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This report presents a characterization of the quantum me- 

chanical analog of the Gibbs canonical density. The approach is 

based on a method developed by D.S. Carter for the case of classical 

statistical mechanics, which considers composite mechanical sys- 

tems composed of mechanically and statistically independent com- 

ponents. After a brief introductory chapter, Chapter II outlines how 

the case of classical mechanics may be described in terms of the 

usual measure theoretic treatment of probability. The necessary 

statistical background of quantum mechanics is then discussed in 

Chapter III, relying on the classic treatment of J. von Neumann and 

the more recent work of G. W. Mackey. The basic idea of probability 

measure in quantum mechanics differs from that in classical measure 

theory, for the measure is defined on a non- Boolean lattice consisting 

of all closed linear subspaces of a Hilbert space. Because of this 

difference, the classical theory of product measures does not apply. 



Chapter IV presents a detailed treatment of probability measures for 

composite quantum systems. 

The analog of the Gibbs canonical density is characterized in 

Chapter V, by considering a large collection Q of noninteracting 

quantum systems, each of which is in an equilibrium statistical state. 

The set Q, the Hamiltonian operator for each system, and the 

equilibrium states are assumed to have certain properties which are 

given as axioms. 

The axioms require each Hamiltonian operator to have a pure 

point spectrum. It is assumed, without loss of generality, that the 

lowest characteristic value of each Hamiltonian is zero. The set Q 

is assumed to be closed under the formation of pairwise mechanically 

independent composite systems. This implies that the set eel of all 

Hamiltonian spectra is closed under addition. It is further assumed 

that GU is closed under positive differences. The final requirement 

on the set Q is that it contain certain "harmonic oscillators" . 

More precisely, for each positive X e , Q must contain a system 

whose Hamiltonian has the spectrum {nX : n =0, 1, 2, ' 1. The usual 

assumption is made that each density operator is a function of the 

system Hamiltonian. Finally,it is assumed that for each composite 

system in Q, with two mechanically independent components, the 

component systems are statistically independent. 

It is shown that these assumptions imply that each member of 



Q is in a canonical state at a temperature which is the same for all 

systems. The possibility of zero absolute temperature is included. 
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CANONICAL STATES IN QUANTUM STATISTICAL MECHANICS 

CHAPTER I. INTRODUCTION 

Statsitical Mechanics is the theory of matter in which each 

material object is regarded as a mechanical system, composed of 

vast numbers of particles or "molecules" . The method of statistical 

mechanics is to suppose that at each instant of time the mechanical 

state of the system is not precisely known, but is "randomly distrib- 

uted" over many possible values. More precisely, it is supposed 

that there is defined, at each time, a probability measure on the set 

of mechanical states. This probability measure may be called the 

statistical state of the system. It is through the statistical state that 

the essentially "non- mechanical" properties of matter, such as tem- 

perature and entropy, are brought into the theory. 

Now the direct experimental observation of instantaneous 

mechanical states of a piece of matter is an entirely hopeless task, 

on practical grounds alone. The direct observation of statistical 

states is of course equally hopeless. It is therefore necessary, as 

part of the theory of statistical mechanics, to pick out appropriate 

probability measures, either by direct ad hoc hypotheses as to their 

forms, or by other more or less plausible postulates. In the case of 

classical equilibrium statistical mechanics, where the statistical 

state is independent of time, J. Willard Gibbs [ 6, Ch. 25] 
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discovered that a particularly simple form for the probability meas- 

ure served to explain the basic thermodynamic properties of matter 

in equilibrium. Gibbs called these special probability measures 

"canonical" , and they are still referred to as "Gibbs canonical 

states" (see Chapters 2 and 3, respectively, for the form of the 

canonical states in classical and quantum statistical mechanics). 

The Gibbs canonical states met with such complete success 

that many scientists felt there should be a deeper justification for 

them, beyond the brute fact that they work. There now exist a num- 

ber of "derivations" of the canonical states, all based on fairly plau- 

sible statistical assumptions. An especially appealing justification, 

based on the statistical independence of noninteracting systems, 

has recently been pointed out by D.S. Carter [4] in the classical case 

(see also R. Kurth [ 14, p. 129] ). The essential idea is as follows: 

Suppose that with each mechanical system there is associated a def- 

inite class of equilibrium states. Consider a mechanical system 

composed of two separate, noninteracting , component systems. 

When this composite system is in an equilbirium state, each com- 

ponent system is assumed to be in an equilibrium state. Finally, 

it is supposed that since the component systems are mechanically 

independent (i. e. noninteracting) they are also statistically inde- 

pendent, so that the knowledge of an event in one component does not 

affect the probability of an event in the other (in the language of 
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measure theory, this means that the probability measure representing 

the state of the composite system is the direct product of the measures 

representing the states of the component systems). These assumptions 

essentially characterize the canonical states (see Chapter 2). 

The purpose of this dissertation is to extend the above charac- 

terization of the Gibbs states from classical to quantum statistical 

mechanics. To provide the necessary background, Chapter 2 is de- 

voted to the classical case. Following a brief introduction to the 

general theory, the canonical states are defined. The characteriza- 

tion is then stated precisely, and compared with two better -known 

"derivations" - the method of Khinchin and the maximum entropy 

method. Chapter 3 introduces the basic structure of quantum statis- 

tical mechanics. Here the basic notion of "probability measure" dif- 

fers markedly from that of classical measure theory, for the meas- 

ure is now defined on a non - Boolean lattice consisting of all closed 

linear subspaces of a Hilbert space, rather than a Boolean cr- algebra 

of sets. Because of this difference, the classical theory of product 

measures does not apply, and the necessary new theory seems as yet 

incomplete in the literature. Chapter 4 therefore presents a detailed 

treatment of composite quantum systems, where the probability 

measure is defined on the tensor product of Hilbert spaces. 

The analogies between classical and quantum statistical me- 

chanics are summarized and tabulated at the end of Chapter 4. 
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Finally, the desired characterization of the canonical states is pre- 

sented in Chapter 5. 
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CHAPTER II. CLASSICAL STATISTICAL MECHANICS 

In classical statistical mechanics, a mechanical system is 

represented mathematically by a phase space r, whose points z 

are the instantaneous mechanical states of the system. The phase 

space has the structure of a differentiable manifold , with a preferred 

class of local coordinate systems, called "generalized canonical 

coordinates" or "Hamiltonian coordinates" , (pi, qi : i =1, 2, 3 3n). 

The phase space also has the structure of a measure space, given 

locally by Lebesgue measure with respect to the canonical coordinates. 

The measure is independent of the particular coordinates because the 

transformation from one canonical coordinate system to another is a 

contact transformation, whose Jacobian determinant is identically 

equal to one [ 3, p. 92] . 

The Lebesgue measurable subsets of r are called events. 

If L is a Lebesgue measurable subset of r, it is identified with 

the event that the mechanical state z is included in L. The set 

of all events, denoted by ót, , therefore forms a Boolean 6 -algebra 

with respect to the usual operations of union, intersection, and com- 

plementation. 

Real valued measurable functions on the phase space F are 

called observables. In particular, the canonical coordinates are 

observables. Moreover, every observable is given locally by a 



Lebesgue measurable function of these coordinates. 

A particularly important observable is the Hamiltonian H. 

This function, whose value at each point z is the total energy of 

the system when it is in the mechanical state z, determines the 

dynamics of the system through Hamilton's equations 

(2. 1) 
dqi 8 H dpi 8 H 
dt - Bpi ' dt 8 qi 

6 

(Actually H is determined only up to an arbitrary additive constant.) 

The integral curves of these equations are the trajectories of a one - 

parameter group of contact tranformations on r, the parameter 

being the time. We denote the value of this transformation at time 

t by Tt, so that during a time interval of length t the mechani- 

cal state will change from a point zcI' to the point Ttz. The 

transformation Tt, being continuous, maps into itself, in the 

sense that for each Lc .t the set 

Tt[L = { Tt(z) : zcL} 

also belongs to L. Moreover, since Tt is a contact transforma- 

tion, it is measure preserving; that is, 

µ(L) = µ (Tt[ L] ) 

A statistical state of the system is defined to be a probability 

. 
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measure on the measurable space (F, 4). Thus, a system in a sta- 

tistical state p is a probability space (F, z ,p). In general, the 

statistical state is a function of the time. The dependence on time is 

determined by the condition that the probability of a "moving event" 

is unchanged as the event changes with the dynamical motion of the 

system. In symbols, let p0 be the initial state (at zero time) and 

pt be the state after a time interval t. Each event Ls tt evolved 

during this interval from the initial event T -t[L] , and we take 

(2. 2) 
Pt(L) PO (T -t[ L] ) 

The statistical state is usually, though not always, assumed 

to be absolutely continuous with respect to Lebesgue measure. In 

other words pt is determined by a probability density Dt, which 

is a non -negative point function such that for all Le cif 

(2. 3) pt(L) r Dt(z) µ (dz) . 

L 

Combining this with equation (2. 2) yields 

(2. 4) D(z) Do(T_t(Z) ) 

almost everywhere in r. 

Equilibrium statistical mechanics deals with cases in which 

the statistical state is stationary, that is, constant in time. Then 

= 

= 

f 



one may write 

(2. 5a) Pt = p0 = p 

or, if p is absolutely continuous, 

(2.5b) Dt = Do = D. 

Combining these conditions with (2. 2) and (2. 4) yields the identities 

(2. 6a) 

(2.6b) 

p(L) = p(T-t[ L] ) 

D(z) = D(T_t z). 

These conditions represent very mild restrictions on the sta- 

tistical states. Much more severe restrictions are needed to pick 

out those states which describe matter in equilibrium. Equation 

(2. 6b), for example, merely requires that the probability density 

D(z) be constant on trajectories of the system; in other words, 

D(z) is an integral of the motion. Given any set 

{kl(z), k2(z), - , kn(z)} of such "integrals" which are measurable 

but not necessarily positive, we can form probability densities by 

taking positive integrable functions of kl(z), , kn(z), as follows: 

Let f be a positive measurable function of n (real) variables 

such that the composite function 

8 
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F(z) = f(kl(z), ... , kn(z) ) 

is defined almost everywhere in r, and such that F is integrable: 

(z)ii (dz) < oc . 

Then the function D given by 

(2. 7) - F(z) 

F(Y)µ NY) 
r 

is a probability density satisfying (2. 4) and (2. 6). Moreover, every 

probability density D satisfying (Z. 4) and (2. 6) can be obtained in 

this way, for D is itself an integral of the motion and one may take 

n = 1, k1 = D, f = identity function, to obtain F = D. 

