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The time-averaged velocity field in the North Pacific was estimated in two

sets of inverse calculations. The planetary geostrophic equations were the basis for

dynamical models of the flow in each case. The inverse estimates of the circulation

were obtained by minimizing a positive-definite cost function, which measured the

inconsistency of the model's predictions against a set of observations comprised of

a large, high-quality hydrographic data set, and surface fluxes of heat, fresh water,

and momentum.

In the first part of this work, four solution methods for the generalized in-

verse of a linear planetary geostrophic model of the North Pacific are compared.

A conjugate gradient solver applied to the equation for the generalized inverse,

expressed in terms of a representer expansion, was the most computationally effi-

cient solution method. The other methods, in order of decreasing efficiency, were,

a conjugate gradient descent solver (preconditioned with the inverse of the model

operators), a direct solver for the representer coefficients, and a second conjugate

gradient descent solver (preconditioned so that the diagonal elements of the cost
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function Hessian were unity). All but the last method were successful at minimizing

the penalty function.

Inverse estimates of the circulation based on the linear planetary geostrophic

model were stable to perturbations in the data, and insensitive to assumptions

regarding the model forcing and boundary condition uncertainties. A large calcula-

tion, which involved approximately 18,000 observations and 60,000 state variables,

indicated that the linear model is remarkably consistent with the observations.

The second part of this work describes an attempt to use a nonlinear plan-

etary geostrophic model (which included realistic bottom topography, lateral mo-

mentum mixing, out-cropping layers, and air-sea fluxes of heat, freshwater, and

momentum) to assimilate the same hydrographic data set as above. Because of

the nonlinearity in the model, descent methods (rather than a representer-based

method) were used to solve the inverse problem. The nonlinearity of the model and

the poor conditioning of the cost funcLion Hessian confounded the minimization

process. A solver for the tangent-linearization of the planetary geostrophic system

should be used as a preconditioner if calculations of this type are attempted in the

future.
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The Time-Averaged Circulation of the North Pacific Ocean:
An Analysis Based on Inverse Methods

1. INTRODUCTION

1.1. Introduction

Understanding the circulation and water masses of the oceans is the task

of physical oceanographers. As we have come to appreciate the role of the oceans

in the maintenance of the Earth's climate, oceanographers have sought to explain

the temporally and spatially averaged circulation, the general circulation, as the

dynamic response of the ocean to the fluxes of momentum, heat, and mass across

its boundaries. As a scientific discipline, the central expression of this understanding

is in the creation of models to explain oceanic observations.

Although the laws of continuum mechanics are quite accurate, it is beyond

our present capabilities to model the general circulation, say, by numerically in-

tegrating the Navier-Stokes equations. Consequently, models of the general circu-

lation must include numerous approximations and parameterizations for sub-grid

scale phenomena.

More importantly, the forcing functions and boundary conditions for gen-

eral circulation models are contaminated with error. Typical models require air-sea

fluxes of heat, fresh water, and momentum as boundary conditions at the ocean sur-

face. Estimates for each type of flux may contain complex sources of error, and the

large-scale climatologies, which are often used for model boundary conditions, may
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contain large-scale systematic errors of as much as 20% (e.g., Schmitt et al., 1989;

Boning et al., 1991).

The time-averaged circulation is exceedingly difficult to measure directly be-

cause of the intensity and time-scales of transient motions relative to the mean (Flier!

and McWilliams, 1977). As a consequence, simplified forms of tracer conservation

and momentum balance are invoked to indirectly estimate the general circulation.

The "core method" and the "dynamic method" (Pickard and Emery, 1982) are the

two approaches historically used to infer the large-scale velocity field. The hydro-

graphic data on which these inferences are based are often sparse in space and time

owing to the great expense required for their acquisition. Because of this paucity of

observations and errors in model boundary conditions, it has proved difficult to test

models of the general circulation conclusively.

The World Ocean Circulation Experiment, hereafter referred to as WOCE,

has as one of its goals the development of models for the prediction of climate change

(U.S. WOCE, 1989). A necessary step toward this goal is the development and

testing of ocean models for the present-day climate. The purpose of this thesis is to

explore the issues involved with "testing" an ocean model; in practice, this involves

comparing the prediction from such a model with observations of the predicted

variables. Systematic procedures for making such comparisons are part of the theory

of hypothesis testing, statistical estimation, and inverse methods.

In order to answer the question: "Is the general circulation, as observed

with hydrographic measurements, in accord with theory?" this study used inverse

methods to assimilate a large hydrographic data set into a model of the North Pacific

general circulation. There were three specific goals:

1. To examine whether the hypothetical dynamics are consistent with the obser-

vations;
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2. To produce an objectively smoothed ocean circulation as a plausible climatol-

ogy for the North Pacific; and,

3. To estimate the errors in the proposed climatology in order to understand

what questions can be addressed with hydrographic data.

The North Pacific ocean was chosen as the location for this study primarily

because it is free of deep convection (Warren, 1983), which other inverse studies

have found to play havoc with their solution methods (Tziperman et al., 1992b;

Marotzke and Wunsch, 1992). In addition, there are large discrepancies between

different estimates of the air-sea heat flux in the North Pacific (Talley, 1984). These

discrepancies are believed to be caused by systematic errors in the bulk flux formulae

on which these estimates are based, and which, when integrated over the large area

of the North Pacific, lead to significant errors in the zonally integrated, meridional

heat transport of the North Pacific. This work is based on the assumption that an

inverse study, which used hydrographic data scattered throughout the North Pacific,

would be able to constrain the surface heat flux better than estimates from bulk

formulae alone.

In the future, this same methodology should be applicable towards creating

the global "snapshot" envisioned by WOCE. Attaining this goal will require the

generalized inverse of a nonlinear, global, general circulation model. Significant

work still remains in the development of a practical solution method for such a

model.

1.2. Literature Survey

The intent of this brief overview is to establish a context for the technical

issues involved in using inverse methods to estimate the general circulation. There
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are a number of good texts and reviews which consider the broader applications of 

inverse methods within oceanography and geophysical sciences in general. Taran- 

tola (1987), Bennett (1992), and Parker (1994) cover inverse methods as applied 

to geophysical data smoothing, prediction, observing system analysis, and model 

testing, among other topics. The texts by Thiebaux and Pedder (1987) and Da- 

ley (1991) emphasize operational meteorological data assimilation. In addition to 

the aforementioned texts, there is a vast literature on engineering control theory 

and statistical estimation methods. A number of anthologies concerning oceano- 

graphic data assimilation have appeared, namely, the special volume of Dynamics 

of Atmospheres and Oceans (GhiI, 1989), and the collections edited by Bengts- 

son et al. (1981), Anderson and Willebrand (1989), and Desaubies et al. (1990). 

Review articles such as Ghil et al. (1981), Ghil (1989), Miller and Ghil (1990), and 

Ghil and Malanotte-Rizzoli (1991) emphasize time-dependent assimilation problems 

and, in particular, Kalman filtering. Government panel summaries of inverse meth- 

ods (National Research Council, 1991 and 1993) present an institutional perspective. 

The remainder of this section emphasizes the use of inverse methods for 

estimating the general circulation. 

Inferences about the ocean circulation that are based on hydrographic data 

typically involve a number of assumptions regarding the motion. The "dynamic 

method" is motivated by the scale analysis which suggests that, for small Rossby 

number, the momentum equations simplify to hydrostatic and geostrophic balance 

(Pedlosky, 1979). Given a section of hydrographic data, the dynamic method is 

useful for calculating the geostrophic transport between station pairs, relative to 

some unknown transport. For many purposes this calculation is adequate, since 

the deep flows are generally small, and the absolute transport can be estimated by 

assigning zero velocity at some depth. 
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The pioneering work of Wunsch (1978) and Stommel and Schott (1977) at-

tempted to remove or reduce the indeterminacy of the velocity field inherent in the

dynamic method. The so-called "/3-spiral" calculation (Stommel and Schott, 1977)

used conservation statements, in their differential form, to over-determine the abso-

lute transport. Alternately, Wunsch (1978) used the integral form of a conservation

law to partially remove the indeterminacy of the absolute transport through a sec-

tion of hydrographic casts. The historical importance of Wunsch (1978) lies in its

thoughtful analysis of the structure of the problem from the point of view of linear

operator theory (Lanczos, 1961). It was Davis (1978) who first stated the dynamical

equivalence of the approaches in Stommel and Schott (1977) and Wunsch (1978).

Many researchers have xtended the research program initiated by these pa-

pers. Olbers et al. (1985) applied a /3-spiral formulation to estimate the general

circulation of the North Atlantic from a portion of the Levitus (1982) hydrographic

atlas. The three-dimensional velocity field and turbulent diffusivities they estimated

are plausible; however, because the /3-spiral calculation is based on local differen-

tial relations, the final velocity field is non-physical in the sense that it violates

the elementary constraint of incompressibility. Olbers et al. acknowledged this as

a major weakness in the assumptions on which the /3-spiral calculation is based.

Roemmich and McAllister (1989) applied the methods developed in Wunsch (1978)

to determine the general circulation of the North Pacific; however, their approach is

limited because one obtains information regarding only the component of the flow

which is normal to the hydrographic sections used in the method. The culmination

of this work has been in the development and implementation of inverse methods

for incorporating observations into three-dimensional general circulation models.

Contemporary work has sought to formulate the problem of estimating the

general circulation as a minimization problem in the context of "control theory"



(Tziperman and Thacker, 1989). Given a three-dimensional, general circulation,

ocean model, what are the values of the model control parameters1 (e.g., air-sea

fluxes of heat, fresh water, and momentum) which will bring the model state vari-

ables (e.g., temperature, salinity, and velocity) into congruence with a set of obser-

vations? Letting u denote the state variable (a vector field in general), the optimal

control problem is formulated by defining a penalty function, the value of which

would be zero if the model and observations were in complete agreement:

J(u) = J(u) + Jdata(U). (1.1)

As discussed in many texts (e.g., Tarantola, 1987), the relative sizes of the two terms,

J(u) and Jdata(tl), express the tradeoff between errors in the model (i.e., adjust-

ments to the control parameters), and fidelity to the data. The optimal estimate of

the state, u, is defined as that value, Umjn, which minimizes J. In all of the cases

considered herein, J:i and 3Jata are both quadratic functions of the model and

data misfits, respectively.

The same formulation also provides the basis for "model testing." One can

determine whether the estimated state mjn is plausible by inspecting the residuals

in the fit of Umjfl to both the model equations and the observations. In particular, if

the errors in the model and the observations are normally distributed with known

covariances, then the expected value of J(ttmin) is a 2-variable with M degrees of

freedom (where Al is the number of measurements). A test of the model (i.e., the

'The partitioning between state variables and control parameters is not unique. In the
models used here, the control parameters are the models' inhomogeneities, and they can
be diagnosed by substituting the state variables into the model equations. Therefore, the
optimal control problems will be posed in terms of the state variables alone.



consistency of the model, observations, and their respective errors) is then provided

by the value of the x2-variable.

Bogden (1991) applied this formalism to assimilate hydrographic data into

a linear model of the North Atlantic. To the constraints from the dynamic method

(geostrophic and hydrostatic balance) were added incompressibility and linearized

conservation of (approximate) potential density. The Levitus (1982) climatology

was the source of observations, and it also provided the field about which the po-

tential density conservation equation was linearized. Boundary conditions on the

flow were provided by specifying the wind-driven Ekman pumping, the barotropic

transport into the eastern boundary, and no-normal-flow at the bottom. In a series

of experiments, Bogden minimized the penalty function

J(Web, P) = J1yn('1'eb, p) + Jcjata(p), (1.2)

where
2

Jdyn(Web,P) ff2 Iu.V,3+wl dA (1.3)
JD DZj

penalized the deviation of of the predicted flow field from a minimum-mixing ideal

(at l000m depth), and
j. p0

Jdata(P))'j J
[ppobsJ2dAdz (1.4)

D -H

penalized the misfit of the density from the observations, Pobs. The minimum-mixing

criterion, equation 1.3, used 3 = Pobs gp0z/c2 as an approximation to potential

density (Po and c, a reference density and the speed of sound, were taken to be

constants). The velocity field, (u, v, w) or (u, w), is implicitly a function of den-

sity, p, and the value of the barotropic streamfunction on the eastern boundary,

Web, through the relations provided by the hydrostatic equation, geostrophic bal-

ance, and incompressibility. The parameter ) was chosen to control the tradeoff



between "mixing," as measured by Jj1, and infidelity to the data, as measured by

3iata The Coriolis parameter, f, was used in equation 1.3 to reduce the relative

strength of the mixing penalty near the equator.

Bogden (1991) proceeded by minimizing J with respect to Web and with re-

spect to certain classes of p adjustments. The dimension of the problem was small

enough that direct matrix methods could be used to solve the equations for the ex-

tremum of J. He obtained a plausible circulation that deviated acceptably from the

observations, and which, over-all, had a plausible transport into the eastern bound-

ary. By allowing for errors in the density data and the eastern boundary condition on

the barotropic flow, Bogden overcame the primary inadequacy which arises when the

geostrophic velocity field is diagnosed from density data, namely, the large, unreal-

istic flows driven by vortex stretching from cross-isobath flow (e.g., Sarkisyan, 1977;

Sarmiento and Bryan, 1982; and Fiijio and Imasoto, 1991). Bogden's approach

ameliorated many of these difficulties, because his minimum-mixing criterion was

effectively a minimum w criterion.

The most recent work has sought to estimate the time-averaged general cir-

culation by assimilating data into nonlinear general circulation models. Tziper-

man et al. (1992b and 1992c) is typical of this work, in which a penalty function is

composed of two terms, a steadiness penalty and a data misfit penalty. The steadi-

ness term penalizes the difference between the model's prognostic variables between

two times, say, t = 0 and t = T. In the case ofTziperman et al., temperature, 0, and

salinity, 5, were the prognostic variables; the velocity field was diagnosed from 0, S,

and the surface wind stress. The data misfit penalty consisted of two sets of terms,

those which measured the misfit between 9 and S at t = 0 and the corresponding ob-

servations, and those terms which measured the departure of the surface fluxes from

observations. The ocean model entered the problem by providing the constraints



which relate the prognostic variables at the two times with the air-sea fluxes; these

constraints were appended to the penalty function with time-dependent Lagrange

multipliers, and the entire penalty function was minimized using a descent method.

Tziperrnan et al. (1992c) considered the North Atlantic in an application of

their methodology. They encounted numerous difficulties with the convergence of

the descent method. The difficulty was attributed to the poor conditioning of the

Hessian (the matrix of second derivatives) of the cost function, and to nonlinearity,

which entered their model in the convection terms and in the vertical convective

mixing scheme in the heat and salt conservation equations. They illustrated both

of these problems by plotting the penalty function along sections of state space.

Marotzke and Wunsch (1992) used the same inverse formulation as in Tziper-

man et al. (1992b and 1992c), with the benefit of the preconditioning algorithm

discussed in Marotzke (1992). The descent algorithm performed much better than

in the previous studies, and Marotzke and Wunsch were able to draw some tentative

conclusions regarding the ability of the nonlinear model to reconcile hydrographic

data (taken from Fukumori and Wunsch, 1991) with air-sea fluxes. They found

that the best-fit fields differed systematically from the data, with a tendency for

the estimated surface fluxes to adjust toward winter conditions. In effect, the sur-

face forcing fields were adjusted in order to support the steady-state generation of

extreme water masses. Marotzke and Wunsch suggested that the era of inverse

studies of the general circulation based on steady models is over, and that future

inverse studies should be time-dependent, and include open boundary conditions as

parameters in the inverse calculation so that the appropriate water masses can be

advected into the model domain.

In spite of its success, the descent calculations of Marotzke and Wun-

sch (1992) are computationally intensive. If one counts each time-step of their
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forward-backward integration as one model "substitution" (see Chapter 3), then

the number of model substitutions in Marotzke and Wunsch's inverse calculation is

equal to roughly half the number of state variables. The 20 x 1° by 14-level model

has roughly 85,000 state variables. Clearly there is more work to be done towards

preconditioning these very large inverse calculations.

To date, researchers have tended to focus on somewhat idealized problems

in which hydrographic observations are provided at every model grid point, and the

weights used in the penalty function are each diagonal. The use of diagonal weights

is equivalent to the assumption that the errors are uncorrelated, and their use may

introduce spurious spatial structure in the solution of the inverse problem (Bennett

and Budgell, 1987). Schlitzer (1993) is an exception to the use of diagonal weights; he

used nondiagonal weights to enforce the smoothness of his solution in a formulation

which is a nonlinear generalization of the approach in Wunsch (1978).

Despite these most recent advances, the central problem of estimating the

general circulation is still with us. The most recent approaches, which are based on

assimilating data into nonlinear, three-dimensional general circulation ocean mod-

els, are technically complex endeavors which require expertise in the design and

implementation of the ocean model, its adjoint (which is used to compute the gra-

dient of the penalty function), and large-scale minimization methods. We are still

far from realizing the primary goal of WOCE, "...to develop models useful for pre-

dicting climate change...", if we regard this as predicated upon models which can

reproduce present-day climate.
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1.3. Overview

The chapters that follow use the planetary geostrophic equations (Ped-

losky, 1979) as the basis for a dynamical description of the general circulation of

the North Pacific. This system is a simplification of the primitive equations which

effectively filters out inertial waves and dispersive Rossby waves. The planetary geo-

strophic system was first suggested by Hasselmann (1982) as the appropriate system

for use in climate change studies, as the fast waves are effectively filtered out by

the approximation. This system was used in an idealized geometry (a rectangular

basin) by Cohn deVerdiere (1988a and 1988b) to study the nonlinear interaction of

thermohaline and wind-driven flows, and it is the basis of the Hamburg general cir-

culation model (Maier-Reimer and Hasselmann, 1987). In addition, the planetary

geostrophic balances explain many of the results of non-eddy-resolving primitive-

equation models, such as that of Bryan and Lewis (1979).

In order to distinguish efficiently between diabatic and adiabatic mixing pro-

cesses, the planetary geostrophic system is formulated using potential temperature

as the vertical coordinate. Such an approach is based on the work of Bleck (1973)

with atmospheric models. This choice of coordinate simplifies the representation

of adiabatic flow at the expense of complicating the surface and bottom boundary

conditions.

This study shares much with those already mentioned: the mid-ocean dy-

namics are geostrophic and hydrostatic, and a conservation equation is used. This

approach differs from 16-spiral calculations in that the circulation is governed by

nonlocal dynamics. Similarly, it differs from the studies following Wunsch (1978) in

that the three-dimensional circulation is sought, not just the component normal to
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a hydrographic section. Furthermore, the hydrographic data are assumed to contain

errors.

The present formulation of the inverse problem builds on the work of Tziper-

man et al. (1992c) and Marotzke and Wunsch (1992). An ocean circulation scheme is

sought which is simultaneously consistent with an ocean model and a data set. The

problem is significantly complicated by assimilating unsmoothed hydrographic data;

a consequence of this is that nondiagonal weights are necessary in the definition of

the penalty function.

Two planetary geostrophic models are used in the course of this study, a un-

earized model (Chapter 2), and a nonlinear model, which includes the effects of layer

outcropping, lateral eddy mixing, and bottom topography (Chapter 3). Chronolog-

ically, the nonlinear calculations were performed prior to the linear calculations;

however, for logical clarity the linear analysis is presented first.

The linear model permits a complete analysis via the "representer expan-

sion" (explained in the following chapter). Assimilation experiments are performed

to assess the efficacy of hydrographic measurements for improving estimates of air-

sea fluxes. A number of solution methods for the generalized inverse are com-

pared with this model, and a large, high-quality, hydrographic data set (Reid and

Mantyla, 1988), with approximately 18,000 measurements, is assimilated into the

model.

The nonlinear planetary geostrophic system discussed in Chapter 3 presents

a much more complicated problem. Conservation equations for both heat and salt,

and their respective air-sea fluxes, are used as constraints. The convective nonlinear-

ity in the model, and the absence of a viable solver for the linearized system, make

it necessary to use a substituting method. Several descent methods (for obtaining

the best-fit solution), and several Monte Carlo methods (for obtaining a posteriori
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errors) are used, but none prove adequate. The success of future attempts to esti-

mate the general circulation will hinge on the development of efficient solvers for the

quasi-steady general circulation. Once such a solver is available, all of the solution

methods discussed in Chapter 2 will be applicable. Furthermore, the development

of such a solver would resolve the long-standing "spin-up," or initialization problem

for general circulation ocean models.
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2. ARRAY ANALYSIS AND DATA ASSIMILATION WITH A
LINEARIZED PLANETARY GEOSTROPHIC MODEL

2.1. Introduction

In this chapter, a linearized planetary geostrophic model is used to examine

the usefulness of hydrographic data for determining the general circulation of the

oceans. A representer expansion is the fundamental analytical tool.

The planetary geostrophic system is a simplified description of the large-scale

ocean dynamics. The linearization used in this chapter eliminates layer outcropping

at the ocean surface. The effects of irregular bathymetry and friction are also

neglected; hence, the model cannot support a western boundary current. These

significant simplifications allow us to examine some of the fundamental issues in-

volved in estimating the general circulation, aside from complications arising from

nonlinearity.

The model was formulated using potential temperature as the vertical coor-

dinate. This choice was made in order to facilitate the modeling of approximately

adiabatic dynamics, which govern the ocean away from its boundaries. In the present

linearized system, the coordinate has no intrinsic advantage; it was used to make

the results comparable with those from the nonlinear model discussed in the next

chapter.

The model and its inverse formulation are discussed in Section 2.2. Sec-

tion 2.3 is a brief review of solution methods for the generalized inverse. The gener-

alized inverse is then used to study the efficacy of hydrographic data at determining

the general circulation for two observing arrays: a set of scattered thermocline depth
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measurements (Section 2.4), and a zonal section of hydrographic casts (Section 2.5);

in both cases, the various solution methods outlined in Section 2.3 are compared.

In Section 2.6 the model is used to assimilate a large hydrographic data set to esti-

mate the North Pacific circulation, and the results are compared with a conventional

objective analysis of the same data,.

2.2. Model and Inverse Formulation

2.2.1. Model Formulation

The ocean model is similar to that used by Pedlosky (1992) to study the

baroclinic structure of the abyssal circulation. Unlike Pedlosky, the present model

uses potential temperature, denoted by 9, as the vertical coordinate (Bleck, 1978).

The model describes the steady, geostrophic motion of a layer of fluid on the

surface of the Earth. Motion is driven by heat fluxes and isotherm depth varia-

tions at the top and bottom boundaries, and the velocity normal to the boundary

is specified at the eastern boundary. It is assumed that Fick's law provides an ad-

equate description of turbulent mixing. The mean stratification (about which the

model is linearized) is maintained by a small amount of uniform upwelling, which is

determined by the global balance of deep-water production.

The reader is referred to Pedlosky (1979) for a detailed derivation of the

planetary geostrophic system. The equations will simply be quoted below.

Spherical coordinates are used, with latitude ), longitude , and potential

temperature 9 as the local vertical coordinate. The total velocity vector is (u, v, w),

where the velocity components are defined by

ur0coscbj, (2.1)
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V - r0j-, (2.2)

d9w = , (2.3)

and r0 denotes the radius of the Earth. The along-isotherm (adiabatic) velocity

vector is denoted u = (u, v). Note that the conventional vertical velocity is

dz
= zt + u Vz + wzo, (2.4)

rather than w, which is used here. Overbar indicates mean fields which define

the linearization, and the perturbation quatities are denoted without primes. For

example, the height of an isotherm, a function of A, , and 0, is given by (0) +

z(A, , 0), where (0) is the mean depth profile. Buoyancy pg/p0, is denoted by

b, and is determined from a linear equation of state: p = p°(l aO), with c =

0.2 x 103(°C)'. B is a Bernoulli function which is related to pressure, buoyancy

and z by B = PIPo + bz, while I is the Coriolis parameter. The operators V and

V. are, respectively, the horizontal gradient and divergence operators in spherical

polar coordinates.

The model equations are as follows:

(the horizontal momentum equations)

fk x u = VB, (2.5)

(hydrostatic balance)

b9z = B9, (2.6)

(the continuity equation)

V. (u9) + (w9)0 0, (2.7)

and (the energy equation)
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= - (z9). (2.8)

Boundary conditions are specified at 82, the bottom isotherm:

at OT, the top isotherm:

= ZB, (2.9)

WO = W, (2.10)

Z = Z7' (2.11)

= WT, (2.12)

and at ,\ = )kE, the eastern boundary:

Z = Z, (2.13)

B7E, OB) = BE. (2.14)

Note that BE is a function of , ZE is a function of and 0, while ZB, ZT, WE,

and WT are functions of ) and q5. Lower-case Greek characters which appear as

subscripts denote partial derivatives; Roman character subscripts are part of the

variables' names.

The mean profile cannot be specified arbitrarily. In order for the mean profile

to be a solution of the nonlinear equations, the mean state must have a nondivergent

vertical heat transport. In other words, the vertical velocity of the mean, =

is a constant. If this were not the case, the perturbation equations would be forced

by a source term from the mean state. Assuming that the diabatic mixing w obeys

a Fick's law relationship with 0, then the mean state has an upwelling velocity given

by

/ K \ (2.15)
O J



Therefore, the mean profile and diffusivity are related by

(2.16)

for constants 7J and C. In the present calculation, K is chosen to be a constant,

hence

(9 + 9TC '\=LTclot,99) +(OB), (2.17)

where the thermocline length and temperature scales are LTC = Kv/ii7 and °Tc =

C/tiJ, respectively.

The parameters defining the mean state, Ky, LTC, and J, are not deter-

mined by the model equations; they must be specified. The turbulent diffusivity,

K, is set to the canonical value of lcm2/sec (Munk, 1966); this value is five to ten

times larger than that inferred from tracer release studies (Ledwell et aL, 1993), and

orders of magnitude larger than the turbulent diffusivity inferred from microstruc-

ture measurements (Gregg, 1987). The thermocline length scale, LYC, is determined

by an L1-norm fit (least-absolute-values) of to the observations (Tarantola, 1987).

That is, LTC is determined by minimizing

JTC(LTC) = (0) j, Oj), (2.18)

in which is given by equation 2.17. The absolute value norm is used to reduce

the sensitivity of the LTC estimate to outliers. The mean upwelling velocity cannot

be specified independently of K and LTC; in this case, it corresponds to a global

deep-water production rate of roughly 20 Sverdrups (1 Sverdrup = 106m3/sec). The

physical parameters used in the linear model are summarized in Table 2.1.

