) AS HORIZONTAL
C LABEL, AND J AND YNODE(J) AS VERTICAL LABEL.
C
1000 FORMAT(5X,'PAGE ',I2)
1010 FORMAT(8X,'X',12(3X,A,2X))
1020 FORMAT(3X,'Y',2X,12(7X,I3))
1030 FORMAT(1X,A,I3,A)

IF (NFLAG(8).NE.0) THEN
NCP=12

ELSE
NCP=7

ENDIF
PAGE=1
C1=1
C2=MIN(NCP,NX)

10	 CONTINUE
WRITE(LUN,1000) PAGE
DO 15, I=C1,C2

CALL NUMFIX(XNODE(I),CHARY(I-C1+1))
15	 CONTINUE

WRITE(LUN,1010) (CHARY(I-C1+1),I=C1,C2)
WRITE(LUN,1020) (I,I=C1,C2)
DO 20, J=1,NY

CALL NUMFIX(YNODE(J),TEMP)
CALL ARYSTR(ARY(1,J),C1,C2,2,10,LINE)
WRITE(LUN,1030) TEMP,J,LINE(1:(C2-C1+1)*10)

20	 CONTINUE
IF (C2.LT.NX) THEN

WRITE(LUN,*)
C1=C2+1
C2=MIN(C2+NCP,NX)
PAGE=PAGE+1
GOTO 10

ENDIF
RETURN
END

C
C ***
C

SUBROUTINE PRIN3S(LUN,NX,NY,ARY)
C

include 'CSIZE.SIB'
include 'CPROP.SIB'

C
INTEGER Cl, C2, I, J, LUN, NCP, NX, NY, PAGE, RPT, SAVJ
CHARACTER CHARY(12)*5, LINE*121, SAVLIN*121, TEMP*5
DOUBLE PRECISION ARY(IX,IY)

C

A-58

C PRINTS (ON UNIT LUN) NX ROWS BY NY COLUMNS OF ARRAY ARY, WHOSE
C DECLARED SIZE IS IX BY IY. PRINTS I AND XNODE(I) AS HORIZONTAL
C LABEL, AND J AND YNODE(J) AS VERTICAL LABEL. ** THIS SUBROUTINE
C IS THE SAME AS PRINT3, EXCEPT THAT IT SUPPRESSES DUPLICATE LINES.
C
1000 FORMAT(5X,'PAGE ',I2)
1010 FORMAT(8X,'X',12(3X,A,2X))
1020 FORMAT(3X,'Y',2X,12(7X,I3))
1030 FORMAT(1X,A,I3,A)
1040 FORMAT(10X,'Line above repeated ',I3,' times.')

IF (NFLAG(8).NE.0) THEN
NCP=12

ELSE
NCP=7

ENDIF
PAGE=1
C1=1
C2=MIN(NCP,NX)

10	 CONTINUE
WRITE(LUN,1000) PAGE
DO 15, I=C1,C2

CALL NUMFIX(XNODE(I),CHARY(I-C1+1))
15	 CONTINUE

WRITE(LUN,1010) (CHARY(I-C1+1),I=C1,C2)
WRITE(LUN,1020) (I,I=C1,C2)
RPT=1
SAVJ=1
CALL ARYSTR(ARY(1,1),C1,C2,2,10,SAVLIN)
DO 20, J=2,NY

CALL ARYSTR(ARY(1,J),C1,C2,2,10,LINE)
IF (LINE .EQ., SAVLIN) THEN

RPT=RPT+1
ELSE

CALL NUMFIX(YNODE(SAVJ),TEMP)
WRITE(LUN,1030) TEMP,SAVJ,SAVLIN(1:(C2-C1+1)*10)
IF (RPT .GT. 1) WRITE(LUN,1040) RPT-1
RPT=1
SAVJ=J
SAVLIN=LINE

ENDIF
20	 CONTINUE

CALL NUMFIX(YNODE(SAVJ),TEMP)
WRITE(LUN,1030) TEMP,SAVJ,SAVLIN(1:(C2-C1+1)*10)
IF (RPT .GT. 1) WRITE(LUN,1040) RPT-1
IF (C2.LT.NX) THEN

WRITE(LUN,*)
C1=C2+1
C2=MIN(C2+NCP,NX)
PAGE=PAGE+1
GOTO 10

A-59

ENDIF
RETURN
END

C
C ***
C

SUBROUTINE PRINT4(LUN,NX,NY,ARX,ARY)

include 'CSIZE.SIB'
include 'CPROP.SIB'

INTEGER Cl,C2,I,J,LUN,NCP,NX,NY,PAGE
CHARACTER CHARY(12)*5, LINE*121, TEMP*5
DOUBLE PRECISION ARX(IX,IY),ARY(IX,IY)

C
C PRINTS (ON UNIT LUN) NX ROWS BY NY COLUMNS OF ARRAYS ARX AND ARY,
C BOTH OF WHICH HAVE A DECLARED SIZE OF IX BY IY. CORRESPONDING
C ELEMENTS OF ARX AND ARY REPRESENT THE X AND Y COMPONENTS OF A
C VECTOR QUANTITY. THIS SUBROUTINE CONVERTS THE (X,Y) VALUES TO
C MAGNITUTE AND ANGLE (IN DEGREES) AND PRINTS THE POLAR FORM.
C IT ALSO PRINTS I AND XNODE(I) AS HORIZONTAL LABEL, AND J AND
C YNODE(J) AS VERTICAL LABEL.
C
1000 FORMAT(5X,'PAGE ',I2)
1010 FORMAT(8X,'X',7(6X,A,6X))
1020 FORMAT(3X,'Y',7(12X,I3,2X))
1030 FORMAT(1X,A,I3,A)

IF (NFLAG(8).NE.0) THEN
NCP=7

ELSE
NCP=4

ENDIF
PAGE=1
C1=1
C2=MIN(NCP,NX)

10	 CONTINUE
WRITE(LUN,1000) PAGE
DO 15, I=C1,C2

CALL NUMFIX(XNODE(I),CHARY(I-C1+1))
15	 CONTINUE

WRITE(LUN,1010) (CHARY(I-C1+1),I=C1,C2)
WRITE(LUN,1020) (I,I=C1,C2)
DO 30, J=1,NY

CALL NUMFIX(YNODE(J),TEMP)
CALL ARYPOL(ARX(1,J),ARY(1,J),C1,C2,2,17,LINE)
WRITE(LUN,1030) TEMP,J,LINE(1:(C2-C1+1)*17)

30	 CONTINUE
IF (C2.LT.NX) THEN

WRITE(LUN,*)
C1=C2+1

C

C

A-60

C2=MIN(C2+NCP,NX)
PAGE=PAGE+1
GOTO 10

ENDIF
RETURN
END

C
C *** ** ****
C

SUBROUTINE ARYSTR(ARY,N1,N2,M,W,STR)
INTEGER K, M, N, N1, N2, W
DOUBLE PRECISION ARY(*)
CHARACTER STR*(*)

C
C CONVERTS ELEMENTS ARY(N1) THRU ARY(N2) OF ARRAY ARY INTO
C STRING FORM (PRINTABLE) AND STORES THEM IN STRING STR,
C BEGINNING AT POSITION M>=1, USING WIDTH W>=9 POSITIONS PER
C NUMBER. ALL UNUSED POSITIONS ARE SET TO BLANK.
C

STR='
K=M
DO 20, N=N1,N2

CALL NUMSTR(ARY(N),STR(K:K+8))
K=K+W

20	 CONTINUE
RETURN
END

C
C *** ** ********** * ** * **************** * ********* * ***
C

SUBROUTINE ARYPOL(ARX,ARY,N1,N2,M,W,STR)
INTEGER K, M, N, N1, N2, W
DOUBLE PRECISION ARX(*),ARY(*)
CHARACTER STR*(*)

C
C CONVERTS ELEMENTS N1 THRU N2 OF ARRAYS ARX AND ARY INTO
C POLAR FORM (PRINTABLE STRING) AND STORES THEM IN STRING STR,
C BEGINNING AT POSITION M>=1, USING WIDTH W>=16 POSITIONS PER
C NUMBER. ALL UNUSED POSITIONS ARE SET TO BLANK.
C

STR='
K=M
DO 20, N=N1,N2

CALL POLAR(ARX(N),ARY(N),STR(K:K+15))
K=K+W

20	 CONTINUE
RETURN
END

C
C ***

A-61

C
SUBROUTINE NUMSTR(X,ALF)

C
include 'CSIZE.SIB'

C
INTEGER K
DOUBLE PRECISION X
CHARACTER ALF*9, FORM(1:11)*9
DATA FORM/'(F7.5)','(F7.5)','(F7.5)','(F7.4)',1(F7.3)1,

&	 '(F7.2)','(F7.1)','(F7.0)','(1P,E9.2)','(F3.0)','(F4.2)'/
C
C CONVERTS DOUBLE PRECISION NUMBER X INTO PRINTABLE STRING FORM
C AND STORES IT IN STRING ALF OF WIDTH 9, USING VARIABLE FORMAT.
C

IF (X.EQ.0.0D0) THEN
K=10

ELSEIF (ABS(X).LT.ZTHRSH) THEN
K=11

ELSE
K=INT(LOG10(ABS(X))+4)
IF (K.LT.1 .OR. K.GT.8) K=9

ENDIF
40	 WRITE(ALF,FORM(K)) X

IF (ALF(2:2).EQ.'*') THEN
K=MIN(K+1,9)
GOTO 40

ENDIF
RETURN
END

C
C ***

SUBROUTINE NUMFIX(X,ALF)
INTEGER K
DOUBLE PRECISION X
CHARACTER ALF*5, FORM(1:6)*6
DATA FORM/'(F5.4)',1(F5.3)1,1(F5.2)1,'(F5.1)',

'(F5.0)','(F2.0)'/
C
C CONVERTS NON-NEGATIVE DOUBLE PRECISION NUMBER X INTO PRINTABLE
C STRING FORM (FIXED POINT FORMAT), AND STORES IT IN STRING ALF
C OF WIDTH 5, USING VARIABLE FORMAT.
C

IF (X.NE.0.0) THEN
K=INT(LOG10(ABS(X))+2)
IF (K.LT.1) THEN

K=1
ELSEIF (K.GT.5) THEN

K=5
ENDIF

A-62

ELSE
K=6

ENDIF
WRITE(ALF,FORM(K)) X
RETURN
END

C
C ***
C

SUBROUTINE POLAR(X,Y,ALF)
INTEGER K
DOUBLE PRECISION ANGLE, MAG, X, Y
CHARACTER ALF*16, FORM(1:10)*9, AFORM(1:4)*6
DATA FORM/'(2X,F7.5)','(2X,F7.5)1,'(2X,F7.5)1,1(2X,F7.4)",

&	 1(2X,F7.3)1,1(2X,F7.2)1,1(2X,F7.1)','(2X,F7.0)1,
&	 '(1P,E9.2)','(5X,F4.1)'/
DATA AFORM/1(F5.3)','(F5.2)','(F5.1)',1(F5.0)'/

C
C DOUBLE PRECISION ARGUMENTS X AND Y ARE THE X AND Y COMPONENTS
C OF A VECTOR QUANTITY. THIS SUBROUTINE CONVERTS (X, Y) INTO
C POLAR FORM. (MAGNITUDE AND ANGLE IN DEGREES) AND STORES A
C PRINTABLE FORM IN STRING ARGUMENT ALF OF WIDTH 16, USING
C VARIABLE FORMAT. **NOTE: THE POSITIVE X-AXIS IS 90 DEGREES;
C THE POSITIVE Y-AXIS IS 0 DEGREES.
C

MAG=SQRT(X**2 + Y**2)
IF (MAG.NE.0.0) THEN

ANGLE=ATAN2(X,Y)*180.0D0/3.1415926536D0
K=INT(LOG10(ABS(MAG))+4)
IF (K.LT.1 .OR. K.GT.8) K=9

ELSE
ANGLE=0.0
K=10

ENDIF
40	 WRITE(ALF(1:9),FORM(K)) MAG

IF (ALF(2:2).EQ.'*') THEN
K=MIN(K+1,9)
GOTO 40

ENDIF
ALF(10:10)=','
IF (ANGLE.NE.0.0) THEN

K=INT(LOG10(ABS(ANGLE))+2)
IF (K.LT.1) THEN

K=1
ELSEIF (K.GT.4) THEN

K=4
ENDIF

ELSE
K=1

ENDIF

A-63

60	 WRITE(ALF(11:15),AFORM(K)) ANGLE
IF (ALF(12:12).EQ.'*') THEN

K=K+1
GOTO 60

ENDIF
ALF(16:16)='o'
RETURN
END

*	 File: PSTARSIL.FOR	 Last revision: August 29, 1990
C	 For chem loop phase of LT3VSI.
C
C PSTAR computes the coordinates of the points P(.)(i,j,n)
C (called P* for short), with some help from subroutines
C NEWTWO and FEVAL.
C By Gilbert A. Bachelor, Dec. 1988; Apr. 1990.
C

SUBROUTINE PSTAR
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
INTEGER MITER, NDIM
DOUBLE PRECISION TOLER
PARAMETER(MITER=10,NDIM=2,TOLER=1.0D-4)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CVELOC.SIB'
include 'CRUNC.SIK'
include 'CNRK.SIL'
include 'CCHEM.SIK'
include 'CVELOC.SIK'

C
INTEGER I, J, K,
LOGICAL PSERR
DOUBLE PRECISION
DOUBLE PRECISION
EXTERNAL FEVAL

IERR

AJAC(NDIM,NDIM), RHS(NDIM)
X(NDIM), PAR

C
C COMPUTE P*(i,j,n) FOR INTERIOR NODES.
C

WRITE(*,*) ' Computing the P* points.'
WRITE(*,*)
PSERR=.FALSE.
DO 600, K=1,NC
DO 600, I=2,NSLXXX
DO 600, J=2,NSLYYY

A-64

C
C Compute the coefficients Al, Bl, Cl, D1,
C store them in COEF(1) through COEF(8), r
C The formulas are different, depending on
C P* should lie in. The NFUNC array tells
C

A2, B2, C2, D2,
espectively.
which of the 4
which quadrant

and

quadrants
to use.

