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suggest that teachers could help students by making connections between sets of
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Chapter 1: Introduction

In our increasingly digital world, the mathematical area of combinatorics has 

become more important than ever due to its applications in computer science, electrical 

engineering, probability, and statistics. Apart from having many uses inside and outside 

of mathematics, researchers have also argued also that combinatorics is a worthwhile 

topic for students to learn in and of itself as well. Kapur (1970) believed it should play 

a role in school mathematics, due to the accessible nature of combinatorial problems 

(since they do not depend on calculus), their ability to provide motivation for working 

with computers, their effectiveness in teaching students systematic reasoning, and the 

context they provide for helping students develop difficult mathematical concepts, such

as mapping, relations, equivalence classes, and isomorphisms (p. 114). Combinatorics 

is rich in opportunities for students to make mathematical connections, make

conjectures, rigorously justify claims, and in turn construct proofs for mathematical 

propositions. 

One key component of combinatorics is enumerative combinatorics, the solving

of counting problems. Counting problems often show up in mathematics curriculum,

since their solutions tend to require non-algorithmic, creative mathematical thinking. 

However, while crucial to combinatorics and valuable for developing creative 

mathematical thinking, it is well established that students struggle when solving 

counting problems (Eizenberg & Zaslavsky, 2004; Melusova & Vidermanova, 2015). 

This is seen in both low levels of success for obtaining correct solutions (Batanero et 

al., 1997), and in tendencies for students to defend combinatorial solutions with surface 

features of a problem or empirical patterns, rather than with rigorous mathematical 

justifications (Lockwood, Swinyard, & Caughman, 2015). Eizenberg and Zaslavsky 

(2004) said about counting problems,  

Most problems do not have readily available solution methods, and 
create much uncertainty regarding how to approach them and what
method to employ. There are numerous examples in which two 
different solutions yielding different answers to the same problem may
seem equally convincing. (p. 16) 

In other words, students often find counting difficult, because for many counting 

problems it is possible to think of two ways to approach the problem, and these two 
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ways may be equally convincing, but these two ways actually give different numerical 

answers. For this reason, it can be hard to know when one is solving a counting problem

correctly. Equally troubling can be the fact that many counting problems have solution 

sets whose cardinalities are quite large, making it unfeasible to verify that a solution to 

a counting problem is correct by explicitly enumerating each outcome. 

While there remains much to learn about how to help students overcome

difficulties solving counting problems, some work has been done in an attempt to 

address these difficulties. These efforts have included characterizing student errors 

(Batanero et al., 1997), studying combinatorial solution strategies of young children 

(English, 1991; Maher, at al., 2011), looking at combinatorial solution strategies of 

secondary-school students (Melusova, 2015), creating models of students’ 

combinatorial reasoning (Lockwood, 2013), and determining student ways of thinking 

about combinatorial solution sets (Halani, 2013). One key result that has emerged from 

the combinatorics education community is the importance of attending to sets of

outcomes for students’ correct solving of combinatorial problems. Lockwood (2013) 

argued that robust combinatorial understanding is rooted in sets of outcomes, and 

suggested that emphasis on relating the outcomes of a counting problem and the 

solution for solving the problem may be beneficial for helping students count 

successfully. This suggestion was confirmed in a later study in which statistical analysis 

was done on the effects of systematic listing on student performance solving counting 

problems (Lockwood & Gibson, in press). The positive correlation between listing and 

success at solving counting problems merits some consideration, and more work needs

be done to investigate the relationship between student-generated lists of outcomes and 

correct, rigorously justified solutions to counting problems. 

In this study, I attempt to expand the knowledge we have about students’ 

combinatorial listing by focusing on the listing behaviors of undergraduate students 

and how it affects their success in solving counting problems involving arrangement. 

In Chapter 2, I summarize previous empirical research that has been done towards 

understanding student listing behaviors, as well as student reasoning about lists of 

outcomes. Key in the literature is a study conducted by English (1991) on the 

combinatorial solution strategies of young children. I present in detail the framework 
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she used to categorize the combinatorial solution (listing) strategies of young children, 

providing examples to help clarify this framework to the reader. In Chapter 2 I also

outline the theoretical perspectives I used for my research. In particular, I made use of 

Lockwood’s (2013) model of students’ combinatorial reasoning for the collection and

analysis of my data, which I describe in detail in Chapter 3 of this thesis.  

In Chapter 4, I show and explicate the results of this study. An important 

assumption I make in explaining my results is the notion that, for students, the activity 

of creating a list (or partial list) of outcomes is valuable, but rote production of lists not 

always enough to guarantee that the correct solution will be achieved (Batanero, 1997), 

or that the student will be able to provide justification as to why a particular solution is

correct (Lockwood, Swinyard, & Caughman, 2015). Listing is a useful activity for 

students to engage in, and I do not wish to diminish its importance, but rather I assert 

that equally important is intentionality in the strategy used to list and productively 

connecting the list to the solution of the combinatorial task being solved. Keeping this 

in mind, I address in this thesis the following research questions: 

1.	 How can undergraduate students’ combinatorial lists be usefully
categorized? In particular, can the combinatorial solution strategies
identified by English (1991) be usefully applied to characterize 
combinatorial solution strategies utilized by undergraduate students? 

2.	 Does the data in this study of undergraduate students and their listing 
activity corroborate with existing evidence that explicitly writing outcomes 
is helpful for students? 

3.	 When solving counting problems involving arrangements, what are the
ways in which students explicitly make meaningful connections between 
lists of outcomes and solutions to counting problems?

Before describing my review of relevant literature that addresses components 

of these research questions, I note that this study was conducted within the context of

a larger study aimed primarily at probing student understanding of the concept of 

factorials in a combinatorial setting. Data for this broader study was collected and 

analyzed data with another researcher from a large university in the western United 

States. It is appropriate to situate the study that this thesis explicates in the context of

this broader study, because within the study on student reasoning about factorials, I was 

afforded the opportunity to study students who were attuned to the factorial formula 
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and what counting processes may be associated with it. This allowed me to narrow my

focus and make a more detailed analysis of student reasoning about lists of outcomes

as they relate to counting processes for problems that involve arrangement. 



 

 

 

 

 

  

  

  

 

 

 

  

 

   

  

 

 

 

Chapter 2: Literature Review

In this chapter, I synthesize work that previous researchers have done relevant 

to my study of student reasoning about how lists of outcomes relate to counting 

processes. In Section 2.1, I summarize prior empirical studies that have been conducted 

and how they informed my investigation. I expound upon previous studies that have 

addressed specific difficulties that students have while solving counting problems, 

ways that visualization and specifically writing outcomes can help remedy some of 

these difficulties, and issues that students can encounter with using lists of outcomes to 

connect to a coherent solution to a counting problem. An important subsection, 2.1.3, 

expands on English’s (1991) solution strategies that young children exhibit while

solving counting problems. In Section 2.2, I present theoretical perspectives I used to 

formulate my research questions, collect data, and analyze the data to answer my 

research questions. These include in particular Lockwood’s (2013) model of student’s 

combinatorial reasoning. 

2.1 Themes among Previous Empirical Studies

2.1.1 Difficulties Students Face While Counting 

It is widely acknowledged in the mathematics-education community that 

students struggle to correctly solve counting problems (Eizenberg & Zavlavsky, 2004). 

Hadar and Hadass (1981) in particular said that, "Combinatorics is a field which most 

of the students find very complicated” (p. 435). To address this problem, researchers 

have categorized student errors while solving counting problems (Batanero et al., 

1997), analyzed students’ initial intuitions while counting (Fischbein & Grossman, 

1997), created models of students’ combinatorial reasoning (Lockwood, 2013), and 

articulated students’ ways of thinking and ways of understanding in the context of 

solving counting problems (Halani, 2013; Harel, 2008).  

Batanero et al. (1997) in particular studied the nature of student mistakes and 

found that regardless of whether the students in their study had received combinatorial 

instruction or not, they struggled to solve counting problems correctly. They found that, 

when solving counting problems, errors were made for a variety of reasons, including 

confusion over the type of objects being counted, misunderstanding of whether given 

elements should be considered distinguishable or indistinguishable, excluding some 
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elements from the configurations, and giving a mistaken intuitive answer without any 

justification. Fischbein and Grossman (1997) also looked at how student intuition 

played a role in their counting, hypothesizing that those intuitions were governed by 

certain intellectual schema that students have. They found by studying various age 

groups of students that "With a few exceptions, the intuitive estimations expressed, in 

fact, a particular intellectual schema. The particular procedure was, generally, 

inadequate and consequently…the guesses expressed incorrect solutions" (Fischbein &

Grossman, 1997, p. 35). Thus, they found that students’ intuition tended to lead them 

to using inappropriate procedures and wrong estimations while trying to solve counting 

problems. 

Another difficulty addressed in the literature is the challenges many students 

have with evaluating the reasonableness of their solutions. The cardinality of a set of 

outcomes being counted can be quite large, making it impossible for students to check 

their answers by writing all of the outcomes. Because of this, students need more

efficient ways of checking the solution to a counting problem, and Eisenberg and 

Zaslavsky (2004) showed that many students do not have efficient verification 

strategies. In their study on verification strategies of undergraduate combinatorics 

students, they note, “many of the students who made attempts to verify their incorrect 

solutions…were not able to come up with efficient verification strategies and were thus 

neither able to detect an error nor to correct their solution" (p. 32). In other words, they 

discovered that when undergraduate students struggled to verify their answers to

counting problems, this unsurprisingly resulted in their inability to determine if answers 

were unreasonable, much less help them see how to fix their erros. They also

discovered that many students did not even try to verify their solutions to counting 

problems. 

To summarize, students face a variety of challenges while attempting to solve 

basic enumerative combinatorics problems. The reasons for student errors are copious, 

and even attempts to verify solutions may not be helpful for students to determine the 

reasonableness of their solutions. In the proceeding section, we will see one way that 

researchers have tried to address this difficulty: using visualization while solving 
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counting problems, and specifically using concrete lists as a way of understanding the 

solution to a particular counting problem.

2.1.2 Visualization and Listing Outcomes as Possible Remedies for Student 
Difficulties 

While student difficulties in counting persist, there is evidence that students’ 

use of visualization while solving counting problems might be helpful. In this paper, I

use the term visualization in the same way that Maher and Speiser used it in a 1997 

study to describe an explicit or mental model that students construct to make sense of

a mathematical problem or idea (p. 128). In their study they discovered some of the

usefulness of visualization in the context of counting when they studied young children 

solving basic counting problems with the visualization of block towers. They said, "We 

find that children's working theories empower very striking and effective ways of 

working with mathematical ideas, often using concrete objects, in very particular ways, 

first as evidence for specific arguments, then as anchors for quite abstract

constructions" (Maher & Speiser, 1997, p. 126). In another study, Maher and Martino 

(1996) gave an example of a 10-year-old girl who was able to give sophisticated 

justifications to solutions to counting problems when given block towers to visualize 

her outcomes. Finally, Halani (2013) also found undergraduate students were able to 

use Venn diagrams to represent each of the ways of thinking about counting problems

that she identified. 

In the domain of counting, there is evidence that students might be able to

visualize the set of outcomes they are counting by making a physical list, and that this 

may be useful when solving counting problems. Lockwood (2013) explained the 

importance of attending to the set of outcomes while solving counting problems, and 

more recently Lockwood and Gibson (in press) found evidence for a potential link

between student success and the activity of writing outcomes. In their study of the 

effects of student listing, Lockwood and Gibson reported that students who listed for 

some problems and did not list for others answered significantly more questions 

correctly when they listed versus when they did not. They also found statistically

significant evidence that students were more likely to have listed on questions they 

answered correctly versus questions they answered wrong. While these results are not 

enough to show causation (it may be the case the stronger students are more naturally 
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inclined to write a list of outcomes while solving counting problems), they argued that 

the correlation was promising (p. 15).  

In conclusion, having students think about concrete lists of outcomes as a way 

to visualize the counting problem they are trying to solve has been shown to be 

potentially useful. Other researchers have noticed this as a potential way to help 

students count, and there have been a variety of ways that researchers have tried to

achieve a greater understanding of how students list. This has included analyzing ways 

of thinking that students have about combinatorial solution sets (Halani, 2013), and 

making careful observations about the particular strategies that students use while they 

list outcomes (English 1991). The latter is explored more in depth in the following 

section. 

2.1.3 English’s Categories for Children’s Listing Strategies

Critical to my review of previous literature on student listing behavior and the 

ways students tie their lists to a solution to a counting problem is the framework that

English (1991) developed to categorize combinatorial solution strategies. This

particular subsection explains her categories and illustrates them with concrete 

examples. I will draw on her categories of listing in presenting my analysis and results 

in Chapters 4 and 5. 

