Learning Diagnostic Policies from Examples by Systematic Search

Valentina Bayer-Zubek
School of Electrical Engineering and Computer Science
Oregon State University
Corvallis, OR 97331-3102
bayer@cs.orst.edu

Abstract

A diagnostic policy specifies what test to per-
form next, based on the results of previous
tests, and when to stop and make a diagno-
sis. Cost-sensitive diagnostic policies perform
tradeoffs between (a) the costs of tests and
(b) the costs of misdiagnoses. An optimal di-
agnostic policy minimizes the expected total
cost. We formalize this diagnosis process as a
Markov Decision Process (MDP). We inves-
tigate two types of algorithms for solving this
MDP: systematic search based on the AO* al-
gorithm and greedy search (particularly the
Value of Information method). We investi-
gate the issue of learning the MDP proba-
bilities from examples, but only as they are
relevant to the search for good policies. We
do not learn nor assume a Bayesian network
for the diagnosis process. Regularizers are
developed that control overfitting and speed
up the search. This research is the first that
integrates overfitting prevention into system-
atic search. The paper has two contributions:
it discusses the factors that make systematic
search feasible for diagnosis, and it shows ex-
perimentally, on benchmark data sets, that
systematic search methods produce better di-
agnostic policies than greedy methods.

1 INTRODUCTION

A simplified form of the diagnosis process describes
the sequence of tests performed by a diagnostician,
culminating with a diagnosis. For example, a physi-
cian might ask several questions (e.g, patient’s age,
symptoms), perform simple measurements (e.g., body
mass index, temperature), and order laboratory tests
(e.g, glucose, insulin) in order to determine the disease
of the patient. In this sequential decision making pro-

cess, the doctor takes into account probabilities of test
outcomes, likelihood of diseases, and costs. Both tests
and misdiagnoses incur costs. Some tests are cheaper
than others, and incorrect diagnoses may incur dif-
ferent costs (for example, declaring a sick patient to
be healthy can be more expensive than declaring a
healthy patient to be sick).

This paper studies the problem of learning diagnostic
policies from data, with the goal of minimizing ex-
pected total costs of tests and misdiagnoses. We as-
sume that the training examples record all test results
and diagnoses, and that test costs and misdiagnosis
costs are given. Because of the costs involved in col-
lecting such training examples, we assume that the
training data sets are relatively small.

Our model of diagnosis makes the following assump-
tions: each test is a pure observation action, so it does
not change the patient; tests are performed one-at-a
time, and the results are available before the next de-
cision is made; a test need not be repeated, since it
returns the same result; tests have discrete values.

Unlike other work on test selection for diagnosis
[9, 17, 4], we do not assume a Bayesian network or
influence diagram; instead we directly learn a diag-
nostic policy from the data. The problem of learning
diagnostic policies is related to cost-sensitive learning,
test sequencing and troubleshooting. Previous work in
supervised learning either ignored all costs or consid-
ered only attribute costs or only misclassification costs.
More recently, both types of costs were investigated by
Turney [16], who used genetic search to learn greedy
policies, and by Greiner et al. [6], who provided a the-
oretical algorithm for learning policies with at most
a constant number of tests, assuming enough training
examples are available to guarantee close-to-optimal
performance of these policies. The test sequencing
problem [13] deterministically identifies faulty states
while minimizing expected test costs. In troubleshoot-
ing [8], a system needs to be restored to a functioning
state, using pure observations and repair actions.

We formulate the diagnostic learning problem as a
Markov Decision Process (MDP) in Section 2. Section
3 shows how to solve the MDP using the systematic
search AO* algorithm; it also describes greedy search.
Section 4 attacks the issue of learning the MDP model.
We propose integrating the learning of probabilities
into the search for diagnostic policies. Sections 5 and
6 introduce several regularization methods that reduce
the risk of overfitting; some of them also prune the
search space. Sections 7 and 8 describe the experi-
ments, and compare the systematic and greedy search
algorithms on real-world data sets. Section 9 presents
the conclusions and future work.

2 DIAGNOSIS FORMALIZED AS A
MARKOV DECISION PROCESS

The diagnosis process is a sequential decision making
process, so it can be modeled as an MDP [2]. We first
describe the actions of the MDP, then the states, and
finally the transition probabilities and the expected
costs. All costs are positive.

