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NOMENCLATURE
 

A.C. Aircraft aerodynamic center.
 

b Aerodynamic wing span.
 

BLPM Bilinear prediction model.
 

CD Drag force coefficient.
 

CL Lift force coefficient.
 

CL Lift coefficient per non-dimensional rate of change in angle of attack.
4 

CL Basic lift coefficient which depends on stabilator position, aircraft rigidity, 

altitude, and Mach number. 

CL Lift force coefficient per non-dimensional pitch rate. 
q 

c1 Roll moment coefficient with respect to body x-axis. 

c, Change in rolling moment coefficient due to sideslip. 
0 

C1 Basic roll coefficient which depends on sideslip angle, rudder, aileron, and 

Mach number. 

C Roll coefficient per non-dimensional roll rate. 
ip 

CI, Roll coefficient per non-dimensional yaw rate. 

C Pitch moment coefficient with respect to body y- axis.m 

Cm, Pitch coefficient per non-dimensional rate of change in angle of attack. 

Cm Basic pitch coefficient which depends on stabilator position, aircraft rigidity, 

altitude, and Mach number. 

Cm Pitch coefficient per non-dimensional pitch rate. 
q 

C. Yaw moment coefficient with respect to body z -axis. 
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Cno	 Change in yawing moment coefficient due to sideslip. 

C.	 Basic yaw coefficient which depends on sideslip angle, rudder, aileron, and 

Mach number. 

Yaw coefficient per non-dimensional roll rate. 
np 

Yaw coefficient per non-dimensional yaw rate. 

C, Coefficient of aerodynamic forces along x- axis. 

Cy Side force coefficient which depends on sideslip angle, rudder, aileron, and 

Mach number.
 

Change in side force coefficient due to sideslip.

Y p 

C,,	 Basic side force coefficient which depends on sideslip angle, rudder, aileron, 

and Mach number. 

Cy Side force coefficient per non-dimensional roll rate. 

C,, Side force coefficient per non-dimensional yaw rate. 

CZ Coefficient of aerodynamic forces along z- axis. 

C.G.	 Aircraft center of gravity. 

Aircraft mean aerodynamic chord. 

D Drag force. 

FL Aerodynamic angular acceleration with respect to x- axis. 

FM Aerodynamic angular acceleration with respect to y- axis. 

FN Aerodynamic angular acceleration with respect to z- axis. 

FX External forces along x-axis. 

Fy External forces along y-axis. 

Fz External forces along z-axis. 



L 

g Gravity constant. 

h Altitude. 

I.	 Moment of inertia with respect to body x-axis. 

Moment of inertia with respect to body y-axis. 

I.	 Moment of inertia with respect to body z-axis. 

1. Product moment of inertia with respect to body x and z- axes.
 

J Performance Index.
 

K Gain in recursive least squares algorithm.
 

Lift force. 

LF Lyapunov function. 

LPM Linear prediction model. 

M Mach number. 

m Aircraft mass. 

At Roll moment. 

Pitch moment.MY 

At Yaw moment. 

NLPM Nonlinear prediction model. 

nz Normal acceleration with respect to stability axis. 

p Aircraft x-body axis roll rate. 

P Covariance Matrix. 

Position vector component along x-axis from C.G. to A.C.P. 

Position vector component along y-axis from C.G. to A.C.Py
 

Pz Position vector component along z-axis from C.G. to A.C.
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Pie x-axis vector component from C.G. to the engine thrust center. 

Pye y-axis vector component from C.G. to the engine thrust center. 

Pie z-axis vector component from C.G. to the engine thrust center. 

q Aircraft y-body axis roll rate. 

q	 Shift operator. 

Dynamic pressure at current altitude and Mach number. 

Aircraft z- body axis yaw rate. 

S Wing area. 

Tom Command signal of thrust magnitude. 

Thrust component along body x-axis.Ti
 

T Thrust component along body y-axis.
 

T. Thrust component along body z-axis. 

u Aircraft speed along the x-body axis. 

Aircraft speed along the y-body axis. 

w Aircraft speed along the z-body axis. 

V Aircraft total speed. 

W Aircraft weight. 

X Body force along aircraft x-axis. 

Y Body force along aircraft y-axis. 

Z Body force along aircraft z-axis. 

xe Stability x-axis. 

ys Stability y-axis. 

z$ Stability z-axis. 
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a Angle of attack. 

Prediction of angle of attack.a 

a ref	 Reference trajectory of angle of attack. 

Command signal of angle of attack.aand 

Sideslip angle.0 

8.	 Aileron deflection. 

of	 Trailing edge flap deflection. 

Stabilator deflection.8h
 

Shand Command of stabilator deflection.
 

8.	 Leading edge flap deflection. 

Sr	 Rudder deflection. 

Command of thrust vector angle.
SV®d 

8v	 Thrust vector angle between Tx and Tz. 

Engine cant angle. 

A	 Weighting factor in system identification. 

Standard air density at a given altitude. 

Weighting factor in cost function.Pi
 

4) 
Aircraft body axes bank angle.
 

0:10	 
Regression vector in system identification. 

Aircraft body axes yaw angle.
41 

Aircraft body axes pitch angle.0 

parameters to be estimated. 

0T Thrust vectoring angle between Tx and Tz. 



