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A theoretical derivation of the dependence of the remotely 
sensed reflectance of the ocean on the inherent 

optical properties 

J. Ronald V. Zaneveld 

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis 

AbStract. An expression for the ratio of the upwelling nadir radiance L(rr, z) and the 
downwelling scalar irradiance Eoa(Z) is derived from the following equation of radiative 
transfer. This expression is given by RSR(z)=[L(rr, z)]/Eoa(Z) = [ft,(z)bt,(z)]/2rr[k(rr, z) + 
c(z) -fr(z)bf(z)], where b•,(z) is the backscattering coefficient, k(rr, z) is the vertical 
attenuation coefficient of the nadir radiance, c(z) is the beam attenuation coefficient, 
and fv(z) and f•; (z) are shape parameters that depend on the shape of the volume 
scattering function and the radiance distribution. Successive approximations are 
subsequently applied to the above exact equation. These are fv(z) = [2rr/3(rr - Om, 
z)]/[b•,(z)], where/3(rr - Om, z) is the volume scattering function at 180 ø minus the 
zenith angle of the maximum radiance, and k(rr, z) = am = c[1 - 0.52 b/c - 0.44 
(b/c)2], where rn is a parameter that is numerically equal to the inverse of the average 
cosine of the asymptotic light field for a medium with the same inherent optical 
properties, a is the absorption coefficient, and b/c is the single scattering albedo. 
Together with fr(z) = 1.05 and application of Gershun's equation, it is shown that for 
nearly all oceanic cases RSR(z) -- L(rr, z)/Eoct(z) = [/3(rr- Om, z)]/{a(z)[1 + m(z)]}. 

Introduction 

The diffuse or irradiance reflectance R at a depth z is 
defined as the ratio of the upwelling irradiance E, and the 
downwelling irradiance Ea. Hence R(z) = E,(z)/Ea(z). 
This parameter has been extensively measured and modeled 
(see, for example, Gordon et al. [1988], Morel [1988], 
Gordon [1989], and Morel and Gentili [1990]), primarily 
because of its ease of measurement since the irradiance 

sensor does not require absolute calibration. Remote sensing 
satellites sense radiance rather than irradiance, so that the 
models were subsequently modified to look at the ratio of the 
upwelling radiance L, and the downwelling irradiance [Gor- 
don et al., 1988; Morel and Gentili, 1993]. The ratio Rrs(Z) : 
L,(z)/Ea(z) as used in the later papers is often called the 
remote sensing reflectance. Instrumentation was also devel- 
oped to measure the upwelling radiance spectrum. 

All the references cited above contain models that are 

based on measurements or Monte Carlo modeling and so are 
semianalytic. In these models, new calculations need to be 
made if one wants to apply the results to a specific volume 
scattering function. A purely analytical model might reveal 
simplifying relationships between the inherent optical prop- 
erties (IOP) (the scattering and absorption properties of 
natural waters) and the upwelling radiance. This approach 
was taken by Zaneveld [1982], who derived an exact expres- 
sion for the remotely sensed reflectance ratio RSR(z) - 
L(rc, z)/Eoa(Z), where L(rr, z) is the upwelling radiance as 
seen by a nadir-viewing radiance sensor (termed "nadir 
radiance" in the remainder of this paper) and Eoa(Z) is the 
downwelling scalar irradiance. This expression uses the 
scalar downwelling irradiance rather than the plane down- 

Copyright 1995 by the American Geophysical Union. 

Paper number 95JC00453. 
0148-0227/95/95 J C-00453 $05.00 

welling irradiance in the denominator. As will be shown, the 
scalar irradiance appears naturally in the derivation. In 
addition, the scalar irradiance is far less dependent on the 
angular structure of the incident light field than the plane 
irradiance, so that some complexity is bound to be removed 
by the use of this parameter. 

Practical use of the Zaneveld [1982] expression was lim- 
ited due to the presence of a number of difficult to measure 
shape factors. The present paper will give a general expres- 
sion for the remotely sensed reflectance for upward radiance 
in any direction. It clarifies the original paper in that it 
contains explicit expressions for the shape factors and 
derives the final expression without use of the mean value 
theorem. It then applies a number of approximations to the 
remotely sensed reflectance for the nadir radiance, resulting 
in expressions that contain measurable inherent optical 
properties only. 