In general, the only integrals of the motion which are known 

"a priori" , without solving the equations of motion, are functions of 

the Hamiltonian H - the "energy integral" . A great restriction on the 

possible choice of probability densities is made by taking D to be a 

function of H, that is, 

(2. 8) D(z) - f(H(z)) 

Çf(H(y))iJ. (dY) 

This hypothesis has been partially justified on the basis of ergodic 

r. 

r 

D(z) 

) 
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theory [ 13, p. 55] . Perhaps the best justification is on empirical 

grounds; if D should depend on other integrals besides H, this 

fact would show up in the experimental properties of matter. This 

actually occurs in the case of chemically active systems, where the 

number of particles of each substance is variable (or in quantum me- 

chanics, systems composed of photons). Then the number N of 

particles is regarded as an integral of the motion, and D is taken 

to be a function of both H and N. We shall consider only "closed 

systems" where N does not change, and therefore restrict our- 

selves to probability densities of the form (2. 8). 

Even after restricting D to be a function of H alone, we 

are faced with a vast array of possible states. J. Willard Gibbs 

[6,Ch, 25] discovered that the appropriate choice for D is an ex- 

ponential function of H, so that 

-0 H(z) 
(2. 9) D(z) _ 

Je -0 H(y)p, (dy) 
, 0 <0 <oo, 

where the parameter O determines the absolute temperature 

of the system (more precisely, 1 
0 kT where k is Boltzmann's 

constant). States given by these densities are known as "Gibbs canon- 

ical states" . Although Gibbs did not explain his choice of states be- 

yond showing that they work, various "derivations" have been ad- 

vanced, each based on more or less plausible grounds. Three such 

e 

r 

T 

( 

= , 
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derivations - the method of Khinchin, the maximum entropy method, 

and the method of statistical independence are reviewed briefly below. 

First, however, we must introduce the concept of a composite system. 

Given two mechanical systems represented by phase spaces 

r1, r2, we may form the composite system, with phase space 

r12 = r1 r2. The points of r12 are the ordered pairs 

(zi, z2) : zlerl, z2er2, and local Hamiltonian coordinates 

(p(1)' are given in terms the coordinates (p. 

2 
) 

2 
(pi , qi )) for the respective systems. As a measure space, r12 

is the direct product of the measure spaces rl, I. Thus if t1, 

are the v- algebras of events in r1, r2, the corresponding set 

t12 of events in r12 is the v- algebra generated by all sets of the 

form L1 X L2: Lie g1' L2et2. We interpret L1 X L2 as the 

event that z eL and z 2eL2. 

A composite system in a statistical state p12 is a probabil- 

ity space (rl X r2, 
°e1X 

g2, p12), where p12 is a probability 

measure on the measurable space (r1 x r2, t1 X óe2). As As in the 

case of a single system, p12 will in general depend on the time. 

Now the statistical state p12 determines not only the sta- 

tistical properties of the composite system, but the statistical proper- 

ties of the component systems as well, since the probabilities of all 

events related to one or the other components may be determined 

from p12. That is, given the statistical state p12 of the 

p(2)' 

°,2 

411, 42)) 
41)) 
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composite system, we define the statistical states pl and p2 of 

the component systems by 

p1(L1) = p12(L1 X r 
2) 

P2 p12(r1 X L2) 

for all Lie Z1 and L2c £2. It may be easily verified that 

and P2 

P1 

are probability measures. If p12 is absolutely continu- 

ous with respect to Lebesgue measure on F1 F2, then it is again 

determined by a probability density (z1, z2), that is, for all 

sets Ac çe1 X 
2 

p12(Á) _ D12(z1 z2)µ (dzldz2) . 

A 

In particular, we have 

pl (L1) 
= p 

12 1 
(L X I'2) = ÇD12(z1z2)(dz1dz2) 

L X r 
2 

for all LIE t1. By Fubini's theorem [9, p. 148] , this is 

[ D12(z1' z2)11(dz2)] µ(dz 

L1 r 2 

where 

= 

D12 

,J 

1 

J 



(2.10) D12(z1 ,z2)µ(dz2) -= D1(zl) 

r2 

is a non -negative, integrable function defined almost everywhere 

in rl. In a similar way, the probability that z2EL2 is given 

by 

p2(L2)p12(r1X = 

where 

(2.11) 

13 

) J D12(zl z2)µ(dzldz2)=S{SD12(zi z2)N.(dzlg µ(dzz), 

r1 
X L L rl 

J 

rl 

D12(z1' z2)11 'z2)µ (dz l) = D2(z2 

is also a non -negative, integrable function and is defined almost 

everywhere in 

that 

r1 

r2. Moreover, Fubini's theorem states 

1)µ(óz1) = D2(z2)µ (dz 2) = f 
D12(zl, z2)µ(dzldz2)= 1. 

r2 rlJx r2 
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Therefore D1(z1) and D2(z2) are also probability densities and 

they determine the induced statistical states p1 and p2. 

In general,it will not be true that D12(zl, z2)= 
(z1 )D2(z2). 

However, if the component systems are statistically independent, 

then the probability of any event of the form L1 X L2 óe1 X eel 

is the product pl(L1)p2(L2), and there is one and only one prob- 

ability measure on ( 1 r2, cl X de2), denoted by p1 X p2, 

such that 

(pl X p2) (L1 X L2) = pl ( 

for all rectangles L1 X L2c 
Z1 

X If If this is the case, then we 

also have 

(2. 12a) 

(2. 12b) 

D12(z1, z2) = D1 (zl)D2(z2) . 

Hamilton's equations for the composite system are 

(1) 
aqi 

at 

aH12 

(1) 
api 

at 

a (2) aH a (2) ax 
qi 12 pi 12 at - (2) ' at - - (2) 

a pi a qi 

x 

æ2. 

(1) api aH12 

' a 
g(1) 

' 
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where H12 is the Hamiltonian function of the composite system. If 

H12 is expressible as the sum of the component system Hamiltonians, 

that is, 

(2. 13) H12(zl, z2) = H1(z1) + H2(z 

then equations (2. 12) reduce to two independent systems of equations. 

This means that the trajectories in the phase spaces I'1 and r2 

are independent of each other, or in other words, the component sys- 

tems are mechanically independent or noninteracting. 

In his derivation of the canonical states, Khinchin uses the no- 

tion of a microcanonical state. Roughly speaking, a microcanonical 

state is one in which the system is restricted to a single energy sur- 

face 

H (z) = E0 = constant 

in its phase space r, but uniformly distributed over the surface. 

Because of this restriction to a hypersurface, microcanonical states 

are not absolutely continuous with respect to Lebesgue measure in 

(for a detailed discussion of microcanonical states see Khinchin [ 13, 

p. 110]). 

To obtain the canonical states, Khinchin considers a system 

S composed of a large number N of component systems 

, 

r 



S1, SN. The components are taken identical to each other, so 

that the component phase spaces r1, , rN, 

16 

and the Hamiltonians 

H1, ,HN, are all the same. Moreover, the component systems 

are supposed to be mechanically independent, so that the Hamiltonian 

H for S is the sum 

H = 

N 

Hn 
n=1 

Now suppose the large system S is in a microcanonical state p0 

of energy E0. As N increases, let the energy E0 increase in 

proportion to N, that is, 

where E1 

Eo = NE1, 

is the "energy per component ". Khinchin shows that as 

N -"co, the state pl induced by p0 in each of the component 

systems approaches the Gibbs canonical state with mean energy E1. 

(In the physical interpretation, the large system S represents a 

heat bath with which each component system is weakly interacting. 

Khinchin's result is interpreted as meaning that the canonical state is 

obtained in the limit as the interaction vanishes and the heat bath be- 

comes infinite). 

Another characterization of the canonical state makes use of 

the ideas of information theory [11; 16, p. 48] . From this point of 
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view, the canonical probability density Do represents a statistical 

state in which our ignorance of the system is maximal, except for 

knowing the mean value of the Hamiltonian function. In other words, 

the system is distributed over r in the most random possible way 

subject to the condition 

(2. 14) <H(z)> = 
JH(z)DO(z)µ(dz) 

= E0 (constant). 

r 

Information theory, which actually has its origins in statistical me- 

chanics, suggests that the entropy integral be taken as a measure of 

the degree of ignorance (or "randomness" ). If D is a probability 

density defined almost everywhere in r, then the entropy of D 

is defined by 

_ - \ D(z)log D(z)µ(dz) . 

It can be shown that if D is any probability density other than Do, 

having the mean value E 
0 

of H given by (2.14), then the entropy 

satisfies SD< SD . Therefore the condition of maximum entropy 
o 

characterizes the Gibbs canonical state. 

The "method of statistical independence ", as presented by 

D. S. Carter [4] , characterizes the Gibbs canonical states as follows: 

Suppose there is associated with each system a probability density D, 

SD 
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expressible as a measurable function of the system Hamiltonian H. 

Suppose further that for each composite system with noninteracting 

components, the component systems are also statistically independent. 

Let D1 = fl (H1) and D2 = f2(H2) be the densities for the com- 

ponents of a composite system with density D12 
= 

f 
12 

(H12). Then 

the equations of mechanical and statistical independence 

H12(z1,z2) = H1(zl) + H2(z2) 

D12(z1,z2) = D1(z1)D2(z2) 

together yield the functional equation 

(2. 15) f12(H1 + H2) = fl (H1)f2(H2) . 

If reasonable assumptions are made on the Hamiltonians H1 and H2, 

one finds that all measurable solutions fl, f2, and f12 of equation 

(2.15) have the form 

(2. 16) 

f (x) 
1 

= 
-ex 

f2(x) = Ate -ex 

f12(x) A 
-ex 

12e 

where A1, A2, and O are constants, and Al2 = A1A2. This 

implies that the component systems, and also the composite system, 

= 
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are in canonical equilibrium states corresponding to the same value 

of the absolute temperature. The specific conditions imposed on the 

Hamiltonians are: 

a) H is a continuous function of z which varies between 

the limits 0 and +c . (This means that equation (2.15) 

becomes 

f (x +y) 
12 

= fl f1(x)f2(y) 

for almost all x, y > 0 

b) The so called "structure function ", 

(x) = dx µ (dz ) 

0<H(z)<x 

is a strictly positive and continuous function of x. 

('a 
c) The integral \ XS-2 (x)µ(dx) exists for all O > O. 

). 