COEF(1)=UX(I,J,K)
COEF(5)=UY(I,J,K)

C
GOTO (100,200,300,400), NFUNC(I,J)
PRINT 1300,NFUNC(I,J),I,J

1300 FORMAT(1X,'NFUNC = ',I4,'at I=',I3,',
WRITE(*,*) ' NFUNC OUT OF RANGE!'
STOP 2

J=',I3)

C
C Quadrant 1.
C
100 CONTINUE

COEF(2)=(UX(I,J,K)-UX
COEF(6)=(UY(I,J,K)-UY
COEF(3)=(UX(I,J,K)-UX
COEF(7)=(UY(I,J,K) -UY
COEF(4)=(UX(I,J,K)+UX
& (DX(I-1)*DY(J-1))
COEF(8)=(UY(I,J,K)+UY
& (DX(I-1)*DY(J-1))
GOTO 500

)/DX(I-1)
)/DX(I-1)
)/DY(J-1)
)/DY(J-1)
K)-UX(I-1,J,K)-UX(I,J-1,K))/

K)-UY(I-1,J,K)-UY(I,J-1,K))/

C
C Quadrant 2.
C
200 CONTINUE

COEF(2)=(UX(I+1,J,K)-UX(I,J,K))/DX(I)
COEF(6)=(UY(I+1,J,K)-UY(I,J,K))/DX(I)
COEF(3)=(UX(I,J,K)-UX(I,J-1,K))/DY(J-1)
COEF(7)=(UY(I,J,K)-UY(I,J-1,K))/DY(J-1)
COEF(4)=(UX(I,J-1,K)+UX(I+1,J,K)-UX(I,J,K)-UX(I+1,J-1,K))/
& (DX(I)*DY(J-1))
COEF(8)=(UY(I,J-1,K)+UY(I+1,J,K)-UY(I,J,K)-UY(I+1,J-1,K))/
& (DX (I) *DY (J-1))
GOTO 500

C
C Quadrant 3.
C
300 CONTINUE

COEF(2)=(UX(I,J,K)
COEF(6)=(UY(I,J,K)
COEF(3)=(UX(I,J+1,
COEF(7)=(UY(I,J+1,
COEF(4)=(UX(I-1,J,

& (DX(I-1)*DY(J))

-UX(I-1,J,K)
-UY(I-1,J,K)
K)-UX(I,J,K)
K)-UY(I,J,K)
K)+UX(I,J+1,

)/DX(I-1)
)/DX(I-1)
)/DY(J)
)/DY(J)
K)-UX(I,J,K)-UX(I-1,J+1,K))/

A-65

COEF(8)=(UY(I-1,J,K)+UY(I,J+1,K)-UY(I,J,K)-UY(I-1,J+1,K))/
& (DX(I-1)*DY(J))
GOTO 500

C
C Quadrant 4.
C
400 CONTINUE

COEF(2)=(UX(I+1,J,K)
COEF(6)=(UY(I+1,J,K)
COEF(3)=(UX(I,J+l,K)
COEF(7)=(UY(I,J+1,K)
COEF(4)=(UX(I+1,J+1,
& (DX(I)*DY(J))
COEF(8)=(UY(I+1,J+1,
& (DX(I)*DY(J))

UX(I,J,K))/DX(I)
UY(I,J,K))/DX(I)

-UX(I,J,K))/DY(J)
-UY(I,J,K))/DY(J)
K)-I-UX(I,J,K)-UX(I+1,J,K)-UX(I,J+1,K))/

K)+UY(I,J,K)-UY(I+l,J,K)-UY(I,J+l,K))/

C
C All four branches come together here.
C
500 CONTINUE
C
C Initialization for FEVAL: copy data to vars in common block
C NRK.
C

DT=DTO
XI=XNODE(I)
YJ=YNODE(J)

C
C Set X array to initial guess and call NEWTWO subroutine.
C

X(1)=XI
X(2)=YJ
CALL NEWTWO(NDIM,X,RHS,AJAC,FEVAL,PAR,TOLER,MITER,IERR)

C
C Retrieve coordinates of P*, as computed by NEWTWO.
C

PSTARX(I,J,K)=X(1)
PSTARY(I,J,K)=X(2)

C
C Print error messages if anything is wrong.
C

IF (IERR.LT.1) THEN
PSERR=.TRUE.
PRINT 1000,IERR,I,J,K

1000	 FORMAT(1X,'Error #',I3,' in
13,', J= ',I3,', K=',I3)

ELSEIF (X(1).LT.XNODE(I-1) .OR.
X(2).LT.YNODE(J-1) .OR.

PSERR=.TRUE.
PRINT 1100,I,J,K

computing PSTAR for I=',

X(1).GT.XNODE(I+1) .OR.
X(2).GT.YNODE(J+1)) THEN

1100	 FORMAT(1X,'Error in computing PSTAR for I=',I3,', J=',I3,

A-66

K= ',I3,/,1X,'Point not in correct region.')
ENDIF

600 CONTINUE
C

IF (PSERR) THEN
WRITE(*,*) ' *** Errors in computing P* points! ***'
STOP 2

ENDIF
C

C PRINT THE COORDINATES OF THE P* POINTS ON FILE 'xxxxxxxx.CDB'
C

IF(NFLAG(15).NE.0) THEN
DO 331, K=1,NC
WRITE(9,9500) CHNAME(K)

	

9500	 FORMAT(/,6X,'COORDINATES OF THE P* POINTS FOR ',A,//,
25X,'P-STAR',17X,'P-STAR',/,
4X, 'I',4X, 'J',7X,'XN(M)',5X, 'XN(M) ',8X, 'YN(M)1,
5X,'YN(M)',1X,'NFUNC',/)

DO 330, I=2,NSLXXX
DO 330, J=2,NSLYYY

WRITE(9,9600)I,J,XNODE(I),PSTARX(I,J,K),
YNODE(J),PSTARY(I,J,K),NFUNC(I,J)

	

9600	 FORMAT(2(1X,I4),2X,2F10.4,3X,2F10.4,2X,I3)

	

330	 CONTINUE
331 CONTINUE

ENDIF
C

RETURN
END

C ***********************************
*FEVAL

SUBROUTINE FEVAL(NDIM, X, RHS, AJAC, PAR)
INTEGER NDIM
DOUBLE PRECISION	 X(NDIM), RHS(NDIM), AJAC(NDIM,NDIM), PAR(*)
DOUBLE PRECISION	 DX, DY, XS, YS

C	 (common /nrk/	 dt, xi, yj, coef(8)
include 'CNRK.SIL'

**
*	 Subroutine used by NEWTWO to compute the right-hand-side (RHS) and	 *
*	 Jacobian elements (AJAC) for the NRK method. 	 *
*	 Parameters:	 *
* NDIM	 - The number of variables being iterated by *
* NEWTWO.	 This version assumes NDIM=2. *
* X	 - The array of current independent variables *
* being solved by NEWTWO.	 Size NDIM. *
* RHS	 - An array which will return the right-hand-side *
* of the system. *
* AJAC	 - The NDIM by NDIM Jacobian array returned. *
* PAR	 - An array for auxiliary variables, if needed. *
*. Not used in this version. *

A-67

D. E. Cawlfield, Winter '88
**

XS = X(1)
YS = X(2)
DX = XS - XI
DY = YS - YJ

C
C The RHS is simply .
C

RHS(1) = DX + DT * (COEF(1) + DX*COEF(2) + DY*COEF(3) +
DX*DY*COEF(4))

RHS(2) = DY + DT * (COEF(5) + DX*COEF(6) + DY*COEF(7) +
DX*DY*COEF(8))

C
C Now the four Jacobian elements . .
C

AJAC(1,1) = 1.D0 + DT * (COEF(2) + DY*COEF(4))
AJAC(1,2) =	 DT * (COEF(3) + DX*COEF(4))
AJAC(2,1) = DT * (COEF(6) + DY*COEF(8))
AJAC(2,2) = 1.D0 + DT * (COEF(7) + DX*COEF(8))
RETURN
END

File: RATSIK.FOR	 Last revision: October 9, 1990
C

	

	 For both chem init and chem loop phases of LT3VSI.
SUBROUTINE COMRAT

C
C COMPUTE THE UTILIZATION RATES.
C

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIK'
include 'CPARAM.SIK'

INTEGER I, J, NUT, SUB, OXY, NIT
PARAMETER (NUT=1, SUB=2, OXY=3, NIT=4)

DO 40, I=1,NSLXP1
DO 40, J=1,NSLYP1

RSONU1(I,J)=(MUO1/YSO1)*
(COLD(I,J,SUB)/(KS01 +COLD(I,J,SUB)))*
(COLD(I,J,OXY)/(KO1 +COLD(I,J,OXY)))*
(COLD(I,J,NUT)/(KONUl+COLD(I,J,NUT)))

C

C

A-68

C
RSONU2(I,J)=(MUO2/YS02)*

(COLD(I,J,SUB)/(KSO2 +COLD(I,J,SUB)))*
(COLD(I,J,OXY)/(K02 +COLD(I,J,OXY)))*
(COLD(I,J,NUT)/(KONU2+COLD(I,J,NUT)))

C
RSNINU1(I,J)=(MUNI1/YSNI1)*

(COLD(I,J,SUB)/(KSNI1 +COLD(I,J,SUB)))*
(COLD(I,J,NIT)/(KNI1 +COLD(I,J,NIT)))*
(COLD(I,J,NUT)/(KNINUl+COLD(I,J,NUT)))/
(1.0D0 + COLD(I,J,OXY)/KONI1)

40 CONTINUE

RETURN
END

File: RWCSIC.FOR	 Last revision: December 14, 1990
C

	

	 For chem init phase of LT3VSI.
SUBROUTINE CHMREAD(HEAD1,HEAD2)

C
IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CRUNC.SIK'
include 'CBND.SIK'
include 'CCHEM.SIC'
include 'CCHEM.SIK'
include 'CPARAM.SIK'

C
CHARACTER HEAD1*(*), HEAD2*(*), STRING*75
INTEGER I, J, K
REAL CUFVER, XCUFVR

C
C FORMATS
C
1000 FORMAT(1X,1P,7G10.3)
2000 FORMAT(A)
2300 FORMAT(5X,A)

C
C R/W TWO HEADER LINES, THEN READ RUN CONTROL INFORMATION
C

WRITE(*,*)' Reading run control data. '
WRITE(*,*)

C

A-69

READ (1,2000) HEAD1
WRITE(2,2300) HEAD1

C
READ (1,2000) HEAD2
WRITE(2,2300) HEAD2

C
READ (1,2000) STRING
READ(1,*,ERR=999) NPRT,TMAX,DTO

C
C READ IN CONTROL FLAGS FOR BOTH CHEM INIT AND CHEM LOOP PHASES.
C
c***
C
C NFLAG(4)=0 MEANS: DO NOT USE A SCHEDULE FILE "xxxxxxxx.SCH".
C	 THE INJECTION WELL CHEMICAL CONCENTRATIONS
C	 SPECIFIED IN THE CHEM DATA FILE "xxxxxxxx.CHD"
C	 WILL REMAIN UNCHANGED THROUGHOUT THE RUN.
C NFLAG(4)=I MEANS: READ A SCHEDULE FILE "xxxxxxxx.SCH" AND ALTER
C	 THE INJECTION WELL CHEMICAL CONCENTRATIONS AT
C	 THE SPECIFIED EVENT TIMES, AS SPECIFIED BY THE
C	 DATA IN THE FILE.
C
C NFLAG(5)=0 MEANS: READ INITIAL CHEMICAL CONCENTRATION FROM THE
C	 CHEMICAL DATA FILE.
C NFLAG(5)=1 MEANS: READ INITIAL CHEMICAL CONCENTRATION FROM THE
C	 UNFORMATTED FILE WRITTEN BY A PREVIOUS RUN
C	 OF THE CHEMISTRY LOOP PHASE. SEE NFLAG(6) BELOW.
C
C NFLAG(6)=1 MEANS: AT THE END OF A CHEMISTRY LOOP PHASE RUN, WRITE
C	 AN UNFORMATTED FILE CONTAINING THE FINAL CHEMICAL
C	 CONCENTRATION. THIS FILE CAN BE READ IN BY
C	 A SUBSEQUENT CHEMISTRY RUN AS INITIAL DATA.
C	 SEE NFLAG(5) ABOVE.
C NFLAG(6)=0 MEANS: DO NOT WRITE THE UNFORMATTED FILE DESCRIBED ABOVE.
C
C NFLAG(8)=0 MEANS: WRITE TWO-DIMENSIONAL ARRAYS IN NARROW
C	 (80 COLUMN) FORMAT.
C NFLAG(8)=1 MEANS: WRITE TWO-DIMENSIONAL ARRAYS IN WIDE
C	 (132 COLUMN) FORMAT.
C
C NFLAG(9)=1 MEANS: READ A VALUE FOR ZTHRSH FROM THE CHEMICAL
C	 DATA FILE, DURING THE CHEMISTRY PHASE.
C NFLAG(9)=0 MEANS: DO NOT READ ZTHRSH DURING THE CHEMISTRY PHASE;
C	 USE THE VALUE THAT WAS READ IN DURING THE WATER PHASE.
C
C NFLAG(14)=1 MEANS: WRITE THE CHEMICAL FIELD DEFINING
C	 MATRIX ELEMENTS.
C NFLAG(14)=0 MEANS: DO NOT WRITE THE MATRIX ELEMENTS.
C
C NFLAG(15)=1 MEANS: WRITE THE COORDINATES OF THE P* POINTS.

