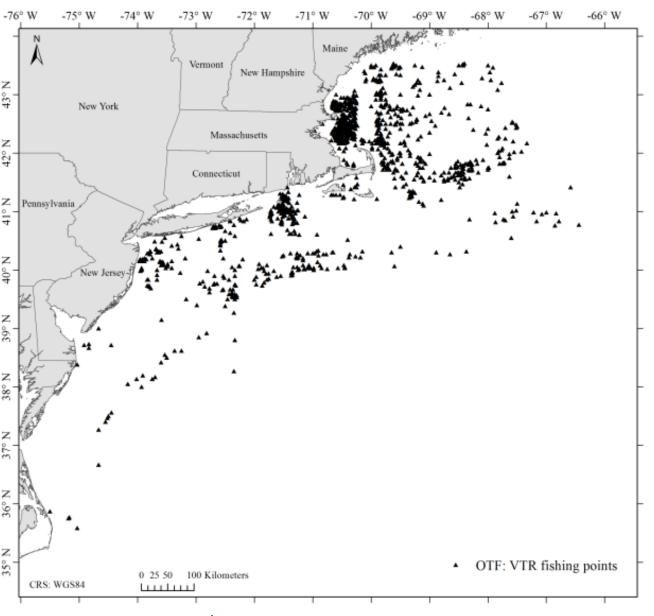
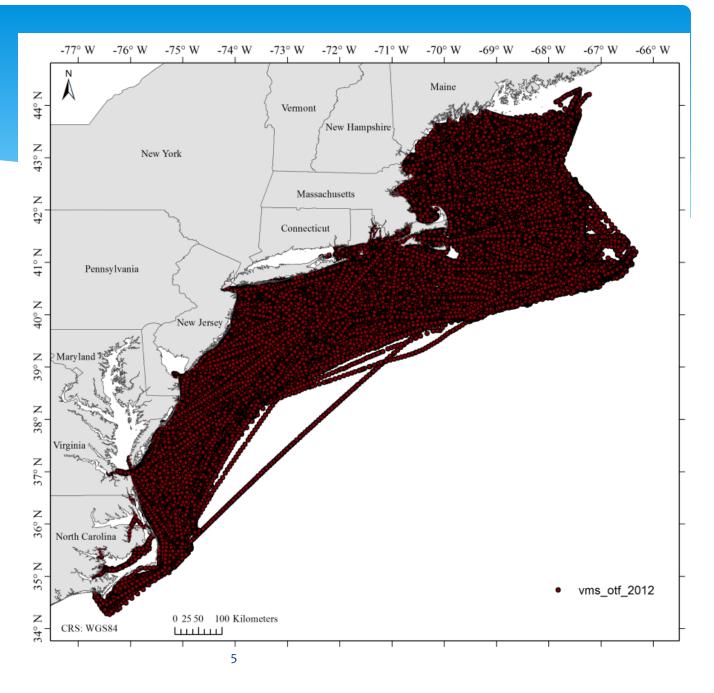
On the precision of predicting fishing activities and locations

Angela Münch & Geret DePiper
NOAA Northeast Fisheries Science Center/SSB, Woods
Hole (USA)


Data on fishing activity

- Observer data (ASM/NEFOP) ca. 10-20 percent of all commercial fishing trips
- Vessel monitoring system (VMS) ca. 80 percent of the fleet in recent years carries a responder
- Logbook data (VTR) requested for landings, but only one coordinate for the fishing activity
- → Who is fishing where (and what)?
 - → Stock assessment
 - → Impact of fishing activity on e.g. seabed
 - → Reaction to regulations (e.g. closure)


Fishing activity according to observer programs (NEFOP/ASM) in 2012

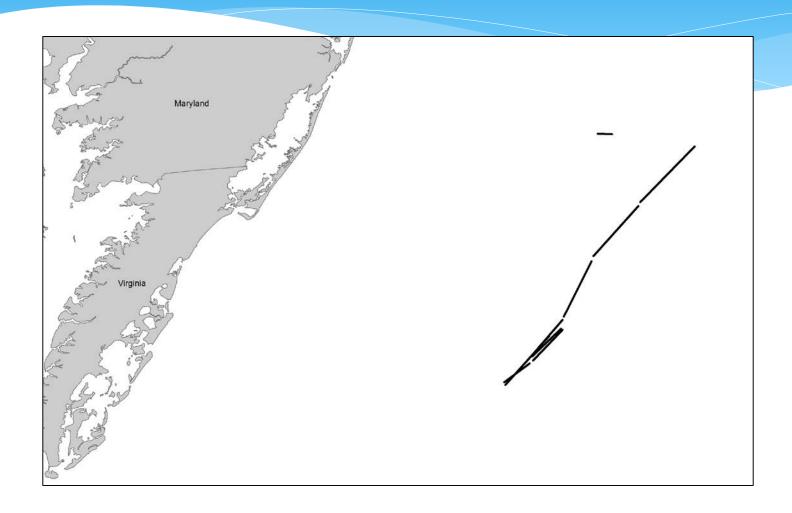
Fishing activity according to logbook in 2012 for bottom otter trawl