J 

e 

0 
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CHAPTER III. QUANTUM STATISTICAL MECHANICS 

Many of the ideas of classical mechanics carry over to quan- 

tum mechanics, at least in an analogous form. Our discussion of 

quantum mechanics will be based on the description presented by 

J. von Neumann [ 17] . In this description the concepts of phase space, 

mechanical state, and observable, which in classical mechanics cor- 

respond respectively to a measure space (r, 4,µ), points in r, 

and measurable functions on r, correspond to a separable complex 

Hilbert space t , unit vectors in and self -adjoint operators 

on al. . In contrast to classical mechanics, where the mathematical 

structure is well known, it is generally recognized that the mathe- 

matical structure of quantum theory is incomplete. For example, 

it is conceivable that the phase space might have a structure other 

than that of a Hilbert space [ 2 ; 16, p. 71 -74] . Furthermore, it is 

difficult to justify the choice of a complex scalar field, except that 

if this choice is made, certain formal features of classical mechan- 

ics also appear in quantum mechanics. In fact, the possibility of 

quaternionic. Hilbert spaces has been introduced in quantum mechan- 

ics [ 5] . However, we shall not attempt to investigate these other 

possibilities and proceed from the conventional assumption of a com- 

plex Hilbert space. 

If this is done, the quantum mechanical states are the unit 

(, , 
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vectors in , . If cla is a unit vector and c is any complex num- 

ber, of absolute value 1, quantum mechanics asserts that and 

ccp are identified as the same mechanical state. It is further as- 

serted that the observables correspond in a one -to -one way with the 

self- adjoint operators on {. . 

In general, there exists more than one way to construct a 

quantum mechanical description of a classical system. For example, 

if we are given a classical system of N particles, with Hamiltonian 

coordinates (pi, qi: i = 1, 2, 3N), we obtain the coordinate or con- 

figuration representation as follows: We define the configuration 

space of the system as the space E3N with rectangular coordinates 

(qi: i = 1, 2, 3N), and identify 14. with the space of all those 

complex -valued functions defined on E3N which are square -sum- 

mable with respect to Lebesgue measure; that is, the space 

2 3N L (E ,11). However, except for the purpose of constructing exam- 

ples, it will not be necessary to specify a particular representation. 

We shall regard 14. as an abstract Hilbert space. 

With known the system can then be described by a pair 

('4{ H) where H is a self -adjoint operator, called the Hamiltonian 

operator, which plays the correpsonding role in quantum mechanics 

as the Hamiltonian function in classical mechanics. In particular, 

it is the quantum mechanical analog of the total energy of the system, 

and it completely determines the dynamics of the system through the 

4 
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Schrödinger. differential equation 

dt 

where is the instantaneous quantum mechanical state. 

The evolution of (14H) with time may also be expressed by 

a transformation Tt as in the classical case. If cb is the quan- 

tum mechanical state at time t' , then Tt (Pt' =fit +t' is the state 

after a time interval of length t. We shall be concerned only with 

systems which are reversible in the sense that Tt is invertible. 

Defining Tt 1 = Tt, one may identify the set {Tt: tell} as a con- 

tinuous one -parameter group of unitary transformations called the 

dynamical group of the system. The infinitesimal generator of {Tt} 

is just iH, and by Stone's theorem [ 19, p. 385; 22] , one obtains 

e 
-iHt for all tell. The stationary states of (14. , H) are 

those unit vectors which are fixed in time in the sense that 
Tticbt' ¡fit' 

for all t. Among them are included the characteristic vectors of, 

H:H4 = X. 

As in classical mechanics, the Hamiltonian is arbitrary up to 

an additive constant, that is, we are free to renormalize the Hamil- 

tonian as H' = H - X 
o 

I, where X 
o is a real number which may be 

chosen arbitrarily and I is the identity operator. If cbk is a 

characteristic vector of H corresponding to the characteristic value 

Xk, then 1k remains a characteristic vector of H' , but now 

4 

T = 
t 
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corresponds to the characteristic value 
X k -A o. The renormalization 

of H translates the energy spectrum along the real axis by an 

amount X o, but this change causes no real difficulties. Of course, 
0 

changing H to H' changes T to Tt = e but if and i 
ik of 

are mechanical states such that Tt _ , then T4 _ e and 

as we have stated previously q and ckii, where I c i = 1, are identi- 

fied as the same mechanical state. Therefore the dynamical group 

remains essentially unchanged. 

Events in quantum mechanics, corresponding to the measur- 

able subsets of I' in classical mechanics, are the closed linear 

subspaces of . If M is a closed linear subspace of (I) , it 

corresponds to the event that the representative quantum mechanical 

state of the system is a unit vector in M. One can then proceed to 

define a calculus of events for quantum mechanics. The intersection 

and closed linear sum of any two, and the orthogonal complement of 

any one closed linear subspace of <): are themselves closed linear 

subspaces and therefore events. If one defines a relation of implica- 

tion, "M1 implies M2" to mean that the subspace M1 is also a 

subspace of M2, then one obtains a calculus of events with three 

operations and a relation of implication. In this calculus, the closed 

linear subspaces of a Hilbert space form a complemented lattice. 

They need not, however, satisfy the distributive identity which is a 

law in classical mechanics. Hence in quantum mechanics one has a 

non -Boolean set of events (for a discussion of the logic of quantum 

mechanics. the reader is referred to G. Birkhoff and J. von Neumann 

e1A tTt, dp 

P . 
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A statistical state in quantum mechanics is a "probability meas- 

ure" on the closed subspaces of '*t, , in the sense of 

Definition 3 -1. A probability measure on the closed subspaces 

of a Hilbert space is a function p which assigns to every closed 

subspace M C *{. a non -negative real number p(M), such that 

(a) p(*,) = 1, p ( {0 }) = 0 

(b) 0 < p(M) < 1, for all closed subspaces M C *t. 

(c) If {M.} is a countable collection of mutually orthogonal 

subspaces having closed linear span M, then 

00 

p(M) = ) p(Mi) . 

Lit =1 

This definition of a statistical state is due to G. W. Mackey [ 16, p.63]. 

In both classical and quantum mechanics we may therefore 

say that a statistical state is a probability measure on the set of all 

events. Whereas in classical mechanics a statistical state is usually 

determined by a probability density, it turns out that in quantum 

mechanics every statistical state is determined by a non -negative, 

self -adjoint operator of the trace class, called a density operator. 

To explain this, we must first introduce the trace class operators, 

which play a role in quantum mechanics analogous to integrable 

[2J) 
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functions in classical mechanics. The trace of an operator in the 

trace class is the quantum mechanical analog of the integral of an 

integrable function in classical mechanics. 

Let T* denote the adjoint of the operator T. We have 

Definition 3 -2. The trace class 

bounded operators T such that the sum 

00 

(3. 2. 1) ((T*T)1/2 1)n, 4)n) 

n=1 

(tc) consists of all 

is convergent for some complete orthonormal sequence { 
n 

1. 

Actually the sum (3. 2. 1) is independent of the choice of 

orthonormal sequence 11)n}. A proof of this may be found in R. 

Schatten [20, p. 42] , where it is also shown that the sum 

a 

(3. 2. 2) / I (T (1)n, (i)n) I 

n=1 

converges. Moreover, the sum 
oo 

(T(n, 1n) 

n =1 

is independent of the choice of orthonormal basis {ci) 
n 

}. This last 

property of the trace class leads to 

n 

n 
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Definition 3 -3. For Te(tc), the finite number ' (T4:1)n, n 
n = =1 

is called the trace of T, denoted by trace (T). 

Our interest will center on products of operators of which at 

least one is in (tc). The following properties will be useful [20, p. 38]. 

(3. 3. 1) If 

XT 

Te(tc), and 

and TX 

X is any bounded operator, then 

are in (tc), and trace (XT) =trace (TX). 

(3. 3. 2) If T1,T2e(tc), then (T1±T2)etc, and 

trace (T1 ± T2) = trace T1 ± trace T2. 

A density operator may now be defined as follows. 

Definition 3 -4. An operator D on It is a density operator 

if and only if 

(3. 4. 1) De(tc) is self- adjoint and non -negative (i. e. 

for all (OW. 

(Dc1), il))> 0 

(3. 4. 2) trace D = 1. 

The following theorem [7] establishes that every statistical 

state in quantum mechanics is determined by a density operator. 

Theorem 3 -5. (A. M. Gleason) Let m be a measure on 

the closed subspaces of a separable (real or complex) Hilbert space 
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of dimension at least three. Then there exists a unique, non- negative, 

self- adjoint operator TE(tc) such that for all closed subspaces 

M of 'A, , 

m(M) = trace (TPM), 

where PM is the orthogonal projection of it onto M. 

An important property of density operators is that they are 

completely continuous, in the sense of 

Definition 3 -6. An operator T defined on It is com- 

pletely continuous if it transforms every weakly convergent sequence 

of vectors in It into a strongly convergent sequence. 

Recall that a sequence of vectors if } is weakly convergent 

to f if 

im I (f - --- , 

m-` oc, - 
for all vectors . A sequence of vectors {g } is strongly 

convergent to g if 

lim 11 g -g I I = 0. 
m"00 

Definition 3 -6 is credited to Hilbert [10, note 4] . Other 

definitions of a completely continuous operator may be found in F. 

r1) 

m 

m 
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Riesz and B. Sz -Nagy [ 19, p. 206] along with the proofs of their 

equivalence. 

The fact that all density operators are completely continuous 

follows from a deeper result of R. Schatten [20, p. 41] , to the effect 

that every operator of the trace class is completely continuous, even 

if the Hilbert space IL is non -separable, and with a broader defini- 

tion of trace class based on summability of ((T *T)1 /2 cp ) n' n 

rather than convergence. Because this fact is of fundamental impor- 

tance to our discussion, a special proof is given in the Appendix. 

It is well known [20, p. 16] that if a completely continuous 

operator T on a separable Hilbert space is also self -adjoint, then 

it admits a complete orthonormal sequence of characteristic vectors 

{(1)k}. 
Its non -zero (necessarily real) characteristic values are of 

finite multiplicity and form either a finite or countably infinite se- 

quence {Xk }. Therefore (see equation (3.6. 2a)) a density operator 

has the spectral representation 

a oc 

XkPk, 0 < 
Xk 

< 1, mkXk 
= 1, 

k =l k = =1 

(3. 6. 1) 

where 

dimension 

is the projection onto the characteristic subspace, of 

mk, 
corresponding to the characteristic value Xk. 

Here Xk runs through the different characteristic values of D. 

