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THE GREATEST INTEGER PART FUNCTION
CHAPTER I. INTRODUCTION

This thesis is a collection of properties of the greatest integer
part function, defined as the function whose domain is the set of real
numbers and whose value corresponding to a given real number is the
largest integer less than or equal to the given number.

Applications of this function include the distribution of primes,
divisibility properties of the integers, quadratic reciprocity, and
game theory.

We answer some general questions about the nature of this
function. The greatest integer part function

1. has as its domain the set of real numbers and has as its
range the set of integers;

2. 1is discontinuous for integral values of its argument and
continuous elsewhere;

3. has no inverse;

4. 1is monotonically increasing; and

5. possesses a zero derivative for non-integral values of its
argument and has no derivative for integral values of its
argument.

It is difficult to establish the origin of this function. Gauss

(1777-1855) used it (4), and it is found quite commonly in the liter-

ature by the 1880's. The notation for the value of this function has
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developed along two different lines. Most French and a few German
mathematicians have used E(x), a notation having its origin in the
French word "entier', meaning integer, for example P.G. Lejeune-
Dirichlet (24; 31), A. Legendre (30; 66), R. Lipschitz (25), and J. J.
Sylvester (57, p. 738-739). Most others have used [x], including

L. Gegenbauer (11; 12; 13), J. Hacks (20; 21; 22), L. Kronecker (30),
and K. Gauss (4; 30). The latter notation is in almost universal use
at the present time, and for this reason it has been employed in this
paper. However, in view of the present trend toward functional nota-
tion and because of the representation of other functions of number
theory, it would have seemed equally fitting, at least to this writer,
to have used E(x).

The greatest integer part function has been of interest chiefly
as a tool in the study of other concepts and for this reason a search
of the literature is difficult. The sources of information which 1
have used include the following:

Mathematical Reviews, 1940 to the present;

Jahrbuch iiber die Fortschritte der Mathematik, 1868
to the present;

Zentralblatt fir Mathematik, 1930 to the present;

L. E. Dickson. History of the Theory of Numbers,
volume 1, published in 1919 (10); and

The Royal Society of London Catalogue of Scientific
Literature, 1800 to 1900.




This thesis is organized in the following way. Following the
introduction is a list of all of the properties which were found, in-
cluding some unsolved problems. This chapter is divided into six
sections. In each section similar properties are grouped together
and special cases follow general results. Proofs of many of the
properties are not available. Properties 1.16, 4.4, 5,22, and 5. 23
are original, at least in that they were not found explicitly in the
literature. Chapter III contains proofs of these original properties,
comments about several other properties, and proofs of still other
properties which are from among those given in the literature with-
out proof. Chapter IV contains four incorrect results which were
found in the literature.

Below each property in Chapter II we give further information.
First we give the source. Then there appears a statement as to
whether or not the property is proved in that source. If the proof
is not reasonably complete in the source, we say it is not proved.
Finally if there is a proof of the property or a comment in Chapter
III, we so indicate. It is possible that some of the items called
comments may be interpreted by others as trivial proofs. There
are two exceptions to the pattern stated above. If the property is
original with this author, we so state and indicate that the proof is
in Chapter III. In the section containing the unsolved problems,

only the source is given since there is no proof.



The following functions from number theory will be used:

The greatest common divisor of the integers m and n,
whose value is denoted by (m, n).

T where T(n) is the number of positive integers which
divide the positive integer n.

¢ where &é(n) is the number of positive integers less
than or equal to and relatively prime to the integer n.

o where o(n) is the sum of the positive integral divisors
of the positive integer n, including 1 and n.

b where p(n) is equalto 1 if n=1, 0if n is a posi-
tive integer which contains a square factor greater
than 1, amd(-l)k if n is a product of k distinct
positive prime factors.

It will be assumed that all variables represent real numbers unless

otherwise stated. The symbol y will denote Euler' s constant,

n

y = lim Z - ~-log n
n—>0 1
i=1

| =



CHAPTER II. PROPERTIES

Elementary Properties

1.

1

x- 1< [x] < x<[x] +1.

(38, p. 79), proof given,

comment in Chapter IIIL

If n is an integer and x -1<n< x or n <x<n+l, then n = [x].

(38, p. 79), proof given,

comment in Chapter III.

If n is an integer, then [x+n] =[x] + n.

(38, p. 79), proof given,

[x] +[y] < [x+vy] <[x] +[y] +1.
(38, p. 79), proof given,

_J 0 if x is an integer,
[x] +[-x] —{-1 otherwise,

(38, p. 79), proof given,

comment in Chapter III.

comment in Chapter III.

comment in Chapter III.

If n is an integer, then [[X] ]:[E] .
n

n

(38, p. 79), proof given,

comment in Chapter III,

-[ -x] is the least integer greater than or equal to x.

(38, p. 79), proof given,

1 . .
[x+ E] is the integer nearest to x.

comment in Chapter III.

If two integers are

equally near to x, this expression gives the larger of

the two.

(38, p. 79), proof given,

comment in Chapter III.
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- 1 . . .
-l -x + E] is the integer nearest to x. If two integers are
equally near to x, this expression gives the smaller of

the two.
(38, p. 79), proof given, comment in Chapter IIL
[2x] +[2y] > [x] +[y] +[x+vy].

(17, p. 45-46), proof given.

i 1
[Zx]_z[sz{o 1f10_<_x_[x]<z’
1 if5 <x-[x] <L

2
(59, p. 97), proof not given.
[x+5) - (x] =[2x] - 2[x].
(17, p. 173-174), proof not given, proof in Chapter IIL

If 0< a< 1, we have

[x] -[x - a] ={O ifa<x-[x] <1,

1 f0<x-[x] < a.
(59, p.97), proof not given.

Let k and m be positive integers, then

k-17 _f1 if mlk
I-T ]'{o if mf k.

(38, p. 80), proof not given, proof in Chapter I,

If m, n and k are positive integers and (m, n) = 1, then

R e R

(26, p. 155), proof not given, proof in Chapter IL.
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If n is a positive integer, then

[Na] - [Nasi] ={1 if n is a perfect square,

0 otherwise,

Original result, proofin Chapter I

Representations of [x] in Terms of Other Functions

2,1 Let F(x) = -Tl? Arcsin ( Isin nxl) , and
lim . n
G(x) = I {1+ | sin mx-F(x)| } .
Then
1-G
' [%x] = x - IF(x)+2 (x) -1'.
(43, p. 706-707), proof given.
2,2 Let m and n be positive integers such that nfm. Then
n-1
m m 1 1 sin 2mwmi .
[?]— n_2+2n2{_—_n cot(1n)}.
i=1
(61, p. 51), proof not given.
2,3

Let m and n be positive integers such that n* m, let

i=~N-1, and let e be the base of the natural logarithms.