1. ResearchQuestion:Which VMS poll is a fishing location?

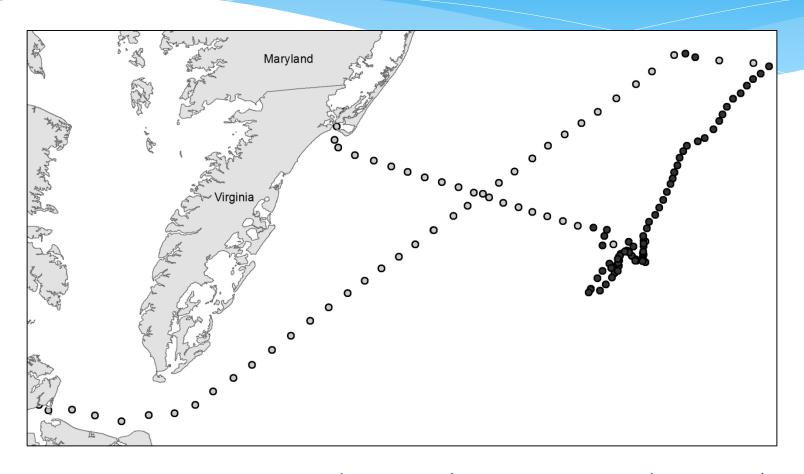
Fishing activity prediction based on VMS data

- Track interpolation vs. <u>point summation</u> based on speed rules
- Speed rules vs. probabilistic models
 - Palmer/Wigley 2009: a speed range of:
 - 3.7–7.4 km/h for bottom otter trawl
 - 4.6–11.1 km/h for scallop dredge, and
 - 0.2–2.4 km/h for sink gill net
 - Logit: $Pr(Y = 1 | x) = F(x, \beta) = \frac{e^{x'\beta}}{1 + e^{x'\beta}}$
 - GAM: $Pr(Y = 1 | x) = \sum_{i=1}^{p} s_i(X_i) = s(X)$
 - X: speed, speed-speed_{t-1}, speed range, contour, contour-contour_{t-1}, angle, angle-angle_{t-1}, position, accumulated distance and distance², temporal dummies (for e.g. quarter, day of the week, and moon phase) and locational dummies (for e.g. Territorial Sea, Contiguous Zone)

Prediction quality based on observed trips

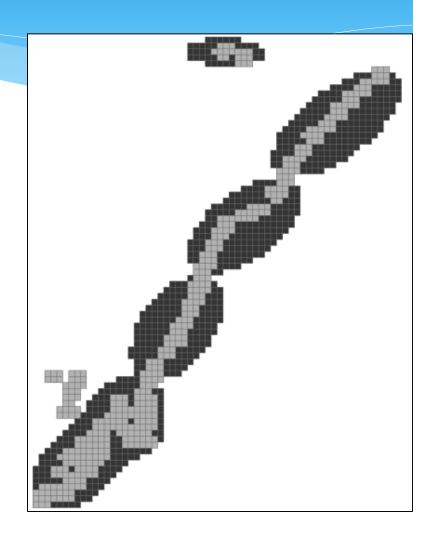

	Speed rule of Palmer & Wigley (2009)	VMS-GLM	VMS-GAM			
Gear	Scallop Dredge					
	(N=361, n=133,581)	n=64,789)				
Positive-positive	61.8	86.4	87.8			
False-positive	26.8	43.2	43.2			
Diff _G	35.0	43.2	44.6			
Gear	Sink Gillnet					
	(N=1,659, n=37,148)	(N=831, n=18,553)				
Positive-positive	61.9	89.5	90.0			
False-positive	22.1	29.3	29.2			
Diff _G	39.8	60.3	60.8			
Gear	Bottom Trawl					
Rule	(N=1,768, n=196,077)	(N=891, n=105.424)				
Positive-positive	82.6	92.7	92.3			
False-positive	18.8	29.3	28.5			
Diff _G	63.8	63.3	63.8			
Overall Diff	138.6	166.8	169.2			