VI 

LIST OF FIGURES 

Figure	 page 

1.1	 Block Diagram of Adaptive Control 5
 

2.1	 Model of F/A-18 aircraft [45] 13
 

3.1	 Stabilator Derivative CL at M = 0.3, 8h =0.0, and h =15,000 ft . 39
 

3.2	 Stabilator Derivative CL at M = 0.3, 8h =0.0, and h =15,000 ft . 39
 

3.3	 Stabilator Derivative CL at M = 0.3, 8h =0.0, and h =15,000 ft . 39
 , 

3.4	 Stabilator Derivative Cm at M = 0.3, 8h =0.0, and h =15,000 ft . 40
 

3.5	 Stabilator Derivative Cm at M = 0.3, oh =0.0, and h =15,000 ft . 40
 

3.6	 Stabilator Derivative C., at M = 0.3, 8h =0.0, and h =15,000 ft . 40
 

3.7	 Stabilator Derivative CD at M = 0.3, 8h =0.0, and h =15,000 ft . 41
 

3.8	 Prediction Error of angle of attack in case of Maneuver One, LPM, and
 
Prediction Controller 41
 

3.9	 Prediction Error of angle of attack in case of Maneuver One, BLPM, and
 
Prediction Controller 41
 

3.10	 Prediction Error of angle of attack in case of Maneuver One, NLPM, and
 
Prediction Controller 42
 

3.11	 Prediction Error of angle of attack in case of Maneuver Two, LPM, and
 
Prediction Controller 42
 

3.12	 Prediction Error of angle of attack in case of Maneuver Two, BLPM, and
 
Prediction Controller 42
 

3.13	 Prediction Error of angle of attack in case of Maneuver Two, NLPM, and
 
Prediction Controller 43
 

3.14 Prediction Error of angle of attack in case of Maneuver One, LPM, and LF
 
Controller 43
 



VII 

3.15	 Prediction Error of angle of attack in case of Maneuver Two, LPM, and LF
 
Controller 43
 

3.16	 Prediction Error of angle of attack in case of Maneuver One, NLPM, and LF
 
Controller 44
 

3.17	 Prediction Error of angle of attack in case of Maneuver Two, NLPM, and
 
LF Controller 44
 

5.1	 Angle of Attack in case of Maneuver One, LPM, and Prediction
 
Controller 73
 

5.2	 Pitch Rate in case of Maneuver One, LPM, and Prediction Controller . . 73
 

5.3	 Pitch Angle in case of Maneuver One, LPM, and Prediction Controller . 73
 

5.4	 Total Speed in case of Maneuver One, LPM, and Prediction Controller . . 74
 

5.5	 Stabilator Angle in case of Maneuver One, LPM, and Prediction
 
Controller 74
 

5.6	 Thrukt Vector Angle in case of Maneuver One, LPM, and Prediction
 
Controller 74
 

5.7	 Magnitude of Thrust in case of Maneuver One, LPM, and Prediction
 
Controller 75
 

5.8	 Normal Acceleration in case of Maneuver One, LPM, and Prediction
 
Controller 75
 

5.9	 Angle of Attack in case of Maneuver Two, LPM, and Prediction
 
Controller 75
 

5.10	 Pitch Rate in case of Maneuver Two, LPM, and Prediction Controller . . 76
 

5.11	 Pitch Angle in case of Maneuver Two, LPM, and Prediction Controller . 76
 

5.12	 Total Speed in case of Maneuver Two, LPM, and Prediction Controller . 76
 

5.13	 Stabilator Angle in case of Maneuver Two, LPM, and Prediction
 
Controller 77
 

5.14	 Thrust Vector Angle in case of Maneuver Two, LPM, and Prediction
 
Controller 77
 



5.15	 Magnitude of Thrust in case of Maneuver Two, LPM, and Prediction
 
Controller 77
 

5.16	 Normal Acceleration in case of Maneuver Two, LPM, and Prediction
 
Controller 78
 

5.17	 Angle of Attack in case of Maneuver One, BLPM, and Prediction
 
Controller 78
 

5.18	 Pitch Rate in case of Maneuver One, BLPM, and Prediction
 
Controller 78
 

5.19	 Pitch Angle in case of Maneuver One, BLPM, and Prediction Controller 79
 

5.20	 Total Speed in case of Maneuver One, BLPM, and Prediction Controller 79
 

5.21	 Stabilator Angle in case of Maneuver One, BLPM, and Prediction
 
Controller 79
 

5.22	 Thrust Vector Angle in case of Maneuver One, BLPM, and Prediction
 
Controller 80
 

5.23	 Magnitude of Thrust in case of Maneuver One, BLPM, and Prediction
 
Controller 80
 

5.24	 Normal Acceleration in case of Maneuver One, BLPM, and Prediction
 
Controller 80
 

5.25	 Angle of Attack in case of Maneuver Two, BLPM, and Prediction
 
Controller 81
 

5.26	 Pitch Rate in case of Maneuver Two, BLPM, and Prediction Controller . 81
 

5.27	 Pitch Angle in case of Maneuver Two, BLPM, and Prediction Controller 81
 

5.28	 Total Speed in case of Maneuver Two, BLPM, and Prediction Controller 82
 

5.29	 Stabilator Angle in case of Maneuver Two, BLPM, and Prediction
 
Controller 82
 

5.30	 Thrust Vector Angle in case of Maneuver Two, BLPM, and Prediction
 
Controller 82
 

5.31	 Magnitude of Thrust in case of Maneuver Two, BLPM, and Prediction 
Controller 83 



IX 

5.32	 Normal Acceleration in case of Maneuver Two, BLPM, and Prediction
 
Controller 83
 

5.33	 Angle of Attack in case of Maneuver One, NLPM, and Prediction
 
Controller 83
 

5.34	 Pitch Rate in case of Maneuver One, NLPM, and Prediction Controller . 84
 

5.35	 Pitch Angle in case of Maneuver One, NLPM, and Prediction Controller 84
 

5.36	 Total Speed in case of Maneuver One, NLPM, and Prediction Controller 84
 

5.37	 Stabilator Angle in case of Maneuver One, NLPM, and Prediction
 
Controller 85
 

5.38	 Thrust Vector Angle in case of Maneuver One, NLPM, and Prediction
 
Controller 85
 

5.39	 Magnitude of Thrust in case of Maneuver One, NLPM, and Prediction
 
Controller 85
 

5.40	 Normal Acceleration in case of Maneuver One, NLPM, and Prediction
 
Controller 86
 

5.41	 Angle of Attack in case of Maneuver Two, NLPM, and Prediction
 
Controller 86
 

5.42	 Pitch Rate in case of Maneuver Two, NLPM, and Prediction Controller . 86
 

5.43	 Pitch Angle in case of Maneuver Two, NLPM, and Prediction Controller 87
 

5.44	 Total Speed in case of Maneuver Two, NLPM, and Prediction Controller 87
 

5.45	 Stabilator Angle in case of Maneuver Two, NLPM, and Prediction
 
Controller 87
 

5.46	 Thrust Vector Angle in case of Maneuver Two, NLPM, and Prediction
 
Controller 88
 

5.47	 Magnitude of Thrust in case of Maneuver Two, NLPM, and Prediction
 
Controller 88
 

5.48	 Normal Acceleration in case of Maneuver Two, NLPM, and Prediction
 
Controller 88
 

5.49	 Angle of Attack in case of Maneuver One, LPM, and LF Controller . . 89
 



X 

5.50 Pitch Rate in case of Maneuver One, LPM, and LF Controller 89
 

5.51 Pitch Angle in case of Maneuver One, LPM, and LF Controller 89
 

5.52 Total Speed in case of Maneuver One, LPM, and LF Controller 90
 

5.53 Stabilator Angle in case of Maneuver One, LPM, and LF Controller . . 90
 

5.54 Thrust Vector Angle in case of Maneuver One, LPM, and LF Controller 90
 

5.55 Magnitude of Thrust in case of Maneuver One, LPM, and LF Controller 91
 

5.56 Normal Acceleration in case of Maneuver One, LPM, and LF Controller 91
 

5.57 Angle of Attack in case of Maneuver Two, LPM, and LF Controller . . 91
 

5.58 Pitch Rate in case of Maneuver Two, LPM, and LF Controller 92
 

5.59 Pitch Angle in case of Maneuver Two, LPM, and LF Controller 92
 

5.60 Total Speed in case of Maneuver Two, LPM, and LF Controller 92
 

5.61 Stabilator Angle in case of Maneuver Two, LPM, and LF Controller . . 93
 

5.62 Thrust Vector Angle in case of Maneuver Two, LPM, and LF Controller 93
 

5.63 Magnitude of Thrust in case of Maneuver Two, LPM, and LF Controller 93
 

5.64 Normal Acceleration in case of Maneuver Two, LPM, and LF Controller 94
 

5.65 Angle of Attack in case of Maneuver One, NLPM, and LF Controller . . 94
 

5.66 Pitch Rate in case of Maneuver One, NLPM, and LF Controller 94
 

5.67 Pitch Angle in case of Maneuver One, NLPM, and LF Controller 95
 

5.68 Total Speed in case of Maneuver One, N LPM, and LF Controller . . . 95
 

5.69 Stabilator Angle in case of Maneuver One, NLPM, and LF Controller . 95
 

5.70 Thrust Vector Angle in case of Maneuver One, NLPM, and LF Controller 96
 

5.71 Magnitude of Thrust in case of Maneuver One, NLPM, and LF Controller 96
 

5.72 Normal Acceleration in case of Maneuver One, NLPM, and LF Controller 96
 



XI 

5.73 Angle of Attack in case of Maneuver Two, NLPM, and LF Controller . . 97
 

5.74 Pitch Rate in case of Maneuver Two, NLPM, and LF Controller 97
 

5.75 Pitch Angle in case of Maneuver Two, NLPM, and LF Controller 97
 

5.76 Total Speed in case of Maneuver Two, NLPM, and LF Controller 98
 

5.77 Stabilator Angle in case of Maneuver Two, NLPM, and LF Controller . 98
 

5.78 Thrust Vector Angle in case of Maneuver Two, NLPM, and LF Controller 98
 

5.79 Magnitude of Thrust in case of Maneuver Two, NLPM, and LF Controller 99
 

5.80 Normal Acceleration in case of Maneuver Two, NLPM, and LF Controller 99
 



XII 

LIST OF TABLES
 

Table Page
 

1 Weighting Factors in the Covariance Matrix 62
 

2 Constants for the Equation (5.5.1) 64
 

3 Trim Conditions 67
 

4 Aircraft Constant Values 68
 

5 Weighting Factors in the Cost Function 69
 

6 Weighting Factors in a Lyapunov Function 70
 



NONLINEAR ADAPTIVE CONTROL OF HIGHLY MANEUVERABLE HIGH
 

PERFORMANCE AIRCRAFT. 

CHAPTER 1
 

INTRODUCTION
 

1.1 Objective. 

A modern combat aircraft with high maneuverability and high performance 

beyond the stall region will have advantages in mission success over conventional 

fighters, will attain maximum climb performance, and will sustain turn capability 

even if there exist large changes in stability derivative coefficients. For such 

reasons, research in high angle of attack is presently at an advanced stage. The main 

objective of the thesis is to design a nonlinear adaptive controller that enables the 

aircraft to maneuver with superagility over domains which include high angles of 

attack. 

1.2 Literature Review. 

In design control laws, the usual first step is to describe the plant at a given 

operating point and then to develop a control law with a satisfactory performance for 

that plant model. Historically, the trend of flight control has been to use well-

established single loop classical control system design techniques due to the excellent 
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performance of these methods for conventional maneuvers in traditional flight 

regimes for good aircraft models. The magnitude of the manual flight control 

problem is driven by the nonlinear and time-varying nature of aircraft dynamics. 

Linear models of these systems are only valid for small regions about trim 

conditions. The conventional solution to this problem is to perform point designs for 

a large set of trim conditions and construct a gain schedule by interpolating gains 

with respect to flight conditions [21]. Constant gain scheduling techniques have 

provided a method of designing variable gain control systems which can 

accommodate significant variations in the plant operating point parameters while 

continuing to make use of the accumulated knowledge and experience in the design of 

linear systems. The ability to use well-established theory and accumulated 

experience in the design of linear systems, while extending its use and applicability to 

control nonlinear systems, makes the concept of variable gain laws highly attractive. 

In particular, a constant gain control law may not meet high performance 

requirements in the presence of large changes in the operating point parameters. 

Thus, a variable gain control law approach has been developed to provide a class of 

controller which is highly maneuverable with high performance over a wide range of 

operating conditions[21], [50], [51]. Ostroff's approach [50], using the concept of 

variable gain, was introduced and applied to real systems. The objective of such an 

approach is to extend the operating range of the control law over the flight regime 

while continuing to use established linear control design and analysis techniques. 



3 

1.3 Motivation. 

In Ostroff's approach [50], [51], the system equations were constructed as a 

linear model even if the system equations change according to flight conditions. 

Whenever flight conditions change, the variable gain output feedback is applied. The 

variable feedback gain is scheduled as a function of angle of attack. This means that 

we can get different variable gains for different scheduled parameters. Its design is 

quite complex and response up to the fmal high-alpha is somewhat sub-time optimal. 

In the other approach proposed by Buffmgton, Sparks, and Banda [3], the control 

law is based on a linear design in conjunction with trim-state linearized 

dynamics and an appropriate nonlinear gain scheduled according to dynamic pressure 

variation. The study in [3] considers a maximum change in angle of attack from 10° 

to 20° in about 3 second with a rise time of 1 second. While neither of the two 

approaches are nearly minimum time maneuvers as demonstrated here, they probably 

represent the best controllers based primarily on linear design methodology in 

conjunction with somewhat ad-hoc nonlinear corrections. This thesis shows that 

nonlinear control can be utilized effectively to control high performance aircraft such 

as F-18 Aircraft for rapid maneuvers with large changes in angle of attack even 

where classical linear feedback control without gain scheduling can yield poor 

performance or instability. Nonlinear feedback controllers that were generated in 

conjunction with a linear model reference without multiple regression terms failed for 

certain high-alpha maneuvers but with added nonlinear reference terms they lead to 

successful control. This thesis, however, indicates that the nonlinear feedback 
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controller generated in conjunction with a higher-order (more delay terms) linear 

model reference is quite effective. To improve performance of a nonlinear aircraft 

system, and to reduce the response time of states in maneuvering of aircraft at high 

angle of attack, another approach has been used. 

1.4 Adaptive Control Law. 

This thesis describes the design of an nonlinear adaptive controller for a high 

performance highly maneuverable aircraft. The main objective of the thesis is to find 

a nonlinear adaptive controller that enables the aircraft to maneuver with super agility 

at high angles of attack. The purpose for adaptive control is to provide a 

mechanism to account for changes in the system that is to be controlled. The 

traditional goal of adaptive aircraft control is to use concepts from linear theory to 

control a highly nonlinear system over a large flight regime. Adaptive control for a 

small class of nonlinear and time-varying systems is investigated in [1], [4], [17], 

[48], [54], [58]. The idea of adaptive model reference control is to identify the 

system. A model system generates a desired reference trajectory. Then, a 

controller uses this information to calculate a command signal so that the output of 

the system follows the reference trajectory. A block diagram of the model reference 

adaptive controller is shown in Figure 1.1. Two important elements have to be 

developed for an effective adaptation routine. First, a class of prediction models 

needs to be selected. A prediction model represents the dynamics of the system, 

and it has parameters that can be modified by an estimator. The estimator is the 



REFERENCE 

COMMAND 
REFERENCE MODEL CONTROLLER 

CONTROL 
SYSTEM 

OUTPUT 

ADAPTATION 

PARAMETERS 

OUTPUT 

Figure 1.1 Block Diagram of Adaptive Control 
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second part of the adaptation. It estimates the values of the parameters to improve 

the prediction model. The simplest class of prediction models to consider include 

models with linear parameters. In this thesis, models of linear, bilinear, and 

nonlinear prediction were selected and performance validated. 

The most common estimation algorithm for models as the recursive least squares 

algorithm. The idea is to choose parameters to be estimated such that the squared 

difference between the prediction model and actual system is minimized. The 

purpose of making the algorithm recursive is to allow for on-line identification of 

parameters. 

The reference model [10] is an intermediate step that allows the system to 

follow the command signal while meeting a variety of design criteria (for instance : 

rise time, overshoot, settling time, etc.). The control is calculated such that the 

system follows the reference trajectory, and such that the control signal remains 

within its constraints. Each block of the adaptive controller will be described in 

detail in the chapters that follow. 

An approach proposed in this thesis is based on the stability of bilinear control 

systems with nonlinear feedback. It can be assumed that while aircraft dynamic 

models are not bilinear with regard to natural controls, the closed loop system is 

equivalent to a bilinear system with nonlinear feedback. For example, the 

aerodynamic coefficients are nonlinear functions of aircraft angle of attack, mach 

number, altitude, and other variables. Consequently, control is composed of 

nonlinear states and / or output feedback. 
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The presentation is organized in the following way. Chapter 2 derives the 

nonlinear full dynamic equations of motion of aircraft and gives the actuator 

dynamics. Chapter 3 briefly discusses classes of model and system identification 

algorithms. In particular, several types of prediction model are introduced. The 

reference model is presented in the last section of Chapter 3. Chapter 4 describes 

the control calculation. Chapter 5 presents the performance of the complete 

controller and uses simulation results. Chapter 6 concludes this thesis and presents 

ideas for continued research. 
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CHAPTER 2
 

DYNAMIC EQUATION
 

2.1 Equations of Motion : Body axes. 

The nonlinear equations of motion for an aircraft are derived using Newton's 

Second Law of motion. That is, the total sum of all external forces acting on a body 

must equal the time rate of change of linear momentum and the total sum of all 

external moments acting on a body must equal the time rate of change of angular 

momentum. But an aircraft in flight is a very complicated dynamic system. For 

example, the control surfaces move about their hinges. Bending and twisting of the 

various aerodynamic surfaces occur. The external forces that act on the aircraft are 

also complicated functions of its shape and motion. So the following critical 

assumptions are necessary to simplify the derivation of the aircraft equations of 

motion : 

1) The airframe is regarded as a rigid body.
 

2) The earth is assumed to be fixed in space.
 

3) The mass and inertia remain constant for particular dynamic analysis.
 

4) The x z plane is assumed to be a plane of symmetry.
 

5) Gravity is assumed to be aligned with +z axis of a local reference frame (Earth)
 

fixed at sea level. 

6) Gravity is assumed constant over the airplane volume. 

7) The body frame ( a reference frame fixed to the body of the airplane ) is at the 
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center of mass and the frame is oriented so that +x is out the nose, +y is out 

the right wing, +z is out the belly, and they are orthogonal. 

With the above assumptions, dynamic equations of motion are established by a 

nonlinear six-degree of freedom aerodynamic model. The nonlinear equations of 

motion are made up of three translational and three rotational equations. The 

translational equations of motion obtained by a force summation with respect to body 

axes are given by[14] 

F. = m(ii-rv+qw) (2.1.1) 

F = m(V-pw+ru) (2.1.2)r 

F. = m(*-qu+pv) (2.1.3) 

The rotational equations of motion obtained by a moment balance with respect to 

body axes are given by 

M. = p][..-ii..+(I ..-Iyy)qr-pqI.. (2.1.4) 

My = qIyy+pr(I..-I=)+(p2-r2)I.. (2.1.5) 

M. = il..-pIx.+(Iyy-I.)pq+qrk. (2.1.6) 

where u, v, and w are the translational velocities; p, q, and r are the rotational rates; 

m is the aircraft mass; 1,0 Iyy, L, and I,,¢ are the moments of inertia, and F., Fy, 

F., M., My, and Wiz are the external forces and moments due to the aerodynamics 
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and propulsion. The orientation of the aircraft can be described by three consecutive 

rotations, whose order is important. The angular rotations are called the Euler 

angles. Euler angles, 4), e, 1p, describe the orientation of the aircraft with respect to 

the earth (inertia axis) by [14] 

(2.1.7)4 = p+qtan(0)sin(4))+rtan(0)cos(4)) 

(2.1.8)6 = qcos(4))-rsin(4))
 

4, = rcos(4))sec(0)+qsin(4))sec(0) (2.1.9)
 

where 4) is the roll angle, 0 is the pitch angle, and p is the yaw angle. 

The external forces are described by a summation of gravitational force,aerodynamic 

force, and thrust engine force as follows [45]. 

F. F. F. F. 

Pr Fy, + F 
y 

+ F 
y 

(2.1.10) 

F. Fz 0 Fz 
A 

_Fz 
E 

where the subscripts "G ", "A", and "E" denote gravitational,aerodynamic and thrust 

induced forces. 