Solutions of this system can be regarded as the steady response of damped-

baroclinic Rossby waves to forcing imposed at the upper, lower, and eastern bound-
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TABLE 2.1. Physical Parameters

Parameter Value
r0, Earth's radius 6 x iO km
Tday, length of day 8.64 x iO s
g, gravitational acceleration 9.8m/s2

K, vertical diffusivity 1 x 104m2/s
LTC, vertical length scale 538m

Y, mean upwelling 5.8m/yr

aries. Pedlosky (1992) sought to explain the vertical layering of the abyssal circu-

lation by considering the response of the planetary geostrophic system to surface

Ekman pumping. It is clear that both surface and bottom Ekman pumping and

isotherm depth variations are capable of generating motion. As an aside, spatial

variability of K would also be capable of generating motion.

The advantage of this linearized system, relative to the full planetary geo-

strophic equations, lies in the simplicity with which it can be solved. This permitted

the comparison of a number of solution methods and the examination of the condi-

tioning of the inverse in much more detail than would have been possible otherwise.

It should be kept in mind that the nonlinear system differs from the linearization

primarily through the advection of the mass field. At mid-latitudes, the lowest-

order long Rossby wave speed is roughly 1.5cm/sec, so the quantitative validity of

the linear model is dubious, especially in the thermocline, where one expects the

advecting velocity to be comparable to the Rossby wave speed.

To summarize, a model of the North Pacific was built for the purpose of

estimating the general circulation from hydrographic data. Possibly significant ef-

fects caused by salinity, bottom topography, and the convective nonlinearity were
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neglected. The linear system nonetheless was a tractable alternative to the full

model, and it was amenable to the linear analysis afforded by the construction of

the generalized inverse using a representer expansion.

2.2.2. Inverse Formulation

The inverse formulation is based on minimizing a penalty function.' The

inverse, or best-fit solution is that set: u, w, z, and B, which most nearly satisfies

the model, equations 2.5-2.14, and which most nearly fits a data set. The penalty

function and the Euler-Lagrange system for the model system, 2.5-2.14, are written

in full in Appendix 4.3.

The best-fit solution solves the set of Euler-Lagrange equations for the ex-

tremum of the penalty function. The best-fit solution is an optimal (maximum

likelihood) estimate for the state in the event that one has correct prior knowledge

of the uncertainties in the model, boundary conditions, and data. In the presence

of an inaccurate statistical description of these errors, the best-fit is simply one

of many estimates for the true state; information regarding the plausibility of the

best-fit can be obtained by comparing the residual misfits to the a priori uncertain-

ties. These facts are reviewed in any text on inverse methods (e.g., Tarantola, 1987;

Bennett, 1992; Parker, 1994).

'In general, the penalty function may be a functional, i.e., a function of a function;
however, all of the numerical methods that are used below rely on approximating the
original functions on finite lattices: the penalty functional is approximated with a penalty
function. In particular, the solution methods are explained using a notation that is most
suggestive of a the finite-dimensional formulation. Hence, the expression penalty function
is used rather than penalty functional.
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It is assumed that the measurements to be assimilated are those which are

available from typical hydrographic casts: measurements of temperature, salinity,

and pressure. For the purpose of assimilating data into the planetary geostrophic

model, these are regarded as measurements of depth at potential temperature levels.

The measurements consist of a set,

r M
lziJi=1, (2.19)

where z is an observed value of z(x), and x = q5, 93 denotes the measurement

location. Each measurement may be contaminated by error (j, therefore

zi = z(x1) + ç. (2.20)

Using the language of functional analysis, one would say that the measurement

operator is a delta function, i.e.,

£io3z=f8(xxi)z(x)dx (2.21)

where £ is the measurement functional, D is the three-dimensional domain on

which z is defined, and ö is the delta function (a distribution or generalized func-

tion; Lighthill, 1958). The symbol 03 is used to denote integration over a three-

dimensional domain.

The weights in the penalty function are specified next. In statistical estima-

tion, each weight is the inverse of a corresponding error covariance. There exists

only one realization of the general circulation; therefore, the prior error covariances

are prior tincertainties, i.e., the weights are based on uncertainty in our state of

knowledge rather than variability in a random variable. For convenience, the terms

"uncertainty" and "covariance" will be used interchangeably; however, it should be

understood that statistical estimation is not implied. The following discussion starts

by specifying the prior data covariarice and then proceeds through the prior model

covariances. Table 2.2 summarizes the covariance information.
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TABLE 2.2. Prior Covariance Values

Covariance Lco,-. °corr Fractional Error
C2 500km 2°C 0.20
CZT 250km na 0.20
CWT 1000km na 0.20
CZB 250km na 0.20
C 500km na 0.20
CZE 250km 2°C 0.20

2.2.2.1. Data Errors

Each measurement z is related to the true time-averaged isotherm depth by

Zi = Ztrue(Xj) + (i, (2.22)

where denotes the measurement error. The measurement error consists of a

sum of instrumentation error, errors introduced by converting the raw hydrographic

measurements to isotherm depth measurements, and errors of representativeness.

The uncertainty in individual temperature, salinity, and pressure measure-

ments is assumed to be negligible. Presumably these measurements contain both

random and systematic errors caused by equipment malfunction, finite-volume av-

eraging (to remove salt-spikes or sample water volumes), calibration errors, and

operator error. The raw hydrographic data base (Reid and Mantyla, 1988), which

consists of roughly 1300 stations and 38,000 individual measurements, was processed

to remove gross outliers (based on two passes of a three standard deviation test for

temperature and salinity separately), and to remove unsuitable data (stations which

sampled statically unstable profiles, and thermally inverted profiles were excluded).

Finally, the acceptable hydrographic data were converted to (potential) isotherm

depth measurements by cubic spline interpolation.
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Errors of representativeness are likely to be the dominant source of error. A

particular cast can be used to estimate an isotherm depth quite accurately; however,

this depth is likely to be the result of motion on a number of time scales, none of

which are adequately sampled.

As a rough estimate, the measurement error variance was estimated as 1/8

of the spatial variance of the isotherm depth. Multiple observations at a site were

assumed to be independent and reduce the error variance accordingly. Values for

the standard deviation of the data error range from roughly 50m to lOOm.

2.2.2.2. Model Errors

The linear planetary geostrophic system, equations 2.5-2.14, neglects a num-

ber of processes which are likely to be important in the real ocean. The principal

approximations are the neglect of the convective nonlinearity, and the crude mixing

closure. The error covariances are characterized by a spatially inhomogeneous vari-

ance, horizontal and vertical correlation scales, and a spectral form describing the

asymptotic roll-off rate.

The principal error in the horizontal momentum equations arises from the

neglect of the advection terms. This error is proportional to the Rossby number for

the flow (Pedlosky, 1979), which should be no more than 10-2. Likewise, thickness-

weighted Reynolds averages have also been neglected (DeSzoeke and Bennett, 1993);

it is difficult to estimate the magnitude of these, but they should be no more than

the conventional Reynolds flux, which also scales like the Rossby number. Errors

caused by the Boussinesq approximation are also negligible. The total fractional

uncertainty in the momentum equations is small compared to other errors, so the

horizontal momentum equation errors were neglected.
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The vertical momentum equation is simply hydrostatic balance. Nonlinear

terms were neglected by virtue of the small Rossby number and aspect ratio. Larger

sources of error are caused by the linearization and neglect of (thickness-weighted)

Reynolds averages. These are potentially significant sources of error in the deep

geostrophic velocity (e.g., McDougall, 1987); however, for simplicity, and because the

hydrostatic relation is used in the coordinate transformation, the error in hydrostatic

balance was neglected.

Using thickness-weighted Reynolds averages, the continuity equation is an ex-

act relation expressing conservation of volume (DeSzoeke and Bennett, 1993). The

planetary geostrophic system used here is linearized; hence, the continuity equation

may have significant errors caused by the neglected nonlinear terms. These errors

were retained as the only significant source of error in the planetary geostrophic

system (excluding the boundary conditions). These errors were assumed to have a

500km horizontal correlation scale, a 2°C vertical correlation scale, and a magnitude

(standard deviation) equal to 20% of the horizontal standard deviation of V (uo)

computed from the first-guess solution (the first-guess solution is explained in sec-

tion 2.3 below).

Errors in the energy equation, which defines the diabatic velocity ', are

attributed to errors in the turbulent-mixing closure. The terms neglected in the

linearization may also be significant. It is difficult to estimate the uncertainty in the

closure scheme; not only may the diffusion coefficient be wrong, but the concept of

a local closure by down-gradient diffusion may be incorrect. One could include the

parameters from the mixing parameterization as further unknowns to be estimated

by the inverse method; however, given the extreme simplicity of the model, and the

evidence that inverse-estimated mixing coefficients are indistinguishable from noise

(Tziperman, 1988), energy equation errors were not considered.
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2.2.2.3. Boundary Condition Errors

The boundary conditions consist of three pairs of conditions at the top, bot-

tom, and eastern boundaries. The data for each boundary condition was assumed

to contain error.

The eastern boundary conditions derive from specifying the geostrophic ye-

locity normal to the boundary. Equivalently, B at the bottom and z are specified;

these conditions determine B on the eastern boundary (from hydrostatic balance),

which then determines the normal geostrophic velocity. Errors in the eastern bound-

ary condition are caused by uncertainty in the first-guess z and bottom B fields, the

former was specified by an objective analysis of the interior hydrographic data, and

the latter was set to zero (no normal-flow at the bottom).

An analysis of the Euler-Lagrange system for equations 2.5 (Appendix 4.3)

shows that hydrographic measurements are incapable of altering the eastern bound-

ary condition on the bottom value of B. In other words, the bottom-eastern bound-

ary value of B is unobservable with hydrographic observations. Hence, the error

covariance for this boundary condition is immaterial; it was taken to be zero. The

unobservability of the eastern boundary condition is a consequence of the decou-

pling of the barotropic and baroclinic dynamics in this model; irregular bottom

topography could be incorporated to recouple the dynamics.

Boundary conditions on z at the eastern boundary were assumed to have a

250km meridional correlation scale, a 2°C vertical correlation scale, and a standard

deviation of 20% of the meridional standard deviation of the first-guess field (the

first-guess field is described in more detail below). The standard deviation of the

eastern boundary condition error ranges in value from roughly 30m at the bottom

to 50m at mid-depth.
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The top and bottom boundary conditions contain errors caused by errors

in the boundary data itself, and by linearization. The top and bottom isotherms

are not material surfaces; the z and w0 boundary conditions are analogous to the

boundary conditions on temperature and vertical velocity used by Pedlosky (1992).

The top isotherm is regarded as the surface on which wind-driven Ekman

pumping is applied. It is apparent that the top, 15°C, isotherm is not at or even

immediately below the surface mixed layer over much of the North Pacific. This

isotherm intersects the ocean surface at approximately 40°N and deepens to roughly

300m at lower latitudes. Another source of error in the surface boundary condition

is the neglect of the "adiabatic component" of the Ekman pumping. In other words,

the un-approximated boundary condition at 0T relating w to the Ekman pumping

is

WEkman U VZ + wzg, (2.23)

but because the motion is linearized about a state of rest, the first nonlinear term

(i.e., the adiabatic component of the Ekman pumping) was completely omitted. In

any case, the errors in ZT were assigned a horizontal correlation scale of 250km

and a standard deviation equal to 20% of the spatial standard deviation of the ZT

data itself. The error in the surface Ekman pumping was assigned a length scale of

1000km (to reflect the larger scale of the atmospheric forcing), and a standard devi-

ation equal to 20% of the observed spatial standard deviation (Boning et al., 1991).

Similar considerations apply to the bottom boundary conditions. The bottom

isotherm depth was assigned a horizontal correlation scale of 250km and a standard

deviation of 20m. The bottom vertical velocity boundary condition was assigned a

horizontal correlation scale of 500km and a standard deviation of 20% of the mean

vertical velocity, W.
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The facts concerning all of the prior error covariances are summarized in

Table 2.2. The implementation of these (non-diagonal) covariances is discussed in

Appendix 4.3.

The prior error covariances, as illustrated in Figures 2.1 and 2.2, are neither

homogeneous nor isotropic in spherical polar coordinates. The asymptotic spec-

tral forms of the zonal, meridional, and vertical correlation structure functions were

chosen so that the inverse problem generated a reproducing kernel Hubert space

(Bennett and McIntosh, 1982); this insured that the solution was a physically real-

izable field that did not contain delta functions or other singularities. The technical

details regarding reproducing kernel Hubert spaces may be found in Wahba (1990).

This representation of the error structure of the model was intended to be

provisional. It is precisely the virtue of formal inverse methods that they make

the choices for these error covariances explicit; they are entirely open for discussion.

With the possible exception of the Ekman pumping boundary condition at the upper

surface, it is difficult to assign values for either the length scales or the standard

deviations of any of the errors. Rather than regarding the covariances as descriptions

of random variables, they should be regarded as descriptions of uncertainty in our

state of knowledge.

2.2.2.4. Summary

With the three pieces of information now specified: the model equations, the

observations, and their respective uncertainties, the equations for the generalized

inverse of system 2.5-2.14 can now be stated. The system is written in terms of the

state variables, (u, v, w, z, B), and the so-called "adjoint variables," (p, ii, 'y, c, ).

Since the momentum, hydrostatic, and thermodynamic equations are exact con-
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straints, the variables , v, ',', and are Lagrange multipliers; CZ 03 f is the oniy

model residual. The 0 symbols denote inner products which are defined in Ap-

pendix 4.3, where the full penalty function is written out, and the Euler-Lagrange

system is derived. The Euler-Lagrange equations for the proposed problem are as

follows:

fk x U = VB (2.24)

b9z = B9 (2.25)

V. (uo) + (Wü)g = CZ 03 (2.26)

(K "= I --z) , (2.27)
\Z9

with boundary conditions at 9Th the bottom isotherm,

at 0T, the top isotherm,

Z = ZB C 2 (2.28)
zo

WZ0 = WB - CWB °2 E, (2.29)

Z ZT + CZT 02 (2.30)
zo

WZ9 = WT + CWT °2 f, (2.31)

and at the eastern boundary, \ =

Z =ZE _CZE 02Eb9J
9

z,9(1,0) .nth9, (2.32)

B\E, OB) = BE. (2.33)

The so-called "adjoint equations" are as follows (where the notation v =

(, ii) is used):

f/c x v = gVE (2.34)
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(2.35)

Vv+ag=0 (2.36)
M

bga + = £jU2 (i 03 Z z) (2.37)
" zo

with homogeneous boundary conditions at °B and 0T,

and at the western boundary,

c = 0, (2.38)

= 0, (2.39)

= 0. (2.40)

The above system was solved numerically using standard finite-difference

methods. The parameters used to define numerical model are listed in Table 2.3.

The numerical method is discussed in more detail in Appendix 4.3.

TABLE 2.3. Numerical Model Parameters

Parameter Value
D, model domain North Pacific, 10 to 60°N

120°E to 60°W
zA, zonal resolution 10 (approx.)
zçb, meridional resolution 2° (approx.)

O, vertical resolution 0.5°C (approx.)
nx, zonal grid-points 128
ny, meridional grid-points 32
n, vertical grid-points 32
0B, bottom temperature 1°C

0T, top temperature 15°C

For the purpose of discussing solution methods, it is helpful to represent

the above system in compressed notation by representing the planetary geostrophic
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system (including boundary conditions) as the action of a linear operator L, on a

vector field U:

Ln=CA+f. (2.41)

In this terse notation, u denotes (u, w, B, z), ) denotes (v, y, a, c), CA represents

the inner products of the covariances on the adjoint variables, and f stands for the

model forcings (including the boundary conditions). In similarly terse notation, let

the adjoint planetary geostrophic system be written

LTA = _HW(HTU m), (2.42)

where LT represents the adjoint dynamical operator (including boundary condi-

tions), HTu represents the inner products M measurement operators on the state

variable, and in is an M x 1 vector of observations. The matrix W is diagonal with

ordered entries a2 on the diagonal.

This terse notation succinctly compresses the Euler-Lagrange equations for

the planetary geostrophic system. It, equally well, represents the finite-difference

approximation to this system, for which solutions were actually obtained. If equa-

tions 2.41 and 2.42 are regarded as a matrix system, then u is the N x 1 vector of

state variables, A is the N x 1 vector of adjoint variables, L is an N >< N matrix

(and LT is its transpose), C is an N x N positive-definite-symmetric matrix, and

H is an N x M matrix. L is of full rank because the model is well-posed. Each

measurement operator, 4 03 z, is represented with the dot product hTu, where h is

an N x 1 column of H. It is implied that the appropriate area elements have been

absorbed into L, C, W, and H, so that the inner products are correctly weighted

for spherical polar coordinates.
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Lastly, the penalty function in this terse notation is

J(u) = (Lu f)TQ(Lu f) + (H'u - m)TW(HTu m), (2.43)

where Q is the N x N inverse of C. The Euler-Lagrange system, 2.41-2.42, expresses

the condition that

VJ(u) = 0, (2.44)

where V denotes the gradient operator with respect to the N x 1 elements of u.

For future reference, the N x N matrix of second derivatives of J, with

respect to u, is called called the Hessian of .7. Let S denote the Hessian, then

or

t9uôu'
(2.45)

S = VT(VJ). (2.46)

The terse notation defined in this section simplifies the explication of solution

methods, presented below, by hiding an enormous amount of extraneous detail.

2.3. Solution Methods

The solution of inverse problems based on realistic ocean models is a de-

manding computational task. The linear planetary geostrophic model consists of

roughly 60,000 unknowns; the nonlinear model in the next chapter has over 200,000

unknowns. Because there is no unequivically "best" method for solving very large

inverse problems, four methods are compared in sections 2.4 and 2.5.

There are two, formally equivalent, approaches to the problem of minimiz-

ing .7 in equation 2.43. The first approach, direct minimization, seeks to use any
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number of minimization methods (steepest descent, conjugate gradients, Newton's

method, etc.) to minimize the cost function. In order to use these methods, it

is necessary to evaluate the cost function, and a means of computing the gradient

of the cost function is also helpful. When direct minimization methods are used,

the data assimilation method is referred to as "the adjoint method" (Tziperman

and Thacker, 1989), because operators "adjoint" to the original model operators are

used to compute the gradient of the cost function efficiently.

The other approach to minimizing the cost function is to solve the Euler-

Lagrange equations for the extrema of J. If J is a convex function of the state

variables, then there is a unique extremum of J at its minimum value. Conventional

objective analysis (Bretherton et al., 1976) can be interpreted as a solution procedure

for an Euler-Lagrange system. Likewise, the "representer expansion" is another

solution procedure for an Euler-Lagrange system. This class of solution methods

will be called Euler-Lagrange solvers.

Note that both approaches to minimizing J are formally equivalent. When

some aspect of the inverse problem is nonlinear, i.e., when either the model equa-

tions or the measurement functional is a nonlinear function of the state variables,

direct minimization methods are always applicable. In contrast, the Euler-Lagrange

solvers generally require one to consider a sequence of linear problems, which, idealy,

will converge to the problem of interest. It is also worth noting that Euler-Lagrange

solvers do not require one to evaluate J; the importance of this distinction is high-

lighted in Appendix 4.3.

Bennett (1992) has made the distinction between integrating and substitut-

ing methods for solving time-dependent inverse problems. In the present context,

integrating methods correspond to Euler-Lagrange solvers, and substituting meth-

ods correspond to direct minimization methods. However, it is possible to use both
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model and adjoint integration steps as preconditioners within a direct minimization

method (as in method J-CG2, below). Likewise, it is possible to use a substituting

method as an Euler-Lagrange solver (as in method REP-CG, below, which is both

a substituting and integrating method).

2.3.1. Euler-Lagrange Solvers

Elimination of .A between 2.41 and 2.42 results in the following system for u:

(LTQL + HWHT)u = LTQJ HWm. (2.47)

The solution of this system by direct methods (e.g., an LU decomposition) is im-

practical if N is large. Note that the Hessian of J, which will be denoted by S,

is the matrix LTQL + HWHT on the left-hand-side of equation 2.47. Thus, the

solution of this system requires the construction and inversion of S; however, S'
is the a posteriori covariance matrix of u. If one could create and inspect S1, one

would have a complete description of the a posteriori errors (Thacker, 1989).

Because the dimension of the state space is so large that it is typically not

feasible to create an NxN matrix, another direct method, the representer expansion,

has proved very useful. This expansion reduces the number of unknowns from N

to M by taking advantage of the fact that there are only M degrees of freedom

in the inverse estimate of u (a complete discussion can be found in Wahba, 1990;

Bennett, 1992; or Parker, 1994).

The representer expansion is the basis for an efficient solution method, pro-

vided that one can solve the model and adjoint model equations. To each measure-

ment, there corresponds a "representer" Ti. In general, the representer is function,

but here it is an N x 1 vector. Each representer is obtained by solving the following

system:



Lr = Ca (2.48)

LTcj = h1. (2.49)

Each of these M systems has the same form as the Euler-Lagrange system 2.41-2.42,

except that the adjoint system 2.49 is decoupled from the forward system 2.48. The

solution of the coupled Euler-Lagrange system 2.41-2.42 can now be obtained via

the solution of M uncoupled systems.

Let R and A denote N x M matrices of representers and representer adjoints,

respectively, then

and

LR = CA, (2.50)

LTA = H (2.51)

are the systems which must be solved to obtain the representers; this amounts to

M inversions of L and LT (in time-dependent problems, these would be described

as M forward-backward integrations). Assuming that the same amount of work is

required to invert both L and LT, the solution of the representer equations requires

2M model integrations, where integration refers to either a forward or an adjoint

solve. The representer expansion for the solution itself is expressed as the sum of a

first-guess field and a linear combination of representers:

U Ufg + Rb, (2.52)

where b is the M x 1 vector of representer amplitudes, and the first-guess field solves

LUfg = f. (2.53)

Substitution of the representer expansion 2.52 into 2.41 and 2.42 results in the

following M x M system for b:
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(W' + R.)b = (2.54)

where 7Z is the M x M representer matrix (the matrix of measurements of the

representers, 7 = H'"R), and h is the M x 1 vector HTufg m, the difference

between measurements of the first-guess and the actual observations.

Provided that M is not too large, it is possible to perform the 2M model

and adjoint integrations and solve the M x M system 2.54. If the representers are

physically stored as R, then the solution to the inverse problem can be obtained

as 2.52; however, this is unnecessary, and may be unmanageable if M x N is too

large. Instead, one can eliminate u from the right-hand-side of 2.42 using 2.52;

the resulting expression is in terms of Ufg, R., and b, which are known. With 2.42

now decoupled from 2.41, solving for A and u is straightforward. Thus, the total

work consists of 2M + 3 model integrations (1 integration for the first-guess, 2M

integrations for the representers, and 2 integrations for the final decoupled system),

and the solution of one M x M system (Bennett, 1992).

It is also possible to use an iterative solver for equation 2.54, as was suggested

by Egbert et al. (1994). The product Rh can be obtained for any M x 1 vector b by

one sequence of forward and adjoint integrations, and the product W1b is easily

constructed. The ability to create (R. + W_1) and store one more M x 1 vector

are all that is needed to implement the conjugate gradient method (explained in the

next section) to solve equation 2.54. In this context, the conjugate gradient solver

is a direct minimization method applied to minimize q(b) = bT(7?. + W')b - bTh.

The convergence of the conjugate gradient solver for equation 2.54 depends

on the condition number of 7 + W1. For the two sample problems considered

below (with M = 662 and M = 1143 measurements, respectively), it was possible

to calculate the eigenvalue spectrum of the representer matrix and study the condi-
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tioning in detail. The balance between model and data uncertainty was such that

the condition number was roughly iO4, and the conjugate gradient solver applied

to 2.54 performed adequately without any preconditioning. In other circumstances

it may be advantageous to precondition 1 + W'' with (7 + W1)', where is

the representer matrix computed using a low-resolution version of the model, which

would be inexpensive to compute (Egbert et al., 1994).

2.3.2. Direct Minimization Methods

Two minimization methods are compared in the following sections. Both

methods are conjugate gradients solvers; however, they differ in the choice of pre-

conditioning operators.

The conjugate gradient method (e.g., Luenberger, 1973) is a widely used

iterative method for large-scale minimization. When J is a quadratic function of

the state variables (as it is here), the conjugate gradient method has the important

property of convergence in N steps. The method works by successively minimizing

over a sequence of linearly independent subspaces of the N-dimensional state

space. Hence, after N steps, the global minimum of J is obtained.

Iterative descent methods have been applied to data assimilation problems in

meteorology and oceanography, where they are commonly referred to as "variational

data assimilation" (e.g., LeDimet and Talagrand, 1986) and "the adjoint method"

(e.g., Tziperman and Thacker, 1989), respectively. Navon and Legler (1987) review

a number of descent methods, including steepest descent, conjugate gradients, and

quasi-Newton methods. Since Nazareth (1979) has shown the equivalence between

quasi-Newton methods and the conjugate gradient method for quadratic J and

exact arithmetic, only the conjugate gradient method is considered here.
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The success of iterative methods is largely determined by the condition num-

ber of the Hessian of J. Preconditioning methods seek a linear transformation of

variables such that the new Hessian is close to the identity. An introduction to

preconditioning methods can be found in Golub and VanLoan (1989).

Two preconditioning methods are attempted below. The first method is a

simple rescaling of the state variables. The rescaling is done so that the diagonal

elements of the rescaled Hessian are unity (Marotzke, 1992). The matrix represen-

tation of this preconditioner is simply a diagonal matrix equal to the square-root of

the inverse of the Hessian diagonal.

The second preconditioner makes a change of variables using the model, L,

and a square root of the weight, Q,

v = Q2Lu. (2.55)

The symbol Q1/2 denotes any operator such that Q (Qh/2)TQ1/2. In terms of v,

the new penalty function is

J(v) = vTv + (HTLQ_h1'2v - m)TW(HTL_lQ_/'2v rn). (2.56)

The Hessian of J with respect to v is

S = I + (HTLQ_h/2)TWHTLQ_l/2. (2.57)

Note that S is equal to the identity plus a rank-Al matrix, i.e.,

S =I+BBT, (2.58)

where BT = Wh/2HTL_1Q_ht2 is an Al x N matrix. Thus, S,, has at most M + 1

distinct eigenvalues (Golub and VanLoan, 1989): the N eigenvalues of I are all

unity, and BBT has exactly M nonzero eigenvalues.



There are two reasons for using this preconditioner. First, since the trans-

formed Hessian has at most M +1 distinct eigenvalues, as compared withN possible

distinct eigenvalues of the original system, the conjugate gradient algorithm should

converge in at most M + 1 steps (Luenberger, 1973).

The second reason for using equation 2.55 as a preconditioner is suggested

by the possibility that the condition number of the Hessian is determined by the

unobservable part of the state space. Denote the untransformed Hessian by S,, and

recall that

S = LTQL + HWHT. (2.59)

Consider both pieces of the Hessian separately, and let

and

= LTQL, (2.60)

8ta = HWHT. (2.61)

sta is at most of rank M; suppose that its eigenvalues are all equal to a constant,
_2 the inverse of the observational error. In contrast, since L is of rank N, and Q

is positive-definite symmetric, has a full compliment ofN nonzero eigenvalues.