A-70

C NFLAG(15)=0 MEANS: DO NOT WRITE THE ABOVE.
C
C NFLAG(16)=0 MEANS: USE 4-POINT INTERPOLATION METHOD IN THE
C	 CLAG FUNCTION, WHICH COMPUTES THE CHEMICAL
C	 CONCENTRATION AT THE P* POINTS.
C NFLAG(16)=1 MEANS: USE 25-POINT LAGRANGE INTERPOLATION METHOD
C	 IN THE CLAG FUNCTION (THIS TAKES MUCH MORE TIME).
C
C NFLAG(17)=1 MEANS: COMPUTE AND WRITE THE CUMULATIVE CHEMICAL
C	 MASSES (XMASS, ET AL) ON THE FILE 'xxxxxxxx.CNC'.
C NFLAG(17)=0 MEANS: DO NOT COMPUTE AND DO NOT WRITE THE ABOVE.
C
C NOTE: THE OUTPUTS ENABLED BY NFLAGS 14 AND 15 ARE WRITTEN ON THE
C FILE 'xxxxxxxx.CDB' DURING THE CHEMISTRY INITIALIZATION PHASE.
C
c***
C

READ(1,2000) STRING
READ(1,*,ERR=999) (NFLAG(I),I=1,20)

IF (NFLAG(9) .NE. 0) THEN
READ(1,2000) STRING
READ(1,*,ERR=999) ZTHRSH
ZTHRSH=MIN(ZTHRSH,0.99D0)

ENDIF

CALL GETCUF
C
C READ THE INLET AND EXIT PORT TANK LENGTHS (M)
C

WRITE(*,*)' Reading inlet and exit port tank lengths.'
WRITE(*,*)
READ(1,2000) STRING
READ(1,*,ERR=999) XLYIN,XLYOUT

C
WRITE(*,*)''Reading soil particle density.'
WRITE(*,*)

C
C READ SOIL PARTICLE DENSITY
C

READ(1,2000) STRING
READ(1,*,ERR=999) RHOSND,RHOCLA,RHOORG

C
C READ POROUS MEDIUM CHARACTERIZING PARAMETERS.
C

WRITE(*,*)' Reading porous medium characterizing parameters such '
WRITE(*,*)' as tortuosity, porosity, etc.'
WRITE(*,*)

READ(1,2000) STRING

C

C

A-71

DO 25, J=1,NSLYP1
READ(1,*,ERR=999) (TORT(I,J),I=1,NSLXP1)

25 CONTINUE

READ(1,2000) STRING
DO 26, J=1,NSLYP1

READ(1,*,ERR=999) (EPS(I,J),I=1,NSLXP1)
26 CONTINUE

READ(1,2000) STRING
DO 27, J=1,NSLYP1

READ(1,*,ERR=999) (PCTSAN(I,J),I=1,NSLXP1)
27 CONTINUE

READ(1,2000) STRING
DO 28, J=1,NSLYP1

READ(1,*,ERR=999) (PCTCLA(I,J),I=1,NSLXP1)
28 CONTINUE

READ(1,2000) STRING
DO 29, J=1,NSLYP1

READ(1,*,ERR=999) (PCTORG(I,J),I=1,NSLXP1)
29 CONTINUE

C
C READ DISPERSIVITIES
C

WRITE(*,*)' Reading dispersivities.'
WRITE(*,*)
DO 32, K=1,NC

READ(1,2000) STRING
DO 30, J=1,NSLYP1

READ(1,*,ERR=999) (DISPLX(I,J,K),I=1,NSLXP1)
30	 CONTINUE

C
READ(1,2000) STRING
DO 31, J=1,NSLYP1

READ(1,*,ERR=999) (DISPLY(I,J,K),I=1,NSLXP1)
31	 CONTINUE
32 CONTINUE

C
C READ INPUT CHEMICAL PARAMETERS
C

WRITE(*,*)' Reading chemical parameters.'
WRITE(*,*)
READ(1,2000) STRING
READ(1,*,ERR=999) (DLO(K), K=1,NC)
READ(1,*,ERR=999) (KSAND(K),K=1,NC)
READ(1,*,ERR=999) (KCLAY(K),K=1,NC)
READ(1,*,ERR=999) (KORG(K), K=1,NC)

C

C

C

C

C

A-72

C READ INLET & EXIT PORT BOUNDARY CHEMICAL CONCENTRATIONS.
C

WRITE(*,*)' Reading inlet and exit port boundary data.'
WRITE(*,*)
READ(1,2000) STRING
READ(1,*,ERR=999) (CIN(K), K=1,NC)
READ(1,*,ERR=999) (COUT(K),K=1,NC)
READ(1,*,ERR=999) (CO(K), K=1,NC)

C
C READ FIRST ORDER LOSS PARAMETERS.
C

WRITE(*,*)' Reading first order loss parameters.'
WRITE(*,*)
DO 42, K=1,NC

READ(1,2000) STRING
DO 42, J=1,NSLYP1

READ(1,*,ERR=999) (XLAMIR(I,J,K),I=1,NSLXP1)
42 CONTINUE

C
DO 48, K=1,NC

READ(1,2000) STRING
DO 48, J=1,NSLYP1

READ(1,*,ERR=999) (XSLMIR(I,J,K),I=1,NSLXP1)
48 CONTINUE

C
C READ INITIAL CHEMICAL DISTRIBUTION AT TIME ZERO.
C

WRITE(*,*)' Reading initial chem. distribution. '
WRITE(*,*)
TO=0.0D0
DO 50, K=1,NC

XMASS(K) =0.0D0
XMFONW(K)=0.0D0
XMSOUR(K)=0.0D0
XMASIN(K)=0.0D0
XMASOT(K)=0.0D0

50 CONTINUE
DO 54, K=1,NC

READ(1,2000) STRING
DO 54, J=1,NSLYP1

READ(l,*,ERR=999) (COLD(I,J,K),I=1,NSLXP1)
54 CONTINUE

C
C READ INITIAL MICROBIAL POPULATIONS.
C

WRITE(*,*)' Reading initial microbial populations.'
WRITE(*,*)
READ(1,2000) STRING
DO 58, J=1,NSLYP1

READ(1,*,ERR=999) (POP1(I,J),I=1,NSLXP1)

A-73

58 CONTINUE
C

READ(1,2000) STRING
DO 62, J=1,NSLYP1

READ(l,*,ERR=999) (POP2(I,J),I=1,NSLXP1)
62 CONTINUE

C
C IF NFLAG(5) <> 0, READ CHEMICAL CONCENTRATIONS AND MICROBIAL
C POPULATIONS FROM CUF FILE, OVERWRITING VALUES FROM CHD FILE.
C

IF (NFLAG(5).NE.0) THEN
WRITE(*,*)' Reading unformatted chem file (CUF).'
WRITE(*,*)
CUFVER=132.0
READ(10) XCUFVR
IF (XCUFVR.NE.CUFVER) THEN

WRITE(*,*) 'Unformatted chem file is version ',XCUFVR
WRITE(*,*) 'It should be version ',CUFVER
STOP 1

ENDIF
READ(10) I,J,TO
IF (I.NE.NSLXP1 .OR. J.NE.NSLYPI) THEN

WRITE(*,3000) I-2,J-2,NSLXMI,NSLYM1
STOP1

ENDIF
TMAX=TMAX+TO
DO 80, K=1,NC

READ(10) CIN (K) , COUT (K) , XMASS (K) , XMFONW (K) , XMSOUR (K) ,
XMASIN(K),XMASOT(K)

DO 80, J=1,NSLYP1
READ(10) (COLD(I,J,K),I=1,NSLXP1)

80	 CONTINUE
DO 90, J=1,NSLYP1

READ(10) (POP1(I,J),I=1,NSLXP1)
READ(10) (POP2(I,J),I=1,NSLXP1)

90	 CONTINUE
CLOSE(UNIT=10)

ENDIF
C
C READ CHEMISTRY USAGE PARAMETERS.
C

WRITE(*,*)' Reading chemistry usage parameters.'
WRITE(*,*)
READ(1,2000) STRING
READ(1,*,ERR=999) KSO1
READ(1,*,ERR=999) KSO2
READ(1,*,ERR=999) KO1
READ(1,*,ERR=999) KO2
READ(1,*,ERR=999) KONU1
READ(1,*,ERR=999) KONU2

A-74

READ(1,*,ERR=999) KSNI1
READ(1,*,ERR=999) KNI1
READ(1,*,ERR=999) KNINU1
READ(1,*,ERR=999) KONI1
READ(l,*,ERR=999) KSOM1
READ(1,*,ERR=999) KSOM2
READ(1,*,ERR=999) YS01
READ(1,*,ERR=999) YSO2
READ(1,*,ERR=999) YSNI1
READ(1,*,ERR=999) ALFO1
READ(1,*,ERR=999) ALFO2
READ(1,*,ERR=999) ALFNI1
READ(1,*,ERR=999) ETANI1
READ(1,*,ERR=999) GAMMO1
READ(1,*,ERR=999) GAMMO2
READ(1,*,ERR=999) PSIO1
READ(1,*,ERR=999) PSIO2
READ(1,*,ERR=999) THENI1
READ(l,*,ERR=999) MUO1
READ(1,*,ERR=999) MUO2
READ(1,*,ERR=999) MUNI1
READ(1,*,ERR=999) RHOBD

C
C COMPUTE AND DISPLAY PRINT TIMES
C

WRITE(*,*)' Estimated print times are as follows:'
WRITE(*,*)
WRITE(*,1000)(((TMAX-TO)/NPRT)*I + TO - DTO*1.0D-2,I=1,NPRT)
WRITE(*,*)

C
RETURN

C
C HANDLE DATA ERRORS.
C

999 CALL DATERR(STRING,FILBAS,'CHIP)
STOP 1

C
3000 FORMAT(' Aquifer dimensions in unformatted chem file are ',/,

&	 1X,I3,' by ',I3,' (# interior nodes); they should be',/,
&	 I3,' by ',I3)

END
C
C **
C

SUBROUTINE CHMOUT(DTRAT)
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CRUNC.SIK'

A-75

include 'CBND.SIK'
include 'CCHEM.SIC'
include 'CCHEM.SIK'
include 'CPARAM.SIK'

C
INTEGER I, K
DOUBLE PRECISION DTRAT

C
C WRITE OUT RUN CONTROL INFORMATION.
C

WRITE(2,98765)
98765 FORMAT(/,

& 5X,'** NOTE! SI units are indicated, but any units **
& /,5X,'** can be used, as long as they are CONSISTENT. **1)

C
WRITE(2,3)

3 FORMAT(/,10X,'RUN CONTROL INFORMATION.',/)
C

WRITE(2,4) TO,TMAX,DTO
4 FORMAT(10X,'TIMES IN DAYS:',/,
& 1P,5X,'T0= ',G10.3,2X,'TMAX= ',G10.3,2X,'DT0= ',G10.3)

C
IF (DTRAT.LT.1.0D0) WRITE(2,14)

14 FORMAT(10X,'DTO AND TMAX HAVE BEEN REDUCED TO ENSURE STABILITY')
C

WRITE(2,5) (CHNAME(K),K=1,NC), (DT1(K),K=1,NC)
5 FORMAT(/,5X,'COMPUTED',4(3X,A9),/,

5X,' DTMAX=',1P,4(2X,G10.3),/)
C

WRITE(2,6) NPRT
6 FORMAT(5X,'NPRT= ',I5,'; PRINT TIMES (DAYS) ARE:',/)

C
WRITE(2,7)(((TMAX-TO)/NPRT)*I + TO - DTO*1.0D-2,I=1,NPRT)

7 FORMAT(1X,1P,7G10.3)
C

WRITE(2,8) ZTHRSH
8 FORMAT(/,5X,'ZTHRSH= ',G12.5)

C
WRITE(2,9) (I,I=1,20),(NFLAG(I),I=1,20)

9 FORMAT(/,11X,'I ',20I3,/,5X,'NFLAG(I)',20I3,/)
C
C VALIDATE AND LIST SCHEDULE FILE
C

IF (NFLAG(4).NE.O .AND. NINJW.NE.0) CALL VALSCH
C
C WRITE OUT INLET & EXIT PORT TANK LENGTHS.
C

WRITE(2,20) XLYIN,XLYOUT
20 FORMAT(/,1P,5X,'INLET PORT TANK LENGTH (M)= ',G10.3,/,

5X,'EXIT PORT TANK LENGTH (M)= ',G10.3,/)

A-76

C
C WRITE OUT SOIL CHARACThRIZING PARAMETERS.
C

WRITE(2,30)
30 FORMAT(/,10X,'BASIC SOIL CHARACTERIZING PARAMETERS (KG/M-3)',/)

WRITE(2,43) RHOSND,RHOCLA,RHOORG
43 FORMAT(1P,5X,'RHOSND= ',G10.3,2X,'RHOCLA= ',G10.3,2X,

& 'RHOORG=',G10.3,/)
C

WRITE(2,220)
220 FORMAT(/,10X,TORTUOSITY FACTOR TORT(I,J) (DIMLESS)',/)

CALL' PRIN3S(2,NSLXP1,NSLYP1,TORT)

WRITTP:i230)
230L,FORMAT1/,10X,'POROSITY EPS(I,J) (M"3/M-3

cALT, PRIN3S(2,NSLXP1,NSLYP1,EPS)

WRITE(2,240),
240 FORMAT(/,10X,'PERCENT SAND PCTSAN(I J) (DIMLESS)',/)

CALL` TRIN3S(2,NSLXP1,NSLYP1,PCTSAN)

WRITE(2,250)
250 FORMAT(/,10X,'PERCENT SILT (CLAY) PCTCLA(I,J) (DIMLESS)',/)

CALL PRIN3S(2,NSLXP1,NSLYP1,PCTCLA)
C

WRITE(2,260)
260 FORMAT(/,10X,'PERCENT ORGANICS PCTORG(I,J) (DIMLESS) ,/)

CALL PRIN3S(2,NSLXP1,NSLYP1,PCTORG)

WRITE(2,266)
266 FORMAT(7,10X,'DISPERSIVITY COMPONENTS DISPLX(I,J,K)

&	 'AND DISPLY(I,J,K)')
DO 284, K=l,NC

WRITE(2,270) CHNAME(K)
270	 FORMAT(/,10X,'X-COMP DISPERSIVITY FOR ',A,' (M)',/)

CALL PRIN3S(2,NSUP1,NSLYP1,DISPLX(1,1,K))

WRITE(2,280) CHNAME(K)
280	 FORMAW,10X,'Y-COMP DISPERSIVITY FOR	 (M)',/)

CALL,PRIN3S(2,NSLXP1,NSLYP1,DISPLY(1-,1,K))
284 CONTINUE

C
C WRITE OUT CHEMICAL PARAMETERS.
C

WRITE(2,300)
300 FORMAT(/,10X,'CHEMICAL PARAMETERS',/)

WRITE(2,302) (CHNAME(K),K=1,NC)
302 FORMAT(9X,4(3X,A9),/)

WRITE(2,304) (DLO(K),K=1,NC)
304 FORMAT(1P,5X,'DLO= ',4(1X,G10.3,1X),' (4"2/DAY)',/)

