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ABSTRACT

Narrowband oscillations observed in the upper equatorial Pacific are interpreted in terms of a random

ensemble of shear instability events. Linear perturbation analysis is applied to hourly averaged profiles of

velocity and density over a 54-day interval, yielding a total of 337 unstable modes. Composite profiles of mean

states and eigenfunctions surrounding the critical levels suggest that the standard hyperbolic tangent model of

Kelvin–Helmholtz (KH) instability is a reasonable approximation, but the symmetry of the composite per-

turbation is broken by the stratification and vorticity gradient of the underlying equatorial undercurrent.

Unstable modes are found to occupy a range of frequencies with a peak near 1.4 mHz, consistent with the

frequency content of the observed oscillations.

A probabilistic theory of random instabilities predicts this peak frequency closely. An order of magnitude

estimate suggests that the peak frequency is of order N, in accord with the observations. This results not from

gravity wave physics but from the balance of shear and stratification that governs shear instability in geo-

physical flows. More generally, it is concluded that oscillatory signals with frequency bounded by N can result

from a process that has nothing to do with gravity waves.

1. Introduction

The upper equatorial oceans exhibit strong shear and

stratification as well as evidence of small-scale instability

(e.g., Moum et al. 1992; Hebert et al. 1992), but their mean

profiles generally exhibit Ri . 1/4, indicating stability.

(Here, Ri is the gradient Richardson number, to be de-

fined in detail below. Values . 1/4 indicate suppression of

shear instability by stratification.) It has been suggested

that random events such as internal gravity wave inter-

actions perturb the flow locally so as to reduce Ri below
1/4, setting the stage for shear instability (e.g., Moum et al.

1992; Peters et al. 1994). When resolution is fine enough

to reveal regions where Ri , 1/4, conditions amenable

to instability can often be identified (e.g., Sun et al. 1998).

Shear instabilities have also been seen in numerical sim-

ulations of the upper equatorial ocean (Skyllingstad and

Denbo 1994; Wang et al. 1998; Wang and Müller 2002;

Pham and Sarkar 2010).

In a companion paper, Moum et al. (2011, hereafter

Part I) report on observations of a persistent narrow-

band signal in the upper equatorial Pacific from highly

resolved measurements of temperature fluctuations on

a mooring. This signal was characterized by a spectral

peak (at frequency fNB ’ 0.001 2 0.002 Hz) that was

close to N/2p. The amplitude of the spectral peak varied

diurnally (more energetic at night) and was correlated

with enhanced turbulence. The signal was vertically co-

herent over the range of measurements (29–59 m) with

an abrupt vertical phase change (p/2 over 20 m).

To examine aspects common to the observed signal

and to shear instabilities, several properties of an ensem-

ble of unstable modes determined from linear stability

analysis (LSA) of observed currents and stratification

were used for comparison. Most importantly, it was found

that computed shear instabilities showed a preferred

frequency very close to that of the observed oscillations

(Fig. 1). The computed wavelengths were consistent

with Kelvin–Helmholtz (KH) instabilities on a stratified

shear layer and with previous observations that define

their spatial structure (Moum et al. 1992). A particularly

intriguing feature of both observed and computed fre-

quency distributions is that the peak frequency lies close

to the local buoyancy frequency N. This property calls to
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mind internal gravity waves (IGWs), whose intrinsic

frequency is bounded by N. In contrast, the frequency of

a KH billow is essentially independent of N, and it seems

suspicious that the two should happen to be of such

similar magnitude.

Our goal in the present paper is twofold. First, we

provide a thorough description of the unstable modes

and the assumptions and methods by which they are de-

rived. In the process, we show how linear eigenfunctions

can be used in making quantitative estimates of vertical

velocities, fluxes, and dissipation rates. Second, we explore

a probabilistic model that accounts for the near-N fre-

quencies of the observed oscillations. We imagine that the

upper equatorial Pacific exists in a state of near-neutral

equilibrium, with shear somewhat less than that required

to produce instability. At random times and places, that

equilibrium is upset locally (perhaps by the constructive

interference of gravity wave packets), leading to a local

increase in shear and hence to the potential for instability

(Miles 1961; Howard 1961). Each instability grows and

then mixes out, returning the mean flow to a stable state.

We hypothesize that the observed oscillations represent

the net effect of these sporadic mixing events.

To test this hypothesis, we treat the hourly averaged

profiles of velocity and density as stationary states and

assess their stability against normal mode perturbations.

The profiles are described briefly in section 2 (and

thoroughly in Part I). We scan the 1296 h of the ob-

servation period and, for each hour, look for sites of

potential instability (section 3). The resulting unstable

modes are compared with the observed oscillations. In

section 4, statistics of various model parameters are ex-

amined, extending the analyses of Part I. In section 4b, a

composite of the mean flow surrounding unstable modes

with frequencies near the peak is shown to look a lot like

a textbook shear layer, justifying preliminary identifi-

cation of the instabilities as KH, but also revealing some

intriguing similarities with the ‘‘near jet’’ model of Pham

and Sarkar (2010).

The connection between mode frequency and N is

pursued in two steps. First, we derive a simple probability

distribution function for frequency based on uniform dis-

tributions of wavelength and phase velocity (section 5a).

This yields a peak frequency very close to that found in

both the linear stability analyses and in the observations.

We then show, in section 5b, that the peak frequency is of

order N. Conclusions are summarized in section 6.

2. Observational context

The background states for our stability analyses were

taken from the Tropical Atmosphere Ocean (TAO)

array between 19 December 2006 and 10 February 2007,

inclusive (Fig. 2); details of the measurements and data

FIG. 1. Histogram of absolute cyclic frequency for 155 unstable modes computed numerically

from hourly averaged profiles of velocity and density (see section 3 and appendix A for details).