The analogy between probability densities in classical statistics 

Pk 

D./ 
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and density operators in quantum statistics can be brought out in 

another way. If f(z) is a bounded real -valued measurable function 

(an observable) on r its mean value is 

<f(z)> = D(z)f(z)µ(dz 

where D(z) is the probability density defining the statistical state. 

In quantum statistics, the mean value of a bounded self- adjoint opera- 

tor A corresponding to an observable is given by 

<A> = trace (DA), 

where D is the density operator defining the statistical state. 

Every observable in classical mechanics is given by a meas- 

urable function of the Hamiltonian observables (p., q.: 1=1,2, 3n). 

In quantum mechanics, one can conveniently define functions of ob- 

servables by using the spectral theorem. If A is any self -adjoint 

operator on ó-i. , then the spectral theorem [19, p. 320] states that 

A has the unique representation 

(3.6.2) A = SXdE 
_00 

everywhere in the domain of A, where {Ex } is a spectral 

family of projections uniquely determined by A. The integral is 

taken in the Lebesgue- Steltjes sense. If f is any Borel function 

X 
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on the real line, then one defines functions of A by the representation 

(3. 6. 3) 

oc 

f(A) = f(X)dEx , 

-a 

where the domain of f(A) consists of all elements 4e It for which 

the integral 

(3. 6. 4) 571f(X) I (1)) 2d(Ex -oc 

converges [19, p. 345] . If f is real -valued, then f(A) defines 

a self- adjoint operator, hence an observable. 

In the case where A has the pure point spectrum 

S(A) _ N1, }, the spectral representations reduce to 

(3. 6. 2a) 

(3. 6. 3a) 

00 

k=1 

CO 

f(A) _ f (A k)Pk, 
k=1 

where Pk is the projection onto the characteristic subspace of A 

corresponding to the characteristic value Xk. The domain of f(A) 

consists of all 4s It for which the sum 

(3. 6. 4a) 

converges. 

oc 

/ 
I f 

(Xk) (Pkci), 4)) 
12 

k=1 

f 

a 

A = XkPk 

J 

/ 
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Summarizing, we are now able to state the fundamental asser- 

tion of quantum statistics: The events of a physical system (fit, l 

coincide with the set ilL of all closed subspaces of the separable 

Hilbert space 14. . Each statistical state is a probability 

measure p on `Th. Theorem 3 -5 then identifies each state with a 

densit operator in a one -to -one wa such that if and D cor- 

respond then the probability of an event MC `tTh is given by 

p(M) = trace (DPM). 

In non - equilibrium statistical mechanics, the statistical state, 

and therefore the corresponding density operator, will depend on the 

time. It follows from Theorem 3 -5 that for each time t there 

exists a density operator D(t) defined on such that for all 

closed subspaces M C 

pt(M) = trace (D(t)PM). 

As time evolves, (V., H) evolves according to the dynamical group 

{ Tt }, where Tt = e -iHt, tcR. Since T is a unitary operator, 

we have a mapping of the set Trt into itself given by 

Tt(M) _ { Tt(cI)): (13, M} 

for all Mein. If ctIEM at time t, then T -t(M) at time zero. 

of (i. H) 

at 

14. 

t t 
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Thus if the quantum mechanical state is observed to be in T -t(M) 

at time t = 0, then an observation at time t must yield that OcM. 

As in the case of classical mechanics, we take 

(3. 6. 5) pt(M) = p0(TtM) 

for all closed subspaces M C . This equation determines how 

the statistical states change with time. The change in the corre- 

sponding density operator is given by the following theorem. 

Theorem 3 -7. For each time t, the density operator D(t) 

is given by D(t) = TtD(0)T . 

Proof: Let M be any closed subspace in 14, 

is an orthonormal basis in M, then 

p = trace (D(t)PM) = (D(t)cl)k, Ok) 

If {4) ,:} 

Let Llik = T -t4k. Then since Tt is a unitary operator, we have 

Pt(M) = (D(t)Ttk' T t k) = L ((T-tD(t) T t) k, LiJ k) 
k 

Since D(t)e(tc), by property (3. 3. 1), D(t)Tt and therefore 

(T- tD(t)Tt) are in (tc). Consequently we may write 

43. 

-t 

. 

) 

k 



pt(M) = trace ((T- tD(t)Tt)PT 
-t 

) 
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Clearly this holds for all closed subspaces M C -. . By (3. 6. 5), 

we obtain 

p0(T -tM) = trace ((T- tD(t)Tt)PT 
M) -t 

for all M. Hence for all closed subspaces NC-1f1,,, 

p0(N) = trace ((T- tD(t)Tt)PN). 

By Theorem 3 -5, we also have 

p0(N) = trace (D(0)PN) 

for all N. Therefore, since the density operator determined by 

the probability measure p0 is unique, we have 

or equivalently 

T-tD(t)Tt = D(0) , 

D(t) = Tt D(0)T-t. 

Q. E. D. 

Thus the time evolution of (at , H) brings about a systematic 

and continuous change in the density operator defining the statistical 

-t 
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state. If the statistical state p is an equilibrium state, that is, if 

Pt(M) = p0(M) 

for all MC`lil,, then the equilibrium density operator D must 

satisfy 

for all time 

D(t) = D(0) 

t. It follows from Theorem 3 -7 that equilibrium den- 

sity operators commute with the dynamical group { Tt }. In the case 

of bounded self- adjoint operators, this is the defining property of the 

integrals of the motion of a quantum system. The simplest integrals 

of the motion are obtained by taking functions of the system Hamil- 

tonian. For instance, if f is bounded and continuous on the spec- 

trum of H, then [19, p. 346 -347] we have 

f (H)Tt = Ttf(H) 

for all tell. 

As in classical mechanics, the equilibrium density operator 

is often restricted to be a function of H, the physical justification 

being the same in quantum as in classical mechanics (see Chapter II). 

Thus if f is any non -negative function defined on the spectrum of 

H such that f(H) is of trace class and trace f(H) > 0, the 



operator 

D = 
f(H) 

trace f(H) 
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serves as an equilibrium density operator. In particular, the Gibbs 

canonical state is given by the one -parameter family 

-OH 
D-e -AH' trace e 

where the parameter O may assume any value in the open interval 

(0,x) and determines the absolute temperature T according to 

1 

kT 

k being Boltzmann's constant. Therefore the Gibbs canonical state 

is a continuous function of the Hamiltonian operator in the sense de- 

fined previously. 

In the case of zero absolute temperature, the equilibrium 

density operator D0 may be obtained as a limiting case of the 

Gibbs canonical state. Suppose the Hamiltonian operator of the sys- 

tem (A{, , H) has a pure point spectrum { X }, 
n 

with multiplicities 

{ m }. 
n 

For convenience let H be normalized such that the smallest 

spectral value X is zero. Taking the limit as T - 0 in the 

canonical state with density 

O 
' 

= 



DT 

we obtain 

H 

e 
kT 

H 

trace e 
kT 

A 
n 

e kT P n 
n=1 
oc 

m 
n 

n=1 

n 
kT 

- DO = lim DT m P1 
T - 0 1 
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Thus, DO corresponds to a limiting state p0 in which the prob- 

ability of the characteristic subspace Ml, corresponding to the 

smallest spectral value X 
1, 

is 1: 

P0(Ml) = trace D0P1 = m trace P1 = 1. 
1 

It is convenient to include this limiting state in the family of canonical 

states, and we shall make this inclusion in the sequel. 

The density operator defining a canonical state of zero abso- 

lute temperature also has the form of a microcanonical density opera- 

tor. These density operators are defined as follows: Consider a 

system (*1 , H) whose energy is fixed at some definite value E (a 

characteristic value of H). This means that the quantum mechanical 

state of ('a{, , H) must be confined to the finite dimensional charac- 

teristic subspace ME C *i, corresponding to the characteristic 

oc 

= 
X 

- 

e 

1 
. 

T 
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value E. The microcanonical state of (ii., H) is then defined by 

the density operator rn-- PME, where Pte` is the projector of 

i. onto ME, and m = dim ME. 

The characterizations of the classical Gibbs canonical state 

presented in Chapter II extend in a more or less satisfactory way to 

quantum statistics as well. If D is a density operator defining a 

statistical state, having characteristic values 

plic itie s link}, 

{Xk }, 

the entropy of D is defined by 

- trace (D log D) _ - 

OG 

k=1 

with multi- 

mkAk log Xk. 

In maximizing the entropy in quantum mechanics, one seeks a density 

operator D such that -trace (D log D) is as large as possible sub- 

ject to the condition that the mean value of the Hamiltonian operator 

has a certain value. Using techniques from the calculus of variations 

adapted to operators, it can be shown [16, p. 112] that the canonical 

state satisfies this extremal problem provided the Hamiltonian satisfies 

certain conditions which are not highly restrictive. 

Khinchin [12, p. 172 -177] has also extended his characteriza- 

tion of the Gibbs state to quantum statistics. He again considers a 

large system which is perfectly isolated and composed of a large 

number of identical noninteracting components. The large system is 

assumed to be in a microcanonical state corresponding to an energy 

S = 
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E. His approach is formulated in a way that makes use of the dis- 

crete limit theorems of the theory of probability. However, to do 

this, he finds it necessary to assume that the spectrum of each com- 

ponent system Hamiltonian may be represented by non -negative inte- 

gers (Khinchin argues that any energy spectrum can be made to ap- 

proximate integers as closely as desired by choosing a sufficiently 

small unit of energy. His use of the discrete limit theorems also 

requires the assumption that the Hamiltonian of the large system is 

the sum of the component system Hamiltonians). 

Under these conditions Khinchin shows that in the limit, as 

the number of component systems increases in such a way that the 

energy of the large system is proportional to the number of compo- 

nents, the statistical state of each component is a canonical state. 

As we shall show in Chapter V, the method of statistical inde- 

pendence applied to a sufficiently large collection of quantum systems 

yields canonical states and does not require integer -valued energies. 

First, however, we must develop the theory of composite quantum 

systems. 
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CHAPTER IV. COMPOSITE QUANTUM SYSTEMS 

In this chapter we shall consider composite systems which are 

composed of two component systems. The concepts of phase space, 

quantum mechanical state, and event must be given precise mathe- 

matical definitions, and the statistical states and observables of the 

composite system must be related to the statistical states and observ- 

ables of the component systems. Clearly it is desirable to have a 

development analogous to the theory of measures on product spaces 

in classical mechanics, but which recognizes the non -Boolean nature 

of the lattice of events. We shall begin with a discussion of the ab- 

stract Hilbert space a12 of a composite system. 