Theory 
The equation of radiative transfer in a plane parallel 

medium without internal sources and inelastic scattering 
effects is given by 

cos o 

where 

dL,( O, ok, z) 

dz 
= -c(z)L,(O ch z) +L*(O ch z) 

œ*•(0, •, z) 

= fi(0, (3; 0', oh', z)L(O', oh', z) sin O' dO' dch' 

(2) 
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and/3(0, •b; 0', •b', z) is the volume scattering function of 
the angle between the unscattered ray traveling in direction 
(0', •b') and the scattered ray traveling in direction (0, •b). We 
are interested in deriving expressions for upwelling light. It 
should be borne in mind that the radiances on the left-hand 

side of the equations refer to upwelling light as indicated by 
the subscript u. The path function L*(0, •b, z) describes the 
light that is scattered into direction (0, •b) from all other 
directions. 

We divide the path function L*(0, •b, z) into components 
due to downwelling and upwelling radiance. 

L*•(O, c•, z) 

2•rf•r/2 = /3(0, •b; 0', •b', z)L(O', •b', z)sin 0' dO' dqb' 
J0 d0 

2•rf•r + /3(0, •b; 0', •b', z)L(0', •b', z) sin 0' dO' d4'. 
d 0 d •r/2 

The first component is due to scattered downwelling light, so 
that 0 -< O' -< ,#2. The scattering angle is not necessarily less 
than ,#2, however. We introduce a shape factor fb(0, 4•, z) 
that indicates the ratio of the first component to the product 
of the average value of the volume scattering function in the 
backward direction and the scalar downwelling irradiance: 

fo(0, z) 

f2•rl•r/2 /•(0, •b; 0', qb' z)L(O' qb' Z)sin O' dO' dqb' 
dO dO 

bt,(z) 
Eoct( z) 

2rr 

(3) 

It should be noted that the 2,r in the denominator of the 

above equation carries units of steradian, so that the shape 
factor f0 is dimensionless. The shape factor is seen to be the 
ratio of the light actually scattered into the direction (0, •b) by 
scattering of downward traveling radiance to the light that 
would be received if the scattering function was constant and 
equal to [bo(z)]/2•r. 

The second component of the path function is due to 
upwelling light being scattered. We introduce another shape 
parameter, fL (0, •b, z) that indicates the relative magnitude 
of the second component of the path function and the 
product of the forward scattering function and the radiance: 

f(o, q,, z) 

12•f• /3(0, •b; O' c•' z)L(O' qb' z) sin O' dO' dqb' 
d 0 d •r/2 

z) 

(4) 

This second shape parameter is the ratio of light scattered 
into the direction (0, •b) by scattering of upwelling radiance 
and the amount of light that would be scattered into the 
direction (0, •b) if the upwelling radiance were uniform and 
equal to L•,(O, 4•, z) and if the scattering function were 
uniform and equal to b f/2 •r. 

Substitution of the above two expressions allows us to 
rewrite the path function' 

bt,(z) 
L*u(O, qb, z) = ft,(O, qb, z) Eod(Z) 

2•r 

+ fL(O, •, z)L•,(O, •, z)bf(z). (5) 
Substitution of (3), (4), and (5) into the equation of radiative 
transfer gives 

dL•,( O, •, z) 
cos 0 = -c( z)L,( O, •, z) 

dz 

+ ft,(O, qb, z) Eod(Z) 
2•r 

+ fz, (0, •b, z)L,,(O, •b, z)bf(z). (6) 
We can define the attenuation coefficient for radiance as 

follows: 

dL( O, qb, z) 
o, q,, z) -- . 

L(O, c•, z) dz 

Substitution of the above equation into (6) and factoring 
gives the desired remotely sensed reflectance 

Lu(0, •b, z) 
RSR(0, •b, z) = 

Eocl( Z) 

fo(o, z) 
27r 

-cos o ,i,, z) + c(z) - f(o, ,i,, 

(7) 

Equation (7) is exact as it is a restatement of the equation of 
radiative transfer for 0 >- •r/2. 

We will now look at the equations for the vertically 
upwelling radiance (or nadir radiance with 0 = •r; 0 is 
measured from the zenith direction). In that case the angle 
between the unscattered downwelling ray and the upwelling 
nadir radiance is 180 ø minus the zenith angle of the incoming 
ray. /3(0, •b; 0', •b', z) may then be replaced by/3(•r - 0', 
z), resulting in the following expressions: 

fo(, z) 

•'fo •/2 13(•r- 0', z)L(O', •', z) sin O' dO' d&' 
27r 

E od(z) 

(8) 

The numerator in (8) is entirely due to backscattered light of 
downwelling radiance as •r - 0' ranges from •r/2 to •r. 

fL(•r, Z) 

•'f•.• 13(•r--O' z)L(O' c•' z)sin O' dO' dc•' /2 

bf(z)L(tc, z) 