Dark bars highlight the peak frequency range used in later analyses. Curves show variance-pre-

serving spectra of four independent xpod temperature time series, averaged over the entire time

period and normalized to make the maximum value 40. Sensor depths are as shown in the legend.
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processing are given in section 3a. Early in the analysis

period, the west-flowing South Equatorial Current (SEC)

was unusually deep and strong (blue in Fig. 2a). Through

January, the SEC relaxed and shallowed, and by Febru-

ary a strong Equatorial Undercurrent (EUC, shown in

red) was evident near 100-m depth. Meridional velocities

were weak during this interval and are not shown. Shear

and stratification were both strongest on the upper flank

of the EUC (Figs. 2b and 2c). For later reference, note

that in late December when the SEC was deep, unusually

weak stratification (blue) extended to nearly 100-m depth.

The inverse Richardson number frequently exceeded the

critical value 4, indicating the potential for instability

(Fig. 2d).

The TAO moorings were supplemented by moored

xpods over several months in 2006–07, yielding ex-

tended, high-resolution time series of temperature at 08,

1408W and at four depths: 29, 39, 49, and 59 m. From

these measurements arises a new depiction of the full

frequency spectrum of temperature fluctuations (Fig. 1)

through to the frequencies associated with turbulence,

from which the turbulent dissipation rates are estimated.

In Part I, we found that each series showed a persistent

spectral peak near the cyclic frequency 1.4 mHz. Oscil-

lations appeared in groups of ;10, and were associated

with elevated turbulent dissipation rates that could have

accounted for their demise. These oscillations showed

several ‘‘textbook’’ features of KH instability.

1) The waves were vertically coherent at the peak fre-

quency and showed a phase difference of about 908

across the shear layer.

2) Taking the layer over which the phase changed as the

inner half of the shear layer, we estimate that the

wavelength would be 7 times greater, for example,

7 3 20 5 140 m. This is in the range of previous ob-

servations (Moum et al. 1992).

3) Combining this wavelength and the measured fre-

quency gives a phase velocity that is within the range of

the background current profile, as predicted for shear

instability by the Howard (1961) semicircle theorem.

Absence of any of these three properties would have

disproved the hypothesis that the oscillations are KH

events, and their confirmation encourages us to explore

the hypothesis further.

3. Methodology for linear stability analysis
of measured profiles

a. Processing of TAO data for stability analysis

Hourlyprofilesofvelocity–shearanddensity–stratification

werederivedfromTAO mooringdataat08, 1408W.Because

FIG. 2. Flow characteristics in the upper 150 m: (a) zonal velocity, (b) squared shear, (c)

squared buoyancy frequency, and (d) inverse Richardson number. White bullets indicate

‘‘shallow’’ modes; black bullets indicate the ‘‘deep’’ modes that are the focus of the discussion

to follow. The black contour in (b) encloses regions with S2 . 1.31 3 1024 s22, used to identify

the deep, rapidly growing modes.
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LSA is sensitive to ›u/›z and ›r/›z, data were carefully

processed to prevent artifacts in vertical gradients when

gridded onto the 1-m LSA grid. First, density was com-

puted from collocated T and S at 1-, 5-, 10-, 20-, 40-, 60-,

80-, and 120-m depths. These were augmented by T-only

sensors at 28, 100, and 300 m; to compute density, S was

linearly interpolated at 28- and 100-m depths, and as-

sumed constant below 120 m. Then, ›r/›z was computed

using first differences at midpoints between sensors, and

›r/›z linearly interpolated onto the fine-resolution grid.

Finally, density was computed by integrating ›r/›z. Ve-

locity profiles were computed from a secondary subsur-

face mooring (typically located 1000 m away) with an

upward-looking 150-kHz acoustic Doppler current pro-

filer (ADCP), mounted nominally at 290 m, recording

data in 8-m bins, but linearly interpolated onto a 5-m grid.

Above 40-m depth (where ADCP data are contaminated

by sidelobe reflections), discrete u and y measurements

from Argonaut point sensors located on the primary

mooring at 10, 25, and 45 m were used. As with density,

shear was computed based on first differences at mid-

sensor locations (i.e., at 12.5 and 35 m) and, then,

linearly interpolated onto a 1-m grid; for simplicity and

stability, ›r/›z 5 0 at z 5 0 was assumed. Finally, velocity

was computed by integrating shear.

b. Linear stability analysis

The linear perturbation theory for a viscous, diffusive,

stratified shear flow is reviewed in appendix A, along with

numerical techniques for the solutions of the resulting

equations. Here, we describe aspects of the methodology

specific to the present application.

The hourly averaged profiles of zonal velocity and

buoyancy (section 3a) were tested for stability against

normal mode perturbations of the form

f9(x, y, z, t) 5 f̂(z) exp[st 1 i(kx 1 ly)]. (1)

Here, f9 represents a two-dimensional perturbation of

any flow property; f̂ is a complex, z-dependent ei-

genfunction; s is a complex growth rate; and k, l is a real

wavenumber with zonal and meridional components.

Only the real part of f9 is physically relevant. The wave-

number is related to the wavelength l by l 5 2p/ ~k, where
~k is the wavenumber magnitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2
p

. Departure of

the wavevector from the positive zonal direction is mea-

sured by the obliquity angle u 5 tan21(l/k). The negative

imaginary part of the growth rate, 2si, is a radian

frequency, sometimes denoted v. The phase velocity is

given by c 5 v/ ~k, and the depth at which the phase speed

matches the background flow in the direction of (k, l) is

called the critical level zc.

The wavenumber plane was scanned for local maxima

of the growth rate. Any case for which the minimum

Richardson number (Ri 5 N2/S2, where N and S are the

buoyancy frequency and shear magnitude of the mean

state, respectively) was greater than 1/4 was skipped, as it

failed to satisfy the Miles (1961) necessary condition for

instability. Any growth rate maximum was identified as

a growing instability and retained for analysis subject to

the following additional criteria.