Then
2
n-1 2wimk mik
n
my,om ol 1 e B e
[n " n n n 2mik
k=1
l-e o
n-1
_m n-1 _}_ cos km)
" n 2n 2n (
k=1
n-1
1\ . 2k Tk
+Z;Z { sin( m) cot (—) }.
k=1

(62, p. 95-96), proof given.



2.4 Define

1 if x is a non-zero integer,
Glx) _{O otherwise.

Then
)
1 1 sin 2imwx 1
[X]—X-'Z-*—FZ—————:.[ -ZG(X).
i=1
(44, p. 194), proof not given.
w ’

o [ i i
+_4£_' z cos 2mix Z cos 2(l+i-2j)mx
2 (2j-1)i (2j-1)(2i+1-2j)
™ i=1\j=1 j=1
(44, p. 194), proof given.
2.6 If r is an integer greater than x, then
r-1
1 O
[x] = 3 Z {1 + sgn(x-i)}
i=1 -

(30, p.346-348),proof not given, comment in Chapter III.

2.7 If m and n are odd positive integers, then
m-1
kn 1 ' k i
—]= = = - = =1,2,3,...,n-1).
] 22{1+sgn(n =), (k=1, n-1)
i=1

(30, p. 346-348), proof not given, comment in Chapter II.

2.8 If m and n are odd positive integers, then
l k 1y
[—&-Z = Z {1+sgn —+-— E)} , (k=1,2,3,...,n-1).
i+l

(30, p. 346-348), proof not given, comment in Chapter IL.



Formulas Relating [ x] to the Values of Other Functions
of Number Theory

3.1 If n is a positive integer and ‘(rzl) is a binomial coefficient, then

n
(p= ) e (T
i=2

(39, p. 37-39), proof given

3.2 If a and b are positive integers, then

d(b) d(a) d(b)-1 b(a)-1
2 * b -1 = [a———} + [b____] 1.
ab b : a

(8, p. 148), proof given.

3.3 If n is a positive integer, then
n
L R
z p(i) [ T ]l = 1.
i=1 ' m .
(32, p. 301), proof given.
3.4
[x] [x]
. s 2
D @ F1-0 4 pwsa’ (FOE]-D) -2
i=1 i=1
(48, p. 45-53), proof given, comment in Chapter III,
3.5 [x]
L 2fm X B
Z i (i) sin (2 [i ]) = -1.
i=1

(48, p.45-53), proof given, comment in Chapter III,
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0 [x] (] ,
PRCREIE Z Zp.m[—] =) AT
i=1 i=1 j=1 i=1

(48, p. 45-53), proof given, comment in Chapter III,

3.7 If nisa positive integer, then,

n-1
T =1y (IE] - 12D
i=1

(55, p, 55), proof given.

3.8 If n is a positive integer, then

i [n/i] TG = i?"‘m.
i=1 j=1

(10, p. 298), proof not given, comment in Chapter III,
3.9 If N(2,x) denotes the number of integers n less than or

equal to x for which T(n) is an even integer, fhen
N(2,x) = [x] - [Vx]
(41, p. 118-119), proof not given.

n
3.10 Let J(n ZT , Where n is a pgsitive integer. Then

i=1

0
1 2
_ZJ([j/i]'; = z(LI7 + D
i=1
(57, p. 738-739), proof given.
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3.11 I n is a positive integer, then
n [Wn]
Y T = 2y e/l - [Nalf
i=1

i=1

(59, p. 99), proof given.

3.12 If n is a positive ihteger, then

[Vn-1]
T(n) = [~n] = [Nm-1] +ZZ {[12] - [ngl]}
i=1

(55, p. 55), proof not given.

3.13 Define Ta(n) to be the number of ath power divisors of n.

Then n [ a,\[m]
. m
-y [2]
i=1 i=1

(22, p. 1-52), proof given.

3.14 If n is a positive integer, then

(22, p. 1-52), proof given, comment in Chapter IIIL
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3.15 If Tz(n) is the number of quadratic divisors of the positive

integer n, then

n [N'm]
S - 3 2]
i=1 i=1

(22, p. 1-52), proof given, comment in Chapter III.

3.16 If Ua(n) is the sum of the ath power divisors of n, then

n [a}\/_n]

.a m
Yoy o [=]
i=1 i=1 !

(22, p. 1-52), proof given.

3.17 If n is a positive integer, then

zom - Zi[m/i]
i=1 i=1

(22, p. 1-52), proof given, comment in Chapter IIIL

3.18 If Uz(n) is the sum of the quadratic divisors of the positive

integer n, then

n
o - ) (%]
1 i=1 !

(22, p. 1-52), proof given, comment in Chapter IIIL.

B

o
H



3.

3.

3.

3.2

22

19 If m is an odd positive integer, then
mtl
2
1 m+2i-1
T) + T(3) +.. .+ T :y 1 mi2i-1
(1) + T(3) m)= ) [ 5 -]
i=1
(22, p. 1-52), proof given.
20 If m is an odd positive integer, then

m+1
2

: 1 m+ 2i-1

0 = i- — ——

(1) + 0(3) +...+ O(m) Z (2i-1) [ 5 3 ]
i=1

(22, p. 1-52), proof given.
1 Let m be a positive integer and define k(n) to be the sum
of the odd divisors and the halves of the even divisors of the
positive integer n. Then
m m [m/ 2]
Zk(l) ZE i[m/1i] -z 1[2. ]
i
i=1 i=1 i=1
(22, p. 1-52), proof given.

Let m be a positive integer and define h(n) to be the dif-
ference of the odd divisors and the halves of the even

divisors of the positive integer n in that order.

Then
m m

o i, rm
Zh(l)—z (-1 i [—]
i=1 i=1

(22, p. 1-52), proof given.

13
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23

. 24

. 25

. 26

Let Jk(n) be the number of different sets of k positive
integers less than or equal to n whose greatest common

divisor is relatively prime to n. Then

n
n . .k
(216 = )

I~

-
1]
—
.
11
[

(31, p. 78), proof given.

[x]
(x] = Y p@) TLE 7.

i=1

(3, p. 313), proof given.

Define
1 if x > 1.
U(x) =
0 if 0<x< 1.
Then
o0
[x] = Z U(x/ 1),
i=1
ifx > 0.

(45, p. 221), proof given.

If n is a positive even integer, m is a positive rational
. . o .th .
number, p is a prime number, Bi is the i Bernoulli

number, and (m,p) =1, then

14
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n-1"n
nm

p-
m -l g Z {in’l[i%‘-]} (mod p).

(18, p.111-112), proof not given.

3.27 With the same hypotheses as for Property 3.26, we have

p-1 p-1
S| 1 1 i
m - n-
—_—_— = i s ﬂ }Hmod p).
n-1 P
nm :
i=1 i=

(18, p. 111-112), proof not given.