Each component of the gravitational force is given by 

F.. = -mgsin(0) (2.1.11) 

F,, = mgcos(0)sin(4) (2.1.12) 

Pz. = mgcos(0)cos(4)) (2.1.13) 

The aerodynamic forces are given by 

FxA = TiSCx (2.1.14) 



Fu = CISCy
J A 

Fz = CiSCz 
A 

where Cx, Cy, and CZ are the coefficients of aerodynamic forces, 71 , is aerodynamic
 

pressure, g is gravity, and S is the wing surface.
 

The body frame rotational equations can be written in a form identical to ( 2.1.10 ),
 

with the understanding that there are no moments due to gravity,
 

Mx M
x 

Mx Fz
 

MY MY + Mr FY (2.1.17)

= + 

Mz NI._ FzMz0 A -E 

and the aerodynamic moments are given by 

MxA = 4 S b CI 

M = Fl S aCm 
YA 

MxA = FiSbC. 

where C1, C., and Ct, are the coefficients of aerodynamic moments, b is wingspan, 

E is the aircraft mean aerodynamic chord . 

2.2 Model Description of A Modified F/A 18 Aircraft. 

The supermaneuverable aircraft model described in this section is based on a 

modification of F/A-18 aircraft. The controllers consist of stabilator, aileron, 

rudder, and thrusting vector. The aerodynamic inputs such as the stabilator, aileron, 

etc, are useful at normal flight conditions. Thrust vectoring is useful at high angle 
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of attack, low dynamic pressure operating conditions, where the aerodynamic control 

effectiveness is inadequate. The aircraft model is augmented with two dimensional 

thrust vectoring that provide pitch and yaw moments when deflected symmetrically 

and a roll moment when deflected asymmetrically. A model of the F/A-18 aircraft 

is shown in Figure 2.1[45]. 

From equation (2.1.1)-(2.1.3), it is seen that translational equations with respect to 

body axes are 

X T
(2.2.1)
= rv-qw-gsin(0)++-am m 

Y T
(2.2.2)
v = pw-ru+gcos(0)sin(4)++-1m m 

Z Tw = qu-pv+gcos(13)cos(4))++ (2.2.3) 

m m 
Similarly, rotational equations of motion with respect to body axis are 

c
p = C4ipq+C42qr+C43FN+C40FL+-7±(pzeT -p eTz)+-m, (pyeTz-pzeTy) 

Izz Y Y 

(2.2.4)
 

q = CmPr + C52 (r2 -P2) +PM + PzeTx -PzeTz (2.2.5) 
Iyy 

C 
C60q+C62qr C63FL +C40FIN + 163 (pyeTz -pzeTy) + (pze Ty -pyeTz) 

IAAxx 

(2.2.6)
 



Figure 2.1 Model of F/A-18 Aircraft[45] 
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where the quantities X, Y, Z, FL, FM, and FN depend on the aerodynamic 

coefficients CD, Cy, Cm, CL, C1, and Co as follows. 

D = CiSCD 

L = FISCL 

X = -Dcos(a) + Lsin(a) 

Y = FIESCy 

Z = -Dsin(a) Lcos(a) 

FL 

FM 

FN 

4sbc, + pyz 
I. 

..icc., + pzX 
Iyy 

iTiSbC. + pxY 

I. 

pzY 

pzZ 

pyX 

(2.2.7)
 

(2.2.8)
 

(2.2.9)
 

(2.2.10)
 

(2.2.11)
 

(2.2.12)
 

(2.2.13)
 

(2.2.14)
 

The constants in the moment equations (2.2.4) (2.2.6) are functions of the moment 

of inertia quantities I, Iyy, I, and I. as follows. 

IxxIzz (2.2.15)C40=
 
uzz 1.2
 

C413ilza- +ILI-Iyy) 
C41 (2.2.16) 

I.I.
 



C40(Izzlyy-Izz1.-cl.) 
C42 

C I­
c43 (2.2.18)I. 

a -I ) 
C51 zz (2.2.19) 

Iyy 

C= (2.2.20) 
52 

YY 

C40( Ixxaxx -Iyy) +Ixzizz) 
C61 (2.2.21) 

IxxIzz 

C62 C4° I an Izz (2.2.22) 
IgIzz
 

C63 C4°Izz (2.2.23) 
Izz 

The vector ( p, py, pz ) denotes the position vector from center of gravity to 

aerodynamic center and the vector ( pze, py., pz. ) denotes the position vector from 

the center of gravity to the engine thrust center. The thrust components in each 

engine frame (where the engine x- axis is aligned with the engine centerline, and the 

z- axis is parallel to the body z-axis) are given below. 

http:C=(2.2.20
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Left Engine : 

T. = TLCOS(8v)COS(c) (2.2.24) 

Ty = Toin(k)cos(ar) (2.2.25) 

Tz = TLcos(k)sin(OT) (2.2.26) 

Right Engine : 

Tx = TRcos(8v)cos(c) (2.2.27) 

Ty = TRsin(k)cos(ar) (2.2.28) 

Tz = TRcos(8,)sin(OT) (2.2.29) 

Accounting for the engine cant angle s =1.98° , the right engine components 

transformed to body axes are 

TxR = TRcos(45,)cos(6)-TRsin(8V)cos(OT)sin(c) (2.2.30) 

TyR = TRcos(8V)sin(c)+TRsin(8V)cos(3,r)cos(c) (2.2.31) 

Tza = TRsin(80sin(13T) (2.2.32) 

8, denotes thrust vectoring angle between Tx and T. 

eT denotes thrust vectoring angle between Ty and T. 

The left engine components are identified with c replaced by -g . The engine cant 

angle has a negligible effect on the thrust forces, but it is more important in properly 

modeling the thrust moment. TR and TL represent the magnitude of thrust vectoring 

in each engine frame. Subscripts R and L stand for right and left engine, 

respectively. The magnitudes of TR and TL are determined as a function of altitude, 

Mach number, angle of attack,etc.. 
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2.3 Mathematical Structure of Aerodynamic Coefficients. 

The mathematical structure of the aerodynamic coefficients are based on the 

wind tunnel test of a high angle of attack vehicle model[5]. The aerodynamic 

coefficients are considered to be functions of the following control variables as well 

as angle of attack, sideslip, Mach number, altitude, roll, pitch and yaw rates: aileron 

deflection(k), rudder deflection(k) and stabilator deflection(k). The effects of 

leading edge flap, trailing edge, speed brake, landing gear, etc, are not considered. 

In addition, lift and pitching moment coefficients have unsteady flow parts due to the 

time rate of change of angle of attack. The other coefficients have only steady flow 

parts; they are explicit functions of aircraft velocity states and control surface 

positions. The mathematical structure of the aerodynamic coefficients is described 

below. 

Drag CD : 

CD = CD.(a,M,h,8h) (2.3.1) 

Lift CL : 

CL = CL.(a,M,h,81:)+v(Si(a,M,h)q+CLe(a,M,h)450 (2.3.2) 

Pitching Moment C. : 

Cm = Cm(a,K11,8h)+C-- (C (a M,)q+C (a M,h)ic)h (2.3.3)
2V q

, m, 
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Side Force Cy : 

bCy = Cy.(a,(3,M,8a05r)+Cyo(a,M,h) p + (C (a M h)p + Cyr( a,M,h)r)
2V k YP 

(2.3.4) 

Rolling Moment CI : 

bC1 = Cio(a,(3,M,Sa,Or)+C1(a,M,h)13 (Cip(a,M,h)p+Cfr(a,M,h)r) (2.3.5)
2V 

Yawing Moment C. : 

C. = C. Ja,13,M,8a,or)+C.0(a,M,h)13 +b IC (a M,h)p+C.(a,M,h)r)
2Vk n'f.' 

(2.3.6) 

where aerodynamic variables, angle of attack, a , the sideslip angle, p , total speed, 

V, are defined as follows. 

Angle of attack : 

a = tan-1(-11 (2.3.7) 
u 

Sideslip Angle : 

(2.3.8)
V 

Total Speed : 

V2 = u2 +v2 +w2 (2.3.9) 
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As aerodynamic coefficients are functions of angle of attack, sideslip angle, Mach 

number, altitude, and control variables such as stabilator, rudder, aileron, it is useful 

for state variables to be selected as angle of attack, sideslip angle, total speed, roll 

rate, pitch rate, and yaw rate. 

Velocities in the x- , y-, and z- directions are given as follows: 

u = Vcos(a)cos(P) (2.3.10) 

v = Vsin((3) (2.3.11) 

w = Vcos(a)sin((3) (2.3.12) 

By using aerodynamic variables defined above, the full nonlinear dynamic equations
 

can be derived.
 

First, taking the derivative of angle of attack in equation (2.3.7),
 

usir a (2.3.13) 
V2 

Niicos(a)-iisin(a) 
(2.3.14)


Vcos( p ) 

Using equation (2.2.1), (2.2.3), and (2.3.10)-(2.3.12), the differential equation of 

angle of attack including aerodynamic forces yields 

a = q-tan((3)(pcos(a)+rsin(a)) )+a +a (2.3.15) 
11 12mVcos((3) 

where 

cos(a)cos(0)cos(4) 
(2.3.16)
 

g(Vcos(13)an 

http:a+a(2.3.15
http:2.3.10)-(2.3.12
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(Tzcos(a) -T.sin(a)) 
(2.3.17)
 

a12 mVcos( [I) 

The differential equation of angle of attack with aerodynamic coefficients is given by 

pSCL.V 
(2.3.18)
a = aio(a131:1-4111(p)(Pcm(a)+rsin(a))+Ixii 2mcos(f3) " 

where 

al0 1 

pESCL, (2.3.19) 

4mcos(0)) 

pESCL,, 
(2.3.20)
 

a13 4mcos((3)) 

Second, taking the derivative of total speed in equation (2.3.9) with respect to time, 

V = cos(a)cos((3)4+sin((3)ir+sin(a)cos(13)* (2.3.21) 

Using equation (2.2.1)-(2.2.3) and (2.3.10)-(2.3.11), differential equation of total 

speed yields 

V = V11g+Vi2 (Dcm(P)-Ysin(13)) (2.3.22) 

where 

V11 = sin(a)cos((3)cos(0)cos(4))+sin(f3)cos(e)sin(4))-cos(a)cos(p)sin(0) (2.3.23) 

http:2.3.10)-(2.3.11
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T 
(2.3.24)
V12 = ( x 

The differential equation of total speed with aerodynamic coefficients is given by 

p+C r)
= Vng+Vi2+ 7P Yr JV +Vi3V2 

2m 

where 

-CD cos( 13) +Cyosin(13) + Cyo sin(
 
V13 = PS °
 

2m 

The differential equation of sideslip angle yields as follows 

Png )+1315V+1314 
= Pal"-Pnr+i0/cos(13) 

where 

Pli = (sin( a ) PSbcc6(11)C )
YP4m 

pSbcos(13)c
1312 = -cos( a ) + 

4m Yr 

1313 = cos(a)sin(13)cos(13)sin(0)-sM2(13 )cos(0)sin(4)) + 

cos(0)sin(4)) -sin( a )cos( (I )sin( )cos(0)cos(4)) 

T.cos( a )sin( p) + Ty cos( 13 ) +Tzsin( a )sin(13)) 

1314 mV 

cos( 13 )(Cy. +Cyp 13) CDosin( 13 
1315 = pS 

2m 

(2.3.25)
 

(2.3.26)
 

(2.3.27)
 

(2.3.28)
 

(2.3.29)
 

(2.3.30)
 

(2.3.31)
 

(2.3.32)
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Similarly, the differential equations of rotational motion with aerodynamic 

coefficients are given as follows. 

Roll rate : 

b Cn + px Cy b CI -p. Cy ) C40 (pye Ty pye )
= Caq +C r +C + C40042q43qS 

zz 
I. ) +( Ix. 

Copysin(a))D (C43pysin(a) C40pycos( a 
L + 

I xx I 
zz 

C40 (py.T. -p.Ty) 

1. 

CL q+C P24.( P12 P +or )bv= ccpq+c42qr +1)156 )V +6'1)1( 2 2 

(2.3.33)
 

where 

C"' A.,pSb CA pSb CeSpx CoSpz )c
Cn + + p (2.3.34) 

P °
p'1 

2Izz 21. 21. 21. ) Y0 

C pSb C40 p Sb C43Sp. C40Sp.)c
43 (2.3.35)
r 

IP YPP12 2172 nP 21. P 21. 21. ) 

C pSb C pSb C Sp C40Sp 
P 43 C + C + p x z (2.3.36)4° I 43r13 2I. 21. 21. 21.'IT Y` 

CoSpycos(a) 
(2.3.37)
1)14 = P 

21 21. 
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C43Spysin(a) 
(2.3.38)
P15 = P 21. 21.
 