(9) 
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Here the numerator is due entirely to forward scattered 
light of upwelling radiance. If we define the attenuation 
coefficient for the nadir radiance as 

dL( jr , z) 
rr, z) -= ( 

L( jr , z) dz ' 

and substitute (8), (9), and (10) into (7), we obtain 

RSR(Jr, z) -= 

b(z) 
f t,( jr, Z) 

L(jr, z) 2jr 

Eoct( z) k( jr, z) + c( z) - f L( jr, z)bœ( z) 

(11) 

Equation (10) is also exact, as it simply is a restatement of 
the equation of radiative transfer for nadir radiance. This 
expression was obtained previously by Zaneveld [1982] 
using a different derivation. The expression contains three 
parameters that depend on the submarine light field, k(jr, z), 
lb(jr, z), and fL (jr, z). If the expression is to be useful for 
experimental work, these parameters need to approximated 
in terms of measurable inherent optical properties. 

Approximations 
Of the various parameters that occur in (11), fb (rr, z) is the 

most critical, as the RSR is directly proportional to it. 
Zaneveld [1982] showed that fo(jr, z) ranged from approxi- 
mately 0.8 to 1.3. The parameter obviously depends on the 
shape of the volume-scattering function (VSF) in the back- 
ward direction and the shape of the downward radiance 
distribution. Radiance distributions such as shown by Jerlov 
[1976] nearly always show a well-defined maximum. Near 
the surface this normally occurs at the angle of the refracted 
solar disk. The cosine of this angle is also very close to the 
average cosine of the light field, as it dominates the radiance. 
The angle at which this maximum occurs changes only 
slowly with depth. At any depth that contributes signifi- 
cantly to remotely detectable radiance we can then argue 
that most of the light that eventually travels in the nadir 
direction is a result of light that is backscattered from the 
radiance maximum or its immediate neighborhood. A more or 
less linear slope of the scattering function results in light to one 
side of the maximum being scattered more than light on the 
other side, but the amounts nearly cancel. We thus assume that 
for most remote sensing viewing situations the incident light is 
dominated by light with a well-defined zenith angle Ore. (If the 
volume scattering function is known, the shape parameters for 
a diffuse sky can be calculated from (3) and (4)). Near the 
surface in relatively clear waters this angle will be the solar 
zenith angle. We thus hypothesize that most of the nadir 
radiance can be reasonably modeled as being derived from 
single scattering of light near the maximum radiance. This light 
scatters through an angle of Jr - Ore, as the incoming ray has a 
zenith angle of Om and the scattered ray has a zenith angle of Jr. 
We can thus approximate the expression forfo(rr, z) as follows: 

lb(jr, Z)• [• ( jr - 0 m, Z) 

•rfl/2 L(O', &', z)sin O' dO' d&' 
bo(z) 

27r 
-- Eoct( z) 

(12) 

Note that this does not imply that the volume scattering 
function in the backward direction has to be flat but that a 

nearly linear scattering function with angle largely cancels 
errors on either side of the radiance maximum. Since the 

integral term is precisely equal to E oa(Z), we can simplify 
the above to 

2jr/3(jr- O m, z) 
f o( jr , z) • , 0 -< O m -< O c. (13) 

bo(z) 

where 0 m is the zenith angle of the maximum radiance and 
Oc is the critical angle. Equation (13) was tested extensively 
using Monte Carlo models [Stavn and Zaneveld, 1994; 
Weidemann et al., this issue] and was found to have typical 
errors of 5%, with maximum errors of 12%. 

Substitution of (13) into (11) gives 

RSR(Jr, z) = 
L(7r, z) [•(jr- 0 m, z) 

Eo(Z) z) + c(z) - z)bz(z) 

(14) 

Equation (14) entirely removes the unmeasurable fo(z) 
factor but requires us to know the shape of the volume 
scattering function in the backward direction and the zenith 
angle of the maximum radiance. 