1) Velocity measurements do not resolve vertical scales

less than 16 m. A shear layer with thickness one-half

of this value is expected to produce an instability with

wavelength approximately 7 m 3 8 m 5 56 m (Hazel

1972). Accordingly, only modes with wavelength greater

than 56 m are retained.

2) Because it treats the mean flow as stationary, the sta-

bility analysis is only valid when the resulting instability

grows on a time scale faster than any fluctuation in the

mean flow. The fastest fluctuations allowed in our data

are those occurring on time scales similar to the aver-

aging interval, 1 h. Accordingly, we reject any mode

with growth rate sr less than 1 h21.

3) Nocturnal surface mixed layers are distinguished from

the underlying fluid by very weak shear and stratifica-

tion. Unstable modes with critical layers in this regime

have very different physical characteristics and are thus

identified as a separate mechanism (the ‘‘shallow’’

modes shown as white dots in Fig. 2). These are elim-

inated by imposing the criterion S2
c . S2

c0, where S2
c0 5

1.31 3 10�4 s�2 (contour in Fig. 2b), where Sc
2 is the

squared shear at the critical level. The critical-level

Richardson number, Ric 5 Nc
2/Sc

2, is ,1/4 for all modes,

but can be�1/4 for the shallow modes (Fig. 3).

For computational efficiency, the (k, l) plane was

scanned using two grids. The first had values of k and

l spaced logarithmically, with successive values differing

by a factor 1.27. Values of k corresponded to zonal

wavelengths 2p/k ranging from 56 to 400 m. (Preliminary

trials showed no unstable modes at wavelengths greater

than this.) Values of l were the same as those of k, plus

their negatives, plus zero. Velocity and density profiles

were interpolated to a vertical spacing of 1.5 m using cubic

splines. The computational domain extended from the

surface to 200-m depth. This grid was scanned, keeping

the largest sr at each (k, l), and wherever a local maximum

in sr exceeding 1 h21 was found, a second scan was per-

formed. For the second scan, only a small region of the

wavenumber plane surrounding the maximum was cov-

ered. This enabled us to halve the grid spacing in the k,

l plane; extend the domain to 250-m depth; and reduce the

vertical grid spacing to 1 m. Sensitivity tests established

that this vertical resolution and this domain depth are
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sufficient for the resulting eigenmodes to converge. If the

local maximum still satisfied the growth rate criterion,

a biquadratic fit was performed over the nearest 13 grid

points and used to make a further estimate of the location

of the growth rate maximum. If that estimate yielded a

larger growth rate, it was retained; if not, it was discarded

in favor of the maximum gridded value.

The algorithm identified 375 modes that satisfied cri-

terion 1. Of these, 47 were rejected on the basis of cri-

terion 2, leaving 334. Criterion 3 allowed us to identify

182 of these as shallow modes (Fig. 3, white dots in Fig.

2). Removing these left 152 modes (black dots in Fig. 2)

for further analysis. The majority of the retained modes

occurred in December and early January when the SEC

was deep and weak stratification, ordinarily character-

istic of the near-surface layer, extended to 100-m depth.

As expected, modes generally coincide with regimes of

elevated shear (Fig. 2b) and inverse Richardson number

(Fig. 2d).

4. Characteristics of the unstable modes

a. Eigenvalue statistics

The scalar properties of our ensemble of instability

events are summarized in Figs. 1, 4, and 5. The growth

rates (Fig. 4a) covered the same range throughout the

analysis period. As noted previously, a large fraction of

the instabilities appeared in December and early Janu-

ary. Although modes were found as deep as 70–90 m

(Fig. 2), their phase velocities (Fig. 4b) were dominantly

negative since the west-flowing SEC was unusually deep

during that time. In mid- to late January and early

February, instabilities were sparser and tended

to concentrate at shallower depths, consistent with the

shoaling of the EUC (Fig. 2). By February, phase ve-

locities were generally positive, consistent with critical

levels located in the east-flowing EUC.

Many of the modes found early in the analysis period

were located below z 5 259 m, the depth of the

deepest xpod. As modes flux buoyancy primarily

downward (e.g., Fig. 7 below), these deep modes may

be difficult to detect with the xpods. The deep modes

are shown as gray bullets in Fig. 4. When these are

ignored, the distribution over time is much more con-

sistent with the time dependence of the observed os-

cillations. The observed trend to lower frequencies

over time (Part I, Figs. 3c–f and 8a) is also reflected in

these modes (Fig. 4c).

Histograms derived from the entire ensemble shown

in Fig. 4 provide a more comprehensive view of the mode

properties. The growth rates (Fig. 5a) range from 1 to 11

FIG. 3. Squared buoyancy frequency vs squared shear at the critical level for 334 unstable

modes. Bullets and open circles indicate deep and shallow modes, respectively. The vertical

dotted line at S2
c 5 S2

c0 delineates the mode categories. The slanted line indicates Nc
2/Sc

2 5 1/4.

Gray bullets represent modes with critical levels deeper than the deepest xpod.
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e-foldings per hour with a peak at 4 h21.1 Because the

background flows were primarily zonal, the obliquity an-

gle u was most commonly near zero (Fig. 5b). The cyclic

frequencies (f 5 si/2p) are generally negative (Fig. 5c).

Phase velocities (Fig. 5d) cover most of the range of

the zonal currents, from 21 m s21 in the SEC to 11 m s21

in the EUC. Negative values are considerably more com-

mon because of the coincidence of weak stratification

and a deep, strong SEC early in our analysis period.

Critical-level depths (Fig. 5e) are restricted to values

deeper than 37.5 m, and extend nearly to the depth of

the EUC core. Although unstable modes might in

principle have wavelengths up to 7 times the depth of the

EUC core, or 700 m, most computed modes had l be-

tween 100 and 350 m. Modes with horizontal wavelengths

less than 56 m were rejected due to the limited vertical

resolution of the measurements (section 3b, criterion 1).

The computed range of wavelengths is consistent with

existing observations (e.g., Moum et al. 1992) and stability

analyses (e.g., Sun et al. 1998; Smyth and Moum 2002).