To help gain greater insight into how students think about combinatorial 

solution sets and use them to solve counting problems, English (1991) conducted a 

study to document the strategies that young children used to solve basic enumerative 

combinatorics problems. The problems involved using only one operation 

(multiplication), and the children were given attractive manipulatives to help them keep

track of what they were counting as they solved problems. In particular, the problems

asked about the number of ways that bears could be dressed in different outfits, with 

each bear able to wear a top and a pair of pants. The children were given small toy 

bears and differently colored outfits to “dress the bears” to aid them in their problem-

solving. More bears and outfits were given to the children than were needed to solve 

the counting problems asked, so English could see how attuned the children were to 

the possibility of over counting. The children’s ages ranged between 4 years 6 months 
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and 9 years 10 months, and data about their generation of outcomes were collected in

task-based interviews. 

As English analyzed the data from her interviews with the children, there were 

six hierarchical strategies that emerged, each increasingly sophisticated. She denoted 

these strategies as Solution Strategies A through F, with A being the least sophisticated, 

and F being the most sophisticated. English’s characterization of each of the categories 

is summarized in Table 1. 

Solution Strategy Description
Solution Strategy A “Random selection of items with no 

rejection of inappropriate items” (p. 458).
Solution Strategy B “Trial-and-error procedure with random 

item selection and rejection of
inappropriate items” (p. 458).

Solution Strategy C “Emerging pattern in item selection, with 
rejection of inappropriate items” (p. 458).

Solution Strategy D “Consistent and complete cyclical 
pattern in item selection, with rejection of 
inappropriate items” (p. 459).

Solution Strategy E “Emergence of an ‘odometer’ pattern in 
item selection, with possible item 
rejection” (p. 460).

Solution Strategy F “Complete odometer pattern in item
selection, with no rejection of items” (p. 
461).

Table 1. English’s (1991) characterization of young children’s listing strategies.

Going into more detail, children transitioned from Solution Strategies A-C to 

D-F by exhibiting a complete, cyclical pattern used to generate each of the outcomes

being counted. English explained about Solution Strategy D,  

In contrast to the previous strategy, the present one is characterized by
a consistent and complete cyclical pattern in item selection, with the
pattern having the potential to generate all possible combinations. When 
children use a cyclical pattern in the selection of one item type only, 
they frequently do not follow any particular order in selecting items of 
the other type; they simply select any item which will produce a 
different outfit and reject those which are inappropriate. (English, 1991, 
p. 459)
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To further differentiate between Solution Strategies E and F, English clarified that the

odometer pattern in Solution Strategy E is incomplete, and this could be due to an 

“over-exhaustion” or duplication of outcomes produced by holding a given item 

constant, a failure to exhaust all possible outcomes from a given item held constant, or 

an otherwise failure to determine when generation of all of the outcomes being counted 

is complete (English, 1991, p. 460-461). From here on out in this thesis, the phrases 

“complete odometer strategy” and “Solution Strategy F” will be considered 

synonymous in meaning. Solution Strategy E will be referred to as an “incomplete 

odometer strategy.” 

Later in 2012, Halani used English’s categories in her study of students’ ways 

of thinking about combinatorics solution sets. In her study, she observed two ways of

thinking that undergraduate students engaged in while using the complete odometer 

strategy to answer counting problems, Standard Odometer Thinking and Wacky 

Odometer Thinking. Students who engaged in Standard Odometer Thinking generated 

outcomes by picking an item to hold constant in a fixed position while cycling through 

the items that can be placed in the other positions. Then, a new item would be chosen 

to hold constant in the same fixed position to begin the process of cycling through items

to be placed in the other positions. Alternatively, if a student engaged in Wacky 

Odometer Thinking, outcomes would be still be generated by picking an item to be held 

constant in a fixed position while cycling through other items, but new outcomes would 

then be created by changing the position of the first item being held constant, and then 

cycling next through the positions that the other items can occupy (Halani, 2012). In 

this way, Halani extended English’s Solution Strategy F to encompass two ways of 

thinking, one in which items are held constant in a fixed position (like an odometer in

a car), and another in which an item is held constant in different fixed positions.

In conclusion, English’s (1991) study on the solution strategies of young 

children, including the extension of the complete odometer strategy contributed by

Halani (2012), was critical to my study on the listing behaviors of undergraduate

students and the way in which students use these lists to solve counting problems. In 

this thesis, I used and elaborated on English’s categories to characterize listing
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strategies of undergraduate students, enabling me to talk about their lists in a more 

organized way. 

2.1.4 Student Difficulties with Effective Listing

While much has been learned about the methods students use to list outcomes

and the ways in which students think about lists of outcomes, there is still work to be 

done to learn how to support students’ effective use of listing to find and justify 

solutions to counting problem. Lockwood and Gibson (in press) reported that

organized, appropriate notation and articulation of what constituted a desirable 

outcome is helpful for students as they use their lists to solve the problems. However, 

Hadar and Hadass (1981) noted that students often find it difficult to recognize what 

outcomes of a given counting problem may look like. 

 Additionally, since a complete list of outcomes is often impossible for students 

to create, due to a large cardinality of the solution set, students often can only list a

subset of the outcomes to be enumerated. Lockwood and Gibson found that even a 

partial list of outcomes can help students understand underlying structures of outcomes 

and solve counting problems (Lockwood & Gibson, in press), but making an 

illuminative partial list is not always a trivial task for students. Hadar and Hadass found 

that choosing an appropriate subset can be challenging for students as well. They

explained, 

The breaking of a combinatorial problem…into subproblems, possibly 
through transforming its formulation into a more explicit one, is a major
breakthrough in the process of seeking a solution. However, achieving 
it is a big obstacle for students…Many times students form subsets of
possibilities to be counted, which are not mutually exclusive. Also, very 
often, the union of the partial sets counted does not coincide with the
whole set under discussion. (Hadar & Hadass, 1981, p. 438) 

Finally, there is evidence that intentionally writing outcomes in an organized 

manner is an important component in using lists of outcomes to find a solution to a

counting problem (Lockwood & Gibson, in press). However, students may fail to find 

a systematic way in which to write outcomes. Lockwood and Gibson found that an 

incomplete implementation of the odometer strategy could result in students not getting 

all of the outcomes, or making incorrect assumptions about how their lists would 
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generalize. Batanero also identified non-systematic listing as an important cause for 

student errors while solving counting problems (Batanero et al., 1997).  

In summary, students trying to solve counting problems may have difficulties

articulating what constitutes a desirable outcome, finding appropriate subsets that can 

shed light on the underlying structure of the larger set of outcomes, and utilizing a 

systematic, intentional strategy for writing outcomes. Because of this, there is more 

work that needs to be done to learn about how students can overcome these difficulties

to successfully connect outcomes to solutions to counting problems. Just because 

students can write down outcomes, and even if they can write down outcomes in a

systematic yet rote way, this does not necessarily mean that these outcomes are 

immediately illuminative for students trying to solve a given counting problem. Along 

similar lines, Cooper and Alibali claimed, "Rather than asking simply which types of 

illustrations serve learners better, it is important to identify how learners with different 

backgrounds and skill levels utilize visual representations when solving problems” 

(Cooper & Alibali, 2012, p. 287) In the context of counting, I feel it may be important

to not only think about how lists are beneficial for students, but think about helping 

students use those lists to connect outcomes to their process for enumerating those 

outcomes to obtain a solution. As Cooper and Alibali found out, just because a student 

may have a visualization of what is happening in a mathematics problem, it does not 

mean that he or she necessarily knows how to connect that to a solution (Cooper & 

Alibali, 2012). This leads us to the primary goal of this paper: to gain insight into how 

students think about the relationship between lists of outcomes and their solutions for 

solving counting problems.  

2.2 Theoretical Perspectives: Lockwood’s (2013) Model of Students’ 
Combinatorial Thinking 

In the following subsections, I will describe the theoretical perspectives that 

were used throughout data collection and analysis. These perspectives include use of

Lockwood’s (2013) model of students’ combinatorial thinking. When a student

approaches a counting problem, Lockwood (2013) contends that students’ thinking 

about that the problem may have three components: formulas/expressions, counting 

processes, and sets of outcomes. This is illustrated in Figure 1. 
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Figure 1. Lockwood’s (2013) model of students’ combinatorial thinking1. 

For a given counting problem, sets of outcomes refer to collections of objects 

that could be enumerated by a student counting – the set of outcomes is the set whose 

cardinality is the solution to the counting problem. Counting processes are defined to 

be procedures that a student could engage in to find the cardinality of the set of 

outcomes for the given counting problem. A counting process can be thought of as an 

intentional, strategic way of organizing or generating outcomes to be counted. For 

many counting problems, multiple counting processes could be conceived to obtain a 

solution to the problem. The results of counting processes expressed using 

mathematical symbols are the formulas/expressions components of a counting 

problem, the numerical value of which is the solution to the counting problem.

In addition, between each of the components are key bi-directional relationships 

that a student can use to understand a solution to a counting problem. For instance, a

particular formula or expression can represent a counting process used to solve a

problem, and conversely, counting processes when expressed symbolically create 

formulas and expressions that compute the answer to a counting problem. The

relationships between formulas/expressions and sets of outcomes are less clear,

although Lockwood et al. (2015) suggested that empirical patterning may be an 

appropriate characterization of some of these relationships. Students moving from the

1 The bidirectional arrow between Formulas/Expressions and Sets of Outcomes is 
dotted in Lockwood’s model, because she found no evidence in her data of what 
exactly that relationship might look like for students (Lockwood, 2013, p. 255). 
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sets of outcomes component to the formulas/expressions component might be able to 

notice a numerical pattern by exhaustively listing the outcomes for counting problems

with numerically small answers. Then without appealing to an argument as to why the

cardinalities of the sets of outcomes may follow a certain pattern, students are able to 

produce an accurate formula. Conversely, a student might move from the 

formulas/expressions component to sets of outcomes component by thinking of a

formula or expression conceptually as a set of objects with cardinality equal to the 

numerical value of the formula or expression. 

Of particular interest in this paper is the bi-directional relationship that 

Lockwood conjectures between sets of outcomes and counting processes for a given

counting problem. A student moving from sets of outcomes to counting processes can 

articulate how a particular set of outcomes could be organized or enumerated by an 

intentional, strategic counting processes. Conversely, a student could be given a

counting process, and describe an organization or structure that particular counting 

process would impose on a collection of objects to be counted. While researchers have

established in the existing literature that considering sets of outcomes is potentially 

beneficial to students’ successful counting (Lockwood, 2014; Lockwood & Gibson, in 

press), little research has been done on how students might conceptualize the bi-

directional relationship between their procedures for solving counting problems, and 

the corresponding organization of outcomes that those procedures afford. This 

conceptualization is central to the research questions addressed by the study described 

in this thesis. 

To explain clearly each component and conjectured relationship in the model, 

I provide a concrete example using Lockwood’s (2013) model to discuss solutions to a 

problem I gave to students in the interviews conducted for this study. Examining this 

problem will allow for an in-depth look at the details of this problem, hopefully 

clarifying the mathematics in subsequent sections of the paper. It is called the Cattle 

Problem, and its statement is the following: “How many ways are there to rearrange

the letters in the word CATTLE if the two T’s must appear together at the beginning 

or end of the word?” To find a solution for this problem, we may think of each 

arrangement as a particular way to fill six slots, or positions, with the letters C, A, T,
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T, L, and E. A particular counting process imposing the organization of outcomes in 

Table 2 could entail first recognizing that the set of outcomes can be partitioned into 

two subsets, the first subset containing each arrangement of the letters with the two T’s

at the beginning, and the second subset containing the arrangements with the two T’s

at the end. Within each subset, there are 4 letters which can fill the first unoccupied slot 

in an arrangement. (For instance, if the two T’s are first, we could choose C to fill the 

third slot.) For each way that the first unoccupied slot is filled, there are 3 letters that 

would fill the second unoccupied slot in an arrangement. (For example, if the two T’s 

are first and C is chosen to fill the third slot, we can choose to fill the fourth slot with

the letters A, L, or E.) For each way the second unoccupied slot is filled, there are two

ways to fill the third unoccupied slot, creating a forced final choice of letter to be

inserted into the final slot. (Continuing with the previous example, if the two T’s are

chosen to be first, C is chosen to fill the third slot, and A is chosen to fill the fourth slot, 

we may choose L or E to fill the fifth slot in an arrangement. Depending on our choice, 

we will then be forced to fill the sixth slot with E or L, respectively.) By this counting

process, we have that there are 4! ways to arrange the remaining letters once the two 

T’s are fixed, giving us the answer conveyed using the following expressions:  

2 ൈ 4 ൈ 3 ൈ 2 ൈ 1 ൌ 2 ൈ 4! ൌ 48. 