The attenuation coefficient for the upwelling radiance 
k(rr, z) can be measured directly using the vertical structure 
of the upwelling radiance, which is now measured routinely. 
For inversion it is necessary to describe this parameter in 
terms of the IOP, so that eventually it can be related to 
particulate properties. We do not know of a study that 
directly relates k(rr, z) to the IOP. Aas [1987] describes 
relationships between the absorption coefficient, the ratio of 
the upwelling and downwelling diffuse attenuation coeffi- 
cients K,/Kd, and the ratio of the average cosines of the 
upwelling and downwelling radiance fields •,/•t; Aas' 
model does not provide an explicit dependence of k(jr, z) on 
the IOP only. Earlier studies such as that of Lundgren and 
HOjerslev [1971] provide valuable insight into the relation- 
ship of K, with other apparent and inherent optical proper- 
ties, but they also do not provide the relationship needed 
here. We will therefore present a plausible relationship here, 
but this issue should be further investigated. The modeled 
value of k(rr, z) obtained below will be indicated by km( Jr, z) 
in order to distinguish it from the actual value. Tyler [1960] 
and Jerlov [1976] show that the shape of the upward radiance 
distribution is nearly constant with depth. Depth profiles of 
lnL(rr, z) [Tyler, 1960; Jerlov and Fukuda, 1960; Timofeeva, 
1974] (as shown by Jerlov [1976]) generally have a constant 
slope as a function of depth, while the slope of the radiances 
at smaller angles vary a great deal near the surface. At 
greater depth all radiances have the same slope. This slope is 
the asymptotic diffuse attenuation coefficient. This implies 
that k(Jr, z) is nearly constant with depth over the entire 
water column. If that is the case, it must equal the asymp- 
totic diffuse attenuation coefficient K•, even near the sur- 
face. What this really indicates is that, to a large extent, the 
upwelling radiance attenuation coefficient is decoupled from 
the downwelling radiance distribution. In addition, k(rr, z) is 
independent of the magnitude of L(rr, z). We thus see that 
there are physical and experimental reasons why the atten- 
uation coefficient for nadir radiance can reasonably be 
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modeled as the asymptotic diffuse attenuation coefficient. 
Future research will undoubtedly generate more complete 
models for k(,r, z). 

A number of expressions for Ko• as a function of the shape 
of the volume scattering function and the input radiance 
distribution have been derived [Gordon et al., 1993]. This 
reference shows that the dependence of Ko• on the shape of 
the scattering function is weak. For realistic applications the 
dependence of Ko•/c on b/c as obtained by Prieur and Morel 
[1971] would appear to be sufficiently accurate. Alterna- 
tively, one could use the dependence of Ko• on the IOP 
obtained by Tirnofeeva [1974]. Zaneveld [1989] obtained a 
simple fit to the Prieur and Morel [1971] data. We will use 
this relationship as the modeled value of the attenuation 
coefficient of the nadir radiance km(,r, z). We then get 

km(rr, z) = c[1 - 0.52b/c - 0.44(b/c)2]. (15) 

Substitution of (15) into (14) and using c = a + b then yields 

L(rr, z) 
RSR(rr, z) -- • 

E ocl( Z ) 

•(7r-- O m, Z) 
(20) 

a(z)[1 + m(z)] + bl,(z) + [1 - fœ(•r, z)]bf(z) 

Calculations for extreme cases showed that fL(rr, z) varies 
between 1.0 and 1.1 [Zaneveld, 1982]. We make, at most, a 
5% error in fL (z) by setting it equal to 1.05. This results in 

RSR(rr, z) = • 
L(rr, z) 

Eocl( Z) 

13(w- Ore, Z) 

a(z)[ 1 + m(z)] + b t,(z) - O.05bf(z) 
(21) 

We can use this formula for case 2 waters when the scatter- 

ing is very large compared to the absorption. In very clear 
waters the molecular backscattering is important and b b 
cannot be ignored in the denominator. In nearly all oceanic 
cases, however, we can further simplify this expression with 
negligible loss in accuracy if we can meet the condition that 

a(z)[1 + m(z)]>>bb(z) - O.05bœ(z). (22) 

where 

m(z) :- • 

13 ( •r - Ore, Z) 

a(z)[ 1 + m(z)] + b(z) - fL(rr, z)bf(z)' 
(16) 

•(rr, z) 1 - 0.52b(z)/c(z) - 0.44[b(z)/c(z)] 2 
a( z) 1 - b( z)/c( z) 

(•7) 

While in the context of this paper, m(z) has no physical 
meaning, it is equal in magnitude to the inverse of the 
average cosine of the asymptotic light field for a medium, 
with a Ko• as given in (15). This can be seen by application of 
Gershun's equation 

K = a/•, (18) 

where • is the average cosine of the light field. Note that rn 
is a function of the single scattering albedo b/c only. Since 
b/c can vary with depth, rn is a depth dependent function 
also. 