Consider two systems (It 1,H 1) 
and (It2, H2) which are 

to be thought of as forming one composite system (1`12, H12). 

The Hilbert space 01.12 is defined to be the "tensor product" of 14.1 

and 41, and is denoted by {, 14.2. Since our discussion will 

make extensive use of these products, we shall develop some of their 

properties (see also J. von Neumann and F. Murray [ 18j ). To moti- 

vate the definition of tensor products, we begin by discussing a con- 

crete example from quantum mechanics: 

Let V. 
1 

and 'L2 have the coordinate representations 
2 3n1 . 2 

3n2 
L (E1 , µl) and L (E2 , µ2). Then the coordinate representation 

of 14,12 is the set of all square summable complex-valued functions 

® 
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3n1 3n2 

defined on the configuration space (E1 X E2 ) of the composite 

2 
3n1 3n2 

system, that is L (E1 X E2 , p.12) where p. is the 
12 

3n1 + 3n2 dimensional Lebesgue measure. To every pair 
3n1 3n2 

mechanical states 4sL (E1 , µ1) and Lp eL (E2 , µ?), 
3n1 3n2 

responds a quantum mechanical state in L (E1 X E2 , 

which is the product (I) 

of quantum 

there cor- 

µ12) 

It can then be shown that if cp X tF de- 

(13. 

notes the "tensor product" of and (see Definition (4 -i)), 

then the transformation 

XLP - (h LP 

can be extended to an isometric isomorphism (congruence) of 

2 
3n1 

2 
3n2 3n1 3n2 

L 2 
, µ1) L (E2 µ2) onto L (E1 X E2 , µl 2). We may 

therefore identify the coordinate representation of 
si{, 12 

as the 

tensor product of the coordinate representations of It and 14,2. 

Now let a1 and 14,2 be Hilbert spaces. 

Definition 4 -1. An anti -bilinear functional on the cartesian 

product a 
1 

X t2 is a complex valued function such that 

(a) + a2432, 4') 
= ál (1 , !) + 2 (432, 

LP) 

(b) (b (ct,, al k.Pl + a2t-P2) 04), k-P1) + á2V(1), LP2) 

where al and a2 are any complex numbers, and 43, 41, (I) 44 

2 2 

4 

2 
(E1 ® , 

2 

1. 

' ( a 4 ll 

= ál , 

1 

2 

$ 
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and i, T1 , 1-26/412. 

Every member of `{ 41.2 may be identified with a certain 

anit -bilinear functional on X ót2. In particular, we have 

Definition 4 -2. Let 4s al and yis The The The The tensor product 

of 4 and 4i, denoted by 4:X q, is the anti -bilinear functional 

defined by 

(4. 2.1) ((pX to (oyez) = (cp,e1)(4i,e2) 

for all pairs (01, e2)c 14,1 
X 14,2. 

It follows from Definition 4 -2 that if a is any complex num- 

ber, the formally distinct expressions (a4)X 4, (1)X (a4), and 

a(c)Xi) are equal at all points of their domain. 

Let cal 

of the form 

It2 )' 

(4. 2. 2) = 

where 

denote the set of all finite linear aggregates 

i=1 

{(i) 

, p = 

and {fil , 42, , 2. Clearly 

the representation of need not be unique. However, if 

(1) s ekt, ED a 2)' , that is (1) _ 

P 

i=1 

(4213.i X klii) and - = 

q 

j=1 

for finite p, q, then the inner product ((Z., ') is defined by 

1, 2, 

It, }C 

' 

(gj X qj), 



(4. 2. 3) (, ) = 

i=1 j=1 

and is independent of the representation of t, and W. With this 

definition of an inner product, (44.1 e) 14,2) 

and can be metrized by defining 

(4. 2. 4) 

where 

42 

is a pre -Hilbert space 

distance (I., = 
I I W- WI I, , 

IIt.II l/2 

It is a theorem [18] that if 11)1. } is a sequence in 

for which 

(4. 2. 5) Um II`hr - sII = 0 

r, s -.oc 

( 111. "t2, 

(that is a Cauchy sequence),then there exists a unique anti -bilinear 

functional it. on/-1,1 

(4. 2. 6) 

such that 

lim .Tr( 01, 02) _ (1)(01,02) 
r 

for all (01,02) 
2 
)e 

1 
X 

2° 
The set of all anti -bilinear functionals 

for which there exists a sequence 4r }C (Xi @It? satisfying 

(4. 2. 5) and (4. 2. 6) is called the tensor product of Ai and 11,2 

and is denoted by 14,1 

the Cauchy sequences 

If Wc'4,1 e. a correspond to 

and {Wr} in the sense of (4. 2. 5) 

j) 

= 

®3{,2 

oc 

®11,2. (1, 

Or } 

p q 

($i, gj) 

4') 



and (4. 2. 6), then the inner product (0,W), defined by 

(4. 2. 7) (0,W) = lim (0r' r) r 

exists and is independent of the sequences { r } and ttlfr 1. 

That is, if and 

43 

are any other sequences which cor- 

respond to 0,W in the sense of (4. 2. 5) and (4. 2. 6), then 

(4. 2. 8) lim (0' , ' ) = him (0 , ) . 
r r r r r -oc r - oc 

With this definition of the inner product, 
l 

is a Hilbert 

space. 

Thus for each OE al ®a2, 

functional on 'Jt x 2' there exists a Cauchy sequence 

considered as an anti -bilinear 

{°r 

in 
($1. 

I1,2)' such that Or} converges pointwise to 0. That 

1 ®i,2 is the ordinary metric completion of (R 1 
®á{.2)' 

depends on a proof that the correspondence between and {Or } r 

in the sense of (4. 2. 5) and (4. 2. 6) is equivalent to r HO- 01.11= 0, 

so that every Cauchy sequence in (al ` t2)' also converges in 

norm to an element of ® 41, It follows that every Cauchy 

sequence in 

:4 

al 
It converges in norm to an element of 

2' that is, as a metric space *l is complete. 

In addition, each Oe *1 a2 has the property that for all 

pairs (81, e2 )E* X i.2, 

--oc 

{0r } {w' 

®44,2 

0 

--oc 

a l 
, ® 

` ® 
11'2 

} 



(4.2. 9) (81, 2) _ (, 01 X 02). 

44 

With Definition 4 -2, this implies that 1, is a continuous function of 

01 and 02. Moreover, 

(4.2.10) 
1 (®i 02) I < I I t i I I I 

O(I 
I I 

0Z 11. 

Thus is a bounded bilinear functional. 

If { } m and {fir } are complete orthonormal sequences in 

It and It respectively, then (see Lemma 4 -6) the sequence 

{d PmX4n} is a complete orthonormal sequence in 

fore, we may express any 
OG 

s 
® 41.2 

as 

= (11, 4)mX gin) (43mX LPn). 

m, n=1 

By (4. 2. 9), this is 

(D=1 

m, n=1 

00 

tOm' 4in) (4)m X k-Pn). 

Therefore each (De a 1 2 

There- 

is completely characterized by the 
co 

complex numbers m , ii n 
) = a mn , and 

Moreover, if 

amn l 2 

m, n-1 

converges. 

m, n =1 

{a } mn is any sequence of complex numbers such that 

converges, then there exists an anti -bilinear functional 

' 
n 

1 2 

Ai ®11.2. 

arnn12 / mn 

yI 2 



e 

(4.2.11) 

such that (4)in, gin) = a mn' Clearly then 

= I ` (4)m, 1Pn) i 2 

m, n=1 
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Having defined the Hilbert space of the composite system 

4,12' H12) to be N. ®ßi.2, it will be important for our discus- 

sion of statistical mechanics to identify a certain class of subspaces 

of 
11- 

11.2, given by 

Definition 4 -3. If M and N are closed linear subspaces 

of a and 14.2 respectively, then (M ® N)' denotes the sub- 

set of (i.1 ói.2)' consisting of all finite linear aggregates of tensor 

products of the form 4 X LP, where cl)cM and icN. The symbol 

M . N will denote the closure of (M ® N. 

Clearly M ®N is a closed subspace of i 'K2 

The next step is to define certain operators on I ®2' 
Our interest of course is in those operators which define the statistical 

states and observables of the composite system. The following lemmas 

will be needed for this development. 

Lemma 4 -4. Let { } and { } 1f be sequences in 'i. 

and ái, respectively, which are summable in the sense that 

= (1) It 
k =1 

and Then the sums 

®14.-2 

I 

® 

k 
1=-1 

lß =4/ e 44.2. 

l 

1 

f 



oc co oc oc 

(a) / ( k X 1 ), (b) ( X Ili), (c) 

k=1 1=1 1=1 k=1 

exist and are equal to ipX i. 

Proof: The proof follows from the fact that a tensor product 
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kX 
k, =1 

is a continuous function of its factors. Consider the sum 

oo 

( kX11). 

/ =1 

sums, we have 

Since tensor multiplication is distributive over finite 

N 

t ,kX Lp = lim [kX ( lj2)} = lim 
N--oc 

.@ 

N-.00 oc 
=1 

1 =1 

exists. Then 

N 

N 

N N 

(i) X = lim [ (L ) X 
4) - lim X ) = lim } ) (t X rl ) 

N-.oc 
k N-oc L k N_,00 k 

k=1 k=1 k=1k =1 

oc oc 

= / 
k=1 1=1 

A similar argument establishes that the sums (b) and (c) exist and 

are equal to 4 Xip 

Q. E. D. 

Q 

oo 

Hence ( kX rii) 

OG 

1=1 1=1 

) (k)<rlf). 

. 

2 

(5kx ?1R) ( X qi ). 

( 

Lr 



Lemma 4 -5, Let {l p 
} be a finite orthogonal 

sequence in lit , where n 4 0 for all n = 1, 2, 

((I) X 
n n 

fin) = 0 for some set 

n =1 

([)n=0 for all n. 

cP 

Proof: If ) (4 X 
n 

) = 0, then for all pairs 
LL1 n 
n =1 

(01, 02)E 1{1 X ói2 we have 

{'1)1 ' 12 

P. If 

4p} in 1' 
then 

Let 02 

Hence 

= 0. 

P 

( (4) nX n) ) (01, 02) 

n=1 n=1 

2 1 

0 = 

then 

4)n, 01) (1Pn, (32) 
= 

4)n, 01) (Lljn, 
LP1) = 

(4)1, 01) (4j1, 4'1) 
n=1 

((1) 1, 01) = 0 for all 01E ói.1, and (r)l, 4l) = 0 implies 

If we successively let 02 = fin, n = 1, 2, p, we obtain 

the result: 

(1)1 
='1)2=4)3 =... 