It is plausible that has some eigenvectors which are unobservable. Suppose

is one such unobservable eigenvector, then, by definition, HTçb = 0, and is also

an eigenvector of S. If is heavily penalized, which would be the case if Lq5 were

dominated by small-scale features and the model weight Q were chosen specifically

to penalize such structure, then the associated eigenvalue could be huge compared

to Conceivably, such large eigenvalues, associated with the unobservable part

of the state space, could be many orders of magnitude larger than the smallest

eigenvalues of S, which are bounded from below by cr2.



41

In contrast, the unobservable eigenvectors of S,, will have eigenvalues equal to

unity. It is difficult to predict much about the remaining, observable, eigenvectors.

Inspection of equation 2.57 reveals that it may be best to think of this preconditioner

as a transformation into the space of model residuals, out of the space of model

states. The data terms in 2.56 can be regarded as measurements of the model

residual.

2.3.3. Summary

Four solution procedures for the generalized inverse (system 2.24-2.40) are

compared in the following two sections. The solution methods are as follows:

1. REP The representer expansion with a direct matrix solver for system 2.54.

2. REP-CG The representer expansion with a conjugate gradient solver for sys-

tem 2.54.

3. J-CG1 Conjugate gradient minimization of J preconditioned by rescaling.

4. J-CG2 Conjugate gradient minimization of J preconditioned with equa-

tion 2.55.

The methods were compared in terms of the number of model and adjoint

integrations or substitutions which must be carried out to reach a solution. For the

present model, the operation counts for the integration and substitution procedures

are not significantly different, so they are counted as the same amount of work (i.e.,

given u, it costs as much to evaluate Lu as it does to evaluate L'u). For comparison,

the operation count for each solution method is summarized in Table 2.4. The one-

time work for J-CG1 is an estimate of the (significant) number of substitutions
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involved in computing the rescaling transformation; the amount of work depends on

the operator L and the correlation scales of the forcing errors (Marotzke, 1992).

TABLE 2.4. Solution Methods

Method Work per Step One-Time Work Total
REP 2 3 + (M x M solve) 2M + 3

+(M x M solve)
REPCG 2 3 2 >< Nstep +3

JCG1 2 800 2 X Nstep + 800
J-CG2 4 0 4 x N5

Note that it is necessary to invert the model operator in order to apply

methods REP, REP-CG, and J-CG2. Using the terminology of Bennett (1992),

these three methods rely on an integration step. Method J-CG1, in contrast, does

not use the inverse of the model operator. Another distinction between the methods

is that J-CG1 and J-CG2 are equally applicable to linear and nonlinear models alike,

while representer-based methods would require the consideration of a sequence of

linearized models in order to be applicable to a nonlinear inverse problem (e.g.,

Bennett and Thorburn, 1992).

The estimates in Table 2.4 are lower bounds on the amount of work per

iteration step. In practice, the descent algorithm may require several (two to six)

additional penalty and gradient evaluations. Nonetheless, iteration methods which

converge in fewer than M steps may be a significant improvement over the direct

representer expansion. The method which proves to be the "best" depends on the

relative amount of work in the substitution versus the integration steps, and on the

implementations of the covariance and weight operators.
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2.4. Array Analysis I: Thermocline Depth Measurements

The machinery developed in the above sections is now applied to an observ-

ing array consisting of thermocline depth measurements in the North Pacific. The

representer expansion is also used to study the a posteriori errors; it is concluded

that the hydrographic data cause a negligible reduction in the Ekman pumping

uncertainty. A much more accurate ocean model would be necessary for the hydro-

graphic data to make a significant improvement in the surface boundary condition

estimates.

The parameters in the inversion are summarized in Table 2.2, and the data

locations are shown in Figure 2.3. The data consist of measurements of the 9.7°C

isotherm depth, a proxy for the thermocline depth, taken from a North Pacific

hydrographic data set (Reid and Mantyla, 1988).

The first-guess solution is determined by integrating the model with bound-

ary conditions obtained from an objective analysis of the Reid-Mantyla data for the

three z boundary conditions (at the top, bottom, and eastern boundaries), and by

using the Ekman pumping velocity derived from the annually-averaged wind-stress

data of Hellerman and Rosenstein (1983) for the top boundary condition on w0.

The objective analysis of the Reid-Mantyla data set deserves some comment

since it is used in each of the case studies below. Because objective analysis is a

statistical estimation method, it is necessary to specify the first and second mo-

ments (the mean and the covariance) of the field which is to be estimated (Brether-

ton et al., 1976). For simplicity, the mean field was set equal to the horizontal

average of the the observations, and the observational errors were assumed to be

vertically uncorrelated. A bell-shaped covariance, or un-normalized Gaussian, was

used for the horizontal analysis. The zonal and meridional e-folding scales of the
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The 662 measurement locations used in the "Thermocline Depth" experiment are
shown. The observations consist of the depth of the 9.6°C isotherm at each location.
Squares indicate the zonal boundaries of the computational domain.
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bell-shaped covariance were 2,600km and 1,800km, respectively (somewhat larger

than used by Fukumori and Wunsch, 1991). These length scales were chosen after

experimenting with a number of scales, and subjectively picking the scales which

did not lead to "bulls-eyes" around clusters of data. The signal-to-noise ratio of

the data, i.e., the ratio of the analysis covariance at zero lag to the data error vari-

ance, was assumed to be four. Because no obvious distinction between "signal" and

"noise" is present in the observations, the objective analysis is regarded as an ad

hoc smoothing procedure for the purpose of gridding the observations.

2.4.1. The Representers

It is informative to examine the structure of the representers to understand

the predictive power of the model. It can be shown that the representer for a

point measurement of z at x is the covariance of the state with z(x) under the

hypothesis that the prior model is correct. By linearity, this prior state covariance

(a representer) can be expressed as the sum of contributions from each source of

model covariance. In other words, any representer for the planetary geostrophic

model may be expanded as:

= r + r + TfT + r + rJT + r, (2.62)

where each term in the sum corresponds to each source of uncertainty. This de-

composition is instructive since it makes explicit which control variables contribute

most to the prior uncertainty of the state variable. A working heuristic is that the

inverse solution will modify that control variable the most, which contributes most

to the prior state covariance.

The most significant sources of prior state covariance are (in order) the sur-

face Ekman pumping, the eastern boundary condition, and the interior forcing.



For a typical site in the middle of the domain, the prior state variance at the site

(3000m2) is comparable to the measurement error variance (4000m2). This suggests

that the data will explain roughly 50% of the prior state variance at the measure-

ment locations, and that the surface Ekman pumping will be the control variable

which is modified in order to fit the observations.

Figure 2.4 shows a representer for a point measurement near the middle of

the domain. The three largest terms contributing to the sum (equation 2.62) are

plotted in Figures 2.5 through 2.7. The shape of each representer component is a

consequence of the correlations embodied in the dynamical model, as well as the spa-

tial structure of the corresponding model forcing covariance. As the model dynamics

consist of standing forced-dissipative Rossby waves, there is a strong zonal correla-

tion in the spatial structure of each representer component. The vertical structure is

primarily a consequence of the different zonal decay scales of the damped-baroclinic

vertical modes.

2.4.2. Array Analysis

The observing array can be studied via an orthogonal decomposition of the

representer matrix. The orthogonal decomposition (a Schur decomposition; Golub

and Van Loan, 1989) diagonalizes the Hessian of the cost function with respect to the

representer coefficients if the data covariance is diagonal, and it can be interpreted

as an orthogonal decomposition of the prior state covariance at the measurement

sites. A comparison of the eigenvalue spectrum of the representer matrix with the

prior data variances shows how effective the data are at constraining the state. This

analysis does not depend on the actual data values themselves, so the efficiency of
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FIGURE 2.4. Total representer.

A zonal section of the representer for a point measurement is shown. The representer
is the covariance of the state with the value of the state at the measurement site
(marked *), under the assumption that the prior model error covariance (shown in
Figures 2.1 and 2.2) is correct. The anisotropy of the representer is a consequence
of the model dynamics.
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FIGURE 2.5. Surface Ekman pumping representer.

The component of the representer caused by surface Ekman pumping boundary
condition covariance is shown. This is term TT in equation 2.62.
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FIGURE 2.6. Eastern boundary condition representer.

The component of the representer caused by the eastern boundary condition covari-
ance is shown (r in equation 2.62).
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FIGURE 2.7. Interior forcing representer.

The component of the representer caused by interior (non-boundary condition) co-
variance is shown (r in equation 2.62).
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the observing array can, in principle, be evaluated independently of the actual data

collection program.

Substitution of the representer expansion (equation 2.52) into the penalty

function (equation 2.43) yields an expression for the penalty function in terms of

the representer coefficients:

3(b) = bT1Zb + (lZb - m)TW(R,b m). (2.63)

Let the M x M matrix Z denote the matrix of eigenvectors of 1., and let A denote

the M x M diagonal matrix of eigenvalues of 1, then the orthogonal decomposition

of 1 is

7=ZAZT (2.64)

It is assumed that the diagonal entries of A are ordered A A2 < ... < A. This

decomposition exists and is unique (up to a permutation of the eigenvalue ordering)

since R. is symmetric and positive-definite (Golub and VanLoan, 1989). Let b and

h denote the projections of b and h onto the eigenvectors of 7:

and

b = ZTb, (2.65)

ii = ZTIL. (2.66)

Finally, the penalty function in terms of b is

3(i) = (A)TA'(Ab) + (Ab I)TZTWZ(A ui). (2.67)

If the prior data errors are uncorrelated and constant, i.e., W = o.21, then 1 and

W are simultaneously diagonable, and the penalty function Hessian (with respect to
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b) is diagonal. The penalty function is written so that b appears only in the product

Al,, which has the same units as the measurements; therefore, the elements of A and

W' are directly comparable.

A statistical interpretation of equation 2.67 is as follows. The prior model

for Ab states that

and

E[Ab] = 0, (2.68)

E[A(A)T} = A, (2.69)

where E[*] denotes expected value. A little algebra shows that the posterior error

covariance for Ab is given by

A - A(ZT W'Z + A)1A. (2.70)

In essence, the explained covariance of the rotated and scaled representer coefficients

is A(ZTWZ + A)-'A.

Assuming that W' = cr2I, one can consider a number of limits regarding

the size of the representer eigenvalues as compared to the prior data error variance

a. First, consider an eigenvector (representer mode) for which A >> a2. The prior

modal uncertainty is much greater than the prior data uncertainty, so the posterior

uncertainty for that mode is

A2/(a2 + ) a2 (2.71)

In other words, modes for which ) >> o-2 are well-constrained by the observations,

and their posterior uncertainty is approximately a2. It is suggestive terminology to

say that these modes are interpolated by the inverse solution.
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The other extreme is represented by modes for which A << a2. The obser-

vations cannot improve one's estimates for these modes because they are already

determined by the prior model. In this case, the data explain an insignificant amount

of the prior modal variance. One would say that these modes are smoothed by the

inverse.

To summarize, the amplitudes of the modes for which ) << a2 cannot be

estimated from the observing array. If an eigenvalue decomposition is actually used

in the solution procedure for equation 2.54, it is possible to omit the component of

the inverse solution associated with the modes having A2 cr2 without adversely

affecting the solution (Bennett, 1990). When the prior data errors are constant

and uncorrelated, a plot displaying the diagonal elements of W1 and A effectively

summarizes the properties of the observing array.

Figure 2.8 compares the eigenvalue spectrum of R. with the prior data van-

ances. The figure indicates that the 662 observations provide a significant constraint

on only about one-tenth as many modes. The high order (large A2) representer modes

have large-scale, spatially coherent structure; thus, the inverse problem is stable in

the sense that perturbations to an individual datum have little effect on the spatial

structure of the solution.

The solution-array-modes are the physical fields associated with each rep-

resenter mode (Bennett, 1990). They show what physical fields are actually con-

strained by the observations. For example, Figures 2.9 and 2.10 show the solution-

array-mode corresponding to mode 662, the highest-order mode. Comparing A2 with

a2 indicates that the large-scale features present in this mode are well-determined

by the array. Figures 2.11 and 2.12 show solution-array-mode number 600, for which

a2. As expected, this mode is composed of smaller-scale features than mode

662. It is reassuring that the spatial structure of the higher-order modes corresponds
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The ordered eigenvalue spectrum, {)}i, of the representer matrix 7 is plotted as
the dashed line. The ordered entries of the diagonal matrix W, the observation
error variances, are plotted as the solid line. The representer solution "interpolates"
the observations with solution-array-modes for which ) > W1; the modes for
which X < W' are "smoothed."
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to the large-scale features which are normally thought of as defining the general cir-

culation. If this were not the case, it would suggest that a redesign of the observing

array (or a re-assessment of the prior error covariances) would be necessary for the

observations to significantly improve upon the model.

2.4.3. Inverse Solution

Because of the relatively small dimension of this inverse problem, it is feasible

to present a more extensive analysis than might be possible otherwise. The four

solution methods listed in Table 2.4 are compared in this subsection, and the inverse

solution and its errors are shown.

The four solution methods for obtaining the best-fit solution are compared in

Figure 2.13. The least effective method is the diagonally preconditioned conjugate

gradient method, J-CG1; no significant progress was made in the course of the min-

imization. In contrast, J-CG2, the conjugate gradient minimization preconditioned

with the dynamics, converged quite rapidly. Fastest convergence was obtained with

the REP-CG solver, which converged in roughly 1/20 the number of model integra-

tions as the full representer calculation. It is emphasized that each of the solvers:

REP, REP-CG, and J-CG2, obtained the identical (and unique) solution to within

machine precision.

Figure 2.14 shows a section of isotherm depth across the middle of the sub-

tropical gyre, and compares the inverse result with the measurements. As expected

from the representer spectrum analysis above, the inverse solution fits the large scale

features of the data, but it does not interpolate individual measurements. The total

impact of the observations was to modify the first-guess by approximately lOOm,

the root-mean-square difference between the first-guess and the best-fit.
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FIGURE 2.9. Solution-array-mode 622: zonal section.

The most significant solution-array-mode (SAM) is shown in zonal section. The
representer spectrum indicates that it is large-scale features, such as are present in
this mode, which are well-determined by the data.
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FIGURE 2.10. Solution-array-mode 622: plan view.

The most significant solution-array-mode (SAM) is shown in plan view. The middle
panel entitled "Z" is the amplitude of the SAM on the 9.6°C isotherm.
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FIGURE 2.11. Solution-array-mode 600: zonal section.

A marginally significant solution-array-mode is shown in zonal section. The compo-
nent of the observations which projects onto this mode is heavily smoothed, rather
than interpolated, by the inverse solution.
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FIGURE 2.12. Solution-array-mode 600: plan view.

A marginally significant solution-array-mode is shown in plan view.
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The plot compares the relative efficiency of the solution procedures listed in Ta-
ble 2.4. The x-axis measures the relative amount of work in units of model integra-
tions, i.e., the number of times the model operator L is inverted. As mentioned in
the text, model integrations and substitutions are equally expensive.
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The minimum penalty was shared disproportionately between the data misfit

and the model residual, with the data misfit accounting for 88% of the final penalty.

This is explained with Figure 2.15, which shows the magnitudes of the representer

coefficients projected onto the representer array modes (the representer eigenvec-

tors), and the contributions of the modes to Jdyn (Umin). The representer coefficients

projected roughly evenly onto the array modes; however, only the most significant

modes, those modes for which J > a2, contributed significantly to the minimum

value of the penalty function.

Under the assumption that the prior error estimates are all correct (the

null hypothesis), the minimum value of the penalty function is distributed like x

(Tarantola, 1987). Assuming that this is the case, the minimum value of the penalty

function is a guide to the plausibility of the inverse solution. The minimum value

of the penalty function was J(Umjn) = 747; for M = 662, the xLr variable exceeds

J(Umin) with probability p = 0.8%. It is typical for x2 variables to have p-values

like 10-18 (Press et al., 1989) when the null hypothesis is false. Since we have only

one realization of our x2 variable, the p-value of 0.8% is considered acceptable.

The minimum value of the penalty function suggests that the null hypothesis

is plausible. Indeed, over the entire domain, the root-mean-square dynamical resid-

ual was only 8% of the root-mean-square of the diffusion term. The three dominant

terms which contributed to the final dynamical penalty were the surface Ekman

pumping, the eastern boundary condition, and the interior dynamics. Together the

three terms accounted for roughly 40%, 35%, and 20%, of ijjyn(Umjn), respectively.

Posterior misfits in the surface Ekman pumping and eastern boundary condi-

tions were roughly 3/2 their prior estimates. The other boundary conditions changed

negligibly.
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When averaged over all of the observations, the prior root-mean-square data

misfit was eight times larger than the expected misfit. The posterior root-mean-

square misfit was 0.9 times the expected misfit. Figure 2.14 shows that the first-

guess field agreed qualitatively with the data, but not quantitatively, and this was

borne out by the prior penalty function. In contrast, the best-fit solution was as

good a fit as was warranted by the data, given the prior estimate of the data errors.

A component of the posterior covariance is plotted in Figures 2.16

through 2.19. The figures show that the measurements significantly reduced the

variance in the estimate of the state; however, the model forcing variance was not

significantly reduced by the assimilation. Because thermocline depth is only weakly

correlated with the boundary conditions (as is evident in Figure 2.4), only a modest

reduction in boundary condition uncertainty was achieved. Another interpretation

is that the model acts as a low-pass filter on the forcing and boundary conditions;

hence, pointwise measurements of z constrain only the large-scale features of the

model's inhomogeneities.

The fit to the data was achieved primarily through adjustments to the surface

Ekman pumping boundary condition. This result was not unexpected, since the

dominant term in equation 2.62 was associated with the surface Ekman pumping

boundary condition.

2.5. Array Analysis II: A Zonal Section

A set of observations distributed zonally across the subtropical gyre is con-

sidered in this section. In this experiment, the depths of up to 13 separate isotherms

were sampled at each station; in contrast, the depth of a single isotherm was consid-

ered in the previous section. Figure 2.20 shows the station locations and Table 2.5
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FIGURE 2.16. Explained state covariance.

The explained covariances of the state is shown. The panels show covariance of the
fields with the point marked with the astericks (*). Comparing this figure with the
prior state covariance (Figure 2.4) shows that the inverse was successful in explaining
a large fraction of the state covariance.
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The posterior error covariance the state is shown. The field in this figure is the
difference of the fields in Figures 2.4 and 2.16.
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lists the sampled isotherm depths. The total data set consisted of 1143 observations.

Otherwise, the parameters for this inversion were identical to those used above (see

Table 2.2).

TABLE 2.5. Prior Measurement Errors

Layer Temp., °C Uncertainty, m
2.0 56
2.9 78
3.9 96
4.9 104
5.8 89
6.8 80
7.8 73
8.7 68
9.7 63
10.7 60
11.6 57
12.6 54
13.6 52

2.5.1. Array Analysis

The eigenvalue spectrum of the representer matrix is compared with the prior

data error covariance in Figure 2.21. Once again, the observing array is redundant.

Although the measurements contain a total of 1143 degrees of freedom, the model

supports significant variance in only about 1/100 as many modes.

The prior data error variances for each layer are listed in Table 2.5; they span

a greater range of values than in the previous section because of the differing spatial

variance of each layer. Nonetheless, because of the steep slope of the representer

matrix spectrum, it would be necessary to decrease the data error variances by more



roi

0
40

a,
a)

C)
a,

a)

20

V/

DATA LOCATIONS
with model boundary

150 200
Longitude, degrees east

FIGURE 2.20. Data locations, "Zonal Section" experiment.

70

Ii!1!I
I44i

II

The sites of the "Zonal Section" station data are shown. At each location, as many
as 13 isotherm depths are measured. There are a total of 1143 observations.
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than an order of magnitude to cause a significant increase in the number of modes

constrained by the data.

2.5.2. Inverse Solution

The four solution methods discussed in Section 2.3 are compared in Fig-

ure 2.22. Once again, REP-CG was the most efficient method, by roughly a factor

of 8. The success of this method, without preconditioning, may have been a con-

sequence of the particular eigenvalue spectrum for this problem, and it may not

generalize to other inverse problems (see Luenberger, 1974, for a complete discus-

sion of the convergence rate of the conjugate gradient method).

A section through the inverse solution is shown in Figure 2.23. A detailed

analysis of the residuals showed insignificant differences from the "Thermocline

Depth Measurement" array. The best-fit boundary condition residuals for the sur-

face and eastern boundary were each roughly equal to the prior estimates in their

uncertainties; the bottom boundary condition residuals were negligible. The root-

mean-square interior model forcing residual was 7% of the root-mean-square mixing

term, significantly smaller than its prior estimate of 20%.

The minimum value of the penalty function was 1300, which would be ex-

ceeded with p = 0.0005, or 0.05% probability if the prior error estimates are correct;

although this p-value is small, the fit is still reasonably plausible since p is orders of

magnitude larger than values typical for wrong null hypotheses. The minimum of the

penalty was split between the data and dynamical residuals in the ratio 12:1. The

model penalty was a sum of roughly equal contributions from errors in the interior

model forcing, eastern boundary condition, and surface boundary conditions.
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Analysis of the a posteriori errors yielded results similar to those in the

previous section. Hydrographic measurements are effective at explaining variance

in the measured variable, but they are ineffective at reducing the model forcing and

boundary condition uncertainties.

2.6. North Pacific Inverse

The entire North Pacific data set of Reid and Mantyla (1988) was assimilated

in this experiment. The cast locations were the same as those plotted in Figure 2.3,

and data were taken for the 13 isotherms listed in Table 2.5. The data set was

comprised of 17,631 individual observations.

Because of the large number of observations, the most efficient solution

method of those compared above was used, namely, REP-CG. Figure 2.24 shows

the value of the penalty function over the course of the minimization. The solution

method converged in 145 steps, a savings of more than two orders of magnitude over

the direct representer solver, REP.

Figure 2.25 compares the inverse solution to the observations of the 9.7°C

isotherm depth at several latitudes. As expected from the eigenvalue analyses above,

the inverse solution heavily smoothed the observations. Nonetheless, the root-mean-

square misfit between the observations and the best-fit solution is 94% of the prior

data variance for this isotherm; thus, the inverse solution just fits the data. As-

suming that J(ttmin) is a x variable once again indicated that the null hypothesis

is plausible: the value of J(Umin) is at the p = 52% point of the cumulative xL

distribution.

A further analysis of the penalty function and residuals yields insight into

the plausibility of the model. The prior estimates for the errors and the root-
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FIGURE 2.24. REP-CG minimization, "North Pacific Inverse".

The value of the penalty function during the progress of the solution procedure
is shown. To accentuate the small changes in J, which would otherwise not be
visible, the value of M has been subtracted from the penalty function. Note that
the reduction in J is not monotonic, as it would be with a direct minimization
method.
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As in Figures 2.14 and 2.23, the panels compare the inverse solution (solid line) with
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objective-analysis is plotted as the dashed line. In each case, the 9.7°C isotherm
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mean-square errors in the inverse solution are compared in Table 2.6. Except for

the bottom boundary conditions, the boundary condition misfits ranged from 170%

to 260% of their prior estimates. Nonetheless, the contributions that these terms

made to the penalty function were less than 50% of what one would expect if the

mean-square misfit were equal to its prior estimate.

TABLE 2.6. Residuals, "North Pacific Inverse"

Field Prior Final J
ZEB, rn 40. 69. 2.4x 102

WT, m/yr 15. 39. 4.1x102

ZT, rn 21. 35. 5.5x 102

wfi, rn/yr 1.3 2.2x102 5.6x103

ZB, m 12. 3.5x102 4.9x104
data, rn 150. (typical) 60. (typical) 1.6x104

This apparent contradiction may be resolved by understanding that the prior

model error covariances define a hypothesis regarding the spatial structure of the

model errors. The weighting functions appearing in the penalty function are the

inverses of the prior covariances. Because the covariances must be sufficiently

smooth to insure that the inverse solution is physically realizable (e.g., Bennett and

Budgell, 1987), their inverses, the weighting functions, can be interpreted as "rough-

ening" operators (see Appendix 4.3). The effect of these terms is to penalize the

high-wavenumber, small-scale, component of the residuals. As listed in Table 2.6,

the total variance of the boundary condition residuals was too large (by a factor of

1.7 to 2.6, depending on the boundary condition); however, the small contributions

of these terms to the penalty function indicated that the residual variance was con-

tamed at large scales. In other words, it would appear that the prior estimates for

the horizontal correlation scales were too small. Obviously, this discussion applies
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to the upper and eastern boundary conditions; the bottom boundary conditions are

inconsequential.

The interior term balance of the model is compared for the first-guess,

objective-analysis, and inverse solutions in Table 2.7. The domain averaged root-

mean-square values of the terms in the "t.hermocline equation" are compared. The

"thermocline equation" is simply the planetary geostrophic system written in terms

of z alone:

1 Oz =--b0
" o 1 000

I II III (2.72)

The terms in the thermocline equation may be interpreted as (I) advection of plan-

etary vorticity, (II) vertical mixing of potential vorticity, and (III) the dynamical

residual. The values listed in the table are in units of m/(yr °C2), which are, unfortu-

nately not the most familiar. Nonetheless, the values indicate the relative significant

of each term in the over-all balance. On average, the dynamical residual of the in-

verse solution is roughly 25% of the vertical mixing term, roughly equal to its prior

estimate. In contrast, the objective-analysis field is completely out of balance with

the dynamics.

TABLE 2.7. Term Balances, "North Pacific Inverse"

Field I (advection) II (mixing) III (residual)
First-Guess 0.12 0.12 0.

Objective-Analysis 0.89 2.9 3.0
Inverse Solution 0.113 0.117 0.028

The objective-analysis and inverse solutions are compared in Figures 2.26

and 2.27. The fields are visually quite similar (as seen in Figure 2.26); however,



the inverse solution is a significantly better fit to the model equations (Figure 2.27).

The visual similarity of the fields is somewhat deceptive, presumably one's eye can

pick out only the dominant length scale; however, the penalty function "sees" the

curvature and higher-order derivatives which determine the fit of the fields to the

model.

A further test of the accuracy of the ocean model can be made by estimating

the nonlinear divergence terms which were neglected when linearizing the continuity

equation. Recall that the unapproximated continuity equation contains the term

V. [u(o + zo)] = oV . u + z0V . U + U Vz0, (2.73)

I II III (2.74)

from which only the linear term (I) was retained (note that u is the total velocity

because U = 0). Terms (II) and (III) were diagnosed from the inverse solution to

assess the validity of the linear model. On average, the nonlinear divergence (II)

is somewhat smaller than the linear divergence (I). In contrast, term (III) is larger

than term (I) over most of the domain. Thus, the inadequacy of this linear model

is revealed: the nonlinear convective term is no smaller than the linear divergence

term. Figure 2.28 illustrates the term balance at a point in the middle of the domain.