A-77

WRITE(2,306) 'KSAND=',(KSAND(K),K=1,NC),'(M"3/KG SAND)',
'KCLAY= ',(KCLAY(K),K=1,NC),'(M"3/KG SILT)',
'KORG= ',(KORG(K) ,K=1,NC),'(M"3/KG ORGANICS)'

306 FORMAT(3(1P,5X,A,4(1X,G10.3,1X),A,/))
C
C WRITE THE INLET AND EXIT BOUNDARY CHEMICAL CONCENTRATIONS.
C

WRITE(2,306) 'CIN= ',(CIN(K), K=1,NC),I(KG/M-3)1,
'COUT= ',(COUT(K),K=1,NC),'(KG/M-3)',
'CO=	 ',(CO(K), K=1,NC),'(KG/M-3)1

C
C WRITE FIRST ORDER LOSSES.
C

WRITE(2,*)
WRITE(2,320)

320 FORMAT(10X,'FIRST ORDER LOSS COEFS
& 'XLAMIR(I,J,K) & XSLMIR(I,J,K)°,/)

DO 326, K=1,NC
WRITE(2,324) CHNAME(K)

324	 FORMAT(/,10X,'IRREVERSIBLE LOSS IN FREE PHASE FOR ',A,
' (1/DAY)',/)

CALL PRIN3S(2,NSLXP1,NSLYP1,XLAMIR(1,1,K))
326 CONTINUE

C
DO 333, K=1,NC

WRITE(2,331) CHNAME(K)

	

331	 FORMAT(/,10X,'IRREVERSIBLE LOSS IN SORBED PHASE FOR ',A,
' (1/DAY)',/)

CALL PRIN3S(2,NSLXP1,NSLYP1,XSLMIR(1,1,K))
333 CONTINUE

C
C WRITE INITIAL DISTRIBUTION OF CHEMICALS.
C

DO 347, K=1,NC
WRITE(2,345) CHNAME(K)

	

345	 FORMAT(/,10X,'INITIAL CHEMICAL DISTRIBUTION OF ',A,
' (KG/M"3)',/)

CALL PRIN3S(2,NSLXP1,NSLYP1,COLD(1,1,K))
347 CONTINUE

C
C WRITE RETARDATION AND OVER ALL LOSS.
C

DO 350, K=1,NC
WRITE(2,9100) CHNAME(K)

	

9100	 FORMAT(/,10X, '1+RETENTION(I,J,K) FOR ',A,' (DIMLESS)',/)
CALL PRIN3S(2,NSLXP1,NSLYP1,RETARD(1,1,K))

350 CONTINUE
C

DO 354, K=1,NC

A-78

WRITE(2,9200) CHNAME(K)
9200	 FORMAT(/,10X, 'OVER ALL FIRST ORDER LOSS',

COEF LAMDA(I,J,K) FOR ',A,' (1/DAY)',/)
CALL PRIN3S(2,NSLXP1,NSLYP1,LAMDA(1,1,K))

354 CONTINUE
C
C WRITE INITIAL MICROBIAL POPULATIONS.
C

WRITE(2,9300)
9300 FORMAT(/,10X, 'INITIAL DISTRIBUTION OF MICROBE POPULATION #1 ',

'(KG CELLS/KG SOIL)',/)
CALL PRIN3S(2,NSLXP1,NSLYP1,POP1)

C
WRITE(2,9400)

9400 FORMAT(/,10X, 'INITIAL DISTRIBUTION OF MICROBE POPULATION #2 ',
'(KG CELLS/KG SOIL)',/)

CALL PRIN3S(2,NSLX131,NSLYP1,P0P2)
C
C WRITE CHEMISTRY USAGE PARAMETERS.
C

WRITE(2,4300)
4300 FORMAT(/,10X,'CHEMISTRY USAGE PARAMETERS',/)
4400 FORMAT(5X,1P,A6,' = ',G11.4,1X,A)

WRITE(2,4400) 'KS01 ',KS01 ,'(KG/M"3)'
WRITE(2,4400) 'K502 ',KSO2 ,1(KG/M-3)1
WRITE(2,4400) 'KO1	 ',K01	 ,'(KG/M-3)'
WRITE(2,4400) 'KO2 ',KO2 ,'(KG/M-3)'
WRITE(2,4400) 'KONUl 1 ,KONU1 ,'(KG/M"3)'
WRITE(2,4400) 'KONU2 ',KONU2 ,'(KG/M-3)'
WRITE(2,4400) 'KSNI1 ',KSNI1 ,'(KG/M"3)'
WRITE(2,4400) 1 KNI1	 ,'(KG/M-3)'
WRITE(2,4400) 'KNINU1',KNINU1,1(KG/M-3)'
WRITE(2,4400) 1 KONI1 ',KONIl ,'(KG/M-3)'
WRITE(2,4400) 'KSOM1 ',KSOM1 ,'(KG/M"3)'
WRITE(2,4400) 'KSOM2 ',KSOM2 ,'(KG/M-3)'
WRITE(2,4400) 'YSOl ',YS01 ,'(KG CELLS/KG SUB)'
WRITE(2,4400) 'YSO2 ',YSO2 ,'(KG CELTS/KG SUB)'
WRITE(2,4400) 'YSNI1 ',YSNI1 ,'(KG CELTS/KG SUB)'
WRITE(2,4400) 'ALFOl ',ALF01 ,'(KG OXY/KG CETJS)'
WRITE(2,4400) 'ALFO2 ',ALFO2 ,'(KG OXY/KG CELLS)'
WRITE(2,4400) 'ALFNI1',ALFNI1, 1 (KG NIT/KG CELTS)'
WRITE(2,4400) 'ETANI1',ETANI1,'(KG NIT/KG SUB)'
WRITE(2,4400) 'GAMMO1',GAMM01,'(KG OXY/KG SUB)'
WRITE(2,4400) 'GAMMO2',GAMMO2,'(KG OXY/KG SUB)'
WRITE(2,4400) 'PSIO1 1 ,PSIO1 ,'(KG NUT/KG SUB)'
WRITE(2,4400) 'PSIO2 ',PSIO2 ,'(KG NUT/KG SUB)'
WRITE(2,4400) 'THENI1',THENI1,'(KG NUT/KG SUB)'
WRITE(2,4400) 'MUO1 ',MUO1 ,'(1/DAY)'
WRITE(2,4400) 'MUO2 ',MUO2 ,'(1/DAY)'
WRITE(2,4400) 'MUNI' ',MUNI' ,'(1/DAY)'

A-79

WRITE(2,4400) 'RHOBD ',RHOBD ,'(KG/M"3)'
C

RETURN
END

*	 File: RWCSIL.FOR	 Last revision: August 29, 1990
C

	

	
For chem loop phase of LT3VSI.

SUBROUTINE LOOPIO
C

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIL'

C
CHARACTER STRING*75
DOUBLE PRECISION DUMMY, QTEMP(NC), XI, YJ
INTEGER I, J, K, KKK, NBSOUR
LOGICAL NONE, NZERO
EXTERNAL NZERO

C
C FORMATS
C
2000 FORMAT(A)
2300 FORMAT(5X,A)

C
C INITIALIZE ARRAYS FOR CHEMICAL SOURCES
C

DO 10, I = 1, NSLXPI
DO 10, J = 1, NSLYP1

DO 10, K=1, NC
QCHM1S(I,J,K) = 0.D0
CSWELN(I,J,K) = 0.D0

10 CONTINUE
C
C READ AND WRITE INJECTION WELL CHEMICAL CONCENTRATIONS (KG/KG).
C

WRITE(*,*)' Reading injection wells chem. conc. '
**	 WRITE(*,*)' Minimum number is one well of strength zero.'

WRITE(2,4000)
4000 FORMAT(/,5X,'INJECTION WELTS CHEMICAL CONC. CSWELN(XI,YJ,K)

&	 '(KG CHEM/KG SOLUTION)',/)
WRITE(2,4010) (CHNAME(K),K=1,NC)

4010 FORMAT(T10,'XI',T21,'YJ',T30,A,T42,A,T53,A,T64,A,/,5X,70('-'))
NONE=.TRUE.
READ(1,2000) STRING

C

C

A-80

READ(1,2000) STRING
DUMMY = 0.0D0
DO 121, KKK = 1, NINJW

READ (1,*,ERR=999) XI, YJ, (QTEMP(K),K=1,NC)
CALL TESTIJ(STRING,FILBAS,'CHD',XI,YJ,DUMMY,I,J)
IF (NZERO(NC,QTEMP)) THEN

NONE=.FALSE.
WRITE(2,509) XI, YJ, (QTEMP(K),K=1,NC)

ENDIF
DO 121, K=1,NC

CSWELN(I,J,K) = QTEMP(K)
121 CONTINUE

IF (NONE) THEN
WRITE(2,511)

ENDIF
509 FORMAT(5X,1P,2(G10.3,1X),4(1X,G11.4))
511 FORMAT(5X,'NO NON-ZERO INJECTION WELTS ')

C
C READ NUMBER OF BURIED CHEMICAL SOURCES;
C THEN READ AND WRITE THEIR CONCENTRATIONS.
C

READ(1,2000) STRING
READ(1,*,ERR=999) NBSOUR

WRITE(*,*)' Reading buried source positions and strengths- '
WRITE(*,*)' Minimum is one source of strength zero.'
WRITE(*,*)
WRITE(2,400)

400 FORMAT(/,5X,'BURIED CHEMICAL SOURCE CONC. QCHM1S(XI,YJ,K)
&	 '(KG CHEM/M - 3 DAY)',/)
WRITE(2,4010) (CHNAME(K),K=1,NC)
NONE=.TRUE.
READ (1,2000) STRING
READ (1,2000) STRING
DO 305, KKK = 1, NBSOUR

READ(1,*,ERR=999) XI, YJ, (QTEMP(K),K=1,NC)
DO 300, K=1, NC

CALL TESTIJ(STRING,FILBAS,'CHD',XI,YJ,QTEMP(K),I,J)
300	 CONTINUE

IF (NZERO(NC,QTEMP)) THEN
NONE=.FALSE.
WRITE(2,509) XI, YJ, (QTEMP(K) ,K=1,NC)

ENDIF
DO 305, K=1,NC

QCHM1S(I,J,K) = QTEMP(K)
305 CONTINUE

IF (NONE) WRITE(2,510)
510 FORMAT(5X,'NO NON-ZERO BURIED SOURCES.')

RETURN

A-81

C
C HANDLE DATA ERRORS.
C

999 CALL DATERR(STRING,FILBAS,'CHDI)
STOP 1

C
END

C
C * ** **** *** ** ** ** **** ******** **** ** ** ** ***
C

LOGICAL FUNCTION NZERO(N,ARY)
C
C RETURNS .TRUE. IF AT LEAST ONE ELEMENT OF ARRAY ARY OF SIZE N IS
C NON-ZERO. RETURNS .FALSE. IF ALL ELEMENTS ARE ZERO.
C

INTEGER I,N
DOUBLE PRECISION ARY(N)

C
NZERC.FALSE.
DO 20, I=1,N

IF (ARY(I) .NE. ODO) NZERC.TRUE.
20	 CONTINUE

RETURN
END

*	 File: RWWSIW.FOR	 Last revision: August 29, 1990
C

	

	
For water phase of LT3VSI.

SUBROUTINE FLOREAD
C

IMPLICIT DOUBLE PRECISION (A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CSSIP.SIW'
include 'CWAT.SIW'

C
CHARACTER*80 STRING
INTEGER I, J, KKK
DOUBLE PRECISION QTEMP, RAT, XI, YJ

C
C FORMATS
C
2000 FORMAT(A)

C
C READ RUN CONTROL INFORMATION
C

A-82

WRITE(*,*)' Reading run control information.'
WRITE(*,*)
READ(1,2000) HEAD1,HEAD2
READ(1,2000) STRING
READ(1,*,ERR=999) NLSOR,NMOD,NALPH,TLRNWA,TLRNWR,ZTHRSH
ZTHRSH=MIN(ZTHRSH,0.99D0)

C
C READ IN CONTROL FLAGS FOR WATER PHASE.
C
c***
C
C NFLAG(1)=0 MEANS: COMPUTE THE HYDRAULIC PRESSURE FIELD ONLY.
C	 NOTE THAT THE CHEMISTRY PHASE CANNOT BE RUN IN THIS CASE.
C NFLAG(1)=1 MEANS: COMPUTE THE HYDRAULIC PRESSURE FIELD AND THE
C	 VELOCITY COMPONENTS.
C
C NFLAG(2)=0 MEANS: COMPUTE AN INITIAL GUESS FOR THE HYDRAULIC
C	 PRESSURE.
C NFLAG(2)=1 MEANS: READ AN INITIAL GUESS FOR THE HYDRAULIC PRESSURE
C	 FROM THE WATER DATA FILE.
C
C NFLAG(3)=0 MEANS: DISPLAY ICOUNT, ALPH, RMSEA, RMSER, DURING THE
C	 SIP PROCESS.
C NFLAG(3)=1 MEANS: DISPLAY THE ABOVE INFORMATION, PLUS THE VALUES
C	 OF XDUM AND DELI AT THE FOUR "INTERIOR" CORNERS.
C
C NFLAG(8)=0 MEANS: WRITE TWO-DIMENSIONAL ARRAYS IN NARROW
C	 (80 COLUMN) FORMAT.
C NFLAG(8)=1 MEANS: WRITE TWO-DIMENSIONAL ARRAYS IN WIDE
C	 (132 COLUMN) FORMAT.
C
C NFLAG(10)=1 MEANS: WRITE THE MATRIX ELEMENTS WHICH DEFINE THE
C	 HYDRAULIC PRESSURE FIELD.
C NFLAG(10)=0 MEANS: DO NOT WRITE THE MATRIX ELEMENTS.
C
C NFLAG(11)=1 MEANS: WRITE THE ADJUSTED BOUNDARY MATRIX ELEMENTS.
C NFLAG(11)=0 MEANS: DO NOT WRITE THE ADJUSTED ELEMENTS.
C
C NFLAG(12)=1 MEANS: WRITE THE SOURCE AND BOUNDARY COMPONENT
C CONTRIBUTIONS TO THE OVER ALL "KNOWN VECTOR".
C NFLAG(12)=0 MEANS: DO NOT WRITE THE "KNOWN VECTOR".
C
C NFLAG(13)=1 MEANS: WRITE THE MAX AND MIN DELX'S.
C NFLAG(13)=0 MEANS: DO NOT WRITE THE DELX'S.
C
C NOTE: THE OUTPUTS ENABLED BY NFLAGS 10, 11, 12, AND 13 ARE
C WRITTEN ON THE FILE 'xxxxxxxx.WDB' DURING THE WATER PHASE.
C
c***

