The Cost of Avoiding Sea Cucumber stock depletion

Alvaro Hernández-Flores

Alfonso Cuevas-Jiménez Javier Aranda-Nah

North American Association of Fisheries Economists NAAFE 2015 Biennial Forum

Ketchikan, Alaska, May 22, 2015

The Cost of Avoiding Sea Cucumber stock depletion

OUTLINE

- 1. An overview of the sea cucumber fishery in Yucatan
- 2. Research question
- 3. Geostatistical stock assessment
- 4. The Allee effect (Population density as limit reference)
- 5. The spatial bio-economic model
- 6. Results
- 7. Conclusion

The sea cucumber fishery in Yucatan, Mexico <u>2013</u>

- In 2013 a stock of sea cucumber (*Isostichopus* badionotus) was discovered in northern shelf of Yucatan.
- A survey calculated a biomass of 17600 tons.
- The species has an attractive price for local fishers US\$3.5 per kg.
- To avoid the "race for sea cucumbers" and the collapse of the stock, authorities established a total quota of 1278 tones
- Issued a limited number of permits: 250 boats
- Restricted the fishing season to six weeks.

Cervera, K. 2011

Isostichopus badionotus Ex-vessel Price: US\$3.5 per kg

Poot, A., 2010

Research questions

- 1. What should be the spawning stock size to maintain a viable sea cucumber population?
- 2. What should be the minimum density to ensure the reproductive success?
- 3. What is the cost* of avoiding stock depletion?

* social opportunity cost

140 Stock assessment independent of the fishery 120 100 Monitoring of density in 236 points Frequency 80 Erlang probability distribution 60 71% of stations recorded sea cucumber 40 Cervera, K. 2011 20 2402870.670 0 0.00 0.30 0.10 0.20 0.40 0.50 Density (ind m⁻²) 2389332.335 2399228.030 Northing 2375794.000 333584.580 279498.630 297527.280 315555.930 Easting San Felipe 2374264.710 313921.177 275157.390 294539.283 Easting Dzilam March, 2013

Geostatistical stock assessment

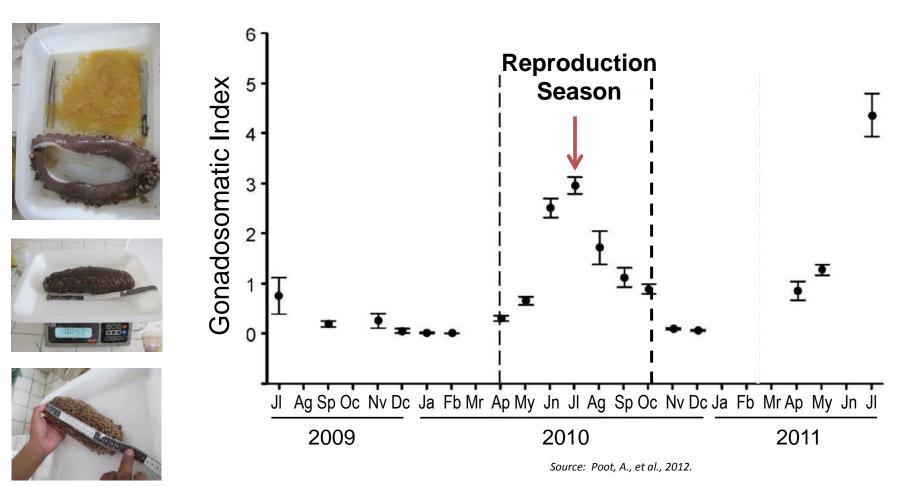
Geostatistical stock assessment

- Ordinary Kriging Interpolation Method
- Spatial models of population density

			$N_i = \rho_i s_i$	$B_i = w \rho_i a_i$
Area	Density (ind m ⁻²)	Surfaced (m ²)	Percentage of Surface	
1	≥ 0.30	15,634,500	7 %	Total Biomass
2	≥ 0.20	77,110,000	35 %	16,406 tons
3	≥ 0.10	126,990,000	58 %	10,400 10115

Population density as limit reference point

- Sea cucumbers are dioecious
- Present external fecundity


```
Cervera, K. 2011
```

- Their reproductive behavior and success determined by hormones and biochemical communication
- Males and females require a minimum distance to start courtship, expel gametes and fertilize eggs.
- Form large patches as a reproductive strategy