C43pSb C4opSb C43SP C40SPz )
 
(2.3.39)


P16 2I no 2I 1° ( 21 2I ° 

;Rye C43pze 
+ (2.3.40)


P17 I= Izz , j 

Pitch rate : 

q = C5iPr+C5202 -P2)-1 4S:Cm ) ( Pzcm( cc ) -Pxsin(ct 1 D +
In 

(2.3.41)
 

(4SZCzn pzsin(a) +pzcos(a ) (pzeTz -pzeTz) 

I 1)7
37 137 

= C5ipr +C52(r 2 -p2)+qi4V2 +qi5Vq +4116V +qng +q18 

where 

Pz cos(a) (2.3.42)q11 = Px sill(a)
 

q12 = pz cos(a) + pz sin(a) (2.3.43)
 

(2.3.44)

C113 = a 10 (Cnie, +q12 CO 

p SZCLO
p S (--cm ) 
(2.3.45)
qi CD. 4- qi2CLo

q14 21 )4mcos( 13 ) C113 

°
 

ZCm + C112 CLq + C113 1113 
(2.3.46)
q15 = p S c ' 

4Iyy 
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q16 = -p Sc (2.3.47)
41" 

cos(a) cos(0) cos(4)) +sin(a)sin(0) 
(2.3.48)


(117 h' 
41

yr cos( 13 ) 

Tz cos ( a ) Tx sin ( a ) -p.Tz 
(2.3.49)
q18 = P Cq13 4mI cos( 13 )

ryn, 

Yaw rate : 

b CI -pz Cy b C. +px C63 (pyeTz -p.Ty)
± = C61 pq +C62qr +C434S 

I I I 

C63pysin(a))D C63pycos(a))L+ 
1. I I Ixx ) 72 xx 

C40 (pxe Ty pye TO 

I.
 

CL q+CL
= Coq +C62qr +ri5Z( 

2 

r p 4­
+01113 +ridV2 4 12 

2 
11bV +I17 

(2.3.50) 

where 

r
11 

C63 pSb C4,3pSb
C + C, +p

21xx nP 2Izz -0 

CoSpz C63Spz 

2I. 2I. YO 

(2.3.51) 

r12 

C63 pSbc 

2I. RP 

p Sb c' 1-p2I. 'P 

C4,3Spz 

21. 2I. YP 

(2.3.52) 

r
13 

C63 pSbc 

2I. 
C40pSb

C + p. 
CoSpz C63Spz)r 

2I. 21. FY, 
(2.3.53) 
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CoSpycos(a) 
r = (2.3.54)14 21. 21. 

C40Spysin(a)
r15 = p (2.3.55)

21. 21. 

C40 p Sb C63 p Sb C4,3Spz C63Spz 
r, c c p Cy0 +r CD° +r C (2.3.56)14 15 Lc,21 no 21 0 21 21". 1zz

C4oPy, c4orze c63pze C63Pye 
= (2.3.57)r17 I I Izz Ixx lxx 

2.4 Longitudinal Motion. 

The dynamics of a rigid aircraft are described by the six simultaneous 

nonlinear equations as shown in equations (2.2.1) (2.2.6). To develop the 

longitudinal equations of motion, it is assumed that the motion of the airplane can be 

analyzed by separating the equations into two groups. The X-forces, Z-forces,and 

pitching moment equations comprise the longitudinal equations. This means that 

disturbances to the equations of motion do not create any sideforce, Y, or any rolling 

moment, Mx, or yawing moment, M. Roll rate, yaw rate, and side velocity remain 

constant so three of the equations can be neglected. The remaining equations are 

simplified because v = p = r = Ty = = * = 0, and the longitudinal 

motion can be derived as follows: 
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. P SC Tx sin(a) Tzcos(a))(( P SZ (2.4.1)+ ACOS(e aaio )4m q V 2m mV mV 

pSCD.V2 Tzcos(a)+Tzsin(a) (2.4.2)V = -gsin(I3 a ) 
2m 

PS4 + 11C ql2CL )V2 P (ZC.+q12CL+q13q10)Vq+
2Iyy q D° ° 41yr 

(2.4.3) 
q13 p SC"( g p S Tzsin(a) Tzcos(a) pzeTz-pzeTzv 

41n V 2m ° mV mV lyy 

(2.4.4)= q 

where 

1 

a10= 
p CS (2.4.5) 

1+ 
4m
 

PESCI,
 
(2.4.6)q10 (1 4m 

(in = px sin(a) pz cos(a) (2.4.7) 

q12 = px cos(a) + pz sin(a) (2.4.8) 

(2.4.9)q13 a 10(Wme 41112 CLe) 
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Normal acceleration with respect to stability axis, non-dimensionalized by gravity, is 

given as follows. 

V(q-d)nz (2.4.10) 
g 

2.5 Actuator Dynamics 

The input dynamics were described by three states--thrust magnitude (T), 

thrust vectoring angle (b,), and stabilator angle (Oh). The stabilator and the thrust 

vectoring dynamics include a velocity limiter of 40 degrees per second for the 

stabilator angle, and 80 degrees per second for the thrust vectoring angle. 

Constraint for the stabilator angle rate of change is given by 

40°/sec. sOhs 40°/sec. (2.5.1) 

The range of the stabilator angle is limited according to the following[45]: 

24.0° s Oh s 10.5° (2.5.2) 

Constraint for the thrust vectoring angle rate of change is given by 

80 ° /sec.s 8, s 80° /sec. (2.5.3) 

The range of the thrust vectoring angle is limited according to the following[45] : 

20° s 8, s 20° (2.5.4) 
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Thrust magnitude dynamics are given by : 

T = (Tcnid-T) 

where Td represents the command signal of magnitude of thrust vector. 

(2.5.5) 

The magnitude of thrust is limited according to the following[45] : 

0 s T s 18000 lbs (2.5.6) 
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CHAPTER 3
 

MODEL
 

Engineers and scientists are frequently confronted with the task of analyzing 

problems in the real world, synthesizing solutions to these problems, or developing 

theories to explain them. One of the first steps in any such task is the development 

of a mathematical model which describes the relationships among the system 

variables. In a sense, there is an impenetrable, but transparent screen between our 

world of mathematical descriptions and the real world [23]. We can look through 

this window and compare certain aspects of the physical system with its mathematical 

description, but we can never establish any exact connection between them. This 

model must not be oversimplified because conclusions drawn from it will not be valid 

in the real world. The model should not be so complex as to unnecessarily complicate 

the analysis. The question of nature's susceptibility to mathematical description has 

some deep philosophical aspects, and in practical terms we have to take a more 

pragmatic view of models. Our acceptance of models should be guided by usefulness 

rather than truth. Nevertheless, we shall occasionally use a concept of the true 

system, defined in terms of a mathematical description because such a fiction is 

helpful for devising identification methods and understanding their properties. 

Modeling is important since the choice of model is often the first step toward the 

prediction or control of a process. An appropriately chosen model structure can 

greatly simplify the parameter estimation procedure and facilitate the design of 
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prediction and control algorithms for the process. 

3.1 Class of Models. 

System models can be developed by two distinct methods. Analytical 

modeling consists of a systematic application of basic physical laws to system 

components and the interconnection of these components. Experimental modeling, or 

modeling by synthesis, is the selection of mathematical relationships which seem to 

fit observed input-output data. Experimental modeling is emphasized in this section. 

Experimental models for linear deterministic finite dimensional systems can be 

described by state space, input-output, autoregressive moving average models,etc 

[18]. Generally, state space models can be seen to be a set of first order difference 

equation models. In this section, the input-output model among several modelings is 

discussed. The main reason to use input-output, rather than state space models, is 

that they employ only measured quantities subsequently used by the controller, and 

therefore are more natural in control system setting. Also, very often the model of 

the plant is not given prior to the controller synthesis, and has to be identified, either 

off -line, or on-line, using the available input-output data. In such a case the input-

output modeling approach is more effective, since it has simpler model structure and 

results in fewer parameters to be identifed. Obviously, the input-output modeling 

approach also has its disadvantages. The main one is that it is basically a black-box­

type technique, in which the phenomena "inside" the plant are of no interest, as long 

as its response to the input is modeled correctly. If the dynamics of the plant is 
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easily available from physical considerations the state space model usually can be 

constructed with no difficulties and its parameters have well understood 

interpretations. On the other hand, parameters of input-output models usually such 

as used here for adapting the control have no immediate physical interpretation [39]. 

In order to describe such input-output models in a succinct manner, we 

introduce the forward and backward shift operator q and aq- 1 . If y(t) denotes the 

value of the a sequence {y(t)} at time t, where t E {0,1,...}, then qy(t) denotes the 

value of the sequence at time (t+1) and qr1 y(t) denotes the value of the sequence at 

time (t-1). That is, 

qy(t) = y(t +l) for t 0 (3.1.1) 

q-1 y(t) = y(t-1) for t z 1 ; q' y(0) = 0 (3.1.2) 

and consequently, 

q' y(t) = y(t+i) for t z 0 (3.1.3) 

q' y(t) = y(t-i) for t z i ; q' y(0) = 0 for 0 5 t < i (3.1.4) 

The first approach is to simply assume that the model can be adequately described by 

a linear time-varying system. Such a linear time-varying system can be described by 

the equation. 

(3.1.5)
A(q-1,t)y(t) = B(q-1,t)u(t) 

where A and B are time varying polynomials of gl. A, without loss of generality, is 

assumed to be monic. Thus, A(q-1,t) could be described by the equation below. 

A(q-1,t) = 1 +a1(t)q-1 + a2(t) 47-2 + a3(t)q-3+ . . . + an(t)q' (3.1.6) 
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This leads to a simple traditional linear prediction model with the following form : 

(3.1.7)(t) = (Wo(t) 
Z(t)T = [y(t-1),y(t-2), ,y(t-n),u(t-1),u(t-2), ,u(t-m)] (3.1.8) 

e(t)T = [- a1(t), -a2(t), ,an(t), b1(t),b2(t), ,b,n(t)] (3.1.9) 

The second approach is to simply add bilinear terms in u and y and thus to assume 

that the system can be adequately described by a bilinear time-varying discrete 

model even if aircraft dynamic models are not bilinear with regard to natural 

controls. Still the closed loop system would be equivalent to a bilinear system with 

nonlinear feedback. 

A bilinear time-varying discrete system can be described by 

my mz my mz
 

y(t) = E aiy(t-i) +E biu(t-i) +E E cuy (t -i)u (t -j) (3.1.10) 

i=1 i=1 i=1 j=1 

where my, mz, are the orders of the output and input, respectively. 

This leads to a simple prediction model with the following form : 

Sr(t) =0(t)Tel(t) (3.1.11) 

(I)(t)T = [y(t-1),y(t-2), ,y(t-my), u(t-1),u(t-2), ,u(t-mz), 

y(t-l)u(t-1),y(t-2)u(t-1), ...,y(t-my)u(t-mz)] 

(3.1.12)
 

6(0T = [-al(t), -a2(t),...,an(t), 

(3.1.13)
 

The third approach for forming a prediction model is to use a more complex 

nonlinear representation. There are several standard input-output modeling 
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techniques for nonlinear systems in both discrete and continuous time settings. They 

include Volterra series, nonlinear time series, neural networks, etc. In this work, 

the time- series approach is used. This technique is a natural extension of discrete-

time modeling of linear systems, known in the stochastic setting as auto-regressive 

moving average (ARMA) models. Therefore, an often used acronym is NARMA 

for nonlinear ARMA [7]. The nonlinear time series expresses future values of 

outputs as a nonlinear function of a finite number of past values of output and of 

control. For the purpose of system identification this unknown nonlinear function is 

usually decomposed into a sum of nonlinear functions with parameters to be 

identified appearing linearly. This allows for easy application of parameter 

identification techniques from linear system theory, although their convergence in an 

on-line identification setting in a feedback loop is a far more complicated question 

than in the linear case. If the time series model is to be used for calculation of 

control action, it is also desirable that it should be easily solved for current value of 

control. In the aircraft problem, the physical model of the dynamics is well known 

and is easily expressible in state space form. Nevertheless, there are significant 

reasons to look at input-output black-box-type modeling as an alternative approach. 

The main problem arises from the aerodynamic stability derivatives. They are 

complex nonlinear functions of angle of attack, Mach number, and altitude [39]. If 

these relationships are entered into state space model, it appears so complicated that 

its usefulness for on-line control generation become quite doubtful. Furthermore, 

the exact form of the dependencies for stability derivatives on state variables is not 

known. 
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The model is given by
 

y(t) = FG(y(t-1), y(t-2), ,y(t-ny), u(t-1),u(t-2), ,u(t-nz))
 

(3.1.14) 

where FG . ) is some nonlinear function, ny and nz represent the order of output 

and input [24]. 

3.2 Prediction Model for A Modified F/A-18 Aircraft. 

Typically, an open loop aircraft with a classical configuration operating in a 

trimmed condition at a conventional flight condition will exhibit two longitudinal 

modes of motion : the short period and phugoid. The short period mode is normally 

fast and oscillatory and can take place at nearly constant speed. It is dominated by 

angle of attack and pitch rate response. The phugoid mode is normally slow, 

oscillatory, and lightly damped and can take place at nearly constant angle of attack. 

