
l
l
l
n
1

l

J

J

u
j

J

J

db2db
A Database Migration Tool

December, 2004

Chen, Fu-Hsiang

School of Electrical Engineering and Computer Science
Oregon State University

Abstract

We developed a tool that migrates the database schema and the data from one

database to another. As DBMSs store the same data by using slightly different data

types, one cannot simply copy all the tables and data from the source DBMS to the

target DBMS. When our tool, db2db, migrates a database, from Oracle DBMS to

PostgreSQL DBMS, for example, it converts such data types as CLOB, NUMBER,

VARCHAR2 of Oracle to data types text, numberic, and varchar, respectively, of

postgreSQL. The program uses JDBC type-2 or type-4 drivers that work with TCP/IP

sockets, which allows a user to migrate databases over a network. As a JDBC type 2

driver can connect to a DBMS that support ODBC, db2db can migrate a database

from any DBMSs that support JDBC or ODBC.

1

l
l

)

J

J
J

Index

Abstract 1

Index 2

1. Introduction 4

2. Overview of Database Migration 6

2.1 Schema and Data Migration 9

2.2 JDBC Driver 9

3. Data Type Mappings 11

4. Implementation 12

4.1 Connecting to a Database with JDBC 12

4.2 Retrieving Metadata 13

4.3 Handling Special Character s 15

4 .4 Using Quote symbols 16

4.5 Classes Diagram of db2db 17

4.6 Classes and Methods 18

4.7 Testing db2db 23

5. Using DB2DB to Migrate Database 24

5 .1 Compiling db2db 24

5.2 Running db2db 24

5.3 Creating a Column Data-Type Conversation Table 26

5.4 Error Logging 28

5.5 Using RmiJdbc 28

5.6 Setting up a ODBC data source for an Access Database 29

2

7
l
l

7
l
l

I I

l

I
I
J

u
u
J

u
J

u

5.8 db2db Configuration File 31

6. Conclusion 31

7. Reference 32

3

7
l
I
n
7

l
I
I
I
I
I
I
u
j

J

u
J
u

1. Introduction

In order to migrate a database from one database management system (DBMS) to

another, we must copy the database schema and the data from the source database to the

target database. There are many DBMSs in the market, such as Oracle, IBM DB2, and

Microsoft SQL Server, and they store the same data by using slightly different data types.

Therefore, we cannot simply copy all the tables and data from the source DBMS to the

target DBMS.

In this project, we developed db2db, a tool to migrate the database schema and the data

among DBMSs. This tool maps the data types for the source DBMS to those for the

target DBMS, creates the schema in the target DBMS, and then copies all the rows in

each table from the source database to the target database.

The main reason we developed this tool was to migrate an Oracle database to a

PostgreSQL database. PostgreSQL is a free open-source object-relational DBMS

(ORDBMS) created from the Postgres database management system developed at U.C.

Berkley. It is an ideal platform for Geographical Informational System (GIS) applications

as it supports geometric objects. PostgreSQL is used by two other open source projects:

the PostGIS and MapServer. PostGIS adds to PostgreSQL support for geographic objects,

and MapServer allows a user to develop Web-enabled GIS applications.

We implemented db2db by using Java and Java Database Connectivity (JDBC) APL

JDBC is a standardized database interface for a Java program to perform database

operations. As JDBC 1s platform independent, a user can execute db2db

4

l
l
l
n
l
I
l
1

J

J

J

J

J

either on a Linux machine or a Windows machine . The user can also migrate a database

over a network that supports TCP/IP sockets. Most database vendors offer good

documentation and support for JDBC drivers.

A schema of a database defines the tables, the columns in each table, the data type of

each column, and the relationship types among the tables . In order to migrate a schema,

we must convert the column data types in the source database to the compatible ones in

the target DBMS. Once the column data types are converted, the CREATE TABLE

statements can be executed on the target database to create the tables.

After the database schema is migrated to the target database, data can be migrated. For

this purpose, we generate an INSERT INTO statement for each row in a table and execute

the statement on the target database.

We tested db2db with the database for Biotics 4 developed by NatureServe

(http: // www. natureser v e. org /). Biotics 4 is a client-server database application for

biodiversity data management. The Biotics database stores tabular and geographical

information on species distributions. The database consists of 695 tables and is

implemented as an Oracle database. The major purpose of db 2 db was, in fact, to migrate

the Biotics 4 database to a PostgresSQL database.