Summation Formulas

4,1 If n is a positive integer, then
N 1
5l 2
i=1

(33, p. 49-50), proof given, comment in Chapter IIIL.

4.2 If n is an integer, then
n n
. . . 2
Y (@-nla/il = ) [0/i]
i=1 i=1

(59, p. 98), proof not given.
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4.3

0 i
(-1) log i _ ) .
Z : [ Tog 2] =y, where y is FEuler's constant.

(47, p. 116-117), proof given

4.4 If p is a positive integer, a>1, and q = [ap] , then

p{q+1) if a is an integer,

DI+ -

Pq

Original result, proof in Chapter III.

4.5 If p is a positive integer, e is the base of the natural

logarithms, and q = [ep], then

zg [e'] + ;g [tog  i] = pa.

i=1

(22, p. 23), proof not given, proof in Chapter III.

4.6 If p is a positive integer and q = 10P, then

p q
ZE 10" + zg [log,,i] = plarl).
i=1 i=1

(22, p. 23), proof not given, proof in Chapter III.

4.7 If m is a positive integer, then
[m/ 3]

[m31 _ m2+2m+4
B 12

(29, p. 185), proof given.
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4.8 If n is a positive integer, then

n 1 >
Y Witz =[vn+g] (3““‘3U“ 2] )

(36, p. 86), proof not given.

4.9 If n is a positive integer and y is Euler's constant, then

Z [n/i] = n(lnn+ 2y -1)+O (Nn).

(23, p. 262), proof given.

4,10 If a, d, n, and p are integers and h = [an+d] , then
n h
ai+d pi -(d+1) 3
Z[p]+2[a ] = nh.
i=1 i=1

(66, p. 245), proof given.

4,11 If a, d, n, p, and q are integers and h is defined by the

equation (itl)a+d = (htl)p + q, then

h
a1+d Z p1+ q

'M”

=
Il
[a—

(66, p. 252), proof given.
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4,12 If a, n, and p are positive integers, then

n 2]
U ) e ]
i=1 i=1 -

(66, p. 253), proof given.

4,13 If d, n, and p are positive integers, then

n2+d
[5—] ,
z +d] [Nip - (@tn) ] = n[n *d}

i=1

(66, p. 253), proof given.

4.14 If n is a positive integer, then

[~Nn] n
. 2
) /il - ) (w/il = [Na)
i=1 i=[Nn]+1
(66, p. 253), proof given.
. 2
4.15 Let Py» Py o oo P be all of the primes such that P, < mn,

where n is a given positive integer. Then the number of

positive primes less than or equal to n is

T r T i
n n
n+r-1—Z[——:}+Z [ ] . Z[ J
i=1 i<j j<. o

<r
i, j=1 1,J,...,rl

(17, p. 47-49). proof given.
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.17

.18

19
Let a positive integer d be represented as a product of

powers of distinct primes in the form

1 2 s
1 p2 ...ps

Let n and r be positive integers, define

[a/r] [a/r] [a/r]
g@=p, = p, ° ...p_  ° ,

and let cbk(n) be the number of kth powers less than n and

relatively prime to n. Then

n [ *Nn
PRERC N :] 8, ()
i=1 i=1 %

(11, p. 219-224), proofgiven

(Bougaief's formula). If gz(i) is defined as in Property

4.17, where we set r = 2, and n is a positive integer, then

n [Nn]

Z ) Z (2/321 400

i=1 =1

(11, p. 219-224), proof given, proof in Chapter III.

d
. . k-1
Let gr(d) be defined as in Property 4. 17, Sk_l(d) =i ,
i= 1

and let ¢( )(d) be the sum of the (k-1) st powers of the

integers which are less than or equal to d and relatively

prime to d. Then



20

zsk_l{gr(i)} :Z {[_Izl_} oDy

(11, p. 219-224), proofgiven

4.19 If n is a positive integer, then

n-1

Y i1 - o

i=0

(38, p. 82), proof not given, proof in Chapter IIIL

4.20 If m is an even integer, then

m/ 2 [__r%)f_] if 2 | [mx],
Z [x + er_nl ] =

o1 [mx] +1 otherwise .
- 2

(53, p. 93), proof not given.

4.21 If m is an even integer, then

m

- -1
PRE -
i=1

[mx] )
- - [x] if 2|[mx] ,

-1
[_r__n_x?il_ - [x] otherwise

(53, p. 94), proof not given,
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4.22 If m is an odd integer, then

m-1
2 [rx] Z_ [x] if 2| [mx]-[x],
2i-1
) e -
i:'1 [mx] - [x] - .
> otherwise

(53, p. 95), proof not given.

4.23 If m 1is an odd integer, then

m-1 1

5 | [mx]z - [x] if 2| [mx] - [x],
z [x+r2-;11—] =
i=1 [mx]z - [x] +1 otherwise.

(53, p. 95), proof not given.

4.24 If m and n are integers, then

RN R

i2] i1
q-1 (19, p. 703-704), proofgiven
2
4. 25 Define Y (p,q) to be Z [-}(—12], where p and q are
i=1

positive integers and g is odd (Gauss' § - function) . Then

(a) Y (-p,q) = -%—l— - Y(p q),
(b) ‘P(P,'q) = 'L"‘(P’ q),
and 1
(¢) $(-p,-q) = -¥(-p,q) = ===+ Y(p,q).

2

(4, p. 67), proof given.
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4,26 If n is an integer and

0
sin 2wix
S(x) = z T
i=1
Then 2x 2x
1 -1
Y /i) =) [Eal gy (E-15FD
i=1 i=1 ' i=1
2x
+ Z S(x/ 1)
i=1

(63, p. 167-168), proof given.

4,27 If m and n are positive odd integers and (m,n) = 1, then

m-1 n-1
2 2

n 1 m 1
Z ity )= ) g ]
i=1 J]-

(30, p. 347), proof not given.

4,28 If h and k are positive integers, then

hk-1
Z [i/nh] [i/k] = —113 (h-1)(k-1) (4hk + h + k + 1).
i=1

(35, p. 593), proof not given.



4.

4.

29.

. 30

.31

32

23

If (p,q)=4d, then

p-1 q-1

. riq . ip
1 — + 1 —
q E [p ] +p [ q]
i=1 i=1

- TIE (p-1)(g-1)(8pg-p-q-1) + (d-1)(6pg-d-1)

(45, p. 221-222), proof given.

If (p,q) = 2, then

p-1 q-1
. r iq . ip
i|— ] + i|—
}5 [ ] ng [
i=1 i=1

==L (p-1)(a-1)(8pa-p-a-1) + 6pq-3 .

(35, p. 593), proof given, comment in Chapter IIIL.