We have hypothesized that this ensemble of instability

events is responsible for the high-frequency oscillations

observed in the xpod records (Part I). This hypothesis is

conveniently tested via comparison of the logarithmic

distribution of mode frequencies with the variance-

preserving spectra of the observed temperature time

series. The histogram in Fig. 1 is the variance-preserving,

logarithmic form of the frequency distribution shown

in Fig. 5c. The solid curves show the time-dependent

spectrogram from Part I (Fig. 3) averaged over the 54-day

period of the analyses. Frequencies below 3 3 1024 Hz

are not shown as the spectrum is dominated by tidal

motions in that range. Although these are two different

indicators of the frequency content, we expect dominant

features such as the narrowband peak to be reproduced.

Both the histogram and all four curves show a peak at

j f j 5 1.7 3 1023 Hz with slightly elevated values at

lower frequencies. This correspondence between the

ensemble of unstable modes and four independent re-

cords of temperature fluctuations provides compelling

evidence in support of our hypothesis.

FIG. 4. (a) Growth rates, (b) phase velocities, and (c) absolute cyclic frequencies of computed

unstable modes, displayed as a function of time. Black bullets indicate modes with critical levels

within the range of the xpods (above 59-m depth). Gray bullets represent modes with critical

levels deeper than 59 m. The horizontal line in (c) indicates log10jf j 5 22.85, the peak fre-

quency from Fig. 1.

1 A more complete histogram would descend monotonically from

a peak at sr 5 0, representing the theoretically infinite population

of marginally unstable modes. Our search algorithm finds the

fastest-growing mode first, then iterates to find additional modes.

The iteration must stop after a finite time, and it therefore rejects

a large number of marginal modes. This is also evident in Fig. 3,

where the gap between the instability ensemble and the stability

boundary shows the absence of marginal modes. Figure 1 suggests

that our algorithm successfully identifies the modes that con-

tribute most to the observed signal.
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b. The composite mean flow

To assess the nature of the background states that

produce the instabilities, we compiled profiles of velocity,

shear, stratification, and Richardson number representa-

tive of the neighborhoods of 69 unstable modes near the

peak frequency of the narrowband oscillations described

in Part I. The modes were selected by the requirement

that log10jf j lie between 23.0 and 22.7 (dark bars in Fig.

1). A scaled depth was defined for each mode, measured

from the critical level in units of the wavelength. Likewise,

the velocity was measured relative to the phase velocity.

The profiles were then sorted into 42 bins of the scaled

depth ranging from 20.5 to 0.5. For each flow property,

the median and upper and lower quartiles in each bin were

computed. Results are shown in Fig. 6. Horizontal dotted

lines indicate a layer of thickness 1/7 the wavelength, the

approximate ratio for KH instability on a shear layer.

The composite velocity profile (Fig. 6a) features a

central shear layer bounded below by a jet correspond-

ing to the EUC and above by a layer of much weaker

shear. In the upper part of the central shear layer, the

shear exhibits a distinct peak (Fig. 6b), which coincides

closely with z 5 zc. This is consistent with our scenario of

a local increase in shear due to some random event.

The shear profile reveals a broader region of elevated

shear below the main peak. This shear is stabilized by

enhanced stratification associated with the EUC core

(Fig. 6c). As a result, the inverse Richardson number

(Fig. 6d) is below the critical value 4.

In contrast, the upper part of Fig. 6d shows Ri21 close to

and occasionally exceeding 4. We do not expect strong

instability here as the high Ri21 is caused by weak strati-

fication, not strong shear. Only in a thin layer surrounding

z 5 zc do we see strong shear combined with values of Ri21

consistently greater than 4. The thickness of that layer

corresponds quite well with the value l/7 expected for

a shear layer, as indicated by the horizontal dashed lines.

In summary, the composite background velocity profile

close to the critical level is broadly consistent with the

hyperbolic tangent model used previously to describe

Kelvin–Helmholtz instability (e.g., Hazel 1972). The un-

stable shear layer is typically located near the upper edge

of a thicker layer where the shear is stabilized by strong

stratification. These secondary features are likely to have

some effect on the stability characteristics. An alternate

(and likely better) representation of this composite

background flow state is the ‘‘near jet’’ case used recently

in simulations of the EUC by Pham and Sarkar (2010).

c. The composite eigenmode: Quantitative
predictions from linear theory

Figure 7 shows the composite vertical velocity eigen-

function, with the median composite current, shear, and

FIG. 5. Histograms of the (a) growth rate sr, (b) angle of obliquity, (c) cyclic frequency,

(d) phase velocity cp, (e) critical-level depth zc, and (f) wavelength l.
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stratification profiles for reference. Near the critical level,

the vertical velocity is reduced and the eigenfunction un-

dergoes a rapid phase shift. This pattern of behavior co-

incides with a thin layer in which S2 . 4N2 (or Ri , 1/4; cf.

Figs. 7b and 6d) and is characteristic of shear instability.

Below the critical level, large vertical velocities are seen in

combination with a gradual tilt in phase (Figs. 7c and 7d),

indicating wavelike behavior in the vertical (we return to

this topic below).

The perturbation kinetic energy flux (Fig. 8b) diverges

from the critical level, with a weak upward flux and

a much stronger downward flux. Energy propagation is

supported by both the stratification and the vorticity

gradient in the underlying jet. To see this, consider the

corresponding terms in the Taylor–Goldstein equation

(e.g., Miles 1961):

ŵ
zz

1 m2ŵ 5 0; m2 5
N2

(U � c)2
�

U
zz

(U � c)
� ~k2. (2)

The equivalent theory, with viscosity and diffusion in-

cluded, is described in appendix A. When jcij � jU 2 crj,
the condition m2 . 0 indicates the potential for vertical

wave propagation. The first term, representing gravity

waves, is positive. The second term represents shear

waves. These may be viewed as the small-scale analog of

Rossby waves, as their restoring force results from the

vorticity gradient Uzz. Below the critical level there is

a local maximum in U at which U 2 c . 0, so this term is

positive also. Quantitatively (Fig. 8c), wave propagation

extends below the critical level to z 2 zc 5 20.27l.