The counting process described in the preceding paragraph is reflected in the 

above formula via an application of the Multiplication Principle.2 The counting process 

also creates a particular organization of the set of outcomes by position, and listing 

outcomes according to this organization is an example of utilizing English’s (1991) 

Solution Strategy F (the odometer strategy) for generating outcomes. Table 2 shows 

how one subset of these outcomes are organized and is a representative example of how 

a student engaged in Standard Odometer Thinking (Halani, 2012) might visualize

outcomes for the Cattle Problem. 

2 The Multiplication Principle states that the number of ways to carry out a sequence 
of independent tasks is the product of the number of ways to complete each task 
individually (see Tucker, 2002 for more information).
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TTCALE TTACLE TTLCAE TTECAL 
TTCAEL TTACEL TTLCEA TTECLA 
TTCLAE TTALCE TTLACE TTEACL 
TTCLEA TTALEC TTLAEC TTEALC 
TTCEAL TTAECL TTLECA TTELCA 
TTCELA TTAELC TTLEAC TTELAC 

Table 2. Outcomes in the Cattle Problem beginning with TT arranged by position.

While Table 2 demonstrates one organization of the outcomes created by 

Standard Odometer Thinking (Halani, 2012), this is not the only organization possible. 

Another possible counting process that could be reflected in the product 2 ൈ 4! is the

following: fix the two T’s either at the beginning or end of an arrangement. Then, there 

are 4 remaining positions that could be filled with the letter C. (For example, we could 

fix the two T’s to fill the first two slots and let C fill the third slot.) Once the positions 

of the two T’s and the C are chosen, there are 3 remaining slots that the A could fill. 

(For example, if the two T’s and the C occupy the first, second, and third slots, 

respectively, we could choose A to fill the fourth slot.) Finally, for each choice of 

placement for the two T’s, C, and A, there are 2 remaining slots that the L could fill, 

creating a forced choice for the position of the E. (Continuing with the above example, 

if the two T’s, C, and A occupy the first, second, third, and fourth positions, 

respectively, there are two choices for the position of L—the fifth or sixth position. For

each choice, there is only one remaining position for the E—the sixth or fifth position, 

respectfully.) This counting process, while producing an identical formula for obtaining 

the solution to the counting problem, creates another distinct organization of the set of 

outcomes. A student listing in this manner would be also be categorized as using

English’s (1991) Solution Strategy F, because the student is holding an item constant 

(in this case, the position of the letter C), and cycling through all possible positions for 

the remaining letters. This is demonstrated in Table 3 and is an example of how a

student engaging in Wacky Odometer Thinking (Halani, 2012) might conceptualize the

set of outcomes for the Cattle Problem. Note the fixed positions of C’s throughout each 

column of outcomes, suggesting that our first stage in the process is to decide into 

which of the four positions we place the C. 
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TTCALE TTACLE TTALCE TTALEC 
TTCAEL TTACEL TTAECL TTAELC 
TTCLAE TTLCAE TTLACE TTLAEC 
TTCEAL TTECAL TTEACL TTEALC 
TTCLEA TTLCEA TTLECA TTLEAC 
TTCELA TTECLA TTELCA TTELAC 

Table 3. Outcomes in the Cattle Problem beginning with TT arranged by letter 
placement. 

Because of the various organizational schemes for the set of outcomes, looking 

at student thinking about this problem affords insight into how students articulate the 

relationship between sets of outcomes and the counting processes that organize them

while solving counting problems. I draw upon these notions of counting processes, sets 

of outcomes, and the relationship between the two, throughout the remainder of the 

paper. 

In summary, I assume in this study that students’ reasoning about counting 

problems has multiple components consisting of the formulas/expressions, counting

processes, and the set of outcomes that the process is intended to enumerate. These 

outcomes can be an explicit list, or more abstractly conceived by a student using an 

organizational scheme connecting outcomes to the process used for enumeration. It is 

particularly the connection between outcomes and counting processes that are explored 

in this thesis. While I recognize the importance of students being able to come up with 

correct answers to counting problems, and I acknowledge the usefulness of being able 

to systematically generate a list of outcomes, I assert that to have the most robust,

connection-rich understanding of counting, students must be able to construct 

meaningful relationships between lists of outcomes and processes used to solve 

counting problems. 



 

    

   

 

  

    

   

 

  

 

 

   

 

  

  

 

  

 

 

Chapter 3: Methods 

In this chapter, I describe in detail the methodology in which I collected and

analyzed data for this study. I discuss the participants involved in the data collection,

how these participants were recruited, the procedures utilized to collect the data, and

the techniques used to analyze the data. 

3.1 Participants 

The participants in this study were 20 undergraduate students at a large

university in the western United States. Of these 20 students, 14 were taking a calculus

class while data for this study was collected, and the remaining 6 were taking advanced 

mathematics classes (altogether, these 6 students were taking advanced calculus, 

topology, linear algebra, introductory probability, and introductory numerical analysis 

at the time of data collection). I sought participants at varying levels of collegiate 

mathematics, because I was interested in studying the reasoning of both students who 

had and had not previously seen discrete mathematics at the college level. I note also 

that the participants in this study encompassed the following STEM majors: four 

students in mathematics, one in biology, eleven in engineering, one in biochemistry 

and biophysics, one in physics and mathematics, one in zoology, and one in food 

science. Of the participants, fourteen were male students (ten in calculus, four in the 

advanced mathematics courses), and six were female (four in calculus, two in advanced 

courses). 

3.2 Data Collection

The study reported in this thesis is situated within a larger study that targeted 

students’ understanding of factorials. Thus, the overall design of the study and some of 

the interview tasks were developed in order to elicit responses that would shed light on 

student reasoning about factorials. Although this is not the explicit aim of this thesis, I

felt it was relevant to frame the current study within this broader study about factorials. 

This enabled me to focus on student reasoning about listing outcomes in the context of 

arrangement problems, which in the case of the broader study could be solved using 

factorials. 

The design of this research study was to conduct semi-structured, individual 

task-based clinical interviews with each participant (Hunting, 1997). Livescribe pens 



 
    

 

 

 

 

   

 

 

  

  

   

 

  

  

 

 

 

 

  

   

 

  

     

19
Listing as a Potential Connection between Sets of Outcomes and Counting 


Processes


and notebooks were used by both the interviewer and participant during data collection. 

This technology was used because each Livescribe pen recorded audio and real-time

pen strokes on the Livescribe paper, which facilitates an efficient analysis of their 

utterances and inscriptions that are captured in real time. Each of the 20 interviews 

began with questions aimed at gauging student reasoning about factorials, and then

after these questions were asked, I proceeded to ask the students a sequence of counting 

problems. These problems are discussed in detail in Section 3.3.  

To summarize, by narrowing my focus to arrangement problems that could be 

solved using one particular formula, I was able to give attention to the varied types of 

student reasoning about sets of outcomes and counting processes in this fixed context.

Below, I discuss the specific interview tasks given to the research participants,

providing justification for why the tasks were chosen and relating them to the 

components of Lockwood’s model. Following the discussion of the tasks, I describe

the data analysis. 

3.3. Interview tasks

To study student connections between sets of outcomes and counting processes, 

I concentrated on arrangement problems that could be solved by manipulating one 

. Even more specifically, I was interested to see whether and how !݊ particular formula, 

students would be able to relate a counting process with the set of outcomes, and 

whether they could see the structure of a factorial in their sets of outcomes. Because 

the interviews were semi-structured, I chose which problems I wanted students to solve 

according to each individual student’s ability, and according to which particular aspect 

of the student’s reasoning I wanted to examine. As a result, the questions each student

was asked to answer varied across the interviews. The following is a description of the 

counting problems I chose to ask the students, as well as justifications for using them

in the interviews. While there were other tasks given to the students in the ambient 

study of students’ reasoning about factorials, I focus in this thesis on the following 

three counting problems, since in each of these problems I either directly asked students 

to list outcomes, or I observed instances where in solving the problem, at least one 

student attempted to make a complete or partial list. This enabled me to use their lists 
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to examine ways that students connected their list of outcomes to the process they

eventually used to solve the counting problem. 

3.2.1. The Cattle Problem 

The Cattle Problem is stated as follows: “How many ways are there to rearrange 

the letters in the word CATTLE if the two T’s must appear together at the beginning 

or end of the word?” I previously discussed the problem at length in Section 2.2.1, 

including considering two possible ways of thinking about the solution that could 

generate lists of outcomes with different structures. Nineteen of the twenty students 

interviewed were asked to solve the Cattle Problem, and of those nineteen, eighteen of 

them were asked to list all of the outcomes beginning with the two T’s after finding a 

solution. Students were permitted to alter their pre-listing solution if they wanted to 

after writing the outcomes. 

Because of the various organizational schemes for the set of outcomes, looking 

at student thinking about this problem afforded insight into how students articulate the 

relationship between sets of outcomes and the counting processes that organize them. 

Additionally, the problem provided insight into how students listed outcomes and 

whether that listing helped to solidify a relationship between counting processes and 

sets of outcomes for them.  

3.2.2. The Horse Race Problem

The statement of the Horse Race Problem is as follows: “There are 10 horses in 

a race, how many ways are there for the horses to get 1st, second, and third place?” Out 

of the 20 students interviewed, 13 were asked to solve the Horse Race Problem. I did 

not explicitly ask any student who solved the problem to list any outcomes, but students 

were encouraged to list if they expressed in some way that they felt it would help them 

solve the problem. 

A solution to this problem can be obtained by arguing that there are 10 possible 

horses that could win first place, and for every possible first-place horse, there are 9

remaining horses that could win second place, and after that 8 remaining horses that 

could win third place. This counting process yields the product 10 ൈ 9 ൈ 8  ൌ 720 total 

possible outcomes of the horse race. The counting process also gives rise to an

organization of the outcomes of the race by placing. If each horse is denoted by a letter 
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between A and J, Table 3 illustrates how some of the outcomes would be organized in 

relationship to this particular counting process. In Table 4, the outcomes depicted are 

those where horses A, B, and C win first place. 

ABC BAC CAB 
ABD BAD CAD
⋮ ⋮ ⋮

ABJ BAJ CAJ
ACB BCA CBA 
ACD BCD CBD
⋮ ⋮ ⋮

ACJ BCJ CBJ
ADB BDA CDA
⋮ ⋮ ⋮

Table 4. Outcomes for the Horse Race Problem arranged by placing. 

An alternative way to solve this problem might be to first make an unordered 

selection of three horses to place in the race. For any fixed selection of three horses, 

there are 3! ways to arrange those horses, in which each arrangement corresponds to a 

particular choice of one of those horses winning first, one earning second, and one

earning third. Again, this counting process yields a formula producing the same value 

for the cardinality of the set of outcomes, ቀ10
3 
ቁ ൈ 3! ൌ 720. But, it gives rise to a

separate way of organizing the set of outcomes. Table 5 shows how this counting 

process yields organization by the choice of which three horses to place.

ABC ABD ABE

⋮

ACB ADB AEB
BAC BAD BAE
BCA BDA BEA 
CAB DAB EAB 
CBA DBA EBA 

Table 5. Outcomes for the Horse Race Problem organized by an unordered selection 

followed by an arrangement to determine placing. 
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Because so many different counting processes can be used to solve this

problem, I was interested in seeing which counting process students would use, if they 

would use a listing technique to find the solution, and if they could articulate a

connection between their counting process and a list of outcomes generated. 

3.2.3 The Book Problem

Of the 20 students interviewed, I asked 4 of them the Book Problem, which is

stated as follows: “How many ways are there to arrange the letters in the word BOOK?”

Because of the semi-structured nature of the interviews, I only asked students to solve 

this problem if prior in the interview, they had indicated (through, for example, solving 

the Cattle Problem) that they thought 4! was the number of ways to arrange 4 objects, 

regardless if the objects were distinct or not. The few students who solved the Book 

Problem did so after I saw their problem-solving process on the Cattle Problem. None 

of the 4 students were explicitly asked to create a list of outcomes to solve the problem, 

but 3 of the 4 students nevertheless proceeded to make complete lists of outcomes for

this problem. It is possible that these 3 lists were made, because the Book Problem was

only asked after a student had already solved the Cattle Problem, and each student in 

solving the Cattle Problem was asked to write out a complete list of outcomes

beginning with the letters TT. Thus, listing was already an activity that the students

may have been thinking about when given the Book Problem, and therefore studying 

student solutions to the Book Problem provided for me another opportunity to see how 

students connect lists of outcomes to counting processes, and how this connection could 

be used to find a solution. 