For a rectangular array of numbers where Aj K is the ele-

H

th th
ment in the j row and k column, we have

[3Ni] [3n]
ZEA ZEA
i=1 j=1 i=ja

(16, p. 276), proof not given.
If a is an integer greater than or equal to 2, then

[*Nn]
Z [2Ni]+ Z 2 = [2wn] (n+1)

(16, p. 276), proof not given, comment in Chapter II.



24

4.33 If n is a positive integer, then
n [~n]
}‘['\/—i] + Z i% = [vn] (nt1)
i=1

i=1

(22, p. 49), proof not given, comment in Chapter III.
4.34 If n is a positive integer and q = [3 Nn], then

> 2, .\2
D Nl = qarn) - S
i=1

(16, p. 275) proof not given, comment in Chapter III.

4.35 Let m = [Nn], where n is a positive integer. Then

n
2

2 [Ni] = m 6n—2rrg -3m+5 _ m(n_l_l)_m(rn+16)(2m+l)

i=1

(16, p. 275), proof not given, comment in Chapter III.

4.36 If a and n are positive integers and a is greater than or

equal to 2, then
[*Va]
(

i [a4i] % =
i=1

(16, p. 277), proof not given, comment in Chapter III.

2j-1) (n-j% +1).

j=1
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4.37 If a and n are positive integers and a is greater than or

equal to 2, then

n [*N/n] [/n]
E [a'\/_i]ZZ(n+l)[a'\fn]2-Z ja+l S‘ja
i=1 j=1 =1

(16, p. 277), proof not given, comment in Chapter III.

4. 38 If [\[n] = m, where n is a positive integer, then

n
2
z ['\/—1]2 - mz(nﬂ) ; m(m+l)(2m +5m+1)

(16, p. 277), proof not given, comment in Chapter III.

4.39 If Aj Kk is defined as in Property 4. 31, a, r, and n are

integers with r< n, and a< n, then

n [i/r] [n/r] n
Z AR A Z ) A
iza j=a i=rj

(16, p. 277), proof not given.

4,40 If Aj Kk is defined as in Property 4. 31 and n is a positive

integer, then
n

n 2'1 2 -1 n
E‘ }‘ Aj,k ) } z Aj,k'
i=1 j=1 i=1 i:l+[10g2j]

(16, p. 277), proof not given.



4,41 If nis a positive integer and x is positive, then

[x] n [ 5]

> LE] Zf PEESEEYES

i=1 i=1

(40, p. 46), proof given.

4. 42 If x is a positive irrational number and n 1is a positive

integer, then

n [nx]
) lix] # ) [i/x] = alnx].
1=0 i=0

26

(26, p. 154), proof given, comment in Chapter IIL

4,43 If x is a positive irrational number and n is a positive

integer, then

[nx]

}[m z [-i/x] +[nx] +n[nx]

i=0

(26, p. 154), proof given, comment in Chapter IIIL.

4. 44 If (m,n) =1 and r is a positive integer, then

T

[ 2
D URI ) CE =« 2]+ (1]
i=0

i=0

(26, p. 155), proof given, comment in Chapter III.
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4.45 If (m,n)=1 and r is a positive integer, then

(/5] /e
) E[fj—l = [2] (21 +d)
i=0

(26, p. 156), proof given.

4,46 If (m,n) =1, then
[n/ 2] [m/
im in m n
Ly E w3
i=1 i=1
(22, p. 50), proof given, comment in Chapter III.

4.47 If pis a prime number, then

-t 5 pd
Z (=1 + E [(NGB] = (p-1)°
i=1 i=1

(22, p. 38), proof given.

4.48 If p is a prime number, then

(21, p. 206-207), proof given.

4.49 If p is a prime number, p>2, then
- _jrﬂ J e pi p-1 3
= = = (=)
25 p 25 L J] 2
J: i=1 21 i=1

(21, p. 206-207), proof given.
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4. 50 Let x, y, and z be odd integers such that (x,y,z) =1 and

b

szX:ErE then

q
p-1 a-1 r-l
2 2 2
19, rir e kpyrka
S NEES D NN EES[CR- I Wit TNar
i=1 j=1 k=1

(5, p. 124), proof given.

4. 51 Assuming the hypotheses of Property 4. 50, we have

z [

Hl..O

'M
»-D]H'

(5, p. 124), proof given.

4. 52 Assuming the hypotheses of Property 4. 50, we have

% [_1}%] [._1.3] q 1 [J r] [JpJ |
N jr - k k ir)
APREES AR SYPYEIE
i=1 | j=1 k=1
Skm oy
+ Z[lg]Jrz[Jp] pz-l q-zl r;l
k=1 i=1 j=1

(5, p.124), proof given.
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4.53 If m and n are positive odd integers and (m,n) = 1, then

n-1 m-1
2 2
im in m-1 n-1
e E (2l == =
i=0 i=0
(38, p. 68), proof given, comment in Chapter III.

4.54 If m and n are positive integers and (m,n) = d, then

1

n -~

im _ (m-1)(n-1)  d-1

z [ 1’1] B 2 "2
i=1

(21, p. 205), proof given.
4.55 If (m,n)=1 and r is an integer such that l_<_r<%, then
n-r
[i_ni] _ (m-1)(n-2r+l)
n - 2

i=r

(26, p. 154), proof not given, proof in Chapter IIIL

4,56 If (m,n) =1, then
n-1
im, _ (m-1)(n-1)
z 1 = 2
i=1

(59, p. 97), proof given, proof in Chapter IIIL

4. 57 If (m,n) = 1, then

n-1

im; _ (m-1)(n-1) 1 i g
Z[;—]_ 2 +Zngn(n—_m),
1 L]

1=

(i=1,2, ... , n-1; j=1,2, ... , n-1)

(30, p. 347), proof not given.
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4,58 If (m,n) =1, then

n-1
) A
i=1

m-1
+

[j_rl_] _ (m-1)(n-1)
2m

j=1
(30, p. 347), proof not given.

4. 59 If m and n are odd integers with (m,n)=1, then

n-1 n-1
2 2
-1 -1} (n-1 1
Z[(uzl__,m] b 1 ’42[”;‘+E--2r%]
i=1 i=1

(54, p. 337-342), proof given

4.60 If m and n are odd integers with (m,n) = 1, then

n-1
2 m-1
2im in
[T—=1 = Z [ 5]
i=1 i=1

(54, p. 337-342), proof given

4.61 If m and n are odd integers with (m,n)=1, then

n-1 n-1
2 2

im 1 im m, _ (m-1l)(n-1)
Z L n+2] * [ n —Zn] - 4
i=1 i=1

(54, p. 337-342), proof given.
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n-lo [(n/2]  [m/2]
d=2 [1'%1‘]-mn+m+n:ZZ[1—rn£]+ZZ[1%]

i=1 i=1

0 if both m and n are
m n even,
-2 [ S105) 4

1 otherwise.