A-83

READ(1,2000) STRING
READ(1,*,ERR=999) (NFLAG(I),I=1,20)

C
C READ IN ALPHAS (AN ARRAY OF ALPH). MUST HAVE 1 <= NALPH <= 10
C

NALPH = MIN(NALPH,10)
NALPH = MAX(NALPH, 1)
READ(1,2000) STRING
READ(1,*,ERR=999) (ALPHAS(I), I = 0, NALPH-1)

C
C READ IN GRID GEOMETRY
C

WRITE(*,*) ' Reading grid geometry.'
WRITE(*,*)

C
C FIRST, READ IN NUMBER OF INTERIOR X AND Y NODES.
C

READ(1,2000) STRING
READ(1,*,ERR=999) NSLXM1,NSLYM1
NSLXXX=NSLXM1+1
NSLYYY=NSLYM1+1
NSLXP1 = NSLXXX+1
NSLYP1 = NSLYYY+1

C
C MAKE SURE GRID FITS WITHIN FIXED ARRAY SIZES.
C

IF(NSLXPl.GT.IX .OR. NSLYP1.GT.IY) THEN
WRITE(* , *) ' **************************************'
WRITE(*,*) ' Too many grid points for fixed-size arrays.'
WRITE(*,*) ' Change IX and/or IY, re-compile, & re-link.'
STOP 1

ENDIF
C
C INITIALIZATION OF ARRAYS (NOW THAT WE HAVE SIZE OF PROBLEM)...
C

DO 118, I = 1, NSLXP1
DO 119, J = 1, NSLYP1

QWELIN(I,J) = 0.D0
QWELOT(I,J) = 0.D0

119	 CONTINUE
118 CONTINUE

C
C NEXT, READ IN NODAL POSITIONS
C

READ(1,2000) STRING
READ(1,*,ERR=999) (XNODE(I),I=1,NSLXP1)
READ(1,2000) STRING
READ(1,*,ERR=999) (YNODE(I),I=1,NSLYP1)

C
C NEXT, READ IN THE AQUIFER VERTICAL THICKNESS (M)

A-84

C
READ(1,2000) STRING
READ(1,*,ERR=999) XLW

C
C CALCULATE THE SPACING BETWEEN THE NODES
C

DO 5, J=1,NSLYYY
DY(J)=YNODE(J+1)-YNODE(J)

5 CONTINUE
DO 6, I=1,NSLXXX

DX(I)=XNODE(I+1)-XNODE(I)
6 CONTINUE

C
C CALCULATE CONSTANTS USED FOR LAGRANGE INTERPOLATION ALONG THE
C SIDES OF THE AQUIFER.
C

RAT=DX(2)/DX(1)
CONST2=1.0D0/(RAT*(2.0DO+RAT))
CONST1=1.0DO+CONST2
RAT=DX(NSLXM1)/DX(NSLXXX)
CONST4=1.0D0/(RAT*(2.0DO+RAT))
CONST3=1.0DO+CONST4

C
WRITE(*,*)' Reading water density.'
WRITE(*,*)

C
C READ WATER DENSITY
C

READ(1,2000) STRING
READ(1,*,ERR=999) RHOWAT

C
C READ HYDRAULIC CONDUCTIVITY.
C

WRITE(*,*)' Reading hydraulic conductivity.'
WRITE(*,*)
READ(1,2000) STRING
DO 13, J=1,NSLYP1

READ(1,*,ERR=999) (KSATXX(I,J),I=1,NSLXP1)
13 CONTINUE

C
READ(1,2000) STRING
DO 14, J=1,NSLYP1

READ(l,*,ERR=999) (KSATYY(I,J),I=1,NSLXP1)
14 CONTINUE

C
C READ IN NUMBER OF INJECTION AND EXTRACTION WELL POSITIONS.
C A MINIMUM OF ONE IS REQUIRED, BUT ITS STRENGTH MAY BE ZERO.
C

WRITE(*,*) ' Reading number of injection and extraction'
WRITE(*,*) ' well positions, NINJW and NEXTW

A-85

WRITE(*,*)
READ (1,2000) STRING
READ (1,*,ERR=999) NINJW, NEXTW

C
C READ IN INJECTION AND EXTRACTION WELLS STRENGTH.
C

WRITE(*,*) ' Reading injection and extraction well strengths -'
WRITE(*,*) ' minimum is one well of zero strength (KG WATER/DAY)'
WRITE(*,*)
READ (1,2000) STRING
DO 121, KKK = 1, NINJW

READ (1,*,ERR=999) XI, YJ, QTEMP
CALL TESTIJ(STRING,FILBAS,'WAD',XI,YJ,QTEMP,I,J)
QWELIN(I,J) = QTEMP

121 CONTINUE
READ (1,2000) STRING
DO 122, KKK = 1, NEXTW

READ (1,*,ERR=999) XI, YJ, QTEMP
CALL TESTIJ(STRING,FILBAS,'WAD',XI,YJ,QTEMP,I,J)
QWELOT(I,J) = QTEMP

122 CONTINUE
C
C READ IN INLET AND OUTLET BOUNDARY HYDRAULIC HEADS
C

WRITE(*,*)' Reading inlet & outlet hydraulic pressures (METERS)
WRITE(*,*)
READ(1,2000) STRING
READ(1,*,ERR=999) HIN,HOUT

C
C READ INITIAL HYDRAULIC PRESSURE, OR COMPUTE AN INITIAL GUESS.
C

IF(NFLAG(2).NE.0)THEN
WRITE(*,*) 'Reading initial hydraulic pressure.'
READ(1,2000) STRING
DO 30, J=1,NSLYP1

READ(l,*,ERR=999) (HOLD(I,J),I=1,NSLXP1)
30	 CONTINUE

ELSE
DO 32, I=1,NSLXPI

DO 32, J=1,NSLYP1
HOLD(I,J)=HIN+(HOUT-HIN)*(YNODE(J)/YNODE(NSLYP1))

32	 CONTINUE
ENDIF

C
RETURN

C
C HANDLE DATA ERRORS.
C

999 CALL DATERR(STRING,FILBAS,'WAD')
STOP 1

C

C

C

C

A-86

C
END

C
C ***
C

SUBROUTINE FLOOUT

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CSSIP.SIW'
include 'CWAT.SIW'

INTEGER I, J
LOGICAL NONE

C
C WRITE OUT RUN CONTROL INFORMATION.
C

WRITE(2,2) HEAD1,HEAD2
WRITE(3,2) HEAD1,HEAD2

2 FORMAT(2(1X,A,/))
WRITE(2,98765)

98765 FORMAT(5X,'** NOTE! SI units are indicated, but any units **
& /,5X,'** can be used, as long as they are CONSISTENT. **',/)

C
WRITE(2,3) NLSOR,NMOD,NALPH,TLRNWA,TLRNWR,ZTHRSH

3 FORMAT(1P,5X,'RUN CONTROL INFORMATION.',/,
& T6,'NLSOR= ',I12, T28, I NMO]:=	 ', 112, T50, 'NALPH=	 I12,/,
& T6,1P,'TLRNWA= ',G12.5, T28,'TLRNWR= ',G12.5,
& T50,'ZTHRSH= ',G12.5,/)

C
WRITE(2,7) (I,I=1,20),(NFLAG(I),I=1,20)

7 FORMAT(11X,'I ',20I3,/,5X,'NFLAG(I)',20I3,/)
WRITE(2,77) (ALPHAS(I), I = 0, NALPH-1)

77 FORMAT(1X,'ALPHAS (array of ALPH"s)',/,(1X,1P,5(G12.5,2X)))
C
C GEOMETRICAL PARAMETERS.
C

WR1TE(2,8)
8 FORMAT(/,10X,'NODE COORDINATES (M)',/)

C
WRITE(2,9)

9 FORMAT(5X,'XNODE(I)')
CALL PRINT2(2,NSLXP1,XNODE)

WRITE(2,11)
11 FORMAT(/,5X,'YNODE(J)')

CALL PRINT2(2,NSLYP1,YNODE)

WRITE(2,15)

A-87

15 FORMAT(/,5X,'DX(I)')
CALL PRINT2(2,NSLXXX,DX)

C
WRITE(2,17)

17 FORMAT(/,5X,'DY(J)')
CALL PRINT2(2,NSLYYY,DY)

C
WRITE(2,18) XNODE(NSLXP1),YNODE(NSLYP1),XLW

18 FORMAT(1P,/,5X,'WIDTH 	 OF AQUIFER (M)=',G10.3,/,
5X,'LENGTH	 OF AQUIFER (M)=',G10.3,/,
5X,'THICKNESS OF AQUIFER (M)=',G10.3,/)

C
C WRITE OUT THE INLET AND EXIT BOUNDARY HYDRAULIC HEADS
C

WRITE(2,507) HIN,HOUT
507 FORMAT(5X,'INLET/OUTLET HYDRAULIC PRESSURES (M WATER)',/

&	 1P,5X,'HIN= ',G12.5,2X,'HOUT= ',G12.5)
C
C WRITE OUT SOIL CHARACTERIZING PARAMETERS.
C

WRITE(2,30)
30 FORMAT(/,10X,'BASIC SOIL CHARACTERIZING PARAMETERS (KG/M-3 /)

WRITE(2,53) RHOWAT
53 FORMAT(1P,5X,'RHOWAT= ',G10.3,/)

WRITE(2,3095)
3095 FORMAT(10X,'TABLE OF SOIL PROPERTIES',/)

C
WRITE(2,300)

300 FORMAT(/,10X,'X-COMP HYDRAULIC CONDUCTIVITY KSATXX(I,J) (M/DAY)',
/)

CALL PRIN3S(2,NSLXP1,NSLYP1,KSATXX)

WRITE(2,310)
310 FORMAT(/,10X,'Y-COMP HYDRAULIC CONDUCTIVITY KSATYY(I,J) (M/DAY)',

/)
CALL PRIN3S(2,NSLXP1,NSLYP1,KSATYY)

WRITE(2,210)
210 FORMAT(/,5X,'TABLE OF INJECTION WELLS (KG WATER/M - 3 DAY)',/)

WRITE(2,211)
211 FORMAT(5X,'	 XI	 YJ	 QWELIN(XI,YJ)',/,5X,36('-'))

NONE=.TRUE.
DO 212, J=1,NSLYP1

DO 212, I=1,NSLXP1
IF (QWELIN(I,J) .NE. 0.0D0) THEN

NONE=.FALSE.
WRITE(2,509) XNODE(I),YNODE(J),QWELIN(I,J)

ENDIF
212 CONTINUE

IF (NONE) THEN

A-88

WRITE(2,510) 'INJECTION'
NINJW=0

ENDIF
C

WRITE(2,215)
215 FORMAT(//,5X,'TABLE OF EXTRACTION WELLS (KG WATER/M^3 DAY)',/)

WRITE(2,213)
213 FORMAT(5X,'	 XI	 YJ	 QWELOT(XI,YJ)',/,5X,36('-'))

NONE=.TRUE.
DO 214, J=1,NSLYP1

DO 214, I=1,NSLXP1
IF (QWELOT(I,J) .NE. 0.0) THEN

NONE=.FALSE.
WRITE(2,509) XNODE(I),YNODE(J),QWELOT(I,J)

ENDIF
214 CONTINUE

IF (NONE) WRITE(2,510) 'EXTRACTION'
C

WRITE(3,98765)
WRITE(3,120)

120 FORMAT(5X,' OUTPUT DATA FOR FLOW SYSTEM
C

RETURN
509 FORMAT(5X,1P,2(G10.3,2X),G12.5)
510 FORMAT(5X,'NO NON-ZERO ',A,' WELLS.')

END
C
C ***
C

SUBROUTINE FLOWRT
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CVELOC.SIB'
include 'CWAT.SIW'

c
c	 integer i, j
C

WRITE(3,6)
6 FORMAT(10X,' HYDRAULIC PRESSURE FIELD (M WATER)',/)

CALL PRINT3(3,NSLXP1,NSLYP1,HNEW)

IF(NFLAG(1).EQ.0) GO TO 501

WRITE(3,7)
7 FORMAT(/,10X,'DARCY VELOCITY FIELD',/,

& 5X,'(MAGNITUDE IN M/D,ANGLE IN DEGREES)',/)
CALL PRINT4(3,NSLXP1,NSLYP1,VLXX,VLYY)

C

C

c

A-89

c A temporary way to drive surfer

c	 do 10, i = 1, nslxpl
c	 do 10, j = 1, nslypl
c	 write(61,2000) xnode(i), ynode(j), hnew(i,j)
c 10 continue
c2000 format(1P,3G15.6)
C

501 RETURN
END

*	 File: SIPSIW.FOR	 Last revision: August 29, 1990
C

	

	
For water phase of LT3VSI.

SUBROUTINE SIP(DONE)
C

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CSSIP.SIW'

C
LOGICAL	 DONE
INTEGER	 I, J, ICOUNT, IDMPDEL, NINTNO
PARAMETER	 (IDMPDEL=8)
DOUBLE PRECISION RESTOT(2:JX, 2:JY)
DOUBLE PRECISION DRMSEA, HRMSEA, RMSEA, RMSER
EXTERNAL DRMSEA

C The following *really* are REALS
REAL SECOND, TIMES, TIMEI, TIME1, START
EXTERNAL SECOND

C

* Stone's Strongly Implicit System (SIP) method for solving
* linear systems arising from groundwater modeling: July '89
* Uses an incomplete LU factorization, LUFACT.