Before determining the mappmg rules for the column data types, some tests were

conducted on two existing migration tools, Data transfer service (DTS) of Microsoft SQL

Server and pgAdmin II. pgAdmin is a front end tool to access PostgresSQL database. The

purpose of the tests was to see how these tools map data types from one DBMS to

5

l
1

1
'l

l

j

J

j

J
J

J

another and to use the results as a reference in determining the mapping rules for this

project. In Section 2, we will provide details about database migration. We discuss the

tests of data type mappings employed by SQL Server DTS and PgAdmin II in Section 3.

Section 4 covers the implementation details of db2db, and in Section 5, we describe how

to use db2db.

2. Overview of Database Migration

There are several issues in migrating a database:

1. Different DBMSs use different names for the same type of data. For example,

Oracle uses data type NUMBER to represent every type of numbers, while MS

SQL Server provides int, float and long to represent numbers.

2. Although there are some SQL data type standard, e.g., SQL 92, most DMBS

venders support some non-standard data types. In order to migrate data from

one database system to another, it is necessary to map the data types used by

the source DBMS to those used by the target DBMS.

3. There are also data types that are not available for the target DBMS. For

example, CLOB (Character Large Object) is a data type supported by Oracle

DBMS. Oracle uses this data type to store a large amount of text. When CLOB

data is retrieved from an Oracle database, it returns a CLOB object that has to

be saved in a text file or converted to a string before it can be used.

4. Different DBMSs support different precisions of numbers. The precision of a

6

l
7
l

Li

J

J

J
J

number in Oracle can be up to 38 digits, while the default numeric type in

PostgreSQL is 30 digits. In order to migrate a 38-digit number from an Oracle

database to a PostgreSQL database, a change in precision may be necessary.

db2db does not support the mapping of precision yet.

In db2db, data type of a source is mapped to a standard SQL data type in the target

database as much as possible to increase compatibility with other DBMSs However, this

is not always possible, and more specialized data-type mapping may be needed .

For example, in db2db, the data type mapping rules employed to migrate an Oracle

database to a PostgreSQL database are as follows.

1. A data type is mapped to a similar data type from the target DBMS. For example,

Oracle type NUMBER is mapped to SQL data type numeric, although their

precisions differ.

2. varchar of Oracle supports a very large text. If the size of a varchar exceeds the

limit supported by the target DBMS, this type is mapped to text in PostgreSQL.

The mapping rules of data types from Oracle to PostgreSQL are summarized in Table

2.1.

Type and Size in Oracle Type and Size in PostgreSQL Notes
NUMBER NUMERIC
VARCHAR2 (size < 4000) VARCHAR
VARCHAR2 (size> 4000) TEXT
CLOB TEXT
DATE TIMESTAMP
LONG BIGINT / INT8 Only used once in Biotics.

Table 2.1: Data type mapping rules for migrating a database from Oracle to PostgreSQL.

7

l

n
l
l

l

l J

I
J

j

j

J

Figure 2.1 summarizes the migration steps taken by db 2db .

Source DBMS

Figure

Begin execution

Parse command line parameters and read the
configuration file for the DBMS name JDBC URL

schema name user name and passeworc

Migrate Data

Read data in each table

Generate INSERT IN TO
statements

Execute INSERT INTO
statements in the target DBMS

Repeat until all the tables are
processed

parameters

End execution

Migrate table schema

Choose a type convers ion table
for the source and target DBMSs

Connect to the source and target
databases with JDBC

Read the schema information from
the source database

Convert the source DBMS dat;;
types to types for the target DBMS

Generate CREATE TABLE anc
ADD PRIMARY KEY statements

Execute CREATE TABLE anc
ADD PRIMARY KEY statements

for the target database

Repeat until all the tables are
copied to the target DBMS

2.1: Database migration steps taken by db2 d b .

8

Target DBMS

1

' I
l
I

u
1

I
J
J
u

2.1 Schema and Data Migration

The schema and data are migrated according to the following steps:

Migrating Tables

1. Select the schema for the source database to be migrated.

2. Get all the table names in the schema.

3. Get the names, types, sizes, and nullabilities of all the columns in each table.

4. Generate for each table the CREATE TABLE statement according to the data

type mapping rules.

