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The stability analysis for a heated tube system is an

important safety feature of a nuclear power plant.

Although the system theory is well established for linear

systems described by ordinary differential equations, there

is still a shortage of theory dealing with a distributed

system, which is described by partial differential

equations. By use of the finite difference technique,

several important conclusions for distributed systems are

obtained systematically. These results can be applied

directly to the heated tube system as shown in this thesis.

All these results can be considered as a starting point for

the stability analysis of a distributed system. Further

expansion of these results to a feedback system and closed

loop system are desirable, but beyond the scope of this

thesis.
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STABILITY ANALYSIS OF DYNAMIC HEAT TRANSFER

1. INTRODUCTION

Beside the reactor itself, the steam generator is one

of the principal components in a pressurized water reactor

(PWR). The steam generator transfers the heat from the

primary loop to the secondary loop as shown in Figure 1-1.

Heat is generated by fission in the reactor core. It is

convected from there by the primary coo.lant and passed on
1

to the secondary loop by way of the steam generator .

Eventually heat is transformed to electric power by the

steam which drives a turbine-generator. As shown in this

simple scheme, the steam generator therefore is the

coupling link between the primary and the secondary loop in

the PWR plant. This indicates that it is essential to have

a good understanding of the stability problem of the steam

generator for predicting PWR response under normal and

accidental conditions. It is well understood that any

empirical designs developed without careful analysis are

often high in cost and poor in performance.
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In recent years the problem of stability of two-phase

flow systems has become of interest to engineers.

Experiments have been performed and results are available

in the literature
2-4

, but there is still a shortage of

adequate theoretical analysis. Most mathematical analyses

of flow instabilities performed until now are based on

linearization of the conservation equation
5,6

. Most of

these, in turn, make use of some frequency domain stability

criteria. Typically a transfer function is calculated

numerically to determine stability in terms of a Nyquist

plot
7

. Another approach involves the use of Lagrangian

coordinates instead of Euler coordinates for the fluid

governing equations
8

. Both approaches introduce

simplifying assumptions and employ a considerable amount of

numerical calculations. Because of a lack of stability

criteria for a distributed system (i.e., the system

governing equations are partial differential equations and

the variables are functions of space and time), the

development of improved analytical tools to study and

predict this kind of system becomes necessary.

In this thesis a simple stability criterion for linear

partial differential equations has been investigated.

These results are applied to the stability analysis of a

heated tube system. As shown later the stability for a
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distributed system can be easily and systematically

described by a distributed spatial eigenvalue. The main

objectives of the work reported in this thesis are to

derive the stability criteria for a distributed system and

to apply this analysis to a heated tube system.

When a point of theory is intimately related to

practical application, its conclusion may strengthen not

only our theoretical insight, but our intuitive

understanding as well. The background of this development

involves small perturbation theory and stability criteria

for a system controlled by an ordinary differential

equation (ODE). Throughout this thesis, only the

conclusion, of the background material is used; no attempt

is made to repeat the development of its theory.

In the analysis of many physical systems, a complete

description of the behavior of the system is unnecessary

and all that is required is a knowledge of whether the

system is stable, i.e., whether its response to a bounded

excitation remains bounded or become infinite as time

approach infinity. Often, the onset of oscillations

represents the limit of operating conditions for a given

system. Several rules of thumb are available for

precautions which should be taken in the design of such
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needed is a logical theoretical basis for the prediction of

system performance in advance and for systematic

optimization of the operating condition.

This analysis was originally derived in the course of

consulting work to model the once through steam generator

for Gesellschaft fur Reaktorsicherheit Co. in West Germany

and has no claim to complete generality, although it is

felt that a similar procedure could be applied to different

systems. A computer code was developed to simulate the

steam generator. It was found that the inner iteration

loop of the computer program had convergence problems. A

stability study was needed to solve this problem. The

heated tube model, which corresponds to the inner iteration

loop, is discussed in Chapter 4. The results showed that

the mathematical model was stable. The convergence problem

was actually caused by the iteration technique, as shown in

Appendix B.

In this paper a discrete mathematical model for the

stability analysis of partial differential equations of a

vertical heated tube is presented. The governing equations

for fluids are nonlinear partial differential equations. A

small perturbation technique is used to linearize the
9-11

governing equations . These equations are then
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discretized for the space parameter to get a typical set of

difference differential equations. This procedure is

similar to a "lumping" procedure or engineering

approximation. Finally, stability criteria are applied to
12

this model . This technique is explained in greater

detail in Chapter 2 and its implementation in Appendix A.

The expansion of this procedure for simultaneous partial

differential equations is also presented in Chapter 3.

Because of the use of trapezoidal integration, the

difference differential equations have some special

characteristics which can be used for eigenvalue searching

in stability analysis
13-15

. These characteristics are

analyzed and some rules are established' and presented.

In Chapter 4, the implementation of this approach in a

heated tube is presented. The heat transfer mechanism may

be divided into three regions:

1. Subcooled region: in which heat transfer to the

fluid occurs by subcooled forced convection and

nucleate boiling. The quality is zero throughout

this region.

2. Two-phase flow region: in which the quality of

steam changes from zero to unity. The major heat

transfer mechanisms on the secondary side are
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steam changes from zero to unity. The major heat

transfer mechanisms on the secondary side are

nucleate boiling and forced convection

vaporization.

3. Superheated steam region: in which the heat

transfer mechanism is single-phase forced

convection. Throughout this region the quality

is unity.

All these three regions are analyzed by the procedure

discussed in Chapters 2 and 3.

It is assumed that pressure drops in the elements of

the loop are so low compared with absolute pressure that

compressibility effects and changes in fluid properties can

be ignored
5,6

. For a high-pressure system local changes in

pressure will have a negligible effect on the fluid

properties. Boiling two-phase flow in a channel is

inherently hydrodynamically unstable. Transient flow

excursions or flow oscillations are apt to develop by means

of buoyancy or compressibility effects. Such hydrodynamic

instability of a two-phase flow is not desired, since it

usually precipitates a high-temperature excursion of the

heating element, thus causing a so-called premature

16
burnout . That is to say, when flow instability sets in,
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component failure due to thermal fatigue can occur at a

much lower heat flux than under steady state conditions as

reported in the literature. The result of this analysis is

presented in Chapter 4. Chapter 5 contains concluding

remarks for the stability of a heated tube. Throughout

this thesis, it is intended to systematize as much as

possible the procedures for stability analysis of a dynamic

system.

This analysis is closely related to and dependent on

numerical analysis, which is the basic tool in solving

nonlinear partial differential equations in this computer

era. A complete and general understanding of convergence

for numerical analysis is difficult, especially for a

complicated nonlinear system such as a heat transfer

problem. With the help of stability analysis as shown in

this thesis, it may be determined whether a numerical

instability or a system instability causes the convergence

problem of a computer program. This analysis will be

useful in the actual computer program debugging process.
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1. Reactor 6. Primary coolant
2. Core 7. Steam generator
3. Turbine 8. Feedwater pump
4. Condenser 9. Primary coolant pump
5. Steam line 10. Secondary condensate line

ao

7

10

1'

Figure 1-1 Simplified PWR Schematic
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2. BACKGROUND

2.1. PERTURBATION METHOD FOR NONLINEAR EQUATIONS

Many of the problems facing physicists, engineers,

and applied mathematicians involve such difficulties as

nonlinear governing equations, variable coefficients, and

nonlinear boundary conditions at complex known or unknown

boundaries that preclude solving these equations exactly.

Consequently, solutions are usually approximated using

numerical techniques, analytic techniques, and combinations

of both. Foremost among the analytic techniques are

the systematic methods of perturbations (asymptotic

expansions) in terms of a small or a large parameter or

coordinate
10,11

. This section is concerned only with

these perturbation techniques. The use of linearization

is based theoretically on the Liapunov Theorem which

states that the stability of the linearized system

corresponds to the stability of the non-linear system

operating under quasi-equilibrium conditions
17

.

Linearized models can only predict the system stability
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boundary and appraise the stability margin. They cannot

predict transient unstable system behavior.

The perturbation method can be summarized by the

following procedure:

.1. Determine the governing equation with

boundary conditions.

2. Find the equilibrium solution.

3. Assume a small perturbation variable.

4. _Change the governing equation variable

by the small perturbation vari.able.

5. Eliminate the equilibrium part from

the governing equation.

6. Neglect higher order terms.

7. Obtain the resultant linearized equation.

Notice only step 5 is an approximation. A detailed

development of this procedure is shown in the following.