David E. Cawlfield, July '89
*** ***
C

DATA ICOUNT, TIMES, TIMEI/ 0, 0.0, 0.0/
C
C 0) Entry conditions --
C	 XDUM <-- HOLD in WATSIW
C	 YDUM <--	 in WATSIW
C 1) Approximate the (M+N) matrix by (incomplete)
C	 LU-factorization.
C

NINTNO = NSLXMl*NSLYM1

A-90

DONE = .FALSE.
START = SECOND()
CALL LUFACT

C
C 2) Find initial residuals
C

CALL RESID(RESTOT)
RMSEA = DRMSEA(RESTOT)
IF (NFLAG(3).EQ.0) THEN

IF (ICOUNT.EQ.0) WRITE(*,3020) ALPH, RMSEA
ELSE

WRITE(*,2000) ALPH, RMSEA
ENDIF
HRMSEA = RMSEA

C
C Main loop begins here (REPEAT until Converged)
C

TIME1 = SECOND()
TIMES = TIMES + TIME1 - START
START = TIME1

C
C ICOUNT is initialized in DATA so we can do re-starts
Cold ICOUNT = 0
C
1000 CONTINUE

ICOUNT = ICOUNT+1
C
C 3) Find DelY[k+1] = L-inv * r[k] by *forward* substitution
C

CALL FORSUB(RESTOT)
C
C 4) Form DelX[k+1] = U-inv * DelY[k] by *backward* substitution
C

CALL BAKSUB
C
C 5) Update the X's:
C

RMSER = 0.D0
DO 20, I = 2, NSLXXX

DO 10, J = 2, NSLYYY
XDUM(I,J) = XDUM(I,J) + DELX(I,J)
IF (XDUM(I,J) .NE. 0.D0) THEN

RMSER = RMSER + (DELX(I,J) / XDUM(I,J))**2
ENDIF

10	 CONTINUE
20	 CONTINUE

RMSER = SQRT(RMSER/DBLE(NINTNO))
C
C 6) Update the residuals, then test for convergance.

A-91

CALL RESID(RESTOT)
RMSEA = DRMSEA(RESTOT)

c Do we really need two different tolerances, here?
IF (RMSER .LE. TLRNWR .0R. RMSEA .LE. TLRNWA) THEN

TIMEI = TIMEI + SECOND() - START
WRITE(*,*)
WRITE(*,*)' Convergence Achieved -- Final Values: '
WRITE(*,2032) ICOUNT, RMSEA, RMSER
IF (NFLAG(3).NE.0) WRITE(*,2030) XDUM(2,2), XDUM(2,NSLYYY),

XDUM(NSLXXX,2), XDUM(NSLXXX,NSLYYY)
WRITE(*,2200) TIMEI, TIMES, TIMEI+TIMES
WRITE(9,*)' Convergence Achieved -- Final Values: '
WRITE(9,2032) ICOUNT, RMSEA, RMSER
WRITE(9,2030) XDUM(2,2), XDUM(2,NSLYYY),

XDUM(NSLXXX,2), XDUM(NSLXXX,NSLYYY)
WRITE (9, 2200) TIMEI, TIMES, TIMEI+TIMES
DONE = .TRUE.

C ***RETURNS*** iff converged.
RETURN

ENDIF
C
C Print current values if not converged
C

IF (NFLAG(3).EQ.0) THEN
WRITE(*,3000) ICOUNT, ALPH, RMSEA, RMSER

ELSE
WRITE(*,*)
WRITE(*,2032) ICOUNT, RMSEA, RMSER
WRITE(*,2030) XDUM(2,2), XDUM(2,NSLYYY),

XDUM(NSLXXX,2), XDUM(NSLXXX,NSLYYY)
WRITE(*,2030) DELX(2,2), DELX(2,NSLYYY),

DELX(NSLXXX,2), DELX(NSLXXX,NSLYYY)
ENDIF

C Hold last used rmse
HRMSEA = RMSEA

C
C DELMAX finds and prints the max and min DELX's.
C

IF (NFLAG(13) .EQ. 1 .AND. MOD(ICOUNT,IDMPDEL) .EQ. 0)
CALL DELMAX(ICOUNT, RMSEA, RMSER)

C
C Re-start every NMOD cycles, iff NMOD > 0
C

IF (NMOD .GT. 0 .AND. MOD(ICOUNT,NMOD) .EQ. 0) THEN
TIMEI = TIMEI + SECOND() - START
RETURN

ENDIF
IF ((RMSEA .GT. 1.0D4 .OR. RMSER .GT. 1.0D0) .AND.

ICOUNT .GT. 1) THEN
WRITE(*,*) ' Impending Overflow (Divergence?) '

A-92

STOP 2000
ENDIF
IF (ICOUNT	 NLSOR) GO TO 1000

C
C Abnormal Exit
C

WRITE(*,*) ' Failure to Converge in ', NLSOR, ' loops.'
WRITE(*,*) ' Iteration Limit Exceeded.'
STOP 1

C
2000 FORMAT
2030 FORMAT
2032 FORMAT

C2080 format
2200 FORMAT

3000 FORMAT
3020 FORMAT

END

(/,' ALPH = ',F7.4,' Initial Residuals = ',1P,G13.6,/)
(1X,1P,10(G15.8,1X))
(' ICOUNT= ',I5,1P,', RMSEA= ',G13.6,:,', RMSER= ',G13.6)
(t3,'??? Oscillating ???	 1P, G13.6, ' < ', G13.6)
(T4,'Cycle Time = ',F7.2,' (Startup Time = ',F7.2,')',/r
T4,'Total Time = ',F7.2)

(1X,I6,1P,3(2X,G12.5))
(1X,'Initial',1X,1P,G12.5,2X,G12.5)

C
C **************************************
C

SUBROUTINE RESID(RESTOT)

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CSSIP.SIW'

INTEGER	 I, J, II, JJ
DOUBLE PRECISION RESTOT(2:JX, 2:JY), SAXY

C
C The following is a STATEMENT FUNCTION
C

SAXY(II,JJ) = ADT2X(II,JJ) + ADT2Y(II,JJ)
C

* Compute the residuals.

C
C TOP-LEFT HAND NODE.
C

RESTOT(2,2) = YDUM(2,2) - SAXY(2,2)*XDUM(2,2) -
& ADT3(2,2)*XDUM(2,3) - AUT2(2,2)*XDUM(3,2)

C
C LEFT HAND CENTRAL NODES.
C

DO 169, J = 3, NSLYM1
RESTOT(2,J) = YDUM(2,J) - SAXY(2,J)*XDUM(2,J) -

& ADT3(2,J)*XDUM(2,J+1) - AUT2(2,J)*XDUM(3,J) -
& ADT1(2,J)*XDUM(2,J-1)

C

C

A-93

169 CONTINUE
C
C BOTTOM-LEFT HAND NODE.
C

RESTOT(2,NSLYYY) = YDUM(2,NSLYYY) -
& SAXY(2,NSLYYY)*XDUM(2,NSLYYY)	 -

C
	 & ADT1(2,NSLYYY)*XDUM(2,NSLYM1)-AUT2(2,NSLYyy)*XDUM(3,NSLYYY)

C CENTRAL BLOCK OF NODES.
C

DO 170, I = 3, NSLXM1
C
C TOP NODES.
C

RESTOT(I,2) = YDUM(I,2) - SAXY(I,2)*XDUM(I,2) -
& ADT3(I,2)*XDUM(I,3) - AUT2(I,2)*XDUM(I+1,2) -
& ALT2(I,2)*XDUM(I-1,2)

C
C INTERIOR BLOCK OF NODES
C

DO 171, J = 3, NSLYM1
RESTOT(I,J) = YDUM(I,J) - SAXY(I,J)*XDUM(I,J)	 -

& ADT3(I,J)*XDUM(I,J+1) - AUT2(I,J)*XDUM(I+1,J) -
& ADT1(I,J)*XDUM(I,J-1) - ALT2(I,J)*XDUM(I-1,J)

171 CONTINUE
C
C BOTTOM NODES
C

RESTOT(I,NSLYYY)
& SAXY(I,NSLYYY)
& ADT1(I,NSLYYY)
& AUT2(I,NSLYYY)
& ALT2(I,NSLYYY)

170 CONTINUE

= YDUM(I,NSLYYY) -
*XEUM(I,NSLYYY)	 -
*XDUM(I,NSLYM1) -
*XDUM(I+1,NSLYYY) -
*XEUM(I-1,NSLYYY)

C
C
C TOP-RIGHT HAND NODE.
C

RESTOT(NSLXXX,2) = YDUM(NSLXXX,2) -
& SAXY(NSLXXX,2)*XDUM(NSLXXX,2)	 -
& ADT3(NSLXXX,2)*XDUM(NSLXXX,3)	 -
& ALT2(NSLXXX,2)*XEUM(NSLXM1,2)

C
C RIGHT HAND CENTRAL NODES.
C

DO 177, J = 3, NSLYM1
RESTOT(NSLXXX,J) = YDUM(NSLXXX,J) -

& SAXY(NSLXXX,J)*XDUM(NSLXXX,J)	 -
& ADT3(NSLXXX,J)*XDUM(NSLXXX,J+1) -
& ADT1(NSLXXX,J)*XDUM(NSLXXX,J-1) -

A-94

& ALT2(NSLXXX,J)*XEUM(NSLXM1,J)
177 CONTINUE

C
C BOTTOM RIGHT HAND NODE.
C

RESTOT(NSLXXX,NSLYYY) = YDUM(NSLXXX,NSLYYY) -
& SAXY(NSLXXX,NSLYYY)*XDUM(NSLXXX,NSLYYY) 	 -
& ADT1(NSLXXX,NSLYYY)*XDUM(NSLXXX,NSLYM1)	 -
& ALT2(NSLXXX,NSLYYY)*XDUM(NSLXM1,NSLYYY)

C
RETURN
END

C
C **************************************
C

DOUBLE PRECISION FUNCTION DRMSEA(RESTOT)

include 'CSIZE.SIB'
include 'CPROP.SIB'

DOUBLE PRECISION	 RESTOT(2:JX, 2:JY)
INTEGER	 I, J, NINTNO

C
**
* Simple function to compute the current Residual Sum of Squares.
**
C

NINTNO = NSLXMl*NSLYM1
DRMSEA = 0.0D0
DO 20, I = 2, NSLXXX

DO 10, J = 2, NSLYYY
DRMSEA = DRMSEA + RESTOT(I,J)*RESTOT(I,J)

10	 CONTINUE
20 CONTINUE

DRMSEA = DRMSEA / DBLE(NINTNO)
DRMSEA = DSQRT(DRMSEA)

C
RETURN
END

C
C **************************************
C

SUBROUTINE FORSUB(R)
C

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CSSIP.SIW'

INTEGER	 I, J
DOUBLE PRECISION	 R(2:JX, 2:JY)

C

C

C

C

A-95

C
**
• Solve the following system by forward substitution --
*

()-1
DelY[k+1] = (L) 	 * r[k]

* ()
**
C
C Compute left hand block at i = 2
C

DELY(2,2) = R(2,2) / D(2,2)
DO 10, J = 3, NSLYYY

DELY(2,J) = (R(2,J) - C(2,J)*DELY(2,J-1)) / D(2,J)
10 CONTINUE

C
C Now, do remaining interior blocks
C

DO 20, I = 3, NSLXXX
DELY(I,2) = (R(I,2) - B(I,2)*DELY(I-1,2)) / D(I,2)
DO 30, J = 3, NSLYYY

DELY(I,J) = (R(I,J) - B(I,J)*DELY(I-1,J) -

	

&	 C(I,J)*DELY(I,J-1)) / D(I,J)

	

30	 CONTINUE
20 CONTINUE

C
RETURN
END

C
C **************************************
C

SUBROUTINE BAKSUB

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CSSIP.SIW'

INTEGER	 I, J
C

• Solve the following system by backward substitution --
*

()-1
DelX[k+l] = (U)	 * DelY[k]

* ()

C
C Lower block first
C

DELX(NSLXXX,NSLYYY) = DELY(NSLXXX,NSLYYY)

A-96

DO 60, J = NSLYYY-1, 2, -1
DELX(NSLXXX,J) = DELY(NSLXXX,J) -

& E(NSLXXX,J)*DELX(NSLXXX,J+1)
60 CONTINUE

C
C Now, do interior blocks
C

DO 80, I = NSLXXX-1, 2, -1
DELX(I,NSLYYY) = DELY(I,NSLYYY) -

& F(I,NSLYYY)*DELX(I+1,NSLYYY)
DO 70, J = NSLYYY-1, 2, -1

DELX(I,J) = DELY(I,J) -
& E(I,J)*DELX(I,J+1) -
& F(I,J)*DELX(I+1,J)

70	 CONTINUE
80 CONTINUE	 •

C
RETURN
END

C
C **** ********** **** ***** ***** ***** *****
C

SUBROUTINE DELMAX(ICOUNT, RMSEA, RMSER)

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CSSIP.SIW'

INTEGER	 I, J, IMAX, JMAX, IMIN, JMIN, 'COUNT
DOUBLE PRECISION DELTMP, RMAX, RMIN
DOUBLE PRECISION RMSEA, RMSER

C

* Search for max and min DELX and write to file. This is an aid for
* adjusting ALPH.