There are N tests and K diagnoses. Test z, returns
the value of attribute x,,, and diagnosis action fj pre-
dicts that the correct diagnosis y of an example is k.
An action (test or diagnosis) is denoted by a.

The states s correspond to all possible combinations
of measured attributes. For example, state {BMI =
large, Insulin = low} records the value “large” for
Body Mass Index and the value “low” for Insulin. Each
training example provides evidence for the reachability
of 2V states. With our assumptions, the joint distri-
bution P(x1,...,Ty,y) is order independent, therefore
our state representation has the Markov property. In
the start state so = {} no attributes were measured.
The terminal state is entered once a diagnosis is made.
We assume that states that do not appear in the train-
ing data have zero probability.

Test action z,, executed in state s will transition to
state s’ = s U {z,, = v,}, where v,, is one of the ob-
served values of x,,. The probability of this transition
is Py (s'|s,xn) = P(x, = vpls), and the expected cost
is C(xy,), which is the cost of test x,,.

Let MC(fr,y) be the misdiagnosis cost of diagnos-
ing disease k when the correct diagnosis is y. The
cost of diagnosis fi is an expectation over the correct
diagnoses y, taking the value MC(fr,y) with prob-
ability P(y|s), which is the probability that the cor-
rect diagnosis is y given the current state s. We write

C(s, fr) = 22, Pyls) - MC(fr,y).

Formally, a policy 7 for an MDP maps states into ac-
tions. For a given start state, a diagnostic policy takes

the form of a decision tree, each internal node speci-
fying a test, and each leaf specifying a diagnosis (see
Figure 1). The value of a policy, V™, is the expected
total cost of following the policy. Note that chang-
ing the order of the tests in a policy changes its value
function. Solving the MDP means finding an optimal
policy 7* that minimizes V7™ (s) for all states s. Its
value is called the optimal value function V*(s).

3 SEARCHING FOR DIAGNOSTIC
POLICIES

In this section, we assume that the probabilities of the
MDP model are known. Instead of searching the entire
state space, whose number of states is exponential in
the number of tests, we consider algorithms that visit
only a fraction of this huge space.

3.1 SYSTEMATIC SEARCH (AO%)

The MDP corresponding to our problem has a unique
start state and no directed cycles, therefore the
space of policies can be represented as an AND/OR
graph [7]. The AO* algorithm [11] is an efficient
method for computing the optimal policy 7* in an
AND/OR graph. Unlike dynamic programming algo-
rithms, like value iteration and policy iteration [15],
AO* does not need to visit every state of the MDP. In-
stead, it relies on an admissible heuristic that searches
only the parts of the search space that look promising
to finding the optimal policy.

For details on the AO* implementation for the diagno-
sis problem, and for proofs of theorems, we refer the
reader to [1]. Here, we will describe the admissible
heuristic and its cutoffs, and will give an overall idea
of how AO* works.

An AND/OR graph alternates between OR nodes and
AND nodes. An OR node corresponds to a state s in
the MDP, and it specifies the choice of an action (ei-
ther a test or a diagnosis action). An AND node cor-
responds to a state-action pair (s,z,), and stores the
probabilities P(z,, = v,|s) for the outcomes of test z,,.
Note that multiple paths from the root (correspond-
ing to sp) may lead to the same OR node, by changing
the order of the tests. Let A(s) be the set of actions
executable in state s, including not-yet-measured at-
tributes, and all the diagnosis actions.

Our admissible heuristic provides an optimistic es-
timate, Q°P!(s,xy), of the expected cost of an un-
expanded AND node (s,z,). It performs a one-
step lookahead, and it underestimates the costs of
the resulting states s’ as the minimum over the cost
of diagnosis actions and the cost of each attribute
not yet measured in s": Q% (s,z,) = C(z,) +

7 Correct 0

{ BMI = large, Insulin = low} Digbetes
24 80
| Incorrect
age { BMI =large}
45.98 8 Correct 0
: { BMI = large, Insulin = high} —Heathy
high 20 100

Incorrect

Correct
9 0
{ BMI = small } —Healthy
100

10 Incorrect

Figure 1: An example of diagnostic policy 7 for diabetes. Body Mass Index (BMI) is tested first. If it is small,
a Healthy diagnosis is made. If BMI is large, Insulin is tested before making a diagnosis. We write the costs of
tests (BMI and Insulin) underneath them, and the misdiagnosis costs next to the solid squares. Probabilities are
written on branches. The values of the states are written below them. The value of the policy, V™ (so) = 28.99,
is computed bottom-up by taking expectations of uncertain outcomes and adding test costs.