Cervera, K. 2011

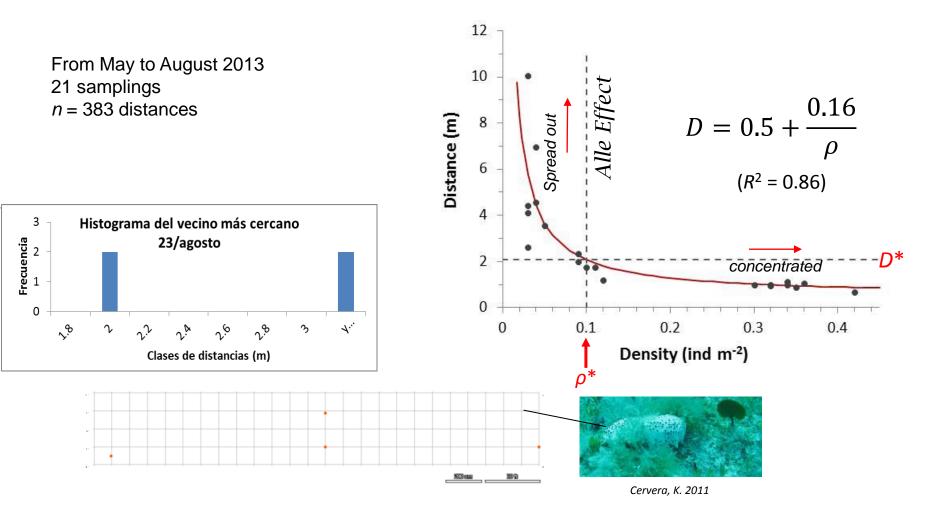
Reproductive Season

Population density as limit reference point

Erlang distribution function fitted to population density approaches an

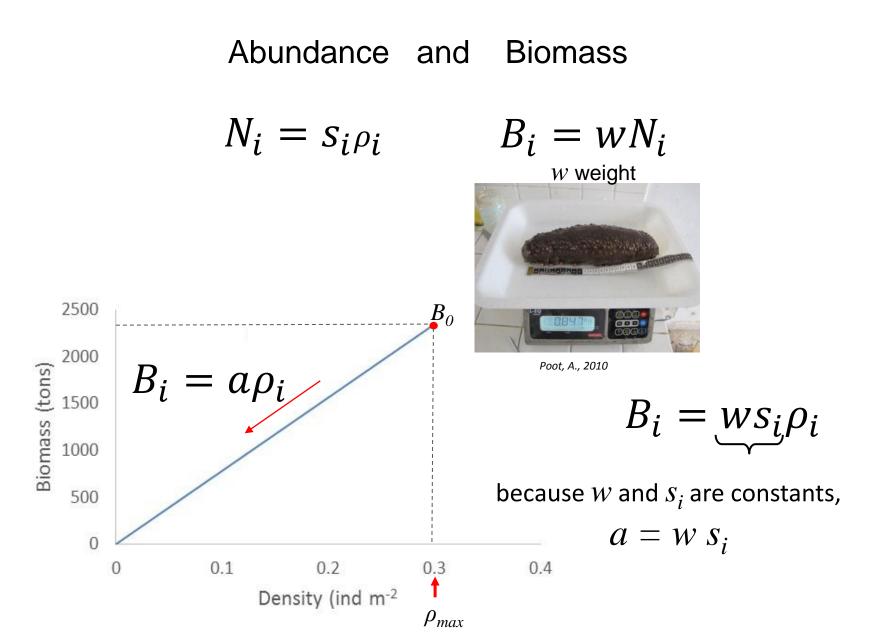
30 % with no sea cucumbers (0.0 ind m⁻²) 50 % of stations with low density (0.05 ind m⁻²) 20 % with higher concentration (\geq 0.1 ind m⁻²)

- 1. What should be the remaining spawning stock?
- 2. What should be the minimum density to ensure the reproductive success?