As can be seen from section 3.1, several different approaches exist to formulate a 

prediction model for a nonlinear system. In this section, a prediction model of 

rapid angle of attack changes was considered. The first prediction model corresponds 

to the prediction in equation (3.1.7). The first approach is to simply assume that the 

model can be described by a linear time varying system. This is the simplest 

linear predictor, and it will be seen that it is also the least effective. The prediction 

model is described below [10]. 
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(3.2.1)
el(t) = (I)(t)T6 (t-1) 

(3.2.2)
IDT(t) = [a(t-1) q(t-1) 8h(t-1)] 

Second, one more regressor was considered. This predictor model is similar to the 

first predictor model except that the order has been increased. 

(3.2.3)
a(t) = 4)(016(t-1)
 

oT(t) = [a(t-1) q(t-1) a(t-2) q(t-2) 8h(t-1)]
 (3.2.4)
 

The second prediction model is better than the first one because a higher-order linear 

model was able to identify some of the nonlinearities. 

Third, thrust vectoring is added to the prediction models. The addition of the thrust 

vectoring into the prediction models is a relatively simple matter. It is described by 

the following equation. 

a(t) = cp(t)TO(t-1) (3.2.5) 

oT(t) = [a(t-1) q(t-1) a(t-2) q(t-2) 8h(t-1) 8(t -1)] (3.2.6) 

Another approach was made by Collins [10] as follows. 

(3.2.7)
a(t) = cl)(t)T6(t-1)
 

(1)(t)T = [a(t-2), q(t-2), a(t-3), q(t-3), a (t-4), q(t-4), 8h(t-1),
 
(3.2.8)
 

8,,(t-1), 8h(t -2), 8,(t-2), 8h(t -3), 8,,(t -3)] 

Some attempts are made to improve prediction models of nonlinear dynamic 

equations of aircraft. As aerodynamic coefficients are shown in equation (2.3.1) ­

(2.3.3), they are functions of angle of attack, Mach number, stabilator angle, and 

altitude. Specifically, coefficient values depend on angle of attack. For instance, 
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Figures 3.1- 3.7 show its values in case of Mach number M = 0.3 , stabilator angle 

(8h)= 0.0, and altitude = 15,000 ft [5]. In modeling, there exist some restrictions 

to be considered because of physical properties such as limitation of velocity and 

magnitude of inputs. Thrust vector must be considered for rapid high angle of 

attack maneuver. There are several prediction models of angle of attack as 

follows. Some attempts are made to improve prediction models of the nonlinear 

dynamic equation of aircraft. 

A bilinear prediction model for the aircraft can be generated as in equation (3.1.10) 

so that 

(3.2.9)a= 

(1)(t)T = [a(t-2), q(t-2), a(t-3), q(t-3), a (t-4), q(t-4), 6h(t-1), 

6,(t- 1), ah (t-2), 6v(t-2), 6h(t-3), 6,(t-3),a(t-2)6h(t-1) 

a(t-3)45h(t-2), a(t-4)8h(t-3), a(t-2)6,(t-1)] 

(3.2.10) 

This nonlinear prediction model for the aircraft was developed by Mohler et al [39]. 

A slightly more complex nonlinear prediction model for the aircraft is considered by 

adding quadratics and cubics in angle of attack which would naturally better fit the 

aerodynamic parameters 

a = o(t)To(t -1) (3.2.11) 

4)(t)T = [a(t-1), a(t -1)2, a(t -1)3, q(t-1), a(t-1)q(t-1), 

a (t -1)2q(t -1), a (t -1)3q(t -1), 8h (t -1) , a (t -1)8h (t -1), (3.2.12) 

a (t -1)2 Sh(t -1), a (t 1)3 8h(t -1), 1] 
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A nonlinear prediction model proposed in this section, including the thrust vector, 

was developed as follows. The choice of elements of the regressors' vector, , 

is motivated by the fact that nonlinearities in the short period dynamics are associated 

with angle of attack. Also it is recognized that due to the highly nonlinear nature of 

the aircraft dynamics it is probably impossible to fit a black-box-type model 

describing the plant's dynamics accurately in the whole ranged of flight condition. 

Instead, it is more practical to fit a simple approximate model including square and 

cubic terms of angle of attack, thrust vectoring, and coupling term between angle of 

attack and control inputs. 

= o(t)TO(t-1) (3.2.13) 

<NOT = [a(t-2), q(t-2), a(t-3), q(t-3), a (t-4), q(t-4), 8h(t-1), 

k(t-1), 8h(t-2), 8,,(t-2), 8h(t -3), 8v (t-3), a (t-2)8h (t-1), 

a(t-3)8h(t-2), a(t-2)q(t-2),a(t-2)q(t-2),8,(t-1)a(t-2), 

8v(t-2)a(t-3), a(t-2)2, a (t -3)2, a(t-2)3, a (t-2)2q(t -2), 

a(t-2)28h(t-1),8,(t-1)a(t-2)2] 

(3.2.14)
 

As would be expected from Figures 3.1-3.7, it is difficult to control this modified 

F/A-18 aircraft during a large variation in angle of attack. In this section, several 

different simulations were performed to evaluate the model performance with two 

types of maneuver. The maneuver one corresponds to the maneuver presented by 

Ostroff in [49]. [50], [51]. The angle of attack is changed from 5 degrees, to 60 
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degrees, to 35 degrees, and back to 5degrees in 8 second interval. In maneuver 

two, the angle of attack is changed from 5 degrees, to 35 degrees, and to 85 degrees 

for an extended period of time. In particular, it is hard to control the angle of attack 

during maneuver one or maneuver two because stability derivative coefficients 

changes around 60 degrees and 85 degrees. Prediction error of angle of attack 

(difference between reference trajectory and angle of attack of actual system) is 

shown in Figures 3.8-3.17. The unit of prediction error is degree. The magnitude 

of prediction error has the range from -0.3 degrees to 0.2 degrees for all cases. The 

prediction errors of angle of attack depend on controller inputs as well as prediction 

models. 

http:3.8-3.17
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Figure 3.6 Stabilator Derivative C. at M = 0.3, 8h = 0.0, and h = 15,000 ft. 
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Figure 3.8 Prediction Error of Angle of Attack in case of Maneuver One, LPM, and 
Prediction Controller. 
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Figure 3.9 Prediction Error of Angle of Attack in case of Maneuver One, BLPM, 
and Prediction Controller. 
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Figure 3.10 Prediction Error of Angle of Attack in case of Maneuver One, NLPM, 
and Prediction Controller. 
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Figure 3.11 Prediction Error of Angle of Attack in case of Maneuver Two, LPM, 
and Prediction Controller. 
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Figure 3.12 Prediction Error of Angle of Attack in case of Maneuver Two, BLPM, 
and Prediction Controller. 
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Figure 3.13 Prediction Error of Angle of Attack in case of Maneuver Two, NLPM, 
and Prediction Controller. 
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Figure 3.14 Prediction Error of Angle of Attack in case of Maneuver One, LPM, and 
LF Controller. 
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Figure 3.15 Prediction Error of Angle of Attack in case of Maneuver Two, LPM, 
and LF Controller. 
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Figure 3.16 Prediction Error of Angle of Attack in case of Maneuver One, NLPM, 
and LF Controller. 
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Figure 3.17 Prediction Error of Angle of Attack in case of Maneuver Two, NLPM, 
and LF Controller. 
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3.3 Parameter Estimation. 

3.3.1 Overview of the Recursive Least Squares Algorithm. 

The recursive-least-squares (RLS) algorithm is the most popular on-line 

parameter estimation algorithm. The basic least squares method produces a 

parameter estimate which is the result of minimization of the following quadratic cost 

function : 

N 

J = E AN-t(y(t) -Co-04)0W (3.3.1) 
N N t=1 

The problem is to obtain model parameter estimates which,in a least squares sense,
 

minimize the difference between the actual output, y(t), and its value predicted by the
 

model . The vector contains past input and output values and its dimension depends
 

on the order of the model to be estimated.
 

This leads to the recursive least squares algorithm with a variable forgetting factor
 

[18].
 

Parameter vector update law :
 

(3.3.2)6(t) = 6 (t 1 ) + K(t) [y(t) ti(t-1)T4:(t)] 

Gain update : 

P(t-1).(t)K (t) (3.3.3)
1 +4(t)TP(t-1)4(t) 



46 

Covariance matrix update : 

P(t-1)4(t)4(t)TP(t-1))P(t) = 1 (P(t-1) 
+ 4)(t)TP(t-1)(1)(t) 

(3.3.4) 

The basic RLS algorithm with A, =1 has several important properties. First the 

least squares algorithm has a fast convergence rate (exponentially fast for a linear 

time invariant system with proper excitation). Also, the stability of the RLS 

algorithm combined with direct and indirect adaptive control is well understood and 

many proofs have been published in this area [4], [18], [23], [48]. The main 

disadvantage with the basic RLS is that the covariance matrix gradually decays to a 

small value and therefore the algorithm does not retain its adaptivity to adequately 

track time varying systems. The covariance matrix in the RLS algorithm tends 

towards zero which causes the adaptation to turn off. This is undesirable in the case 

where the parameters are time varying. Several modifications have been made to the 

RLS algorithm to correct this problem. A variety of modifications are proposed in 

the literature to keep the algorithm awake. The modifications in general are of two 

different types. The first idea is the inclusion of a forgetting factor. The second 

type of modifications that have been proposed is to manipulate the covariance matrix 

directly. 

3.3.2 Forgetting Factor 

(a) Least squares with exponential data weighting. 
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One method of ensuring that the algorithm retains its alertness is to make use 

of the parameter in equation (3.3.2) (3.3.4). To use a value of < 1 means 

that the cost function in equation (3.3.4) is minimized with more recent errors 

receiving heavier weighting. The choice of x also is important because too fast 

discounting of older data (small x) will make the estimates uncertain and too slow 

discounting will make it difficult to track fast parameter variations. It has been 

shown in Soderstrom, Ljung, and Gustaysson [18] that a good choice in such cases 

is 

A.(t) = X.A(t -1) + (1 -10) (3.3.5) 

with typical values x(t.) =0.95, X.= 0.99. The effect of this is to impose 

exponential data weighting for a transient period during algorithm startup. This 

algorithm works well only if the process has excitation. Otherwise, exponential 

forgetting leads to covariance windup. 

(b) RLS with constant trace and scaling 

Sripada and Fisher [57] have proposed the following four modifications to the 

basic least squares algorithm : 

(1) Normalization. 

(2) Scaling. 

(3) Constant trace through a variable forgetting factor. 

(4) An information content based on criterion for turning adaptation on or off. 
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The importance of normalization and forgetting factor has already been discussed 

earlier. The modification with respect to scaling is concerned with improving the 

numerical properties of the algorithm but has no effect on the convergence properties 

of the algorithm. Property(3) concerns updating of the covariance matrix. The 

forgetting factor 1(t) is selected so that the trace of the covariance matrix is constant. 

The following choice of A (t) ensure that 0 < 1 and that trace P(. ) is 

constant : 

(3.3.6)1(t)=1--1[1+r-[(1+02 4 s(t-1)0).112
2 tr (t -1) 

where 

(3.3.7)r=4)(t): P(t- 1)8 (Kt). 

P8(.) corresponds to the scaled covariance matrix and 4)(t). corresponds to the 

normalized and scaled regressor. The constant trace of P8(.) ensures an upper bound 

on the maximum eigenvalue. The modification of Equation(3.3.4) determines the 

extent of discounting of old information in the current update of P.O. 

3.3.3 Covariance Modification. 

(a) Covariance Resetting 

The simplest way to modify the covariance matrix is to reset it periodically. 

This method was suggested and the convergence for the linear time invariant case 

was shown by Goodwin and Teoh [18]. The proofs presented in [18] covered most 
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of the covariance modifications presented here. Thus, the covariance matrix in 

equation (3.3.4) is replaced by the following: 

If t/N = integer 

P(t) = kI 0< kmth < k < ki.< .. (3.3.8) 

Otherwise 

.. P(t-1)
P(t)=[1-K(t)1:(t).,..' i (3.3.9) 

A(t) 

where k is a positive integer. 

(b) Constant Covariance. 

Another method proposed by Shar and Cluett in [55], is to maintain a constant 

covariance by the addition of a properly scaled identity matrix. This leads to the 

following algorithm. 

13/(t) = [I- K(t)4(t)T] P(t-1) 
(3.3.10) 

A(t) 

Let t = trace(p'(t)) and Co, C1 denote two positive constants such that C1 > Co. 

If t > Co 

C,---T (3.3.11)
P(t) = P'(t) + I 

n 

If t S Co 

Co- , C
a
1 CAvi (3.3.12)

P(t) P'(t)
 
T n
 

The algorithm ensures a constant trace of C1, and the following bounds are placed of 
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the eigenvalues of P(t). 