Yo Per(s']s,2,) ming c 45y C(s',a’). Theideais that
the cost of a policy that measures at least one test ex-
ceeds the cost of that test. We proved that the state-
action value function Q°P%(s,a) and the state value
function Vort(s) ©f minge 4(s) @ (s,a) form an ad-
missible heuristic, that is, they underestimate the opti-
mal costs, Q°P!(s,a) < Q*(s,a) and VoPi(s) < V*(s).
Vort is the value of the optimistic policy moFt.

The admissible heuristic avoids exploring expensive
parts of the AND/OR graph. If we computed the
optimal state-action value Q*(s,a), and Q*(s,a) <
Q°P(s,a'), then action @’ can be pruned from the
search space, since it will never be part of the opti-
mal policy. Let us assume that a is a diagnosis action,
a' is a test action, and that test costs are large rela-
tive to misdiagnosis costs. Then it is likely that the
admissible heuristic will produce many cutoffs without
expanding expensive actions.

The AO* algorithm repeats the following steps: in the
current best optimistic policy (in which not all AND
nodes were expanded), it selects an AND node and ex-
pands it (that is, it generates its children OR nodes),
after which it recomputes the optimistic value func-
tion and policy of the revised graph. By definition, a
complete policy has diagnosis actions in its leaves. In
AO*, a leaf of a complete policy specifies the diagnosis
action fpes¢ with minimum expected misdiagnosis cost,
foest = argming, C(s, fr). When AO* converges, the
resulting optimistic policy is complete. In fact, this
policy is an optimal policy 7* of the MDP.

We also introduce the notion of a realistic policy w"¢*,

which is the best complete policy in the graph ex-
panded so far. We compute 77¢¥ by ignoring all un-
expanded AND nodes in the current graph; the re-
sulting graph is called the realistic graph. Note that
an OR node s, where all AND nodes correspond-
ing to remaining tests are currently unexpanded, has

7" (s) = fpest. The value of the realistic policy
Vreal is an upper bound on the optimal value function,
V*(s) < Vreal(s). The realistic policy is not necessary
for AO* convergence, but it helps us to transform the
AO* algorithm into an anytime algorithm (where after
every iteration we can output a complete, executable
policy), and is essential for some of the regularizers.

3.2 GREEDY SEARCH

In this section we describe three greedy search algo-
rithms for finding diagnostic policies. Greedy search
algorithms perform a limited lookahead search, and
once they commit to the choice of a test, that choice is
final. As a result, greedy policies are not optimal, but
are nevertheless computationally efficient. Instead of
growing a graph like AO*, a greedy algorithm builds
a single decision tree.

The first greedy method is inspired by the C4.5 al-
gorithm for growing decision trees [14], but it uses
Norton’s criterion [12]. It selects the test that max-
imizes the information gain with the diagnoses labels
y, divided by the cost of the test, I(zn;y|s)/C(zn)-
The information gain is I(zy,;y|s) H(yl|s) —
Yo, Plxn =vn|s)-H(y|sU{z, = v,}), where H(y) =
>, —P(y)log P(y) is the Shannon entropy of random
variable y. If all examples in a node have the same di-
agnoses, or if all tests have been performed, the greedy
search terminates by choosing the most likely diagno-
sis, argmax, P(yls).

We extend the first greedy method to use misdiagno-
sis costs in the leaves of the policy. Thus the sec-
ond greedy method chooses diagnosis actions with the
minimum expected cost, fyess = argming, Ey P(yls) -

The last greedy method considers both test costs
and misdiagnosis costs at each decision step. The
one-step Value of Information (VOI) method first

computes the cost of the diagnosis action fpest
that minimizes expected misdiagnosis costs in state
s. If all tests have been performed, the method
stops by choosing fpest- If not, for each remain-
ing test m, it computes the expected cost of per-
forming the test and then choosing diagnosis ac-
tions in the resulting states with minimum expected
costs, 1-step-LA(s,z,) = C(z,) + >, Plan =

vals) x [ming, 32, P(yls U {wn = va}) - MC(fi,)]

The best test Tpes; = argmin, 1-step-LA(s,z,,) is se-

lected only when its value of information is positive,
def

VOI(s, Tpest) = C(5, frest) — 1-step-LA(s, Tpest) > 0.