We now need to replace the term containing fr (rr, z), as 
it is not a readily measurable parameter. The dependence of 
fr (rr, z) on the shape of the upwelling radiance distribution 
can be seen by rewriting (9) as follows: 

• /3(rr- 0', z) f•(rr, z) -- O•(z) •0 
Lu(O', •b', z) 

L( rc, z) 
sin O' dO' d•b'. (19) 

Typically, L(rr, z) is the minimum value in the upwelling 
radiance distribution, so that [Lu(O', •b', z)]/L(rc, z) > 1. 
We thus see that usually,fL(rr, z) > 1. We now rewrite (18) 
as follows using b(z) = bf(z) + bb(z): 

RSR(rr, z) = • 
L(-rr, z) 

The left-hand side of the inequality is greater than 2a, 
whereas the right-hand side is a few percent of b. (For 
estimation purposes it is useful to bear in mind that rn has the 
same value as the inverse of the asymptotic average cosine 
for homogeneous waters with the same IOP; rn must thus 
always be greater than unity.) In most oceanic and coastal 
situations the particulate scattering coefficient is approxi- 
mately two times the particulate absorption coefficient [Jer- 
lov, 1974]. In addition, the scattering coefficient for pure 
water is much less than the absorption coefficient in the 
visible region of the spectrum. The presence of yellow 
matter further strengthens the inequality. Inequality (22) is 
thus not a severe condition and is only likely to be not 
satisfied in regions of very heavy inorganic particulate loads. 
If inequality (22) is satisfied, the remote sensing reflectance 
can be further approximated by 

L(rr, z) 13(re- Ore, z) 
RSR(rr, z) :- • • (23) 

gocl(Z) a(z)[ 1 + m(z)]' 

We thus have a family of expressions for the remotely 
sensed reflectance that can be used, depending on the 
accuracy desired. In descending order of accuracy, with the 
first two having no approximations at all, these are 
equation (7) 

RSR(0, •b, z) -= 
Lu(O, ok, z) 

Eo•l( Z) 

f•(o, ,•, z) 
bo(z) 

271' 

-cos 0k(0, ,•, z) + c(z)--fL(O, •, z)b•(z) ' 

equation (1 t) 

RSR(rr, z) = • 
L(•, z) 

Eocl( Z) 

fo(•r, z) 
bo(z) 

271' 

tc( •r, z) + c( z) - f •.( •r, z)b•( z) ' 

Eo•l(z) equation (14) 
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RSR(vr, z) = • 
L(,r, z) 

Eoa(Z) 

equation (20) 

RSR(,r, z) = 
z) 

Eoa(Z) 

Ore, Z) 

z) + c(z) z)Oz(z) ' 

Ore, Z) 

a(z)[1 + m(z)] + bo(z) + [1 -ft,(•r, z)]bf(z)' 
where 

m(z) = 
z) 1 - 0.52b(z)/c(z) - 0.44[b(z)/c(z)] 2 

a( z) 1 - b( z)/c( z) 

equation (21) 

RSR(•, z) = 
z) 

E o,•(z) 

[•(7r- Om, Z) 

a(z)[1 + m(z)] + bo(z)- O.05bf(z)' 

equation (23) 

RSR(rr, z) = • 
L(7r, z) /•(7r - 0m, z) 

Eod(Z) a(z)[ 1 + m(z)] 

Discussion and Conclusions 

The equations derived above show the dependence of the 
remotely sensed reflectance on the inherent and apparent 
optical properties. Equation (7) retains the full richness of 
the equation of radiative transfer (ERT). The radiance dis- 
tribution is present in f0 (0, •b, z), k(0, •b, z), and fL (0, •b, 
z). This is therefore not a true solution but is a restatement 
of the ERT. It provides a starting point for the approxima- 
tions, however. The path function of the radiance is con- 
tained info(O, •b, z) andfL(0, •b, z), as can be seen from (3) 
and (4). The essence of solutions to the ERT is the calcula- 
tion of the path function. Owing to the unique geometry of 
this problem, f0 and fr vary in a relatively narrow range, 
making the approximations possible. It would be possible to 
do modeling studies of the dependence off0(0, ok, z), k(O, 
•b, z), and fr (0, •b, z) on the input radiance and the IOP. It 
is preferred, however, to develop models that retain as much 
as possible of the IOP in functional form. The approxima- 
tions used are based on that concept. 

Since f0(rr, z) is the integral of the product of the 
downwelling radiance and the backward part of the scatter- 
ing function /go(O), it is seen immediately that f0(rr, z) is 
strongly dependent on/30(0). The shape of/30(0) is highly 
variable, depending on the size, shape, and index of refrac- 
tion distribution of the particles. Evidence that the shape 
depends on internal structure as well has recently been 
demonstrated [Zaneveld and Kitchen, this issue]. It is thus 
desirable to develop models that contain the shape of 
explicitly and that can be inverted to give that shape. 
Equation (13) proposes that the upwelled radiance used in 
remote sensing (i.e., upwelling light that is within the critical 
angle of the vertical) can be modeled as being due to single 
scattering from light at the maximum of the radiance distri- 