Prediction of fishing location

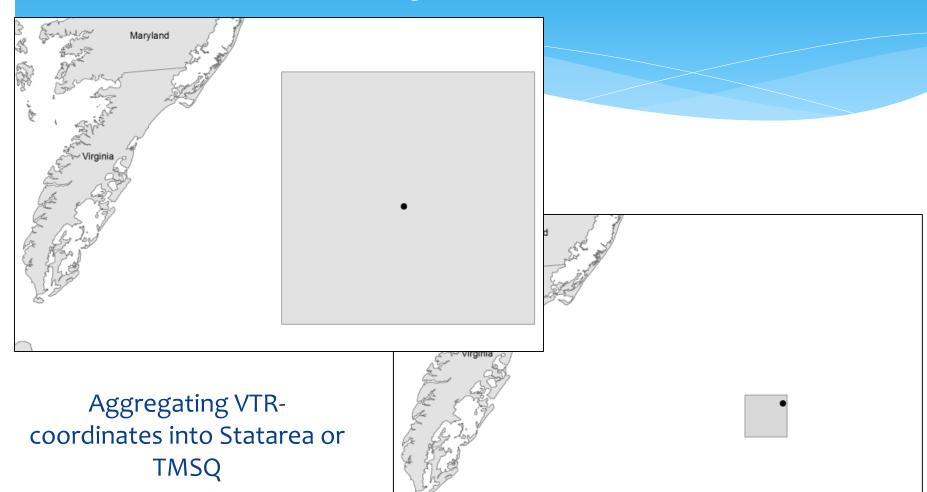

- Research question2: How to transfer point data into areas?
- Data:
 - ASM/NEFOP: Start- and end coordinates of fishing hauls
 - VMS: GLM/GAM predicted VMS polls
 - VTR: Fishing location one coordinate
- Method:
 - Aggregation into a grid
 - Determine an area (buffer/ellipse) before gridding

Example – trip A

- observed fishing hauls -


Example – trip A - VMS data -

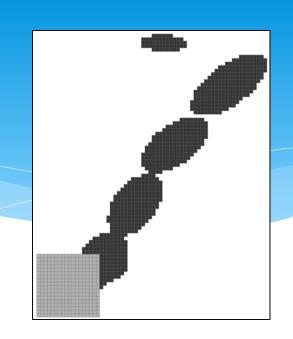
VMS-GAM predicted fishing (dark grey) and non-fishing (light grey).

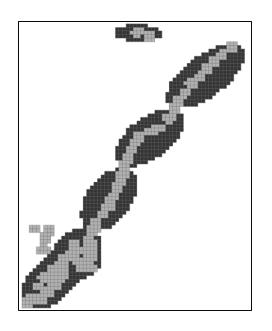

Example – trip A

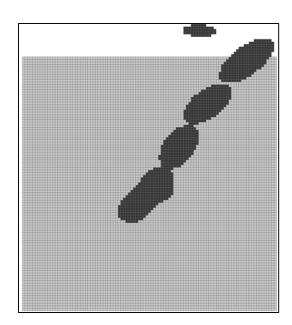
- VMS: Kernel smoothing (gear dependent bandwidth)
- ASM/NEFOP: create ellipse around hauls with width of 95th quantile deviation of VMS
- → Grid (1 km²) presence/absence comparison & weighted comparison

Example – trip A

- logbook data -


Example – trip A - logbook data -




Predicting spatial extent of VTR-coordinates based on trip characteristic (e.g. gear, or duration)

Grid Overlay

Overlay of ASM/NEFOP with VMS data and VTR data in a 1x1 km grid

Prediction quality

- Presence/Absence -

	VMS-GLM	VMS-GAM	VTR-Statarea	VTR-TMSQ	VTR-CDF
Gear	Scallop Dredge				
Positive-positive	87.0	86.9	99.5	68.7	88.5
False-positive	24.6	19.1	85.0	40.0	56.3
Bandwidth (assumed)	0.005	0.005			
Gear	Sink Gillnet				
Positive-positive	95.0	95.0	99.5	91.3	92.9
False-positive	48.7	47.8	95.8	79.7	81.1
Bandwidth (Gaussian)	0.0037	0.0037			
Gear	Bottom Trawl				
Positive-positive	93.1	92.7	98.7	69.8	89.2
False-positive	21.9	19.8	64.4	29.8	37-3
Bandwidth (assumed)	0.01	0.01			

Prediction quality

- weighted comparison -

	VMS-GLM	VMS-GAM	VTR-Statarea	VTR-TMSQ	VTR-CDF
Gear	Bottom Trawl				
Average weight of grid cell overlaps (Std.Dev.) [positive-positive]	0.026 (0.058)	0.025 (0.057)	0.135 (0.218)	0.025 (0.074)	0.008 (0.029)
Average weights of grid cell non-overlaps (Std.Dev.) [false-positive]	0.001 (0.002)	0.001 (0.001)	0.053 (0.141)	0.008 (0.017)	0.001 (0.003)
Kolmogorov-Smirnov test (Combined D)	0.571***	0.572***	0.448***	0.304***	0.422***
Percentage of hauls not predicted [positive-false]	0.65	0.68	0.35	7.90	3.41

Summary

- Proposed probability models showed best prediction quality by:
 - Disentangling VMS fishing from non-fishing polls
 - Predicting fishing location if a kernel smoothing is conducted
 - Without adding computational burden to the analysis
 - BUT: decision between GAM and Logit depending on spatial bias
- Logbook data prediction quality can be increased if areal extent is predicted instead of only aggregate the data (VTR-CDF)
- If speed rules are applied, constant updating necessary
- False-positive rate mainly in the prediction tail careful with the parameters!

Thanks for your attention!

- Question?
- Comments?
 - Remarks?

angela.muench@noaa.gov or geret.depiper@noaa.gov