Otherwise, it is cheaper to diagnose in fpes:.

4 LEARNING PROBABILITIES OF
THE MDP MODEL

This section addresses the question of learning the
probabilities P(z, = v,|s) and P(y|s) of the MDP
model. However, not all the probabilities of the MDP
model may be required by a search algorithm. In-
stead of learning the probabilities in a step prior to the
search process (e.g., by fitting a probabilistic model to
the data, then inferring them from this model), we
chose to exploit the task by integrating learning into
the search process. This way we only estimate proba-
bilities that are needed for learning good policies.

Each time a search algorithm needs to estimate a prob-
ability, the algorithm examines the training data and
computes the maximum likelihood estimate. By defi-
nition, an example matches a state s if it agrees with
all the attribute values defining s. P(x, = vy|s) is es-
timated as the fraction of training examples matching
state s that have x,, = v,. Similarly, P(y|s) is esti-
mated as the fraction of training examples matching
state s that have diagnosis y.

This simple approach to estimating probabilities often
results in overfitting, that is, finding policies that per-
form well (optimally, for AO*) on the training data
but perform quite badly on new cases. The following
sections describe strategies for reducing overfitting.

5 REGULARIZERS FOR
SYSTEMATIC SEARCH (AO*)

Both systematic and greedy search algorithms overfit
when they grow deep policies whose probabilities are
estimated from a small set of training examples. AO*
is affected even more by overfitting because it considers
many different policies. We first describe strategies
for regularizing systematic search. The regularizers
change the MDP model. Note that regularized AO* no
longer computes the optimal policy on training data.

5.1 LAPLACE CORRECTION

Laplace correction avoids extreme probabilities (0 and
1) by adding one fake example to each case. Intu-
itively, when correcting P(y|s), each diagnosis is given
an extra training example. Similarly, when correcting
P(z, = vp|s), we count one extra example for each
value of the test. All probabilities are corrected as the
AND/OR graph is grown.

5.2 STATISTICAL PRUNING

Our second regularization technique, called statistical
pruning (SP), reduces the amount of AO* search by
pruning actions that are statistically indistinguishable
from the current realistic policy.

The SP heuristic is applied in every OR node s whose
optimistic policy is selected for expansion. The action
7°Pt(s) will be pruned from the graph if a statistical
test cannot reject the null hypothesis that V°Pt(s) =
Vvreal(s). The statistical test checks whether V°Pt(s)
falls inside a 95% normal confidence interval around
Vreal(s). If it does, then SP prunes m°P(s). In other
words, it prefers a complete policy (the realistic pol-
icy) to an incomplete one (the optimistic policy). The
confidence interval is computed from the total costs of
testing and diagnosing all training examples matching
state s when processed by 7€ (s).

Recall that the optimal value function V*(s) is lower-
bounded by V°Pt(s) and upper-bounded by V"¢ (s).
If Vort(s) falls inside the confidence interval for
Vvreal(s) then V*(s) will also belong to that confi-
dence interval. Hence, we are at least 95% confident
that V*(s) = V"¢l(s), so the current realistic policy is
statistically indistinguishable from the optimal policy.
However, subsequent expansions by AO* may change
7"¢% who could become statistically worse than 7*.

The SP heuristic is applied as the AND/OR graph
is grown. When actions are pruned from the graph,
only optimistic updates need to be made, since pruning
does not change the realistic graph.

When combining the SP and Laplace regularizers, we
center the confidence interval around the Laplace-
corrected V"¢ (s), and compute the width of the con-
fidence interval from the total costs of the training
examples matching state s when processed by the
Laplace-corrected 7"¢% (s).

5.3 EARLY STOPPING

Early stopping employs an internal validation set to
decide when to halt AO*. We trained AO* on half of
the training data, and used the other half as a vali-
dation data. After every iteration, 77¢® is evaluated

on the validation data. The realistic policy with the
lowest total cost on the validation data is remembered,
and is returned as the learned policy when the algo-
rithm eventually terminates. When Laplace correction
is combined with early stopping, we only correct the
probabilities estimated from the subtraining data.

5.4 PESSIMISTIC POST-PRUNING
BASED ON MISDIAGNOSIS COSTS

This regularizer is inspired by Quinlan’s method for
pruning decision trees [14]. The idea is to take a pol-
icy m and the training data, and to produce a pruned
policy that exhibits less overfitting. This pruning is
applied to the final realistic policy computed by AO*,
in a bottom-up traversal of the policy.