= 
= 0. 

Q. E. D. 

47 

2 
t l i 

P 

P 

= 

col 

P 

= 

$P 
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Lemma 4.6. Let the complete orthonormal sequences 

{k }C and {tp.e }C 142 be given. Then the sequence {43kXLPfi 

forms a complete orthonormal sequence in i, ®11,2. 

Proof: That the sequence {4kX tif } is orthonormal is clear 

since, by (4.2.2), ((plkX J 41mXLpi 
) =(4)k' qn)' cOm)(4i' This is zero if 

f n or k # m and is equal to one if k = m and .Q = n, 

To show completeness,consider any 1)E(.1 ®144.2)'. Then 

has the representation 

for some finite P, 

P 

1,_rrrr tmX1m 
m=1 

where the sequences 

r12, 1P } are in ' 
1 

and 

rim have the expansions 

then 

k=1 

m= 

By Lemma 4. 4, this is 

a k' 

412 

mk4,k) X 

k=1 

{ t } and 

respectively. If ' and 

00 

, 

1=1 

1 =1 

mkQ) 

' 

P 

m 

m 

# 

1. 

m qm -yßmA 

( }' 



I') [lc° Icc 
m=1 k=1 

If we let 

(arnk` X k 

m =1 

m=1 

00 00 P 

49 

ßmi ) (4)k )7 

k=11=1 m=1 

) T aka , then 

00 

akß (4)k X 

k=1 1=1 

Via` 

where lake 12 converges. Hence every 
k,1 =1 

an expansion in terms of the orthonormal sequence {4kX } . There- 

fore the set spanned by { ckX`ij } contains ('{1 ®2)1 which is 

pl(fikx ) 

ói.2)' has 

dense in a,1 012. Hence 

the property of being orthonormal. 

is maximal with respect to 

Q. E. D. 

Remark: Lemma 4 -6 generalizes to the case of tensor products of an 

arbitrary but finite number of Hilbert spaces, ("2®... ®44.N. 

Therefore a finite tensor product of separable Hilbert spaces always 

yields a separable Hilbert space, and the phase space of any composite 

system composed of N components has the structure of a separable 

Hilbert space. However, infinite tensor products of Hilbert spaces 

ßm.Q Q _ 

P 

/ 
00 

k=11=1 

cbE (I,1 

{ 4k X 4,i 

Ó4{.1 

a CO 

yL, 

= 
E 

- Y 1), 
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(of dimension greater than one!) are always nonseparable. Since 

separability is required in our description of quantum mechanics, 

the approach presented here cannot be extended to composite sys- 

tems composed of an infinite number of components. 

Definition 4 -7. Let Al be a linear operator with domain 

D (Al) contained in 
1 

and A2 be a linear operator with 

domain j3 (A2) contained in *, The operator Al X A2, 

which is the tensor product of the operators Al and 

A2, is defined as follows: If {1, , cm are elements of 

(A1) and {4i1, , } are elements of .J (A2), then for 

finite m, 

(A 
1 

X A 

m 

i=1 

i X 4,i) 

i=1 

m 

X A24ii 
). 

Remark: The reader is cautioned that in the case of self -adjoint 

operators we shall later extend the domain of Al X A2 so that this 

tensor product will be self -adjoint (see discussions following Theo- 

rems 4 -10 and 4 -14). 

Clearly Al X A2 is a linear operator with domain 

(mA1) etb (A2))' 

m 

provided the correspondence 
m / (4)i 

X 
kli) ~ (A1 1 X A2i ) 

i=1 i=1 

1{, 

. 

= (A14i 

2. 
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is single valued. This is proved as the next lemma. 

Lemma 4 -8. Let (Dc(13(A1) ® (A2))' , then (A1 X A2)c 

is independent of the representation of '. 

Proof: If we have two ways of writing an element 

ts(13(A1) ®.(A2))' , we may suppose that these are 
m 

i=1 

q 

(1)i X Liii) = ((-1)i)X 

i=m+ 1 

where 0 for i = 1, 2, , q. Hence 

shall prove that 
q 

($4,i X i) = O. We 

i=1 

A, 4, X A2i) = 0. Let Q be the subspace 

i=1 

spanned by { , . , qrq } . Clearly l< dim Q < q. Let dim Q =p, 

p } be an orthonormal basis in Q. Then 

we have an expansion 

and let {rai: i = 1, 2, 

for each i = 1, 2, q, 

and we may write 

0 = 

q 

i=1 

XtJi = 

= i 

P 

1 =1 

i=1 

(1)iX (1, ai:2y) . 

1=1 

Since tensor multiplication is distributive with respect to finite sums, 

we have 

Iiii) 

i 

) 

a.11, 

C 

# 
q 

) 

/ 

9 P 
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0 = ) ) (4)iX air). 
i=1 B=1 B=1 

Interchanging the order of summation and using the distributive law 

again gives 

0 = (c) jX 

B=1 

By lemma 4-5, we must have 

Therefore 

0 

=1i=1 

q 

i=1 

P 

ai OiX r ) _ (( aiQ 4)i) X 

B=1 i=1 

aid i = 0 for each I = 1, 2, p 

i=1 

i= 1 

(1).)X A2 
'1 

i=1 

and 

aiAli)X A2r) = 

Therefore we may sum over I to obtain 

P 

0 
= (AOiX 

aiA.2r) 
1=11=1 

q P 

(A1cpiX ( aif2A2r) 

1=1 1=1 
q 

_ ) (A1ciX A2,i), 

i=1 

q P 

(ai.@A1iX 
A2rp) 

i=1 

i=1.Q=1 

q 

(A1 (pi X (A2 L ai11)) 
i=1 1=1 

Q. E. D. 

P q q 

a. Oi 
= 0 for each .Q , 

q 

i=1 

4 P 

P 4 

_ 

1=1 

Al L 

9 9 

(A1$1XaipA2*1B) 

4 
=L 

= 

(A1OiX aiBA2tIB) 
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We shall be concerned with cases where Al and A2 cor- 

respond to observables and are therefore self- adjoint. The operator 

Al X A2 as defined above may not be self- adjoint, but in all cases 

of interest we can extend AIX A2 so as to obtain a self- adjoint 

operator (an observable of the composite system). We shall treat the 

case of bounded and unbounded operators separately. 

A bounded operator defined on a domain C ', always has a 

linear extension to all of 44.. In fact, if i is dense in IL , the 

bounded operator has a unique extension to all of Ó'L . Thus in con- 

sidering bounded operators Al and A2, there is no loss in 

generality in regarding them as everywhere defined in sit 
1 

and 

respectively. The following lemma is based on a proof by 44.2 

J. von Neumann and F. Murray [18] . 

Lemma 4 -9. Let Al and A2 be bounded linear operators 

on and '' 2 respectively, with norms 11A111 and 11A211. 

Then A1X A2 is a bounded linear operator on ®Ì{2)' with 

norm IIAIX A211 <_ IIAl II IIA2II 

Proof: It follows from Definition 4 -7 that A1X A2 is de- 

and is linear also. If {cp m } and fined for all c (, ®a2)' 

{fin} are complete orthonormal sequences in 

respectively, then by (4. 2. 11) we have 

1 and it 

1 

0{1 

1. 



II(A1XA2).1.II2 

OG 

amnl2 I((A1X 

m, n=1 m, n=1 

)) (4m, n) 12 

Since (De (V1 ®1(,2)' , we may represent it as the finite sum 

= (g iX id. 
i =1 

Then 

((A 1X A2)0(.4)111,ilJn) = L (A1X A 

p 

p 

A1g iX A2r1i))((i)m, Llin) = 

i=1 

By definition 4 -2, this is 

i=1 

i=1 

(t iX ?1) (c)m, klin) 

(Al 

(4. 9. 1) (A 
1 

g , 12') (Ar1i, ) 

i=1 

X A2rii)((l)m, 4,11) 

Since Al and A2 are bounded operators, their adjoints Ai 

are everywhere defined (and bounded with the same norms). and A2 

54 

Therefore (4. 9. 1) becomes 

(g,A,l m)(r1i,A2 ), 

i=1 

and by definition (4 -2), this is 

= mn = 

P / 

P 

n 

, ( 



(tiX r) (A1ii)m,AZJn) 

i=1 

Therefore 

(4.9. 2) 
I I(A lX A2) I I 2 = ( iX ni) (A 1m, A2n) I 2. 

m, n=1 i=1 

Now for each n = 1, 2, , define 

(4.9.3) fn(el) = 

p 

i=1 

( iX1i))(01,A2n) 

55 

for all 01E1(.1' Then fri(0l) is a bounded anti -linear functional 

on a Consequently the conjugate functional fn is a linear 

functional on and by the Riesz representation theorem for 
0 

oln *1 bounded linear functionals [8, p. 31] , there exists a unique 

(which depends on ) such that 

(4. 9. 4) 

for all 01. Hence 

P 

( iX rii))( 
>;<: 

i=1 

= (el, 0 n) 

, A2ipn) - fn(A 
1 

.z1n) = fn (A* 
4)n ) = 

(OOn, Ai, (I)m) 

Therefore (4. 9. 2) becomes 

OC, P 

l' n 

It 1' 

4 n 

fn(el) 

( 

( 
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I1(A1XA2)1I2 = I(0°n' Aim) 
m, n=1 

By (4. 9. 3 ), this is 

IIAIII 

2 
I(AleO m ) I 

2 

m, n=1 

n=1 

=iIA 

n=1 

0 0 

eln, 01n) 

n=1 m=1 

CG 

oc oc 

I n(m) I 2 f , 

n=1 m=1 

and by (4. 9. 2), we obtain 

(4. 9. 5) II (A1 XA2)I 12 < I IA1 

(4. 9. 6) 

p 

iX11i)(4)m,A2kPn)1 2 

Now for each fixed gym, m = 1, 2, , define 

P 

gm(02) = 

i=1 

(.x1.)) ((i)m, 02) 

for all 02 a 
2. Then g is a bounded anti -linear functional on 

1 

cc 

IIAie°n112 < _ IIA1112 

oc 

(ein' (1)m)(4,m' OL) 

CO 

= 
11A1112 0e°n,(am)12 

n=1 m=1 

00 00 

(t 

m 

oc 

CO 

( 

n=1 m=1 i=1 

( 



11,2, 
and, as before, by the Riesz representation theorem, there 

0 exists a unique 02me 112 (which depends on (Om) such such that 

(4. 9.7) 

Hence we have 

p 

i=1 

o 
gm(02) 

= (02m, 02) 

o 
X r1i))(4)m,Apn) = gm(Apn) _ (02m,AIilin). 