One solution to the problem involves recognizing that if the two O’s are distinct

(say, if the letters were B, O1, O2, and K), then there are 4! ways to arrange the four

letters. However, since the two O’s are not distinct, each arrangement of the four 

distinct letters has a “twin” that should not be counted toward the enumeration of 

arrangements of B, O, O, and K. (For instance, the outcomes BO1O2K and BO2O1K 

should be considered identical when solving the Book Problem.) Since the 

arrangements of B, O1, O2, and K can be partitioned into these equivalence classes of 

size 2, we find that the solution is 4!/2 ൌ 12. 
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The above counting process involves organizing the arrangements of B, O1, O2, 

and K, grouping the similar outcomes together, and counting each group of similar 

outcomes as 1 in the total enumeration of the arrangements of the letters in the word 

BOOK. Figure 2 illustrates how this counting process organizes the set of arrangements 

in stages.

Figure 2. Organization of the outcomes in the word BOOK.

Because of the potential for using outcomes and organization by equivalence to 

find a counting process, I used this problem to gain further insight into student 

reasoning about the relationship between sets of outcomes and counting processes.  

3.3 Data Analysis

After conducting and recording the interviews, I listened to the interviews and 

watched the files outputted by the Livescribe pens. Content logs of each interview were 

created, providing a detailed, time-stamped description of what happened. Portions of 

interviews that were particularly relevant to understanding student reasoning were 

transcribed. For the counting problems that the students solved, I coded student

responses and looked for particular factors of interest for each problem. I also recorded 

which problems each of the students solved by writing a full list of outcomes, writing 

a partial list of outcomes, or using another method not involving even a partial list of 

outcomes. For the coding, I discussed the categories that emerged with my academic 

adviser, and we worked together to clarify portions of students’ problem-solving 

processes that were difficult to code. 

For analysis of a counting problem on which students listed, I reported students’ 

answers to the problem before they were asked list the outcomes, and their answers 
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after listing the outcomes (if their answers changed). I also recorded and coded the

students’ justifications for their answers. I additionally documented a description of 

each student’s list, and I coded the extent to which the students could identify a 

structure within their list of outcomes. Using this reported data, I analyzed the students’ 

solutions to see which components of Lockwood’s (2013) model students used to solve 

the problem and justify their answers.  

Finally, for each list that every student made, I wrote a description of the

strategy that the student used to generate the list of outcomes. In this description, I

included details such as the order in which students wrote outcomes and utterances that 

students made indicating how they thought about their list generation. For each list, I

compared my description to English’s (1991) six hierarchical solution strategies and

categorized the list based on which of English’s categories best described the student’s 

process for generating the list. When there were subtleties in a student’s listing strategy 

preventing me from clearly using one of English’s solution strategies to characterize

the student’s behavior, I made note of these subtleties explaining with evidence why 

they could not be categorized using one of English’s solution strategies. Later, I 

returned to the subtleties I noted and looked for emergent themes in the ways

undergraduate students listed that was not clearly characterized by one of English’s 

solution strategies. These themes were discussed with my adviser to verify consistency 

in the coding of the undergraduate students’ listing strategies and confirm correct 

interpretation of English’s solution strategies. 



 

 

  

      

   

 

  

  

  

    

 

  

 

  

  

   

 

 

  

Chapter 4: Results

In this chapter, I present the findings of this study as they addressed the research

questions outlined in Chapter 2. I will present the frequencies of each listing strategy

used by the undergraduate students by utilizing English’s six hierarchical categories 

(1991), as well as discuss a particular application of her six solution strategies that 

emerged in the data. I will draw also on Halani’s student ways of thinking about 

combinatorics solution sets, including emergence of her conjectured “Generalized 

Odometer Thinking” (Halani, 2012). Next, I will present evidence that emerged 

supporting Lockwood and Gibson’s (in press) findings that listing is beneficial for 

students’ productive solving of counting problems. Finally, I examine student lists and 

their connections to counting processes to see how students might think of the 

relationship between these critical components of Lockwood’s (2013) model. 

4.1 Undergraduate students’ listing strategies

I begin by describing in detail the strategies that the undergraduate students 

used while listing outcomes. This will allow me in later sections to capture subtleties 

in a student’s listing behavior and connect that to the counting process they used to 

solve a given counting problem. The listing strategies I use are a further exploration of 

the categories developed by English (1991). 

In total, there were 31 complete or partial lists that the undergraduate students 

made in the interviews while solving the Cattle Problem, the Horse Race Problem, and 

the Book Problem. After collection of the interview data, I used English’s (1991) six 

hierarchical solution strategies to categorize undergraduate students’ listing strategies. 

It was discovered that her strategies, while originally created to characterize the 

combinatorial solution strategies of young children, were effective in characterizing the

listing strategies of undergraduate students as well. A summary of the frequencies of 

each listing strategy used is presented in Table 6. Specifically, Table 6 is broken into 

two sections – one reporting on Single Solution Strategies (in which students used only 

one strategy in listing outcomes), and one reporting Multiple Solution Strategies (in 

which students employed more than one strategy on a particular list of outcomes). In

sections 4.1.1 and 4.1.2 I highlight some key findings about each of these strategies. 
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4.1.1 Students’ Use of a Single Solution Strategy: Prevalence of Complete
Odometer Use in Generating Outcomes 

I begin by discussing students’ use of a single solution strategy. As can be 

observed in Table 6, undergraduate students used Solution Strategy F most frequently, 

with 19 of the 31 complete or partial lists used this strategy. A student list was coded

as being generated via Solution Strategy F if there was consistent, clear use of holding 

an item constant as the student allowed the other items in the outcomes to vary. In order 

for a list to be categorized as being generated via Solution Strategy F, I examined the 

utterances the students made, along with their real-time listing activity, to see if they 

thought about their list generation as coming from holding a pivotal item constant.  

Single Solution 
Strategies: 

Multiple Solution Strategies: Total Lists 
Made: 

Total Single
Strategies: 

22 Total Multiple 
Strategies: 

9 31 

A * Switching 
Strategies: 

E then D 2
B 1 C then B 1
C 1 Simultaneous 

Strategies: 
F and B 4

D 1 E and D 1
E * Switching 

and 
Simultaneous 

Strategies: 

B then (E and B) 1 
F 19 

Table 6. Listing Strategies Students Used. 

For example, 13 of the 20 participants use Solution Strategy F to create a list of

outcomes for the Cattle Problem. A nice example of this was the list created by Student 

17. His list of outcomes generated for the Cattle Problem are shown in Figure 3. 

Examining his list, we see his list can be divided into four subsets, each of cardinality

six, such that every outcome in each subset begins with the letters C, A, L, and E, 

respectively. Within each subset, the first two outcomes listed are those with a

particular fixed second letter, with the last two letters interchanged. For instance, in the 

subset of outcomes beginning with C, we see that Student 17 first listed the two 

outcomes that had A as the second letter, then the outcomes with L and E as the second 

letter. This clear organization of the list of outcomes suggests a methodical process of



 
    

 

 

   

   

 

 

 

 

 

  
   

  
  

 
  

27
Listing as a Potential Connection between Sets of Outcomes and Counting 


Processes


generating the outcomes via holding a first letter, then second letter constant, while 

varying the last two. Then changing the second letter, varying the new last two letters, 

and so on, until all outcomes with a particular fixed first letter are created. Then this

process begins again with a new first letter. 

Indeed, when I asked Student 17 how he generated his outcomes, he replied as 

follows: 

Figure 3. Student 17’s list of outcomes for the Cattle Problem.

Student 17: “Ok, so I started with the first letter. I made the first letter
the same for all the times I could. And then, I made the second letter the 
same for as many times as I could, and then I chose the third and fourth 
letter. Then I switched the third and fourth letter. And then, for the 
second letter, then I switched it with either the third or the fourth letter. 
And, um, and then the second letter became my new third letter. And, 
so that third and fourth letter I switched them again. And then I used
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the, the uh, whichever one of the second, third, or fourth letters I didn’t 
use, and I made that the second letter, and then the third and fourth letter 
I chose from the remaining ones. And then I switched them. And then, 
I did that same process with a new first letter.” 

Looking at his response, we see that he described in detail a strategy composed of 

systematically holding different items constant in the first and second positions while 

cyclically varying the other items. This indicates that he was in fact generating his list 

of outcomes using a complete odometer strategy (English, 1991, p. 458). 

Other examples of undergraduate students utilizing Solution Strategy F were 

seen in analysis of students’ complete lists for the Book Problem. For example, Student 

4 listed the outcomes in the word BOOK by systematically holding a first and second

letter, varying the two remaining letters, then changing the letters being held first and

second in a manner characteristic of the odometer strategy (English, 1991, p. 458). He 

did this carefully to ensure that he did not over count any outcomes, and arrived at the 

list shown in Figure 4. 

Figure 4. Student 4’s list of outcomes for the Book Problem. 

Finally, Solution Strategy F was also seen as students solved the Horse Race 

Problem. While no students made a complete while solving this problem, some partial 

lists that students created were still categorized using English’s sixth and highest 

hierarchical solution strategy. Reasons for this were two-fold. First, the cardinality of 

the set of outcomes for the Horse Races problem (720) is too large for a student to 
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feasibly write out every outcome. Second, I coded student lists as being generated by 

the complete odometer strategy based on student ability to list by holding a pivotal item 

constant while systematically varying the other items. A set of outcomes was coded as 

being created using Solution Strategy E if based on student utterances, if it was 

indicated that the student could not list all of the remaining outcomes. This 

consideration of whether a student indicated if they could meaningfully extrapolate a

partial list of outcomes is an elaboration of English’s (1991) categories, because for her

an incomplete list was indication of a child being unable to carry a solution strategy to

its conclusion. However, for undergraduate students solving more complex counting 

problems with large solution sets, the production of only partial list was not enough to 

say whether a student used Solution Strategy E or F. There was a need instead to look

at what students said to decide if they could extrapolate their list (suggesting Solution 

Strategy F) or were not sure how to do this (suggesting Solution Strategy E). This 

distinction and subsequent further exploration of English’s work is explored more fully 

in Section 5.2.1. 

For now, I focus on illustrating how this distinction was used in categorizing 

undergraduate students’ listing strategies. To do this, I present Student 12’s partial list 

for the Horse Race Problem. As she reasoned through the problem, she coded the race 

outcomes as 3-letter sequences of the letters A, B, C, D, E, F, G, H, I, and J. Thus, the

outcomes ABC indicated an outcome of the race in which horse A placed first, horse 

B placed second, and horse C placed third. She then listed all of the outcomes beginning 

AB, cycling systematically through all of the possibilities in which horses A and B 

placed first and second. Her list of outcomes can be seen in Figure 5. 
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Figure 5. Student 12’s list of outcomes for the Horse Race Problem.

After she listed all of the options beginning with AB, she described a clear 

extrapolation of her process to continue enumerating all of the possible outcomes for

the Horse Race Problem. Her explanation is quoted as follows. 

Student 12: “So that’s 8 possibilities, and then I could do AC, which 
will have 8, AD will have 8, AE will have 8, AF 8, AG 8, AH 8, AI 8, 
AJ will have 8. Ok. So then with A being first, I’m gonna have 1, 2, 3, 
4, 5, 6, 7, 8, 9--72 options with A being the leader. And then I think they
all get their chance—1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Yeah, so if they all get 
their chance to be first place, I think there should be that many [writes 
72*10=720].” 

Because she was able to clearly articulate a process by which she could continue listing 

all of the outcomes, her list was coded as being generated by use of the complete 

odometer strategy. Even though she did not write every outcome, it was clear to me 

that she could have if she chose to. 

While Solution Strategy F was the most prevalent among the listing strategies 

used by undergraduate students in our interviews, there were a handful of lists that were 

created using another strategy that could be characterized by one of English’s other 

solution strategies. For example, Student 15 created two complete lists of outcomes 

during her solving of the Cattle Problem, one list was generated using Solution Strategy 

D, and the second by an “F and B” strategy. (The latter will be explained in section 

4.1.2.2.) For her first list, Student 15 wrote CALE as her first outcome, and then 

“shifted” the position of each letter in the outcome, putting the E first, the C second, 

the A third, and the L fourth. Thus, she then had the arrangement ECAL. She repeated 
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this action again to obtain LECA, and finally ALEC. Exhausting the outcomes she 

could write using this shifting action, she began the process again with a new outcome,

CLAE, and once again repeated this action to obtain three more outcomes. Student 15’s 

list of outcomes can be seen in Figure 6. 

Figure 6. Student 15’s first list of outcomes for the Cattle Problem.