Pessimistic post-pruning (PPP) replaces the policy-
value of each state, V™ (s), by an upper bound U B(s).
It starts at the leaves of the policy 7 and computes
UB(s) as the upper limit of a 95% normal confi-
dence interval for C(s, fpest).- The confidence interval
is computed from the misdiagnosis costs M C(fpest,y)
of the training examples (with diagnoses y) that match
state s. The upper bound at an internal node is
UB(s) = C(n(s)) + >, Pu(s'|s,m(s)) - UB(s'). The
action w(s) will be pruned, and replaced by the best
diagnosis action in s, fpest, if the upper bound on
C(s, frest) is less than UB(s) for the internal node.

When combining the PPP and Laplace regularizers, we
compute the upper bound on C(s, frest) by adding one
fake training example for each diagnosis. All probabil-
ities were Laplace-corrected as the graph was grown,
s0 Pi-(s'|s, m(s)) used in the computation of UB(s) of
internal nodes are already corrected.

6 REGULARIZERS FOR GREEDY
SEARCH

We now describe regularizers for greedy search.

6.1 MINIMUM SUPPORT PRUNING

The first two greedy methods use the minimum sup-
port stopping condition of C4.5. Test x, is eligible
for selection only if at least two of its outcomes lead to
states that have at least 2 matching training examples.

6.2 LAPLACE CORRECTION

Laplace correction is applied to all probabilities com-
puted during greedy search. This does not change the
test action with maximum information gain. Laplace
correction does not change the most likely diagno-
sis computed by the first greedy method, but it may

change the diagnosis action with the minimum ex-
pected cost computed by the second greedy method.
For the VOI method, Laplace correction is applied to
all probabilities employed in computing C(s, fpest) and
1-step-LA(s, z,,) as the policy is grown.

Next we describe post-pruning techniques for the
greedy policy 7, and discuss how Laplace affects them.

6.3 PESSIMISTIC POST-PRUNING
BASED ON MISDIAGNOSIS RATES

The first greedy method uses C4.5’s standard pes-
simistic post-pruning. After the tree is grown, in each
leaf the pessimistic error is estimated as the upper
limit of a 75% confidence interval for the binomial dis-
tribution (n,p) plus a continuity correction. n is the
number of training examples reaching the leaf node,
and p is the error rate committed by the diagnosis ac-
tion on the training examples at this leaf. An internal
node is converted to a leaf node if the sum of its chil-
dren’s pessimistic errors is greater than or equal to the
pessimistic error that it would have if it were converted
to a leaf node.

Laplace regularization combined with PPP replaces
the observed error rate p with its Laplace-corrected
version (this is computed by adding one fake example
for each diagnosis).

6.4 POST-PRUNING BASED ON
EXPECTED TOTAL COSTS

The policy m grown by the second greedy method is
post-pruned based on the expected total cost of di-
agnosis. An internal node with m(s) = z, is con-
verted into a leaf node, where 7w(s) = fpest and
V7™ (s) = C(s, frest), if the expected cost of diagnosis,
C(s, foest), is less than the expected total cost of choos-
ing test z,, Q" (s,z,) = Clzn) + > Pir(s']s, zp) -
V7™ (s"). When combining this pruning technique with
Laplace corrections, all probabilities employed in com-
puting C(s, frest) and Q7 (s, z,,) were already Laplace-
corrected when the policy was grown.

It is interesting to note that this post-pruning based on
expected total costs is not necessary for VOI, because
pruning is already built-in. Indeed, any internal node
s in the VOI policy 7, with 7(s) = @, has Q™ (s, z,) <
l'Step'LA(S> xn) < 0(57 fbest)-

7 EXPERIMENTAL STUDIES

We compare the various methods described above,
with the goal of finding the best (or the most robust)
algorithm.

Table 1: Medical Domains.

domain | # examples | # tests | (min, max) test cost
bupa 345 5 (7.27, 9.86)
pima 768 8 (T, 22.78)
heart 207 13 (1, 102.9)
b-can 683 9 (1, 1)

spect 267 22 (1, 1)

7.1 EXPERIMENTAL SETUP

The experiments were performed on five medical
problems from the UCI repository [3]: Liver disor-
ders (bupa), Pima Indians Diabetes (pima), Cleve-
land Heart Disease (heart), the original Wisconsin
Breast Cancer (b-can), and the SPECT heart database
(spect). These data sets describe each patient by a vec-
tor of attribute values and a class label. We define a
test action that measures the value of each attribute,
and a diagnosis action for each class label.