The mathematical model for heat transfer problems is a

nonlinear partial differential equation. A general one

dimensional nonlinear first order partial differential

equation has the following form:



where

x(Z,t) = A(X,Z)4X(Z,t) + B(X,Z)X(Z,t) + U(X,Z)

X(Z,t) = lax(z,t)

11

(2-1)

and A(X,Z), B(X,Z) and U(X,Z) are continuous functions.

Assume the equilibrium solution of Equation (2-1) is

X = X(Z,O)
e

(2-2)

Then, for a small perturbation, the governing equation can

be linearized as follows:

Let

X(Z,t) = Xe + x(Z,t) (2-3)

Equation (2-3) is substituted into Equation (2-1), and the

equilibrium part is eliminating by virtue of the

equilibrium reference solution.



x = A(X
e
,Z) + (vA)i X + x)

dX 'X
e

dZ e

+ B(X ,Z) a(B1 x (X + x)
aX Xe

a
U(X

e
,Z) + (6701x -x

Equation (2-4) can be rearranged to give

x A(X
e' aq

Z)--X
e

+ B(X
e'
Z)X

e
+ U.(X

e'
Z)

+ A(X
e
,Z)x

az

(--Al ) + B(X
e
,Z) + (=7131 -X

eX X
e

dZ e clX X
e

e

x
X
e

12

(2-4)

+ ( B)
a

X
-x2 + ( A)x

e e

a X-x

(2-5)

The first term in brackets is just the equilibrium state

solution, which has a value of zero. Thus



x = A(X
e az
,Z).(x)

+ (41xe.(pe) + B(Xe,Z) + (4(B)

+ (3-U)
8X X

e

x

x
.x2 +

57

A)

e
X
e

x) x

Xe
X
e

13

(2-6)

In order-tia simplify the system of equations, those terms

which hay.e higher than second order are, neglected, which

results in

x = A(X
e
,Z).(x)

ca

(Al .(SIX ) + X .(18)
0X Xe az e e el

+ B(X
e
,Z) x

X
e

+ (;-2-u)
cjX X

(2-7)

In the general form of linearized partial differential

equations, Equation (2-7) can be written as



x = f(Z)(Ex) g(z)x

Appendix A contains an example to develop a better

understanding of the perturbation method.

14

(2-8)

2.2 DISCRETIZED METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS

The reduction of a differential equation to a set of

finite difference equations is a very powerful method of

numerical analysis, and the trapezoidal method is well

known in integration problems. Applying the same technique

to a partial differential equation (PDE) will change it to

a set of ordinary differential equations (ODE). The

technique used here to discretize a PDE is extensively

described in many textbooks on numerical methods or system

simulation
18

'

19
. Therefore in this section the trapezoidal

integration technique is directly applied to the general

first order partial differential equation

X = f(Z)X + g(Z)X (2-9)
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with initial condition and boundary condition

X(Z,0) = Xi(Z) (2-10)

X(0,t) = Xb(t) (2-11)

Usually the time domain is infinite but the Z domain is

finite (e.g., 0 <Z < L). The Z domain is divided into n

equally spaced sections as shown in Figure 2-1. Consider

the following definitions:

X(Z0,t) = X
e
(t) = X

b
(t) since Z0 = 0

X(Z t) = X
1
(t)

X(Z
n
,t) = X

n
(t). (2-12)

Integration of Equation (2-9) from Zi to Z. yields

dZ = f
J

[f(Z)a-z-X + g(Z)X} dZ (2-13)

The integral sign represents the integration from Zi

to Z
i+1

throughout this thesis. The left hand side (LHS)

can be expressed by the trapezoidal rule as



LHS = (141//2)(i
i+1

+
i

)

16

(2-14)

where AZ = Zi+1 - Z. = L/n. Similarly the right hand

side (RHS) can be expressed by the two terms:

8
RHS

1 52
= jrf(Z)( X) dZ

a= f(Z.
14-.5

) (MX) dZ

= f(Zi+.5)(Xi+1 - Xi) (2-15)

where it was assumed that f(Z) does not vary significantly

over the region of integration and can thus be evaluated at

the midpoint. Similarly,

RHS
2

= jrg(Z)(X) dZ

= g(Zi+.5) X dZ

= g(Z
i+.5

)(X
i+1

4- Xi X.)(L2/2)
(2-16)

Substituting Equations (2-14), (2-15) and (2-16) into

Equation (2-13) yields



or

where

X
1+1

+ X = (2/AZ)f(Z1. )(X. - X.)
+.5 1+1 1.

+ g(Zi+.5)(Xi+1+Xi)

= (246Z)f(Zi+.5) + g(Zi+.5) (Xi4.1)

+ -(2/LZ)f(Zi+.5) + g(Zi+.5) (Xi)

X. +
1

= A
i+1

X
i+1

+ B
i+1

X
i

A
1+1

=
1

g(Z.
+.5

) + (2/&_Z)f(Z
i+.5

)

B. = g(Z
i+.5

) - (2/4Z)f(Z. )

14-.5

For i=0 to n-1, there are n equations which are

17

(2-17)

(2-18)

(2-19)



X
1

= A1X1 + B1Xe - Xe

. .

X2 + X1 = A2X2 + B2X1

X
n

+ X
n-1

= AnXn + BnX
n-1

18

(2-20)

These equations can be written in matrix form by the

following definition

(X) =

X
1

X2

X
n

n x 1

(M) =

__.1
n x n



(U) =

B1Xe - Xe

0

0

(N) =

n x 1

Al

B
2

A
2

B A
n n

19

n x n

(2-21)

Then Equations (2-20) can be written as

(M)(X) = (N)(X) + (U) (2-22)

It is noticed that by this method a PDE with finite Z

domain can be reduced to a set of ODE's which can be

written in a matrix form with lower triangular matrices as

coefficients. It is also interesting to point out that the

lower triangular matrix has many marvelous characteristics

which are extremely useful in stability analysis. A

detailed discussion of these properties appears in

Chapter 3.
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- Zn

- Z n-1

- Zn -2

Figure 2-1 Discretized Mesh Points

2.3 STABILITY THEORY

System theory has developed into a scientific and

engineering discipline which seems destined to have an

impact upon all aspects of modern society. A general

equation can be written for a system, that is,

(X) = (A)(X) + (B)(U) (2-23)
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where (A) and (B) are constant matrix coefficients. (X)

is referred to as a state function. The stability of a

system described by Equation (2-23) can be summarized by

considering the following definitions and rules:
12,13

Definition: The equilibrium solution (if it

exists) of Equation (2-23) is called

the equilibrium state (X
e
).

Definition: Xe is the asymptotically stable

equilibrium state if there exists

some 5>0 such that X (0 )
el<

implies 1X(00)-Xe >0.

Definition: X
e

is a weakly stable equilibrium state

if for any E > 0, there exists some

6%,0 such that

x(0)-xel< 6 implies X (co) - X
e
< E.

Definition: X
e

is an unstable equilibrium state

if for any 5> 0 there exists a state

X(0) such that



Rule 2.1:

22

IX(0)-X el<6, yet X(co)-X
e

k,

where 6 < k <co.

The stability for a system described by

Equation (2-23) is guaranteed if and

only if all the eigenvalues of matrix

(A) have a negative real part.

Rule 2.2: The system is weakly stable if the

matrix (A) has only one zero as an

eigenvalue, but no eigenvalues with

positive real part.

Rule 2.3: The system is unstable if the matrix

(A) has any eigenvalues with positive

real part or multiple zero eigenvalues.

Therefore instead of solving Equation (2-23), the

stability of the system can be easily obtained by

determining the eigenvalues of matrix (A) and applying the

above mentioned rules.
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3. EXTENSION OF STABILITY THEORY

3.1 EIGENVALUE SEARCHING

There is an easy way to find eigenvalues for a

lower triangular matrix

Rule 3.1: The eigenvalues for a lower (or upper)

triangular matrix are the diagonal

elements of this matri.

As was pointed out in Section 2.2, the matrix form for a

discretized partial differential equation always has lower

triangular matrices as coefficients. So eigenvalues are

obvious once the matrices are known. However, most

practical problems involve a set of partial differential

equations. After the discretization procedure, the set of

partial differential equations will become a set of

simultaneous ordinary differential equations with lower

triangular matrices as coefficients. For example,

consider



X
1

= A
11

X
1

+ A
12

X
2

+ U
1

X
2

= A
21

X
1

+ A
22

X
2

+ U
2

24

(3-1)

where A
11, Al2,

A
21

and A
22

are lower triangular matrices.