Below this level, waves are evanescent. At z 2 zc 5

20.14l, the nature of the wave switches: above that

level it is mainly a gravity wave; below it is mainly

supported by shear. In a thin region above the critical

level (extending to z 2 zc 5 0.15l) wave propagation is

possible, but critical-level interactions for these modes

are such that little propagation occurs.

The momentum and buoyancy fluxes, computed as in

appendix A, are focused mainly near the critical level

(Figs. 9b and 9c). The momentum flux is positive, in-

dicating a downward flux of westward momentum from

the SEC. The buoyancy flux is downward. Both fluxes

are elevated in the region below the critical level cor-

responding to the EUC, again indicating downward

energy propagation.

FIG. 6. Composite mean flow in the neighborhood of the critical level: (a) u 2 c, (b) S2, (c) N2,

and (d) 1/Ri. Thick (thin) curves indicate the median (and upper and lower quartiles) of profiles

around a sampling of 68 unstable modes with frequencies near the peak. Profiles are centered

at the critical level, and the vertical coordinate is normalized by the wavelength. Horizontal

dotted lines indicate a layer of thickness 1/7 the wavelength.
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While the perturbation equations of linear theory are

homogeneous and therefore cannot predict amplitudes,

they often do well at predicting nondimensional ratios,

a capacity that has not been much exploited (e.g., Smyth

and Kimura 2007). Here, we will use it to allow a com-

parison of these fluxes with the observations described

in Part I. We have scaled the eigenfunctions by the

maximum vertical displacement zmax, so that the flux

quantities plotted are actually ratios of the flux to z2
max.

If we have some independent means of determining the

maximum vertical displacement, we can make a quan-

titative estimate of the flux just as the wave attains

nonlinear amplitude. To test this idea, we assume that a

typical maximum vertical displacement is 10 m. Dillon

et al. (1989) quoted a range of momentum fluxes from

1026 to 1025 m2 s22 in the upper equatorial Pacific

(Table 1). When multiplied by 100 to account for a 10-m

amplitude, our maximum value becomes 4 3 1026 m2 s22,

well within the observed range. Below the critical layer,

this flux decays rapidly to about one-half its maximum

value, then more slowly, indicating that wavelike mo-

tions are carrying eastward momentum down into the

EUC.

We next compare the buoyancy flux with observa-

tions of the turbulent kinetic energy dissipation rate �

from Part I. To see the relationship between these

quantities, note that the flux represents an available

potential energy gain due to the vertical displacement of

isopycnals by growing billows. The resulting energy

goes almost entirely into turbulent kinetic energy when

the billows break. Of that, a small fraction (the flux

Richardson number, typically 0.2) goes into irreversible

potential energy gain, while the rest is dissipated. We

therefore expect the reversible buoyancy flux due to the

growing instability to match the turbulence dissipation

rate, at least in an order of magnitude sense. When

multiplied by 100, the maximum predicted buoyancy

flux is 3 3 1028 m2 s23, well within the observed range

of � (Part I).

We have seen that linear eigenmodes contain one-half

the information needed to predict numerous useful quan-

tities, including momentum flux and dissipation—the other

half being an estimate of the maximum vertical displace-

ment attained before breaking. Here, we have attempted

only order-of-magnitude estimates. With better assess-

ments of the breaking amplitude, this method could provide

FIG. 7. (a) Median composite velocity U 2 c from Fig. 6. (b) Median composite S2 (solid) and

4N2(dashed). (c) Composite amplitude of the vertical velocity eigenfunction normalized by the maximum

vertical displacement. (d) Composite phase of the vertical velocity eigenfunction. Thick (thin) curves

indicate the median (and upper and lower quartiles) of profiles around a sampling of 68 unstable modes.

Profiles are centered at the critical level, and the vertical coordinate is normalized by the wavelength.

Horizontal dotted lines indicate a layer of thickness 1/7 the wavelength.
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a useful view of the variability of turbulence based on

mooring data.

5. The apparent frequency of a quasi-random
ensemble of shear instabilities

We have established that the computed instability

events are usefully understood in terms of the standard

properties of KH instability on a shear layer. The fre-

quency of a KH billow train depends on the wavelength

and on the relative velocity between the mean flow and

the measuring instrument. Given the wide range of wave-

lengths and background current velocities, there is no

obvious reason why a narrow band of frequencies should

be preferred. The peak in frequency could be taken to

imply a correlation between wavelength and phase ve-

locity (since f 5 c/l), but such a correlation is not ex-

pected a priori.

In fact, a wavelength–phase velocity correlation is not

needed to explain the frequency peak, as we now show

using a simple probabilistic model. We begin by noting that

both the wavelength and phase velocity are inherently band

limited. Wavelengths are bounded from above as a multi-

ple (typically 7) of the thickness of the sheared zone be-

tween the surface and the EUC. In view of the semicircle

theorem (Howard 1961), phase velocities are bounded by

the maximum westward SEC and the maximum eastward

EUC. We now demonstrate that simple distributions with

these characteristics can result in a peaked distribution of

frequencies similar to the results of the stability analysis and

the observations. We also give a formula for estimating the

peak frequency and show that, despite the fact that the

oscillations are by construction not gravity waves, the peak

frequency is expected to be of order N.

a. The frequency distribution

Consider a collection of instability events with wave-

lengths distributed uniformly between 0 and l0,

P
l
(l) 5

1

l
0

1, if l , l
0

0, otherwise

�
, (3)

and phase velocities distributed evenly between u1

and u2,

P
c
(c) 5

1

Du

1, if u
1

, c , u
2

0, otherwise

�
, (4)

where Du 5 u2 2 u1.