5. Execute the CREATE TABLE statements in the target database.

Adding Primary Keys

1. Read the primary key metadata from the Oracle server.

2. Generate the ALTER TABLE statement to add the primary key.

3. Execute the ALTER TABLE statements in the target database.

Migrating Data

1. Retrieve all the rows in each table in the source database .

2. Generate an INSERT INTO statement for each row.

3. Execute the INSERT INTO statement in the target database.

2.2 JDBC Driver

There are four different types of JDBC drivers, and a type 4 driver is used for migrating a

database from Oracle to PostgreSQL. Type 4 driver runs as a native Java program and

uses TCP/IP sockets to communicate with database servers, while other three types of

9

l

7
l
l
7

lJ

J

J

J
J
u

JDBC drivers require some middleware or an ODBC bridge to connect to a DBMS .

db2db
(Java Application)

JDBCAPI

JDBC Driver for the source
database

JDBC Driver for the targel
database

Figure 2.2: Type 4 JDBC connection.

Oracle Server

Type 4 drivers used in this project are provided by Oracle and PostgreSQL development

team.

1. Oracle JDBC driver

Oracle9i 9.2.0.3 JDBC Drivers: ojdbc14.jar

http:/ I otn.oracle.com/ software/tech/j ava/ sqlj_jdbc/htdocs/j dbc920 I .html

2. PSQL JDBC driver

JDBC driver for PostgreSQL 7.4

http ://jdbc.postgresql.org/download/pg74.214.jdbc3.jar

7
l
l
l
n

l

I
J

u
u
I
J

J

u

3. Data Type Mappings

We conducted several tests on the data-type mapping rules employed by SQL Server

DTS and pgAdmin II. MS SQL Server provides DTS to migrate a database from Oracle

to MS SQL Server. For a PostgresSQL database, the migration wizard in pgAdmin II can

be used to migrate the tables and the data. Each test was conducted as follows:

1. Several tables containing columns of different data types and sizes were created in

an Oracle database.

2. The data in these tables were then migrated to an MS SQL Server or PostgreSQL

database with SQL Server DTS or pgAdmin II respectively.

The results of these tests are summarized in table 3 .1

Oracle JDBC MS SQL Server PostgreSQL
BLOB java.sql.Blob image (length 16) NIA
CLOB java.sql.Clob Text (length 16) text

NCLOB No support Text (length 16) char 4000)
CHAR(l000) java.lang.String Char (1000) char (1000)
VARCHAR2 (2000) java.lang.String varchar (length 2000) v archar (2000)
DATE java.sql.Timestamp datetime (length 8) times tamp

FLOAT (10) Double float (length 8) floats

LONG n / a Text (length 16) text

RAW(1000) byte[] v arbinary (1000) NIA
NUMBER(lS, 2) java.math.BigDecimal numeric (length 9) numeric (15, 2)
NUMBER(20, 1) java.math . BigDecimal numeric (length 13) numeric (20, 1)
NUMBER(38, 5) java.math . BigDecimal numeric (length 17) text

NUMBER(l0, 21) ja v a.math.BigDecimal range must be 0-10 range must be 0-10
NUMBER(38, 19) java.math.BigDecimal numeric (length 17) numeric (38, 19)
NUMBER(38,-2) java .math.BigDecimal range must be 0-38 text

Table 3.1: Data-type mapping performed by MS SQL Server DTS and pgAdmin II.

11

l
l
1

7
7
I
I
I

J

I
J

J
j

J

J

J

4. Implementation

In this section, we discuss the implementation details of ora2pqsql, including the use of

JDBC classes and their methods. These methods are used for metadata retrieval and SQL

statement construction. As db2db is an object-oriented program, we also explain its

classes and the interactions among them.

4.1 Connecting to a Database with JDBC

In order to communicate with a DBMS, a JDBC connection to the DMBS need be

created.

1. The JDBC driver located in a directory specified by classpath can be loaded by

class Dri verManager as follows

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

Dri verManager .registerDri ver(new org.postgresql.Driver())

2. Once the driver is loaded, a connection to each DBMS can be created as:

DriverManager.getConnection(String JDBC_URL, String UserName,

The database is identified by a URL.

jdbc: [drivertype]: [@] [database]

The following URLs are used in this project:

jdbc:oracle:thin:@khong.een.orst.edu:1521:khong

jdbc :postgresql://ganga.een.orst.edu/biotics

12

String Password);

l
l
l
~

l
l

I
J

Li

Li

j

J

J

The second parameter dri v er t ype is "postgresql" for a PostgreSQL database, and

"oracle" for an Oracle database . The third parameter identifies a database. The syntax

for this paremeter varies among DBMSs, For a PorsgreSQL database, the formats are

1/ h ostname / databasename or // hostname:portnumber / databasename. For an

Oracle database, the format is ho s tname: p ort: SID.

4.2 Retrieving Metadata

There are two types of metadata in a database, namely the database metadata and the

Resul tSet metadata.