If Equation (3-1) is written in matrix form, the result is

X
1 A11

A
12

X1 U1

A
21

A
22

X
2

U2 (3-2)

A simple procedure is developed here for the eigenvalue

search of this kind of matrix. Let A
mn

(a
ij

) represent

the element in column j, row i of matrix A
mn

. Then

for a matrix F defined as

F

A
11

A
12

A
21

A
22

lm

... A
2m

A
ml Amt

... A
mm (mn x mn) (3-3)
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where A.. are n x n lower triangular matrices, m
13

corresponds to the number of simultaneous partial

differential equations, and n corresponds to the number of

discretized mesh points, the following rule can be

established:

Rule 3.2: The eigenvalues for the matrix defined

n

7
i=1

in Equation (3-3) are the solution of

S.-All(aii) Al2(aii) ... A (a
.11

.)
lm

A21(aii)
S-A

22
(a

ii
) ... A

2.m
(a

ii
)

A
ml

(a
ii

) A
m2

(a
ii

) ... S-A
mm

(a..)
11

= 0

(m x m)

(3-4)

By this rule, the search for eigenvalues becomes much

easier. For example, let m=2 and n=50. Instead of solving

eigenvalues for a 100x100 matrix, it is only necessary to

solve for the eigenvalues of a 2x2 matrix 50 times.

Besides the computation saving, this theory can be applied
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to the searching for the largest real part of eigenvalue,

which is important in stability analysis.

An example is the easiest way to explain Rule 3.2.

Consider the following 3x3 matrix:

3 0 0

5 4 0

2 6 1

Since this is a lower triangular matrix, the eigenvalues

will be

such as:

3, 4 and 1 by Rule 3.1. Now consider a 6x6 matrix,

2 0 0 : 0 0 0

1 3 0 : 5 1 0

1 0 9 : 0 4 -3

2 0 0 : 8 0 0

2 3 0 : 6 5 0

5 1 4 2 9 1 (3-4a)

Notice this 6 x 6 matrix can be partitioned into a 2 x 2

matrix, where each partitioned submatrix is a 3 x 3 lower

triangular matrix. Therefore instead of solving for the
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eigenvalues of the 6x6 matrix directly, the eigenvalues can

be found for the three 2x2 matrices

2 0 3 1

2 8 3 5 , and

The eigenvalues will be 2, 8, 2, 6, 3 and 7 by Rule 3.2.

The time consumed for eigenvalue searching is proportional

to n4, so the time savings for an (mn x mn) matrix will be

n3. For this example the time savings will be 27 times.

For a di.scretized problem, where n is much larger than m,

for example for n=50 and m=2, the time savings will be

125,000 times.

Before developing the next rule, some notation needs

to be defined to simplify the problem.

Definition: Diagonal matrix D(A): Given an n x n

matrix A, the diagonal matrix is an

n x n matrix with all elements equal

to zero except the diagonal elements

which are equal to the diagonal

elements of matrix A, correspondingly,

that is
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D(A) =

all

a
nn

Rule 3.3: The eigenvalues for a lower triangular

matrix are the diagonal elements of its

diagonal matrix.

Some useful rules for matrix manipulation follow:

Rule 3.4: The inverse matrix of a lower triangular

matrix is a lower triangular matrix.

Rule 3.5: Let B represent the inverse matrix of a

lower triangular matrix A. Then each

element of matrix D(B) is the reciprocal

of the corresponding element of matrix

D(A).
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For instance

A=

D(A) =

2 0 0

3 5 0

1 7 4

D(A ) =

2 0 0

0 5 0

0 0 4

0.5 0 0

0 0.2 0

0 0 0.25

Let matrix C = AB, where matrices A and B are lower

triangular matrices. Then the following rules apply:

Rule 3.6: The product matrix of two lower triangular

matrices is a lower triangular matrix.

That is to say, matrix C is also a lower

triangular matrix.

Rule 3.7: The elements of diagonal matrix D(C) are



the products of the elements of diagonal

matrices D(A) and D(B), respectively.

That is,

D(AB) = D(C) =

For example,

A

3 0 0

2 5 0

6 4 1

C11

a
11

.13
11

C
nn

a n.bnn nn

30
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B

2 0

1 7

3 8

0

0

9

Then

6 0

-
0

C = AB = 9 35 0

19 36 9

6 0 0 3x2 0 0

D(C) = 0 35 0 = 0 5x7 0

0 0 9 0 0 lx9

The definition of a matrix in no way rules out the

possibility that the elements of a matrix are themselves

19
matrices . In fact, it is often convenient to subdivide,

or partition, a matrix into submatrices and then regard the

original matrix as a new matrix having these submatrices as

elements.
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Definition: A matrix is known as a block lower

triangular matrix if can be partitioned

to form a lower triangular matrix.

An interesting property of a block matrix is shown

below. In particular, it is helpful to regard an mn by mn

matrix A =

Laiji

as an n by n square matrix whose elements

are the respective m by m submatrices of A. For instance

A =

2 5 0 0 R
4 001 Loo

2 3

4J

3 6

4 7

4 7

3 1

0 01

2 8

5 6 x 6 (3-5)



can be written as

A =

(a)11 (a)12 (a)13

(a)
21

(a)
22

(a)
23

(a)
31

(a)
32

(a)
33

33

(3-6)

where

(a)l1

(a)13 =

2

1

0

0

5

4
....

0

0

(a)12

(a)21

Lo

10

2

_
1

0

4 , etc. (3-7)

The following rule then applies:

Rule 3.8: The product of two matrices is

equivalent to the matrix product

of their partitioned submatrices.



For example

AB =

(a)
11

(b)
11

+ (a)
12

(b)
21

+ (a)
13

(b)
31'

(a)21(b)11 (a)22(b)21 (a)23(6)31'

(a)
31

(b)
11

+ (a)
32

(b)
21

+ (a)
33

(b)
31'

34

Rule 3.9: The determinant, det[A], of a block

lower triangular matrix A is equivalent

to the determinant of its partitioned

matrices whose elements are the

determinants of each submatrix, i.e.,

det [A] = det

det(a)11 det(a)12 det(a)13

det(a)
21

det(a)
22

det(a)
23

det(a)31 det(a)32 det(a)33

For example the 6 x 6 matrix [A] defined as Equation (3-5)

has as its determinant



detN = det

35

3

5

-65

0

-3

-17

0

0

-38

= 342

Rule 3.10: The product of two block lower

triangular matrices is also a

block lower triangular matrix.

Rule 3.11: If a matrix can be partitioned to

become a block lower triangular matrix,

then the eigenvalues of the original

matrix are the eigenvalues of each

diagonal submatrix.

For example, the eigenvalue of A defined in Equation (3-5)

is equal to the eigenvalues of (a)11, (a)
22

and (a)
33

as defined in Equation (3-7).

Rule 3.12: The eigenvalues of a block lower

triangular matrix are the eigenvalues
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of the elements (i.e., submatrices) of

its block diagonal matrices.

Let C = AB where A and B are block lower triangular

matrices.

Rule 3.13: The matrix C is also a block lower

triangular matrix and its block diagonal

submatrix is the product of the block

diagonal submatrix of 'A and B.

D(C) = D(AB) =

(a)
11

-(b)
11

(a)
nn

-(b)
n



For example, if

B

3

6 4

[3!

1

8

0

2 1

7 5

0 0

1

0

0 0

_I

0 0

0 0

2 3

and A is defined in Equation (3-5), then

D(C) = D(AB) = D(A)D(B)

2 5 3

1 4 6 4

3

4 7 7 5

2

5 1

T

2 3

37
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D(C) =

36 22

27 17

48 33

57 39

18 26

7 8

3.2 STABILITY FOR LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Stability theory is widely used in linear systems

. describe& by linear ordinary differential equations.

However, in many engineering problems, partial differential

equations are involved, for which stability criteria are

needed. If the discretized method discussed in Section 2.2

is applied, a general linear partial differential equation

can be changed to a set of ordinary difference differential

equations. Then all the stability criteria for ordinary

differential equations can be directly applied. Some

interesting results are obtained in the following.

From Equations (2-20) and (2-21) and Rules 3.3 and

3.4, it is noted that the inverse matrix of M is a

triangular matrix and its diagonal matrix has unity for
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all elements. Multiplying both sides of Equation (2-13) by

the inverse matrix of M yields

X = (M
-1

N)X + M
-1

U (3-8)

Rules 3.5 and 3.6 indicate that the product of the inverse

of matrix M and matrix N is a lower triangular matrix whose

diagonal matrix is the diagonal matrix of N (i.e., M has

unity diagonal elements).