2.7. Discussion

The experiments in this chapter demonstrated the efficacy of a particular

solution method for the generalized inverse of this ocean model. An iterative solver

based on the representer decomposition, REP-CG, proved to be the most efficient

method. Similar, but not as impressive, results were obtained with a descent solver,

which preconditioned with the inverse of the dynamical operators. In contrast to the
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of m(yr °C)') is orders of magnitude smaller in the inverse solution than in the
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direct method REP, one does not obtain a posteriori error information with either

of the successful iterative solvers, REP-CG or J-CG2.

Although the prior error covariances are questionable, it is doubtful that any

revision would significantly alter the present results. It is evident from Figures 2.8

and 2.21 that at least an order of magnitude increase in the prior model covariance,

or an order of magnitude decrease in prior data covariance would be necessary to

cause a significant increase in the number of modes constrained by the data. The

generalized inverse is stable in the sense that an error in an individual datum does

not strongly effect the final solution.

A large inverse calculation, which included approximately 18,000 observa-

tions, indicated that the linear planetary geostrophic system is an adequate expla-

nation for the general circulation. The inverse solution was as close a fit to the data

as was warranted by the prior data error. Inspection of the model residuals indicated

that the prior correlation scales for the model forcing and boundary condition errors

were too small. Given the stability of the inverse, i.e., the redundancy of the data

relative to this model, cross-validation methods may prove useful for improving the

prior error covariance parameterizations (Craven and Wahba, 1979).

In spite of the ability to fit the data, the linear dynamics of the present

model are a serious liability. A diagnosis of the nonlinear terms from the final

solution demonstrated that the assumption of linearity was not valid; however, this

is no surprise, as an elementary comparison of the long-Rossby wave speeds to the

advecting velocity scale suggested that the nonlinear convection terms could not

be neglected. The linear model provided an opportunity to understand how the

underlying physics, in which the westward propagation of Rossby waves is arrested

by diabatic mixing, effects the inverse problem. Indeed, a consideration of the

representers in Sections 2.4 and 2.5 suggests that careful modeling of the surface



E:I1

mixed layer and the eastern boundary current will be necessary before hydrographic

measurements can be effective at determining surface fluxes at any but the largest

scales. Because the prior state variance is caused approximately equally by noise

in the surface and eastern boundary conditions, it is imperative that the submodels

for these regions be very accurate.

In spite of obvious limitations, the present calculations have demonstrated

the feasibility of assimilating large data sets into ocean general circulation models

using nondiagonal prior error covariances. Insofar as the posterior error covariances

calculated from a linear model are applicable in a nonlinear setting, it is clear that

hydrographic observations are ineffective at constraining the surface boundary con-

ditions of a general circulation model.



3. DATA ASSIMILATION WITH A NONLINEAR PLANETARY
GEOSTROPHIC MODEL

3.1. Introduction

The calculations of the previous chapter indicated that the linearized plan-

etary geostrophic system is not an adequate model for the general circulation. Al-

though the model was capable of fitting the observations, the validity of the lineariza-

tion was not supported by the final results. This chapter describes an attempt to

overcome the limitations of the linear system by using a nonlinear model based on

the complete planetary geostrophic system.

In addition to the nonlinearity in the layer-thickness equation, which was

neglected in Chapter 2, it is also necessary to include a number of other effects in

order to model the general circulation. First, inspection of the temperature-salinity

(8S) relation reveals that salinity is important in the dynamics of the sub-arctic

region (Emery and Dewar, 1982). A proper consideration of salinity also demands

an accounting of the air-sea fresh water flux, so a parameterization of the oceanic

mixed-layer is necessary. The considerations in McDougall and Jackett (1988), re-

garding the dependence of the thermal expansion coefficient on pressure, suggest

that the complete, nonlinear, equation of state should be used when calculating

the buoyancy. Irregular bottom topography and open boundary conditions on the

lateral boundaries also ought to be incorporated. Lastly, in order for the model to

support a western boundary current, some parameterization of the Reynolds stress

should be included. All of these processes were included in the model described

below.



Having specified the model, the next task was to formulate the inverse prob-

lem. As in Chapter 2, a quadratic control (least-squares) formulation was used.

The most general formulation would have involved admitting errors in each of the

dynamical equations and boundary conditions defining the model. Instead, an in-

cremental approach was taken in which errors were admitted in the steady heat and

salt conservation equations, and in the boundary conditions. This will be discussed

in more detail below; however, the intent was to make a tractable inverse problem

which would be an extension of the work by Tziperman et al. (1992b and 1992c).

The data for the inverse calculation included both boundary (air-sea flux)

and interior (hydrographic) observations. The surface flux observations were taken

from gridded climatologies (Hellerman and Rosenstein, 1983; Oberhuber, 1988), and

the hydrographic data were based on Reid and Mantyla (1988). It was assumed that

each type of measurement contained error.

Next, it was necessary to specify a solution method for the inverse problem.

As was emphasized in Chapter 2, the representer expansion is an ideal method for

solving inverse problems when there exists an efficient means of inverting the model

system. Also, the representer expansion is applicable only to linear systems; exten-

sions of the representer expansion for nonlinear systems are discussed in Bennett and

Thorburn (1992) and Hagelberg (1992). The application of these extensions of the

representer expansion to the present nonlinear model would have required a solver

for the linearized planetary geostrophic system. Attempts to solve the steady plan-

etary geostrophic system using the accelerated time-stepping procedure described

in Bryan and Lewis (1979) were too computationally demanding; therefore, solution

methods based on the representer expansion were not attempted. Because of the

applicability of direct minimization methods, as defined in Chapter 2, to both linear



and nonlinear systems, it was decided to use a descent method to solve the inverse

problem.

The last important consideration was a method for estimating the posterior

errors of the inverse solution. Because of the nonlinearity in the model, substitut-

ing methods appeared ideal for computing the posterior errors. However, because

preliminary attempts to compute the posterior errors using importance sampling

(methods based on Metropolis et al., 1953 and Duane et al., 1987) were unsuc-

cessful, no posterior error estimates are reported below. The importance sampling

methods failed to give accurate results because of the large serial correlations from

one Monte Carlo trial to the next (see Ferrenberg et al. 1991 for a more complete

discussion of the sources of error in Monte Carlo calculations).

To summarize, an attempt was made to assimilate hydrographic data into a

nonlinear planetary geostrophic model. The goal of the assimilation was to obtain

an estimate of the time-averaged circulation of the North Pacific, along with an

estimate of the air-sea fluxes necessary to drive the circulation. The ocean model

and inverse formulation are presented in Sections 3.2 and 3.3, and Section 3.4 reviews

the sources of data and error estimates which were used in the inverse calculations.

Section 3.5 summarizes a number of preliminary calculations which assessed the

efficacy of the descent and preconditioning methods, and which demonstrated the

importance of the system's nonlinearity. Lastly, Section 3.6 concludes the nonlinear

calculations with an attempt to estimate the circulation, hydrography, and air-sea

fluxes of the North Pacific.



3.2. The Model

The planetary geostrophic equations, which are the basis for the present

inverse calculation, are distinguished from the more familiar primitive equations

by the neglect of the acceleration terms in the horizontal momentum equations

(e.g. Pedlosky, 1979). As a consequence, the momentum equations form a set of

diagnostic relations for the velocity field.

As in Chapter 2, spherical-polar coordinates are used, with latitude ), longi-

tude , and potential temperature 9, the local vertical coordinate. The total velocity

vector is defined as (u,v,w), and the along-isotherm (adiabatic) velocity vector is

denoted u = (u, v). The thermodynamic state variables are potential temperature 9,

salinity S(\, , 9), and (approximate) pressure p = p0gz(.A, , 9). Buoyancy, pg/p0,

is denoted by b, and it is determined from the International Equation of State for

Seawater (UNESCO, 1983). B is a Bernoulli function which is related to pressure,

buoyancy, and z by B = P/Po + bz, and f is the Coriolis parameter. The opera-

tors V and V. are, respectively, the horizoiital gradient and divergence operators in

spherical polar coordinates.

Before stating the equations, it is necessary to explain a number of assump-

tions. First, the Boussinesq approximation is made; thus the continuity equation

states that volume (not mass) is conserved. Second, when using potential temper-

ature as a vertical coordinate, the pressure gradient term is split into two terms.

The new term is proportional to the buoyancy gradient along the isothermal sur-

faces. To minimize the spurious effects caused by truncation error acting through

this term, a reference buoyancy profile (which depends on z alone) is subtracted

from the full buoyancy (Phillips, 1957). Third, the rigid-lid approximation is made;

thus, the barotropic and baroclinic velocity fields are decoupled. Lastly, it is as-



sumed that the equations are derived via thickness-weighted Reynolds averages

(Van Mieghem, 1952); therefore. no Reynolds fluxes appear in the continuity equa-

tion. The Reynolds flux parameterizations which do appear in the momentum, salt,

and energy equations are discussed below, after the equations are presented.

The steady planetary geostrophic system is as follows:

(the horizontal momentum equations)

AH
fk x u = VB + zVb + (FT)o/zo + V z9Vu, (3.1)

zo

(hydrostatic balance)

(the continuity equation)

B9 = b0z,

V (uz9) + (wzg)g = 0,

(the salt conservation equation)

(3.2)

(3.3)

V. (uzoS) + (wzgS)o = V. (ZOKHVS) + (s + Fs) (34)

and (the heat equation)

WZ (+FQ). (3.5)

Let D denote the lateral extent of the oceanic domain, and D the boundary of

D. With 9T and °B as the top and bottom temperatures, respectively, the entire

domain is D x [OB OT]. Boundary conditions are no-slip and no-normal-flow on DD,

i.e., u = 0 on lateral boundaries. At the bottom and top surfaces, the no-normal-flow

condition is applied:

uV9=w, (3.6)

Ofl 6 0T and 0 =
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Modeling the oceanic mixed-layer is not trivial. Some provisions must be

made for the ventilation of layers at the ocean surface, where ventilation refers to

the modification of a layer's properties via air-sea fluxes of heat, fresh water, and

momentum. This is a problem with a long history, and it is not easily resolved.

The approach taken here is straightforward. The vertical Reynolds fluxes

near the ocean surface are parameterized with a simple functional form as a function

of depth. The functional form (a decaying exponential) is monotonic and scaled so

that its value at the surface is equal to the imposed air-sea flux. The vertical

component of the horizontal Reynolds flux is

FT
Twind exp(iz), (3.7)
p0

where Twind is the wind stress vector. The vertical salt flux is

Fs = çexpotz), (3.8)

where F is the net fresh water flux (precipitation minus evaporation). The vertical

heat flux is

F = exp(jtz),
Po'p

(3.9)

where Q is the air-sea heat flux, positive into the ocean. Values of the constants

are, = 50m, p° = 1025kg m3, S0 = 35psu, and C = 4200J (°C kg)'. The

wind stress, fresh water flux, and heat flux are prescribed functions of latitude and

longitude.

The are other approaches to treating the surface boundary conditions in

layer models. In the original work of Bleck (1973), layers intersected the model

boundary, and w was specifed directly. In order to avoid difficulties with approx-

imating the momentum equation at outcropping boundaries, subsequent models
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(e.g., Bleck, 1974) did not permit the layers to intersect the boundary, they did,

however, allow the layers to become infinitesimally thin. Oceanographic versions of

these models incorporate the surface fluxes in a manner similar to that which is used

here (Bleck et al., 1989). The most recent approach involves using a hybrid vertical

coordinate, which avoids the problem of outcropping altogether (Gerdes, 1993a).

Each approach has its advantages, and there does not appear to be a consensus

on which is the best approach. The method used here was chosen because it is

computationally simple, and the because the vertical fluxes are continuous and dif-

ferentiable functions of the model's state variables. The latter point is crucial to the

implementation of a gradient descent method in the solution procedure.

In the oceanic interior, away from the surface, Reynolds fluxes are mod-

eled with Fickian diffusion. The effect of unresolved time-dependent motions is

represented by these terms. Away from the surface, the turbulent vertical flux of

momentum is neglected. It is assumed that the diffusivity tensors are diagonal in

the present coordinates: KH and AH are the lateral (adiabatic) diffusivities of salt

and momentum; K is the vertical diffusivity of both heat and salt. Heating caused

by the mixing of salt is neglected (Gregg, 1984). As discussed in DeSzoeke and Ben-

nett (1993), K is equal to a turbulent Cox number times the molecular diffusivity.

Here, K is taken as O.lcm2/s (Ledwell et al., 1993). The value used for the hori-

zontal mixing coefficients is 2 x 104m2/s, just sufficient for the barotropic western

boundary current to be resolved in the numerical model (Munk, 1950); this value is

comparable to that estimated from large-scale oceanographic measurements (Sver-

drup et al., 1942; Needler and Heath, 1975), but an order of magnitude larger than

that estimated from the dispersal of neutrally buoyant floats (Freeland et al., 1975).

Note that the value of the vertical diffusivity is one-tenth that used in the

previous, linear model. In the linearization used in Chapter 2, the three pieces



of information defining the mean state cannot be specified independently: LTC, the

thermocline depth scale; i, the mean upwelling rate; and K, the vertical diffusivity.

The canonical value of 104m2/s (Munk, 1966) was used in Chapter 2 because it is

consistent with both the (observed) thermocline length scale, and with the estimates

of the global deepwater production rate. The smaller value of the vertical diffusivity,

which is used in this chapter, was chosen in an attempt to improve the quantitative

validity of the ocean model.

The inverse problem in the next section is posed in terms of the baroclinic

and barotropic components of the flow. The split into barotropic and baroclinic

components is motivated by the observation that the barotropic flow field is very

sensitive to vortex stretching caused by cross-isobath flow, the so-called "JEBAR"

effect (an acronym for Joint Effect of Baroclinicity And Relief; Sarkisyan, 1977).

For our purposes, the baroclinic-barotropic split decouples the nonlocally forced

barotropic velocity field from the locally forced baroclinic velocity field. That is,

given the buoyancy, wind stress, and bottom topography, the barotropic velocity

field is governed by a singularly perturbed hyperbolic equation (the singular per-

turbation is the elliptic frictional term); the time-like characteristics of this equa-

tion follow the isopleths of f/H. In contrast, the baroclinic velocity is governed

by a local relationship between buoyancy and the velocity field, namely, thermal

wind. The singular perturbation provided by the elliptic frictional term is neglected

in the baroclinic momentum equations because the model resolution is insufficient

to resolve the baroclinic boundary layer thickness, which is of order (AH/f)"2.

The barotropic-baroclinic split is often used in rigid-lid primitive-equation models

(Cox, 1984; Semtner, 1986) in order to decouple the faster barotropic waves from

the slower baroclinic waves.



Let iJc denote the streamfunction for the vertically averaged (barotropic) flow.

By taking the curl of the vertically averaged momentum equations, it can be shown

that 'I' satisfies the following equation:

J(W
/ t0T

= J I] bzz9d6, + curl ( ) + AHV (3.10)H) \p0Hj

where small frictional terms proportional to VH/H have been neglected. The nota-

tion J(a, b) = (açj,b.>, cos q) denotes the Jacobian of the two-dimensional

fields a and b. The no-normal-flow and no-slip boundary conditions on u take

the form of boundary conditions on W and VW n (n is the outer-normal unit

vector). The equation governing the baroclinic flow is simply the full momentum

equation (3.1), minus its vertical average.

3.3. Cost Function, Adjoint Model, and Minimization Algorithm

As mentioned above, the inverse problem is solved using a minimization

method, as opposed to using an Euler-Lagrange solver. This approach is taken

because of its applicability to linear and nonlinear problems alike.

The cost function, which is specified below, quantifies the disagreement

among a set of constraints provided by the ocean model, surface flux data, and

hydrographic measurements. Descent methods, which are used to minimize the cost

function, require the cost function gradient with respect to the state variables, and

the gradient is computed efficiently using the adjoint of the tangent-linearization of

the model (Talagrand and Courtier, 1987).

The over-riding goal of this study is to understand the relative roles of ad-

vection and diffusion in the maintenance of the thermocline. The observation by

Iselin (1939) of the remarkable similarity between the OS relation of the winter

sea-surface and the OS relation of the thermocline water suggests that the general
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circulation is largely adiabatic. Similarly, the success of the Luyten, Pedlosky, and

Stommel (1983) adiabatic model at describing the qualitative features of the thermo-

dine is impressive. We have sought to quantify these notions, by asking: does there

exist a set of hydrographic fields which are simultaneously consistent with both the

advection-diffusion equations for heat and salt and the hydrographic observations?

In addition, the surface forcing fields, which provide the boundary conditions for

the advection-diffusion equations, are known to be highly uncertain. Hence, it was

decided to focus on these points by admitting errors in the air-sea flux data, the

energy equation, the steady continuity equation, and the steady salt conservation

equation. Additionally, errors are admitted in the no-normal-flow condition at the

bottom.

The general form of the cost function considered below is

.7 = .7iyn + Jbc + .7lata, (3.11)

where and Jdata are each functions of the state variables. J measures

the misfit in the model equations, J measures the misfit in the surface boundary

conditions, and Jata measures the misfit of the observations. The state variables

consist of the set (z, 'I', w, S, Q, F, defined on pages 77-79.

is expressed in terms of residuals in the continuity, salt, heat, and

streamfunction equations. The residuals (, 'y, x) are defined as follows:

V. (uzg) + (wzo)o (3.12)

V. (uz9S) + (wzoS)o = V. (ZOKHVS) + (s + Fs) + , (3.13)

(K +,wz9 = I +
Jo

and

(3.14)



Thus, Jdyn S

(Twind'\J(W,
A

/ fOT-) J (J bzzod) + curl
p0H)

(3.15)

+AHV JV2VW ± x. (3.16)

= 03 T4/ 03 f + '17 03 03 1] (3.17)

+' 03 W 03 'y + X °2 W 02 X, (3.18)

where W, W, W, and WX are symmetric positive definite weighting functions

(it is tacitly assumed that the errors are uncorrelated between the equations). The

subscripted 0 symbols denote inner products (integrals) which are defined in Ap-

pendix 4.3.

The boundary condition residuals are summed as

= (Q QObS)
02 W 02 (Q

Qobs) (3.19)

- Fobs) 02 WF 02 (F - Fobs) (3.20)

obs
1d) 02 W 02 Twind, (3.21)

Superscript obs refers to the observed value of the particular state variable and w,
WF', and W are the corresponding weighting functions.

The interior hydrographic data consist entirely of observations of isotherm

depth and salinity, i.e.

M M
Jiata = >(z(xi) z)2w + (S(x2) - S)2w, (3.22)

i=1 i=1

where x2 = ()j, q5, O) is the location of the jth measurement; w and w weight the

observations. It is tacitly assumed that the observational errors are uncorrelated.
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In the language of control theory, (z, ', w, S, Q, F, wind) comprises the set of

state variables. If we let Qres = Q QObS Fres = F - Fobs, and Tres = Twind

then (, 1), 7, X, Qres, Fres, Tres) comprises the set of control variables.

The weighting functions determine the relative importance of the different

constraints, and the degree of smoothness sought for the inverse solution. Formally,

each is the inverse of a corresponding prior error covariance. The prior error covari-

ances are discussed in Section 3.5, below.

The cost function was minimized using the BFGS (Broyden-Fletcher--

Goldfarb-Shanno) method, as recommended by Navon and Legler (1987). This

method performs a conjugate gradient search, preconditioned by a rank-2 approxi-

mation to the inverse Hessian (Gill et al., 1981). The preconditioning in the BFGS

method is in addition to the preconditioning discussed below. The BFGS algo-

rithm has some specific advantages when minimizing a non-quadratic function (i.e.,

when the model is nonlinear), and when finite-precision arithmetic is used; namely,

the method defaults towards a steepest descent search. In accordance with the

considerations in Shanno (1985), a restart condition was used to guarantee the con-

vergence of the BFGS method (without periodically resetting the search direction

to the direction of steepest descent, it is possible for the algorithm to converge to

a non-extremal point when applied to a non-quadratic cost function). Numerical

experiments confirmed the superiority of the BFGS versus the conjugate gradient

algorithm for the cases considered below.

Preconditioners for the descent method were based on the discussion in Golub

and VanLoan (1989) regarding preconditioning iterative solvers on massively parallel

computers. In essence, the preconditioners are polynomials of local spatial averaging

operators which were intended be approximate inverses of the differential operators

appearing in the penalty function. Local averaging operators were used in order



to take advantage of the particular architecture of the CM-5 and CM-200 Connec-

tion Machines, on which it is desirable to minimize interprocessor communications,

especially on the CM-200.

The numerical implementation of the model is presented in detail in Ap-

pendix 4.3. For a summary, 'fable 3.1 lists the basic facts concerning the numerical

model.

TABLE 3.1. Numerical Model Parameters

Parameter Value
D, model domain North Pacific, 30 to 60°N

111°E to 70°W
L\, zonal resolution 1°

meridional resolution 1°
LO, vertical resolution 0.5°C (below 4.5°C), 1.5°C (above 4.5°C)
nx, zonal gridpoints 180
ny, meridional gridpoints 60
n, vertical gridpoints 20
°B, bottom temperature 1.5°C
O7' top temperature 22.5°C

3.4. Preliminary Calculations

There are two main problems which can confound large-dimensional mini-

mization problems, such as is considered here. The difficulties are: 1) the noncon-

vexity of the cost function, caused by the model's nonlinearity, and 2) the poor

conditioning of the Hessian of the cost function.

The first of these issues, the nonconvexity of the cost function, can cause

the cost function to have local minima. Thus, assuming that the descent method

is successful at reaching a minimum, the state at the minimum may depend on the



starting guess for the descent process. Even if the cost function does not contain

local minima, to the extent that the cost function is not quadratic in the state

variable, the conjugate gradient search directions will lose the optimality conditions

which make the conjugate gradient procedure so advantageous as a minimization

method.

The second issue, the poor conditioning of the Hessian, can cause the descent

procedure to converge very slowly. The condition number of the Hessian is related to

the ratio of the maximum and minimum curvatures of the cost function surface. In

a poorly conditioned problem, the cost function surface has directions in which the

cost function changes very gradually, and other directions in which the cost function

changes very rapidly. It is suggestive to say that the cost function surface has very

narrow "valleys" when the condition number is large; however, the "valleys" exist

in a multi-dimensional space

It should be emphasized that once the dimension of the state space increases

beyond three or four, it becomes increasingly difficult to visualize the global struc-

ture of the cost function surface. At best, one can only build up a local picture of

the surface in some reduced-dimensional space.

A number of preliminary calculations were performed using various simplifi-

cations of the planetary geostrophic system. The calculations, which were performed

at reduced model resolution (3° x 3° and 5 vertical layers), were intended to pro-

vide a test-bed for developing the appropriate preconditioners and for exploring the

significance of the model's nonlinearity.

The experiments consisted of minimizing the penalty function with respect

of one set of state variables at a time. For example, in one experiment z, w, I1, S,

Q, and F were held constant, while the cost function was minimized with respect

to variations in T.
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It was found that the minimization algorithm was successful and efficient

when the penalty function was a function of the surface fluxes (Q, F, ) and the

diabatic velocity w. The minimization algorithm was much less efficient for the z,

8, and 11! fields. Numerous experiments were conducted to improve the minimization

algorithm for these fields, two of which are discussed below.

3.4.1. Preconditioning:

In this experiment, all of the state variables except for W were held constant,

and the BFGS method was used to solve the equation for streamfunction for the

barotropic flow. Note that, since the streamfunction equation is linear in the

penalty function is a quadratic function of the I' field; therefore, the BFGS method

is equivalent to the conjugate gradient method (Nazareth, 1979). This experiment

is reported in order to explain how the preconditioning operators were chosen. In

the interest of brevity, no figures are presented for this preliminary calculation.

The penalty function is

J(iJi) = x 02 WX 02 X + (ii' 00D W4' °ÔD ('I' Wb), (3.23)

where, as above, x is the residual in the streamfunction equation:

( ) ' (L°
bzz9dO, curl () AHV JV2VW = x. (3.24)

Recall, from Appendix 4.3, that 2 and °ar denote inner products over the horizontal

domain and its boundary, respectively. The inhomogeneities in the equation, which

depend on Twjnd, z, b, H, and bc, were all held constant (the normal derivative

of 111 was set to zero on the boundary). The task was then to solve a well-posed

linear elliptic equation in two dimensions. Note that the equation is a singularly

perturbed hyperbolic equation since the friction term is small compared with the
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planetary vorticity advection term outside of the boundary currents. The weights

were chosen to be "diagonal," i.e., the inner product of a weight with a field was

just multiplication by a scalar:

and

T4Xo2 = (io m11yr (3.25)

= (0.5 x 106m3/s)2. (3.26)

Preconditioning took place in two steps. In the first step, a diagonal operator

was applied which rescaled and nondimensionalized the state variable. The second

step involved applying a local averaging operator to invert, approximately, the dy-

namical operators. Let LW denote the finite-difference form of the linear operator

on 'If:

J(W,
L)

AHV 72V4'. (3.27)

Preconditioning operators, denoted D and P, were sought such that the product

PDL was approximately the identity.

The rescaling operator D was determined by computing the diagonal ele-

ments of the Hessian of J with respect to 4'. Recall that the Hessian S is the

matrix of second derivatives of J with respect to 'I'; for the finite-difference model,

the diagonal elements of S were computed by successively perturbing elements of

'I and computing S 02 x = [VJ(W + x) VwJ(W)] for unit vectors x and

scalar (Marotzke, 1991). D was set equal to the reciprocal of the square-root of

the diagonal of S. Analysis of the finite-difference expression for LW shows that

D1,
I3j +

4AH
-1/2

Hx Hx4)
]

, (3.28)



102

where it is assumed that the zonal and meridional resolutions are equal, and small

terms related to the curvature of the coordinate system have been neglected. For

the weighting functions given above, a scale for lIt of roughly 0.5Sv is obtained at

45°N.

Because of the spatial variation in j3, as well as the presence of boundary

conditions, the Hessian diagonal is inhomogeneous (spatially variable). However, in

all of the cases studied, the minimization was more efficient if a homogeneous, or

heavily smoothed preconditioner were used instead. Thus, in all of the calculations

below, the rescaling preconditioner D was set equal to the inverse of the root-mean-

square of the diagonal elements of S.

Preconditioning by rescaling with D had a dramatic effect on the convergence

rate of the minimization algorithm. For II!, the rescaled system had a convergence

rate three orders of magnitude larger than the un-scaled system.