This strategy was interesting, in that it was systematic and cyclical. However, it was 

based not on a fixed item in a particular position, but on a fixed relational ordering of 

the letters C, A, L, and E. Since an item was not being held constant as other items 

were systematically varied, I did not categorize the strategy as a complete odometer 

strategy. However, a clear, systematic pattern is being utilized to generate the 

outcomes. In fact, Student 15’s strategy uses a concept that is much like problems 

ሻ݊ െ 1ሺpeople can sit in chairs around a circle. There are ݊asking the number of ways !


ways for this to occur, because rather than counting each chair as being distinct, 

outcomes are distinguished via different relational orderings (where the only thing that

matters is who sits next to whom, not exactly where each person sits). Likewise, there

are 3! relational orderings of the letters C, A, L, E (or, there are 6 ways to place the 

letters C, A, L, and E in a circle), and so we obtain a solution of 3! ൈ 4 ൌ 24 for the 

number of arrangements in the Cattle Problem beginning with TT. While this list of 

outcomes was not generated using the odometer strategy, the cyclical, systematic 

pattern was clearly productive in generating outcomes to solve the Cattle Problem. 

In short, when it came to students’ clear use of one of English’s (1991) solution 

strategies, Solution Strategy F, the complete odometer strategy, was the most prevalent. 

Of the 31 lists made by students in the interviews, 19 of them came from utilization of



 
    

 

 

   

  

 

  

      

 

    

   

 

      

 

  

 

 

  

 

32
Listing as a Potential Connection between Sets of Outcomes and Counting 


Processes


Solution Strategy F. This is not a surprising result, because such a strategy fits in 

naturally with arrangement problems, and it is consistent with English’s findings. The 

ages of children in her study ranged from 4-9 years old, and English found that the 8

and 9-year-old children were more likely to use the more sophisticated solution 

strategies, D and F (p. 464). Likewise, in our study with undergraduate students, all 

over the age of 18, we found that the majority of them used the most sophisticated 

listing strategy according to English’s hierarchical categories. In addition, it is possible 

since we explicitly asked almost every student interviewed to write a list of outcomes 

for the Cattle Problem, it is possible that this prompted the undergraduate students to 

make an organized list when they otherwise might not have.  

When just examining these results, it may seem that the undergraduate students 

all naturally and easily employed Solution Strategy F. However, I additionally point 

out that while many students used the complete odometer strategy to write a list of

outcomes while solving a counting problem, other students utilized less sophisticated 

listing strategies, but this emerged when they used multiple listing strategies. As can 

be seen in Table 6, there were students who used some of English’s less sophisticated 

strategies, such as Solution Strategy B. In the following section, I examine other less 

sophisticated strategies that undergraduate students utilized to list outcomes. As will 

be seen, these strategies often involve random listing that is combined in some way to

another more sophisticated strategy.  

4.1.2 Students’ Use of Multiple Solution Strategies  

Some children in English’s (1991) study exhibited a listing behavior of 

switching between different strategies. She found that, for example, a child solving a 

basic counting problem with solution set having a cardinality of 9 might begin by 

employing a cyclical pattern to generate the first 6 outcomes, but then lose the pattern

and generate the remaining 3 outcomes using a trial-and-error approach of creating new

outcomes at random (p. 462). In my interviews with undergraduate students, I found 

some similar instances of students switching between different listing strategies, but I

also encountered other ways in which students used multiple strategies. These 

additional ways that student incorporated multiple solution strategies sheds some light 

on (undergraduate) students’ listing that was not addressed by English. In 4.1.2.1, I 
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give examples that align with what English found, and in 4.1.2.2 I give examples from

the data indicating a need to expand English’s categories for students’ combinatorial 

solution strategies.

4.1.2.1 Switching Between Strategies to Make a List of Outcomes. Through 

analysis of the interviews, there emerged a categorization of the students’ lists that I 

denote Multiple Strategies. These consisted of two types: switching strategies and

simultaneous strategies. A student that was listing via a switching strategy would list 

in a way that was characteristic of one of English’s (1991) categories, but then change 

to a different solution strategy partway through creating a complete or partial list of

outcomes. For example, a student who started listing using an odometer strategy of 

holding an item constant and cycling through the other items systematically, but then

changed to a different strategy to complete the list, say using a cyclical pattern that is

not holding an item constant while varying the others systematically, was coded “E

then D.” The E is used to indicate that the odometer strategy was used, but not 

completed throughout the listing task.  

Throughout the interviews, there were only four instances where students 

switched their listing strategy partway through creating a list of outcome. As a

clarification, if a student wrote down a partial list, then started a new list using a 

different strategy, this was not coded as a switching strategy. While the student is

clearly changing his or her strategy, the significance of switching strategy according to 

my coding of the outcomes was changing solution strategy within the generation of one 

list of outcomes. Thus, if a student began a partial list by writing down random 

outcomes, and then started a new list using the complete odometer strategy, I would 

say this activity consisted of two separate lists, and the first would be coded as being 

generated by Solution Strategy B, and the second by Solution Strategy F. 

Of students who switched between outcomes part-way through the generation 

of one list of outcomes, the strategy “E then D” was used twice, “C then B” was used 

once, and there was one instance of a student using a “B then (E and B)” strategy. This 

last strategy will be explained in more detail in section 4.1.2.2. 
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To illustrate, one student who used a strategy coded “E then D” was Student 7

when he wrote out a partial list of outcomes for the Cattle Problem. His list is shown 

in Figure 7. 

Figure 7. Student 7’s partial list of outcomes for the Cattle Problem. 

By looking at Student 7’s list of outcomes, it appears that the list was generated by a 

use of the complete odometer strategy, because it can be seen in his list a pattern of a 

pivotal first letter, followed by a pivotal second letter. However, listening to Student 7 

give a description of how he listed his outcomes, we see that is use of the odometer 

strategy is incomplete. His description is as follows. 

Student 7: “So, I’m pretty much, in order to do it more efficiently, I just 
kinda put all the same letter in the first [column]…and then I—that one 
I worked through slower, but then, with [the outcomes beginning with 
E], I just switched in C for E in all these. So, it’s going to be the exact 
same here, but I just switched in C. And here I just switched in E for A, 
and so all the places where A was in here, E is now.” 

Seeing Student 7’s description of his listing strategy, we observe that he did not think 

of his list generation as holding C, A, L, then E constant while systematically varying

the other letters. Instead, he held C constant while systematically varying the other 

letters, but then followed a cyclical replacement pattern of swapping the C’s and E’s to 
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create the outcomes beginning with E, and then followed the cyclical replacement 

pattern again to generate the outcomes beginning with A. While producing the same

list as a list created with the complete odometer strategy, Student 7’s way of thinking 

about his listing strategy was different enough that I felt I could not categorize it neatly 

as Solution Strategy F. Rather, there was an emergence of the odometer strategy in his 

generation of the outcomes beginning with C, and then a cyclical pattern that could be

used to generate all of the outcomes. This cyclical pattern, however, cannot be seen as 

easily as holding an item constant while systematically varying the other letters. Rather,

it is the six positions of letters in the outcomes beginning with C that is held constant, 

and the letters which fill those positions are cyclically changed. Thus, we see that 

Student 7 only showed an emergence of an odometer strategy, but then carried out 

Solution Strategy D to finish his partial list of outcomes. 

4.1.2.2 Emergence of Solution Strategies Used Simultaneously. In addition

to the switching strategies that occurred in the interviews, there were also instances of 

other solution strategies that students used that seemed to encompass more than one of 

English’s (1991) categories. They neither fit neatly into one of her categories, nor could 

these strategies be characterized by switching between solution strategies. Instead,

there was an emergence in the data of students using two of English’s strategies 

simultaneously to generate a list of outcomes, and for this reason I categorized these as 

simultaneous strategies. Of the 31 total lists that students made, 6 of them were 

generated via use of two listing strategies simultaneously. 

The most frequently seen simultaneous listing strategies were Solution Strategy 

F and B, which were coded as simply “F and B.” This occurred when the student 

generated outcomes using a strategy that simultaneously both odometer and random-

selection components. For example, Student 15 used Solution Strategy D to generate a 

complete list of outcomes for the Cattle Problem, and then created a new list using an 

“F and B” solution strategy. (The description of her first list of outcomes is explained 

in section 4.1.1.) To make her second list, she repeatedly held a fixed letter constant to

be first, but then did not vary the other letters in a systematic way. Rather, they followed 

no clear pattern and appeared to have been varied randomly. Student 15’s second list 

of outcomes for the Cattle Problem can be seen in Figure 8.  
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Figure 8. Student 15’s second list of outcomes for the Cattle Problem. 

To see if she was indeed varying the other items randomly, I asked her why she thought

there might be six outcomes in each group with a fixed first letter. She responded as 

follows.  

Student 15: “Well, there’s three letters that don’t depend on the first
letter. Um, but, I can’t think of, I don’t know. I can’t think of why there’s 
six. One thing I was noticing was, um, like, for these two, they both start 
with L and A, and then it’s just either EC or CE. So, yeah, maybe that’s 
it.” 

Because she described observing two outcomes having a fixed first and second letter 

after she wrote those outcomes down, this suggests that she was not intentionally 

arranging the other items with a fixed first letter by next fixing a second letter. Thus, 

although she was using a pivotal first item to list outcomes, I could not classify her 

listing strategy as a complete odometer strategy due to the random component of her 

strategy. 

Another example of two listing strategies being used simultaneously was in

Student 18’s first partial list of outcomes for the Cattle Problem. This was the only 

instance in which a student used both switching and simultaneous solution strategies, 

which was coded “B then (E and B).” The resulting list can be seen in Figure 9. 
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Figure 9. Student 18’s first partial list of outcomes for the Cattle Problem. 

To begin her list, Student 18 wrote down 12 outcomes beginning with TT. To obtain 

those 12 outcomes, she said, “I’m just kinda mixing them around, I guess.” This 

utterance also suggests a lack of a systematic pattern, and this partial list was then

categorized as being generated by Solution Strategy B. Then, however, after I asked 

her if she thought that she had listed all of the outcomes, she said no, and that she 

thought there may be more outcomes that she had not thought of. After saying this, I

asked her if there were any other outcomes she could think of, and she wrote down five

outcomes beginning with TTL: TTLACE, TTLCAE, TTLEAC, TTLAEC, and 

TTLECA. She explained that she realized she had missed outcomes beginning with 

TTL, and she then guessed that there were a total of seven outcomes beginning with 

TTL. She finally obtained the last outcome beginning with TTL by a trial-and-error 

thought process, and then realized that there was not another outcome that she could 

write down. 

The above thought process, as well as the physical list itself, both suggest that 

while she was holding the L constant as the first letter in the list of outcomes beginning 

with TT, she did not vary the other items in a systematic manner. She also wrote down 

no more outcomes in this particular list, nor articulated a way to extrapolate her process
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to extend her partial list to a complete list. For this reason, the strategy she used for her 

last six outcomes was coded “E and B.” In both Students 15 and 12, then, we gain some

insight into listing by those students who did not immediately or naturally adopt a 

complete odometer strategy F. In particular, even as undergraduates these students were 

not always systematic and at times did not have mechanisms by which to keep track of

their outcomes.  

In conclusion, we find that English’s (1991) strategies were effective in coding 

many of the strategies that undergraduate students used to write down lists of outcomes.

However, there were also lists that students created which could not clearly be 

categorized using only one of English’s six hierarchical solution strategies. Instead, 

there was a need to describe the listing strategy used with multiple solution strategies. 

These instances included examples of students switching between English’s listing

strategies, as well as utilizing strategies that simultaneously contained components 

characterized by different solution strategies. While the former was observed in 

English’s studied with young children, I conjecture that the emergence of simultaneous 

solution strategies occurred because the problems I asked undergraduate students in 

our interviews were more complex than the tasks that English (1991) gave young 

children. In English’s study, the tasks asked children involved only combinations of 

two items selected from discrete sets of items (p. 454). In studying the listing behavior 

of undergraduate students solving more complex counting problems, then, it will likely 

be beneficial to be attuned to simultaneous listing strategies.

4.2 Effects of Listing on Correctness of Counting Problem Solutions

In addition to looking closely at the lists of outcomes that students made and 

the strategies they used to generate those lists, I was also interested in seeing how listing

affected the correctness of the students’ answers to the counting problems given to

them in the interviews. While there are numerous sources that document the difficulties

that students have solving counting problems (Batanero et al., 1997; Eizenberg &

Zaslavsky, 2004), there is some evidence in the literature that listing may be a

productive activity for students to engage in while solving counting problems 

(Lockwood & Gibson, in press). Examining the interviews I conducted, I see some 
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evidence that listing is in fact a worthwhile activity for obtaining correct solutions to 

counting problems. 

4.2.1 Listing as a Way to Detect Counting Errors: Solutions for the Cattle
Problem Before and After Listing 

I focus this subsection of my results on solutions to the Cattle Problem. This is 

the only problem in which that I asked each student to write a complete list of outcomes, 

and thus allows us to study student answer to the problem before and after writing a 

complete list. First, Table 7 reports on the answers each student gave prior to listing all 

of the outcomes and after listing all of the outcomes. Student 11 did not answer the 

CATTLE problem and Student 16 did not give an answer prior to listing.  