Database Metadata Retrieving

JDBC allows a programmer to access the metadata about the schemas, tables , and

columns as well as the data stored in a database. The Database MetaDat a interface of

JDBC includes over 150 methods for retrieving information about the data source,

features supported, and available data types. Such information is called database

metadata. In this project, we use the following JDBC methods to access the database

metadata.

public ResultSet getSchemas()

This method ret1ieves the names of the schema available in the database,

returning a Result Set object which includes a description of the schema in each row.

The rows are ordered by the schema names .

public ResultSet getTables(String catalog, String schemaPattern,

13

l
l

l

l

I
u
I

u

J

String tableNamePattern, String[] types)

This method returns a Resul tset containing the metadata on the selected tables.

The user can select tables by specifying the catalog, schema, table name, and

type.

Arguments:
catalog - a catalog name, null if a catalog does not exist.
schemaPattern - a pattern for a schema
tableNamePattern - a pattern for tables or views.
types - a list of table types (null for all types)

public ResultSet getColwnns(String catalog,String schemaPattern,

String tableNamePattern, String colwnnNamePattern)

This method returns the descriptions of table columns. Only the column

descriptions for the columns that match the given pattern for catalog, a schema,

tables and column names are returned.

Arguments:
catalog - a catalog name, null if a catalog is not used in the database.
schemaPa t tern - a pattern for a schema
tableNamePattern - a pattern for table
columnNamePattern - a pattern for column names

The getcolumns () method in the JDBC driver provided by Oracle returns the

following column metadata:

TABLE_CAT: String Catalog (may be null)
TABLE_SCHEM: String Schema (may be null)
TABLE_NAME: String Table name
COLUMN_NAME: String Column name
DATA_TYPE: int SQL type from j ava. sql . Types
TYPE_NAME: String Data source dependent type name
COLUMN_SIZE: int Column size. For the char or date type, it is

the maximum number of characters, and for
numeric or decimal type, it is the precision.

NULLABLE: int is NULL allowed ?

14

l
n

l
l

Li

J

l
J

J
J

IS_NULLABLE "NO" means the column does not allow
NULL values. "YES" means the column
allows NULL values. An empty string means
nobody knows.

Table 4.1: Column metadata used in this project.

Retrieving Metadata as aResultset

A Resul tset is an object that stores the data retrieved with a database query, and JDBC

provides the ResultSetMetaData interface to retrieve metadata as a Resultset. When

method getResul tSetMetaDa ta () is called for a Resul tSet, it returns a

Resul tSetMetaDa ta object describing the columns. The information on each column

includes its name, type display size, and so forth. The following methods of

ResultSetMetaData are used in db2db:

Method Name Description
getColumnCount() Get the number of columns in a Resul tSet
getColumnName(int col) Get the name of column col
int getColumnType(int col) Get the type of column col

4.3 Handling Special Characters

Special characters that have special meanings for a DBMS or Java need be properly

handled. For example, a single quote (') is used by SQL to quote a string, and hence, if it

occurs in a data string, its special meaning need to be suppressed. Every DBMS has rules

for handling special characters. For example, if there is a single quote (') in a character

string, we need to add one more ' to escape it. The flowing table lists the notations for

special characters:

I ~iteral I Meaning
Empty string

15

l
1

n
, l

I
1

I j

l

l J

j

J

J

J
J

"" A pair of single quote
\t Tab
\r Carriage return
\n Newline
\\ Backslash

4.4 Using Quote symbols

PostgreSQL uses single quote symbols to quote strings. However, single quotes may

cause problems .

1. A number does not need be quoted as delimiters . If the number to be inserted is

null, single quotes are still not needed . We just need to leave the space blank,

separated it from the next value by a comma (,).

2. If the column data-type is a t e x t or v ar c har and if the data is null, one can use '

'(two single quotes), null, or 'null' to repre sent the null value.

3 . If the data type is times tamp, and the value is not null , single quotes are needed,

as '22; 09174 oo: oo: oo'. However, if the timestamp is null, one can use null in

the SQL statement, but not 'null' or''.