bution. Morel and Gentili [1993] showed that the number of 
scattering events undergone by upwelling photons is approx- 
imately equal to c/a. The above assumption is thus a priori 
correct if this c/a ratio remains sufficiently low. For higher 
c/a ratios it should be noted that while one of the scattering 
events has to be a large angle one, the other scattering events 
are likely to be small angle ones due to the sharp peak in the 
volume scattering function in the near-forward direction and 
hence the high probability of forward scattering events 
compared to backscattering ones. These small angle scatter- 
ing events will only slowly diffuse the /30(0) shape of the 
upwelling radiance. This was pointed out already by Morel 
and Gentili [1993]. The radiance distribution within the 
critical angle will stay closer in shape to tl0(0) than those 
outside, as surface reflections do not affect it. As c/a 
increases, we no longer expect the peak of the radiance 
distribution to remain at the refracted image of the sun. By 
using the maximum radiance rather than the refracted solar 
zenith angle, the assumption of (13) retains a small error, 
even for media with high c/a ratios. 

The advantage of the approximation embodied in (13) is 
that the RSR becomes directly proportional to the shape of 
the volume scattering function in functional form. The RSR 
can then be modeled readily with any shape of/30 (0). This 
overcomes a limitation of the Monte Carlo models in which 

shapes are not readily changed due to computational time. 
Also, when we wish to use various observed/g0(0) shapes, 
results can more readily be obtained using the theoretical 
approach. 

Gordon [1989] showed that the shape of /go(O) can be 
obtained by inversion from the irradiance ratio as a function 
of the solar zenith angle. For the formulation obtained here 
a similar result is obtained immediately. In (14), only the 
numerator is dependent on the input light field. Taking the 
ratio of two RSRs for different Om then yields 

RSR(0ml, rr) /3(rr- Oml ) 
ß 

RSR(0 m2, 7r) • (7r -- 0 m2) 

The shape of/g0(0) within the critical angle is thus readily 
obtained from the remotely sensed reflectance as a function 
of maximum radiance angle. The shape of/3b(0), in turn, 
should provide some insight into the various particulate 
properties by means of inversion. 

Error Analysis 

The choice of which approximation to use depends on the 
application and the optical properties of the water. The most 
sensitive potential error comes from (13), as f0 is directly 
proportional to the RSR. As stated above, (13) was tested 
extensively [Stavn and Zaneveld, 1994; Weidemann et al., 
this issue]. It was found that for many different scattering 
functions and lighting conditions the average error was 
around 5% and the maximum error was 12%. 

The approximation suggested here for k(rr, z) (equation 
(15)) is difficult to assess, as we know of no Monte Carlo 
model studies in which this parameter has been studied 
directly. Results from a study in Lake Pend Oreille, in which 
an extensive suite of IOP was measured in conjunction with 
the vertical structure of the nadir radiance, suggest that the 
approximation shown here is at least as accurate as our 
ability to measure k(rr, z) in the field. Field measurements of 
k(rr, z) have all the problems usually associated with the 
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measurement of other apparent optical properties near the 
surface. Naturally, the idea that k(rr, z) should always be 
asymptotic is only an approximation that allows us to model 
it in terms of the IOP. The somewhat limited data that exist 

support the notion, however. Undoubtedly, Monte Carlo 
calculations, when carried out, will show that under extreme 
conditions such as large solar zenith angles and black sky 
this will not be the case. These extreme Monte Carlo 

situations tend not to be realistic, however. We estimate the 
typical error in our formulation of km(rr, z) to be about 10%, 
based on the Lake Pend Oreille data. Future improved 
models for the dependence of k(rr, z) on the IOP and solar 
zenith angle can be used when they become available. 

It is of some interest to look at the relative magnitude of 
terms in the denominator of (20) since use of subsequent 
approximations should be based on these magnitudes. Since 
a/k -< 1, [1 + m(z)] -> 2. For oceanic particle ensembles, 
typically, b e • 2a e [Jerlov, 1974], so that for those parti- 
cles, ae(1 + m) -> b e. The term bo(z) + [1 - fœ(z)] bf(z) 
for particles can be estimated as follows: boe(z) • 0.02b e 
(NUC station 2040 [Petzold, 1972]); -0.1 -< [1 -fœ(z)] -< 0 
[Zaneveld, 1982], so that for typical oceanic particles, 
-0.08b e -< bo(z) + [1 -fœ(z)]bf(z) -< 0.02 b e. Ifwe now 
use (21) by settingfœ = 0.05, we see that the error in the last 
two terms of the denominator is _+0.05b e. If we use (23), 
ignoring the last two terms of the denominator in (20), the 

maximum error is -0.08 b e. Together with b e • 2a e, we 
see that in (21) the maximum error in the denominator is 4% 
and in the case of (23), 8%. In the case of pure water, bow 
can be as high as 0.12aw in the blue region of the spectrum. 
For pure water [1 - fL(z)]bfw(Z) can be ignored relative to 
b0w, as bfw = b Ow. For pure water near 450 nm an error of, 
at most, 12% is made in the denominator if the last two terms 
in the denominator in (20) are ignored. This error does not 
exist, however, if (21) is used. For larger wavelengths this 
error becomes rapidly smaller. 