C

RMAX = DELX(2,2)
RMIN = DELX(2,2)
DO 10, I = 2, NSLXXX

DO 20, J = 2, NSLYYY
DELTMP = DELX(I,J)
IF (DELTMP .GT. RMAX) THEN

RMAX = DELTMP
IMAX = I
JMAX = J

ENDIF
IF (DELTMP .LT. RMIN) THEN

RMIN = DELTMP
IMIN = I

C

C

A-97

JMIN = J
ENDIF

20 CONTINUE
10 CONTINUE

WRITE(9,2000) ICOUNT, RMSEA, RMSER,
& IMAX, JMAX, RMAX, IMIN, JMIN, RMIN
RETURN

C
2000 FORMAT(I4, ' RMSEA = 	 G13.6, ', RMSER =	 G13.6,/,

& ' MAX DELX(', 12.2, ',', 12.2, ') = 	 G13.6,
& ', MIN DELX(', 12.2, ',', 12.2, ') =	 G13.6)

END

File: SUBSIB.FOR	 Last revision: August 29, 1990
C	 For all three phases of LT3VSI.
C
C This module contains some subroutines that are used in both phases
C of LT3VSI. Coded and revised by Gilbert A. Bachelor,
C Aug 1989 .. Jan 1990
C

SUBROUTINE DATERR(STRING,FILBAS,EXT)
C
C DISPLAY A MESSAGE CONCERNING AN ERROR FOLLOWING LINE STRING IN A
C FILE WITH BASE NAME FILBAS AND EXTENSION EXT. THIS IS USED BY
C SUBROUTINES FLOREAD, CHMREAD, AND TESTIJ.
C

CHARACTER EXT*3, FILBAS*8, STRING*(*)
C
1000 FORMAT(' A data error was found in the file named ',A,'.',A,/,

' The error occurred after the line:',/,1X,A)
WRITE(*,1000) FILBAS,EXT,STRING
RETURN
END

C
C ***
C

SUBROUTINE RDBASE(FILBAS,EXT)
C
C READ, FROM THE KEYBOARD, THE BASE NAME FOR A FILE WHOSE EXTENSION
C WILL BE EXT. RETURN THE BASE NAME, RIGHT-JUSTIFIED, IN FILBAS.
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
CHARACTER CHRTMP*8, EXT*3, FILBAS*8

C
1001 FORMAT(' Do not enter the extension, which is ".',A,'": ')

A-98

1002 FORMAT(A)
C

WRITE(*,1001) EXT
READ(*,1002) FILBAS
IF (FILBAS .EQ. ' ') THEN

WRITE(*,*) ' ** File name must not be blank! **'
STOP 763

ENDIF
C
C RIGHT-JUSTIFY BASE FILE NAME, SO THAT WHEN FILE NAMES ARE PRINTED
C OUT, THERE WON'T BE SPACES BETWEEN BASE AND EXTENSION. USE A
C TEMPORARY VARIABLE BECAUSE SOME VERSIONS OF FORTRAN DO NOT
C IMPLEMENT CHARACTER ASSIGNMENTS PROPERLY WHEN THE SAME VARIABLE
C APPEARS ON BOTH SIDES OF ASSIGNMENT.
C

20 IF (FILBAS(8:8) .EQ. ") THEN
CHRTMP="//FILBAS(1:7)
FILBAS=CHRTMP
GOTO 20

ENDIF
C

RETURN
END

C
C ***
C

SUBROUTINE TESTIJ(STRING,FILBAS,EXT,XI,YJ,QTEMP,I,J)
C
C THIS SUBROUTINE TESTS XI AND YJ TO MAKE SURE THEY ARE THE COORDINATES
C OF AN INTERIOR NODE. IF THEY ARE, IT DIVIDES QTEMP BY THE
C APPROPRIATE VOLUME, SETS I AND J TO THE INDICES OF THE NODE, AND
C RETURNS. IF NOT, IT PRINTS AN ERROR MESSAGE AND STOPS.
C STRING AND THE FILE NAME FILBAS WITH EXTENSION EXT ARE INCLUDED
C IN THE MESSAGE.
C THE OPERATION ON QTEMP CONVERTS IT FROM UNITS OF (KG/DAY) TO UNITS
C OF (KG/M- 3 DAY); THIS IS NEEDED IN SUBROUTINES FLOREAD AND CHMREAD.
C

IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
CHARACTER EXT*3,FILBAS*8,STRING*(*)
DOUBLE PRECISION QTEMP, XI, YJ
INTEGER I, J, INDX
EXTERNAL INDX

C
1000 FORMAT(1P,' Data error: ',A,'=',G10.3,' is not a',

' valid coordinate.')
1001 FORMAT(1P,' Data error: XI=',G10.3,', YJ=',G10.3,

' is not an interior node!')

A-99

I=INDX(NSLXP1,XNODE,XI)
J=INDX(NSLYP1,YNODE,YJ)
IF (I.LT.1 .OR. J.LT.1) THEN

CALL DATERR(STRING,FILBAS,EXT)
IF (I.LT.1) WRITE(*,1000) 'XI',XI
IF (J.LT.1) WRITE(*,1000) 'YJ',YJ
STOP 1

ENDIF
IF (2.LE.I .AND. I.LE.NSLXXX .AND.

&	 2.LE.J .AND. J.LE.NSLYYY) THEN
QTEMP=QTEMP/(XLW*(DX(I-1)+DX(I))*(DY(J)+DY(J-1))/4.0D0)

ELSE
CALL DATERR(STRING,FILBAS,EXT)
WRITE(*,1001) XI,YJ
STOP 1

ENDIF
RETURN
END

C
C ********** * ********* ******* ********* * ******** ****
C

INTEGER FUNCTION INDX(N,ARY,VAL)
C
C SEARCHES ARRAY ARY FROM ARY(1) TO ARY(N) FOR VAL.
C IF VAL IS FOUND, RETURNS INDEX OF VAL IN ARY.
C RETURNS -1 IF VAL NOT FOUND.
C

INTEGER I, N
DOUBLE PRECISION ARY(N), VAL

C
DO 20, I=1,N

IF (VAL .EQ. ARY(I)) THEN
INDX=I
RETURN

ENDIF
20	 CONTINUE

INDX=-1
RETURN
END

*	 File: TCMSIL.FOR	 Last revision: August 29, 1990
C

	

	 For chem loop phase of LT3VSI.
SUBROUTINE TCMIA

C
C CALCULATE THE TOTAL CHEMICAL MASS IN AQUIFER, CUMULATIVE FIRST ORDER

A-100

C LOSSES, AND THE CUMULATIVE ZERO ORDER BURIED SOURCES CONTRIBUTION.
C

include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CVELOC.SIB'
include 'CRUNC.SIK'
include 'CCHEM.SIK'
include 'CCHEM.SIL'

INTEGER I, J, K
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

DO 1002, K=1,NC
SUMM1=0.0D0
SUMM2=0.0D0
SUMM3=0.0D0

CFLXIN(IX),CFLXIO(IX)
CFLXON(IX),CFLX00(IX)
ERTEMP
F1, F2, F3, F4
F5N, F6N, F7N, F8N
F50, F60, F70, F80
FS1, FS2, FS3, FS4, FS5, FS6, FS7, FS8
SUMM1, SUMM2, SUMM3, SUMM4, SUMM5
SUMM6, SUMM7

DO 1000, I=1,NSLXXX
DO 1000, J=1,NSLYYY

F1=EPS(I,J)*RETARD(I,J,K)*CNEW(I,J,K)
F2=EPS(I+1,J)*RETARD(I+1,J,K)*CNEW(I+1,J,K)
F3=EPS(I,J+1)*RETARD(I,J+1,K)*CNEW(I,J+1,K)
F4=EPS(I+1,J+1)*RETARD(I+1,J+1,K)*CNEW(I+1,J+1,K)
F5N=EPS(I,J)*LAMDA(I,J,K)*CNEW(I,J,K)
F6N=EPS(I+1,J)*LAMDA(I+1,J,K)*CNEW(I+1,J,K)
F7N=EPS(I,J+1)*LAMDA(I,J+1,K)*CNEW(I,J+1,K)
F8N=EPS(I+1,J+1)*LAMDA(I+1,J+1,K)*CNEW(I+1,J+1,K)
F50=EPS(I,J)*LAMDA(I,J,K)*COLD(I,J,K)
F6C=EPS(I+1,J)*LAMDA(I+1,J,K)*COLD(I+1,J,K)
F70=EPS(I,J+1)*LAMDA(I,J+1,K)*COLD(I,J+1,K)
F8CEPS(I+1,J+1)*LAMDA(I+1,J+1,K)*COLD(I+1,J+1,K)
FS1=QCHM1S(I,J,K)
FS2=QCHM1S(I+1,J,K)
FS3=QCHM1S(I,J+1,K)
FS4=QCHM1S(I+1,J+1,K)
FS5=QWELIN(I,J)*CSWELN(I,J,K)
FS6=QWELIN(I+1,J)*CSWELN(I+1,J,K)
FS7=QWELIN(I,J+1)*CSWELN(I,J+1,K)
FS8=QWELIN(I+1,J+1)*CSWELN(I+1,J+1,K)
SUMM1=SUMM1+(DX(I)*DY(J))*(Fl+F2+F3+F4)/4.0D0
SUMM2=SUMM2+DX(I)*DY(J)*(F5N+F6N+F7N+F8N)/4.0D0+

DX(I)*DY(J)*(F5O+F6O+F70+F80)/4.0D0

A-101

SUMM3=SUMM3+DX(I)*DY(J)*(FS1+FS2+FS3+FS4+FS5+FS6+FS7+FS8)/
4.0D0

1000 CONTINUE
C

XMASS(K)=XLW*SUMM1
XMFONW(K)=XMFONW(K)+XLW*DTO*SUMM2/2.0D0
XMSOUR(K)=XMSOUR(K)+XLW*DTO*SUMM3

1002 CONTINUE
C

DO 1020, K=1,NC
SUMM4=0.0D0
SUMM5=0.0D0
SUMM6=0.0D0
SUMM7=0.0D0

C

1010
C

DO 1010, I=1,NSLXP1
ERTEMP=EPS (1 , 1) *RETARD (1 , 1 , K)
CFLXIO (1) =-ERTEMP*DCHLY (1 , 1 , K) * (COLD (1 , 2 , K)

COLD(I,1,K))/DY(1)+
VLYY (I , 1) *ERTEMP*COLD (I , 1 , K)

CFLXIN (1) =-ERTEMP*DCHLY (1 , 1 , K) * (CNEW (1 , 2 , K)
CNEW(I,1,K))/DY(1)+
VLYY(I,1)*ERTEMP*CNEW(I,1,K)

ERTEMP=EPS(I,NSLYP1)*RETARD(I,NSLYP1,K)
CFLX00(I)=-ERTEMP*DCHLY(I,NSLYP1,K)*(COLD(I

COLD(I,NSLYYY,K))/DY(NSLYYY)+
VLYY(I,NSLYP1)*ERTEMP*COLD(I,NSLYYY,K)

CFLXON(I)=-ERTEMP*DCHLY(I,NSLYP1,K)*(CNEW(I
CNEW(I,NSLYYY,K))/DY(NSLYYY)+
VLYY(I,NSLYP1)*ERTEMP*CNEW(I,NSLYYY,K)

CONTINUE

,NSLYP1,K)-

,NSLYP1,K)-

DO 1015, I=1,NSLXXX
SUMM4=SUMM4+DX(I)*(CFLXIO(I)+CFLXIO(I+1))/2.0D0
SUMM5=SUMM5+DX(I)*(CFLXIN(I)+CFLXIN(I+1))/2.0D0
SUMM6=SUMM6+DX(I)*(CFLX00(I)+CFLX00(I+1))/2.0D0
SUMM7=SUMM7+DX(I)*(CFLXON(I)+CFLXON(I+1))/2.0D0

1015 CONTINUE

XMASIN(K)=XMASIN(K)+DT0*(SUMM4+SUMM5)*XLW/2.0D0
XMASOT(K)=XMASOT(K)+DT0*(SUMM6+SUMM7)*XLW/2.0D0

1020 CONTINUE

RETURN
END

C

C

A-102

File: WATSIW.FOR	 Last revision: August 29, 1990
C

	

	 For water phase of LT3VSI.
SUBROUTINE FLUID

C
IMPLICIT DOUBLE PRECISION(A-H2O-Z)
include 'CSIZE.SIB'
include 'CPROP.SIB'
include 'CSSIP.SIW'
include 'CWAT.SIW'

C
INTEGER I, J
DOUBLE PRECISION CONSTX, CONSTY

C
C	 DEFINE MATRIX ELEMENTS FOR WATER PRESSURE FIELD MATRIX.
C

DO 30, I=2,NSLXXX
CONSTX=2.0D0/(DX(I-1)+DX(I))
DO 31, J=2,NSLYYY
CONSTY=2.0D0/(DY(J-1)+DY(J))

C
ADT1(I,J)= -(KSATYY(I,J-1)+KSATYY(I,J))*CONSTY/(2.0DO*DY(J-1))
ADT2Y(I,J)=CONSTY*UKSATYY(I,J-1)+KSATYY(I,J))/(2.0DO*DY(J-1))+

(KSATYY(I,J)+KSATYY(I,J+1))/(2.0DO*DY(J)))
ADT2X(I,J)=CONSTX*((KSATXX(I-1,J)+KSATXX(I,J))/(2.0DO*DX(I-1))+

(KSATXX(I,J)+KSATXX(I+1,J))/(2.0DO*DX(I)))
ADT3(I,J)= -(KSATYY(I,J)+KSATYY(I,J+1))*CONSTY/(2.0DO*DY(J))
ALT2(I,J)= -(KSATXX(I-1,J)+KSATXX(I,J))*CONSTX/(2.0D0*DX(I-1))
AUT2(I,J)= -(KSATXX(I,J)+KSATXX(I+1,J))*CONSTX/(2.0DO*DX(I))

C
31 CONTINUE
30 CONTINUE

IF(NFLAG(10).EQ.0) GO TO 950
C
C++

WRITE(9,*)
WRITE(9,*)'Raw matrix elements'
WRITE(9,*)
DO 800, I=2,NSLXXX
DO 801, J=2,NSLYYY
WRITE(9,802) I,J,ALT2(I,J),ADT1(I,J),ADT2X(I,J),ADT2Y(I,J),

&	 ADT3(I,J),AUT2(I,J)
801 CONTINUE
800 CONTINUE
802 FORMAT(1X,2I3,6E12.6)

WRITE(9,*)
C+++
C

950 CONTINUE
C

DO 20, J=2,NSLYYY

A-103

ADT2X(2,J)=ADT2X(2,J)+ALT2(2,J)*CONST1
AUT2(2,J)=AUT2(2,J)-ALT2(2,J)*CONST2
ADT2X(NSLXXX,J)=ADT2X(NSLXXX,J)+AUT2(NSLXXX,J)*CONST3
ALT2(NSLXXX,J)=ALT2(NSLXXX,J)-AUT2(NSLXXX,J)*CONST4

20 CONTINUE
C

IF(NFLAG(11).EQ.0) GO TO 951
C
C++

WRITE(9,*)
WRITE(9,*)'Adjusted boundary matrix elements(Y-DIRECTION)'
WRITE(9,*)
DO 803, J=2,NSLYYY
WRITE(9,804) J,ADT2X(2,J),AUT2(2,J),ADT2X(NSLXXX,J),

ALT2(NSLXXX,J)
803 CONTINUE
804 FORMAT(1X,I3,4E12.6)

WRITE(9,*)
C+++
C
C	 CALCULATE THE "KNOWN" VECTOR FOR THE WATER PRESSURE DISTRIBUTION.
C
C	 THE KNOWN VECTOR IS FILLFD WHERE EACH POSITION HAS CONTRIBUTIONS
C	 FROM
C 1. ANY SOURCES
C 2. BOUNDARY TERMS OF MOISTURE FIELD
C