The preconditioning operator P was chosen as follows. Without precondi-

tioning, it was observed that the BFGS search directions (note that each "search di-

rection" is a field) became progressively "rougher" as the search proceeded. At each

step, the BFGS search direction can be expressed as a polynomial of the dynamical

and weighting operators acting on the initial guess field (e.g., Luenberger, 1973); in

other words, each search direction is a linear combination of high-order derivatives

of the initial guess field. Hence, the "roughness" of the search directions is not sur-

prising. In order to smooth the search directions, and accelerate the convergence of

the large-scale features of the state, the preconditioner was chosen to be an iterated

local averaging operator.

Specifically, in the experiments reported below, P was set equal to P: a

5-point weighted averaging operator, P0, iterated s-times. The optimal number of
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iterations, s, was determined separately for each field by experimentation. In every

case, s between 2 and 5 was found to be optimal.

For the streamfunction equation, s = 2 was found to be the optimum number

of iterations. The convergence rate (averaged over the first 20 BFGS iterations) was

a convex function of s, with s = 5 having the same convergence rate as s = 0.
Preconditioning with s 2 improved the convergence rate by 18%.

In summary, the calculations below were preconditioned as follows. For each

field, there was an operator D which rescaled the field so that the diagonal elements

of the Hessian were approximately unity. Then, an averaging operator was applied to

invert, approximately, the differential operators appearing in the penalty function.

3.4.2. Nonlinearity: z

In this set of experiments, z alone was allowed to vary, and the penalty
function only penalized the misfit in the continuity equation. That is,

where

J(z) =fo3Wo3E, (3.29)

= V. (uzg) + (wz0)0. (3.30)

It should be remembered that u depends implicity on z through hydrostatic balance

and the momentum equations. No boundary conditions on z are needed since there

is no normal flow on the boundaries.

To investigate whether the descent method would be capable of reconstruct-

ing a known solution to this (nonlinear) system, an "identical twin" experiment was

performed in which the true solution outcropped. Because the model equations are
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nonlinear, there was no guarantee that the descent method would be able to obtain

the solution successfully.

The true solution was specified in the following manner. A field Z = Ztrue,

which outcropped, was chosen as the true solution, then the diabatic component of

the vertical velocity, (Ztrue)g, was diagnosed from the continuity equation. Hence-

forth, W(Ztrue)g was treated as an independent quantity and held constant. Thus,

the residual reduced to

= V. (uzg) + (117)9, (3.31)

where Ill = W(Ztrue), was held constant through the minimization.

The weight used in the penalty function was more complicated than for W

in the previous example. Since the momentum equations are approximately geo-

strophic, the gradient of z must be finite; therefore, the z field must be differen-

tiable. A linear analysis shows that the penalty on the divergence of uz9 does not

guarantee that z is differentiable.' To guarantee the smoothness of the solution, the

weight was chosen to be the operator

Jc14' 03 = (1 + L4V2V2) --, (3.32)
CYf

where L, the lateral correlation scale is 500km, and a is a scalar equal to 1% of

the horizontally averaged spatial variance of (11Y) within each layer. The correspon-

dence between weighting functions and weighting operators is discussed in detail

in Appendix 4.3. Let us note here that because the expression (6 03 W 03 6) is

'The linear analysis involves expressing z as a sum of vertical modes, each of which obeys
a hyperbolic equation in two dimensions. The penalty on the divergence of uz9 insures
that each mode is differentiable along its characteristic direction; however, the sum of
modes need not be differentiable in any direction.
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finite, c has square-integrable second derivatives, which is adequate to insure that z

is continuously differentiable. The coefficient .A/ in equation (3.32) is a normalizing

coefficient, which is determined by the condition that the correlation at zero lag be

unity (see Appendix 4.3).

For this penalty function, the descent method failed to reconstruct the true

solution after 1000 steps (at which time the penalty decreased by less than one

part in io per step). In order to explain the cause of the difficulty, the value of the

penalty function is plotted along sections of the state space in Figure 3.1. Because of

the high dimension of the state space, it is difficult to visualize the global structure

of the penalty function; the figure shows the value of the penalty function along

lines in state space parameterized as follows:

= Zstart + (1 a)zend, (3.33)

z = aZ + (1 a)ztrue, (3.34)

z = az + (1 )zstart, (3.35)

for in the interval [0, 1]. The fields and Zend denote the starting and ending

points in the descent calculation. Note that Zstart, Zend and Ztrue define the vertices

of a triangle in state space; however, in Figure 3.1 they are plotted consecutively

along the abscissa.

It is evident that there is a large ridge between the true minimum and the

minimum obtained by the descent procedure; the ridge is "large" in the sense that

the value of J at the ridge's peak is two orders of magnitude larger than J(Zend).

Because the penalty function is not convex, there may be local minima. The state

Zend is presumably located nearby one such minimum.

In a realistic inverse problem, there would be data constraints in the penalty

function, so the problem with non-convexity may not be as severe in the full cal-
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To demonstrate the non-convexity of the penalty function used in Section 3.4.2,
the panel shows the value of the penalty function along three sections in state
space. Because the state variable, z(..\, , 9), is a three-dimensional field, it is difficult
to visualize the global structure of the penalty function, so sections along one-
dimensional paths are plotted. The plot shows that between the end state of the
minimization, Zend, and the true minimum of the penalty function, Zti.je, there is a
large "ridge" which separates the two "valleys" in which Zend and Ztrue lie.
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culations. In an effort to test this idea, an observation (of the true solution) was

added at every fifth model grid point in the horizontal; the prior measurement error

was set equal to the spatial variance of the layer depth (averaged horizontally). It

was found that the penalty function decreased more rapidly than without the data

and that convergence was to the true solution.

3.4.3. Summary

The main conclusion from these experiments is that the nonlinearity of the

planetary geostrophic system may make the cost function non-convex. Since the

cost function is defined on a high-dimensional space, there is no practical means

of determining if the final state of the descent algorithm has reached a local or a

global minimum. The non-convexity in the demonstration problem suggests that

cost functions of interest do have local minima.

The experiments also highlighted the importance that data constraints were

likely to play in the inversion. The experiments in which z alone was permitted to

vary were unsuccessful without the added data constraints. The nonlinearity of the

continuity equation appeared to vitiate the success of the descent algorithm. The

added data increased the contribution to the gradient associated with the linear

terms and aided in the convergence to the correct solution.

It may have been fortuitous, but in none of the preliminary calculations did

the subsurface layers intersect. This suggested that it would be unnecessary to

append to the penalty function an inequality constraint guaranteeing that the layer

thicknesses remain positive definite; however, this proved to be incorrect: see below.



3.5. Final Experiment: North Pacific Inverse

Rather than continue with optimizing and improving the descent method,

it was decided to proceed to the minimization using all of the state variables and

constraints.

3.5.1. Data and Weights

Data sources for the inversion were as follows. The surface heat and fresh

water flux data were taken from Oberhuber (1988), and the source of wind stress

data was Hellerman and Rosenstein (1983). In both cases, the annually averaged

values for the North Pacific ocean were used. Bilinear interpolation followed by

convolution with an isotropic two-dimensional Gaussian (200km length scale) was

used to transfer the climatological fields to the model grid; the Gaussian smoothing

was performed to smooth out grid-scale noise which was apparent when computing

the wind-stress curl. The hydrographic data were derived from the deep station data

of Reid and Mantyla (1988). As discussed in Chapter 2, the temperature, salinity,

and pressure data were interpolated with cubic splines and converted to observations

of depth and salinity on isothermal levels. The bottom topography was obtained by

smoothing the ETOPO5 (1988) data with an isotropic 500km Gaussian filter and

then subsampling onto the model grid. The model domain extended from 3°N to

60°N and the land-sea boundaries were taken as the 1500m isobath in the ETOPO5

data (median filtered over 10 squares).

There are insufficient observations to completely specify the covariance for

each control variable, the best that can be done is to propose a variance and cor-

relation scale based on an educated guess regarding the sources of error. The full

covariances (real functions of two space indices, i.e., 6 independent variables) are
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never used in the computations; only their functional inverses, the weighting func-

tions, are used. As detailed in Appendix 4.3. the inner products of weighting func-

tions with state variables can be implemented as differential operators acting on

the state variables. The relationships among covariances, weighting functions, and

weight operators is briefly reviewed in Appendix 4.3; see McIntosh (1990) for more

oceanographically relevant examples. The hypothesized covariances are completely

determined by the magnitude of the variance and by the horizontal and vertical

correlation length scales (the vertical "length" scale is measured in °C). The length

scales determine the half-power point of the one-dimensional power spectra of the

respective covariances.

The following subsections discuss the sources of error and the error variance

scales upon which the weighting functions were based.

3.5.1.1. model eqnations

The momentum equations were imposed as exact constraints in the inversion.

This was done for two reasons. First, by keeping the equations exact, the present

formulation was more directly comparable to the contemporary work of Tziper-

man et al. (1992b and 1992c) than would have otherwise been the case. Second,

outside of the western boundary current, and away from the equator, geostrophic

momentum balance is believed to be quite accurate on scales larger than an inter-

nal Rossby radius (Bryden, 1980). For a 10cm/s velocity scale, and a length scale

of 100km, the Rossby number is approximately 10-2 at midlatitudes. In addition,

preliminary experiments showed that the descent procedure converged very slowly

if errors were admitted in the momentum equations. For all of these reasons, the

momentum equations were retained as exact constraints.
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Error in the steady continuity equation may be caused by truncation error

in the numerical model or by the spatial averaging implicit in defining the model

quantities. There is also the possibility that the planetary geostrophic equations

do not have a steady solution. Tziperman et al. (1992a) point out that that the

vast majority of the data, on which our knowledge of the general circulation is

based, were collected within the last 25 years or so; therefore, it is unreasonable

to expect the observations to constrain any temporal changes in the circulation on

a time scale longer than the time span over which observations were made. After

much experimentation with the weight for this equation, it was decided base the

weight on an error variance equal to 1% of the misfit (horizontally averaged mean-

square) in the continuity equation, as computed from an objective-analysis of the

observations. If the misfit in this equation is ascribed to temporal variation of the

fields (e.g., a secular trend in isotherm depths), it corresponds, approximately, to a

15 year e-folding time-scale in the main thermocline.

The weights in the salt advection-diffusion equation and the heat equation

were derived similarly. An objective-analysis of the observations was substituted

into the the equations, and 1% of the misfit was selected as the uncertainty. The

uncertainties for the continuity, salt, and heat equations are listed in Table 3.2.

TABLE 3.2. Dynamical Error Scales

Uncertainty in Symbol Typical value
Continuity equation 5 m/(yr °C)

Salt conservation equation cr,7 35psu x a
Thermodynamic equation a1, 15 rn/yr
Streamfunction equation 10 rn/yr x

Error in the streamfunction equation was attributed to uncertainty in the no-

normal-flow boundary condition at the ocean bottom. The model equations written
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above (3.1-3.5) apply to spatially averaged quantities, so there is an implicit spatial

averaging of the nonlinearity in the bottom no-normal-flow boundary condition. As

discussed in Bogden (1991), there is an analogy between the omitted spatial average

in the bottom boundary condition and the Reynolds stress terms in the momentum

equations. Unresolved spatial scales in the flow and bottom topography could have

a cumulative effect, a phenomenon which has been recognized in the atmospheric

science modeling community (Wallace et al., 1983). The 'I' equation weight was

based on an uncertainty corresponding to an erroneous vortex stretching of lOm/yr.

For comparison, a typical value of the wind-driven Ekman pumping out of the mixed

layer is 50m/yr in the subtropics. A deep horizontal velocity of 1cm/s up a typical

large-scale oceanic bottom slope (5 x 10-6) would create a 150m/yr vertical velocity.

3.5.1.2. surface fluxes

Errors in the surface flux data have numerous causes. The Comprehensive

Ocean-Atmosphere Data Set (hereafter COADS, Woodruff et al., 1987; Oberhu-

ber, 1988) was the source of the heat and fresh water flux data, while wind-stress

data were taken from Hellerman and Rosenstein (1983). The air-sea fluxes in both

of these sources were derived by applying bulk parameterizations to large archives

of "marine reports," i.e., observations of air temperature, sea state, etc., largely

from commercial vessels. An exception to this is the precipitation data in Oberhu-

ber (1988) which was used to compute the fresh water flux; it is based on an earlier

compilation of land and island station data (Shea, 1986; as cited by Oberhuber).

Bunker (1976) and Weare (1989) discuss the sources of error in air-sea fluxes

computed from marine report archives such as COADS. Errors may be classified as

either systematic or random. In the present context, a "systematic" error refers to an
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error which does not decrease when observations are temporally averaged. All of the

fundamental marine observations are contaminated by random error; however, over

most of the North Pacific, there are enough observations so that the random error

of a temporal average (i.e., the climatological mean) is negligible compared with the

systematic error of the average. Unfortunatel, systematic errors in the sea-surface

temperature and air temperature measurements are likely to be a significant source

of error. Their cumulative effect on the latent heat flux is estimated to be 28W/rn2

(Weare, 1989), which is comparable to the annually averaged heat flux over much

of the subtropical North Pacific.

Systematic errors may also be introduced by the bulk parameterizations,

which were used to convert the fundamental marine observations to air-sea fluxes.

In principle, since the bulk formulae are empirical relations, any systematic errors

ought to already have been absorbed into a calibration "offset;" however, marine

observations are typically made under conditions different from those under which

the bulk formulae were derived. Weare (1989) estimated a systematic uncertainty of

21W/m2 in the bulk parameterization of the latent heat flux, which is caused by un-

certainty in the value of the turbulent exchange coefficient. Isemer and Hasse (1991)

considered the consequences of systematic error in the formula which is used to con-

vert the Beaufort sea state (the variable most frequently reported in the marine

reports) to wind speed. They find that the revised, corrected, Beaufort conversion

formula results in annually averaged wind-stress and heat flux values which are, on

average, approximately 3. x 102N/m2 and 27W/m2 larger than those predicted

using the un-revised Beaufort conversion scale. This corresponds to an error of

approximately 20% in wind stress magnitude.

In summary, there are likely to be significant systematic and spatially inho-

mogeneous errors in the surface flux climatologies. The relevant surface flux errors
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are summarized in Table 3.3. Although the dominant source of uncertainty in the

heat flux is the latent heating, the contributions from the net solar and infra-red

radiances, and the sensible heat exchange were included in the uncertainty estimate

for Q in the Table. The fresh water flux uncertainty was determined by converting

the latent heat flux uncertainty of Weare (1989) into an evaporation water flux. The

fresh water flux is also contaminated by errors in the precipitation field; however,

away from the intertropical convergence zone, the uncertainty in the precipitation

estimate is negligible in comparison to the uncertainty in evaporation (Dorman and

Bourke, 1979).

TABLE 3.3. Data Uncertainties

Uncertainty in Symbol Typical Value
Wind stress cr 3 x 102N/m2

Heat flux cJQ 36W/rn2
Fresh water flux op 0.45rn/yr
Isotherm depth 150 m

Salinity _Ts 0.05 psu

It is difficult to quantify the spatial structure of the surface flux errors. The

errors caused by the bulk parameterizations and un-revised Beaufort conversion

scale are likely to be correlated on the same scales as the atmospheric circulation

itself. Also, it is possible that the errors are correlated along shipping lanes, if

vessels of different nationalities use different measurement practices. For this inverse

calculation, it was assumed that the surface flux error covariances are homogeneous

and isotropic with a 500km correlation scale. Also, the errors were assumed to

be uncorrelated between the different fluxes. The precise functional forms of the

covariances and weighting functions are described in Appendix 4.3. The prior error

parameterizations could be improved; however, it was judged that a more precise
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parameterization of the errors would not be warranted until after the flux fields are

revised in accordance with the corrected Beaufort conversion scale, as recommended

by Isemer and Hasse (1991).

3.5.1.3. hydrographic observations

The hydrographic observations were weighted by considering the spatial and

temporal variability of hydrographic data in the domain. First, the National Oceano-

graphic Data Center (NODC) archive of station data was used to determine the

mean and variance of isotherm depth and salinity within 100 x 100 squares in the

North Pacific.2 The variance field was then interpolated onto the model grid, and

smoothed with a 20° x 20° box-car filter. This averaging smoothed out spatial inho-

mogeneity in the variance; the spatial inhomogeneity is primarily a consequence of

variability in coastal water mass properties. Finally, the reciprocal of this variance

was used to weight the hydrographic observations in the Reid-Mantyla (1988) data

set. The larger NODC data set was used to obtain the statistics of the hydrographic

data, while the smaller Reid-Mantyla data set was used for the actual observations

because of the greater degree of quality control applied to the Reid-Mantyla cast

data. Typical values for the hydrographic data errors are listed in Table 3.3.

2Two steps were taken for quality control: observations were excluded with two passes
of a three-standard-deviation filter, and casts were rejected if their deepest observations
did not rank in NODC's highest quality category.
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3.5.2. Descent Calculation

The initial state in the descent calculation was as follows. The surface fluxes

r, Q, and F were each set equal to their observed values, and the diabatic velocity,

, was set to zero. The z and S fields were set equal to an objective analysis of their

respective observations. The streamfunction for the barotropic transport, W, was
set to zero. Thus, the initial value of penalty was a consequence of residuals in the

thermodynamic, continuity, salt-conservation, and barotropic vorticity equations;

the data penalty was negligible initially.

In order to facilitate the convergence of the large-scale adjustments to the
fields, an initial minimization was performed on a coarse grid. In this case, 5500 min-

imization steps were performed on a model running at 1/3 the standard horizontal
resolution.

Figure 3.2 shows the value of the penalty function over the course of the

minimization. The jump in the penalty function value at iteration 5500 was caused

by the interpolation onto the fine, 10 x 10, resolution grid.

The other jumps in the penalty were caused by the removal of layer intersec-

tions in the solution: it was found that negative layer thicknesses did arise in the
descent calculation. A constrained minimization algorithm was implemented (Lu-
enberger, 1973; section 11.6, the reduced gradient method); however, periodically

resetting the layer depths to a feasible (positive layer thickness) state was more effi-

cient than the constrained minimization procedure. The jumps at step numbers 500,

6000, and 7000 were caused by resetting the layer depths to a feasible configuration.

Table 3.4 shows the components of the cost function before and after the
fine-grid minimization (at steps 5500 and 8000). The total penalty function was
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FIGURE 3.2. J Minimization.

The plot shows the progress of the nonlinear minimization reported in Section 3.5.
Iterations 1-5500 took place with a coarse-resolution version of the model. The so-
lution was then interpolated to the full model resolution, and the descent procedure
continued until iterate 8000. The discontinuous jumps in the value of the penalty
function (at iterates 500, 6000, and 7000) occurred when the z-field was adjusted to
remove intersecting layers.
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reduced by approximately 2 orders of magnitude. At the end of the run, the single

largest contribution to the penalty was the layer depth data term.

TABLE 3.4. Penalty Function Components

Component Starting Value Ending Value
7.4x105 1.5x103

7.2x105 1.4x103

4.4x102 4.6x102

4.3x106 8.7x102

Jzdata 2.5x105 1.8x104

JSdata 2.1x103 2.5x103

Jr 3.3x10' 1.2x102

JF 1.7x102 1.8x102

JQ 1.4x103 5.4x102

6.9x102 1.0x102

J (total) 5.9x106 2.6x104

There is no evidence to suggest that convergence to a minimum was achieved

after 8000 steps. Nonetheless, since the fractional decrease in J at the final step

was approximately 4 x 1O, it was decided to terminate the experiment and see

what could be learned from the results.

First, consider the surface flux fields before and after the minimization. Over-

all, the surface fluxes were reduced in magnitude by roughly a factor of two. Fig-

ure 3.3 compares the initial and final and heat flux fields: the magnitude of the

heat flux was reduced almost everywhere. The same reduction in magnitude was

also seen in both the fresh water flux and the wind stress. Because of the unifor-

mity of the reductions, and because of the spatial structure present in the heat flux

field (which indicates a conditioning problem), the state found by the minimization

is unrealistic. In particular, the large values of sea-to-air heat exchange over the

western boundary current were strongly reduced.
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FIGURE 3.3. Surface Heat Flux.

The upper panel shows the Oberhuber (1988) heat flux estimate which was used as
boundary condition data. The lower panel shows the heat flux estimate after the
minimization. The magnitude of the heat flux was greatly reduced, especially over
the western boundary current region.
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Figure 3.4 shows the term balance for the heat equation (3.14) at (150°E,

32°N), roughly the center of the heat flux maximum in the Kuroshio extension. The

curves are labeled 1, II, III, and IV corresponding to the terms as follows:

1Kv F' ±'y.wzo = I +
Jo

I II III IV (3.36)

It can be seen that the diabatic component of the vertical velocity (term I) is inca-

pable of balancing the imposed heat flux divergence (term III) at the ocean surface

(deeper in the water, term I is too large). In the surface layer, we should expect

that F, the divergence of the vertical Reynolds heat flux, would be balanced by

wz9, the diabatic component of the vertical velocity. In fact, z9 is too small above

the 20°C isotherm, and too large below that level, to balance the prescribed heat

flux divergence.

Inspection of the term balance in the continuity equation (3.12), Figure 3.5,

reveals a good balance, i.e., a small residual. The terms are labelled I, II, III, and
IV as follows:

u.Vzo+zoV.u+(wzo)o=E.
I II III IV (3.37)

The wz0 field in Figure 3.4 is evidently a consequence of the horizontal divergence

in the upper layers, and advection in the deeper layers. In other words, because of

the small residual (IV), term III balances term II in the upper layers; while term III

balances term I on the deeper layers.

The term balance in equation 3.37 reveals that the diabatic velocity, wz0, is

determined primarily by the continuity equation: the diabatic velocity is essentially

just the wind-driven Ekman pumping. However, the balance from equation 3.36
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The sizes of the terms in the thermodynamic equation are plotted. The imbalance
is evident.
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The sizes of the terms in the continuity equation are plotted. The residual (IV) is
small compared to the divergence of the diabatic velocity (III).
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reveals that this diabatic velocity is insufficient to balance the heat removed from the

upper layers. In other words, it would appear that the wind-driven Ekman pumping

is insufficient to balance the heat lost from the surface layers. Another explanation

for the term balance is that the model's parameterizations of the surface heat and

momentum fluxes may be incompatible, or they may simply be poor representations

of the vertical Reynolds fluxes.

Elsewhere in the domain, a similar phenomenon occurs. The diabatic velocity

is generally consistent with the continuity equation; however, it is decoupled from the

thermodynamic balance. In order to affect a thermodynamic balance, the descent

procedure has reduced the value of the surface heat flux. Analogous considerations

apply to the surface salt balance: the over-all magnitude of the freshwater flux was

too large relative to the diabatic salt flux, therefore, the former was reduced.

The wind-stress magnitude was also decreased (Figures 3.6 and 3.7). This

is surprising, one would have expected it to increase in order to reconcile the ther-

modynamic balance by increasing the Ekman layer divergence. In fact, the zonal

component of the wind-stress does intensify slightly over the western boundary cur-

rent region (130°E, 24°N), where the Ekman drift transports warm water shoreward

(compare Figure 3.6B with Figure 3.10).

The streamfunction (Figure 3.8) would suggest a barotropic flow that is much

wider and more sluggish than that predicted from the wind-stress and Munk (1950)

boundary layer theory. The wide boundary layer is a consequence of the relatively

large residual in the barotropic vorticity equation at this stage in the minimization.

Figure 3.9 shows the term balance in the barotropic vorticity equation across the

subtropical gyre.

The above remarks regarding the surface flux fields indicate that the conti-

nuity equation is largely controlling how the fields adjust in the minimization. The
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The zonal wind stress component was uniformly reduced in the descent procedure.
The upper panel shows the wind stress data (Hellerman and Rosenstein, 1983), and
the lower panel shows the estimated wind stress.



1)V

1

V

-J

DI

40

MERIDIONAL WIND STRESS DATA, N/rn2

-4'4

150 200 250
Longitude, degrees east

FINAL MERIDIONAL WIND STRESS, N/rn2

/}nft ç\crj

(T7(
. I I

150 200
Longitude, degrees east

FIGURE 3.7. Meridional Wind Stress.

See Figure 3.6.

250

124

F

is,



-J

40

FINAL STREAMFUNCTION, Sv
I I

ccr .'

I I i I I i
150 200 250

Longitude, degrees east

125

-

1.'

FIGURE 3.8. Final Streamfunction.

The streamfunction for the barotropic flow is plotted. The width of the western
boundary current is too large for a Munk (1950) layer. It is a consequence of the
residual in the barotropic vorticity equation.
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The term balance shows that the barotropic vorticity equation is roughly in balance
across the subtropical gyre. The intensification of the flow in the western boundary
current is a Munk (1950) balance between the "beta term" (advection of planetary
vorticity) and friction only within a narrow boundary layer. Just outside of the
boundary layer, the beta term is unbalanced and contributes to the residual.
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continuity equation is acting as such a strong constraint (compared to the thermo-

dynamic and data constraints), that the state is being biased towards a sluggish

and thermodynamically inactive state in order to reduce the penalty function. In

other words, the state is being adjusted towards a state of rest in order to minimize

(trivially) the penalty associated with the continuity equation.

In order to quantify the control of the continuity equation on the minimiza-

tion, consider the components of the gradient of J with respect to each state van-

able. For example, VJ, the gradient of J with respect to the z state variable, is

composed of terms caused by the variation of z in the following terms:

1. the barotropic vorticity equation: VT,

2. the continuity equation: VJ,

3. the salt conservation equation: VJ,

4. the thermodynamic equation: VJ, and

5. the data terms: VtaJ.

The symbol "VJ" denotes "the gradient of J with respect to a associated with

equation b." Thus, the total gradient with respect to z is the sum of contributions
caused by each constraint:

vzJ = vJ + vJ + vJ + vJ + (3.38)

(the superscript on the V refers to the symbols used in equations 3.1-3.5, above).

Tables 3.5 and 3.6 show the root-mean-square (averaged over the computa-

tional domain) values of each gradient component. For example, one can see that

the wind-stress is being controlled by the continuity equation:

IVTI >> IVT, (3.39)



and

TABLE 3.5. Gradient Components

Gradient Component Value (rms)
VJ:

VJ 1.5x106

VJ 1.4x106VJ 5.2x104

2.4x
VQJ:

1.4x 10VJ 9.3x 10
VFJ:

2.Ox iO
V,J 6.4x104

VJ: VJ 5.6
VJ 4.7

1.3x10'
VJ 8.9x102

5.3x102

v:fl >> IvbsJI.

128

(3.40)

Similarly, S, z, and w are being controlled by the continuity equation (the salt

conservation equation provides little independent information in this formulation).

To reiterate: the minimization has found a set of fields which are mutually consistent

with the continuity equation.