Using some of the above arguments, it can be seen when 
one can or cannot ignore certain terms. For high ratios of b/a 
as well as for high ratios of bo/a it is necessary to use (21), 
but for almost all oceanic cases the simpler (23) can be used 
with an estimated overall average error of less than 10%. 
This exceeds the accuracy with which the reflectance can be 
measured experimentally at present, so that there is little 
justification in using more complex formulas. 

The Q Question 

The ratio of the upwelling irradiance to the upwelling nadir 
radiance just below the sea surface is defined as Q, thus 

Ell 
Q -- . (24) 

Lu 

Neither Q nor E u appears in the derivations presented 
above. The derivation from the equation of radiative transfer 
lent itself to the use of the scalar, not the plane, irradiance. 
What is commonly studied, however, is the ratio of the nadir 
radiance to the downwelling plane irradiance (see, for exam- 
ple, Gordon et al. [1988] and Morel and Gentili [1993]). If we 
use the definition of the downwelling average cosine, 

Ed 
=/Z d, (25) 

Eod 

the formulations can be readily converted into ratios using 
the downwelling plane irradiance. For example, (23) then 
becomes, ignoring depth dependence, 

Lu Lu 

Rrs Ed • • Eoa • • a(1 + m) (26) 
We have now introduced the downwelling irradiance, but at 
the loss of simplicity. We must now know the average cosine 
of the light field just beneath the surface. It is thus recom- 
mended that experimental work related to remote sensing 
use the scalar rather than the plane irradiance ratio. It stands 
to reason that the scalar irradiance is far less sensitive to 

solar zenith angle, tilt of the instrument, etc. It is thus a more 
benign measurement to deal with from a theoretical point of 
view. There are no real instrumental barriers to using scalar 
irradiance instead of plane irradiance [Maffione, 1994]. 

Much of the early work was carried out using the irradi- 
ance ratio Eu/Ea. We can convert all the equations for 
Lu/Eod to those for Eu/E • by multiplying by Q/•a. Equa- 
tion (23) then becomes 

Eu Q Lu Q 13(rr- Ore) 
R --- ...... . (27) 

Ec• I•c• Eoc• /• a(1 + m) 

Once again, we have increased the complexity of the ratio. 
In addition to the average cosine of the light field, we must 
now also know Q, an indicator of the shape of the upwelling 
light field. It is interesting to note that, historically, the 
progression has been in the opposite direction. First, the 
irradiance ratio was used, primarily for experimental rea- 
sons. Then, the radiance-irradiance ratio was used as satel- 
lite remote sensing matured. It is hoped that the next 
experimental phase will see the use of radiance-scalar irra- 
diance ratios. 

The most commonly used formulation for the irradiance 
reflectance is [Gordon et al., 1975; Morel and Prieur, 1977] 

Eu bo bo 
R=--•0.33--(1 +A)=f--, (28) 

Ee a a 

wheref and A are parameters that depend on the shape of the 
light field and the volume scattering function (f should not be 
confused with the shape parameters used in this paper). It 
has been found that the irradiance reflectance is inversely 
proportional to •a [Kirk, 1984; Jerome et al., 1988; Gordon, 
1989; Morel and Gentill, 1990]. This is entirely in agreement 
with (27). Gordon [1989] also found that the slope of the 
dependence on •a depended on the shape of the scattering 
function. This is also clearly seen in (27). It would predict the 
steepest slopes for scattering functions with steep slopes in 
the region of 180 to 180 - Oco (where Oc is the critical angle), 
although the Q factor possibly intervenes. 

Q appears in the irradiance ratio Eu/Ed in our derivation, 
whereas it appears in the reflectance Lu/Ea in the formula- 
tion of Morel and Gentill [ 1993]. Morel and Gentili noted that 
the ratio of f/Q is quite well behaved and that much of the 
fluctuations in f are canceled by Q. This implies that f is 
quite "Q-like" in its functional dependence. We can dem- 
onstrate this by deriving f from (27) and (28). 