For the bupa, pima, and heart domains, Peter Turney
provided the test costs [16]. For the others, we set
all test costs to be 1. Assigning misdiagnosis costs
is more difficult. We developed a methodology for
choosing five different levels of misdiagnosis costs for
each domain [1]. The goal was to create an interesting
range of misdiagnosis costs relative to test costs, that
avoids trivial policies measuring no tests or measuring
all tests. Table 1 briefly describes the domains.

We pre-processed the data as follows: we removed
all training examples that contained missing attribute
values; we merged some of the classes so that only
two classes (healthy and sick) remained; we discretized
each real-valued attribute into 3 levels (thresholds were
chosen to maximize the information gain with the
class). For each domain, the transformed data was
used to generate 20 random splits into training (two
thirds of data) and test sets (one third of data), with
sampling stratified by class. Such a split is called a
replica. Experiments were repeated on each replica to
account for random choice of training sets; since the
replicas overlap, combining results from different repli-
cas probably underestimate this source of variability.

For domains with many tests, the AND/OR graph
constructed by AO* grows very large. To prevent this,
we imposed a limit of 100 MB on the total memory for
the graph (in practice, this translates into 500 MB).
When the memory limit is reached, the current realis-
tic policy is returned as the result of the search. This
only happens on the spect domain, for large misdiag-
nosis costs. In all other cases, the systematic algo-
rithms converge within the memory limit.

The notations for the systematic search algorithms

are AO*, SP for AO* with Statistical Pruning, ES
for AO* with Early Stopping, and PPP for AO* with
Pessimistic Post-Pruning based on misdiagnosis costs.
The notations for the greedy search algorithms and
their regularizers are Nor, MC-N, and VOI. For all al-
gorithms, the “L” suffix indicates the addition of the
Laplace regularizer. For example, MC-N-L denotes the
second greedy method using Norton’s criterion for se-
lecting tests, and choosing diagnosis actions that min-
imize expected misdiagnosis costs, along with three
regularizers: minimum support pruning, post-pruning
based on expected total costs, and Laplace correction.

7.2 EVALUATION METHODS

Each algorithm learns a policy on the training set,
which we then evaluate on an independent test set.
The value of the policy on the test set, Vies, is the
sum of test costs and misdiagnosis cost for each exam-
ple in the test set, as processed by the policy, divided
by the number of examples. To compare learning algo-
rithms, we need to compare their V.5 values to check
if there is a statistically significant difference among
them. We used a procedure based on the BDELTA-
CosT bootstrap statistical test [10] to decide whether
the policy m; constructed by an algorithm algl is bet-
ter than, worse than, or indistinguishable from the pol-
icy mo constructed by another algorithm alg2.

The original BDELTACOST applies to classifiers that
account for misclassification costs but not for attribute
costs. We extended the statistical test to diagnostic
policies. For each example in the test set, BDELTA-
CosT computes the difference in the total cost of pro-
cessing it using policy 7 and policy 7. Then it con-
structs 1000 bootstrap replicates [5] from the set of
cost differences. The means of the bootstrap repli-
cates are sorted in increasing order, and the middle
950 means form a 95% confidence interval for the dif-
ference in policies’ values. If the confidence interval lies
below zero, then 7 is better than mo (this is called a
win for 7); if it contains zero, the two policies are tied;
and if the confidence interval lies above zero, then m
is worse than w2 (this is called a loss for 7).

Let (wins,ties,losses) be the cumulative BDELTA-
CosT results of algl over alg2 on a given domain D,
across all 5 misdiagnosis cost levels and all 20 repli-
cas. The score of an algorithm is computed using
the chess metric, which counts each win as one point,

each tie as half a point, and each loss as zero points:

Score(algl,alg2, D) 4 wins + 0.5 x ties. The over-

all chess score for an algorithm sums its chess scores
against all of the other algorithms: Score(algl, D) =
> alga£aigr Score(algl,alg2, D). If the total number of
“games” played by an algorithm is Total = wins +

ties + losses, and if all the games were tied, the chess

score would be Tie-Score % 0.5 x Total. If an algo-

rithm’s chess score is greater than the Tie-Score, then
the algorithm has more wins than losses.