The initial and final layer depth fields are plotted for a few layers in Fig-

ures 3.10 through 3.13. In large part, the layer interfaces have been smoothed and

shallowed. Below the thermocline, the most noteworthy features are the undula-
tions in the deepest layer thickness (Figure 3.13). The bottom topography is shown
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TABLE 3.6. Gradient Components (continued)

Gradient Component Value (rms)
VsJ: VJ 7.9x102VJ 5.6x102

VT 2.4x101vtaJ 1.lxlO'
Vç,J:

V,J 4.1x105
VIJ 2.9x106

VLT 2.3x106

VJJ 6.Ox 106

VZJ 5.8x 106

VJ 1.1x105

in Figure 3.14 to emphasize that it is not obviously related to changes in the 2°C

isotherm depth.

Changes in the deepest isotherm depth are found in areas of strong cross-

isobath flow. As shown in Figure 3.15, at 20°N, the region of largest change is

located on both flanks of the Izu ridge at approximately 140°E. Inspection of the

term balance in the continuity equation reveals that the advection term, u Vz0,

and the divergence term, z9V u, are large and nearly cancel in this region. If it
is assumed that the best-fit solution is in a state of baroclinic adjustment (i.e., if

the cross-isobath flows are nearly zero; Anderson and Killworth, 1977), then the

minimization procedure may be passing through a transient state involving local

nonlinear balances between the advection and divergence in the deepest layer. The
nonlinear nature of these balances may significantly slow the minimization process.
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FIGURE 3.15. Changes in Isotherm Depth.

Large changes in the 2.0°C isotherm depth are associated with regions of large
cross-isobath flow. The three panels show sections of their respective fields at 24°N.
During the minimization, the largest changes in the deep isotherm depth (top panel)
occurred in regions of large cross-isobath flow (advection term in the middle panel).
For reference, the bottom panel shows the bottom topography at this latitude.
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3.6. Conclusion

The above discussion has highlighted a number of points regarding the results

of the minimization:

1. The dominant term in the heat equation is the residual. Evidently, the solution

is controlled by the continuity equation.

2. The surface flux fields have been reduced to unrealistic values.

3. There is no real evidence that a minimum has been achieved.

There are several possibilities at this stage:

First, we could accept the solution as a valid minimum of J. Based on the

implausible surface flux fields and the heat equation balance, a new parameterization

of the mixed-layer is necessary. Changes to the heat, salt, or momentum fluxes in

the upper ocean are all candidates for improvement.

Another possibility is that the state may be trapped in a local minimum

because of the nonlinearity in the ocean model. Hence, the unrealistic surface fluxes

and heat equation balances are a consequence of the particular initial guess for the

minimization. Even if the state is not trapped at a local extremum, it may be caught

in a circuitous path on its way to an extremum. Unfortunately, without some global

view of the penalty function in state space, it is impossible to determine if this is

the case.

Lastly, it may be that the condition number of the cost function Hessian is

so large that the state is gradually moving towards the global minimum by edging

down a very narrow multi-dimensional valley. The preconditioning may have been

inadequate. A simplified analysis (see Appendix B.2.7), which assumed that the

domain was a constant depth beta-plane, suggested that the condition number may
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have been as large as i09. Given the importance of nonlinear term balances in the

model, more precise condition number estimates were not attempted.



4. CONCLUSIONS

4.1. Discussion
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The planetary geostrophic equations, which are derived by neglecting hor-

izontal inertia in the more familiar primitive equations, have provided the basis

for two studies of the general circulation of the North Pacific. In both cases, an

estimate for the circulation was sought which approximately satisfied the model

equations, and which was in agreement with observations. Because the problem of

estimating the general circulation from both model and observational constraints is

overdetermined, inverse methods were used.

In the first set of calculations (Chapter 2), a linearized planetary geostrophic

system was used to study the conditioning of the generalized inverse, and to explore

a number of solution methods for solving this system. Two solution methods based

on the representer expansion were compared with two descent methods, and the

most efficient method proved to be a conjugate gradient solver for the representer

coefficients. Of the two descent methods, the one which preconditioned with the

inverse of the model operators was far superior to the method which preconditioned

with a re-scaling of the variables.

Among the solution procedures which were compared in Chapter 2, only the

direct solver based on the representer expansion (REP) provided information con-

cerning the posterior errors. For two relatively small calculations, involving 662 and

1153 observations, respectively, it was shown that hydrographic measurements are

of little utility for improving estimates of the model's boundary conditions. For

example, less than one percent of the surface Ekman pumping boundary condition
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variance was explained in the inversions. In contrast, the inverse explained roughly

50% of the variance in the isotherm depth measurements. An orthogonal decom-

position of the representer matrix showed that the observing array was capable

of explaining significant variance only for basin-scale phenomena. Note that these

statements are facts regarding the structure of the inverse problem (as defined by the

model, observational array, and prior error covariances); they are not a consequence

of the solution method or the particular data values.

In Chapter 3, an attempt was made to assimilate data into a more realistic,

nonlinear model of the North Pacific. A descent method was used to directly mini-

mize the penalty function that defined the inverse problem; this approach was taken

because of its applicability to linear and nonlinear problems alike.

Because of the slow convergence rate of the descent algorithm, it was impos-

sible to conclude that the global minimum of the cost function was obtained. The

slow convergence rate may have been a result of the poorly conditioned nature of

the problem, or it may have been a consequence of the nonconvexity of the penalty

function (caused by the model's nonlinearities). The huge dimension of the state

space makes it difficult to obtain a global view of the penalty function; without this,

one cannot determine whether poor conditioning or nonlinearity was the source of

the difficulty.

A study of the residuals in the results of the descent calculation revealed

a decoupling of the mixed-layer flow from the deeper flows. Whether this was

a consequence of the mixed-layer parameterization, or an artifact of the descent

procedure (caused, for instance, by the state being trapped in a local minimum)

cannot be determined. The final state achieved by descent was unrealistic: the

mixed-layer decoupling resulted in air-sea fluxes which were reduced by roughly a

factor of two over most of the domain.
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4.2. Comparisons with Other Work

The climatology estimated in Section 2.6 of Chapter 2, the "North Pacific

Inverse," has already been compared with an objective analysis of the same data.

The isotherm depths are visually quite similar; however, the "North Pacific Inverse"

estimate is much more consistent with the dynamical model than the plain (dy-

namically un-informed) objective analysis. Comparison with another climatology,

e.g., the Levitus atlas (1982), should yield similar results. The inverse solution is

dynamically consistent with regard to the linear model that formed the basis for the

calculation; relative to the complete nonlinear dynamics, the "North Pacific Inverse"

is likely to be as inconsistent as any other climatology.

Results similar to those in Chapter 3 were obtained by Tziper-

man et al. (1992b and 1992c) in their attempts to estimate the North Atlantic

circulation. The time-stepping procedure (and the forward-backward temporal in-

tegrations) used in their papers (and as extended in Marotzke and Wunsch, 1992)

can be viewed as an approximation to the dynamical preconditioner used in method

J-CG2 in Chapter 2. If it had been feasible to extend their time-stepping procedure

sufficiently to reach a steady-state solution with the linearized form of their forward-

backward solvers, they would have achieved perfect dynamical preconditioning in

the spirit of Chapter 2. However, the solution method used by Marotzke and Wun-

sch (1992) is computationally intensive: counting each model substitution as one

unit of work (as in Chapter 2), their descent procedure executed roughly N/2 model

substitutions in order to reach a solution, where N 85, 000 was the total number

of temperature and salinity state variables. Even for this relatively low-dimensional

steady problem, there is room for improvement in the solution method.
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Marotzke and Wunsch (1992) have questioned the need for further time-

independent general circulation inverse studies. Their conclusion is based on the

observation that their inverse estimate for the time-averaged circulation of the North

Atlantic tends towards winter conditions. In other words, in order to produce the

necessary water masses, the inverse estimate is biased towards the extreme condi-

tions under which the water masses are produced. Their experience suggests that a

model for the general circulation must eventually include the seasonal cycle. More

fundamentally, the real issue concerns how well both spatial and temporal Reynolds

averages can be parameterized. Compared with the studies based on the GFDL

model (e.g., Tziperman et al., 1992b and C; and Marotzke and Wunsch, 1992), we

have much less experience with the layer model used in Chapter 3; nonetheless, an

analysis of the residuals indicated that the parameterizations of the heat, salt, and

momentum fluxes in the mixed-layer were inadequate or incompatible in the model

used here.

One of the original motivations for assimilating data into a general circulation

model was to solve the "spin-up" or initialization problem for general circulation

models (e.g., Tziperman et al., 1992a). The desire was to obtain a steady-state

solution of the general circulation model for initializing prognostic model runs, and

for model testing (by comparing the steady-state solution with observations). At

present, general circulation models are time-stepped for hundreds, and sometimes

thousands of years to spin-up the circulation.

From the discussion of solution methods in Chapter 2, it is evident that a

solution to the initialization problem should be regarded as a prerequisite to solving

the data assimilation problem, and not vice versa. The inverse, or data assimilation

problem requires the solution of two systems, the "forward" model and the "adjoint"

model, which together form the Euler-Lagrange equations for the extremum of the
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penalty function. Thus, one must solve two sets of equations, each of which is of

complexity comparable to the spin-up problem. The linear algebraic equivalent of

the problem under discussion would be to solve the matrix system

Ax=b

by minimizing the penalty function

(4.1)

J(x) = (Ax - b)T(Ax b) + (x - )TW(x ), (4.2)

where is an estimate of the solution to equation 4.1, and W is a positive-definite

symmetric weighting matrix. The minimization of this penalty function is equivalent

to the solution of the Euler-Lagrange system for the extremum of J:

Ax = b + A

ATA = W(x (4.3)

Thus, using the inverse model to solve the spin-up problem is formally twice

as difficult as solving the spin-up problem alone. If the weighting matrix W is zero,

i.e., if one has no estimate of the solution, the inverse formulation squares the con-

dition number of the original system. This is a well-known problem associated with

solving the so-called "normal equations" for linear least-squares problems (Golub

and VanLoan, 1989).

4.3. Suggestions for Further Research

The working plan for the synthesis phase of WOCE (the World Ocean Cir-

culation Experiment), as presented by Church et al. (1995), is a measured approach

to a very difficult problem, namely, the design and testing of models for predicting

climate change. As the report points out (p. 17), there is no clear plan regarding
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how to proceed once the data collection phase of WOCE has ended. Tentatively,

the plan is to produce a number of analysis products which differ in the degree of

post-collection processing: from quality controlled data collections, to large data

"syntheses," in which inverse methods are used to produce high level data products.

Given the WOCE goal of constructing a model for predicting climate change,

it is understood that a necessary first step is to construct a model which reproduces

the present state of the ocean. Therefore, it is first necessary to define what is meant

by the "present state of the ocean." In other words, what is it we wish to explain

with the model? For the purpose of this discussion: we wish to explain the spatial

variance of the temporally averaged hydrographic fields.

This problem definition is not particularly exhaustive or original, but it pro-

vides an explicit starting point for conceptualizing the synthesis phase of WOCE.

Also, it is clear that the problem definition is still incomplete: the ocean's hydro-

graphic fields contain spatial variance which is observable on all length scales, but

on which length scales do we wish to explain variance? Furthermore, the estimates

of the temporal mean are necessarily made from a finite number of measurements

which themselves contain error: how much of the spatial variance is "signal" and

how much is "noise"? The work described in this thesis has been one step towards

the goal of doing a WOCE-like synthesis. Thus, the suggestions for further research

are couched in this framework.

It is recommended that the synthesis phase of WOCE proceed by developing

the generalized inverse of a global ocean model. The generalized inverse is defined so

that its solution consists of a set of fields which are constrained by both the model

and the observations, in a least-squares sense. The tasks of "data synthesis" and

"model testing" can both be carried out in the framework provided by statistical
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estimation and inverse theory: the solution of the generalized inverse is the data

synthesis, while an analysis of the residuals affords a test of the model.

For this discussion, let us focus on determining the present state of the ocean

as defined by the annually averaged hydrographic fields. To "test a model" then

means to explain the spatial variance of the hydrographic fields with a model, i.e., to

fit the observations with a model. Obviously, neither too tight nor too loose of a fit is

warranted since any observation measures the annually averaged part of the circula-

tion plus a temporally variable part. The temporally variable part can be estimated

from the observations themselves by empirically estimating various sample statis-

tics such as the space-time mean, variance, and correlation scale (e.g., Levitus, 1982;

Wyrtki and Ulrich, 1982). An alternate approach would use high-resolution time-

dependent models to estimate these statistics; however, the statistics would be only

as good as the model (and its forcing functions). This approach would be feasible if

the time-scales of the forcing and state variability were short enough to be measured

directly so that the time-dependent model could be verified.

Having decided on how close of a fit is warranted, one must choose the

model's control variables. In other words, it is necessary to specify what parame-

ters are appropriate to alter in order to produce a fit. This topic deserves serious

consideration. The natural choice for the control parameters are the model's in-

homogeneities, e.g., the air-sea fluxes. If these are chosen as the control variables,

then it is possible to estimate the errors in these through intensive observation,

or through an intercomparison of climatologies (e.g., Boning et al., 1991). If the

control parameters are intended to represent subgrid-scale phenomena, it is much

more difficult to estimate their uncertainty since the fluxes depend on both the un-

derlying phenomena and the model resolution; it seems that the best one can do

is to estimate a magnitude and a length scale for the unresolved phenomena by
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appealing to data compilations such as Dickson (1983). Finally, it may be that one

wishes to regard variables such as the turbulent diffusivity as control parameters,

which makes the inverse problem nonlinear, even if the model dynamics are linear

(e.g., Smedstad and O'Brien, 1991).

When there are no good estimates for he uncertainty of a control parameter,

it seems wise to proceed in two directions simultaneously. First, the model can be

linearized and a representer analysis performed. Array analyses like those presented

in Chapter 2 are helpful in prioritizing future modeling and observational efforts. In

the examples of Chapter 2, it was shown that the eastern boundary conditions and

vertical diffusivity must be known much more accurately than at present in order

for the inverse calculation to improve the surface flux estimates significantly. This

conclusion is based on a relatively simple model which is linearized about a state of

no horizontal motion.

The second direction for research consists of using cross-validation methods to

improve the parameterizations of the prior errors. The basic idea of these methods

is to minimize the fitting error of the inverse solution as a function of the error

parameterizations. The error of the inverse solution is estimated using bootstrap

methods: data are withheld from the inverse calculation, and then compared with

the solution (Craven and Wahba, 1979; Efron and Gong, 1983).

If these methods are to be applied to the WOCE goal of creating a "global

snapshot," representative of the oceanic state as averaged over the last decade, it will

require the construction of a global model for the steady circulation. Such models

already exist; however, the present means for obtaining their solution involves time-

stepping the model to steady state. As the thermodynamic equilibration time for the

global ocean is on the order of 1000 years, present solution methods are inadequate

for a realistic calculation of the kind envisioned here, which would require 10's, if not
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100's or 1000's of model solutions. Thus, the next logical step is the development

of efficient solvers for the steady-state of a general circulation model. Nonlinearity

may prevent the model from even having a steady solution, in which case a solver

for the quasi-steady-state would itself be a generalized inverse. Another possibility

is that nonlinear instabilities may make the steady solution unstable.

Such a solver, if it is developed, might use techniques similar to those used

for implicitly time-stepping general circulation models (Oberhuber, 1993). Other

promising approaches include extending the time-step acceleration procedure in

Bryan and Lewis (1979), or generalizing the preconditioned conjugate gradient solver

in Dukowicz et al. (1993). Finding the steady or quasi-steady circulation is difficult

because the governing equations form a three-dimensional nonlinear elliptic system.

The nonlinear part of the equation is hyperbolic, and the elliptic part is essentially a

singular perturbation added to the hyperbolic system. It is irregular bottom topog-

raphy which makes the equations non-separable. The search for efficient solution

methods for these kinds of partial differential equations is an active area of research

within the applied mathematics community: multigrid methods appear to be the

most promising approach (e.g., Adams et al., 1992) See Vuik et al. (1995) for a

recent comparison of state-of-the-art multigrid and iterative methods.

Once a solver for the steady, or quasi-steady, circulation is in place, the

development of a solver for the discrete adjoint system is relatively straightforward,

in principle. Then, any of the methods in Chapter 2 would be applicable, as follows.

Essentially, we can regard the nonlinear planetary geostrophic model as a

system of the form

N(u) = f, (4.4)
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where N is a nonlinear vector-valued function of the state vector u, and f represents

all of the model's inhomogeneities. Let u be an N x 1 vector, and assume that the

observations, which we wish to fit. are given as the M x 1 vector d:

d=HTu. (4.5)

The Euler-Lagrange equations for the generalized inverse of the system 4.4-4.5 are:

N(u)=f-FC)

(8N(u))T = _HW(HTu d),
9u

(4.6)

where C is the prior covariance of the uncertainty in equation 4.4, and W is the in-

verse of the covariance of the uncertainty in equation 4.5. As in Chapter 2, standard

matrix notation is used. H is N x M, C is N x N, and W is M x M.

The recommendation made above, that solvers for the tangent-linearization

of the planetary geostrophic model and its adjoint be developed, amounts to finding

the operator

(ÔN(u) -1

a I
(4.7)

and its transpose. If efficient algorithms for these inverses can be found, then the

following linearization of 4.6 may be implemented:

(5N(u1)\
(8N(u)'\

un-' + C)J8u ) u"=fN(u')+ )
T

au )

;n = _Hw(HTun d). (4.8)

Provided that the tangent-linear model is well-posed, the above system 4.8 is

amenable to solution via the representer expansion. Additionally, with solvers for
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the tangent-linear system and it adjoint, one would have ideal preconditioners for a

direct minimization method analogous to the J-CG2 solver of Chapter 2.

Several studies have found that the sequence of iterates produced by

tangent-linearizations such as 4.8 may not converge (Bennett and Thorburn, 1992;

Evensen, 1992; Hagelberg, 1992). Essentially, the problem can be traced to terms

in the tangent-linear model equations which act as sources of energy for u', driven

by u1. These terms arise because conservation properties of the nonlinear equa-

tion N(u) are not inherited by its linearization. Bennett and Thorburn (1992) and

Hagelberg (1992) have shown that linear approximations (rather than linearizations)

of N(u) can lead to convergent approximations of the nonlinear Euler-Lagrange sys-

tem 4.6. Another approach is the "creeping algorithm" (Parker, 1994). Rather than

taking u as the solution of 4.8, one takes

= cxu* + (1 a)u'1, (4.9)

where u solves 4.8. For a = 1, the algorithm is unchanged, but for 0 < a < 1, one

reduces the "distance" between consecutive linearizations. It may be shown that,

for a sufficiently small (but greater than zero), the creeping algorithm is guaranteed

to converge (provided the tangent-linear system is well-posed).

For the specific production of WOCE Level 3c data products, which are in-

tended to be dynamically consistent syntheses of WOCE data (Church et al., 1995),

a provisional set of data and model weights should be defined. So long as the covari-

ances (which are inverses of the corresponding weights) are smooth enough, where

"enough" is in accordance with the considerations in Bennett and McIntosh (1982),

their precise forms should be immaterial. Review papers on the air-sea exchanges

(e.g., Schmitt, 1994; Weare, 1989; Isemer and Hasse, 1991) can provide some guid-

ance for specifying the covariances of the air-sea fluxes. Particular attention should
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be paid to areas of intense air-sea exchange because of their importance in setting

extreme water mass properties. The observational errors should be straightforward

to estimate, except for large areas of the Southern Ocean which are poorly sampled.

The model errors are much more difficult to estimate. Nonetheless, it is

the values for these errors which define what it means to "test a model." Some

quantities, such as the eddy stresses, may be estimated from compilations of current

meter data. Similarly, tracer release experiments (Ledwell et al., 1993) or direct

microstructure measurements (Mourn, 1992) may someday be distributed widely

enough for estimating turbulent diffusivities and their uncertainties. Determining

the uncertainty of surface boundary layer parameterizations is more difficult; an

analysis of long-term weather station data would be helpful, as would be short-

term, time-dependent, data assimilation experiments.

As a practical step to accelerate the development of solvers for the generalized

inverse of global ocean models, it is recommended that the data synthesis and mod-

eling efforts of WOCE be tightly coordinated. So long as least-squares formulations

continue to dominate inverse studies of the general circulation, the computational

adjoints of the forward models will need to be developed. Because of the similarity

of the forward and adjoint codes, it is helpful if solvers for both systems can be de-

veloped simultaneously. Efficient solvers for the quasi-steady circulation are needed

especially, in order to carry out the data synthesis for the general circulation.

Lastly, it is recommended that the surface fluxes be recomputed using the most

up-to-date data sources and bulk formulae. Improving the air-sea fluxes is already a

goal of WOCE, and I can only re-iterate the importance of accurate air-sea fluxes

for understanding the general circulation. The calculations reported in Chapter 2

serve to emphasize that hydrographic observations alone are insufficient to improve

our estimates of the air-sea flux fields significantly. Hall and Bryden (1982), for
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example, have shown that a complete zonal section of hydrographic data effectively

constrains the net meridional heat transport (which is related to the areal average of

the heat flux, assuming steady state); however, such sections offer little information

about the heat flux at a particular location. Revision of the surface flux estimates

should be considered the top priority.
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APPENDIX A. The Euler-Lagrange System for the Linearized
Planetary Geostrophic Model

The equations for the generalized inverse of the linear planetary geostrophic

model considered in Chapter 2 are derived in this Appendix. Recall that the state

variables consist of the following functions of longitude, latitude, and temperature

(A,,9):
1. u the horizontal (adiabatic) velocity vector (u, v),

2. w the diabatic "velocity" DO/Dt,

3. z the isotherm depth,

4. B the Bernoulli function.

Error is admitted in each of the equations defining the linear planetary geo-

strophic system (equations 2.5 through 2.14). For reference, the symbols used to

denote prior covariance functions for each equation are listed in Table 5.1. It is
tacitly assumed that the errors are normally distributed and uncorrelated between

the equations.

The generalized inverse of the linearized planetary geostrophic system 2.5-

2.14 is defined as the set of u, w, z, and B fields which minimize the quadratic

penalty function,

J(u, w, z, B) = Jj(u, w, z, B) + Jj(u, w, z, B)

+ Ydata(U, w, z, B) + Ji'(u,w, z, B). (Al)

Each term in the penalty function is expressed in terms of inner products

over the domain and its boundaries. Subscripted o symbols are used to denote these

inner products as follows:



TABLE 5.1. Error Covariances

Symbol Uncertainty in
Ch zonal momentum equation

meridional momentum equation
CB hydrostatic balance

continuity equation
CZB bottom isotherm depth
CZT top isotherm depth
CWB bottom Ekman pumping
CWT top Ekman pumping
CBE bottom-eastern boundary B
CZE eastern boundary z

z measurement at x2

/ fT
C 03 p

J J
C(A, 4,0; , i, 'q, 'O)rcos(ij)ddidi9,

D °B

Co2 p f C(, ; , )p(, )rcos()ddij,

f5N fOT

C °2E p
J J

C(4, 0; 7), 9)p(i, 9)r0d7)th9,
S OB

fQ5N

C 01E p
J

C(4; i)p(i)r0di.
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(A2)

Each term in the sum defining the penalty function (Al) is quadratic in the

model residuals, and weighted with the appropriate weighting function. The weight-

ing functions are denoted W*, corresponding to the covariances listed in Table 5.1,

where the * indicates any of the super-scripts on the C variables. For example,

CL denotes the error covariance in the zonal momentum equation; the weighting

function W' is defined as the functional inverse of C' by the relation

Wfo3Cuo3p=p (A3)
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for all test functions p defined on the three-dimensional domain. Appendix 4.3,

Section B.1.2, discusses the correspondence between weighting functions and covari-

ances in more detail.

is the penalty caused by the misfit in the interior dynamics:

1 ÔB\ 1 aB\= (_V + 03 wu 03 (_fv + rocos)

/ 1ÔB\ / loB
+lfu+-- J 03 WV 03 (fu+--

r0Oçbj

+ (z B9) 03 WB 03 (9z B9)

1 IOu 8(v9cos)1+
T0 COS L

+
j

+ (w8)9 }

1 1 [8ue 8(v cos ) 103Wz
031 +

]

+(- 1Kv \\
(

(Ky \'\
wzo + ( --Z9 I 0 W' 03 WZ9 + ( --Z9 ) . (A4)

\Z9 19! \Z9 j)
Jbc is the penalty caused by the misfit in the prescribed boundary conditions:

= (z ZB) 02 WZB 02 (z zn)

+ (wo WB) 02 Wt 02 (w9 WB)

ZT) 02 WT 02 (z ZT)

+ (w0 WT) 02 WWT 02 (W WT)

ZE) 02E WZE 02E (z ZE)

BE) 01E WBE 01E (B BE). (A5)

iJjata is the penalty caused by the data misfit:
M

Jdata W (I 03 (u, w, z, B) m)2, (A6)
i=1
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in which it is tacitly assumed that the data errors are uncorrelated. In general,

the measurement functional is the inner product of a vector of functions, A
(, £, r', £, £), with the state variables, (u, w, z, B). The inner product of the

measurement function with the state is written as

£ 03 (u, w, z, B) = L 03 U + L 03 V

+ £ 03 U + £ 03 Z

+ £ 03 B. (A7)

Note that the vector function £ is a function of the independent variables , , 0).

In order to solve the forward equations, there are certain relations between

the state variables which must hold on the boundaries. A well-posed forward prob-

lem must satisfy these consistency conditions because the boundaries are character-

istic surfaces. These relations are hydrostatic balance and the momentum equation

normal to the boundary, on the boundary. For the generalized inverse of this sys-

tem, let Jbc' be the penalty caused by misfits in the consistency conditions on the

boundaries:

= (gz B9) °2E W o (9z B9)

/+ (fu n + ) 02E W 02E (fu. + ). (A8)

The vector n denotes the outer-normal unit vector on the boundary, and s param-

eterizes the length tangential to the boundary.

The fields which minimize J are the solution of the following Euler-Lagrange

system A9-A15. The model equations, which define the adjoint variables, are:

1 8Bfv= _+Cuo3/i
r0 cos 8A
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1ÔBfu=__-+Cvo3v
r

= B9 + CB 03

1 IOu'9 a(v9cos)1
r0 cos L a

+
açb j

= (w) + CZ 03 f

(Ky '\

=
I -::1-ZO ) + Ct" 0 'y, (A9)
\\Z9 19

with boundary conditions at 0B, the bottom isotherm,

at 0T, the top isotherm,

Z = - CZB 02 iO,zo
WZg = WB - CB 2 , (AlO)

Z = ZT + CZT 02
zo

WZg = WT + CWT 02 E, (All)

and at the eastern boundary, \ =

OT /3
Z ZE - CZE 02E b9 j e(l, 0) ndt9,

rOT
/3

B(E,OB) = BE - CBE 01E / fZg(1,0) 'ndO. (Al2)
I

The so-called "adjoint" equations are:
M

1 a
fv = C w2 (4 (u, , z, B) m)

r0cosq5A
1=1

M
1 &

fbi -Zo- = W2 (403 (u,w,z,B) m)
i= 1
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&o + z9 w (j 03 (u, w, z, B) m)

-v . + Wi (j 03 (u, w, z, B) m)

( K\ M
b9c+ --'y (u,w,z,B) mi), (A13)

Z9 J i=1

with homogeneous boundary conditions at 9B and °T,

and at the western boundary,

7 = 0, (A14)

E = 0. (A15)

The symbol p denotes the vector field (, ii).