16

l
7 4.5 Classes Diagram of db2db

l The UML class diagram is shown in Figure 4.1:

n I (31 DB2DB

7
1 1

G Database 2
,

a ca1alog: String
,,

- sourceSchema -sourceDB
a conn: Connection - targetDB

2 - targetSchema
'~

a dbmd: DatabaseMetaData (I Schema
a dbmslD: int

a dbmsName: String A tableMetada1aResultSet: ResultSet

a jdbcURL: String A tables[0 . .*]: Table

n
A password: String Ji,.c Schema()
£1. schema: String getTable() 0
A username: String

0 . .* 1-tables 0 close()

0 compare_nRows() 8 Table
0 conn()

0 db_CREATE_INDEX_Gen() a columns: Vector

0 db_executeQuery() a nColumn: int

0 dropAII() a nlndex: int

0 dumpTable() a npk: int

0 migrate Table() A oraclelndex[0 . .*][0 . .*]: String

0 setParameters() a pg_ALTER_ TABLE_PK: String

A primaryKey[0 . .*][0 . .*]: String

a sql_CREATE_ TABLE: String

! A tableName: String i

(I Column I

J

a column_name: String I 0 add Columns()

a column_size: int I 0 db_CREATE_TABLE()

a nullable: String 0 getColumns()

a pg_column_name: String 0 getTableName()

J
a pg_column_size: int 0 get_nColumn()

a pg_type_name: String 0 isNumber()

a type_name: String 0 pg_ALTER_TABLE_add_pk_Gen()

0 pg_db_AL TER_TABLE_add_pk()

J
0 Ora2PgTypeConversion() 0 showColumn()
0 getOracleColumnName() 0 sql_CREATE_TABLE_Gen()
0 getPgColumnName() 0 sql_C REA TE_ TABLE_ Gen_using_conversionTable()

Figure 4.1: UML class diagram of db2db.

J 17

u

7
1

n
7

l
~ I

l
)

I

J

J

J

J

LJ

J
J

4.6 Classes and Methods

public class DB2DB

Class DB2DB is the main class in the program. It is used to parse the command line

parameters, to read a configuration file, to choose a column data-type conversion

table, and to create connections to the source and the target databases . The column

data-type conversion table is selected by the combination of the source and target

databases. DB2DB contains the following methods:

• private static void parseParameters (String [l args) parses the command

line parameters .

• pri vate stati c void getCnvTable () uses the source and target DBMS names to

choose the conversion table for column data-type mapping .

• stati c voi d conne c tDB () creates Connections for the source and target databases

and retrieves the database metadata from the source database.

• pri vate static void readSchema () creates an instance of Schema and sets its

reference in sour ceSch ema . The schema and the table metadata are retrieved by the

constructor of Schema from the source DBMS.

public class Database

This class is used to create an object containing the information about a DBMS. It

provides the following methods:

18

7
l
n
7

u
J

J

u
J

J

• public void conn () establishes JDBC connections to the source and target

DBMSs.

• public void close () closes the connections to the DBMSs.

• migrateTable (String tableName) migrates data in the table designated by

tableName from the source database to the target database.

• public void compare_nRows (String tableName, Connection

sourceDB_con, Connection targetDB_con) compares the row numbers of all the

tables in the source and target databases. This method provides a simple mechanism

to check whether the database has been migrated correctly or not.

• public void dropAll (String tableName) deletes all the rows in the table

designated by tableName . This method is called before copying data from the source

database to the target database to prevent duplicated rows from being copied to the

target table .

• public void db _ executeQuery (String queryString) executes a query string on

the target database.

public class Schema

When a Schema object is created, its constructor retrieves the metadata on tables in a

Resul tSet, which contains a list of the table names. For each table, the Schema

creates a Table and stores it in Table tables []. Class Schema provides the

following methods.

19

l

l
n
7

n
'l

u
J

J

u
J

u

• private static int getMetaDataResultSetRowCount (ResultSet

Da tabaseMetada taResul tSet) counts the number of rows in a

DatabaseMetadataResultSet.

• public Table [l getTable () returns the reference to all the Table objects.

public class Table

A Table contains information about a table. Class Table provides the following

methods.

• public void addColumns () retrieves the column metadata for the current Table,

that Columns in Vector column [l .

• public String getTableName () returns the table name of the Table.

• public Column [l getColumns () returns the Column vector, which contains all the

columns of the table .

• public void showColumn () prints the name of all the columns in the table.

• public void sql_CREATE_TABLE_Gen () generates the CREATE TABLE SQL

statements for the current Table.

• public void db_CreateTable (String pg_CREATE_TABLE) executes a CREATE

TABLE statement in the target DBMS.

• protected void _getPrimaryKey (} retrieves the primary-key metadata for an

Oracle table and store it in String [] [] primaryKey in the Table.

20

1

~

l
n
7

l
l

I
u
I
I
J
1

J

• public void sql_ALTER_TABLE_add_pk_Gen () generates ALTER TABLE ADD

PRIMARY KEY SQL statement for the cun-ent Table.