Cl -Co 
s 1[P(t)] s C1 (3.3.13) 

n 

n represents the size of covariance matrix. 

(c) Covariance Regularization. 

This mechanism for updating the covariance matrix was first proposed by 

Praly and modified by Ortega et al. [46] for use in their work on robust adaptive 

control. The basic idea is a combination of a covariance resetting feature and a 

guarantee of lower and upper bounds on the covariance matrix. This algorithm 

replaces equation (3.3.4) as follows. 

where Co, C1 denote two strictly positive constants such that C1 > Co : 

t- 1)P/(t) = [I K(t) (t)-7] 

C
P(t) = (1---11P/(t)+CoI

CI 

This modification maintains the following bound on the eigenvalues of the 

covariance. 

Co s X[P(t)] s C1 (3.3.16) 

Its performance was reasonable, but the best results were obtained by combining the 

matrix regularization with the constant covariance. This resulted in the following 

algorithm. 

Let t = trace (p1(0), Co, C1 denote two positive constants such that C1 > Co, and 
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0 < C2 < 1. 

If t > Co 

Cl C2 t 
P(t) = C2 1114) + I (3.3.17) 

n 

If t Co 

C C -C 
P(t) = P '(t) + 1 ° I (3.3.18)

t 11 

One way to interpret this algorithm is that it is a combination of the constant 

covariance and the covariance resetting. 

3.4 Reference Model 

The reference model is an important part of the adaptive control system. The 

desired performance is expressed in terms of a reference model, which gives the 

desired response to a command signal. For model reference adaptive control, a 

command signal is fed through a model system, and then the actual system is made to 

track the output of the model system. In general, the model reference signal is a 

feed forward signal and it has no feedback from the real plant. This proved to be 

ineffective for nonlinear time varying systems when there are some input limitations. 

The approach proposed in the section uses feedback from the real plant to 

improve the reference trajectory. The class of models for the reference trajectory 

that were investigated are simply filters that use the past values of the states. Thus, 
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the reference model has no internal states of its own. A simple first order filter can 

be formed as follows : 

ad(t) = a (t -1) +(1 () aand 0 C 1 (3.4.1) 

If the system being controlled was a deterministic linear time invariant system with 

unlimited control, the two approaches would be identical because the output of the 

system at (t 1) would be equal to the reference trajectory at time (t 1). Thus the 

reference model would not need any feedback from the system. 

With the first order model reference, an excellent performance was achieved 

when the input dynamics and velocity constraints were ignored [8]. For the 

complete system, a second order filter was found to be sufficient to get excellent 

performance. A general second order filter is described in equation (3.4.2). 

aref(t) = (C1 + C2) a (t-1) Ci C2 a (t-2) + (1 + C1(2 C1 C2) a cat ) 

The results for this reference trajectory when used on the complete system are 

displayed in section 5.5. 
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CHAPTER 4 

CONTROL CALCULATION 

The controller was designed to perform or meet several goals. First and most 

importantly, the control values are calculated such that the angle of attack of the 

aircraft follows the reference model. The control values are also calculated such that 

the thrust vectoring returns to zero if it is no longer needed, and a certain amount of 

smoothness is desired for the control signals. 

4.1 One-step-ahead prediction contro 

The following cost function is defined for control law calculation. 

1 1J = pjard(t+1)-0+1)]2+p2[81 (t)-oh (t-im2
2 2 dad cind (4.1.1) 

+- p3[8, (t)-8, (t-1)12+ p,[6
m a V"(O]2 

where ate(,) represents reference trajectory of angle of attack. 

Let the prediction model in equation (3.2.5) be described by, 

&(t + 1) = a (t 1) Shand(t) + b(t 1) 8,..(t) + ti)(t)T 6(t -1) (4.1.2) 

where 

4(t) = ph.d(t), svcmd(t), 4(t)] (4.1.3) 
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(4.1.4)
13(t-1)T = [a(t-1), b(t-1), 5(t-1)T] 

(4.1.5)
4(t) = [ a(t-1), q(t-1), a(t-2), q(t-2) ] 

Taking the derivative of J with respect to the control yields 

dJ pi[aref(t+1)-a(t+1)](-a)+p2[Sh (t)-8h (t-1)]
doh 

(4.1.6)

dJ p1[aref(t+1)-a(t+1)](-b)+p3[8, ..(t)-8,,(t-1)]

do, 

+P4[8 (t)] 

Consequently, the external control command yields 

{81 [Pia 2+p2 piab 
(4.1.7)
 

=t ,.(t) p lab pi32+p3+ p4 p ib n + p 36,...d(t 1) 

where 

ri =are 4(t)T5(t -1) (4.1.8) 

To include the velocity and magnitude limits in the control calculation, two extra 

conditions are added. The first condition requires that o, (t; be recalculated if 

8h.d(t) has reached the magnitude limit. The second condition requires that 

8,..d(t)be recalculated if oh.d(t)is a value requiring 80 degrees per second. 

8, (t) is recalculated as follows: 
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-a8h (t)
and (4.1.9) 

b 

After the control values have been calculated, they are limited by 40 degrees per 

second for 8h, (t) and by 80 degrees per second for 8v, (t) . 

4.2 Control Law Based on A Lyapunov Function. 

Consider a type of bilinear system as follows. 

2 

= AkRk +Bilk +ENixkuji (4.2.1)
+. 

where xk ER2 are state variables, ilk = 6h.a(t), 8v..(t) E R2 are input 

variables, and uil , is each component of input variable. Ak, BI and Ni are
 

appropriate matrices.
 

A Lyapunov function candidate is defined as follows.
 

Vk = (Rut ROT P (xief xk) +ukTRuk (4.2.2) 

where T represents transpose of vector or matrix. P and R are positive defmite and 

symmetric, respectively. xref = Xref,1 Xref,2 1T represents reference trajectories. 

The difference of a Lyapunov function candidate is given by 

AVk = Vk Vk_i (4.2.3) 

In this section, main objective is to fmd a controller which minimizes the derivative 

of a Lyapunov function candidate in condition under AVk < 0. Equation (4.2.1) can 
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be rewritten as follows. 

(4.2.4)
Xic, = Ak Xic +Bilk 

where 

(4.2.5)
B = [ (B1 + ) (B2 + N2 xk ) ] 

Also define 

B = [B1lB2] (4.2.6) 

Taking the derivative of equation (4.2.3) with respect to the controls , and setting 

to 0 

aAVk 
(4.2.7)
 

auk 

The controls give as follows. 

uk = ( /3 TP5 +R)-1(13TP(xret -Akxk)) (4.2.8) 

To include the velocity and magnitude limits in control calculation, two extra 

conditions are added. The first condition requires that s,(t) be recalculated if 

8h. (t) has reached the magnitude limit. The second condition requires that 

8,,(t) be recalculated if 6h.d(t) is a value requiring 80 degrees per second. 

(t) is recalculated as follows. 
6 
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rhiP(1,1)bi +11111(1,2)b2+7122P(1,2)bi +1122P(2,2)b2
8,..,(t) (4.2.9) 

11412.P(1,1)+2bib2P(1,2)+b22P(2,2) 
where 

MI = Xref Ak( 1, 1) Xi,k 1 Ak( 1,2)x2A 1 (4.2.10) 

al = (Bk( 1, 1) + Ni,k( 1, 1 ) xi,k_1111,k( 1,2 )x22,_1) (4.2.11) 

b1 = (Bk( 1,2) +N2,k( 1, 1 ) xi,k_i/s122,( 1, 2 ) x2,k_i) (4.2.12) 

aa2 = ;ea Ak(2, 1) Xi,k_i Ak(2,2)x2,k_1 (4.2.13) 

a.2 = -(Bk( 2, 1) + Isli,k( 2, 1 ) xl,k_iNi,k( 2, 2 )x2,k_i) (4.2.14) 

b2 = -(Bk(2,2) + Nzk(2, 1 )xix_1N2.k(2,2)Xzk_1) (4.2.15) 

(4.2.16)
7111 = as l -a1 

(4.2.17)
1122 = aa2 az 

Ak(i,j) represents i th row and j th column of Ak.
 

If the value of equation (4.2.3) with recalulated inputs is over 0, that is to say,
 

h,Vk = (Vk -Vk_i)>0 (4.2.18) 

inputs are recalculated as follows. 

The control law calculation is based on minimization of equation (4.2.1) with respect 

to control inputs. As this case also requires the velocity and magnitude limits in the 

control calculation, two extra conditions are added. The first condition requires that 

(t) be recalculated if o(t) has reached the magnitude limit. The second
o 

condition requires that övc.d(t) be recalculated if eicw(t) is a value requiring 80 

degrees per second. 8,,(t) is recalculated as follows: 
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(aal +ai8h,(t-1))bi +(aa2+a28h.,(t-1))b2
8,,(t) (4.2.18) 

b1 +b2 

After the control values have been calculated they are limited by 40 degrees per 

second for 8h.d(t) and by 80 degrees per second foro,(t) 
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CHAPTER 5
 

APPLICATION TO A MODIFIED F/A-18 AIRCRAFT
 

In the design of real systems, some restrictions exist due to system physical 

limits. For example, the input dynamics are described by three states : thrust 

magnitude, thrust vectoring angle, and stabilator angle. Each state has the limitation 

as follows. 

The range of the stabilator angle is given in equation (2.5.2) 

-24.0° s Sh s 10.5° 

The range of the thrust vectoring angle is given in equation (2.5.4) 

-20° s s 20° 

The range of thrust is limited according to the following equation. 

0 s T s 18000 lbs 

The stabilator and the thrust vectoring dynamics include a velocity limit of 40 

degrees per second for the stabilator angle, and 80 degrees per second for the thrust 

vectoring angle. Considering the limitations of input properties, the linear and 

bilinear prediction models are used to design the controller. 

5.1 Linear prediction model. 

The linear prediction model shown in equations (3.2.7)-(3.2.8) is rewritten as 

follows. 
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te(t +1) = bo(t 1)8h.d(t) +1)1(t -1)8,,(t) + si(t)T 5(t 1) (5.1.1) 

if)(t)T = [a (t-1), q(t-1), a (t-2), q(t-2), a (t-3), q(t-3), 
(5.1.2) 

oh.d(t (t -1), oh, (t -2), 8,, (t -2)] 

0(t -1)T = [ bo(t 1), 1), 5(t -1)T ] (5.1.3) 

4)(t = [ Oh.d(t), ci(t)T ] (5.1.4) 

5.2 Bilinear Prediction model. 

The bilinear prediction model for the aircraft described in equations (3.2.9)­

(3.2.10) can be rewritten as follows. 

ec (t +1) = bdt -1) 8h.d(t) +b12(t 1) 8h.d(t) a (t -1) +1)13(t -1) 8,,(t) 
(5.2.1) 

+b14(t-1)8,,,,(t)a (t- 1) + c(t)T0(t -1) 

1(t)T = [a (t-1), q(t-1), a (t-2), q(t-2), a (t-3), q(t-3), 

oh.d(t -1), (t -1), 8. (t -2), -2), (5.2.2) 

a (t-2)816., (t-1),a (t-3)8h.d (t -2)] 

6(t -1)T = [ bdt -1), b12(t -1), 1)13(t -1), b14(t -1), 5(t -1)T (5.2.3) 

4)(t )T = [ 8h,(t), Oh.d(t)a(t -1), kanid(t), 6,,,(t)a (t -1), 6(t)T (5.2.4) 

5.3 Nonlinear Prediction model. 

The noilinear prediction model for the aircraft described in equations (3.2.13) 

(3.2.14) can be rewritten as follows. 
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Cc (t + 1) = cdt 1) 8h,(t) +c12(t 1) 8h.d(t) a (t -1) +c13(t 1) 8hund(t) a (t 1) 

+ ci4(t 1) 8,,,(t) +co(t 1) 8,,,(t) a (t 1) 

+c16(t 1) 8,..d(t) a (t -1) + i(t)T5(t-1) 

si)( oT = [a (t-1), q(t-1), a (t-2), q(t-2), a (t-3), q(t-3), 8h(t-1), (5.3.1) 

8,(t -1), 8h (t -2), 8, (t -2), a (t -1)8h (t -1), a (t -2)8h (t -1), 

a (t-1)q (t-1),a (t-2)q(t-2), 8,(t-1)a (t -2), (5.3.2) 

8, (t -2)a (t -3), a (t -2)2, a (t -3)2, a (t -2)3, a (t -2)2q(t -2)] 

o(t l)r = [ cdt 1), c12(t -1), c13(t 1), c14(t 1), co(t -1), c16(t 1), 5(t 1)T ] 

(5.3.3) 

4)(t )T = [8.(t), 8h.d(t) a (t 1), 8k(t) a (t -1)2, 8, JO, kand(t) a (t -1), 
(5.3.4)
 

8,..d(t) a 4-1)2, c(t)T] 

5.4 System Identification. 

Adaptation was performed using the modified RLS described in section 

(3.3.3). 