Therefore (4. 9. 5) becomes 

a 
II (Al XA2)II2 IIA1II 2/ 

IIA1 
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a a 
1(00 

2m' A2V I 2 I I A l I I 21 (A202m 

n=1 m=1 

CO X / I (A20°2m, Liin) I 

m=1n=1 

2 
IIA1 I 

n=1 m=1 

00 

IA202m) ( 

2 

m=1 

m=1 m=1n=1 

By (4. 9. 6) and (4. 9. 7), we obtain 

00 p 

iX 11i))(41m, n) I 2= IIAl II2IIA2II2 II02. 

m, n =1 i =1 

The last equality is obtained using (4. 2. 11). Therefore 

II (A1XA2)`II < IIAIII IIA2II II II 

' 

= 

2 

I IA1 I I 2I IA2I 
I e2ml 12=IIAII 2I1A21I 

a 00 

2mriI2. 

II(AI II 
X A2)ß 2 

IIA II 
211 

IA2IlZ I ((t 

= 

a 

2 II 

z 



for all Ix ( ®Ói.2)í 

Q. E. D. 

We are now able to prove the following theorem for bounded 

operators'. 

Theorem 4-10. Let Al and A2 be bounded linear 

operators on 11.1 and ói2 respectively. Then there exists a 

unique bounded linear operator Al2 on V. 0 l such that 

Al2« = (A1 X A2)4) for all ße(4/1 °a d' 

Proof: By Lemmas 4 -8 and 4 -9, Al X A2 is uniquely 

defined and bounded on ( g1 Since ( ®R2)' 

58 

is dense 

in It 
1 

Al X A2 has a unique bounded linear extension to 

all of sil ® ó't2 

Q.E.D. 

In view of Theorem 4 -10, we shall, in the case of bounded 

operators, henceforth identify Al X A2 with its bounded extension 

Al2. In the case where the bounded operators Al and A2 are 

also self -adjoint, the self -adjointness of Al X A2 now follows: 

Theorem 4 -11. If Al and A2 are bounded self- adjoint 

operators on 41,1 and a2 respectively, then Al X A2 is a 

bounded self- adjoint operator on gi 0112 

®Jt)' ál.l 

®ái.2, 

.. 

. 
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Proof: Recall first that in the case of bounded everywhere 

defined linear operators, the self- adjoint operators are characterized 

by the relation 

(Af, g) =(f,Ag), 

which holds for all f, gs . 

Now by Theorem 4 -10 and the discussion following, Al X A2 

is bounded and everywhere defined in 
® 

Consider any pair 

, fie(l ® Át2)' . Then for some finite p, q, we have the repre- 

sentations 

_ 

Then 

j=1 

(1)j X Lij) and 

((A1 X A2)ß, W) = 

p 

j=1 

P q 

(1.)(11k)' 
k=1 

(t kX T1k)) 

k=1 

(j,Alk)(j,2lk)= 
j=1 k=1 

P 

j=1 

p 

j=1 

q 

P q 

j=1 k=1 

(Alt kX A21k)) 

k=1 

X 4,j), (A1XA 

k=1 

Ii2. 

W 
_ 

=L (4)3 .X 4Jj,Al kX A2rlk) 

4)j X j), 

(0j 

q 

{ 

p 

( L (A1Oj X A2+j ), 

4 

4 

L 

= ( 

/ (gkX+lk)). ( 



Therefore 

(4.11.1) ((A1 X A )(1), = (, (Al X A2)*) 
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for all , Wc( 11.2)' . We shall show that this relation holds for 

all ., xlfc ill ® 412. Consider any pair (t, IF) in Al ®2. Then 

there exist Cauchy sequences { 
r 

} and { W } r in (11 ®1i, 
2 
)' 

such that 

lim II° _Ii = 0 and lim 11 -4`r II = 0 

r 

Since Al X A2 is bounded, it is also continuous. Hence 

lim II(A1XA2)(1. - (AIXA2) .rII = 0 

-.oc 

lim 
II (A1 

X A2)11/ - (Al X A2)-gr 
II = 0. 

-4-oc 

Then,by (4. 2.7), 

lim ((Al X A2)Ir, Apr) _ ((Al XA2), V') 

r -.00 

lim (A1 X A2)-tifr) = (cD, (A1 X A 
2 

»If). 
-oc 

By (4. 11. 1), 

--oc r 

(t.r, 



61 

((A1 X A2)tr, Wr) _ (fir, (A1 X A2) r) 

for each r = 1,2, . Hence 

((Al X A2)t , W) = (t, (Al X A2) W ) 

for all , W e It 
1 

014.2. 

Q. E. D. 

We conclude our discussion of bounded operators with the fol- 

lowing theorem, which will be needed later. 

Theroem 4 -12. Let PM, PN, and PM 
®N, 

denote the 

projection operators onto the closed subspaces MC g{ , N C.2, 
and MON C 0 ó{,2. Then 

P X P P N MON 

Proof: Consider first those functionals del ® áÌ, which 

are of the form X i with (1)e ói. and ÿße ói.2. We have the unique 

decompositions 

=PM4)+$1, 

=Plv,'P+ 

Therefore 

where 4)11M 

where 411 N 

ái 

4P1, 

- 

O 



(4. 12. 1) X kp = PMX PN + PMX 4, + 1 X PN4,+ l X 1, 
62 

where PMT PRIX PNLIJs M MON, and (PMcpXiPl +.4c.1XPNLii+.4)1XIIJ1) 1 MON. 

Since the decomposition (4. 12. 1) into the sum of a vector in M ®N 

and a vector orthogonal to MON is uniquely expressed 

(1)XLIJ 
= PM N +()1' where (XLii)1 1 M ®N, 

we have 

PM ®N(4)X`P) 
= PMX 

M PNB = (PMX PN)(4XL1) 

for all 1)c íi1 ® úú2 of the form cpXLP. Therefore PMXPN PM ®1V 

everywhere in ( ® )' 
*(.2 

PMX PN establishes that 

The continuity of both PM and ®N 

X P P MON M N 

everywhere in 41.1 ®14.2. 

Q. E. D. 

The situation for unbounded operators Al and A2 is 

completely different. We first summarize some of the theorems in 

unbounded operator theory [19, p. 305 -309]. Recall that an unbounded 

self -adjoint operator A on a Hilbert space t. cannot be every- 

where defined since a self -adjoint operator is necessarily closed, 

as 

ät,1 

- 
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and a closed everywhere defined linear operator is necessarily 

bounded. We shall say that A is symmetric if its domain fi (A) 

is dense in 14, and the adjoint operator A* is an extension of A. 

This definition is equivalent to saying that A is symmetric if and 

only if 

(4. 12.2) (Af, g) = (f,Ag) 

for all f, ge B(A) and e (A) is dense in i. . Moreover, every 

symmetric operator has a smallest closed linear extension, namely 

(A *)*. The operator A is essentially self -adjoint if A* _ (A *) *, 

and for symmetric operators this relation holds if and only if the 

spectrum of A is confined to the real axis [ 21, p. 144]. 

We shall show in Lemma 4 -13 that Al X A2 is not bounded 

if either Al or A2 is not bounded. Hence every closed linear 

extension of Al X A2 must be defined on a proper subset of 

® We will consider the case where Al and A2 have 

complete sequences of characteristic vectors (that is, pure point 

spectra) and show that Al X A2 is essentially self -adjoint, so that 

the adjoint operator (Al X A2)* is the smallest closed extension 

of Al X A2 and is self -adjoint. 

Lemma 4 -13. Let Al 0 and A2 0 have the domains 

J3 (A1) and 40(A2) (not necessarily dense in Ó(1 and I1.2). If 

al 12. 

# # 
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either Al or A2 is not bounded, then Al X A2 is not bounded. 

Proof: Recall that the domain of Al X A2 is 

(4(A1) (A2))' Suppose Al is not bounded. Then there exists 

such that a sequence 
{g r }CI) (Al) 

IIA1grII > r iIrII 

Let 
{fir 

} be a constant sequence 11-1,1, - } in D(A2) such that 

II II 
A2r1 = MII rl it and M > O. Then the sequence 

{ rX 11r 
}c (4(A1) = ' if) (A2))', and 

II(AixA2)(grXT)r)II = 11Alg rxAzir II =11Aig rIIIIA2irII 

> MrII rli Ilrlrll= MrII rXgrll 

Hence there exists a sequence {tDr }C (Ì(A1) ®gr (A2))' such that 

the sequence {(A1XA2)cT} is not bounded. The case where A2 is 

not bounded is treated in a similar way. 

O. E. D. 

Lemma 4 -14. Let Al and A2 be self- adjoint operators 

having complete sequences of characteristic vectors, whose domains 

tÌ (A1) and (A2) are dense in Al and it2 respectively. 

Then AlXA2 is an essentially self- adjoint operator whose domain 

( (A1) ®Á (A2))' is dense in 14.1 Ii,2. 

®4 

A 
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Proof: Since Al and A2 are linear operators, their 

domains (A1) and 13 (A2) are linear subspaces (not necessarily 

closed). Since (A1) and (A2) are dense in 'al and 11.2 

respectively, there exist complete orthonormal sequences 

{som}c (A1) and {i }c (A2). Consequently the sequence 

{c m 
X tfn } is a complete orthonormal sequence contained in 

((A1)® S (A2))'. 

ái.1 

Let CI, NYE (A1) ® (A2))'. Then,as in the proof of Theo- 

rem 4 -11, we obtain 

It follows that (ß(A1) ®te (A2))' is dense in 

((A1XA2) , 1, N1f) = ((I., (A1XA2)If) 

for all , We (13 (A1) ® (A2))' Hence,by (4. 12. 2), Al X A2 is 

symmetric. To show that Al X A2 is essentially self -adjoint, we 

need only verify that its spectrum is confined to the real axis (see 

remarks preceding Lemma 4 -13). We observe at once that Al X A2 

admits a complete sequence of characteristic vectors: Let {cm } and 

{4n} be complete sequences of characteristic vectors of Al and A2 

respectively with the corresponding characteristic values {kim} 

and {'2n 1. Therefore the sequence {4) X 4n } is a complete ortho- 

normal sequence in (4(A1 )0 ii (A2))' , and we have 

(A1XA2)(4)mXLlin) 
A1`I)mXA24,n 

7- X 1mmX 2nn lm 2n(mX x 

fi 

4 4 

413 A 

n 

®ßi.2. 

m 

= 

.t 



for all 
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m, n = 1, 2, . , Hence the characteristic vectors of A1XA2 

form a complete set in al 6) ii.2. This means [ 19, p. 361] that the 

spectrum of Al X A2 consists of the characteristic values 

{XlmX2n: 
m, n=1,2, } plus their points of accumulation. Hence 

the spectrum of A1XA2 is a subset of the real axis. 
Q. E. D. 