8 RESULTS

We now present the results of the experiments. We
first studied the effect of the Laplace regularizer on
each algorithm. For each of the seven algorithms with
Laplace correction, we computed its chess score with
respect to its non-Laplace version, on each domain.
The Total number of games an algorithm plays against
its non-Laplace version is 100 (5 misdiagnosis cost lev-
els x 20 replicas), so Tie-Score = 50.

Figure 2 shows that on each domain, the Laplace-
corrected algorithm scores more wins than losses ver-
sus the non-Laplace-corrected algorithm, because each
score is greater than Tie-Score. This supports the con-
clusion that the Laplace correction improves the per-
formance of each algorithm. Some algorithms, such as
Nor and AO*, are helped more than others by Laplace.

Since the Laplace regularizer improved each algorithm,
we decided to compare only the Laplace-corrected ver-
sions of the algorithms to determine which algorithm
is the most robust across all five domains. We com-
puted the overall chess score of each Laplace-corrected
algorithm against all the other Laplace-corrected algo-
rithms, on each domain. The Total number of games
is 600 (an algorithm plays 100 games against each of
the 6 “opponents”), so Tie-Score = 300.

Figure 3 shows that the best algorithm (i.e., the one
with the largest score) varies depending on the domain:
ES-L is best on bupa, VOI-L is best on pima and spect,
SP-L is best on heart, and MC-N-L is best on b-can.
Therefore no single algorithm is best everywhere. Nor-
L is consistently bad on each domain; its score is always
below the Tie-Score. This is to be expected, since
Nor-L does not use misdiagnosis costs when learning
its policy. MC-N-L, which does use misdiagnosis costs,
always scores better than Nor-L. The fact that VOI-L
is best in two domains is very interesting, because it
is an efficient greedy algorithm. Unfortunately, VOI-L
obtains the worst score in two other domains: heart
and b-can. On average, greedy algorithms run in less
than 0.1s, while systematic algorithms have CPU times
of at most 1000s.

The only algorithm that has more wins than losses
in every domain is SP-L, which combines AO* search,
Laplace corrections, and statistical pruning. SP-L al-
ways scored among the top three algorithms. Con-
sequently, we recommend it as the most robust algo-
rithm. But in domains with hundreds of tests and

Bbupa
90 A BEpima
80 Bheart

Ob-can
70 4 Ospect

60
50 4 |- | Tie-Score
40
30

20 1

Chess score of Laplace-corrected alg. vs. non-Laplace alg.

<)
L

Nor-L MC-N-L VOI-L AO*-L SP-L ES-L PPP-L

greedy systematic

Figure 2: The score of each Laplace-corrected algo-
rithm versus its non-Laplace version, on each domain,
is greater than the Tie-Score. Therefore the Laplace
version has more wins than losses.

diagnosis actions, where SP-L (or any of the system-
atic search algorithms) is too expensive to run, VOI-L
is recommended, since it is the best greedy method.

9 CONCLUSIONS

This paper addressed the problem of learning diag-
nostic policies from labeled examples, given both test
costs and misdiagnosis costs. The process of diagnosis
was formulated as a Markov Decision Problem. We
showed how to apply the AO* algorithm to solve this
MDP to find an optimal diagnostic policy. We defined
an admissible heuristic for AO* that is able to prune
large parts of the search space. We also presented three
greedy algorithms for finding diagnostic policies.

We integrated the learning of probabilities into the
search for good diagnostic policies. To reduce overfit-
ting, we developed four methods for regularizing the
AO* search: Laplace corrections, statistical pruning,
early stopping, and pessimistic post-pruning. The pa-
per also introduced regularizers for the greedy search
algorithms. The algorithms were tested experimen-
tally on five classification problems drawn from the
UCI repository. The paper also introduced a method-
ology for combining the results of multiple train-
ing/test replicas into an overall “chess score” for eval-
uating the learning algorithms.

The experiments showed that all search algorithms
were improved by including Laplace corrections when
estimating probabilities from the training data. The
experiments also showed that the systematic search al-
gorithms were generally more robust than the greedy
search algorithms across the five domains. The best
greedy algorithm was VOI-L, but although it obtained
the best score on two domains, it produced the worst
score on two other domains. The most robust learning
algorithm was SP-L, combining systematic AO* search
with Laplace corrections and statistical pruning.