Assuming that phase velocity and wavelength are in-

dependent random variables, Pc and Pl can be combined

FIG. 8. Energy flux and factors contributing to vertical propagation. (a) Median composite U. (b)

Composite vertical kinetic energy flux: median and quartiles. (c) Terms in m2, as given in (2), derived

from median composite profiles and the median of ~k. Line scheme is thin solid, N2/(U 2 c)2; dashed,

2Uzz/(U 2 c); dotted, � ~k2 (constant); and thick solid, m2, the sum. Values near the critical level are

masked. Horizontal dotted lines indicate a layer of thickness 1/7 the wavelength.
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(e.g., Mood et al. 1974) to give the probability density

function for the frequency f 5 c/l:

P
f
( f ) 5

ð‘

0

lP
l
(l)P

c
( f l) dl

5
l

0

2Du

1, if
u

1

l
0

# f #
u

2

l
0

u2
1

l2
0 f 2

, if f ,
u

1

l
0

u2
2

l2
0 f 2

, if f .
u

2

l
0

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
. (5)

The probability density function for log10jf j, in variance-

preserving form, is

P
log10 fj j5 ln10 f [P

f
( f ) 1 P

f
(� f )], (6)

which rises to maxima at jfj5 ju1j/l0 and jfj5 ju2j/l0 with

the high frequency having the higher probability. The most

probable frequency is therefore given by

fj j5
max(ju

1
j, u

2
)

l
0

. (7)

We show two illustrative cases in Fig. 10. In each case,

we let l0 5 700 m (approximately 7 times the depth of

the EUC core), and u2 5 1 m s21 (a typical EUC ve-

locity). We make two choices for u1, the SEC speed. The

solid curve shows u1 5 21 m s21, a relatively large SEC

speed found early in this observation period (Fig. 2a).

For the second case (dashed curve) we set u1 5 20.5 m s21,

FIG. 9. Momentum and buoyancy fluxes. (a) Median composite S2 (solid), 4N2 (dashed) from Fig. 6 for

reference. Composite vertical fluxes of specific (b) momentum and (c) buoyancy. Thick (thin) curves

indicate the median (and upper and lower quartiles) of profiles around a sampling of 69 unstable modes.

Profiles are centered at the critical level, and the vertical coordinate is normalized by the wavelength.

Horizontal dotted lines indicate a layer of thickness 1/7 the wavelength. Eigenfunctions are normalized so

that the maximum vertical displacement is 1 m.

TABLE 1. Comparison of momentum and buoyancy fluxes

inferred from linear theory with corresponding observational

estimates.

Fu Fb

Unit m2 s22 m2 s23

zmax 5 1 m 4 3 1028 3 3 10210

zmax 5 10 m 4 3 1026 3 3 1028

Obs range 1026 2 1025 1028 2 1026

Source Dillon et al. (1989) Part I
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a more typical SEC speed. In both cases, the predicted

peak frequency u2/l0 agrees with the direct compu-

tations to within about a factor 100.1, or 25%. In the

second case, a second peak correlates well with the

negative skewness of the eigenmode frequencies. Recall

that this negative skewness is also evident in the obser-

vations (Fig. 1).

The close agreement seen in Fig. 10 must be somewhat

fortuitous due to the strong assumptions that underlie

both the numerical stability analyses and the theory. In

particular, the maximum wavelength of 700 m results

from thinking of the layer between the EUC core and the

surface as a free shear layer whose most unstable mode

should have wavelength 7 times its thickness. The reality

is more complex than this, especially due to the proximity

of the surface. In addition, the uniform distributions of

wavelength (3) and frequency (4) represent significant

oversimplifications.2 The numerical stability results have

their own limitations (as described in section 3) and may

miss a large fraction of the instability events. The close

comparison with the peak frequency of the measured

spectra in Fig. 1, however, encourages us to conclude that

the simple theory expressed in (5) and (6) has some truth

to it, and the estimates from (7) of the peak frequency are

useful to within, say, a factor of 2.

b. Why is v ; N preferred?

Although the frequency of a KH instability is virtually

independent of stratification, the correspondence be-

tween the observed narrowband frequencies and the

local buoyancy frequency is striking (see Part I). We

now show that this correspondence is an expected

property of a random ensemble of KH instability events

under certain conditions. The peak frequency derived in

the previous subsection is given in radians per second as

v
peak

5 2p f
peak

5
max(ju

1
j, u

2
)

l
0
/2p

. (8)

Our objective is to show that vpeak ; O(N).

We begin by arguing that vpeak ; O(S). The maximum

possible thickness of the random layers of enhanced shear

is approximately D, the depth of the EUC core. Assum-

ing that the resulting instabilities have the spatial scale of

KH billows, the maximum possible wavelength is then

l0 ’ 7D. As a result, we can approximate (8) as

FIG. 10. Model probability density function described in (5) and (6). Parameter values are

l0 5 700 m, u2 5 1 m s21, u1 5 21 m s21 (solid curve), and u1 5 20.5 m s21 (dashed curve).

Shown in the background is the distribution of the computed mode frequencies.

2 In appendix B, a refined theory is developed based on more

realistic distributions of l and c. The refined theory offers no better

agreement with numerical or observational results. The peak fre-

quency is essentially unchanged from (7), though its value must be

computed numerically. Thus, we retain the simpler theory ex-

pressed in (5) and (6) for the remainder of the paper.
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v
peak

’
max(ju

1
j, u

2
)

D
. (9)

We assume next that the reference frame in which the

oscillations are measured moves at a velocity between

u1 and u2, and define that velocity as zero so that u1 ,

0 while u2 . 0. The absolute mean shear can be written as

S ’
Du

D
5

u
2

1 ju
1
j

D
. (10)

How does this compare with the ratio in (9)? The nu-

merator of (10) is the sum of two positive numbers, and

the larger of those two is the numerator of (9). Because

the larger of two positive numbers must be at least half

of their sum, vpeak lies between the approximate bounds

S/2 and S. It suffices to conclude that

v
peak

; O(S). (11)