Parameter vector update law : 

(5.4.1)
Ow = e(t-1)+K(t)(y(t) e(t-1)T4:40) 
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Gain update : 

PO-1)4 qt)
K (t) (5.4.2)

+4(t)TP(t-1)4 )(t) 

Covariance matrix update : 

Po.-1)4)(t),(0TP(t-1)) (5.4.3)Pi(t) = j(P(t-L) coTp(t-04)(t) 

Lett = trace(p'(t)), Co, C1 denote two positive constants such that C1 > Co, and 0 

< C2 < 1. 

IF t > CO 

c,-; T
P(t) = C2 PIM + I (5.4.4) 

n 

IFt <Co 

C C 
P(t) = PIM + ° I (5.4.5)1 

Co, C1, and C2 are defined in Table 1. 

Table 1 Weighting Factors in the Covariance Matrix 

Co C1 C2 

LPM 0.98 1200 600 

BLPM 0.98 1600 800 

NLPM 0.98 2400 1200 
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Initial estimates of parameters are set to zero, and the simulation is initiated at trim 

conditions corresponding to alpha=5°. Then the adaptive controller is simulated 

with a = 5° for 5 seconds. 

Initial parameters to be estimated are calculated by using the control law which 

minimize the performance index of equation (4.1.1) starting with P(t) = 100*Ideat, 

and = 1. Lent and 0° are given matrix and vector, respectively. 

Initial 00 in the linear prediction model of equation (3.2.7)-(3.2.8) is given as 

follows. 

= [ -0.001012 0.001357 1.036904 0.090038 0.361469 0.017329
0 

-0.0071329 0.004686 -0.013450 0.004761 -0.352008 0.039106] 

Initial 00 in the bilinear prediction model of equation (3.2.9)-(3.2.10) is given as 

follows. 

00 = [ -0.00421 0.003162 1.01936 0.091322 0.34389 0.01817 

-0.01149 0.003054 -0.01350 0.002314 -0.36961 -0.038011 

0.00008 -0.000512 -0.00036 -0.000642 ] 

Initial 00 in the nonlinear prediction model of equation (3.2.13)-(3.2.14) is given as 

follows. 

00 = [ 0.00651 0.001212 1.01984 0.09006 0.34449 0.016663 

0.01561 0.000224 0.01298 0.00023 0.36889 0.0383118 

0.00009 0.001628 0.00055 0.00085 - 0.001721 0.0007598 

0.00001 0.000015 0.00000 0.00000 0.000002 -0.000007] 

Units of angle of attack, pitch rate, pitch angle, stability angle, and thrust vector 

angle are degrees, and unit of magnitude of thrust is pounds. 

http:3.2.13)-(3.2.14
http:3.2.9)-(3.2.10
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5.5 Reference Model. 

(5.5.2)The second-order reference trajectory is used. The parameters of the 

reference trajectory were not fixed but varied according to the gain schedule listed in 

the Table 2. The second reference trajectory is 

aiet(t) = C1(C)a(t -1) C2(C)a(t -2) + (1 -C1(()+ C2(C))acno(t) (5.5.1) 

where 

C = la./(t-1)- a(t-1)1 

The values were chosen such that all but the first filter correspond to a 

constant percent overshoot with different rise times. The first filter simply put two 

discrete poles on the real axis, one at 0.87 and the other at 0.89. This is not an 

optimal gain schedule, and undoubtedly it can be improved. 

Table 2 Constants for the Equation (5.5.1) 

C1(C) C2( C) C1(C) C2(C) 

1.7600 0.7743 1.8073 0.82210C-<1 6-C-<8 

1.7215 0.7517 1.8241 0.8365C <2 8C-<10 

1.7563 0.7796 1.8407 0.85092sC-<3 10C-<15 

1.7734 0.7937 15 c.<25 1.8572 0.86553C-<4 s 

4 C.<6 1.7904 0.8079 25 S C 1.8736 0.8801 

1 
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5.6 Control Law Calculation. 

5.6.1 One-Step-Ahead Prediction Controller. 

This controller was calculated to minimize the cost function in equation 

(4.1.1) 

{8h.d(01 pia2+p2 piab plan +p2Okind(t-1) 
(5.6.1) 

8,.,(t) plab p1b2+p3+p4 p1bii+p38,..4(t -1) 

The variables a and b are given as follows. 

Linear prediction model : 

a = bo(t 1) (5.6.2) 

b = Mt -1) (5.6.3) 

Bilinear prediction model : 

a = b11(t -1) +1)12(t-1)a(t -1) (5.6.4) 

b = b13(t -1) +1314(t-1)a(t -1) (5.6.5) 

Nonlinear prediction model : 

a = c11(t -1) +c12(t- 1)a(t -1) +c13(t-1)a(t-1)2 (5.6.6) 

b = c14(t-1)+c15(t-1)a(t-1)+c16(t-1)a(t-1)2 (5.6.7) 

This leads to the following control law calculation : 

8h,(t-1)(b2p1p2+p2p3+p2p4) +(an -ab8,,,(t 1) pi p3 +an pi p4 
Shand (t) 

b2 Pi p2 +a2 Pi (P3 + PO + Ia2( P3 + P4) 

(5.6.8) 



66 

8,,(t) 
(t-1)(b2p1p3+p2p3)+(bn -abohThp-1)pip2 

clad 

b2PIP24-a2P1(P3+P4)+P2(P34-P4) 
(5.6.9) 

where 

= atef-ci)(t)T 5(t -1) (5.6.10) 

5.6.2 Control Law based on A Lyapunov Function. 

The control law is given as follows. 

uk = (ITITATI+R)-1(73TP(xid-Akxk)) (5.6.11) 

Linear prediction model : 

B = [bo(t-1), bi(t -1)] (5.6.12) 

Nonlinear prediction model : 

B = [ c11( t- 1), c12(t- 1)a(t- 1),c13(t- 1)a(t -1)2, 
(5.6.13)
 

c14(t 1), co (t 1) a (t 1), c16(t 1) a (t 1)2] 

xzei -Akxk = aref-1:0(t)T13(t -1) (5.6.14) 

Matrix R has components , for i, j = 1, 2 . 

5.7 Simulation. 

In this section, longitudinal motions shown in equation (2.4.1) (2.4.4) were 

analyzed and simulated with the adaptive control algorithm described in section 5.6. 

Two control signals, stabilator angle and thrust vectoring angle, are used with 
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scheduled thrust magnitude. Several different simulations were used to evaluate the 

model performance. The two cases of maneuver were defined in section 3.2 The 

maneuver presented here were simulated at 15,000ft and 0.3 Mach. A dotted line in 

figure 5.1 displays the command signal from 5 degrees, to 60 degrees, 35 degrees, 

and to 5 degrees in case of maneuver one while adotted line of figure 5.9 displays the 

command signal from 5 degrees,to 35 degrees,and to 85 degree, 

5.7.1 Simulation Data. 

The longitudinal equation was simulated using a fixed step fourth-order Runge 

Kutta method with an integration time step of 0.01 second. A comparison was made 

between an integration time of 0.01 and 0.001, and no noticeable difference was 

detected. Trim conditions of nonlinear longitudinal motion in equations (2.4.1) ­

(2.4.4) are given as follows. 

Table3 Trim Conditions 

Angle of Attack 5 degree Stabilator Angle 0 degree 

Pitch Rate 0 degree Thrust Vector Angle 0 degree 

Pitch Angle 6.3 degree Magnitude of Thrust 3000 lbs 

Total Speed 450 ft/sec 

The aircraft constant values for the simulation are shown in Table 4. 
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Table 4 Aircraft Constant Values 

m 1035.308 slugs py 0.0 ft 

w 33310 lbs 0.233 ftpz 

169,945 slugs ft2 -19.37 ftIyy px. 

Ixx 2,971 slugs ft2 pyc 0.0 ft 

S 400 ft2 pze 0.233 ft 

11.52 ft g 32.174 ft/see 

px 0.297 ft p 0.001496slugs/fe 

The weighting factor in the cost function are given with Table 5. In case of the 

linear prediction model, gain schedules of weighting factor are not applied in 

maneuver one and two. In case of the bilinear and the nonlinear prediction model, 

gain schedules of weighting factor are applied at 35 degrees of angle of attack. 

The weighting factors in a Lyapunov function are given with Table 6. In case of 

maneuver one, the gain schedules of weighting factor are applied at 5, 52, and 60 

degre6s in the linear prediction model while gain schedules of weighting factor are 

applied at 5, 49, and 60 degrees in nonlinear prediction model. In case of maneuver 

two, the gain schedule are applied at 35 degrees in the nonlinear prediction model. 
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5.7.2 Simulation Results. 

In Figures 5.1-5.80, the longitudinal motion of a modified F/A-18 aircraft is 

demonstrated successfully by accurate computer simulations. The prediction model 

used in the design example is discussed in section 3.2. The plant has fourth-order 

longitudinal dynamics for short period and phugoid modes, two adaptive controllers 

with stabilator and thrust vectoring. 

Table 5 Weighting Factors in the Cost Function 

P1 P2 P3 P4 

Maneuver Both in case of LPM 100 0.001 0.001 0.001 

Maneuver One in case of BLPM 94.84 0.001 0.001 0.097 

95 0.0001 0.01 0.0001a = 35.45° 

Maneuver Two in case of BLPM 94.836 0.001 0.001 0.0966 

89 0.07 0.00001 0.0004 
.a = 35 22°

Maneuver One in case of NLPM 94.209 0.001 0.001 0.0975 

95 0.0001 0.01 0.0001a = 35.84° 

Maneuver Two in case of NLPM 95 0.001 0.001 0.1 

97 0.0001 0.1 0.0002a = 35.24° 

http:5.1-5.80
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The command trajectory of angle of attack is generated by a second-order filter 

described in equation (3.4.2). Another command trajectory, magnitude of thrust, is 

given as the dotted line in Figure 5.7. 

Table 6 Weighting Factors in a Lyapunov Function 

P R11 R12 R22 

Maneuver One in case of LPM 9984 2.689 2.019 1.516 

a = 5.19° 9984 2.689 2.019 1.516 

a = 52 28°. 
9984 2.689 1.967 1.4956 

a = 60.38° 9984 2.689 1.969 1.4956 

Maneuver Two in case of LPM 9984 2.689 2.0219 1.5184 

Maneuver One in case of NLPM 4999 0.68225 0.4013 0.3861 

a = 5.01° 5000 0.688 0.49 0.38 

a = 49°.64 7000 0.68225 0.43 0.28 

a = 60.36° 7000 0.688 0.49 0.38 

Maneuver Two in case of NLPM 4999 0.68225 0.4013 0.3861 

a = 35.37° 7000 0.658 0.44 0.38 
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The command trajectory of angle of attack is generated by a second-order filter 

described in equation (3.4.2). Another command trajectory, magnitude of thrust, is 

given as the dotted line in Figure 5.7. The main purpose of these adaptive 

controllers is to control the angle of attack as fast as possible to follow the command 

trajectory of angle of attack. Similarly, Ostroff investigated the maneuver by using 

numerous trim-state linearization studies accompanied by scheduled variable gain in 

a PIF controller [51] for the case of maneuver one. The angle of attack trajectories 

obtained by one-step-ahead prediction controller in case of the linear prediction, the 

bilinear prediction, and the nonlinear prediction model are shown in Figure 5.1, 

5.17, and 5.33, respectively. The character of the response for maneuver one in the 

linear prediction model, the bilinear prediction model, and the nonlinear prediction 

model, is similar to the response reported by Ostroff in [51]. In the linear prediction 

model, the angle of attack reaches 55 degrees in approximately 2.0 seconds and 

settling time to 60 degrees of angle of attack takes about 3 seconds with maximum 

pitch rate of about 48 degrees per second and normal acceleration of about 2.3g. In 

the case of maneuver one, it is shown that, in the bilinear and the nonlinear 

prediction model, the angle of attack is slightly faster to achieve the command 

trajectory of angle of attack than that in the linear prediction model, and has a 

smaller value of oscillation near the command trajectory. The angle of attack 

trajectories obtained by the controller based on a Lyapunov function in case of the 

linear prediction, and the nonlinear prediction model, are shown Figure 5.49 and 

5.65. The command trajectory of angle of attack is scheduled like the dotted line in 

Figure 5.49. The angle of attack reaches 55 degrees in approximately 3.5 seconds 
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and settling time to 60 degrees of angle of attack takes about 5 seconds in the case of 

the linear prediction model while in approximately 3.5 seconds and 4 seconds in the 

case of the nonlinear prediction model. The value of the maximum pitch rate is 30 

degrees per seconds with normal acceleration of about 2.2g in case of both. The 

magnitude of thrust is scheduled due to equation (2.5.5). These are shown in Figures 

5.7, 5.15, 5.23, 5.31, 5.39, and 5.47. 