D(M
-1

N) = D(N) (3-9)

Since the eigenvalues for a lower triangular matrix are

just the diagonals of that matrix, the eigenvalues for

matrix (M
-1

N) are from Equation (2-19):

A = g(Z) + (2/G12)f(Z) (3-10)

where zZ can be selected as small as possible. Let

H(Z) = lim (2/2)A = f(Z)
0

Definition: A function f(Z) is defined as positive

(negative) in the interval 0< Z < L if,

for all the points Z in this interval,
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the function f has only positive

(negative) values.

For a general linear first order partial differential

equation such as Equation (2-9), the criteria of stability

for 0 <: Z L are derived as following:

1. If f(Z) is always negative, then the

system is equilibrium stable.

2. If f(Z) has a positive value at any point Z,

then the system is unstable.

3. If f(Z)=0 for any Z in 0<( Z<( L, then

the criterion depends on g(Z). If g(Z)

is always negative, then the system is

equilibrium stable. If g(Z) is positive

at any point Z, the system is unstable.

4. If f(Z) and g(Z) are both zero at

any point, and for all other points f(Z)

has negative values, then the system

is weakly stable.

The same criteria are here applied to numerical method

analysis. As shown below, criteria exist for selection of

the number of mesh points (n) in order that the numerical

analysis of the differential equations will not cause
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divergence for a stable system. The criteria for stability

are:

1. If both g(Z) and f(Z) are negative for

all Z in 0 < Z < L, then there is no

limitation for selection of number of

mesh points.

2. If f(Z) is negative and g(Z) is positive

for a given Z, then the choice should

satisfy

g(Z) 2f(Z)/42 < 0

3. If f is positive and g is negative,

then the choice should satisfy

g(Z) + 2f(Z)/42 < 0

In this case, the system is unstable.

The convergence and the accuracy of the solution are

also dependent on the selection of LZ. A more specific

discussion is shown in Reference 19 .
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3.3 STABILITY FOR SIMULTANEOUS PARTIAL

DIFFERENTIAL EQUATIONS

A further expansion of stability theory to

simultaneous partial differential equations is useful in

fluid mechanics and heat transfer problems, since the

governing equations simultaneously involve the conservation

of mass, momentum and energy. A general first order

simultaneous set of linear partial differential equations

can be represented as

= naz

[Glixi

+
U1

X = F

+ U
m

+ F1mZXm]

+ GlinXm]

1

+

+ + F
mmc

+ GamiXm]

j

(3-11)
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where F, G and U are all functions of Z and m is the number

of equations. Equation (3-11) can be rewritten in matrix

form as

(X) = (F)41(X) + (G)(X) + (U) (3-12)

where

(X) =

(U) =

X
1

X
m

U
1

U
m

m x 1

(F) =

(G) =

F
11

F
lm

F
ml

F
mm

G
11

G
lm

M X M

G
ml

G
mm m x m

(3-13)

If Equation (3-12) is integrated from Zi to Zi+1,

the result is
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(X) dZ = (F)A-(X) dZ

+ (G)(X) dZ

+ 1 (U) dZ

By the trapezoidal rule, the left hand side is

LHS = (//2) {(X)i +1 (i)j (3-13a)

where (X)i = (X(Zi)). The first term on the right hand

side is

RHS
1 oZ

= (F)--7-(X) dZ

= (F)i+.5 jr (X) dZ

where (F) is considered constant over the small interval

Z to Z. Then



RHS1 = (F)i+.5 [(X)i
+1

- (X)i]

The second term on the right hand side is

RHS
2

= ji(G)(X) dZ

= (G)1+.5 "(X) dZ

(G)i+.5 1(X)i4.1 + (X)i1(//2)

45

(3-13b)

(3-13c)

by an analysis similar to the RHS1 term. The third term

on the ri.ght hand side is similarly given by

RHS
3

= f (U) dZ

= (62/2) FJ).14.1 + (U)i]
(3-13d)

Combination of Equations (3-13a), (3-13b), (3-13c) and

(3-13d) yields



or

where

(i)i+1 (;()i (2 /Z)(F)i+.5 [(x)i+1 ("i]

+ (G)i+.5 [(X).14.1 + (X).]

+ + (U)i

(i)
i+1

+ (X). = (A)
i+1

(X)
1+1

+ (B)
i+1

(X)
i

+ (C)
i+11

= (G)i+.5 + (2//)(F)i+.5

(B)
1+1

= (G)
i+.5

- (2/L2)(F)
i+.5

(C)i+1 = (0)1+1 + (U)i

For i=0 to n-1, there are n differential difference

matrix equations, represented as

46

(3-14)

(3-15)



= (A)
1

(X)
1

+ (B)
1

(X)
0

+ (C)
1

- (X)0

(X)2 = (A)2(x)2 (B)2(x)1 (C)2

(i)n (i)n-1 (A)(X) + (6) (X) + (C)

If {X] , [M] , [N] , [U] and (I) are defined as

(X)n
mn x 1

47

(3-16)



X uw 

Ow x uw 

0(X) (3) + 
0 

(X) I (9) 

uw x uw 

8.17 

u(v) u(e) 

(v) Z(8) 

I(v) 

(I) (I) 
(I) 

= 
[n] 

[N] 

= 
[w] 

pue 



( I ) =

1

M X m

49

(3-17)

then Equation (3-16) can be written in matrix form as

[M] {X] = [N] [X] + [111 (3-18)

Notice that [M] and [N] are block lower triangular matrices

and the inverse matrix of M is

(I)

(I) mn x mn
(3-19)

Equation (3-19) indicates that the diagonal submatrices of

M are block lower triangular matrices whose block



diagonal matrices all have unit matrices as submatrices.

If both sides of Equation (3-18) are multiplied by the

inverse matrix of [M], Equation (3-18) becomes

50

(3-20)

By Rules 3.10 and 3.13, the product of X-1-,N] is a block

lower triangular matrix with its diagonal submatrix equal

to the diagonal submatrix of [N], namely

D ( .[M] [N] ) = o[p] (3-21)

Since the eigenvalues for a lower block triangular matrix

are just the eigenvalues of its submatrix, according to

Rule 3.12, then the eigenvalues of matrix [1,41-1N are
J

the eigenvalues of matrix (A)
i+1

from the definition of

[N] in Equation (3-17). Then, according to Equation

(3-15), the diagonal submatrices are

(A)i+1 = (G)i+.5 + (2/A4a)(F)
i+.5

Since AZ can be selected as small as desired,
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H(Z) = lim (LZ/2)A = (F)
LZ-4 0

since as OZ -3 0, the second term in Equation (3-21) is

much greater than the first term.

For a general set of simultaneous linear first order

partial differential equations having a form similar to

Equation (3-11), the criteria of stability in the interval

Oc( Z< L are derived as following:

1. If the eigenvalue of (F(Z)) is negative for

all Z, then the system is equilibrium stable.

2. If (F) has a positive eigenvalue for any

value of Z, then the system is unstable.

3. If (F) has a zero eigenvalue, then the criteria

depends on (G). If (G) has a negative

eigenvalue for all Z, then the system is

stable. If (G) has any positive eigenvalues,

then the system is unstable.

4. If (F) and (G) both have zero eigenvalues at

some point, and at all other points Z have

negative eigenvalues, then the system is

weakly stable.



52

3.4 STABILITY FOR HIGHER ORDER PARTIAL

DIFFERENTIAL EQUATIONS

The same development as in Section 3.3 is used here

for higher order partial differential equations. A general

second order partial differential equation can be written

in matrix form as

2

(X) = (F )2(X) + (F
1
)2(X) + (F )(X) + (U)

2 lee
aZ

(FO )(X)

(3-22)

(X), (F
2
), (F

1
), (F

0
) and (U) are m x m matrices.