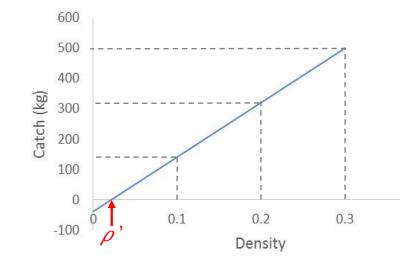

Cervera, K. 2011

k? ¹⁴⁰ ¹²⁰ ¹⁰⁰ ¹⁰ ¹⁰⁰ ¹⁰⁰

Density (ρ) vs. Distance (D)


Density (ρ) vs. Distance (D)

A relationship between ρ and D gave a hyperbola model, with asymptote (minimum distance between organisms): a = 0.5 (meters)

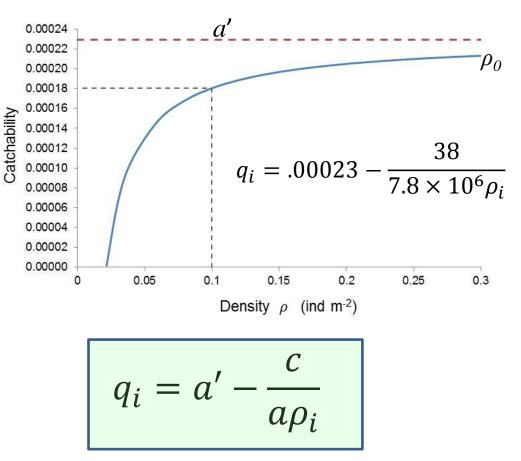

Characteristics

- Short run (time unit in days) dynamic model
- Depletion model (no natural mortality, no recruitment and no individual growth)
- Biomass is calculated from population size (N) multiplied by individual average weight (w) at areas with densities > 0.1 ind m⁻²
- > Vulnerable biomass is set for patches with densities > 0.1 ind m^{-2}
- > The patch is divided into three sub-areas (S_i), according to their density
- Catch is calculated as: Y= EqB
- Catchability (q) is density-dependent since the fishing technique is by means of collecting with Scuba diving

Catch (keeping effort constant) E = 1 day-trip

 $Y_1 = b\rho_1 - c$

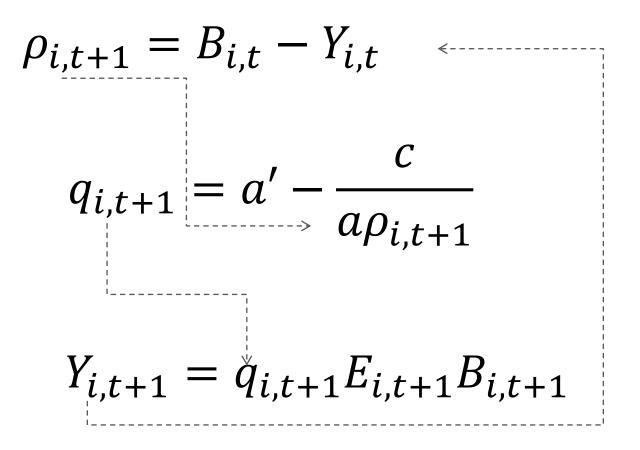
Threshold density $\rho = 0.02$ ind m⁻²


 Density determines fishing efficiency
 Catchability is highly dependent on density

Catchability Density-dependent Function

From catch equation
(effort constant)
$$E = 1$$

 $Y_i = qB_i$
 $q_i = \frac{Y_i}{B_i}$

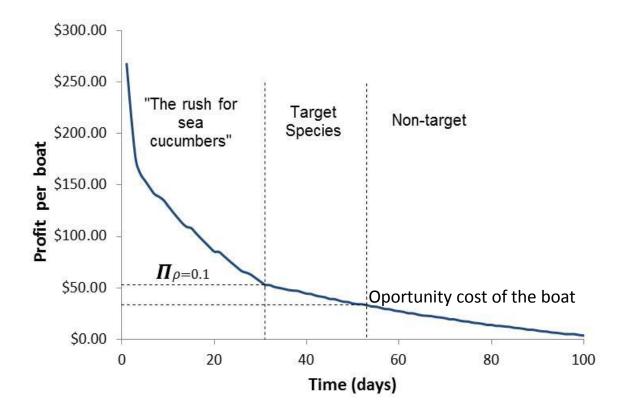

By substituting catch and biomass density-dependent equations:

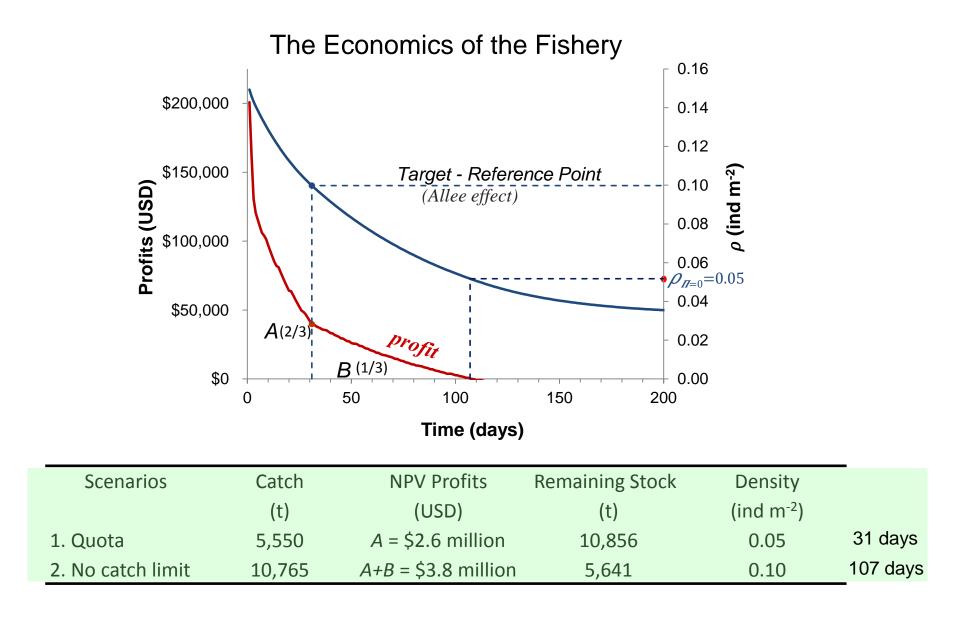
$$q_i = \frac{b\rho_i - c}{a\rho_i} = \frac{b}{a} - \frac{c}{a\rho_i}$$

a' is the asymptotic catchability coefficient

Dynamics (Unit time in days)

Sea cucumber eviscerated ex-vessel price (USD/ton)	\$3,300
Gas price (USD/liter)	\$1.00
Weight loss (from total to eviscerated weight)	60%

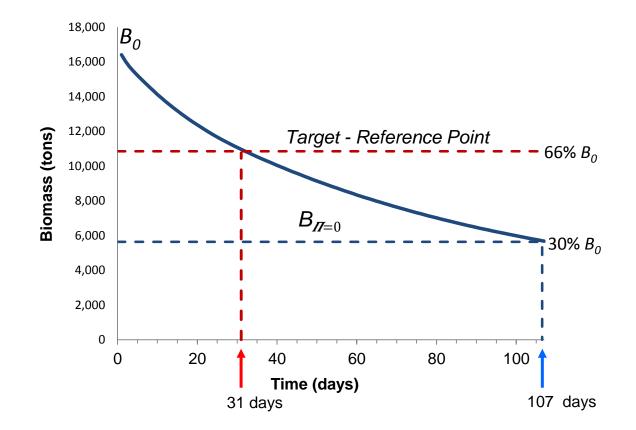

Cost density-distance transfer function


$$C_f = 121.7e^{-2.2\rho}$$

Catch per trip	Density	Gas
501 kg	$ ho \geq 0.3$ ind m ⁻²	40.4 <i>l</i>
≤106 kg	ho < 0.1 ind m ⁻²	121.7 <i>l</i>

Results

The economics of the boat



Social Opportunity Cost:

B = \$1,289,539

Results

Biomass path with no catch restriction

Conclusions

- > Without catch restrictions, the sea cucumber fishery would reach the bioeconomic equilibrium at a biomass 30% of B_0 , a density $\rho = 0.05$ ind m⁻², a catch **Y** = 10765 t, and profits of **US\$3.9 million**
- In order to avoid the Allee effect, the species requires a minimum density of 0.1 ind m⁻²
- > To avoid the Allee effect, it is necessary to establish a total quota of **5550 t** (34% of B_0)
- > The quota would produce NPV of **US\$2.6 million**, and biomass 0.66 B_0
- Society should renounce in the short run to US\$1.3 million to maintain a renewable stock above the Alle effect threshold
- One reason that many sea cucumber fisheries worldwide are overexploited* could be that regulations do not take into account the Allee effect.

* 83% of sea cucumber fisheries in the world are over-exploited or fully exploited (*Purcell et al., 2013*),

Thank you

Alvaro Hernández-Flores

Alfonso Cuevas-Jiménez

Javier Aranda-Nah

ahernandez@marista.edu.mx

Marist University of Merida