(21, p. 205-208), proof not given

Miscellaneous Properties

5.

5.

5.1 If (m,n) =1, m<n, n is an odd integer, and k is an

integer less than or equal to n-1, then

[km

1 m 1
;—+E]+[(n-k)“;+—z] = Im .

(54, p. 341), proof not given, proof in Chapter IIIL.

2 If p is a prime number, the largest exponent e such that
e .. . .
p divides n! is
o0
e =) [27
i
i=1 WP J
(38, p. 79-80), proof given, comment in Chapter III.
3 Iff a and b are positive irrational numbers such that
a—1+ b ! = 1, then the sequences [an] and [bn] for
n=1, 2, 3,

represent all of the positive integers without



32

repetition.

5.6

5.9

- (55, p. 51-52), proof given, comment in Chapter III.

Iff a 1is a positive irrational number, then the sequences

-1 .
[n+na)] and [n+na "] for n=1,2,3, ... contain every
positive integer exactly once.

(38, p. 83), proof not given, comment in Chapter III.

The n  non-square integer is
1
n + [N/_n + > ]

(36, p. 85), proof not given.

The nlCh non-triangular number is
n+ [N2n + é— ]

(36, p. 85), proof not given.

th th
The n non-k power integer is

n+[k\’ n + [k'\/'n] ].

(36, p. 85), proof not given.

Every integer of the form [(1 + N2)k] can also be written in
the form [N2 m], where k and m are integers.

(52, p. 57-58), proof given.
If p is a prime number and (E) denotes the binomial

coefficient, then
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(;‘) = [%] (mod p) .

(42, p. 347-348), proof given, comment in Chapter III.

5.10 If p is a prime number, n is a positive integer, and v
1+v

v
is the integer defined by p pﬁ 2n<p , then

log 2n
v o= [fE
P og p

(38, p. 167), proof not given.

5.11 If u is an integer, let p and q be odd integers such that

(p,q) =1, andlet A = {[p/q], [3p/al, .., [(q_z)%]}-

Then

(a). when p is of the form (2x+1)u-1, there are as
many members of A of the form 2xu-1 as
of the form (2x+1)u;

(b). when p is of the form (2x+1)utl, there are as
many members of A of the from 2xu as of
the form (2x+1)u-=1.

(13, p.611-612), proof not given.
5.12 If u is an integer, let p and g be odd integers such that

(p,a)=1, andlet B = {[2p/al,[4p/al, ... , [‘q‘”gn.

Then
(a). when p is of the form (2x+1l)u-1, there are as

many members of B of the form (2x+1l)u-1 as



5.

5.

13

14

34
of the form 2xu-2;
(b). when p is of the form (2x+1l)utl, there are as
many members of B of the form 2xut+l as of
the form (2x+1)u.

(13, p. 611-612), proof not given

If u is an integer, let p and q be odd integers such that
(p,q)=1, andlet C={[p/ql,[2p/al,[3p/al, ..., [(q'l)ﬁl}-
Then
(a). when p is of the form 2xu-2, there are as many
members of C of the form 2xu-2 as of theform
(2x+1)u-1;
(b). when p is of the form 2xu+2, there are as many
members of C of the form 2xu+l as of the
form (2x+1)u.

(13, p. 611-612), proofnotgiven.

If u is an integer, let p and q be odd integers such that

(b, )1, andlet D = ([(TV2 ], (9792,

(g-1)p
2q [ q] -

Then
(a). when p 1is of the form 2xu-2, there are as many

members of D of the form 2xu-1 as of the

form (2x+1)u-2;
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.16

.17

35

(b). when p is of the form 2xu+2, there are as
many members of D of the form 2xu as

of the form (2x+1)u-1.
(13, p. 611-612), proof not given.

If u is an integer, let p and q be odd integers such that

(p,a)=1, and let B = {[R],[*R], ..., [‘C"PR]}. Then
St a g q
if n is an integer, B contains as many integers of the
form 4n+l as of the form 4n+2.
(13, p. 611-612), proofnot given, comment in Chapter IL.
If u is an integer, let p and g be odd integers such that
_ _ (P17 3p (q-2)p
(p,q)=1, andlet A= {[=],[75],...,] ]}. Then, for
q q q
integral n,
(a). if p is of the form 4n+l, A contains as many
members of the form 4n+2 as of the form 4n+3.
(b). if p is of the form 4n+3, A contains as many

members of the form 4n as of the form 4n+l.

(13,p.611-612), proof not given, comment in Chapter IL.

If a,b,c,d,p, and q are positive integers, then a neces-

sary and sufficient condition for

antb cn+d
[ 5 I = [T]

b

for all non-negative integers n, is

(1), —= =



and

5.18

5.19

5. 20

36

(2). [E] = (o)

(2, p. 280), proof given.

If a,b,d, and p are positive integers with b#d and the
integers between b and d as well as max{ b,d} are

p-ic non-residues of a, then

[r+ an:b) /P] - r+(anl—d)1/p ]

for any integers r and s.

(2, p. 284-5), proof given.

If a,b,c,d, and p are positive integers with b>d, then
a necessary and sufficient condition for

[(ant0)/ P = [enta) M/ P]
for all non-negative ingegers n, is

(1). a=c,
and

(2). the integers d+1, d+2, ... , b are p-ic non-

residues of a.
(2, p. 284-5), proof given.

(Ramanujan). For all integers n,

[3+ 03] =[5 +«/;g]

(2, p. 285), proof given, comment in Chapter III.
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.21

22

.23

. 24

. 25

37
If p and q are integers, then for all integers n,

(L +(ns)VPp oLy @ty Ve

= [
: 2P : 2P
(2, p. 285), proof given, comment in Chapter IIIL
If a,b,q, and r are integers, b>0, and a=bq+r where
u<r<utb, then

a-u ]

r=a-b[T

Original result, proof in Chapter III.

The least non-negative remainder when an integer a is
divided by a positive integer b is

a-b[a/b].

Original result, proof in Chapter III.

If a and b are integers and b is positive, then the least
absolute remainder of a (mod b), or the negative remainder
in case there are two remainders of the same absolute value,
is given by

r = a-b[%] + b[%]. .

(36, p. 80), proof not given, proof in Chapter III.
If n and k are positive integers, let Sk(n) be the sum of

the digits of the number Sk n) in base b with So(n) = n,

1(
Then



5.

. 26

.27

. 28

. 29

30

38
¢ et (n)

k-1
S(0) = S ) - 1)) ) |
. o b
i=1 j=1

(65, p. 260-262), proof given.

If m is a positive integer, then [(1+~3) 2m+1] is divisible

+ +
by 221 but not by 22

(38, p. 83), proof not given.