• public void db_ALTER_TABLE_add_pk (String sql_ALTER_TABLE_PK)

executes the ALTER TABLE ADD PRIMARY KEY statement in the target DBMS.

Public class Colwnn

This class is used to create a Column containing the metadata about a column, including

string colurnn_name, string nullable, string type_name, and int colurnn_size.

The metadata are used to generate a CREATE TABLE statement.

public class Msg

This class is used to log execution and en-or messages to a file and to print time

stamped messages on the console.

• public static void cout(Object msg) printsastringformofmsgonthe

console with a timestamp.

• public static void cerr (Object err) prints a string form of err on the

console with a timestamp.

• public static void log (String log) writes to exec_log. txt the string log

with a timestamp.

• public static void debug(Object msg) printsdebugginginformationinmsgon

the console.

21

I
lJ

J

I
u
J
J

• public static Object [l readFile (String inputFile) reads every line in a

file that lists the name of the tables to be migrated, stores each line in a vector, and

returns the vector.

public class Ora2Pg_string

This class modifies SQL data string so that the effects of special characters for SQL

are suppressed.

• public String replace(String OriginalString, String toBeReplaced,

String newString) replaces every occurrence of toBeReplaced in

OriginalString with newString.

public class Convert

This class is used to create a conversion table for a column-data type mapping. How

to create a conversion table is described in the next section. This class has the

following method:

• public String convert(String inType, int inSize, int inSize2)

takes the original data type and outputs the converted data type as a string. How to

use this method is described in the next section.

public class Cnv0ra2Pgsgl extends Convert

As a sub class of Convert, this class contains the data type mapping rules to convert

column data types for an Oracle database to those for a PostgreSQL database.

22

l
l
l
n
l
l
1

lJ
Li
]

J

j

J

4.7 Testing db2db

We tested db 2db in the following configuration :

Configuration 1:
Source : Biotics database on an Oracle server
Target: PostgreSQL DBMS
Platform: Windows to Linux
Network type: LAN
Driver type: type 4

Configuration 2:
Source : Biotics database on an Oracle server
Target: PostgreSQL DBMS
Platform : Windows to Linux
Network type: a remote site on the internet
Driver type : type 4

Configuration 3:
Source : Fishbase database on MS Access
Target: PostgreSQL DBMS
Platform: Windows to Linux
Network type: LAN
Driver type: type 2

23

l
7
l
n
l
l
, l

l
I
j

I

]

J

J

J

J

J

5. Using D82D8 to Migrate Database

5.1 Compiling db2db

As db2db is written in Java, it can be compiled and executed on any operating system

that supports Java virtual machine version 1.4 or higher. In order to connect to a DBMS,

a JDBC driver for it need be specified in the classpath. The Oracle driver is

ojdbc14. jar, and the one for PostgreSQL is pg74jdbc3. jar . db2db can be compiled

on Unix with the following command:

javac -class path. :pg74jdbc3.jar:ojdbc14.jar DB2DB.java

Shell scripts build. sh is provided to compile db2db.

5.2 Running db2db

After db2db is compiled, the user can execute it on Unix with the following command.

java -Xmx400M -cp .;pg74jdbc3.jar;ojdbc14.jar ora2pgSQL [options]

Shell scripts db2db. sh is provided to execute db2db. When executing the code, the

option for the class path is -cp instead of -classpath. Because some tables in the

Biotics database are very large, we need to specify option -xmx400M to reserve 400 MB

of virtual memory for the Java virtual machine.

Furthermore, the user can provide several options to specify the details of the task to be

performed. The syntax of a db2db command line is one of the following :

db2db.sh -c configuration _ file -s [-d]
db2db.sh -c configuration_file -t tablelist_file -d
db2db. sh -c configuration_file [tablel table2 ...]

24

l
7

n
7

n

u

J

Ll

u

db2db.sh -c configuration_file -n [-d]
db2db.sh -c configuration_file -i [-d]

-c configuration_file specifies the configuration file for the JDBC

connections

-s migrates a schema from the source DBMS to the target DBMS.

- i reads the metadata on the indexes from the Oracle database, generates

CREATE INDEX statements, and executes them in the PostgreSQL DBMS.

-t table_list_file migrates all the data in every Oracle tables to the

PostgreSQL database.

-n Compares the number of rows for each table in the source database and the

target database.

-d turns on the debug mode. db 2db prints more debugging information on the

console window.