400

Bbupa
380 Bpima
Bheart
Ob-can

360
340 Ospect
320

Tie-Score

300

280 +

Overall chess score

260

240 +

220 +

200 L L L
Nor-L MC-N-L VOI-L AO*-L SP-L ES-L PPP-L
greedy systematic

Figure 3: The overall chess score of each Laplace-
corrected algorithm, versus all the other Laplace-
corrected algorithms. The most robust algorithm is
SP-L, being the only one whose score is greater than
Tie-Score on every domain.

A surprising conclusion of this paper is that AO* is
computationally feasible when applied to the problem
of learning diagnostic policies from training examples.
There are three factors that explain this: (a) The
modest amount of training data limits the num-
ber of reachable states in the MDP, and therefore lim-
its the size of the AND/OR, graph; the training data
has a moderate size because each training example is
expensive to collect. (b) The admissible heuristic
prunes large parts of the search space when test costs
are comparable to misdiagnosis costs (which is the case
in non-trivial diagnosis problems). (c¢) The statisti-
cal pruning regularizer prunes parts of the search
space that are unlikely to produce improved policies.

The MDP framework for diagnosis is general enough to
handle such extensions as multiple classes and complex
costs. The MDP framework needs to be extended to
handle treatment actions with side effects, noisy tests,
and tests with delayed results. The difficult part for
learning is obtaining enough training data for these
complex tests. Another challenge is to learn good di-
agnostic policies from data with missing test results.

Acknowledgments

I thank Professor Thomas Dietterich for his guidance.

References

[1] V. Bayer-Zubek. Learning Cost-sensitive Diagnos-
tic Policies from Data. PhD thesis, Department of
Computer Science, Oregon State University, Corval-
lis, http://eecs.oregonstate.edu/library/?call=2003-
13, 2003.

[2] V. Bayer-Zubek and T. Dietterich. Pruning improves
heuristic search for cost-sensitive learning. In Pro-
ceedings of the Nineteenth International Conference

[10]

[11]

[12]

[17]

of Machine Learning, pages 27-35, Sydney, Australia,
2002. Morgan Kaufmann.

C.L. Blake and C.J. Merz. UCI repos-
itory of machine learning databases.
http:/www.ics.uci.edu/~mlearn/MLRepository.html,
1998.

S. Dittmer and F. Jensen. Myopic value of information
in influence diagrams. In Proceedings of the Thirteenth
Conference on Uncertainty in Artificial Intelligence,
pages 142-149, San Francisco, 1997.

B. Efron and R. J. Tibshirani. An introduction to the
bootstrap. New York: Chapman and Hall, 1993.

R. Greiner, A. J. Grove, and D. Roth. Learning
cost-sensitive active classifiers. Artificial Intelligence,
139(2):137-174, 2002.

E. Hansen. Solving POMDPs by searching in policy
space. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, pages 211-219,
San Francisco, 1998.

D. Heckerman, J. Breese, and K. Rommelse. Decision-
theoretic troubleshooting. Communications of the
ACM, 38:49-57, 1995.

D. Heckerman, E. Horvitz, and B. Middleton. An ap-
proximate nonmyopic computation for value of infor-
mation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15:292-298, 1993.

D. D. Margineantu and T. Dietterich. Bootstrap
methods for the cost-sensitive evaluation of classi-
fiers. In Proceedings of the Seventeenth International
Conference of Machine Learning, pages 583-590, San
Francisco, CA, 2000. Morgan Kaufmann.

N. Nilsson. Principles of Artificial Intelligence. Tioga
Publishing Co., Palo Alto, CA, 1980.

S. W. Norton. Generating better decision trees. In
Proceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence, pages 800-805, San
Francisco, 1989. Morgan Kaufmann.

K. R. Pattipati and M. G. Alexandridis. Application
of heuristic search and information theory to sequen-
tial fault diagnosis. IEEE Transactions on Systems,
Man and Cybernetics, 20(4):872-887, 1990.

J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, California, 1993.

R. S. Sutton and A.G. Barto. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambrdige, Mas-
sachusetts, 1999.

P. D. Turney. Cost-sensitive classification: Empirical
evaluation of a hybrid genetic decision tree induction
algorithm. Journal of Artificial Intelligence Research,
2:369-409, 1995.

L. van der Gaag and M. Wessels. Selective evidence
gathering for diagnostic belief networks. AISB Quar-
terly, 86:23-34, 1993.