The connection to stratification is now made via the

Richardson number. Because instability events typically

occur when Ri is depressed to values less than about 1/4,

we expect a priori that the mean flow will have Ri not

much greater than this. In fact, observations in the upper

equatorial oceans routinely show mean flows with Ri ;

O(1) (e.g., Fig. 7c in Part I). On this basis, we expect S ;

O(N), and (11) therefore becomes

v
peak

; O(N). (12)

We emphasize that the correspondence between the

peak frequency and N has nothing to do with the physics

of internal gravity waves. It is instead a result of the fol-

lowing assumptions.

d A random ensemble of KH-like instability events ex-

hibits an even distribution of wavelength and phase

velocity.
d The mean flow is characterized by Ri ; O(1).
d Oscillations are measured from a reference frame mov-

ing at a velocity that is within range of the mean flow.

6. Conclusions

In Part I, we analyzed extended, high-resolution time

series of temperature at four depths: 29, 39, 49, and

59 m. Each series showed a persistent spectral peak near

the angular cyclic frequency 1.4 mHz. These oscillations

showed several ‘‘textbook’’ features of KH instability;

that is, the phase shift, wavelength, and phase velocity were

all consistent with Hazel’s (1972) analysis of a hyperbolic

tangent shear layer. One feature remained unexplained,

though, namely the existence of a preferred frequency of

order N. KH instabilities have no preferred frequency, and

the frequency of any given KH mode is essentially in-

dependent of stratification.

To interpret these observed oscillations, we have imag-

ined that the sheared zone between the surface and the

EUC core is generally close to a neutral equilibrium Ri ;

O(1) (Figs. 11a and 11b). We further suppose that this

equilibrium is upset sporadically so as to cause an insta-

bility. To test this notion, we have used an ensemble of

155 instability events computed from hourly averaged

profiles. As expected, critical levels are clustered on the

strongly sheared upper flank of the EUC (Fig. 11c). The

frequency distribution (Fig. 1) compares extremely well

with spectra from the four independent sensors, and we

interpret this as evidence that the observed oscillations

are indeed driven by instabilities.

We have constructed composite mean flow and eigen-

function profiles that are broadly consistent with the

KH model. We have also seen, however, that the mean

flow and eigenfunctions differ from the ‘‘tanh’’ model

in some significant ways. In particular, the shear layer is

underlain by a stratified jet (Figs. 11a and 11b), which

supports downward radiation. The ‘‘near jet’’ model

used in the nonlinear simulations of Pham and Sarkar

(2010) may provide an improved representation of this

mean flow. We have seen that eigenfunctions of the mo-

mentum and buoyancy fluxes, combined with an estimate

of billow amplitude, give quantitative estimates of those

fluxes that compare reasonably well with the observations.

With a more detailed assessment of the amplitudes, this

could provide a useful way to estimate these fluxes based

on mooring data only.

We have explained the near-N frequency peak in terms

of a probabilistic model of an ensemble of KH instability

events having a range of wavelengths l 2 (0, l0] bounded

by Hazel’s (1972) results and phase speeds c 2 (u1, u2)

bounded by the semicircle theorem (Howard 1961). As-

suming that the wavelength and phase velocity are dis-

tributed uniformly within these limits, we have shown that

the absolute frequency is distributed in accordance with (5)

and (6). In a variance-preserving representation, there is

a peak at frequency max(ju1j, u2)/l0, and a secondary peak

at min(ju1j, u2)/l0. If ju1j 5 u2, or if either velocity is zero,

there is only one peak. The peak frequency compares

well with both explicit linear stability analyses and with the

xpod observations. The secondary peak is always at a lower

frequency and may, therefore, explain the negative skew-

ness in both the unstable modes and observed oscillations.

An order-of-magnitude estimate reveals that the peak

angular frequency vpeak is likely to be of the same order

as the mean shear. Recognizing that strongly sheared

geophysical flows are often characterized by Ri ; O(1)

(as is shown explicitly for this case in Part I), we conclude

that the peak angular frequency is indeed expected to

be of order N. The strongest assumptions underlying this

prediction are that
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d a strongly sheared, stratified flow is destabilized by

random events and
d the observer is moving at a speed within the range of

the mean current profile.

We therefore suggest that near-N oscillations in strongly

sheared regimes may be an indication of random shear

instability in a marginally unstable environment.
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APPENDIX A

Computing Normal Modes of a Viscous, Diffusive,
Stratified Shear Flow

Here, we describe in detail the theory and numerical

methodsused for the stability analyses. Space is measured by

the Cartesian coordinates x, y, and z and the corresponding

unit vectors i, j and k denoting the eastward, northward,

and vertical directions, respectively. Planetary rotation is

neglected. The fluid is incompressible, viscous, diffusive,

and stratified such that the Boussinesq approximation

applies. The buoyancy is defined by b 5 2g(r 2 r0)/r0,

where r is the density with characteristic value r0 and g is

the acceleration due to gravity. The resulting equations of

motion are

$ � u 5 0,

Du

Dt
5�$p 1 bk 1 n=2u, and

Db

Dt
5 k=2b,

in which u is the velocity vector,

D

Dt
5

›

›t
1 u � $

is the material derivative, t is the time, and p is the pres-

sure scaled by r0. The viscosity n and the mass diffusivity

k may be either molecular or turbulent in origin, but are

assumed to be constants.

Substituting the perturbation solution

u 5 U(z, t)i 1 V(z, t)j 1 «u9 and

b 5 B(z, t) 1 «b9; p 5 P(z, t) 1 «p9,

we obtain, at order unity,

FIG. 11. (a) Median U against a vertical coordinate scaled by the undercurrent depth. (b) Median S2

(solid) and 4N2 (dashed). (c) Histogram of critical levels for 155 unstable modes.
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›U

›t
5�›P

›x
1 n

›2U

›z2
,

›V

›t
5�›P

›y
1 n

›2V

›z2
,

0 5
›P

›z
1 B, and

›B

›t
5 k

›2B

›z2
.