Integration of Equation (3-22) from Z to Z
i+1

yields

2

f(i) dZ = (F2) -;(X) dZ

+ f(Fi):S2(X) dZ

+ (F0)(X) dZ

+ (U) dZ

By the trapezoidal rule, the left hand side is

(3-22a)



53

LHS = (QZ/2) [(X)i+1 + (i)i]

(3 -22b)

The first term on the right hand side is

2

RHS = (F )---(X) dZ
1 2 alaz2

_2

= (F ). (X) dZ
2 14..5 az2

---

= (F ) - f:1(X) 1
2 i+.5 is3Z i+1 ij

(3-22c)

where (F
2

) is considered constant over the small interval

Z.
1

to Z. The second term on the right hand side is

RHS
2

= f(F
1 az
)D(X) dZ

(Foi+.5 1.2.(x) dZ

=
(F1)i+.5 L(X)i+1 (X)i]

The third and fourth terms on the right hand

side are similarly given by



RHS
3

= j(F
0
)(X) dZ

= (F0)i+.5 f(X) dZ

= (F0)i+.5(t2/2) 1(X)i+1 + (x)i]

RHS
4

= 1(11) dZ

= (AZ/2) [(

54

(3-22d)

(3-22e)

Combination of Equations (3-22a) through (3-22e) yields

(i).14.1 + (i)i = (2/AL/)(F2)i+.5[A(X)i+1 - 32(X)i]

+ (2/AZ)(F1).5 .( )

i+1
(X).11

,

+ (F0).1+.5 [(x)i+1 + (X)i]
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or in a simple notation,

()()i+1 (;()i (A)i+1;2(X)i+1 (B)4(X)i

+ (C)i+1(X).14.1 +

where

(A)i+1 =

+ (E)
i+1

(246Z)(F2).5

(B)i.4.1 = -(A)i+1

(C)i+1 = (26Z)(F1)i+.5 + (F0).1+.5

(D)
1+1

= -(2/AZ)(F1)i+.5 + (F0).5
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(E)i+1 = (U)i+1 + (U)i

For i = 0 to n-1, there are n equations, namely

,_00 (B) SI(X)
1 o

+ (C)
1
(X)

1
+ (D)

1
(X)

0
+ (E)

1
- (X)0

(i)2 (i)1 = (A)2A002 +(B)2&()(11

+ (C)
2
(X)

2
+ (D)

2
(X)

1
+ (E)

2

(X)n + (X)n -1
= (A)nkX)n +(B)n(X)n_i

+ (C)n(X)n + (D)n(X)n
-1

+ (E)n
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These equations can be presented in a block matrix form as

follows:

[E]

where [X] , [td , [N] , [pi and [E] are defined as

X

M

(X)

(X)
mn x 1

(3-23)

mn x mn



0(x) 
- ( 3 ) + 

0 
( x ) ( a ) + 

0 
(x) e 

Lei (a) 
L_ 

uw x uw 

uw x uw 

89 

u(3) U 
(a ) 

Z(3) (a) 
T(3) 

u(v) u(s) 

(V) 
Z 

(8) 

(V) 

= 
[3] 

= 

= 
[N] 
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Multiplication of Equation (3-23) by M -1 yields

[m] 1 [N] E.7 [x] 1 [x] 1 [

From Section 3.3, it has already been shown that the

stability of this system is determined by the eigenvalues

of [M] -1[N]. Since both [M] -1 and [N] are lower triangular

matrices, Equation (3-19) and Rules 3.10 and 3.13 indicate

that the-eigenvalues of [M] -1 [N] are determined by the

diagonal submatrix of [N] , that is, (A)i, where

(A)i = (2/2)(F2).i...5

In conclusion, if (H) and (G) are defined as:

and

(H) = lim (//2)(A) = (F
2

)

(G) = lim (AZ/2)(C) =

ALI ---2,>0

(

the stability criteria for Equation (3-22) in the interval

0 < Z <L are;



60

1. If the eigenvalues of (H) are negative

for all Z, then the system is equilibrium

stable.

2. If (H) has positive eigenvalues for any

point Z, then the system is unstable.

3. If (H) has a zero eigenvalue, then the criteria

depend on (G). If (G) has a negative eigenvalue

for all Z, then the system is stable. If (G)

has any positive eigenvalues, then the system

is unstable.

4. If (H) and (G) both have zero eigenvalues

at the same point and at all other points

have negative eigenvalues, the system is weakly

stable.

Since (F
2

) is a given function of Z, it is suggested

to find the maximum eigenvalue by plotting the

eigenvalues of (F2) as an function of Z. For a finite

number of mesh points, some important point affecting the

results of the above conclusions may be missed otherwise.
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3.5 STABILITY FOR SIMULTANEOUS PARTIAL DIFFERENTIAL

EQUATIONS WITH A SIDE CONDITION

Another interesting extension of stability theory is

presented here, namely the simultaneous linear partial

differential equation with one side condition. Consider

X = F (aX) + F (IY) + F (44)
11 ola 12 cQ 13 ca

X + G
12

Y + G
13

W + Ul

a 8
F (X) + F (D-Y) + F (mW)
21 te 22 8V 23 oa

+ G
21

X + G
22

Y + G
23
W + U

2

(3-24)

(3-25)

W = aX + by (3-26)

Substituting Equation (3-26) into Equations (3-24) and

(3-25) in order to eliminate terms containing W yields



X = (F11+ aF
13
)(1X) + (F

12
+ bF

13
)(S1Y)

ag 8g

+ (G
11
+ aG

13
)(X) + (G

12
+ bG

13
)(Y) + U

= (F + aF + (F + bF
21 23 dIZ 22 23 ilyZ

+-(G
21
+ aG

23
)(X) + (G

22
+ bG

23
)(Y) + U

Define matrices (F)

F
11

+

(F) =

F
21

+

G11 +

(G) =

G
21

+

and (G) as

aF
13

aF
23

aG
13

aG
23

F
12

+ bF
13

F
22

+ bF
23

G
12

+ bG
13

G
22

+ bG
23

1

2

62

(3-27)

(3-28)

From the theory derived in Section 3.3, the stability
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criteria are determined as follows:

1. If all eigenvalues of matrix (F) are negative,

then the system is stable.

2. If any eigenvalue of matrix (F) is positive,

then the system is unstable.

3. If any eigenvalue of (F) is zero, the stability

is determined by matrix (G).

As a special case, if the left hand side of Equation

(3-26) is zero, then

Y = C(Z)X (3-29)

and the situation reduces to a singular matrix problem.

Substitution of Equation (3-29) into Equations (3-24) and

(3-25) to eliminate terms containing Y yields

X = F' (X) + F (--W) + G' X + G' W + U
11 aZ 13 j,i)Z 11 13 U1

X = F' (-IX) + F' (=LW) + G' X + G' W + U'
21 aZ 23 3 21 23 2

(3-30a)

(3-30b)



where

+ C.F
1211 11

F' =
21

F
21

/C + F
22

F'
23

= F
23

/C

GI G11 C.G12 (52C).F1211 11

G'
21

G'
23

U2

=

=

G /C
21

G
23

C

U
2
/C

+
G2222

(az C).F /C
22

64

(3-31)

Notice that since both equations in (3-30) have left hand

sides containing X only, all the rules derived before

cannot be applied in this special case. Consider the

discretized method again. Integration of Equation (3-30a)

from Zi to Zi+1 yields
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f(i) dZ = F' (LX) dZ
11 8Z

+ IF
13

+ G'
11

X dZ

+ f
1

G'
3
W dZ

+ ftJ1 dZ

dZ

By the trapezoidal rule, the left hand side is

LHS = (n2/2) [(i)0.1 (i)i]

The terms on the right hand side are

RHS1 = (Fil)14.5p)14.1 - (X)il

RHS2 = (F13)i+.5VW)i+1 (W)i1



RHS3 = (G11)i+.5 [001+1 + (X)d(2/2)

RHS4 = (G13)i+.5
L(W)i

+ (W) d(LZ/2)

RHS5 = [(U1)14.1 + (111)il(LZ/2)

Combination of the right hand side and left hand side

yields the following matrix form:

where

1

66

(3-32)



and

and

=

Al

B
2

A
2

B A
n n

A
i

= (2/2)(F11)i+.5 + (G11)i+.5

Bi = -.(2/AZ)(F11)i+.5 + (Gil)i+.5

[N1
2

I =

Cl

D
2

C
2

D
n

C.
1

= (242)(F13)i+.5 + (G13)i+.5

D
i

= - (2/LZ)(F13)i+.5 + (G13)i+.5

67

(3-33)

(3-34)



Integration of Equation (3-30b) in the same way yields

where

and

H [X] = [N21] [X] + [N221 + [11

2]

[N22]

Ai

B' A'
2 2

C'
1

D' C'
2 2

B' A'
n n

D' C'
n n

A' = (2ga) + (G' )

21 i+.5

68

(3-35)



1

D!
1

=

=

=

-(2/61) +

+

+

(242)

-(2A81)

69

If
[w]

is eliminated from Equations (3-32) and (3-35), the

result is

( N 1 -1 r 1

22J IN12.1-1)Pd Dg [N22] -1[1/21 [N121-1 K]

Then

[G] [x] [H]

where

rN -1 rN iN -1 i
I'I 221 21J I. 12J 11J'

[G] [M] -1( [N22]-1 [N12]-1)-1

-1 [N211 [N12] -1 )

(3-36)
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H

[M] - 1

( [N221* [N12]
-1) -1

([N22]
-1 r -1

[U2] [N12] P11)

Since [M]
' 11 ' [N12],

[N
21 '

] and [N
22

] are all lower

triangular matrices, the matrix LG] is also a lower

triangular matrix.