Q 13(rr- 0 m) Q fo 
f • • = . (29) 

/z,• bo(1 + m) /z,• 2rr(1 + m) 
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Equation (29) is the approximate expression based on (23). It 
is also possible to write an exact expression based on the 
equation of radiative transfer: 

a 

aEu a Q L(•r) Q fO 2•r 
f-= = = • (30) 

b•,Ea b•, •a Eoa •a k(•r) + c-fLbf ' 

where all the parameters are defined in the theory section. 
The Q-like behavior of œ is shown by (29) and (30). The 
dependence on the shape of the VSF and the radiance 
distribution is also present via the shape factors fo and fœ. 
The upwelling radiance distribution is present in fL. Here fL 
has a relatively weak influence on f, however, whereas f is 
directly proportional to Q. 

Morel and Gentili [1993] have carried out Monte Carlo 
calculations of the dependence off and f/Q on the direction 
of the upwelling radiance. Using (3) through (7), it is possible 
to write an exact expression for this bidirectional depen- 
dence: 

a Q(O, 4), z) Lu(O, 4), z) 
f(o, z) =-- 

b t, I, Z a E oa 

a 

fo(o, 4,, z) 
Q(o, z) 

cos Ok(O, 4), z) + c--fL(O, 4), z)bf' 

(31) 

where Q(O, 4), z) -= Eu/Lu(O, 4), z). It is again clear that 
f(O, 4), z) is directly proportional to Q(O, 4), z) and the 
remaining dependence on the shape of the upwelling light 
field is in fr(O, qb, z), where it does not exert a strong 
influence due to its narrow range of possible values. Q 
depends very strongly on the radiance distribution in the 
region of 90 to 180 -0co zenith angle. This range of angles 
has little to do with the upwelling radiance in a direction that 
can be sensed by a satellite. Only if light is scattered at a 
relatively large angle can light in the angular range of 90 to 
180 - 0cO affect light at an angle detectable by satellite. Unless 
there is significant multiple scattering, Eu and Lu(O, 4), z) at 
remote sensing angles are relatively decoupled. Thus the 
dependence of Lu(O, 4), z)/Ea on Q is weak at remote sensing 
angles, whereas the dependence of Eu/Ea on Q is strong. 

Equation (29) shows that œ is a function off0, Q, •a, and 
b/c (via m). Using (29), it is possible to evaluate the 
dependence off on these parameters. The usual value cited 
for œ is 0.33, with a total range of 0.25 to 0.55 [Morel and 
Gentili, 1993]. We will only show here that reasonable 
choices of parameters lead to results in that range. If, in (29), 
we choose f0 = 1, Q = 5, •a = 0.9, and 1/m = 0.6, we 
find that f = 0.33. The above values correspond well to a 
zenith Sun. For an overcast sky we might choose ba = 0.8, 
givingf = 0.37. The 1/m = 0.6 implies that b/c - 0.86, as 
shown in (17). For b/c = 0.69, 1/m = 0.7, so thatf = 0.36. 

In conclusion, it has been demonstrated that an expression 
for the remotely sensed reflectance, L,/Eoa can be derived 
directly from the equation of radiative transfer. This expres- 
sion lends itself well to various approximations that lead to 
models of the remotely sensed reflectance that depend on the 
IOP only. 

Notation 

a absorption coefficient, m -•. 
b volume scattering coefficient, m -•. 

bo backscattering coefficient, m-•. 
bf forward scattering coefficient, m -• . 
c beam attenuation coefficient, m -•. 

E a downwelling irradiance, W m -2. 
Eoa downwelling scalar irradiance, W m -2. 

f parameter relating reflectance to the ratio of 
backscattering and absorption, nondimensional. 

fo shape parameter, nondimensional. 
fL shape parameter, nondimensional. 

k vertical attenuation coefficient for radiance, m -•. 
k m modeled vertical attenuation coefficient for 

radiance, m- •. 
K• asymptotic diffuse attenuation coefficient, m -• . 

L radiance, W m -2 sr -•. 
La downwelling radiance, W m-2 sr-•. 
Lu upwelling radiance, W m -2 sr -•. 

-3 -1 
L* path function, W m sr 
m the ratio of k m and a, nondimensional. 
Q the ratio of the upwelling irradiance and the nadir 

radiance, sr. 
R irradiance reflectance, nondimensional. 

R rs remote sensing reflectance; the ratio of the nadir 
radiance and the downwelling irradiance, sr -• . 

RSR remotely sensed reflectance; the ratio of the nadir 
radiance and the downwelling scalar irradiance, 

-1 
sr . 

z depth, m. 
/• volume scattering function, m -• sr -• . 

/•0 backscattering part of the volume-scattering 
-1 -1 

function, m sr 
A parameter used in relating R to bo/a, 

nondimensional. 

qb azimuth angle, radians. 
b average cosine of the light field, nondimensional. 

ba average cosine of the downwelling light field, 
nondimensional. 

0 zenith angle, radians. 
0c critical angle, radians. 
Om zenith angle of the maximum radiance, radians. 
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