951 DO 80, I=2,NSLXXX

YDUM(I,2)=(QWELIN(I,2)-QWELOT(I,2))/RHOWAT
YDUM(I,2)=YDUM(I,2)-ADT1(I,2)*HIN

YDUM(I,NSLYYY)=(QWELIN(I,NSLYYY)-QWELOT(I,NSLYYY))/RHOWAT
YDUM(I,NSLYYY)=YDUM(I,NSLYYY)-ADT3(I,NSLYYY)*HOUT

80 CONTINUE

DO 90, J=3,NSLYM1

YDUM(2,J)=(QWELIN(2,J)-QWELOT(2,J))/RHOWAT

YDUM(NSLXXX,J)=(QWELIN(NSLXXX,J)
-QWELOT(NSLXXX,J))/RHOWAT

90 CONTINUE

DO 100, I=3,NSLXM1
DO 101, J=3,NSLYM1
YDUM(I,J)=(QWELIN(I,J)-QWELOT(I,J))/RHOWAT

101 CONTINUE

C

C

C

C

C

C

C

C

A-104

100 CONTINUE
C

IF(NFLAG(12).EQ.0) GO TO 952
C
C++

WRITE(9,*)
WRITE(9,*)' "Known vector" '
WRITE(9,*)
DO 805, I=2,NSLXXX
DO 806, J=2,NSLYYY
WRITE(9,807) I,J,YDUM(I,J)

806 CONTINUE
805 CONTINUE
807 FORMAT(1X,2I3,E12.6)

WRITE(9,*)
C+++
C

952 CONTINUE
C
C INITIAL GUESS FOR THE STEADY STATE FLUID HYDRAULIC FIELD.
C

DO 301, I=2,NSLXXX
DO 302, J=2,NSLYYY
XDUM(I,J)=HOLD(I,J)

302 CONTINUE
301 CONTINUE

C
RETURN
END

B-1

Appendix B. Listing of LTPREP program

The source code for LTPREP is on the installation diskette, in the
file LTPREP.ARC. The two files are listed below: the "include" file
LTPREP.INC, and the Fortran source file LTPREP.FOR. See section IV.1
for information on using LTPREP.

INCLUDE	 FILE

* Include file: LTPREP.INC (Ver 2.2) Last revision: 	 November 9, 1989
* Limits on array sizes.

integer limx,limy
parameter(limx=50,1imy=50)

* Common variables and arrays.
integer nx, ny, state, systat
real value, xnode, ynode
common /sense/ nx, ny, xnode(limx), ynode(limy),
& state(0:limx+1,0:limy+1), value(0:limx+1,0:limy+1),
& systat(0:limx+1,0:limy+1)

*

character svline*80
common /tater/ svline

FORTRAN CODE

LTPREP.FOR (Ver. 2.2)
program ltprep

* Helps prepare data for "ltaq" programs that allow data
* which varies from place to place within the aquifer.
*

Sinclude:'LTPREP.INC'
character*12 geofil, datfil, outfil

* Unit numbers for files:
* datfil: unit 1
* outfil: unit 2
* geofil: unit 3
* picture file: unit 4

character line*80
integer length
external length

* Read names of files and open them.
1000 format(a)

print 1010
1010 format(lx,'Enter name of GEOMETRY file: ',$)

read(*,1000) geofil
open(unit=3,file=geofil,status='OLD')

Last revision: November 9, 1989

B-2

print 1020
1020 format(lx,'Enter name of INPUT DATA file: ',$)

read(*,1000) datfil
open(unit=1,file=datfil,status='OLD')
print 1030

1030 format(lx,'Enter name of OUTPUT file: ',$)
read(*,1000) outfil
open(unit=2,file=outfil)

* Open picture file.
open(unit=4,file='LTPICT.XXX')

* Read geometry file & store data.
call rdgeom(3)

* Read data file, checking for commands. Process commands
* and write processed output; copy other lines to output file.
10	 continue

read(1,1000,end=99) line
* Test for #G command (copy Geometry file)

if (line(1:2) .eq. '#G') then
call cpygeo(3,2)

* Test for #V command (convert values from simple form to form needed
* by "ltaq"-like programs).

elseif (line(1:2) .eq. '#V') then
* Set up the state array.

call setup
* Read values for interiors of regions.

call rdvals(1)
* Compute values on boundaries.

call cmpbnd
* Write the results on output file.

call output(2)
else

* Copy non-command line to output.
write(2,1000) line(l:length(line))

endif
* Loop back.

goto 10
* Write picture file and quit.
99	 call wrtpic(4,geofil)

print *, 'Picture has been written on file LTPICT.XXX'
stop
end

subroutine rdgeom(unit)

$include:'LTPREP.INC'
character string*80
integer i, j, unit

* Read the geometry of the aquifer from unit.
* The data in the file must have the following form:

String
nx, ny

B-3

String
xnode(1), xnode(2), 	 xnode(nx+2)
String
ynode(1), ynode(2),	 ynode(ny+2)
String
Boundary data - see subroutine rdbnds.

* The "String"s can be any data, such that the fourth "String"
* is NOT the same as any previous line in the file.
* nx and ny are integers; the xnode's and ynode's are real
* numbers. See comments below.
*
* Read the dimensions (no. of interior nodes in x & y directions).

read (unit,2000) string
read (unit,*) nx, ny

* Make sure dimensions are within maximum limits.
if (nx+2.gt.limx .or. ny+2.gt.limy) then

print *, 'Nx = ',nx,', Ny = ',ny
print *, 'Limits are: ',limx-2,', ',limy-2
stop 1

endif
* Change dimensions to number of nodes including outside boundaries.

nx=nx+2
ny=ny+2

* Read the node positions for the x-direction.
read (unit,2000) string
read (unit,*) (xnode(i),i=1,nx)

* Read the node positions for the y-direction.
read (unit,2000) string
read (unit,*) (ynode(j),j=1,ny)

* Initialize systat array.
call init

* Read internal boundary data.
read (unit,2000) svline
call rdbnds(unit)

2000 format(a)
return
end

subroutine init

$include:'LTPREP.INC'
integer i, j

* Initialize systat array to undefined (0), except for a boundary (-1)
* around the outside.

* Definition of values in state array and in systat array:
• state(i,j) = -1 boundary node whose value hasn't been computed.
• state(i,j) = 0 interior node whose value hasn't been computed.
• state(i,j) = 1 interior node whose value has been computed.
• state(i,j) = 2 boundary node whose value has been computed.

B-4

do 20, j=1,ny
do 20, i=1,nx

systat(i,j)=0
20	 continue

do 24, i=0,nx+1
systat(i3O)=-1
systat(i,ny+1)=-1

24	 continue
do 26, j=0,ny+1

systat(0,j)=-1
systat(nx+1,j)=-1

26	 continue
return
end

subroutine rdbnds(unit)

$include:'LTPREP.INC'
complex z(11)
integer i, j, k, nlines, nx , nx2, nyl, ny2, unit
real xl, x2, yl, y2
integer indx
external indx

* Read data specifying internal boundaries, between regions of
* different values. Boundaries must be horizontal or vertical,
* and are specified by giving the coordinates of their endpoints.
* The data for each boundary line has the form:

(xl,yl)	 (x2,y2)
* where xl, yl, x2, and y2 are real numbers, and either x1 = x2,
* or yl = y2. Input data has the form:

n (xl,yl) (x2,y2)	 (xn+l,yn+1)
* where n is an integer (0 <= n <= 10), followed by n+1 pairs of
* coordinates. This represents n connected boundary lines:

(xl,yl)	 (x2,y2)
(x2,y2)	 (x3,y3)

*

(xn,yn) (xn+1,yn+1)
* The special case when n = 0:

0 (xl,yl)
* represents a single boundary point.
* The data is ended by a line containing a single -1:

-1

* Read a list of endpoints, using list-directed complex number
* input for the points.
10	 read (unit,*) nlines, (z(i),i=1,nlines+1)

if (nlines .lt. 0) then
return

elseif (nlines .eq. 0) then
nlines=1

B-5

z(2)=z(1)
endif
do 40, k=l,nlines

xl=real(z(k))
yl=aimag(z(k))
x2=real(z(k+1))
y2=aimag(z(k+1))
if (xl.ne.x2 .and. yl.ne.y2) then

print *, 'Bad boundary data; line is neither horizontal ',
'nor vertical: ',z(k),z(k+l)

stop 1
endif
nx1=indx(nx,xnode,x1)
ny1=indx(ny,ynode,y1)

* if (xl.eq.x2) then
ny2=indx(ny,ynode,y2)
do 20, j=nyl,ny2,sign(1,ny2-nyl)

systat(nxl,j)=-1
20	 continue

elseif (yl.eq.y2) then
nx2=indx(nx,xnode,x2)
do 30, i=nxl,nx2,sign(1,nx2-nxl)

systat(i,ny1)=-1
30	 continue

else
print *, 'Impossible error in RDBNDS!'
stop 1

endif
40	 continue

goto 10
end

subroutine cpygeo(geo,out)

$include:'LTPREP.INC'
character line*80
integer geo, out, length
external length

* Copy the geometry file to the output file, up to the
* boundary data.

rewind(geo)
10	 continue

read (geo,1000) line
if (line .eq. svline) return
write (out,1000) line(l:length(line))

goto 10
1000 format(a)

end

subroutine setup
$include:'LTPREP.INC'

B-6

integer i, j
* Set up the state array, by copying the values from
* the systat array.

do 20, i=0,nx+l
do 20, j=0,ny+1

state(i,j)=systat(i,j)
20	 continue

return
end

subroutine rdvals(unit)

$include:'LTPREP.INC'
complex z
integer i,	 j, jj, vx, vy, unit
logical change
real val
integer indx
external indx

* Reads values for interiors of regions. There should be one
* value in each region. The program propagates the value throughout
* the region. Each line of data must have the form:

(x,y) val
* where x and y are real numbers specifying the location of a
* point inside one of the regions, and val is the value to be
* assigned to all points within that region. The data is ended by a
* line of the form:

(0,0)	 0.0
*

* Read lines of data.
10	 read (unit,*) z,val

if (z .eq. 0.0) goto 20
vx=indx(nx,xnode,real(z))
vy=indx(ny,ynode,aimag(z))
if (state(vx,vy).1t.0) then

print *,'Attempt to assign point at 	 z, ' with val ',
val

print *,'It is a boundary point.'
stop 1

endif
value(vx,vy)=val
state(vx,vy)=1
goto 10

* Propagate each value throughout the region in which it occurs.
20	 change=.false.
* First, propagate horizontally.

do 30, i=1,nx
j=1

32	 if (state(i,j) .eq. 1) then
ji=j-1

35	 if (state(i,jj) .eq. 0) then

B-7

value(i,jj)=value(i,jj+1)
state(i,jj)=1
change=.true.
jj=jj-1
goto 35

endif
37	 if (state(i,j+l) .eq. 0) then

j=j+1
value(i,j)=value(i,j-1)
state(i,j)=1
change=.true.
goto 37

endif
endif
j=j+1
if (j .le. ny) goto 32

30	 continue
* Then, propagate vertically.

do 40, j=1,ny
i=1

42	 if (state(i,j) .eq. 1) then
ii=i-1

45	 if (state(ii,j) .eq. 0) then
value(ii,j)=value(ii+1,j)
state(ii,j)=1
change=.true.
ii=ii-1
goto 45

endif
47	 if (state(i+l,j) .eq. 0) then

i=i+1
value(i,j)=value(i-1,j)
state(i,j)=1
change=.true.
goto 47

endif
endif
i=i+l
if (i .le. nx) goto 42

40	 continue
* If any change occurred, loop back and propagate some more.

if (change) goto 20
return
end

subroutine cmpbnd

$include:'LTPREP.INC'
* Compute values of nodes on the internal boundaries.
* The value of a boundary node is the geometric mean of the
* values of the nodes on opposite sides of it.

B-8

integer i, j
logical change

* Compute as many nodes as possible; repeat until no change
* occurs.
20	 change=.false.

do 30, i=1,nx
do 30, j=1,ny

if (state(i,j).eq.-1) then
if (state(i,j-1).gt.0 .and. state(i,j+1).gt.0) then

value(i,j)=sqrt(value(i,j-1)*value(i,j+1))
state(i,j)=2
change=.true.

elseif (state(i-1,j).gt.0 .and. state(i+l,j).gt.0) then
value(i,j)=sqrt(value(i-1,j)*value(i+1,j))
state(i,j)=2
change=.true.

endif
endif

30	 continue
* If any changes occurred, loop back to see if more nodes can be
* computed.

if (change) goto 20
return
end

subroutine output(unit)

* Writes value array, using repeat feature of List-Directed input.
$include:'LTPREP.INC'

integer i, j, nv, rpt(limx), unit
real val(limx)
do 30, j=1,ny

nv=1
rpt(1)=1
val(l)=value(l,j)
do 20, i=2,nx

if (value(i,j) .eq. val(nv)) then
rpt(nv)=rpt(nv)+1

else
nv=nv+1
rpt(nv)=1
val(nv)=value(i,j)

endif
20	 continue

write(unit,3000) (rpt(i),val(i),i=1,nv)
3000	 format(lp,6(1x,i3,'*',e8.2))
30	 continue

return
end

subroutine wrtpic(unit,string)

B-9

* Writes state array in character form representing a picture
* of the aquifer.
$include:'LTPREP.INC'

character string*(*), symb(-1:2)*1
integer i, j, unit
data symb/'+', '?', 	 '#'/
write(unit,4000) string

4000 format(lx,'LTPREP Picture File for ',a,/)
do 20, j=0,ny+l

write(unit,4100) (symb(state(i,j)),i=0,nx+1)
20	 continue
4100 format(lx,79a)

return
end

integer function indx(n,ary,val)
integer i, n
real ary(n), val

* Returns index of val in array ary, of n elements.
do 20, i=1,n

if (val .eq. ary(i)) then
indx=i
return

endif
20	 continue

print *, 'Value ',val, ' not found in INDX.'
stop 1
end

integer function length(string)

* Returns length of string, not including trailing blanks.
character string*(*)
integer i
do 20, i=len(string),1,-1

if (string(i:i) .ne. ") goto 40
20 continue

length=1
return

40	 length=i
return
end

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225