If n is a positive integer, the integer 4nt+l is prime if

4ntl - 22] _ ['4n-3-)£2
4y B l_ 4y

for every odd integer y such that 1<y<[N4n+1]

(12, p, 389), proof not given, comment in Chapter III.

An odd integer N, greater than or equal to 9, is prime
. 2 -
iff N+ k~ is not a square for k=0,1,2, ... , [N_6.9]

(67, p. 128), proof not given.

The integers n and n+2 are simultaneously prime (twin
primes) iff

P RN I IR C - NI

i i
izl

(36, p. 86), proof not given, proof in Chapter III.

If p is a prime and p = 1 (mod 4), then

ol
4 21
) [NGB) =R
i=1

(36, p. 88), proof not given.
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32

33

.34

35

39
Let P be the set of all positive integers. Then at least one
of x and y is an integer if
[k(xty)] = [kx] + [ky]
for all values of k in the set P.

(37, p. 600), proof given.

Let U = {1,-1}. Then at least one of x and y is an
integer if

[k(x+y)] = [kx] + [ky]
for both values of k in the set U.

(38, p. 82), proof not given.

If a is an irrational number such that 0<a<l, and
0 if [na] =[(n-1)a],
1 otherwise,

then

(38, p. 83), proof not given.
If p is an odd frime, then
p divides [(2 +NVBP] - 2PTL.
(50, p. 190), proof given,

2™ divides [(3 + «f5)n+%]

(36, p. 90), proof not given.
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5. 37

5.38

5.

5,

39

40

40

For all integers m,

2

Al %[22 m? - a2 [ -4 425 + w0,

4 2

(62, p.97), proof not given, comment in Chapter I1II.

If y is Euler's constant, e is the base of the natural

logarithms, and

then
n = [ex-Y]

(46, p. 341-42), proof given.

Let m be the number of quadratic non-residues of integer
p which are less than or equal to p/ 2. Then

p-1

2

. 2
m = Z[ip—] (mod 2)
i=1

(61, p. 51), proof given.

The asymptotic density of integers n for which
(n,[Nn]) =1 is 6/Tr2

(36, p.87), proof not given,

The expected value of (n,[~Nn]) is T2/ 6 .

(36, p. 87), proof not given.



5.41

5. 42

5. 43

If x is irrational and n is a positive integer, then

n
. (-‘ ) xn(nt1) n _
11m12,[1x]-———2—+3 = 0
n~o .

i=1

(51, p. 725), proof given.

If a and b are integers and m and r are positive

integers, then

r-1
PRI R =S I RS FYE S PR
i=0

(28, p.35-41), proof given.

The cardinality of the solution set of the equation
axtb = [x] ,
where a and b are real numbers, is given by

212, 11 - 222 2] ifafo, afl,

C if a=0 and b is an integer,

0 if a=0 and b is not an integer,
D if a=1 and -1€b<0,

0 if a=1 and b<-1 or b>0 ,
where C denotes the cardinality of the continuum and D

denotes the cardinality of a denumerable set.

(15, p. 6), proof given.

41
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45

46

. 47

48

42
Define N(a) to be the number of solutions to the cgquation

[x] = ax. Then

-yl
'L-1a+ a2]

(7, p.439-440), proof given, comment in Chapter III.

N(a) =

g
There exists a number a such that if gy=2 and Boe1” 2 " ,

then [gn] is prime for all integers n.

(64,p. 616-618), proof given.

If n is a positive integer, then
n
Zz [ix] # 1 (mod(n+l)).
i=1

(56, p. 6-7), proof given.

If k is a positive integer and x is a positive real number,

then

052 {x[;{i-]-(xﬂ)[ Tl &

(58, p.308-310), proof given, comment in Chapter III.

Let x,y, and z be real numbers. Define
A (x,y,2) = Aly,x,2z) = [zxtzy] - [2x] - [zy] .

Let f(n) = A(x,y,n), where n is an integer.
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43

N
Define F(x,y,N) as Zf(i) and define A(x,y)= lim 'IITIF(X’ y, N).
N—wo
i=1

Denote x-[x] by r(x). Then

n —;- if x is irrational,
(a). lim L r(ix) =
J\ — i 1 ..
i=1 2" 2q if x=p/ q where

(p,q)=1 and q2 1,

and

(O if x or y is an integer,

if neither x nor y is an integer,

L] if x and y are irrational and
x+y is integral.

(27, p. 1-5), proof given.

If x21, then

Sx %Z'rﬁ) dv = S‘X<L‘-‘;—]- [%]) dv .

(6, p.90-91), proof given.

(Wythoff's game) Two players, A and B, alternately re-
move counters from two piles according to the following
rules. A player may, at his turn, remove any number of
counters from either pile. If he wishes to remove counters

from both piles, he must remove an equal number from each.
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The player who takes the last counter wins. In order for A
to win, he must leave one of the following combinations:
(1,2), (3,5), (4,7, (6,10), (8,13), ...
Then, no matter what B does, A can always convert to
another ''safe'' combination.

th . o s
The n  pair of numbers giving a safe combination is

([ nt] , [ntz] ),

1
where t = —2'('\/—5+ 1).

(9, p. 142-143), proof given.

Unsolved Problems

(Moser). Let e be the base of the natural logarithms.
Does the sequence [en] for n=1,2,... contain infinitely
many primes ?

(36, p. 92)
(Erdds). Let e be the base of the natural logarithms. Does
the sequence [en] for n=1,2,... contain infinitely
many composite numbers’

(36, p. 92)
(Vijayaraghavan)., Let a,b, and ¢ be distinct real numbers
and denote x-[x] by r(x). Does

r(xa) = r(xb) = r(xc) imply that r(xa) =07

(1, p. 336)
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6.4 (Mills) Is there a real number A such that [ An] is prime
for every positive integer n?

(36, p. 92), comment in Chapter IIL
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CHAPTER III. COMMENTS AND PROOFS

Properties are not restated before comments or trivial

proofs but are restated before non-trivial proofs. Egquations are

numbered separately for each proof.

1.1to 1.9.

These properties may be found in many elementary

number theory texts. One such source is (55, p. 51).

and

This property follows from Property 4. 19 with n=2.

Let k and m be positive integers. Then

1 if m|k
(=] - (52 -
0 if m/[fk.