For the background flow to be in steady state, we must

make the following assumptions.

d The zonal pressure gradient balances the action of

viscosity on the mean flow U, V, possibly because both

are negligible.
d The vertical pressure gradient is in hydrostatic balance

with the background buoyancy profile.
d The action of diffusion on the mean buoyancy profile B

is negligible. More specifically, the mean profile cannot

vary significantly on the time scale of instability growth.

The O(�) equations are combined into a pair of equa-

tions for w9 and b9, into which we substitute the normal

mode forms described in (1) and the accompanying dis-

cussion. To simplify the computations, we define the ro-

tated background velocity

eU 5 (kU 1 lV)/ ~k, (A1)

where the wave-vector magnitude ~k is as defined in

section 3.

The O(�) equations can then be written as

s
=2 0

0 I

 !
v̂

b̂

 !
5

� ~ik ~U=2 1 ~ik ~U
zz

1 v=4 � ~k2

�B
z

� ~ik ~U 1 k=2

0@ 1A ŵ

b̂

 !
, (A2)

where the subscript z indicates a vertical derivative and

the Laplacian is given by

=2 5
d2

dz2
� ~k2. (A3)

Boundary conditions are v̂ 5 b̂ 5 0.

While stability analyses are often accomplished using

shooting methods (e.g., Hazel 1972; Sun et al. 1998;

Newsom and Banta 2003), those methods become ex-

tremely complex with the introduction of viscosity and

diffusion. Matrix methods avoid that complexity and

also guarantee (within the limits of resolution) that all

relevant modes will be found. The eigenfunctions bw and

b̂ are discretized on N points (zi; i 5 1, 2, . . . , N) and the

derivative with respect to z is approximated by a second-

order finite difference.A1 The Laplacian (A3) is now

expressible as a matrix, and (A2) forms a generalized

eigenvalue problem that can be solved using standard

methods.

Eigenfunctions for the horizontal velocity and the

scaled pressure are defined as in (1) and recovered using

the following polarization relations:

~̂u 5
i

~k
bw

z
and (A4)

bp 5
i

~k
eU

z
bw 1 (c� eU)bw

z
� i

~k
n=2 bw

z

� �
. (A5)

Here, ~̂u 5 (kû 1 lŷ)/ ~k is the rotated perturbation ve-

locity analogous to (A1). The rotation is reversed to give

the individual perturbation velocity eigenfunctions:

û 5 ~̂u cosu; y 5 ~̂u sinu,

where the angle of obliquity is u 5 tan21(l/k).

Vertical fluxes of horizontal velocity, kinetic energy,

and buoyancy are given by

F
u

5 u9w9; F
y
5 y9w9, (A6)

F
K

5 p9w9, and

F
b

5 b9w9.

The overbar indicates a horizontal average over one

wavelength.

APPENDIX B

Refined Statistical Theory of a KH Ensemble

In this appendix we refine two assumptions underlying

of the ensemble theory discussed in section 5a, namely

that wavelength and phase velocity are uniformly dis-

tributed. In fact, shorter wavelengths are expected to be

more numerous simply because they grow on thinner

shear layers, and hence the sheared zone between the

surface and the EUC core can accommodate more of

A1 The discretization has been the object of considerable ex-

perimentation. Higher-order methods, both finite difference and

compact, deliver no increase in the accuracy of the eigenmodes. A

similar result was found for a related problem by Putrevu and

Svendsen (1992).
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them. To express this assumption simply, we allow the

distribution to decrease linearly to zero at l 5 l0:

P
l
(l) 5

2

l
0

1� l

l
0

, if 0 # l # l
0

0 otherwise.

8<:
9=;

As for the phase velocity distribution, unstable modes

are expected to be most numerous where the background

shear is strongest, that is, near the center of the sheared

zone where mean flow velocities are small. Since modes

in that zone will have small phase velocities, we expect

that the distribution of c will be larger at small c and

smaller near the limiting values u1 and u2. In view of this,

we replace (4) with the triangular distribution

P
c
(c) 5

2

Du

1 1
c

u
1

, if u
1

, c , 0

1� c

u
2

, if 0 , c , u
2

0, otherwise

.

8>>>><>>>>:
Both of these refinements are supported by the histo-

grams of the computed unstable modes shown in Figs. 5d

and 5f. We caution against assigning too much signifi-

cance to this, though, because the numerical analysis

does not capture all possible modes.

Combining these distributions as before, we obtain

P
f
( f ) 5

l
0

3Du

2 1
ju

1
j

l
0

f

� �
u

1

l
0

f

� �2

, if f #�
ju

1
j

l
0

2 1
l

0
f

ju
1
j , if �

ju
1
j

l
0

, f , 0

2 1
l

0
f

u
2

, if 0 # f #
u

2

l
0

2�
u

2

l
0

f

� �
u

2

l
0

f

� �2

, if f $
u

2

l
0

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
,

which is manipulated to form the variance-preserving

spectrum of jf j as before.

Figure B1 shows two examples, superimposed on the

histogram of the computed instabilities as in Fig. 10.

Based on Fig. 5f, we choose l0 5 400 m. Surprisingly, the

refined theory is less consistent with the numerical re-

sults than the simpler model. The peak frequency must

be computed numerically, but it is always between 0.85

and 1.0 times max(ju1j, u2)/l0. Thus, the essential pre-

diction from the simpler theory is unchanged. We con-

clude that the added complexity of the refined theory is

not justified, and that the simpler approach leading to

(5)–(7) is preferable.

FIG. B1. Model probability density function described in (6), in variance-preserving form.

Parameter values are l0 5 400 m, u2 5 1 m s21, u1 5 21 m s21 (solid curve), and u1 5

20.5 m s21 (dashed curve). Shown in the background is the distribution of computed mode

frequencies.
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