In executing db2db, the user can provide the source and the target databases in a

configuration file with the -c command line parameter. The configuration file looks as

follows:

<JDBCConnections >
<source_db

/>

dbms = "DBMS name"
jdbcUrl="jdbc:oracle:thin : @149.168 . 72.41:1521:biot"
schema= "BIOTICS_USER"
catalog= "null"
username="username"
password="pass word"

<target_db
dbms = "DBMS name"
jdbcUrl="jdbc:postgresql: // ganga / biotics_S_chenfu"
catalog= "null"
schema= "BIOTICS_USER"
ca t alog= "null"
username="username"
password="pass word"

/>
</ JDBCConne c tions >

25

LJ

j

I
j

u
u

The source_db and target_db tags are used to identify the source DBMS and target

DBMS:

1. dbms identifies the name of the DBMS system. The DBMS name is case sensitive.

Currently, the following DBMS names are accepted by db2db: oracle, MSSQL,

Pg SQL, My SQL, and ODBC.

2. j dbcURL is the address of the DBMS.

3. catalog and schema are used by the DBMS to identify a database in the DBMS .

catalog is used by Microsoft SQL Server and s chema is used by Oracle .

PostgreSQL does not use catalog and schema, instead, a PostgreSQL database is

identified by its JDBC connection URL. For example,

jdbc:postgresql :// ganga . een.or s t.edu / ztest will create a connection to

ganga . een . orst. edu and use the database z test. If the DBMS does not need

schema or catalog information to identify a database, "null" is used in the

configuration file .

4. username and password are the login name and password of the user accessing a

DBMS .

5.3 Creati.ng a Column Data-Type Conversation Table

Class cn vo ra2Pg s ql shown below maps the column data types used by an Oracle database

26

7
n
l
n
7

I

u
lJ

J

u
J
u

to those for a PostgreSQL database.

public class CnvOra2Pgsql extends Convert { // from Oracle to PostgreSQL
CnvOra2Pgsql() {

CnvEntry[] cnvTable_temp =

} ;

new CnvEntry("NUMBER", 1, 30, "numeric"),
new CnvEntry ("VARCHAR2", 1, 40, "char") ,
new CnvEntry("CHAR", 1, 40, "char"),
new CnvEntry("VARCHAR2", 1, 4000, "text"),
new CnvEntry ("VARCHAR2 11 , 1, 8000, 11 text"),
new CnvEn try ("CLOB 11 , 0 , -1 , " text") ,
new CnvEntry(11LONG", 0, -1, "bigint"),
new CnvEntry(11DATE11 , 0, 20, "timestamp")

cnvTable cnvTable _temp;

Each conversion rule is represented as a cnvEntry object in cnvEntry [J cnvTable_temp m

the default constructor. The constructor of class cnvEntry takes the following four

parameters:

string inType: the column type in the source database ..

int cnvType: the size parameters associated with the · inType. Value o indicates

that the inType does not have a size parameter, applicable to type CLOE, DATE and

LONG. Value 1 indicates that there is only one size parameter associated with the

in Type, applicable to type VARCHAR and CHAR .

int inMaxSize: the maximum size of the input data to which this rule is applicable.

If the inType does not have size information, inMaxSize is set to -1.

string out Type: the converted data type to be used in the target database.

A new conversion rules can be derived from class Convert.

27

l
l

n
l

u
J

J

J

5.4 Error Logging

DB2DB logs messages to a file db2db. log with a timestamp on each entry, to provide

information on its execution and error conditions encountered.

5.5 Using RmiJdbc

RmiJdbc (http://rmijdbc.objectweb .org) is a type 4 JDBC driver that allows a user to

connect to an ODBC database on a remote network by using the Java remote method

invocation (RMI) interface. RmiJdbc redirects database queries to Sun's JDBC-ODBC

Bridge Driver. This bridge driver queries the database via ODBC and returns the result to

RmiJdbc . Sun's JDBC-ODBC Bridge Driver is included in a Java JVM distribution.

Before using RmiJdbc, we must start a RmiJdbc server instance as follows.

java -jar RmiJdb c .jar [-noreg] [- port regportnum] [-lp portnum] [- sm]
[-ssl] [-passwd passwd] [driverList]

-noreg

means you launch the RmiJdbc server with an external rmiregistry

- p o r t r e gpor t num

specifies the rmiregistry port (optional)

-lp portnum

specifies the listener port for remote objects (optional)

-srn

uses the standard RMI SecurityManager

- ssl

uses RmiJdbc on top of SSL.