Student Answers to the CATTLE Problem Prior to Listing 

Type of Answer: Answer: Frequency: 

Correct 
2×4! 9

4×6×2 1 
48 1 

Incorrect 4×4 2 
(2×1×4×3×2×1) ×2 1

16×2 1 
24 1 

(4+3+2+1+1+1) ×2 1
2×4×9 1 

None * 1

Student Answers to the CATTLE Problem After Listing 

Type of Answer: Answer: Frequency: 

Correct 
2×4! 9

4×6×2 6 
2×24 2 

2×12×2 1 
(4×3×2×1) ×2 1

Table 7. Summary of student responses to the CATTLE problem.

Looking at the students’ responses to the Cattle Problem, we see that initially, only 11 

out of the 19 students who solve the Cattle Problem came to a correct answer before 

making a list. However, after writing down a complete or partial list, every student 

arrived at a correct answer. 
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One example of a student who initially answered the Cattle Problem incorrectly 

was Student 13. Before writing a list of outcomes, his solution to the problem was 

(2×1×4×3×2×1) ×2. He explained, 

Student 13: “So, if the two T’s are at the beginning, the first spot can be
either of the T’s, the second spot can be the other T, and then there’s 4, 
3, 2, 1. So, that would be if the T’s are [at the beginning]. And then, 
you’d add that to if the T’s are at the end. So it’d be 4, 3, 2, 1, and then 
either one of the T’s.” 

Notice that this solution would be correct if the two T’s are distinct. However, because

the T’s are identical, we see that Student 13’s process over counts each arrangement

once. Over counting is a common error in solving counting problems (Batanero et al.,

1997; Halani, 2013), and it can often be a difficult error for students to detect. However, 

Student 13 was able to see his error after he wrote a complete list of outcomes beginning 

with TT using the complete odometer strategy. Once he finished his list, he remarked, 

Student 13: “Okay, so the reason I wrote, I got 48 here [from the original 
counting process], but only 24 [outcomes] here, is these T’s are all the 
same, so TT—yeah, so I was saying, like, that the T’s would be 
different. But, it’s not….Well, [the number of outcomes beginning with 
TT] would be 24, and [the number of outcomes ending with TT] would 
be the same thing, so it would be 48.” 

Here, Student 13 articulates that after having made a list of outcomes, he was able to 

see that the two T’s were actually identical, and he was able to arrive to the correct 

answer. Thus, this illustrates one way in which writing a concrete list of outcomes can 

be beneficial for students in correctly solving counting problems. In particular, since 

he had to decide exactly what an outcome of the Cattle Problem looked like in order to 

list, he was able to detect over counting in his counting process. 

Another example of a student using listing to correct a wrong solution to the 

Cattle Problem was seen in Student 19’s solution. Initially, Student 19 argued that the 

solution to the problem would be (4+3+2+1+1+1) ×2. His reasoning is given as follows.

Student 19: “Basically, when the two T’s are at the front or back, there 
are only four other slots that create variation. So, it’s like, those four
other slots, there are four possibilities for, which you could equate to 
like a 4 factorial, because, you know, there are four possibilities for the
first slot, three for the second and so on. So, 4 factorial plus there’s one 
possibility for each location of the T’s.” 
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Following his line of reasoning, we see some understanding of the idea of a decreased 

number of options for each fixed position in an outcome, and the use of the 1’s indicates

some understanding that the two T’s are identical. However, we also see use of an

incorrect operation for expressing the number of outcomes for a task divided into 

distinct stages (in particular, Student 19 used addition rather than multiplication). 

After Student 19 gave his solution, he expressed that he was unsure that his 

answer was correct, and he remarked that perhaps listing some outcomes might help 

him determine if he was on the right track. I encouraged him to do this, and like Student 

13, he was able to see his error and utilize a correct counting process for solving the

Cattle Problem. He listed the outcomes using the complete odometer strategy. After he 

listed, he observed first that the solution would be 6 ൈ 4 ൌ 24 total outcomes

beginning with TT, because for each fixed first letter, there were six total outcomes. In 

addition, once he had written down a complete list of outcomes, he was able to

articulate why there would be 4 ൈ 3 ൈ 2 ൈ 1 total outcomes beginning with TT. This 

is explained in more detail in section 4.3. 

In conclusion, the students’ solutions to the Cattle Problem before and after 

writing down a complete or partial list supports the idea that systematic listing may be

an effective way for students to catch errors in their counting processes. Eisenberg and

Zaslavsky (2004) found that verifying combinatorial solutions to be a difficult task for

students, and Lockwood (2013) proposed that students should learn to base their 

combinatorial arguments fundamentally in sets of outcomes (p. 258). These results 

corroborate with Lockwood’s claims, suggesting the possible usefulness of more future 

studies on students’ explicit use of outcomes to verify the correctness of counting 

processes.

4.2.2 Listing to Aid in Finding a Counting Process  

Apart from using a list of outcomes to detect an error in a wrong solution to a 

counting problem, writing a list of outcomes can also be beneficial for helping students 

who are unsure how to go about solving a counting problem in coming up with a

coherent counting process. Lockwood and Gibson’s (2015) study provided some

examples of students using a complete or partial list to come up with a solution to 
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counting problems they appeared otherwise unable to solve, and in my interviews I was 

able to see an even clearer usefulness that listing seemed to have for stumped students 

as they verbalized their thought processes for me. This was seen both in instances where 

students made complete lists, and instances in which a partial list of outcomes was 

used. 

One example where a student’s complete list of outcomes led to a coherent, 

correct counting process was Student 20’s solving of the Book Problem. When I first 

gave him the problem in my interview with him, he expressed that if the O’s were

distinct, he would know that the answer would be 4!. However, he observed that he 

would over count outcomes, because the positions of the two O’s could in interchanged 

in any outcome to create an identical outcome. Therefore, he could see that the answer 

would have to be less than 4!, but he still was not sure how to answer the problem. 

After contemplating that the solution might be somehow related to 3!, he decided to try 

to write a complete list of outcomes. I encouraged him to do so, telling him he could 

take as much time as he needed to write out the outcomes. He then listed his outcomes 

using an “F and B” solution strategy, holding B, K, and O successively constant in the 

first position while randomly varying the other items for each fixed first letter. Student 

20’s complete list of outcomes for the Book Problem can be seen in Figure 10. 

Figure 10. Student 20’s complete list of outcomes for the Book Problem. 

After Student 20 finished writing his list of outcomes, he observed that there were 12

total outcomes, and that 12 ൌ 4!/2. He said that this made sense, because if the two 

O’s were different, there would be double the number of outcomes and you would have 
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4! total outcomes. I asked him why he would double the number of outcomes if the O’s 

were different, and he said, “Because you can just switch them, essentially. In which 

case there would be 4 [distinct letters] and it would be 4!. But, because they’re the same 

switched, it halves it. So, you would divide by 2.” In this way, we see that after first

being unsure how to solve the problem, creating a complete list helped Student 20 

articulate a counting process of permuting 4 distinct letters, but then dividing by 2 to 

account for the fact that each outcome is equivalent to exactly one other outcome

(namely, the outcome in which the two O’s are swapped). This instance provides 

evidence that listing could help students solve counting problems involving division 

and aid in students articulate equivalence ways of thinking about outcomes (Halani, 

2012). 

In addition to seeing evidence that complete lists of outcomes may help students 

articulate coherent counting processes, I also encountered in the interviews instances 

where even a partial list was enough for a student to spot a pattern and use it to find a

productive correct counting process. To illustrate, I provide Student 7’s initial 

approach, partial list of outcomes, and subsequent solution for the Horse Race Problem. 

When I first gave Student 7 the problem, his initial reasoning was as follows. 

Student 7: “Mmm, I think it’s the last seven—don’t matter what order 
they’re in….I’m thinking it might have to do with ‘n choose r.’ Would 
it be like 10 choose 3, or something like that? I might try going that 
direction with it, but, can’t be too certain. Considering I don’t even
know the formula for it, I wouldn’t know how to go about it….I don’t 
know if that accounts for the order, so that’s more of a blind guess than 
anything else.” 

These initial utterances suggest that he did not know how to approach the problem, and 

I asked him if he thought it might be useful to try writing out some outcomes. He agreed 

that might be helpful and said maybe if he wrote some outcomes, “something might 

spark for [him].” He began by writing the outcomes ABC and ABD, and said, “ooh! 

I’m starting to see a pattern! Here we go.” He continued writing outcomes and utilized 

English’s (1991) Solution Strategy F to write a partial list. Student 7’s partial list of

outcomes for the Horse Race problem may be seen in Figure 11.  
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Figure 11. Student 7’s partial list of outcomes for the Horse Race Problem. 

After he finished his partial list he said that he thought the answer was 8 ൈ 9 ൈ 10. I 

asked him then how he arrived at this answer, and his explanation is given as follows. 

Student 7: “I think it was when I started writing this out. I could be 
wrong, but this is where I was going with it. I was saying there were [8] 
options…in that [column], and then—this one there would be 9. There’d
be 9: B through J. That’s my guess. And then this one would be A 
through J, so there’s 10 options. And so there’s 8 ൈ 9 ൈ 10.” 

While this response is hesitant, we still see that Student 7 was able to go from being 

entirely unsure how to solve the problem to arriving at a correct solution. The partial

list of outcomes helped him to articulate which items could be used to fill each of the

three positions in an outcome for the Horse Race Problem, leading him to a correct use 

of the Multiplication Principle to correctly solve the problem. This instance 

corroborates with Lockwood and Gibson’s (in press) finding that even a partial list of 

outcomes can be beneficial for students arriving at productive counting processes for 

completing combinatorial tasks. 

In conclusion, this study corroborates with existing literature on the usefulness 

of students making lists of outcomes as they carry out combinatorial tasks. In addition, 

since I was able to talk to the students in the interviews and ask about their reasoning, 

I was able to unpack some of the specific ways that listing appeared to help students
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solve counting problems. In my interviews with undergraduate students, I found 

evidence that listing is beneficial both to help detect errors and to help students find the 

way to a solution when they are stuck. These benefits occurred both when students 

wrote a complete list of outcomes, as well as in instances where only a partial list was 

produced. 

4.3 Student Understanding of the Relationship between Lists of Outcomes and 

Counting Processes

The results of this study from sections 4.1 and 4.2 focus primarily on the sets 

of outcomes component of Lockwood’s (2013) model of students’ combinatorial 

reasoning. The former focused on how sets of outcomes written by undergraduate

students could be usefully characterized, and the latter provided qualitative evidence 

that explicitly considering sets of outcomes may be beneficial to student success in

carrying out combinatorial tasks. Lockwood and Gibson (in press) suggested the

benefits of having more studies look closely into how listing affects student 

performance and thinking about counting problems (p. 34), and these results are a step 

toward greater understanding of this particular issue in mathematics education

research.

In this final section of my results section, I turn my attention from the sets-of-

outcomes component of Lockwood’s (2013) model and turn to the crucial relationship 

in her model between sets of outcomes and counting processes. Lockwood (2013) 

contended that, 

[T]he link between counting processes and sets of outcomes can (and 
should be) a very flexible relationship, in which students fluidly move
from one component to the other. If a student can easily coordinate a
counting process and a set of outcomes, this affords them tractability in
their counting. (p. 258) 

In other words, to be a successful counter, Lockwood argued that it may not be enough 

for a student to list in an organized way, or even to use a list to conceive of a counting

process. She believes that students may have the most success in solving counting 

problems and having a solid mathematical understanding of combinatorics when a clear 

relationship between sets of outcomes and counting processes can be articulated. In 

Chapter 2 of this thesis, I outlined how within a given counting problem, different
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organizational schemes of the set of outcomes can give rise to counting processes, and 

conversely any given counting process may be thought of as a way of imposing a 

certain structure on the set of outcomes for the counting problem. While there have 

been few studies explicitly addressing how this relationship affects robustness of 

student understanding about solutions to counting problems, other studies have 

demonstrated some of the consequences resulting from students failing to use this

relationship (Lockwood et al., 2015).  

Because of the importance of the relationship between sets of outcomes and 

counting processes, and the fact that relatively little literature that explicitly addresses 

this relationship exists, I was motivated to investigate student understanding of this 

relationship in our interviews with undergraduates. Earlier in this thesis, we have seen 

already some evidence of the usefulness of this relationship. As I discussed in section 

4.2.1, comparing a counting process with a particular list of outcomes can be an 

effective way to verify the correctness of a counting process. The remainder of Chapter 

4 will be devoted to sharing my results about how students articulated connections 

between sets of outcomes and counting processes. As we will see, the connectedness 

between these two critical components of Lockwood’s model varied considerably, even 

within a fixed combinatorial task. To allow for clearer contrasts between different

student articulations of this relationship, I will narrow my focus to student reasoning 

about the Cattle Problem. Therefore, my discussion will be in the context of counting 

arrangements of 4 distinct objects with a multiplicative counting process. 