Proof: If m l k, then mp=k, where p 1is an integer,

[Ek] =r%1 = p. Hence
[X)=[%2] =p-[p-2)

1l

p=p-‘[-$]

= o [+—=]

m

cpro 1
Since m is a positive integer, then 0< ;51. Hence by

Property 1.7, -[~=] =1, and so

[=1- 150 =1

m m
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. 16,
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If m/r k, then k = mqgt+r where g and r areintegers

and 1<r<m-1 (38, p. 3). Hence

r-l]

L]
—
I—|-J

i
~
fe]
~+
b

¥

—
Vo]
—+

]
0

i
Ne!

i
—

= -[22
=0

since 0< r-1<m-2. This completes the proof.
This property follows immediately from Properties 1. 5 and

1.14.
If n is a positive integer, then

1 if n is a perfect square,
[Nn] - [Nn-1] =

0 otherwise.
Proof. The difference between the square roots of two

consequtive positive integers is less than 1, since

—_— 1
'\/p+1 - \/ﬁp = m < 1

if p is a positive integer.
If n is a perfect square, let [Nn] = Nn =p. Since
Nn-1< nn it follows that ['\/-nTi] = p-1. Hence
[Nn] - [Nn-1] = 1.
If n is not a perfect square, let Nn-1 = pth where

p is an integer and 0< h< 1. Then Nn = ptk where
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. 2 . .
0<k<l, for if k>1, then n-l<(ptl) < n, a contradiction.

Also, if k=1, then n is aperfect square, another contradiction.
Fence [Nn] = [Nm-1] =p and [~Nn] - [Vn-1] =0. This

This completes the proof.

.7 and 2. 8. Here
1 if x>0
sgn x = 0 if x=0
-1 if x<0.

Several other formulas of this nature are given in the article

cited.

.5, and 3. 6. Several other formulas of this nature are given

in the article cited.

Dickson's reference to the original source is not clear.

Proof of this property is also given in (55, p. 53-54).

This is the case a=1 of Property 3.13.

This is the case a=2 of Property 3.13.

3.17 and 3. 18. These are the cases a=1 and a=2 respectively of

Property 3. 16.

This formula is proved in the source cited in the form

i=1

N +2
n -
n=1 + z [: o1 }
=1

i
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If we replace n by ntl, we obtain Property 4.1 .

If p is a positive integer, a>1, and q = [ap] , then

p . q .
z [a'] + Z [log a'] =
i=1 i=1

Proof by induction. If p=1, [ap] =[a] =a if a is an

p(gtl) if ais an integer,

P4 otherwise .

integer, and [a] < a if a is not an integer. If 1<a<Z,
[a] = 1, and hence

1 1

Y el + ) [tog,i] = [a] +[log,1] = [a]

i=1 i=1

If a> 2, then

1 - [al
Z [a'] + z [loga i]
i=1 i=1

a]-1

1 [
) 1]+ ) [tog, 3] + [log,[a]]
i=1 i=1

1 if a is an integer,

[a] +:

0 otherwise,
since [logab] =0 if 1< b<a.

Assume that

k [ak] k([ak] +1) if a is an integer,

i=1 i=1 k[ ak] otherwise.
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Then, if 1<a<2, and [ak+1]> [ak], we have

k+1 [akH]

(1). Z [a'] + Z [log_i]
i=1 i=1 |

[a ] [ak+1]
= Z [a] + [ak+1] +z [log i] + Z [logai]
i=1 i=1 j=[ak] +1
_ k[ak] + [ak+1] + k([ak+l] _[ak])
= (er)[a" '],
since ak <jx< ak-lhl .
If 1<a< 2 and [ak+1] = [ak] , then

k+1 [ak+l]

(2. ) [a'] + ) [log,i]
i=1 i=1

Kk [a"]
- Y L&'l ¢ [ 4 ) [logi)
i=1 i=1l
_ k[ak] + [ak+l]
_ k[ak+l] + [ak-i-l]
= (k+1) [ak+1] .
If a>2, then

k+1 [ak+1]

(3). Z [al] +Z [logai]

[ak] [ k+1] 1

Z[ (&1 4) [10g 4] znog i] + [log [a** 1.

i=1 1=[a]+l
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If a is an integer, using the induction assumption, we may
replace the right side of (3) by

k+1
]

(4 k([a“1+1) + [2"1] 4k ([T 1-[2") et

k+1

«

= (k+l)([a ] +1).

. . n, . . .
If a is not an integer, then [a ] is not an integer. Since

n-1

a>2, it follows that a"-a" >1, so that an_1< [an] <a”

and hence n-ls_loga[an]< n . The right side of (3) can be
replaced by

k+1 k+1
a

(5) k[a] + [a5T1] + k([a¥TY] 21-[aN)) 4k

]

The property is proved by (1), (2), (4), and (5).

= (k+1) [ak+1

4. 5 and 4. 6. These are special cases of Property 4. 4 where

a = e, the base of the natural logarithms, and a=10

respectively.

4.17. This follows from Property 4. 16 where r = 2
and k = 1.

4. 19. If n is a positive integer, then

n-1
) [x+g] = [nxl.
i=0

Proof. If we let g = [nx], then as a result of

Properties 1. 6 and 1. 3, we have
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[n):1+i ]
_ [_[_n_’ii_],_]
_ []nx] +i 1

(1). [x+i/n]

- £

n

We can write

(2). g+i = n[g%] tr, where 0<r.< n,

4
and solve for [%] to obtain

(3). [.gﬂ] = M
n

n

Using (1) and (3), we have

r.
1

n-1 n-1
(4). i gti
z [x+;] = [n ]
i=0 i=0
n-1
_ gti-rj
- n
i=0
n-1 n-1 n-1
- Z g +Z i Z T
n n n
i=0 i=0 i=0
As i1 ranges over the set {0, 1,2, ..., n-l}, then

ranges over the same set, but not necessarily in the

same order. To prove this, assume that for some integers

s and t, s>t, in the set {0,1,2, ..., n-1} rS:r

.

Then, by (3), we have

L+S__ I-.g+s-| _ gt [g+t]

n n n n




Hence
s-t . rgtsy _ pgtt
. ) £

But this is impossible since the right side is an integer and
the left side is not. We have reached a contradiction and
hence rs ;é rt. Since there are n distinct values of i,

there must also be n distinct values of T namely the

. 30.

. 32.

. 33.

. 34.

. 35.

. 36.

members of the set {0, 1,2, ..., n-1}.

As a result of this,

n-1 n-1

z_i__'ﬁ_ﬁ:o
n n

i=0 i=0

n-1 n-1

iy . g . .8 - 4 -
z[x+n —Zn—nn—g—[nx].
i=0 i=0

This completes the proof.
This is the case of d=2 of Property 4. 30.

This is the case A, k=1 of Property 4. 31.

Js

This is the case a=2 of Property 4. 32. It can be

proved by induction.
This is the case a=3 of Property 4. 32.
This follows from Property 4. 33.

This is the case Aj =2j-1 of Property 4. 31.

k



. 37.

. 38.

. 42.

. 43.

. 44.

. 46.

. 53.

. 55.
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This follows from Property 4. 36.
This is the case a=2 of Property 4. 37.