If rules 3.5, 3.6 and 3.7 are applied, the eigenvalues
-

of [G] are just the diagonal elements of matrix and

F(Z) = lim D( [G] )

AZ,0

= lim (C! - C.)
-1

(CIA. - C.A!)
AZ 0

1 1 1 1 1 1

= (2/L2)
2
(F3 - F13)

-1
(F Fil - F13F1)

(3-37)

If the expressions for F11
2

and F'
1

in Equation (3-31) are

used, the system stability is determined by a function



H(Z) which is defined as:

or

H(Z) =

H(Z) =

F
23

(F
11

+ CF
12

)/C - F
13

(F
21

/C + F
22

)

(F
23

/C - F
13

)

F
2

(

1
+ CF

12
) - F

13
(F

21
+ CF

22
)

(F
23

- CF
13

)

71

(3-38)
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4. IMPLEMENTATION

Excursion is a term used to describe a flow

instability where a slight perturbation can cause a drastic

transient in the flow conditions. A new equilibrium level

is attained after the excursion. The change is

irreversible and can also produce a temperature excursion.

Flow oscillations, in which both flow rate and pressure

undergo periodic oscillation about a mean level, occur

under certain conditions of slight disturbance in two phase

flow. They can be damped, neutral, or growing. In a

growing oscillation, the amplitude of the flow and pressure

fluctuations increases with time and many even cause a flow

reversal. Such a situation can lead to the mechanical

failure of a system. A damped oscillation generally seeks

a stability point near the normal operating condition after

a sufficient period of time. A neutral oscillation

persists indefinitely and can be tolerated if the amplitude

is not too large.

Boiling two phase flow is an extremely interesting

subject because it involves the simultaneous transport of

momentum, heat and mass between solids and fluids and also

across the liquid-vapor interface.
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As nuclear technology flourished, the study of boiling

heat transfer received a greater impetus because boiling is

an extremely efficient mode of transferring heat from both

a nuclear reactor and a steam generator.

4.1 MATHEMATICAL MODEL FOR REACTOR HEAT TRANSFER

The nuclear reactor or the steam generator in Figure

1-1 can be simulated by a heated tube model.
20,21

The

fluid is heated as it flows through a cylindrical tube of

length L and diameter D as shown in Figure 4-1. The heat

flux (i.e., cr(Z,t)) into the fluid is a function of time

and position. A mathematic model is needed to describe the

dynamic variation of the fluid in the tube.

Since the nuclear reactor is usually operated at high

pressures (7 MPa on the secondary side of the steam

generator and 15 MPa on the reactor side) and the pressure

drop through the whole reactor or steam generator is about

0.1 MPa, it is suitable to assume that the compressibility

effects and changes in fluid properties can be ignored,

i.e., the pressure can be assumed to be a constant within

the reactor or steam generator. The heat transfer of the
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fluid in the tube can be separated into three different

regions: a subcooled region, a two phase region and a

superheated region. The governing equations for the fluid

cam be written as:

q "

D

Flow

L

Figure 4-1. The Heated Tube Model

Mass conservation:

at
a

=
a

Energy conservation:

(r11), - A(P/h) + Pq "/A

(4-1)

(4-2)



Physical property of fluid:

where
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= pp,h) (4-3)

p(Z,t) is the fluid density (kg/m3),

V(Z,t) is the flow velocity (m/sec),

h(Z,t) is the enthalpy of the fluid (kJ/kg),

q "(Z,t) is the heat flux (kJ/m2-s),

P is the heated perimeter of the tube (m), and

A is the cross sectional area of the tube (m
2

)

The enthalpy is the physical property of the fluid

that relates to the internal energy. That is, in the

subcooled or superheated region, the temperature is used to

represent the internal energy, but in the two-phase region

the temperature is constant, so the enthalpy is used. With

a proper initial condition and boundary conditions,

Equations (4-1) through (4-3) will give the solution for

the fluid properties /J, V and h.
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4.2 SUBCOOLED FLUID

For a subcooled fluid, the fluid is incompressible and

the heat flux is constant. Then Equation (4-1) becomes:

at
pvap=-, = 0

so the product PV is a function of time only. Thus

Equation (4-2) becomes:

(.."=h) = -(PV)(h) + Pq"/A
at

Rearrangement of Equation (4-5) yields:

et aZ
P/(A10)(h e

(4-4)

(4-5)

(4-6)

Because -(V) is always negative, the system is stable if

V>0. If V=0, the system is equivalent to the heating of a

closed pool, where eventually all the liquid will be

evaporated.



4.3 TWO PHASE FLUID AND SUPERHEATED FLUID

For two phase fluid flow, the governing equation is

the same as for a superheated fluid. Assume a constant

pressure and time independent heat flux q" = q(z) and

change variables such that X =/D and Y = (ph). Then

Equations (4-1) to (4-3) can be rewritten as:

-Z(XV)

a
j2xt.,/

vul Pq"/A
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(4-7)

(4-8)

X = f(Y) (4-9)

There are three equations for the three unknowns X, Y and

V. The method of stability analysis for this system is to

(1) use the small perturbation method to linearize the

governing equations, and (2) use the stability criteria

derived in Chapter 3.

The first step of the perturbation method is finding

the equilibrium solution. In equilibrium state, Equations

(4-7) and (4-8) become



0 = - ow(XV)

0 = - 52(YV) + Pq"/A

with boundary conditions

V(0,0) = Ve(0)

h(0,0) = he

78

(4-10)

and external heat flux q"(Z). The equilibrium solutions

are:

and

X = Xe(Z)

Y Ye(Z)

V = V
e
(Z)

For a small perturbation, the governing equations are

then linearized as follows:

X(Z,t) = xe(z) + 7(z,t) (4-14)



Y(Z,t) = Ye(z) + Y(z,t)

V(Z,t) = ve(z) + V(Z,t)

79

where X, Y and V are small perturbation variables.

Substituting Equations (4-14), (4-15) and (4-16) into

Equations (4-7) to (4-9) yields:

= [(xe (Ve + V)]

+ 11)(V
e

+ V)] + Pq "/A
qZ e

X
e

+ X = f(Y
e

+ Y)

since X
e
and Ye are equal to zero by definition.

Rearrangement yields:

= - ,ix
e
v
e e

- [X + 7v
e

+ 5N]

[

a
TiYeVel Pc1"/A freV VVe

X
e

+ X = f(Ye + Y)
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Elimination of the equilibrium state part of these

equations by the equilibrium solution and expansion of the

third equation in a Taylor series yields:

- Z[Xev +Xve + 7V]

Y = - FY V + YV
e

+ YV1
Z e

7 (4f 1, Y + 0.5
*d" e

2

D Y2 +
ay2 'Y

Simplification of these equations by neglecting higher

order terms results in:

X = - x
e
v + XV

e IZ

= [a_ - yev yve]

(37f)Iy

e

Rearrangement of these equations yields:



* = (-ve)7 + (0) + (-Xe4V

a(- )x (0) )v
dz e dZ e

= (0) + (-V
e
)1Y + (-Y

e
)7(

aZ 57

+ (0) (- v
e

-Y + (- Y
e

)vaz

Ye
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(4-17)

Equations (4-17) have the same form as Equations (3-24),

(3-25) and (3-29) in Section 3.5. According to the

results derived in Section 3.5, the stability criteria

(see Equation (3-38) where F11 = -Ve, F12 = 0, F13 = -Xe,

F21 = 0, F22 = -V
e

and F
23

= -Y
e

) depend on

H(Z)

(-Ye) (-Ve) + (0) - (-Xe) (0) + C(-Ve)

(-Ye) - C(-X
e

)



Y V - CX V
e e e e

CX
e

- Y
e

= -V
e
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Thus the system is stable as long as Ve > 0, i.e., H(Z)

is negative. This is the same conclusion as for subcooled

heating.