In the main text, it was assumed that the errors in the momentum equa-

tions, hydrostatic balance, and the heat equation are negligible. Furthermore, only

measurements of z were considered.

Since the momentum, hydrostatic, and heat equations are now exact rela-

tions, their contribution to the penalty function is zero. To enforce these constraints,

the equations are appended to the penalty function using Lagrange multipliers. Let

two times p, c, and be the Lagrange multipliers for the momentum, hydrostatic,

and heat equations, respectively. As above, E is still the (weighted) residual of the

continuity equation. Under these circumstances, the Euler-Lagrange system simpli-

fies to the following:

1 Bfv= -
r0 cos
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loB
fu=-------

r0 04

= B0

1 It9u O(vcos)1
r0

+ j = (w0)9 + CZ 03 E

( K \
= -

--zg)
, (A16)

zo o

with boundary conditions at 9B, the bottom isotherm,

at 9T, the top isotherm,

ZB K
ZZB-C °2Too,

zo

WZ0 = WB - CWB 02 f, (A17)

ZTZZT-C °2T00,
zo

WO = WT - CWT 02 E, (A18)

and at the eastern boundary, A =

OT

Z = ZE - CZE 02EbOf f9(1,O) ndt9, (A19)

P0T f?

B(AE, 0B) = BE - CBE 01E
J

zg(1, 0) ndO. (A20)
0B

The adjoint equations are:

1 Oe
(A21)

T0 COS

1 &fa-9---=0 (A22)
To
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-(9 +7 = 0

1 1 0(vcosq1
r0 cos

+
aq ]

+ ao = 0 (A23)

M
0a + w ( 03 Z mi), (A24)

\z0 19 j=1

with homogeneous boundary conditions at and 0T,

and at the western boundary,

a = 0,

7 = 0, (A25)

= 0. (A26)

It may be shown that measurements of z make no impact on the eastern

boundary condition for B. To see this, vertically integrate the adjoint divergence

equation, A23, and eliminate ,u and v with A21 and A22. One finds that

fOT /3

I
9dO=0. (A27)

Inspection of equation A20 shows that the eastern boundary condition for B is not

affected by z measurements.



APPENDIX B. Numerical Methods

B.1. The Linear Planetary Geostrophic System

This section describes the numerical methods used to perform the calcula-

tions described in Chapter 2.

B.1.1. Model Discretization

The linear planetary geostrophic model was solved by manipulating the equa-

tions to eliminate all but z(A, , 9) to form a parabolic thermocline equation, with

the time-like characteristics pointing zonally westward (Pedlosky, 1992). The ther-

mocline equation was discretized using second-order centered differences in the ver-

tical, and the time-like discretization was implicit. Thus, the thermocline equation

was solved by inverting one penta-diagonal n x ii system for each latitude, and

integrating westward.

In order to carry out the calculations described in Chapter 2, the thermocline

equation and its adjoint were solved numerically as the discretized forward equation

and its finite-difference adjoint. The latter is an adjoint with respect to the dis-

cretized inner product for spherical-polar geometry, including discretized integrals

over the boundary of the domain.
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B.1.2. The Relationship Between Covariance Functions, Weighting Func-
tions, and Weight Operators

definitions

Let (x) denote a random field defined on the domain D, and let x E D

label a point in D. The covariance of e is denoted with C (x, y). Assuming that

the expected value of e is zero, the covariance of e is defined as

C(x, y) = E[e(x)e(y)],

where E[*] denotes the expected value.

(Bi)

Each weighting function which appears in the penalty function corresponds

to the functional inverse of its respective covariance. That is, the weighting func-

tion W(x,y), corresponding to the covariance function C(x,y), is defined by the

relation

or, equivalently,

fC(x, y) f W(y, z)ç5(z)dzdy = (x), (B2)

fW(x, y) j C(y, z)q(z)dzdy = q(x), (B3)

for all test functions defined on the domain D.

In each of the calculations presented in the text, it was assumed that the

prior covariances were of the form

C(x,y) = o(x)u(y)e(x,y). (B4)

The functions a(x) and c(x, y) are the standard deviation and correlation func-

tions, respectively, of the field E. It was also assumed that the correlation functions

were separable in spherical polar coordinates:
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c(x1,x2) = c0(.A1, A2)Cer(i, 2)ce(Ol,O2), (B5)

where x1 = (Aj, ,, s.). Furthermore, each one-dimensional correlation function was

assumed to be homogeneous and isotropic, i.e., each is a function of the absolute

value of the difference in its arguments. Although it was assumed that the corre-

lation functions were all homogeneous and separable, the prior correlations of the

state variables were non-separable, anisotropic, and inhomogeneous (as illustrated

in Figure 2.4), owing to the constraints provided by the planetary geostrophic dy-

namics.

Thus, to each source of error, there corresponds a standard deviation, and a

set of correlation functions.

The standard deviation of each error is discussed in the text and listed in

Tables 2.2, 2.5, 3.2, and 3.3. Note that, in the Tables, the only information re-

garding the correlation functions are the correlation length scales. The functional

form of each correlation function was determined by the spatial regularity consid-

erations discussed in Bennett and Budgell (1987). Briefly, the linearized planetary

geostrophic system was analyzed and the minimum asymptotic (high-wavenumber)

spectral roll-off rates of the error fields were determined to insure that the physi-

cal fields (i.e., solutions of the planetary geostrophic system) would be physically

realizable. By "physically realizable," it is meant that the physical fields should

not contain any delta function singularities, which would make the fields unrealistic

from a physical point of view.

For the linearized planetary geostrophic system, a sufficient condition for

the physical realizability of the solutions is that the Fourier transforms of the one-

dimensional correlation functions decay like k4, where k is the one-dimensional

wavenumber. Weaker conditions are possible for this system; however, k4 has

some specific advantages for the numerical implementation, which are discussed
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below. Therefore, the asymptotic spectral roll-off rate for each one-dimensional

correlation function was chosen to be k4.

In order to evaluate the penalty function, it is necessary to evaluate integrals

of the form

f WE(x, (B6)

For brevity, integrals of this type are denoted as W 0D , similar to the notation

used in the text and defined in Appendix 4.3.

The operation count for the approximation of integrals, such as B6, on an

N-point finite-difference lattice is 0(N2). The 0(x) notation is used to denote a

number, y, such that the limit y/x is nonzero and finite as x -+ oc. If each integral

had been implemented as such a sum, none of the inverse calculations presented in

the text would have been feasible (the linear model in Chapter 2 had N 6 x io,

and the nonlinear model in Chapter 3 had N 5 x iO).

Instead, the integrals were written in a special form, in which W was

represented as the action of a differential operator on the field . By re-writing the

inner product as the action of a differential operator, it was possible to evaluate

W 0D in 0(N) operations, a huge savings over an 0(N2) implementation.

The following example should help to clarify these ideas for those readers

who are unfamiliar with this material. A one-dimensional example is worked out in

detail.

example

Consider a random field (x), defined for all real x. Although it would seem

logical to begin by defining the covariance of E, it is more relevant to the numerical

implementation (discussed below) if we start from the differential operator which
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defines the weight. This point of view is similar to that taken by McIntosh (1990)

in discussing the correspondence between smoothing splines and objective analysis.

Define the inner product of the weighting function W(x, y) with the test

function q(x) as

W 0D
J

W(x, y)(y)dy
-00

= I1+L0 1 (x)
(B7)cr(x) [ ] o(xY

The factor .A( is a normalizing constant, which will insure that the correlation at

zero separation is unity. We shall show that a is the standard deviation of f and L

is equal to a correlation length scale of .

To find the covariance corresponding to this weight, consider the definition

relating the weight to the covariance, equation B2. Substituting the expression B7

into B2 yields

+00

[
dy J 6(y x)(y)dy, (B8)

J
C(x,y) 1+L4-

-00 o(y) 0y4 a(y) -00

where the Dirac delta function 5(x) has also been used. Next, assume that C(x, y),

C(x, y), C(x, y), and y) go to zero as Ii goes to infinity, and integrate

by parts. Since equation B8 must hold for all test functions , C(x, y) satisfies the

following:

o(y) [1+L4.!_l
(jVC(x,y)\

5y4j cT(y) )
=6(yx). (B9)

The solution of this equation is straightforward and yields

L (Y)exP( lx_YI) fxy\
cos ( J . (BlO)C(x, y) = a(x)u

L j2/V
For unit correlation at zero separation, the normalizing coefficient is

= . (Bli)
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If o-(x) is a constant, one can take the Fourier transform of equation B9 to

8(k + 1), (B12)C(k,l)

where the two-dimensional Fourier transform is defined by

1
O(k, 1) =

j /
C(x, y)ee2ldxdy. (B13)ir

It is evident from equation B12 that the asymptotic spectral roll-off rate of C is

k-4. Furthermore, the correlation scale L is equal to the inverse of the wavenumber

at the half-power point of the Fourier transform of C.

numerical implementation

The numerical implementation of the weights was based on the observation

that differential operators can be approximated by finite-difference operators, which

are local in space. That is, the inner product of a weight with a field was computed by

applying a finite-difference operator to the field. Rather than costing 0(N2) floating

point operations (flops) per inner product, the finite-difference implementation used

only 0(N) flops.

In the linear calculations of Chapter 2, both descent and representer methods

were used. Therefore, it was necessary to implement both inner products, W 0D

and C 0D 5. The weights were implemented as the finite-difference approximation

to

W 0D cr(x)
(1_L$2) (1_L2) (1L)2 a2

< (i L7) (1 Lr) (i 2 02
'\

ç(x)LH-) (B14)

which, in finite-difference form, is the product of three tridiagonal systems:
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WEoD= TzonTmeT2 T T (x)
(B15)r vert mer zon /c(x) cdx)

Tmer, and Tvert are the finite-difference approximations of the corresponding dif-

ferential operators in the zonal, meridional and vertical directions in expression B14.

The symmetry of equation B15 guarantees that the resulting product is symmetric

and positive-definite.

The operator inverse of WE 0D , which is C 0D , was computed efficiently

through the solution of a sequence of tridiagonal systems. All of the linear algebra

was performed using the LAPACK software library (Anderson et al., 1992).

The condition determining the normalizing coefficient is that the correla-

tion at zero lag be unity. To illustrate how Al was determined for the numerical

calculations, consider the implementation of the weight in the one-dimensional ex-

ample, above (section B.1.2). To make the example relevant, restrict the domain

to x E [0, Nx], where zx is the grid resolution. The second-order accurate dis-

cretization of the weight operator is

Al
(W a q5) = [1 + L4(6)2] (B16)

7j oi

for all i E [1, N 1]. The symbol 8 denotes the second-derivative operator on the

one-dimensional finite-difference grid:

2i + i-1 (B17)
(zX)2

with Dirichiet boundary conditions on

q50 = 0,

= 0. (B18)
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Define the discrete Fourier transform on this domain with

ck>cbje (B19)

for integer k. The inverse transform is defined as

= qeN'. (B20)

Recall that C(x, y) = o(x)c(y)c(x, y), where the correlation function satisfies

c(x, x) = 1. A straightforward calculation shows that the Fourier transform of c

is

N
Ck I = + 1

-1

(1 cos2irl/N)2j öj (B21)

where 5, q is the Kronecker delta. Transforming back into physical space, and using

the fact that Ck k = 1, reveals that the normalizing coefficient is

N-i1 1_i

1=0 L )

(1 cos 21r1/N)2j . (B22)

summary

This section has been a detailed discussion of the implementation of the non-

diagonal covariances used in the text. This implementation was possible because of

the correspondence between a weighting operator and a weighting function. Given

the variance, correlation length scales, and the asymptotic spectral form of the co-

variance function, the weighting operator was implemented as the finite-difference

approximation to the appropriate differential operator. Because the weighting op-

erator was separable and local in space, its functional inverse (the covariance) could

be determined through the solution of a sequence of tridiagonal problems.

Note that the inner product of a covariance function with a field is a smooth-

ing operation. Conversely, the inner product of a weighting function with a field
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is a roughening operation. Thus, the differential operators corresponding to the

weighting functions may be referred to as "roughening operators."

The bell-shaped, or un-normalized Gaussian, correlation function, which is

commonly used in objective analysis (e.g., Roemmich, 1983), was intentionally not

used in this study. The bell-shaped correlation is very smooth, it is infinitely dif-

ferentiable; however, it is not invertible. To be precise, the inverse of a bell-shaped

covariance is a roughening operator of such severity that its domain excludes almost

all functions. If bell-shaped covariances are used, the penalty function cannot, in

general, be summed.

The development of the above implementation scheme was inspired by the

approach of Egbert et al. (1994), in which the convolution of a bell-shaped covari-

ance with a field, , was implemented by time-stepping a heat equation using

as the initial condition.1 The time-stepping method can be regarded as the itera-

tion of a local finite-difference operator on the field, in precisely the same form as

equation B15.

B.1.3. Numerical Convergence

Because the representer equations involve the response of the model/adjoint

equations to delta function forcing, it is not evident a priori that the solutions

obtained from finite-difference approximations will be accurate. A 2 x 2 representer

matrix for measurements at two widely separated sites was used to test for numerical

1Note that in Egbert et al. (1994), a representer based solver was used for their in-
verse problem. Because the representer algorithm does not require the use of weighting
functions, the non-invertability of the bell-shaped covariance was not an issue for their
calculations. Indeed, this can be regarded as a major advantage of the Euler-Lagrange
solvers over the direct minimization methods.
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convergence. The resolution in each direction was halved until the representer matrix

changed by less than 1%. This resolution was taken as the working resolution for

the calculations. Note that this resolution entirely depends on the model dynamics

and on the length scales of the covariance operators used in the calculation. Had

diagonal weights been used in the dynamics, the numerical solution would not have

converged because of the presence of delta-function singularities in the solution.

B.1.4. N'imerical Correctness

It is notoriously difficult to create sufficiently bug-free code for descent com-

putations with realistic ocean models (Navon et al., 1992b). If the forward and

adjoint operators are not the precise finite-difference adjoints of one another, the

gradient calculations for the descent computations will be in error. If the finite-

difference codes are derived from the continuous forward and adjoint equations, the

"continuous-adjoint" and "finite-difference-adjoint" gradients should differ only at

the level of truncation error; nonetheless, this difference can create havoc for descent

methods. It is unfortunate that descent methods are exceedingly sensitive to the

details of the state variables at the level of truncation error. Nonetheless, to create

correct and consistent solvers, it is necessary that the adjoint and forward operators

be adjoint to machine precision.

The adjoint properties were checked in two ways. For each operator L and

its adjoint L*, the adjoint property was checked directly,

(Lu) o v u o (L*v) = 0.0, (B23)

where 0.0 denotes zero at machine precision, and u and v were randomly chosen

vectors. The appropriate inner products, which depend on the domain and range

of the operator in question, are denoted with the o and o symbols. This test is
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a check on the individual operators; however, it is still possible to make a mistake

when preconditioning or convolving the fields with the weight operators. These

properties were checked by computing the Gateaux derivative in the direction of

the gradient. From the definition of the derivative, the following limit must hold

(Thepaut and Courtier, 1991):

J(u + a) J(u) = 1.0 (B24)urn
c-4O

where = vT(u). This too was checked to machine precision.

To insure the consistency of the representer calculations with the descent

calculations, the following identity was also checked in Chapter 2 (to machine pre-

cision):

J(Umin) = bTRb + bTR,WR,b. (B25)

This check insures that the direct sum of J at the minimum agrees with the repre-

senter sum. This property will fail if any of the following occur:

1. The covariances and weights are not seif-adjoint.

2. The covariances and weights are not operator inverses.

3. The forward and adjoint finite-difference operators are not finite-difference ad-

joints.

4. The forward and adjoint finite-different solvers are not operator inverses of the

finite-difference forward and adjoint operators.

No test can definitively reveal the absence of programming errors, but the depen-

dence of this test on so many properties makes it unlikely that an error would escape

undetected.
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B.2. The Nonlinear Planetary Geostrophic System

This section describes the numerical implementation of the model used in

Chapter 3.

B.2. 1. Numerical Grid and Difference Operators

An Arakawa A-grid (Arakawa and Lamb, 1977) was used to position the

variables laterally in spherical-polar coordinates. Boundary conditions were derived

by assuming that the physical boundary exists midway between grid-points at the

border of the computational domain.

The variables were positioned vertically on a "Lorenz" grid (Arakawa, 1988).

In this scheme, the water column is divided into a stack of layers in which horizontal

velocity, Bernoulli function, and layer thickness are defined. The diabatic velocity,

salinity, and depth are specified at the layer interfaces. By convention, the layers

are numbered from 1 to N going up the water column, and the layer interfaces range

from 1/2 (the bottom) to N 1/2.

Wherever possible, second-order centered finite-differences were used to dis-

cretize the equations. Finite difference operators were defined in terms of standard

differencing and averaging operators. For any variable defined on the grid, the

operators 6a-1 and are defined by

and

öaj = La
' (B26)

i+1/2 + i-1/2 (B27)
2



where the subscript i denotes whichever index corresponds to the a coordinate, and

defined by

a_1/2. A vertical averaging operator is also used in the model, it is

N
1- IijköOZij(k_1/2)Ok. (B28)

k=1

The bottom depth, liii, is equal to z13112.

are

and

Letting r0 denote the radius of the Earth, the components of the gradient

i+I/2 j 4i-1/2 j=
r0cosqLA

j+1/2 j-1/2öfr(I)jj =

The gradient, divergence, and curl operators are defined with

and

= (a',&)

V. U = + 1 ö(cosV)
cos

curlU =
co

5(cos çbU ),

for any scalar field, , and vector field, U = (U, V).

(B29)

(B30)

(B31)

(B32)

(B33)
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B. 2.2. Governing Equations

The discretized horizontal momentum equations are,

f! x u = VB + °Vb + FT/88z + V 6gzVu, (B34)

where ! is unit vector directed in the vertical direction and the subscripts {i, k}

are implied. The vertical momentum equation (hydrostatic balance) is discretized

as

zö9b. (B35)

Since w never appears alone, but only in the combination wz0, we let w = wz9, and

carry this at layer interfaces. Physically, w is the diabatic component of , the

vertical velocity. The layer-thickness equation (conservation of volume) is,

V (uöoz) + 9w = 0, (B36)

and the thermodynamic equation is

(K
FQ). (B37)

The salt conservation equation is

V. (uS89z) + 89(w°) = V (KH5OZVS) + (-9s + Fs). (B38)

Finally, the equation for the perturbation buoyancy is

b = --(p(9,S,°) p(e(),S07°)). (B39)
p0

The discrete streamfunction equation was obtained by vertically averaging the hor-

izontal momentum equation (B34) with the 1° operator (B28), and then applying

the finite-difference curl operator.
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B. 2.3. Reynolds Fluxes

As written above, the Reynolds fluxes are written in two forms depending on

their origin. The terms FT, F, and Fs are the vertical (diabatic) Reynolds fluxes

caused by the turbulent exchange of momentum, heat, and freshwater, respectively,

across the air-sea interface. The other Reynolds fluxes are caused by turbulent

motion in the ocean interior and are represented in terms of the large-scale property

gradients and turbulent diffusivities; these are the terms proportional to AH, KH

and K above. Each of these terms is discussed separately in this section.

One of the principal difficulties in using a model with a Lagrangian vertical

coordinate is the treatment of surface and bottom boundary conditions. In this

model, the surface and bottom are material surfaces along which potential temper-

ature is constant. The representation of the surface mixed layer is contained in the

definitions of the vertical Reynolds fluxes FT, F, and F5. The philosophy taken

here is that the detailed vertical structure of the mixed layer is inconsequential to

the general circulation (for caveats see Krauss, 1993), and each of these Reynolds

fluxes is given a simple vertical structure consisting of exponential decay with a

50m e-folding scale. Other parameterizations of the mixed layer would have been

possible (e.g., Bleck et al., 1989); however, the intended use of the model in an

inverse calculation made it highly desirable to use a parameterization which was a

continuously differentiable function of the layer interface depths. The specific forms

of these terms are as follows: the Ekman layer body force is discretized in total,
N 1

(öoFT/oz)k =
exp(uL.(k_l/2)) (

exP( (k_1/2))ezii(k_1/2)) (B40)

This peculiar-looking discretization insures two things: 1) that the vertically inte-

grated Ekman transport is correct, and 2) that the Ekman layer velocity is mono-

tonically decreasing with depth. The Reynolds flux for surface heating is
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F=23k exp([1((k_l/2) Zij(N_1/2))), (B41)
pocp

and the Reynolds salt flux is

jk = -exp(pzjjk). (B42)

Values of the constants are, = 50m, Po = 1025km m3, S 35psu, and

C = 4200J (°C kg)-'.

The terms for turbulent mixing of heat and salt down their mean gradients are

standard (e.g., DeSzoeke and Bennett, 1993). Since both temperature and salinity

are active tracers, a simple Fick's Law closure such as this is not formally justified

(Ch. 10 of Monin and Yaglom, 1965). Values of the turbulent diffusion coefficients

were K,r = 105m2/s and KH = 2 x 104m2/s.

Boundary Conditions

The solution method for these equations involves splitting the velocity field

into a vertical average and a remainder. As a consequence of the Boussinesq and

rigid-lid approximations, a streamfunction exists for the vertically integrated volume

transport. The no-slip and no-normal-flow conditions on the velocity field become

boundary conditions on the streamfunction. On each connected portion of the closed

boundaries, the streamfunction is constant and its derivative normal to the boundary

vanishes. The computational boundary conditions across a solid boundary at a point

indexed by i are

and

(B43)

= 0, (B44)
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where 'I' denotes streamfunction, and C is its constant value on the boundary seg-

ment. The second-order accurate boundary condition at a rigid boundary is simply

= wi+1/2 C.

On open boundaries, the streamfuiiction and its normal derivative must be

specified. The computational boundary conditions permit free choice of 'i-1/2 and

across an open boundary. For simplicity, the experiments of Chapter 3 were

all conducted in a closed domain.

A second consequence of the rigid-lid approximation is that no boundary

conditions on the Bernoulli function, B, are needed. At lateral boundaries, the

gradients of B and buoyancy, b, in the momentum equations are approximated with

one-sided differences.

A reflection condition is used to provide computational boundary conditions

for the horizontal divergence operator at closed boundaries. This guarantees global

conservation of volume and salt for each layer in the absence of diabatic mixing and

air-sea exchange.

The ocean surface and bottom are material surfaces. For computational

purposes they are also stationary isothermal surfaces, so an insulating condition is

applied in the form of w = 0.

B. 2.5. Weighting Functions

The discussion of Section B.1.2 concerning the correspondence between co-

variances, weighting functions, and weighting operators applies to the nonlinear

planetary geostrophic model as well. In contrast to the linear experiments in Chap-

ter 2, the nonlinear calculations of Chapter 3 were based on descent methods alone.
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Therefore, it was not necessary to compute the inner product of a covariance with

a field for the experiments in Chapter 3.

The weights used in Chapter 3 were chosen to insure that the residual fields

would have square-integrable second derivatives. Each inner product of a weighting

function with a field was implemented as a differential operator acting on the cor-

responding field. For example, the inner product of W with the three-dimensional

field e(x) was defined as

0D f (i + L01.1.V2V2 +e4) (B45)

where cr(x) is the variance of e, and N is a normalizing coefficient. Lcorr is the

horizontal correlation length scale, and e is a vertical correlation temperature scale.

Let c denote the correlation function of the covariance corresponding to the

weighting operator in equation B45. As a consequence of the irregular domain shape,

the function c is not separable, and the expression for the normalizing coefficient is

not as simple as in equation 822 in Section B.1.2. The correct expression for the

normalizing coefficient would involve a sum of the eigenvalues of the finite-difference

Laplacian in spherical polar coordinates for the irregular computational domain.

Rather than carry out this computation, the normalizing coefficients in Chapter 3

were computed by approximating the computational domain with a rectangular

domain in cartesian coordinates. Therefore, the correlation at zero separation was

not precisely unity; however, a synthesis of the exact correlation, for a test problem,

indicated that the errors in this approximation should be less than 10%.

B. 2.6. Numerical Correctness

In order to implement the descent methods described in Chapter 3, it was

necessary to construct the finite-difference adjoint to the tangent linearization of



the finite-difference model. Once again, the adjoint was defined with respect to

the discretized form of the standard inner product in spherical polar coordinates

(including boundary conditions).

The numerical correctness of the adjoint code was tested by directly check-

ing the adjoint property for each linearized model operator and its adjoint (as in

equation B23). Furthermore, the full adjoint code, which is used to compute the

gradient of the cost function, was checked by computing the Gateaux derivative in

the direction of the gradient (equation B24). A further check of the minimization

and gradient software was accomplished by performing a line-minimization in a ran-

domly chosen direction, and then checking that the gradient at the minimum was

perpendicular to the search direction.

B. 2.7. Discussion

With any numerical model, a number of decisions must be made about the

representation of the continuous equations with respect to the issues of global vs.

local accuracy, and conservation laws or symmetries obeyed by the continuous equa-

tions. This subsection addresses a number of these issues in the context of the model

described above.

pressure-gradient split

The pressure gradient force is split between the two terms VB and °Vb in

this system. Figure 5.1 illustrates the contribution of these two terms to the zonal

pressure gradient for a typical point in the middle of the North Pacific. It is clear that

these terms are relatively large and tend to cancel over much of the water column.

A similar split in the pressure gradient force has been studied in sigma-coordinate

models (Mesinger, 1982; Haney, 1991; Beckmann & Haidvogel, 1993).
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One consequence of truncation in the pressure-gradient split is that a buoy-

ancy field which is a function of depth alone can give rise to erroneous currents.

Imagine a configuration of layer depths and salinities which are arranged so that

no horizontal gradients of buoyancy exist. The exact solution of the continuous

equations has zero baroclinic velocity; however, because of vertical and horizontal

truncation error, the numerical representation generates currents. The present situ-

ation is somewhat different from that in sigma coordinate models since the slope of

the coordinate surfaces does not depend directly on the bottom slope; nonetheless,

the errors can still be significant.