This property is proved also in (22, p. 27). Zeller
(66, p. 244) gives '"x a non-integer' as the hypothesis but

the other two sources cited give the property as stated here.
This property follows from Property 4. 42.

This is the analogue of Property 4. 42 when x is rational
and equal to m/n .

This is the case r=2 of Property 4. 45.
This property is also proved in (26, p. 154).

If (m,n)=1 and r is an integer such that l$r<n/ 2, then

n-r
Z [ iﬂ] _ (m-1)(n-2r+1)
n 2

i=r

Proof by induction. If r=1, we have Property 4. 56,
which is proved in (59, p. 97) and also proved independently
following this proof.

Assume that for k<£21- -1,

n-k

z [1_111_] _ (m-=1)(n-2k+1)
n 2

i=k

Then
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n-(k+1) n-k
P IR S B sy
i=k+1 i=k
_ (m—l)(;-2k+1) ) I:k_nn}_] Cm [_k_r_r?_]

_ (m-l)n-2ktl) (emy 4 kmy,
n n

2

_ (m-1)(n-2kt1)
= > -

m+ 1

_ (m-1)(n-2(k+1)+1)
- - ,

by Property 1.5 since nf km by hypothesis. This proves

the theorem.

If (m,n) =1, then
n-1
[i £] _ (m-1)(n-1)
n B 2
i=1

Proof.

n-1
=
i=1

"
=)
B
'
=
|8

g
£l
oI5

n-1
(m+ (2]} = ) (m-1-(" 29}
i i=1

i=1

n-1

- (m-l)(n-l)-z =y

n
i=1
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by Properties 1.3 and 1. 5. Hence
n-1
Zz "] = (m-D (n-1)
n
i=1

and 1
~ (im (m-1)(n-1)

z n - 2
i=1
Note that this is the case r=1 of Property 4. 55 and the

case d=1 of Property 4. 54.

If (m,n) =1, m<n, n is an odd integer, and k is an

integer less than or equal to n-1, then

km 1 (n-k) m 1 _
[n+2]+[ n+2]—m.
Proof.
km 1 (n-k) m 1
+ = + =
(1). [ 1 —+ 5 |
km | 1 km 1
= [T=t+5] + [m-(C—+3) +1]
km | 1 km 1
= [543 ] Amr 1 [ 3],
km 1 . . .
by Property 1. 3. Now —n-+-2 is not an integer, since
k_n_q__l_l _ 2km+n
n 2 2n ’

and for this to be an integer, 2n must divide Z2km+n. But

if 2n divides Z2km+n, n must be even, a contradiction.
km 1 . .

Hence o + > s not an integer, and by Property 1.5,

the last member of (1) is equal to
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m+1+(-1) = m

and the theorem is proved.

5. 2. This property is stated in two alternate ways in
(55, p. 56) and (34, p. 200).

5. 3 and 5. 4. These properties are special cases of a general
theorem about functions which represent all integers
(see 14, p. 736-737). Another proof of Property 5.3 can be
found in (9, p. 135).

5.9. Another proof is given in (50, p. 191).

5. 15, This is Stern's special case of Property 5. 12,

5, 16. This is Stern's special case of Property 5. 11.

5. 20. This is the case r=d=1, s=b=p=2, and a = 4 of
Property 5. 18.

5. 21. This is the case r:l,s=2,a=2p,b=q, andd =q+ 1
of Property 5. 18.

5. 22. If a,b,q, and r are integers, b>0, and a =b q +r where

u<r<u + b, then

(1)) r=a-bt[=—
Proof. By hypothesis we have u<a-bg<u+tb, which yields
u-a<-bg<utb-a, whence a-u-b<bg<a-u. Hence

a-u a-u-b a-u

B T =
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By Property 1.2, q = [a];_u , and so (1) follows from a=bq+tr.
.23, This is the case u=0 of Property 5.22. Thus there exist
unique integers q and r such that
a = bq +r, 0§r<b
by (38, p. 3). Since the next smaller remainder, r-b, is
negative, r is the least non-negative remainder when a

is divided by b.

. 24, If a and b are integers and b is positive, then the
least absolute remainder of a (mod b), or the negative
remainder in case there are two remainders of the same
absolute value, is given by

(1) r=a-b [353] +bla/b]
Proof. What must be shown is that r, defined by (1) lies in
the range -b/2 <r<b/2. If we set u=-b/2 in Property
5. 22, the integer r of (1) of Property 5.22 is the
remainder of this theorem. Hence, using (1) of Property

5. 22, we have

(2) r=a-b ,——%—MJ = a-b[ = +
If, in Property 4. 20, we set n=2, we have
1
[X]+[X+E] = [2x].
Hence, if x = a/b, we have

(243 =0 21021



5. 27.

5. 29.

5. 36.

5. 44.

5. 47.

6. 4.
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Substituting this in (2), we have

r=ab([ 2] - [2]

1.

a-b[ 2%] tr[2

which was to be shown.

Dickson (10, p. 427) asserts that there is a similar
property for primes of the form 4n+3 but he does not
exhibit it.

The integers n and n+2 are simultaneously prime if

z ((Z2]+08 -2 -2 -«

i
izl

Proof. We rearrange the general term to obtain

(22 - (2L + (21 -2

and use Property 1. 14. The result (1) follows, since

the only divisors of a prime p are 1 and p.

A proof of this can be formed by considering the four
cases m 5 0 (mod 4), m 2 1l (mod 4), m g 2 (mod 4), and

m 2 3 (mod 4).
This property is a special case of Property 5. 42.

The first part of the inequality is also proved in

(49, p. 89-93).

Note the similarity to Property 5. 44.
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CHAPTER IV, INCORRECT RESULTS

The following results were found in the literature which are
incorrect.

If n is a positive integer, then

When n=2, the left side of this equation is 2 and the right side is 1.
This result appears in Dickson (10, p. 294). His reference to the

original source is not clear.

b(n) the number of fractions (in lowest terms)

2

Denote by Ia

between a and b (a”b) with denominator n. Then

i [n/i] Ia’b(i) = nZ[(a-b) i]
i=1 i=1

The word '"between'' is not defined in the source. When n=1,
a=5/ 4, and b=3/ 4, then the left side is 1 and the right side is O
regardless of the interpretation of the word ''between'' . This
result appears in (60, p, 126) .
If n is a positive integer, then
[ n(n+ 1)]
1 1 2 2

1
1._.__....._<[ ]
2
2 33 nn n+1
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The right side of this inequality is one when n = 1 and zero for all
other positive integers n. This result is from (50, p. 66).

If n is a positive integer, then

[n(n+1)]
2 _3 n 2n+1 2

1-2 -3 ...n<[-3—]

If we set n =5, the left side of the inequality is 86,400, 000 and the

right side is 14, 348,907. This result appears in (50, p. 66).
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