4.4 EXCURSION INSTABILITY

As shown in Section 4.3, the heated tube system with a

constant heat flux is a stable system. In terms of system

analysis, this system can be represented by the following

block diagram:

q1'

D

Figure 4-2 Block Diagram for Heated Tube System
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where q" is the input, h is the output and D is an

operator. If the output is the wall temperature of the

tube instead of enthalpy, the diagram can be expanded as

q- D

h,q"
A

T ,

11

B

C

T

Figure 4-3. Block Diagram for Wall Temperature

where T
f

is the temperature of the fluid, T
w

is the

temperature of the tube wall, and A, B, C are three

different operators. Operator A corresponds to the steam

tables

T
f

= T(P,h),
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operator B corresponds to Newton's law of heat convection,

that is,

q" = H(T
w

-
f

)

which implies

Tw = Tf + q"/H,

and operator C corresponds to the heat transfer

coefficient correlation

H = H(T
w
,T

f
,q")

In terms of system analysis, the following diagram

results:

X
D B

Figure 4-4. Block Diagram for Tube Wall Temperature
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where X is the input q", Y is the combination of h and q",

Z is T
f
and q", and W is the output I. Notice that this

is a feedback system.

q
11

8

ic

TzT -
1 w

Figure 4-5. Heat Transfer Correlation
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Many empirical data have been collected for this type

of system. The feedback operator C can be represented in

Figure 4.5. It is found that if the whole system is

operating at point A of Figure 4-5, a small increase of q"

will cause the operating point to shift to point C. This

is the well known excursion phenomena in nuclear reactor

safety analysis.
22,23

In terms of system analysis, in the

range from A to B, the system has a positive feedback which

corresponds to an excursion instability. In the range B to

C or D to A, the system has a negative feedback, which

corresponds to a stable system. Since there is a shortage

of feedback analysis theory for a distr.ibuted system and

since Figure 4-5 is in a graphical form instead of an

analytical function, developing the theory for such a

distributed system would be an interesting expansion beyond

the scope of this thesis.
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5. CONCLUSION

There is a certain difference between a physical

problem and a mathematical model. This thesis discusses

the stability analysis for a mathematical problem. For an

actual physical problem, the empirical data should used to

benchmark the mathematical results; otherwise some hazard

may possibly exist.

Laplace transforms are usually used to solve the

stability problem of a distributed system. This approach

involves the numerical solution for the transformed

equation and Nyquist plot. The disadvantage of this is it

can not derive a general stability criterion for a general

case. Each analysis must be performed independently with

no idea about what is happening inside. This author is

unaware of anyone trying to solve the stability problem of

a distributed system directly from the eigenvalue approach

as was done in this thesis. The reason this 'las not been

previously done may be that this approach involves an

eigenvalue search for a huge matrix that is beyond what a
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human or even a computer can comfortably and efficiently

handle. By careful analysis of the matrix form, however,

it was found that a general rule for eigenvalue searching

for block triangular matrices exists to solve the huge

matrix problem and the analytic solution was derived.

In this analysis, the stability criteria for a first

order linear partial differential equation with distributed

coefficients were derived first. Instead of discretized

eigenvalues, distributed eigenvalues (i.e., eigenvalues as

function of Z) were obtained. Based on these stability

criteria, the general criteria for simultaneous partial

differential equations were also determlned. Furthermore,

the set of simultaneous partial differential equations with

a certain side condition was also solved. Special

attention was paid to the singular matrix coefficients

which have formats as in Equation (3-30). It can be

predicted that for a singular matrix problem, the criteria

matrix can be reduced to a lower order case, and the

solution is achievable. The general case is worthy of

further development. Based on those results, the system

stability problem for a distributed parameter can be

derived easily and systematically.

The heat transfer problem for a constant heat flux
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shows that the system is stable as long as the fluid

velocity is positive. The heat transfer problem for a

constant wall temperature can be simulated by a feedback

system. With positive feedback, an excursion phenomena

occurs, while with negative feedback a stable system

exists.

In summary, the following were derived in this study:

1. The stability criteria for a linear partial

differential equation.

2. The stability criteria for a set of

simultaneous linear partial differential

equations.

3. The stability criteria for a set of

simultaneous linear partial differential

equations with a side condition.

4. The stability criteria for a singular

matrix coefficient.

5. The heat transfer stability of a heated

tube for a time invariant heat flux

without flow reversal.

It is important to point out that in order to make

sense for the discretized method and limit calculations,
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all parameter functions in the governing equations should

be smooth and continuous.

Whenever a linear mathematical model for a distributed

system is established, the stability problem can be solved

by the result derived in this paper. The trapezoidal

approximation used in this paper can actually be replaced

by the mean value theorem
24

, which means no approximation

has been made. A further study to include the feedback

modeling for a distributed system is beyond the scope of

this study and will be explored later. An extension of

this study would be to establish a complete system theory

for distributed systems including multi-dimensional

systems, system feedback analysis, and closed loop system

analysis.



91

BIBLIOGRAPHY

1. K. C. Lish, Nuclear Power Plant Systems and
Equipment, Industrial Press Inc., New York
(1972).

2. Y. A. Hassan and C. D. Morgen, "Transient
Prediction of 19 Tube Once Through Steam
Generator by RELAP5/MOD1," ASME, 71-HT-42.

3. C. J. Baroczy, "A Systematic Correlation for
Two-Phase Pressure Drop," NAA-SR-MENO (1966).

4. G. B. Wallis and J. H. Heasley, "Oscillations
in Two-Phase Flow Systems", Journal of Heat
Transfer, A.S.M.E. Transactions, Series C,
83, .363 (1961).

5. K. C. Chan, "Thermal-Hydraulic Stability Analysis
of Steam Generators," Ph.D. Thesis*, University of
California, Berkeley (1979).

6. P. Saha, "Thermally Induced Two-Phase Flow
Instabilities, Including the Effect of Thermal
Non-Equilibrium between the Phases" Ph.D. Thesis,
Georgia Institute of Technology (1974).

7. C. T. Chen, Introduction to Linear System Theory,
Holt, Rinehart and Winston, New York (1971).

8. W. M. Keys, Convection Heat and Mass Transfer,
McGraw Hill Book Co., New York (1980).

9. J. J. Duderstadt and L. J. Hamilton., Nuclear
Reactor Analysis, John Wiley and Sons, Inc.,
New York (1976).

10. A. H. Nayteh, Introduction to Perturbation
Techniques, Blaisdell Publishing Co., Waltham,
Massachusetts (1968)

11. J. Kevorkian and J. D. Cole, Perturbation
Methods in Applied Mathematics, J. Wiley and
-Sons, Inc, New York (1981)



92

12. T. Kailath, Linear Systems, Prentice Hall, Inc.,
Englewood Cliffs, New York (1980).

13. L. Padulo and M. A. Arbib, System Theory,
W. B. Saunders Co., Philadelphia (1974).

14. C. R. Wylie, Advanced Engineering Mathematics,
McGraw Hill Book Co., New York (1975).

15. E. Kreyszig, Advanced Engineering Mathematics,
J. Wiley and Sons Inc., New York (1972).

16. J. R. Lamarsh, Introduction to Nuclear
Engineering, Addison-Wesley Publishing Co.,
Massachusetts (1983)

17. LaSalle and Lefshetz, Stability by Liapunov's
Direct Method, Academic Press, New York (1961).

18. A. S. Jackson, Analog Computation,
McGraw Hill Book Co., New York (1960).

19. B. Carnahan, H. A. Luther and J. O. Wilkes,
Applied Numerical Methods, J. Wile.), and Sons,
Inc, New York (1969).

20. G. B. Wallis, One-Dimensional Two-Phase Flow,
McGraw Hill Book Co., New York (1969).

21. J. R. Welty, C. E. Wicks and R. E. Wilson,
Fundamentals of Momentum, Heat and Mass Transfer,
J. Wiley and Sons, Inc., New York (1976).

22. R. T. Lahey, Jr. and F. J. Movely, The Thermal-
Hydraulics of a Boiling Water Nuclear Reactor,
American Nuclear Society (1979).

23. M. M. El-Wakil, Nuclear Heat Transport,
International Textbook Co., New York (1971).

24. G. B. Thomas, Calculus and Analytic Geometry,
Addison-Wesley PublishirirTo., Massachusetts,
(1972).



APPENDICES



93

APPENDIX A. IMPLEMENTATION OF PERTURBATION METHOD

It is frequently of interest to compute the small

change or perturbation caused by a small change of the

boundary condition of a system. Fortunately if this

perturbation is small, one does not have to repeat the

whole system calculation, but instead can use well-known

techniques of perturbation theory to express the

corresponding change in terms of the initial condition.

Although the techniques are described here by means of an

example that is an ordinary differential equation, the

method is concise and applicable to partial differential

equations as well. The perturbation method combined with a

numerical technique such as a finite difference or a finite

element technique, result in a very powerful and versatile

technique.

In order to avoid the complexity of a physical

problem, a purely mathematical problem is used as an

illustration:



X' = -X
2

+ 2X + 3

where X' = dX/dt, with initial condition:

94

(A-1)

X(0) = 2 (A-2)

The first step of the perturbation technique is to assume

X = Xe + x (A-3)

where X
e
-is the equilibrium solution to Equation (A-1).