4.3.1 Strong Student Connections between Lists of Outcomes and Counting 
Processes: Evidence for Students Engaging in Halani’s (2012) Conjectured 
Generalized Odometer Way of Thinking

Throughout the interviews, many students were able to explain clear

relationships between their lists of outcomes for the Cattle Problem and the counting 

processes they used to solve it. One particularly nice example was Student 1’s 

connection between his list, which was generated using Solution Strategy F, and his 

counting process for solving the Cattle Problem. When I first gave him the problem, 

Student 1 explained that his solution to the Cattle Problem would be expression 2 ൈ 4!, 

and he corresponded this expression to the following counting process: he first 

considered the placement of the two T’s, and then for each placement of the T’s, there 
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are 4 distinct letters to arrange. So, there are 4! possible way to arrange those four

letters once the T’s are fixed. 

I then asked him to write out all of the outcomes for the Cattle Problem

beginning with TT. In describing his strategy for listing the outcomes beginning with 

TT for the Cattle Problem, Student 1 said that he produced his list in the following way.

Student 1: “First you set the first letter, and don’t think about them. 
Don’t think about it. And, you put the second letter and don’t think about 
it. It’s just, you have two [possibilities], EL and LE here, in this case AL 
and LA, and so—and, yeah.” 

Here, we see again a process in which a student is fixing a pivotal first letter, and then

successively holding each possible second letter constant to interchange the last two

letters, and in this way systematically vary the items in a way characteristic of the 

odometer strategy.  

Finally, I asked Student 1 if he could see a structure of 4! in his set of outcomes 

beginning with TT. He answered,  

Student 1: “There are four groups [drawing a circle around each subset 
of outcomes with a fixed first letter], and in each group there are three 
chunks [drawing a circle around the pairs of outcomes beginning with 
CA, CE, and CL], and in each chunk, there are two twins. And, in each
word, there’s only one.” 

Here, we see a clear connection between the Multiplication-Principle argument 

that Student 1 articulated in his counting process and the corresponding organization 

of the set of outcomes that this particular counting process affords. He showed not only 

a robust fluidity in his movement between sets of outcomes and counting processes, 

but also demonstrated an ability to engage in Generalized Odometer thinking (Halani, 

2012), that is, holding an array of items constant (rather than just a single item, as was 

seen in the Solution Strategy “F and B”), systematically varying the remaining items 

constant, and relating it to a Multiplication-Principle counting process. In Halani’s 

(2012) study, she said that her ideas about the Generalized Odometer Strategy were not 

rooted in her own empirical data, but were instead one of her own ways of thinking 

about the solution sets of many combinatorics problems (p. 1-241). Here in this study, 

we see evidence of students being able to engage in Generalized Odometer way of 

thinking as well. 



 
    

 

 

 

  

   

 

 

 

      

 

     

48
Listing as a Potential Connection between Sets of Outcomes and Counting 

Processes

Another interesting example of a student who clearly articulated the 

relationship between an organization of the set of outcomes and a counting process for 

solving the Cattle Problem was Student 6. Student 6 also arrived at a solution of 2 ൈ  

4!, but had a different organization of his set of outcomes, and thus also had a different 

counting process than Student 1. Student 6, like Student 1, also generated his outcomes 

using Solution Strategy F, but his strategy included first choosing not a fixed first letter, 

but a fixed position for the letter C. Thus, his first six outcomes that he wrote had C in 

the first position, and the next six had C in the second position, and so on. Interestingly, 

he did not follow a similar pattern for placing the other letters, but organized them

according to the more standard odometer strategy of successively choosing a fixed 

letter to fill unoccupied positions. Student 6’s complete list of outcomes for the Cattle

Problem can be seen in Figure 12. 
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Figure 12. Student 6’s complete list of outcomes for the Cattle Problem. 

I also asked Student 6 if he could see 4! reflected in the structure of his list of 

outcomes, and he replied, “Sure. Well, I mean a little bit abstractly. [Each group of six 

outcomes in my list] is 3 factorial, and like I said, I just copied it 4 times. I multiplied 

it by four, and I just deviated [the C] one position to the right each time.” I asked him 

what he meant by each group being 3!, and he replied that he said that in each group 

where the position of the C was fixed, the arrangement of three distinct letters are

identical. In this situation, Student 6 had condensed his understanding of 3! to simply 

be the arrangements of 3 distinct objects, in this case the letters A, L, and E, and 

systematically varied the position of C in relation to those letters. This is a fascinating
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application of the Multiplication Principle and also provides evidence of a student 

engaging in a Generalized Odometer way of thinking (Halani, 2012). In this particular 

example, Student 6 was holding the arrangements of 3 distinct items constant, and 

systematically varying the position of the last item in each outcome. 

In summary, I saw in the interviews multiple instances of students using the 

sophisticated arguments to connect their lists of outcomes to multiplicative counting 

processes for the Cattle Problem. Even within the scope of examining one problem, 

students were able to come up with very different ways of structuring outcomes, and in 

turn very different ways of connecting those outcomes to counting processes. In

addition, the emergence of students engaging in Generalized Odometer ways of 

thinking (Halani, 2012) is an interesting addition to the current body of literature in 

combinatorics education and may help motivate future studies on student reasoning 

about this way of thinking. 

4.3.2 Student Difficulties Connecting Lists of Outcomes with Counting 
Processes 

In this final section, I examine evidence in my data showing that, while several 

students excelled at articulating the relationship between sets of outcomes and counting 

processes, other students struggled to see this relationship. As a result, these students 

had a less robust understanding of the counting problems they were solving. 

One example of an incomplete connection a student made between a counting 

process and an organization of outcomes for the Cattle Problem was in Student 2’s 

reasoning. When I initially gave her the problem to solve, she explained, “So if I put 

the T’s in the beginning, now I have 4 letters left, so I have 4 spaces. So we’re gonna 

fix the T’s, and now there are 4! ways to arrange the other three letters.” Like other

students I asked to solve the Cattle Problem, I then asked Student 2 to list the outcomes 

beginning with the two T’s, which she did. Like many of the other students, she used

Solution Strategy F to write out all of the outcomes. Student 2’s complete list of

outcomes for the Cattle Problem can be seen in Figure 13. 
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Figure 13. Student 2’s complete list of outcomes for the Cattle Problem. 

After she completed her list, I asked her if she if she could see 4! in the structure 

of her set of outcomes. She first answered, “I guess the structure is that I have four sets, 

and each set has six things in it.” I asked if within each set if there was a 3 ൈ 2 ൈ 1. 

Her response was the following. 

Student 2: “So, if we cover up the first letter, um, the second column 
has three different letters, oh but so does the third. That’s not going to 
work. I mean there’s kind of, like, when you get to this last column, and 
you read down, they don’t repeat until you’ve gone through them all.
Like, in the second column, where I have CC, AA, LL, first column I
have ALC and then LCA. But I don’t—that’s not a coincidence, but I
don’t think that’s really connected to the—yeah, I don’t know.”

In this excerpt, we see that Student 2 could see the structure of 4 ൈ 6 in her list 

of outcomes, but was unable how her outcomes reflected the multiplication in 4!. She 

saw the 3×2×1 as 6, but could not complete articulate how her list of outcomes were 
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connected to the Multiplication Principle counting process she used to obtain a solution 

to the problem. This episode is noteworthy in our discussion about student reasoning, 

because even though she used the most sophisticated of English’s (1991) Solution 

Strategies, she still was not able to see clearly how her outcomes connected to the 

multiplication 4 ൈ 3 ൈ 2 ൈ 1. This suggests that while showing undergraduate students 

odometer listing strategies might be useful, and the odometer strategy is a productive 

way of listing outcomes in a clear, systematic way, they may still need additional 

support in making the connection between their list and the process they use to solve 

counting problems. 

Even more evidence for the above point can be seen in Student 12’s reasoning 

about her solution to the Cattle Problem. When I asked Student 12 to solve the problem, 

she was unsure how to go about solving it at first, and so she started by writing some

outcomes where the two T’s were at the beginning. She made a partial list, and her 

strategy was utilizing a cyclical pattern that she did not carry out to completion, and so 

her strategy was coded to be English’s (1991) Solution Strategy C. However, after this 

she then created a new list using a more sophisticated listing strategy, and she wrote 

down a complete list of outcomes using the complete odometer strategy (English 1991). 

Student 12’s partial list and complete list of outcomes for the Cattle Problem can be 

seen in Figure 14. 
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Figure 14. Student 12’s complete and partial lists of outcomes for the Cattle Problem. 

Halfway through making her complete list, she observed that she would get 4!

outcomes beginning with the two T’s. She then admitted that even though she was not 

originally thinking of using factorials to solve the problem, she said she could see now 

that “they may be a good way to go.” After she finished her complete list of outcomes, 

I asked her if she could see the structure of 4 ൈ 3 ൈ 2 ൈ 1 in her list of outcomes. She 

responded by first saying that she could see a 4 with all of the possible first letters, and 

then she noted, “And for each one then there’s three possible second letters? And for 

the—after that there’s two, but they are kinda rotating, so—um, to be honest there’s 

not something jumping out at me that it’s, like, oh this is why it’s 4 ൈ 3 ൈ 2 ൈ 1.” In 

this particular example, I found that even though Student 12 utilize a sophisticated 

listing strategy and recognized that 4! would be the number of arrangements beginning 

with the two T’s, she seemed unable to see any relationship between her outcomes and 

the counting process used to find the solution to the problem. 
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Both Student 2’s and Student 12’s work on the Cattle Problem demonstrate that 

for students, making the connection between sets of outcomes and counting processes 

is not at all a trivial task, even though Lockwood argues that it is critical to use such a

relationship in order to have a robust understanding of combinatorial tasks (Lockwood, 

2013). These findings, that a student may have both a list of outcomes and a counting 

process, but little to no relationship between the two, is surprising and demonstrates a

need for instructors to make such connections explicit for students who are learning to 

count. It also provides some motivation for possibly further research on student 

understanding this relationship. While my focus in this thesis was narrowed to student 

understanding of the relationship between lists of outcomes and counting processes in 

the context of the Cattle Problem, other contexts could be explored to gain more 

knowledge about how students use and think about this relationship in Lockwood’s 

(2013) model of combinatorial thinking. 



 

 

 

  

  

  

 

 

  

   
  

 

  
 

    

 
 

 

 

  

 

 

   

Chapter 5: Discussion and Conclusion

In this study, I focused on understanding undergraduate student listing 

behavior, and how it affects correctness of students’ solutions to counting problems

and the rigor to which students can justify their solutions. In this final chapter, I

conclude by summarizing some of the key results from the study, exploring interesting 

points of discussion those results afforded, and providing suggestions for ways in which 

this study may be extended to continue to grow our knowledge of student understanding 

of lists of outcomes in the context of counting. In doing so, I hope to clarify important 

takeaways that this study provides for the mathematics education community, as well 

as give evidence for why I believe further research should be done on the listing aspect

of students’ solving of counting problems. 

5.1 Summary of Key Results

In this study, there were three research goals: 

1.	 Find a useful way to characterize undergraduate students’ listing strategies
while solving counting problems. In particular, my goal was to determine if
the categories suggested by English (1991) for examining the combinatorial 
solution strategies of young children could be utilized or expanded to also 
categorize undergraduate student combinatorial solution strategies.

2.	 Examine the effects that listing had on undergraduate student success
solving counting problems involving arrangement, and on their ability to 
rigorously justify their solutions to these counting problems. 

3.	 Determine some ways that undergraduates explicitly make connections (or
do not) between lists of outcomes they generate and counting processes they 
utilize to solve counting problems. In particular, I aimed at understanding 
student reasoning about the critical relationship between the sets of
outcomes and counting processes components of Lockwood’s (2013) model 
of students’ combinatorial reasoning. 

After conducting analysis of my data, interesting and applicable answers to each of the 

above research goals were found. 

First, it was determined that although English’s (1991) categories accurately 

described the listing behavior of many undergraduate students, there were several lists 

that undergraduates in my study made that could not completely be characterized using

only one of English’s solution strategies. What emerged was my characterization of 

student lists as being generated using two different types of multiple-strategy use:

switching strategies and simultaneous strategies. While switching strategies was a
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phenomenon that English encountered with young children in her research (English, 

1991, p. 462), simultaneous strategies was not addressed by English and is a new way

to characterize student lists. While the simultaneous solution strategy that occurred 

most frequently in this study was “F and B,” characterized by a student holding an item 

constant, but cycling through the other items randomly, I conjecture that other 

combinations of simultaneous solution strategies could possibly appear in students’ 

generation of outcomes as well. As I described in section 4.1.1, undergraduates did not 

always use the most sophisticated solution strategy (the complete odometer strategy) 

for listing outcomes, and my additional elaboration of English’s (1991) framework 

could give researchers and educators another tool for examining student lists and how 

they are used to solve counting problems. 