28

I
l
l

l

)

j

I
j

J

1

J

J
J

-passwd

defines an administrative password, used by org.objectweb.rmijdbc.RJAdmin for
administrative operations

-driverList

lists of JDBC Driver classes available on your server

RmiJdbc.jar is located in the source distribution, under the dist/lib directory .

Once the server starts, a remote JDBC application can access your ODBC database. The

JDBC URL used for RmiJdbc is

jdbc:rmi: //< rmihostname[:port]>/<jdbc-url>

rmihostname is the host name or IP address of the machine where the RmiJdbc

server resides.

port is the port number for the RMI registry and the default port is 1099

jdbc-url is the location of the database .

5.6 Setting up a ODBC data source for an Access Database

An ODBC data source for an Access database can be created as follows .

1. In the Configuration Panel, go to Administrative Tools> Data Sources

(ODBC).

29

l
l
n

l

n

J

u
LI

J

J

J
J

f ~ ODBC Data Source Administrator ~ •

fu,stem Data Sources:

Name
1T rioMotors __ i
Xtreme Sample Database 2003

D,iver J

Micmsoft Access Driver (".mdbt'.
Microsoft Access Driver (".mdb:/

i~

ii
;;;;.;;;;;;;;.;;;s;;.....;""""""""""",;..., .. , .. a,.;,F= :[[Jr

An ODBC System data source stores information about how to connect to
the indicated data provider. A System data source is visibl~ to all users
on this machine, including NT services.

OK

2. Click Sys tern DSN > Add.

3. Choose Microsoft Access Driver (*.rndb).

Create New Data Source '"!':Cf ~ ,

Driver da Microsoft para arquivos lexlo r.M; ".csv)

1•a1·111im1mmu1n
Driver do Microsort dBase (".dbf)
Driver do Microsoft E>1ce!r.xls)
Driver do Microsoft Paradox r.db)
Driver para o Microsoft Visual FoxPro
Microsoft Access Driver r .mdb)
Microsoft Access·T reiber (".mdb)
Microsoft dBase Driver (".dbl)

Jnf .~£1uili..dEl..:a.e.Q .. W;:Q ,i~"'" 1: r!hF) i< r-~

Finish Cancel

4. In the Data Source Name text box, give a name to the Access Database. This

name is the catalog name. Click Select ... and browse for the Access mdb file.

30

l
l

n

]

I
J

l
lJ

J

J
J

: u:

~ Data Souce tlame: l<Name of lhe data SOUl~e>

; Qesc,;ption: ,,,.IL_.,...."""'"'""""''""'""""'""'= :~ I
~r Database · - . ~

ii - ~ . "-,~--""t1""•1p--' ,
,I - c:om-. 1· «=~-.;- , fj Advanced .. .

5. Setup the user name and password in the Advanced Click OK when done.

5.8 db2db Configuration File

The following configuration file can be used to migrate fishbase database from Acccess

to PostgreSQL.

<JDBCConnections >

<s ource _ db

/>

dbms = "ODBC"
jdbcUrl="jdbc:rmi: // khong. ee n.orst . edu / jdb c :odbc:fbapp"
s chema= "null"
c atalog= "E: \\ Fishbase \\ fbapp"
username="username"
password="password"

<target_db

/>

dbms = "PgSQL"
jdbcUrl="jdb c :postgr es ql ://ga nga / fi s hba s e"
sc hema= "null"
c atalog= "null"
us e rname="username"
pa s s word="pass word"

</ JDBCConnections >

6. Conclusion

We developed db2db for migrating the database schema and the data from one database

31

l
n
l
n
l

I
l J

I

u
J
J

to another. It uses JDBC type-2 or type-4 drivers to connect to the source and target

DBMSs and allows the database to be migrated over a network. The data type mapping

rules for column data-type can be chosen for each specific combination of the source and

target DBMSs. The databases we migrated are Biotics and Fishbase . Both of these

databases are large database and could not be migrated with such a tool as Microsoft DTS

or PgAdminlI. db2 db successfully migrated Biotics and Fishbase . The next step for us

is to test db2 db with other DBMSs and databases and improve its applicability.

7. Reference

1. George Reese, "Database Programming with JDBC and Java" , O 'Reilly, August

2000 .

2. Oracle, "Oracle9i Database Release 2 User, Administrator, and Developer

Guides", http://www .oracle.com/technology/documentation/oracle9i.html

3. "PostgreSQL Developers Guide", http://www.postgresql.org/docs/

4. "PostgreSQL Programmers Guide" , http://www.postgresql.org/docs/

5. Van Der Lans R., "The SQL Guide to Oracle", Addison-Wesley Professional,

December 1991.

32