Solving Equation (A-1) with the left hapd side equal to

zero (equilibrium state) yields

X
e

= 3 or -1 (A-4)

Then substituting Equation (A-3) into Equations (A-1) and

(A-2), respectively, yields

x' = (2 - 2Xe)x - x2 (A-5)

x(0) = X(0) - Xe (A-6)

It should be pointed out that no approximation has
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been made in Equation (A-5), which has the same solution

as Equation (A-1). The perturbation x represents the

deviation from the equilibrium solution (i.e., x = X-Xe).

If the perturbation is assumed to be small, the second

order term in Equation (A-5) can be neglected,

which yields

x' = - 2Xe)x (A-7)

Instead of solving the nonlinear Equation (A-1), the

analytical solution for the linear approximation

Equation .(A-7) is obtained:

x= [X(0) - Xe]exp[(2 - 2Xe)t] (A-8)

X = Xe + x = X
e

+ [X(0) - Xei exp L(2 - 2Xe)t] (A-9)

Notice that the root X
e

= 3 yields a stable solution,

while X
e

= -1 yields a divergent solution, so X
e

= 3

is chosen. The exact solution of Equation (A-1) was

solved by the predict-correct method. The comparison

between the exact value and approximation is shown in

Figure A-1. There are two points that should be noticed

in this example. First, a nonlinear equation can be
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approximated by a linear equation in the neighborhood of

the equilibrium state. Second, the approximate solution

approaches the exact value asymptotically.



2

1. Exact value
2. Perturbation approx.

Variable t

Figure A-1. Example Perturbation Method Solution
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APPENDIX B. NUMERICAL CONVERGENCE PROBLEM AT

A PHASE BOUNDARY

During the computation of two-phase flow, a common

problem is the convergence at the phase boundary, i.e, the

change from liquid to two-phase or from two-phase to vapor.

The govel--iiing equations are the conservation of mass and

energy equations, together with a side condition state

equation which is actually the steam tables. The

conservation equation gives enthalpy (h) as function of

specific volume (v). The steam table gives (v) as a

function of (h). Thus enthalpy and specific volume are

related by two functions

h = F(v)

v = G(h)

By this logic, the problem is simplified to a root finding

problem. A plot of F and G in the same figure is shown in
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Figure B-1. Assume the iteration starts from point 1. The

second point will be point 2 and then points 3, 4 and 5.

However, the resulting iteration just repeats itself and

never converges. This is a numerical convergence problem

which comes from the singular point of the steam tables.

Notice this is not a system instability. One way to solve

this problem is to use the slope instead of the point for

iteration (actually this can be considered as a modified

Newton's method). Once the iteration loop is found, e.g.,

points 2, 3, 4 and 5), the slope method is begun. If line

A is defined as the line passing through points 2 and 4 and

line B it". the line passing through point 3 and 5, then the

formulas for lines A and B are:

A: v = (v4 - v2)/(h4 - h2) (h - h2) + v2

B: v = (v3 - v5)/(h3 - h5) (h - h1) + v

The intersection will be

h = (h3 + h5)/2

5

since h3 = h4, h2 = h5, v2 = v3, and v4 = v5. In computer

programming notation, this is written as:

h
n+1

= (h
n

+ h
n-1

)/2
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where h
n

is the (n)th iteration value of enthalpy. This

method was used successively to solve the convergence

problem in the OTSG (once through steam generator) code.

Results showed that the convergence was fast (usually no

more than five iterations). It was found that during

computer code development, it was hard to distinguish

system instabilities from numerical instabilities, although

once the numerical instability was identified, it was not

hard to solve it.

Enthalpy
h

Figure B-1. The Convergence Problem at a Phase Boundary
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APPENDIX C. PROOF OF MATRIX RULES

Rule 3.1 and Rules 3.3 through 3.7 for a lower

triangular matrix are equivalent to the special case of

a block lower triangular matrix (i.e., a lx1 submatrix).

Rules 3.8 and 3.9 are proved in reference 14. The proof

for the rest of the rules involving block lower triangular

matrices is shown below.

Proof of Rule 3.10:

Let C = AB where A and B are mxm block lower triangular

matrices with nxn submatrices as elements and (A)..,
13

(B).. and (C).. are submatrices in column j and row i of

matrices (A), (8) and (C), respectively. Prove that (C)..
13

equals (0) for j > i.

By Rule 3.8

!(C)
ij

= (A)
ik
(B)

kj
k=1

For k = i+1 to n, matrix (A) is (0), which yields
ik
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(C).. = (A)ik (B) .

kj
k=1

Also for k = 1 to j-1 < i, matrix (B)ki is (0).

Thus

(C). . = 2=
i

(A) .(B)
ij k kJ

k=j

If j > i, the sum does not exist and

(C).. = (0)
13

Proof of Rule 3.11:

Let C = )I - A where A is an m by m block lower

triangular matrices with n by n submatrices as elements.

Prove that

ICI = 7T - A

i=1
ii

where ICI represents the determinant of matrix C. Since

matrix C is also a block lower triangular matrix, by Rule

3.9 the determinant of matrix C is just the product of the

determinants of its block diagonal submatrices. That is
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ICI = )4 -
11

m

i=1

Proof of Rule 3.12:

Since the diagonal matrix keeps the same diagonal

submatrices as the original matrix, Rule 3.12 can be

considered as a corollary of Rule 3.11.

Proof of Rule 3.13:

Use the same notation as the proof of Rule 3.10. Prove

= (A)... (B)..

By Rule 3.8

n

(C)ii = Es, (A)ik.(B)ki

k=1

For k = i+1 to n, matrix (A)
ik

is (0), and for k = 1 to

i-1, matrix (B)ki is (0), which yields

(C)ii E (A)ik.(B)ik A1..1
11

.B
k=i
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Proof of Rule 3.2:

In order to avoid a complex mathematical notation, a

simple example is given to shown the logic of this proof.

Let matrix A be defined as

A

All

X

X

C11

X

X

0

A
22

X

0

C
22

X

0

0

A33

0

0

C33

:

XX8
.

.

.

.

:XXD

B
11

X

D
11

X

0

22

0

D
22

0

0

33

0

0

33

where X represents any number (i.e., X has no relationship

to the eigenvalues of matrix A). Changing column 4 with

with column 2 and then changing row 4 with row 2 yields



105

A
11

C
11

X

X

X

X

B
11

D
11

X

X

X

X

:

:

:

0

0

A
33

0

0

C
33

0

0

X

22
A22

C22
22

X

:

;

:

:

.

:

0

0

X

B
22

D
22

X

0

0

B
33

0

0

0
33

Changing column 3 with column 4 and then changing row 3

with row4 'yields

A
11

B
11 .

: 0 0 : 0 0

C
11

D
11

0 0 0 0

X X A
22

0 B
22

0

X X :X A33
63333

X X : C
22

0 : D
22

0

X X : X C
33

X 0
33

Changing column 4 with column 5 and then changing row 4

with row 5 yields



The same-logic

Notice this

C =

106

- A.

and by Rule

A
11

B
11 .

: 0 0 : 0 0

C
11

D
11

: 0 0 0 0

X X : A B : 0 0
22 22

X X C
22

D
22

0 0

X X :X X :ABA33 33

X X : X X :CD
33 33

can be applied to the matrix

is a block lower triangular matrix,

3.11 the eigenvalues are equivalent to the eigenvalues of

the diagonal block submatrices. Although this proof

involved a 6 by 6 matrix with 2 by 2 submatrices, a similar

procedure can be followed for an m by m matrix with n by n

submatrices.
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APPENDIX D. APPLICATION OF THE HEATED TUBE MODEL

A complete steam generator simulation can be

partitioned into the following three major parts: (1) the

primary side heat transfer, (2) the secondary side heat

transfer and (3) tht wall heat transfer. In actual

computer programming, these correspond to three

subroutines, that is,

H
1

H
1
(q")=

H
2

= H
2
(q")

q" = Q(H1, H2)

where H
1

and H
2
are the enthalpy of the primary side and

secondary side, respectively, and q" is the heat

transferred from the primary side to the secondary side.

The heated tube model can be applied to both part (1)

and part (2) of a steam generator simulation. The

stability of a heated tube model which corresponds to the
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stability of the inner loop iteraion of a computer program

is discussed in this thesis. The feedback model for

distributed systems which corresponds to the outer loop of

computer programs is desirable to be developed but is

beyond the scope of this thesis.