In addition to providing more insight into the strategies that undergraduate 

students use to list outcomes for counting problems, this study is also consistent with

previous work indicating that thinking explicitly about sets of outcomes and listing are 

a useful activities for students to engage in (Lockwood, 2013; Lockwood & Gibson, in 

press). In particular, in this study I encountered multiple instances where students

expressed listing to be useful for correcting errors in their counting processes, as well 

as helping to give them ideas of where to go if there are stuck while attempting to solve

a counting problem. While I make no broad, generalizable claims about how listing 

benefits all students, I contend that these results support the conclusion that listing is a 

useful activity, and they also shed some light on specific ways that writing outcomes 

might help some students. Previous research has shown that students struggle with 

finding productive counting processes for combinatorial enumeration (Batanero et al., 

1997), and with verifying the accuracy of their answers to combinatorial tasks

(Eizenberg & Zaslavsky, 2004). My findings provide evidence that listing may 

potentially help students having these particular difficulties with counting. 

Finally, my third research question addressed the way in which students might

not only use a list of outcomes they have generated to come up with a counting process, 

but also to have basis for a rigorous justification of why their counting process 

enumerates each outcome exactly once. This basis comes from an understanding of the

key relationship between sets of outcomes and counting processes in Lockwood’s 
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(2013) model. As the results of my study show, students can have a wide range of 

understandings about this relationship, ranging from a strong, well-articulated 

connection to an incomplete or even entirely nonexistent connection. Lockwood argued 

that an important feature of a robust understanding of counting is the ability to

understand the structure a particular counting process imposes on a set of outcomes, as 

well as conversely how a particular organization of a set of outcomes yields a counting

process that relies on that organization (Lockwood, 2013, p. 258). Even though 

understanding this relationship is so critical to robust combinatorial understanding, my 

results suggest that students do not always make this connection. Even if they can write 

down an organized list of outcomes and articulate a correct counting process, students 

are not always able to articulate a relationship between the two, and as a result can at 

times fail to see why a particular counting process may be appropriate for enumerating 

a particular set of outcomes. This is a noteworthy find and suggests that perhaps more

time should be spent in combinatorics classrooms helping students explicitly make this 

connection, and engaging in systematic listing activities may be a productive activity 

to facilitate this. 

In the next subsection, I bring up various points of discussion from the above

results, and explain how they can be viewed and interpreted using my theoretical 

perspectives (outlined in Section 2.2). 

5.2 Discussion

5.2.1 Partial Lists and English’s Framework  

While it has been acknowledged that the generation of partial lists is beneficial 

for students’ successful solving of counting problems (Lockwood & Gibson, in press), 

English (1991) did not address ways in which to characterize partial lists of outcomes. 

This is not surprising, and nor do I think that English necessarily should have addressed 

it. The solutions to the counting problems that English gave to young children were 

numerically small in value, and the focus of her study was primarily on ways in which 

children generate all outcomes of a given problem.  

However, when I studied the listing behaviors of undergraduate students, the 

need to categorize partial lists emerged, due both to the increased complexity and the 

larger sets of outcomes of the counting problems being asked to solve. The cardinality 
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of the solution set for the Horse Race problem (720) was too large for students to 

feasibly write out all of the outcomes, and so every student who used listing to solve 

the problem made only a partial list. In addition, even though almost every student who 

answered the Cattle Problem was asked to list every outcome, there were still a few

students who created a partial list as they began to solve the problem, but then stopped 

the list prematurely and started a new list that utilized a more (or less) sophisticated 

listing strategy. Since partial lists are so important, there is a need to categorize them 

so that researchers can have another tool for studying their effects on students’ solving 

of counting problems. 

In her study, English (1991) did account for a young child not carrying out a

solution strategy to completion, but this was due to an inability of the child to continue

producing outcomes, rather than an intentional choice to make only a partial list. As an 

example, when describing Solution Strategy E, “emergence of an ‘odometer’ pattern in

item selection, with possible item rejection” (English, 1991, 460), English clarifies that,

“The odometer pattern evident in this strategy is however, incomplete” (p. 460). She 

explained that this was due to one or more of the following: 

1.	 “An ‘over-exhaustion’ or duplication of combinations with a given 
constant item,” 

2.	 “A failure to exhaust all possible combinations with a given constant 
item,” and 

3.	 “A failure to identify task completion upon the exhaustion of all 
constant items” (p. 460-461). 

Therefore, categorizing a student’s listing strategy with Solution Strategy E requires 

indication of the students being unable to complete the odometer strategy, or unable to 

identify completion of the odometer. As I explained in Section 4.1.1, in order to modify 

English’s (1991) categories to apply partial lists, I assert that it is not enough just to 

look at the outcomes a student made and see if every outcome was written. Instead, my

modification requires consideration of students’ utterances about why they made a

partial list as well. As I explained in Section 4.1.1, there were instances in which 

students described a specific process in which they could meaningfully continue their 

listing strategy to extend their partial list to a full list. In terms of student reasoning 

about listing strategies, then, it is more appropriate to apply English’s more
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sophisticated solution strategies, even though the student does not actually choose to 

make a full list of outcomes. In this way, we can capture subtle differences in the ways 

in which undergraduate students list. 

In sum, the undergraduate students in the study at times created partial lists, and 

I adopted English’s framework to account for that. In general, the fact that students use 

and extrapolate from partial lists is an important phenomenon that warrants further 

attention. Because counting problems typically have large sets of outcomes, and 

because we know that some listing activity is beneficial, a possible next step would be 

to more pointedly study how students think about the extrapolation of a partial list to 

find a correct answer. That is, it is worthwhile to study what mechanisms students 

employ as they extend to a complete list from a partial one, and how they can be sure 

they can do this correctly. This is related to broader issues of justification, and how 

students can be sure that extending a partial list does indeed capture all of the desirable 

outcomes of a problem. 

5.2.2 Varying Robustness in Student Understanding about Lists of 

Outcomes and Counting Processes

As a final point of discussion, I highlight the variety that was seen in how 

undergraduate students thought about the relationship between lists of outcomes and 

counting processes. There were instances where students had different coherent

counting processes and structures of the set of outcomes associated with the same

formula, and instances where identical lists of outcomes were produced using

fundamentally distinct solution strategies.  

As an example of two students having different counting processes and lists of

outcomes associated with the same formula, I compare Student 17’s and Student 6’s 

lists of outcomes and solutions to the Cattle Problem. Student 17’s and Student 6’s lists 

of outcomes can be compared in Figure 15. To answer the Cattle Problem, both students

offered the solution 2 ൈ 4!, but when asked to list outcomes beginning with TT, the 

resulting lists were structured very differently. When asked how the structure of the 

lists they wrote related to 4!, Student 17’s response was the following: 

Student 17: “So, um, there’s, uh, the four. That’s the four, like, first 
letters. So, I start with C and then A, L, E. And then, times three. 
There’s, um, three second letters that I have, um: A, L, E, in this first
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example. And then, two, um, factorial, there’s—I always have, um, I
always have two letters that I switch, and then always the fourth letter’s
whatever one is left.” 

Student 6’s outcomes for the Cattle Student 17’s outcomes for the Cattle 
Problem: Problem:

Figure 15. Side-by-side comparison of Student 6’s and Student 17’s lists of outcomes
for the Cattle Problem. 

As we see from Student 17’s utterances, there was a strong connection between 

his list of outcomes and counting process—in particular he was able to articulate how 

the multiplication resulting in his answer 4! partitioned his outcomes based on fixed 

letters in the first, second, and third position of outcomes. In contrast, as we saw in 

Section 4.3.1, Student 6 thought of the 4! as structuring his list of outcomes based on a 
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fixed position of the letter C, and fixed letters in the remaining positions. He was still

able to articulate how the multiplication in 4! was reflected in a partitioning of his 

outcomes, but in a fundamentally different way. Using Halani’s ways of student 

thinking about combinatorial solution sets, Student 17’s list and connection to his 

counting process reflects Standard Odometer thinking, and Student 6’s thinking reflects 

Wacky Odometer thinking (Halani, 2013, p. 124). 

In this way, we can see that it is possible for students to think about a formula

and how it connects to lists of outcomes in different, but equally useful ways. As a

possible method for helping students understand the relationship between sets of 

outcomes and counting processes, one pedagogical strategy might be to alert students 

to different counting processes that can follow from the same formula, and how they

structure a set of outcomes in different ways. 

Finally, I also highlight the fact that students can create very similar lists of

outcomes, but they might produce those outcomes using different strategies. This leads

to varying degrees to which students can connect their list to their counting process for 

solving the problem. I again will use a comparison with Student 17, this time comparing 

his with the solution of Student 7 for the Cattle Problem. A side-by-side comparison of 

the complete lists of outcomes for both students can be seen in Figure 16. By looking 

at the figure and not hearing how students thought about their lists, it would be easy to 

assume that both lists were generated using the complete odometer strategy, since both 

lists appear to be organized by a common first and second letter in the outcomes. 

However, by examining the solution strategies both students used to write their

outcomes, we see that the strategies were quite different, and in turn this resulted in 

different levels of understanding each student had about the relationship between their 

lists and the multiplication in 4!. 
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Student 7’s outcomes for the Cattle Student 17’s outcomes for the 
Problem: Cattle Problem: 

Figure 16. Side-by-side comparison of Student 7’s and Student 17’s lists of outcomes
for the Cattle Problem. 

Recall in Section 4.1.2.1, I explained that Student 7’s used solution strategy “E

then D” for writing his outcomes, since he described a systematic switching pattern to 

generate his list, rather than repeatedly fixing letters in the first and second positions of 

an arrangement as Student 17 had done. Because a systematic switching process was 

used, rather than the more sophisticated complete odometer strategy that Student 17 

utilized, there is a less clear connection between 4! and the structure of outcomes that 

Student 7 obtained. Indeed, when Student 7 was asked if 4! was reflected in the 

structure of his list, he replied, “I think the way I did it—it doesn’t really. I think there’s

another way to do it that would show it a little better. 4 ൈ 3 ൈ 2 ൈ 1, hmm.” After 
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making these comments and then thinking for a while about the list he made, he was

later able to describe a relationship between his list and 4! by looking at the number of 

options available in each “column” of the outcomes he wrote, but his initial response 

indicates that there was a less clear connection for him between the multiplication in

4! and the strategy he used to write and structure his list of outcomes. The explanation 

he gave about options available in each column of his outcomes, while correct and

useful, was only articulated after he had completed his list and specifically looked for 

patterns in his list. This is evidence that he was not thinking about a connection to the 

multiplication in 4! while in the process of writing his outcomes, and so there was a

less robust initial understanding of how his list of outcomes and counting process were

related.

Since it is possible for students to find correct answers to counting problems

and even write outcomes in a systematic way, but not connect the two in a meaningful 

way, this suggests according to Lockwood’s (2013) model that these students may have 

a gap in their combinatorial understanding. Since this gap in student understanding can 

exist even when systematic lists are generated and correct answers achieved, teachers 

should be aware of different solution strategies that students use and how they can give 

rise to more or less robust combinatorial reasoning.

5.3 Closing Comments and Further Directions

The purpose of this study was to achieve an improved understanding of 

undergraduate students listing strategies and how those listing strategies are connected 

to sets of outcomes. By using English’s (1991) categories with the modifications

suggested in the results of my study, researchers can have a more precise tool to use 

for further study into how lists of outcomes affect student success solving counting 

problems. Researchers could use this study to begin to examine how English’s (1991) 

strategies may interact within student work on complicated counting problems, and 

apply her strategies to instances where students used a partial list to solve a counting 

problem. Teachers could also use my modified categories for student combinatorial 

solution strategies to gauge how their students are listing, and how these strategies 

could afford different levels of understanding about the relationship between sets of 

outcomes and counting processes. As I have shown, student reasoning about this 
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relationship can vary tremendously, even within the context of one particular 

arrangement counting problem. Pedagogically, these findings mean that for teachers to 

help build robust combinatorial understanding in their students, they could 

intentionally point out to students ways that counting processes impose structures on a 

given set of outcomes, and in turn an organization of a set of outcomes can give rise to 

a process used to solve the counting problem that enumerates those outcomes.  

In terms of possible further research, future studies could build upon this study 

toward continuing to unpack the ways students develop combinatorial conceptual 

knowledge about the relationship between sets of outcomes and counting processes. 

Specific ways that further research could be extended from this study might include 

exploring student understanding of the relationship between sets of outcomes and 

counting processes in other combinatorial contexts, such as in the context of problems 

involving combination or other combinatorial operations. Researchers could also test 

to see if my modified categorization of students’ listing strategies applies to students at 

different stages in their learning, such as possibly at the high-school level. 
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