Following Phillips (1957), a reference profile of buoyancy was subtracted from

the total buoyancy; the symbols B and b used above denote perturbation Bernoulli

function and buoyancy. The reference profile is given by

bref = --p(e(°),S0,°)), (B46)
Po

where the reference potential temperature profile EJ(z), was an exponential function

with a 750m e-folding scale. It can be shown that subtracting this reference profile

from the buoyancy does not affect the velocity field in the continuous formulation

of the model. In contrast, the velocity field of the numerical model is significantly

altered by removing the reference profile.

coordinate intersection

Coordinate intersection can be problematic for layer models in a number of

different ways. First, in time dependent models the layer surfaces can intersect

and produce negative layer thickness; this can be overcome by the judicious use

of positive-definite advection schemes (e.g., Smolarkiewicz, 1983). Second, some

provisions must be made for computing pressure gradients at the boundary where

the coordinate surfaces intersect the top or bottom material boundary; obviously



sigma coordinates hold the advantage for this problem, but many approaches are

possible when a Lagrangian coordinate is used (Bleck, 1974). Third, the vertical

coordinate may be strongly coupled to thermodynamic processes at the ocean surface

(Bleck et al., 1989).

Since the model described here was intended for use in a steady (time inde-

pendent) inverse calculation, the problem of layer intersection is somewhat different

from that in a time dependent model. Negative layer thicknesses are unphysical,

but since the constraint of positive layer thicknesses is a convex constraint, standard

methods can be used to insure that the layer thicknesses remain non-negative in the

inverse problem.

The top and bottom layer interfaces of this model coincide with the oceanic

surface and bottom. The reason for treating the top and bottom this way was to

avoid complicated extrapolation formulae for calculating the velocity on the material

surfaces (Bleck, 1974); implementations of such extrapolations would use "if-then"

statements, which would make the penalty function non-differentiable with respect

to the layer depths. Since layers never intersect either the top or bottom surfaces,

the gradient of the Bernoulli function is always well-defined.

cross-isobath flow

As stated in Chapter 3, the vertically integrated vorticity equation contains a

vortex stretching source term from the cross-isobath baroclinic flow. If the buoyancy

is a function of z alone, or if the bottom is flat, then this vortex stretching source

term is identically zero in the continuous formulation of the model.

In the finite-difference form of the model, the vertically integrated vorticity

equation is derived by summing over the thickness-weighted momentum equations

vertically, and then applying the finite-difference curl operator to the equations.
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Because of truncation error in the horizontal finite-difference operators, the following

equality is not satisfied:

V x Vi = V X (B47)

where and i are any two fields defined on the horizontal grid. A consequence of

this error is that the baroclinic vortex stretching term in the barotropic vorticity

equation is nonzero in the above mentioned cases, i.e., when the bottom is flat and

when the buoyancy is a function of z alone. This is an error in the net bottom

pressure torque.

Following Arakawa and Lamb (1977), prognostic atmospheric models are usu-

ally designed to eliminate this spurious source of vorticity (Arakawa, 1988). The

recent work of Beckmann and Haidvogel (1993) showed that there may be a trade-

off between local accuracy and global conservation in such schemes; they tested

two "vertically integrated pressure gradient"-conserving schemes in a sigma coor-

dinate model, and found that both methods performed worse than the original,

non-conserving, pressure gradient formulation.

In order to asses the quantitative level of truncation error in the model, two

experiments were conducted in which the continuous formulation of the model pre-

dicted zero barotropic (depth integrated) flow. In both experiments, the erroneous

barotropic flows were a small fraction of what would be caused by the wind-stress

curl.

baroclinic boundary layers

As discussed in Pedlosky (1969), and further in Pedlosky (1979), baroclinic

boundary layers have a structure which differs from the barotropic boundary layer

structure. The important point is that the vertically averaged flow has a particular

boundary layer structure, a Munk (1950) layer in the present model, while the



191

the flow at any particular depth need not have the same boundary layer width.

In particular, the baroclinic boundary layer can be narrower than the barotropic

boundary layer.

The numerical grid is not fine enough to permit the frictional term to sig-

nificantly enter the baroclinic momentum balance. The baroclinic boundary layer

scales like
/ \1/2
(AH \bclf) (B48)

and north of approximately 1O°N, Lb is less than the resolution of the finite-

difference grid. Therefore, the frictional balance is not obtained on the grid. Con-

sequently, the baroclinic velocity was calculated by not including the lateral friction

term.

To verify that the frictional term could be safely excluded in the baroclinic

momentum equations, numerical experiments were conducted by solving the ellip-

tic equation for the (unapproximated) baroclinic velocities. A comparison of the

true velocity field with the approximated baroclinic velocity field showed that the

frictional terms could be neglected outside of a several degree band centered on the

equator. Based on these considerations, the frictional terms were excluded from the

baroclinic momentum equations in the experiments reported in Chapter 3.

bottom topography

Previous investigators (e.g., Sarkisyan, 1977; Sarmiento and Bryan, 1982; and

Fujio and Imasoto, 1991) have found that it is difficult to produce realistic estimates

of ocean circulation when hydrographic data is used to estimate the cross-isobath

baroclinic flow. Small inaccuracies in the the alignment of the topographic gradient

relative to the cross-isobath baroclinic flow can generate vortex stretching which is

much larger than the wind-driven Ekman pumping. The origin of the unrealistic flow
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is attributed to uncertainty in the large-scale hydrographic fields, and to uncertainty

in the bottom topography.

The boundary condition of no-normal-flow should hold point-wise at the

ocean bottom; however, the equations for the large-scale flow are valid only on

certain length scales. Bogden (1991) pointed out that the no-normal-flow boundary

condition on the large-scale flow contains an implicit spatial average over non-linear

terms. In analogy with the conventional Reynolds averages, the product of spatially

averaged fields may differ from the spatial average of the product.

A similar problem has been appreciated for some time in the meteorological

community. Wallace et al. (1983) observed systematic errors in geopotential height

predictions in an operational weather prediction model. Based on the hypothesis

that the small-scale (unresolved) circulations act as a cap over small-scale topo-

graphic variations, Wallace et al. (1983) experimented with "envelope" orography.

They were able to significantly reduce systematic model errors, thus supporting the

contention that the large-scale flow only "feels" the tops of the large-scale topogra-

phy.

Small-scale, topographically trapped, circulations in the atmosphere are dii-

ferent from those in the ocean, owing to the absence of latent energy exchanges

within the latter. In the present model, the topography was smoothed by convolv-

ing the original topography with a two-dimensional Gaussian filter with a 500km

length scale.
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APPENDIX C. Condition Number Estimates

C.1. Introduction

This Appendix presents the technical material concerning the condition num-

ber estimates alluded to in the text. While this material may be too detailed for the

general reader, it is hoped that the methods used herein will prove helpful to others

wishing to extend upon the calculations in Chapters 2 and 3. The methods used

in this appendix are all based on the analysis found in Pedlosky (1992), in which

solutions of the linearized planetary geostrophic system are constructed by using a

modal decomposition in the vertical.

The equivocal results of the descent calculations in Chapter 3 suggest a closer

look at the conditioning of the system. The "conditioning" of the penalty function

is determined by the condition number, defined as the ratio of the largest eigenvalue

to the smallest eigenvalue, of the Hessian of the penalty function. Recall that the

Hessian is the matrix of second derivatives of the cost function, with respect to the

state variables.

For example, if u denotes the (vector) state variable, and J(u) denotes the

cost function, then

S(u) auouT
(u) (Cl)

is the Hessian of T. The Hessian defines a family of multidimensional ellipsoids in

the state space, the surfaces of which are normal to the cost function gradient at

the point u. Note that if the cost function is quadratic in u, then the Hessian is

independent of u, and the ellipsoids defined by the Hessian coincide with isopleths
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of the cost function surface. The condition number of the Hessian can be interpreted

as the ratio of the lengths of the major and minor axes of the ellipses defined by the

Hessian.

As mentioned in Chapter 2, the condition number of the Hessian controls the

convergence rate of the descent algorithm. This is generally true, whether the un-

derlying descent method is steepest descent, conjugate gradient, or a secant method

(Luenberger, 1974). The condition number measures the narrowness of the steepest

"valley" on the penalty function surface. Like S itself, if the penalty function is

quadratic in u, the condition number is independent of U; otherwise, it may vary

as a function of u, even becoming negative or infinite if the penalty function is not

convex.

To illustrate these concepts, Figure 5.2 shows examples of penalty functions

when u is a two-dimensional vector. As the dimension of u increases beyond two

or three, it is increasingly difficult to visualize the penalty function surface, but no

qualitatively different phenomena occur. The figure shows four cases: a well condi-

tioned, a poorly conditioned, a non-convex, and a non-convex, poorly conditioned

penalty function. For each case, a vector pointing in the steepest descent direction

is also plotted. When the Hessian is ill-conditioned or non-constant, the plots show

that the steepest descent direction is not necessarily directed towards the global

minimum of the penalty function.

In this appendix, an estimate is made of the condition number of the Hessian

of the penalty function from Chapter 3, Section 3.5. The condition number esti-

mates are based on a linearized planetary geostrophic model. The model domain is

approximated by a rectangular fl-plane of constant depth. As a consequence of the

constant depth assumption, the baroclinic and barotropic dynamics are completely

decoupled; thus, they are considered separately in the condition number estimates.
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The panels contour four different penalty functions to illustrate the effects of poor
conditioning and non-convexity of the penalty function.
Well conditioned: J(ui,u2) = (u1 + 0.5)2 + (u2 - 0.5)2 + 1. Poorly conditioned:
J(u1, u2) = (u1 + 0.5)2 + (u2 - 0.5)2 + 5(u1 + n2)2 + 1. Non-convex: J(u1, u2) =
(u1 cos(3(ui + 0.5)) + 0.5)2 + (u2 - 0.5)2 + (u1 + u2)2 + 1. Non-convex and poorly
conditioned: 1T(u1, u2) = (u1 cos(3(uj + 0.5)) + 0.5)2 + (u2 - 0.5)2 + 5(ui + u2)2 + 1.
The global minimum is indicated with the diamond in each panel, and the steepest
descent direction at the point marked with the astericks is shown with the arrow.
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The next section presents a condition number calculation for a simple model

in one space dimension. The example is presented in detail to illustrate the methods

which are used in Sections C.3 and C.4.

C.2. One-Dimensional Example

Consider the model provided by the steady linear advection equation on the

interval [O,L]:

and

= 0, (C2)

u(0) = 0, (C3)

where u(x) is a continuous, differentiable, real-valued function of x E [0, L]. For the

inverse problem, assume that there exists a single measurement of u at the point

e [0, L], i.e.,

u() =

is observed.

(C4)

We wish to pose the inverse problem to obtain the maximum likelihood esti-

mate of u when error is admitted in equations C2 through C4. Assume that errors

in C2, the model, have zero mean and covariance C(x, y), for x, y e [0, L]. As-

sume that the error in C3, the boundary condition, has zero mean and variance o.

Assume that the error in C4, the datum, has zero mean and variance .2 Assum-

ing that the errors are normally distributed, and uncorrelated between the model,

boundary conditions, and datum, the maximum likelihood estimate for u minimizes

the penalty function
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J(u)
IL

L

= uxJ W(x,y)udxdy
0 0

u2(0) (u()_i)2
(C5)+ 2+

cro a2

The weighting function W(x, y) is the functional inverse of the covariance C(x, y),

as per the discussion in Appendix 4.3.

A finite-difference approximation to the penalty function C5 is

Ni Ni
\_ 711 m+i Um LxJ(u) L L

(Xn,Xm)
x Lx

n=0 vn=0

u (ufl2

a0
(C6)

where zx = L/N, x = nzxx, and = Mx. The Lx terms in C6 obviously cancel;

however, they are retained to emphasize the discretization of the integrals in C5.

For convenience, we shall use the notational convention that summation occurs over

repeated indices. Using this convention, define Jj, and Jciata as follows:

and

= (ui Un)W(Xn,Xm)(ttm+i urn), (C7)

u
Jb.c. = -, (C8)

a0

(UM
Jdata

a2
(C9)

so that J = Jiyn + sJjc + Jdata.

To determine the condition number of the Hessian of J, diagonalize lj by

transforming from u to ü with

2iri
Uk u3 exp(-1-jk), (ClO)



i.e., Fourier transform u (recall the summation convention). The inverse transform

is defined by

1 2ri7ukexp(-7--jk). (Cli)

Note that j and k range from 0 to N 1; the letter i denotes ./T.

Let S denote the Hessian of J(u), and let S denote the Hessian of J(ü). For

any matrix A, let (A) m denote the entry at the m' column and n1 row of A. The

N x N matrices S and S are related by

()n m = (P)k(S)k i(P)im, (C12)

where P is an orthogonal matrix, (P), k = N1/2 exp(jk), and superscript T

denotes Hermitian transpose. Thus, the eigenvalues of S are equal to the eigenvalues

of S divided by N, and the condition number, which is the ratio of eigenvalues, is the

same for each matrix. In other words, the transformation of the Hessian affected by

Fourier transforming the state variable does not alter the conditioning of the penalty

function. Therefore, the analysis may proceed by considering the eigenvalues of S.

Define Sdm, 5b.c., and data to be the components of the Hessian in corre-

spondence with C7 through C9. Differentiating the components of J(ü) twice with

respect to ü yields:

2irn
(&Y) m = tI(i cos m, (C13)

2
m = (C14)

2 2irz 2iri
(data)n m

2N2
exp(--Mm) exp(----Mn). (C15)

To obtain the above, it was assumed that the Fourier transform of W is Wk: =

, i.e., the weighting function is homogeneous. m is the Kronecker delta,

equal to 1 if n equals m, and zero otherwise.
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To estimate the condition number of S, note the following:

- Sdyn is diagonal, hence its eigenvalues can be read off.

2. Sb.C. is a rank-i matrix, i.e.,

Sb.c. 27\12
zzT, (C16)

0o

where z is the N x 1 vector (1. .

3. Scjata is a rank-i matrix, i.e.,

2 TSdata 2N2ZZ , (C17)

where z is the Nx 1 vector with elements z = exp(Mn), and 0 < n, lvi

N 1. Note that superscript T denotes the Hermitian transpose.

Theorem 8.6.2 of Golub and VanLoan (1989, p.462) can be used to bound

the eigenvalues of systems of the form A = D + pzzT, where D is an N x N

diagonal matrix, p is a scalar, and z is an N x 1 vector. Essentially, the theorem

states an interleaving property for the eigenvalues of A. Let d and X, denote the

ordered eigenvalues of D and A, respectively, where d0 < d < ... < dy and

< ... <)N1. For p> 0, the following relation between the d and X is

obtained:

i. for i=0,...,N-2:

2. fori=N-1:

d <A, <d11, (C18)

d, < A, <d2+pzTz. (C19)
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Based on this relationship it is possible to put the following bounds on the condition

number ic of A:

dN_1 dN_1 + pzTz<k< (C20)
d1 d0

The theorem requires that the N eigenvalues of D be distinct; we shall assume that

this is the case for Sdyn.

Let Sdyn be the diagonal matrix D mentioned in the theorem. It is evident

from C13 that d0 0; therefore, the upper bound on ic in equation C20 is infinite.

An improved lower bound on A is necessary.

Before improving the lower bound on A0, it is instructive to consider the

lower bound on #c, namely, dN_l/dl. This lower bound on the condition number is

determined entirely by 8d Based on equation C13, we have the following bound:

or, for large N,

WN/2 2
Ic' (C21)

ui (1 cos(2ir/N))

WN/2 N2</c.
w1 2ir2

(C22)

It has been assumed that tlk, the transformed weighting function, is maximum at

k = N/2 (the two-gridpoint wave).

Let ic denote the lower bound on ic. Evidently, ic_ is the product of two

terms, /c_ = IcWIcd:

= This term is a consequence of the spectral form of the weighting

function. If it is assumed that the spectral form of the prior model covariance

is proportional to k for large k, then is proportional to N. Thus, as the

spectral roll-off rate of the model covariance is increased, the condition number

becomes worse.
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2 lcd
2 This term is a consequence of the differential operator ap-(1-.cos(2ir/N))

pearing in the dynamical model, namely 5/Ox. As shown in equation C22, for

large N, ic,,, is proportional to N2

This interpretation of ic_ is applied to the linear planetary geostrophic system in

sections C.3 and C.4, below. Note that ic_ is a lower bound on the condition number,

and it is independent of the constraints provided by the boundary conditions or data.

A trivial extension of the above-mentioned theorem results in a lower bound

on ) (hence, an upper bound on ic), as follows. It is proved in Golub and Van-

Loan (1989) that the eigenvalues of D + pzzT satisfy f()) = 0, where the function

f(A) is given by

f()=1+pd. (C23)

Note that f is monotone between its poles, and recall that d0 0 and z2 = 1 in

the present example calculation. For \ E (0, d1) the function f,, given by

(Nl)pf)=1+ d\ (C24)

is an upper bound on f. Because both f and f, are monotone in the interval (0, d1),

and f(\) f(,\), we have the following inequality:

0 d. (C25)

e (0, d1) is the smallest root of f,, namely,

d2 ±Np [i (i 4pd2 1/21

(d2 + Np)2) j. (C26)

For clarity, Figure 5.3 shows the relationship between f(A) and

Let ic+ denote the upper bound on ', '+ = (dN_1 + pzTz)/.\i. It is possible

to derive asymptotic expressions for A and '+ if the number of grid-points N is
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FIGURE 5.3. Eigenvalue Bound.

The functions f and f, are compared (equations C23 and C24). In this example,
d1 = 4 and d2 = 8. It can be seen that f(x) has the desired property, namely,
f(x) f(x) for x e (0,d1).
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large. The notation y = 0(x) will be used to indicate that the limit y/x is nonzero

and finite as x * oo. For large N, a consistent asymptotic expression for ) is

= d1N'[l + 0(N1)]. (C27)

It is interesting to note that this expression is independent of p to lowest order. The

0(N') term is proportional to Nd1/p.

With this bound on the smallest eigenvalue of the system A = D + pzzT,

the following upper bound on the condition number of A is obtained, asymptotic

for large N:

= N[,c_ + Np/di][1 + 0(N')]. (C28)

Note that it has been assumed that 1z212 = 1 and d0 = 0.

The expression (C28) for K is in terms of N, #c, and the ratio Np/di. Let us

evaluate this expression to estimate the condition number of Sdyn + 8b.c., a diagonal

plus rank-one matrix. A little algebra, with careful book-keeping of powers of N,

reveals that

Np/di
UdyflLLcorr 1

N2 (C29)a (2ir)2

which is an 0(N2) number for reasonable choices of the prior model and bound-

ary condition variances (Lcorr is the correlation length scale of the model forcing

covariance). From equation C22, it is evident that ic_ = 0(N2), where p is the

asymptotic spectral roll-off rate of the prior model forcing covariance. Thus, for

large N,

Ntc_. (C30)

The condition number estimate for Sdyn + 8data is identical.



We may summarize the asymptotic bounds from equations C22 and C30 as

ç (C31)

where t = N2N/2/(41r2thl). Although these bounds are not very tight, and they

are only asymptotic for large N, they do clarify what aspects of the inverse problem

determine the conditioning of the penalty function.

To conclude, for this relatively simple one-dimensional example, it is possible

to obtain upper and lower bounds on the condition number. The lower bound is

determined independently of the boundary conditions or data, and it is obtained by

a diagonalization of Sdyn An upper bound on the condition number of S, which

accounts for either the boundary conditions or the datum, is simply N times the

lower bound. Given that N is large, the upper bound is not especially useful;

therefore, no attempt was made to find an upper bound which accounted for both

the boundary conditions and datum.

In the following sections, only the lower bound on the condition number is

computed. The nonzero eigenvalues of the appropriate operators are estimated by

considering the dimensions of the domain and the grid resolution.

C.3. Barotropic Equation

In this section, the condition number of the Hessian associated with the

barotropic vorticity equation is estimated. It is assumed that the model domain

can be approximated with a constant depth, doubly periodic /3-plane. As in the

above condition number estimates, it is assumed that the weighting function is

homogeneous. With these assumptions it is possible to diagonalize the Hessian

associated with the barotropic vorticity equation and read off its eigenvalues.
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Recall the barotropic vorticity equation (3.10), from Section 3.2. Neglecting

the terms which do not depend on 'I', the barotropic vorticity equation is

iJJ = AHV V2V. (C32)

As in Section 3.2, 'I' is the streamfunction for the barotropic transport, /3 is the

planetary vorticity gradient, AH is the lateral friction coefficient, and H is the

bottom depth. As in Chapter 3, define the residual of C32 as

AV. V2 Vii, = x; (C33)

therefore, the contribution of the barotropic vorticity equation to the penalty func-

tion is

= X 02 WX 02 X (C34)

The symbol 2 denotes the inner product over the computational domain, and W

is the weighting function for this equation.

Let N and N denote the number of gridpoints in the zonal and meridional

directions, respectively, and let L = NLx and L = N/y denote the physical

dimensions of the domain. As above, it is possible to diagonalize the Hessian by

Fourier transforming the streamfunction ii' and the weighting function WX. The

method is identical to that used in the one-dimensional example; however, now the

transforms are two-dimensional. In terms of the numerical and physical parameters,

the lower bound on the condition number of the Hessian is

[1

/'Lcorr\4 / Lx
-= 2x) i+())j

7Nx)2

[1+
7LMUk\6 (

2\

X
2 2x) + ) ) j.

(C35)
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Lcorr is defined as the correlation length scale of the prior error covariance for the

vorticity equation (the inverse of the wavenumber at the half-power point of the error

covariance power spectrum). LMUflk is 27r times the length scale for a Munk (1950)

western boundary current:

1/3

LMunk=27r(j) (C36)

Note that equation C35 is an approximation in which terms proportional to
LMUflk/Lx have been neglected.

The expression for ic (C35) is the product of two dimensionless expressions:

1. [i + ()4 (1. + This term is a consequence of the weighting func-

tion. It is assumed that WX 2 x is proportional to [1 + LOrrV2V2IX.

2. 2 [i + (;k 6 (1 + () This term is a consequence of the differ-

ential operators in the streamfunction equation.

Using the estimates appropriate to the calculations in Chapter 3, namely,

that the correlation scale is five times the model resolution, and the Munk boundary

current length scale is equal to the model resolution, we obtain

106. (C37)

Notice that as the correlation scale becomes larger, Lcorr/L.X increases, and the con-

ditioning of the system becomes worse. Thus, attempts to increase the smoothness

of the inverse solution (by increasing the correlation scale) will increase the condition

number of the system. This result is intuitively reasonable: as the correlation scale

of the errors becomes larger, the model equations become less linearly independent

at adjacent gridpoints.
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C.4. Baroclinic Equation

It is possible to estimate the condition number of the Hessian associated

with the baroclinic dynamics by following the same general procedure as above: one

makes a modal expansion in the vertical, and Fourier transforms in the horizontal.

In order for this procedure to succeed in diagonalizing the Hessian, we must once

again assume that the domain is a rectangular /3-plane of constant depth.

As in Chapter 3, we are interested in the case when errors are admitted in

the continuity and heat equations. For simplicity, salinity is neglected and the mean
profile, , is taken to be constant. The ocean depth is given by H = where

00 = 0T 0B

Assume that the prior model forcing covariance is homogeneous and separa-

ble. Let k and I be horizontal wavenumbers, and let integer m index the vertical

modes. After making the Fourier/modal expansion, the Hessian matrix is block
diagonal with the following two-by-two blocks arranged on the diagonal:

Sk1mL'lmQk1mLk1m, (C38)

where T denotes Hermitian transpose. The spectral forms of the model operator
and weight are defined as

/ c,mik mr\
Lk 1 m = f 2 , (C39)i(rL) ij

and

/we 0I kim
Qklm=( , (C40)

11 TAll"kim
respectively. The hat () denotes the transform ofa variable; otherwise, the notation

is identical to that used in Chapter 3. The phase speed of the mtImode baroclinic
Rossby wave is



= H2
(C41)p f29rn2ir2

The barotropic mode corresponds to m = 0. Because of the importance

of lateral friction to the barotropic dyanmics, the barotropic mode was considered

separately in the previous section. Henceforth, the modes for which m > 0 are
considered.

As mentioned, the Hessian S is block diagonal, with the two-by-two blocks

Sk m arranged along the diagonal. Therefore, the maximum and minimum eigen-

values of S, which determine its condition number, are given by

and

max ra1 m' (C42)

.Amin = mm m (C43)kim

where t i m and i m are, respectively, the maximum and minimum eigenvalues

of the two-by-two matrix Sic t m. Given the physical and numerical parameters of

the planetary geostrophic model used in Chapter 3, the eigenvalues of Sk i m can be

computed.

The eigenvalues of S t m are monotonic functions of wavenumbers k and 1;

therefore, the eigenvalues can be extremized with respect to these parameters. The
functional dependence of the eigenvalues on the vertical mode number m is more

complicated. Figure 5.4 plots the maximum and minimum eigenvalues of Sk i m

a function of in. We seek the maximum and minimum eigenvalues over the set of

possible k, 1, and m; the eigenvalues in the plot have already been extremized with

respect to k and 1.

The minimum value of m is approximately 10_is, and the maximum value

of A1 is approximately iO. Thus, a lower bound on the condition number of the
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m, vertical mode number

MINIMUM EIGENVALUE

0 5 10 15 20
m, vertical mode number

FIGURE 5.4. Hessian Eigenvalues.

The maximum and minimum eigenvalues of the Hessian for the baroclinic equa-
tions are plotted. The maximum eigenvalue occurs for m = 20, and the minimum
eigevalue has m = 6. The condition number of the non-preconditioned Hessian is
approximately 1023.
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Hessian is 1023! This number is larger than the working range for double precision

arithmetic on a 64 bit machine, which is approximately io', and hence the penalty

function with Hessian S cannot be minimized on such a machine.

In the calculations reported in Chapter 3, preconditioning operators were

used which: 1) rescaled, and 2) spatially averaged the state variables. The rescaling

operation had the single largest effect on the convergence rate of the descent cal-

culation, and it is relatively easy to estimate the impact of the rescaling operator

on the Hessian. In Figure 5.5 are plotted the maximum and minimum eigenvalues

of S' = DSD, where D is a diagonal rescaling matrix. The rescaling matrix was

determined so that the largest element of the rescaled Hessian was unity.

The lower bound on condition number of the rescaled system is approximately

i09. This is an enormous improvement over the original system, and it is consistent

with the finding that non-preconditioned descent methods could make no progress

on the penalty function proposed in 3.5 of Chapter 3.
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FIGURE 5.5. Preconditioned Hessian Eigenvalues.

The maximum and minimum eigenvalues of the preconditioned Hessian are plotted.
The preconditioner was chosen to rescale the state variables (z and w0) to make the
largest entry in the Hessian unity. With this preconditioner, the condition numberof the Hessian is approximately iO.