In case of maneuver two, the angle of attack trajectories obtained by one-step­

ahead prediction controller for linear prediction and nonlinear prediction models are 

shown in Figures 5.9 and 5.41. The angle of attack reaches from 35 degrees to 80 

degrees in approximately 2.5 seconds. Settling time to 85 degrees of angle of attack 

takes about 3.5 seconds with a maximum pitch rate of 50 degrees per second and 

normal acceleration of about 2.1g. The magnitude of thrust is scheduled due to 

equation (2.5.5). These are shown in Figures 5.55, 5.63, 5.70, and 5.79. The 

angle of attack trajectories by the controller based on a Lyapunov function is similar 

to that of a one-step-ahead prediction controller. In case of maneuver two, the 

nonlinear controllers are smoother than the linear controller. Also, the controller 

based on a Lyapunov function is smoother than the one-step-ahead prediction 

controller. The nonlinear controller is more effective than the linear controller as 

angle of attack is increased. The controller trajectories have small chattering in order 

to smooth the angle of attack while the angle of attack takes some time to attain the 

command trajectory in order to smooth the controller trajectory. It is requred that 

there is a tradeoff between prediction controller and angle of attack trajectory. 
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Figure 5.1 Angle of Attack in case of Maneuver One, LPM, and Prediction 
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Figure 5.2 Pitch Rate in case of Maneuver One, LPM, and Prediction Controller 
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Figure 5.3 Pitch Angle in case of Maneuver One, LPM, and Prediction Controller 
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Figure 5.4 Total Speed in case of Maneuver One, LPM, and Prediction Controller 
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Figure 5.5 Stabilator Angle in case of Maneuver One, LPM, and Prediction 
Controller 
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Figure 5.6 Thrust Vector Angle in case of Maneuver One, LPM, and Prediction 
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Figure 5.7 Magnitude of Thrust in case of Maneuver One, LPM, and Prediction 

Controller 

3
 

2
 

1
 

0
 

30
 

TIME (SECOND)
 

1
8 5 10 15 20 25
 

Figure 5.8 Normal Acceleration in case of Maneuver One, LPM, and Prediction 

Controller 
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Figure 5.9 Angle of Attack in case of Maneuver Two, LPM, and Prediction 
Controller 
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Figure 5.10 Pitch Rate in case of Maneuver Two, LPM, and Prediction Controller 
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Figure 5.11 Pitch Angle in case of Maneuver Two, LPM, and Prediction Controller 
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Figure 5.12 Total Speed in case of Maneuver Two, LPM, and Prediction Controller 
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Figure 5.13 Stabilator Angle in case of Maneuver Two, LPM, and Prediction 
Controller 
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Figure 5.14 Thrust Vector Angle in case of Maneuver Two, LPM, and Prediction 
Controller 
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Figure 5.15 Magnitude of Thrust in case of Maneuver Two, LPM, and Prediction 
Controller 
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Figure 5.16 Normal Acceleration in case of Maneuver Two, LPM, and Prediction 
Controller 
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Figure 5.17 Angle of Attack in case of Maneuver One, BLPM, and Prediction 
Controller. 
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Figure 5.18 Pitch Rate in case of Maneuver One, BLPM, and Prediction Controller 
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Figure 5.19 Pitch Angle in case of Maneuver One, BLPM, and Prediction 
Controller 
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Figure 5.20 Total Speed in case of Maneuver One, BLPM, and Prediction 
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Figure 5.21 Stabilator Angle in case of Maneuver One, BLPM, and Prediction 
Controller 
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Figure 5.22 Thrust Vector Angle in case of Maneuver One, BLPM, and Prediction 
Controller. 
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Figure 5.23 Magnitude of Thrust in case of Maneuver One, BLPM, and 
Prediction Controller 
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Figure 5.24 Normal Acceleration in case of Maneuver One, BLPM, and Prediction 
Controller 
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Figure 5.25 Angle of Attack in case of Maneuver Two, BLPM, and Prediction 
Controller 
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Figure 5.26 Pitch Rate in case of Maneuver Two, BLPM, and Prediction 
Controller 
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Figure 5.27 Pitch Angle in case of Maneuver Two, BLPM, and Prediction 
Controller 
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Figure 5.28 Total Speed in case of Maneuver Two, BLPM, and Prediction 
Controller 
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Figure 5.29 Stabilator Angle in case of Maneuver Two, BLPM, and Prediction 
Controller 
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Figure 5.30 Thrust Vector Angle in case of Maneuver Two, BLPM, and Prediction 
Controller 
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Figure 5.31 Magnitude of Thrust in case of Maneuver Two, BLPM, and Prediction 
Controller 
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Figure 5.32 Normal Acceleration in case of Maneuver Two, BLPM, and 
Prediction Controller 
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Figure 5.33 Angle of Attack in case of Maneuver One, NLPM, and Prediction 
Controller. 
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Figure 5.34 Pitch Rate in case of Maneuver One, NLPM, and Prediction Controller 
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Figure 5.35Pitch Angle in case of Maneuver One, NLPM, and Prediction Controller 
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Figure 5.36 Total Speed in case of Maneuver One, NLPM, and Prediction 
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Figure 5.37 Stabilator Angle in case of Maneuver One, NLPM, and Prediction 
Controller 
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Figure 5.38 Thrust Vector Angle in case of Maneuver One, NLPM, and Prediction 
Controller. 
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Figure 5.39 Magnitude of Thrust in case of Maneuver One, NLPM, and Prediction 
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Figure 5.40 Normal Acceleration in case of Maneuver One, NLPM, and Prediction 

Controller 
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Figure 5.41 Angle of Attack in case of Maneuver Two, NLPM, and Prediction 
Controller 
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Figure 5.45 Stabilator Angle in case of Maneuver Two, NLPM, and Prediction 
Controller 



88 

20
 

15
 

10
 

1 

-18
 
0 S 18 15 20 25 30
 

TIME (SECOND)
 

Figure 5.46 Thrust Vector Angle in case of Maneuver Two, NLPM, and Prediction 
Controller 
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Figure 5.47 Magnitude of Thrust in case of Maneuver Two, NLPM, and Prediction 
Controller 
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Figure 5.48 Normal Acceleration in case of Maneuver Two, NLPM, and 
Prediction Controller 
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Figure 5.49 Angle of Attack in case of Maneuver One, LPM, and LF Controller 
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Figure 5.50 Pitch Rate in case of Maneuver One, LPM, and LF Controller 
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Figure 5.51 Pitch Angle in case of Maneuver One, LPM, and LF Controller 
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Figure 5.52 Total Speed in case of Maneuver One, LPM, and LF Controller 
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Figure 5.54 Thrust Vector Angle in case of Maneuver One, LPM, and LF 
Controller. 
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Figure 5.55 Magnitude of Thrust in case of Maneuver One, LPM, and LF Controller 
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Figure 5.56 Normal Acceleration in case of Maneuver One, LPM, and LF 
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Figure 5.57 Angle of Attack in case of Maneuver Two, LPM, and LF Controller 



92 

25 30
 
10 15 20
 

TIME (SECOND )
 

Figure 5.58 Pitch Rate in case of Maneuver Two, LPM, and LF Controller 
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Figure 5.59 Pitch Angle in case of Maneuver Two, LPM, and LF Controller 
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Figure 5.60 Total Speed in case of Maneuver Two, LPM, and LF Controller 
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Figure 5.61 Stabilator Angle in case of Maneuver Two, LPM, and LF Controller 
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Figure 5.62 Thrust Vector Angle in case of Maneuver Two, LPM, and LF 
Controller 
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Figure 5.63 Magnitude of Thrust in case of Maneuver Two, LPM, and LF 
Controller 
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Figure 5.64 Normal Acceleration in case of Maneuver Two, LPM, and LF 
Controller 
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Figure 5.65 Angle of Attack in case of Maneuver One, NLPM, and LF Controller 
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Figure 5.66 Pitch Rate in case of Maneuver One, NLPM, and LF Controller 
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Figure 5.67 Pitch Angle in case of Maneuver One, NLPM, and LF Controller 
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Figure 5.69 Stabilator Angle in case of Maneuver One, NLPM, and LF Controller 
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Figure 5.70 Thrust Vector Angle in case of Maneuver One, NLPM, and LF 
Controller. 
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Figure 5.71 Magnitude of Thrust in case of Maneuver One, NLPM, and LF 
Controller 
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Figure 5.72 Normal Acceleration in case of Maneuver One, NLPM, and LF 
Controller 
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Figure 5.73 Angle of Attack in case of Maneuver Two, NLPM, and LF Controller 
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Figure 5.74 Pitch Rate in case of Maneuver Two, NLPM, and LF Controller 
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Figure 5.75 Pitch Angle in case of Maneuver Two, NLPM, and LF Controller 
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Figure 5.76 Total Speed in case of Maneuver Two, NLPM, and LF Controller 
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Figure 5.77 Stabilator Angle in case of Maneuver Two, NLPM, and LF Controller 
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Figure 5.78 Thrust Vector Angle in case of Maneuver Two, NLPM, and LF 
Controller 
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Figure 5.79 Magnitude of Thrust in case of Maneuver Two, NLPM, and LF 
Controller 
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Figure 5.80 Normal Acceleration in case of Maneuver Two, NLPM, and LF 
Controller 
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CHAPTER 6
 

CONCLUSION
 

In this study, an effective control design methodology using a one-step-ahead 

prediction adaptive control law and an adaptive control law based on a Lyapunov 

function has been presented. These control laws were applied to a highly nonlinear 

maneuverable high performance aircraft. In a modified F/A-18 aircraft, it is difficult 

to control the angle of attack of around 60 and 85 degrees because the stability 

derivatives shown Figures 3.1-3.7 are highly nonlinear. For maneuver one the 

character of the response for maneuver one in the linear prediction model, the 

bilinear prediction model, and the nonlinear prediction model is similar to the 

response reported by Ostroff in [51]. The one-step-ahead prediction adaptive 

controller provided a somewhat faster response. In the case of the one-step-ahead 

prediction controller, the angle of attack reached 55 degrees in approximately 2.0 

seconds and settling time to 60 degrees of angle of attack took about 3 seconds with 

maximum pitch rate of about 48 degrees per second and normal acceleration of 

about 2.3g, while the variable gain approach in [49], [50] reached 55 degrees in just 

under 3.5 seconds and settling time to the same angle of attack took about 6 seconds 

with maximum pitch rate of about 38 degrees per second. The time optimal control 

(with a limitation of 40 degrees per second on the thrust vectoring ) reached 55 

degrees in about 1.8 seconds [39]. In case of H., controller [3], it took for the 

angle of attack to change from 10 to 20 degrees about 3 seconds with a rise time of 
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1 second and maximum pitch rate of 14 degrees per second and normal acceleration 

of about 1.5g. In the case of maneuver one, comparing the bilinear adaptive and 

nonlinear controller with the linear controller, it is shown that the response obtained 

by the one-step-ahead prediction bilinear adaptive and nonlinear controller is slightly 

faster for given command trajectories (60, 35, and 5 degrees of angle of attack) and 

has a smaller value of oscillation near the command trajectory. 

The adaptive controller based on a Lyapunov function provided somewhat 

slower responses than the one-step-ahead adaptive controller. The command 

trajectory of the angle of attack is scheduled like the dotted line in Figure 5.49. It 

took about 3.5 seconds for the angle of attack to achieve 55 degrees. The settling 

time to 60 degrees is under 5 seconds in case of the linear prediction model, and is 

approximately 3.5 seconds to 4 seconds for the nonlinear prediction model. The 

value of the maximum pitch rate is 30 degrees per second with normal acceleration of 

about 2.2g in case of both. The nonlinear adaptive controller based on a 

Lyapunov function is smoother than the one-step-ahead prediction nonlinear adaptive 

controller. 

For maneuver two, with a one-step-ahead prediction controller in the case 

of the linear prediction and the nonlinear prediction model controller, the angle of 

attack changed from 35 degrees to 80 degrees in approximately 2.5 seconds and the 

settling time to 85 degrees of angle of attack took about 3.5 seconds with a maximum 

pitch rate of 50 degrees per second and normal acceleration of about 2.1g. The 

angle of attack trajectories by the controller based on a Lyapunov function is similar 

to that of the one-step-ahead prediction controller. In case of maneuver two, the 
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nonlinear controllers are smoother than the linear controller. Also, the controller 

based on a Lyapunov function is smoother than the one-step-ahead prediction 

controller. The nonlinear controller is more effective than the linear controller as 

angle of attack is increased. This thesis shows that nonlinear control can be utilized 

effectively to control high performance aircraft such as F-18 aircraft for rapid 

maneuvers with large changes in angle of attack even if the nonlinear feedback 

controller operates with a higher-order(more delay terms) linear model reference. 

In the future research, a more advanced reference model could be developed 

for an adaptive reference model. A nonlinear prediction model including 

measurement noise could be considered and be investigated for effects of noises. 

It will be extended to control the lateral motions. This will be done gradually, by 

first constraining the lateral movements to small sideslip angles, as was done by 

several references for example, Safanov,et al discuss the Herbst maneuver [11], in 

which longitudinal and lateral motion are coupled simultaneously, and Ostroff [50]. 
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