We now complete the definition of A1XA2 for self -adjoint 

operators by generalizing the remark following Theorem 4 -10 to 

include unbounded operators. Hereafter, the symbol A1XA2 will 

denote the smallest self- adjoint extension (A1XA2)* of the oper- 

ator defined in Definition 4 -7. 

Returning now to the discussion of quantum systems, the quan- 

tum mechanical states of 12' H12) 
are the unit vectors in the 

phase space Al ® J{2. The events related to the composite system 

are the closed subspaces of al ® 'a2. If M and N are events 

related to the component systems,then M ®N is the event that the 

quantum mechanical states of the component systems are in M and 

N respectively. Since the quantum mechanical state of the second 

system is always in `ßt2, the event M :' 142 is the event that the 

quantum mechanical state of the first system is in M. The event 

ill ON is interpreted in a similar way. 

Each statistical state p12 of the composite system deter- 

mines not only the statistical properties of the composite system, 

but the statistical properties of the component systems as well. In 

other words, p12 induces statistical states p 
1 

in (4,1, H1) 

( 
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and p2 in ( {2, H2) in such a way that the corresponding events 

M and M014.2 have the same probability: 

Theorem 4 -15. Let be a probability measure on the 

closed subspaces of W1 ®112. Then the set function p12(M 14,2), 

defined for all closed subspaces MC itl, is a probability measure. 

Alternatively, the set function p12 ( *1 ®N), defined for all closed 

subspaces NC i;.2, is a probability measure. 

Proof: We shall prove only the first of these consequences, 

the alternative case may be disposed of in a similar way. 

Define pl(M) = p12(M 
6)1{2) 

for all MC `átl. Clearly 

0 < pi(M) < 1 for all M C `t. If M ái1, 

p1( *t1) = p12( 1{1 = 
1, and if M = {01, then 

P1(1° }) = p12( {0 }®á{2) = p12( {0 }) = 
O. 

If {Mn} is any countable 

sequence of mutually orthogonal closed subspaces in ó(.1 having 

closed linear span M, then the sequence {M®142} is a count- 

able sequence of mutually orthogonal closed subspaces in '1.1 ®ii2 

having closed linear span M® 41.2. Consequently 

then 

Pi(m) = p12(M® ái.2) _ /, p12(Mn" 2)=/; pl(Mn). 
n=1 n=1 

Therefore pl defines a probability measure on the closed sub - 

*1. spaces of 
Q. E. D. 

p12 

= 

w at 
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Definition 4 -16. Let p12 be a statistical state of the corn- 

posite system (v.12, H12) composed of two component systems. 

Then the statistical states p1 and p2 of (ß{1,H1) and 

defined by 

p (M) 
1 

= pi2(M® ád.2) 

p2(N) = p12( ó{.1 ®N) 

(112,H2), 

for all M C *(l and N c 2' are called the induced statistical 

states of p 12. 

Throughout this discussion we are assuming that there is a 

one -to -one correspondence between the observables of a system 

( A, H) and the self -adjoint operators defined on ót . Consequently 

everything that has been said concerning self -adjoint operators on 

Al, A2, and *1 ® ói2 has an interpretation in terms of observ- 

ables of the respective systems. In particular, every observable 

Al of the component system ( á{1,H1) is also an observable of 

( t12, H12); the correspondence between the self- adjoint operators 

Al and Al X 12 is interpreted to mean that these operators repre- 

sent the same observable. For example, "the energy of system 

(ó{1,H1)" is an observable of (ó.12,H12) as well as ( Hl). 

The operators Hl and H1 X I2 both represent this observable. 

The same interpretation is made for the correspondence between the 
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operators H2 and I1 X H2. The operators H1 X I2+ I1 X H2 also 

defines an observable, in view of 

Theorem 4 -17. Let H1 and H2 be Hamiltonian operators 

with domains ii (H1) in I 1 
and (H2) in 12, having com- 

plete orthonormal sequences of characteristic vectors {ci) } and m 

respectively. Let S(H1) _ {X } and S(H2) _ {X }. Then 

(a) The operator H1 X I2 + Il X H2 is essentially self - 

adjoint, and its spectrum consists of the sequence 

{1` lm+ X 2n: m, n = 1, 2, } plus its accumulation points. 

(b) If the smallest characteristic values of H1 and H2 

are both zero, then the smallest characteristic value of 

H1 X I2 + Il X H2 is also zero. 

Proof: (a) Clearly the sequence {it. X q n 
} is simultane- 

ously a complete orthonormal sequence of characteristic vectors of 

both H1 X I2, Il X H2 and therefore of H1X I2 + I1 X H2 also. 

For each m,n = 1, 2, , we have 

(HiXI2 +IiXH2)(cmX fin) _ (HiXI2)(cmX fin)+ (I1XH2)(SimX Vin) 

= (H144)mXI2tpn) +(yinXHAI) 

_ 
X 1m(4mXgn) + X2n(SimX LPn) 

- 

(X lm + X 2n)((i'mX qjn) 

b 

{fin } 

= 
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Consequently [ 19, p. 361] the spectrum of H1XI2 + I1X H2 con- 

sists of the sequence {X lm +X 2n: m, m,n = 1, 2, } plus its accumu- 

lation points. Now (H1 X I2 + 
1 

X H2) contains all sT. c 
1 

it 
2 

which are common to 4(H 
1 

X I2) and D (I1 X H2). Therefore 

( (H1) 0 13 (H2))' C 13 (H1 X I2 + I1 X H2). 

By Lemma 4 -14, ((H1)® b (H2))' is dense in Al 14.e and 

both H1 X I2 and I1 X H2 are self- adjoint. Therefore 

(H1 X I2 + I1 X H2) is dense in ó(1 ii2 and H1 X I2 +I1X H2 

is symmetric. The essential self -adjointness of H1 X I2 + I1 X H2 

follows since its spectrum is confined to the real axis. 

The proof of (b) follows as a simple corollary. 

Q. E. D. 

If we again identify H1 X I2 + II X H2 with the smallest 

closed extension, then we interpret this operator as the observable 

of the composite system (It 12, H12) which is "the sum of the 

energies of (ó{1,H1) and (ói.2, H2) ". In the general case, 

H12 H1 X I2 + II X H2, the difference between them being the 

interaction energy of the combined system. For noninteracting sys- 

tems we have 

Definition 4-18. A composite system 
( R12,1412) 

has 

43 

® 

c% 

# 
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noninteracting components (ó{1, H1) and ('it2' H2) if and only if 

Hit =HiX I2 +IIX H2. 

If the composite system is considered as a single system, 

then each statistical state of ( ß{12,H12) is a probability measure 

on the closed subspaces of V.1012. Theorem 3 -5 then identifies 

each statistical state with a density operator D12 on 'iii ®A2. 

The indúced statistical states p1 in (V{i, H1) and p2 in 

(ó(,2,H2), given by Definition 4 -16, are then in unique correspond- 

ence with density operators D1 on ó4.1 and D2 

spectively. The logical system is 

Theorem 3 -5 
D12 p 

on 11 

3 -5 r 
D1 

Theorem 3 -5 D2 

The induced density operators D1 and D2 are the uniquely 

determined operators on Al and 14,2 

traces with all projection operators satisfy 

respectively, whose 

trace (DIPM) = trace (D12PM 
®1.1, ) 

2 

trace (D2PN) = trace (D12P 
. 

ON 

re- 

Theorem 

e 

pl 

p2 
, 
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In keeping with the analogy between the integral in classical mechanics 

and the trace in quantum mechanics,it is appropriate to define two 

operator- valued functions tr and tr on the set of all composite 
ái1 ói2 

density operators as follows (compare with (2. 11) and (2. 12): 

D1 = tr D12 
it 

D2 = tr D12 
. 

Although the density operator D12 of the composite system 

induces unique densities D1 and D2 on the components, it is not 

true that the induced states D1 and D2 determine D12 uniquely 

(see example below). However, if D1 and D2 are given, there 

is always at least one density operator D12 which induces D1 

and D2; namely, the tensor product D1 X D2: 

Theorem 4 -19. If D1 and D2 are density operators de- 

fined on V.1 and 'M.2 respectively, then the operator D1 X D2 

is a density operator on ói ói2. Moreover, 

D1 = tr (D1X D2) 

2 

= tr (D X D2) 

1 
D2 
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Proof: Since D1 and D2 are both bounded and self - 

adjoint, by Theorem 4 -11 DiX D2 is a bounded self- adjoint oper- 

ator defined everywhere in 

non -negative, let 

and 

{4m 

To show that DIX D2 is 

and {i } n be orthonormal bases in 
411 

respectively, composed of characteristic vectors of D1 

and D2. Let {X } and {X } denote the corresponding 

sequences of characteristic values. Since D1 and D2 are each 

non -negative, X lm' 2n - X > 0 for all m, n = 1, 2, . Let 

1 
®é{2. Then for some sequence {amn } , we have 

co 

= amn(mX ÿn), 

m, n=1 

and 
co a 

(DXDWIa ( D XD4r)=/a (X 4) XA ) 
1 2 mn 1 m 2 n mn lm m 2n n 

m,n=1 m,n=1 

oo 

amn X lm 2n 2n (4'mX n)` 
m, n=1 

Therefore 

00 00 

((D1XD2),) _ (amn`lm`2n($mXn)'1,ak:Q(cI) kX4'i)) 
m,n=1 k,1=1 

2 

amnakQ lmX2n(4'm' k) (ñ 4P Q) Iamnl ` lm 2n>0. 
m, n=1 m, n= 1k, .Q =1 

1 
®*2. 

m 

*2 

'E 

( I ) 

00 

2n 

cc 

_ 



Clearly this is true for all (Ds al ßi2; hence Dl X D2 is non- 

negative. Furthermore, 

((D1 X D2)(mX n),mX n) 
m, n=1 

a 
D1mX D2 n, X 

m, n=1 

00 

i)m) (D2klin, qin) 

m, n=1 

The last equality follows from the definition of the inner product in 

ái ® It Hence by (3. 2. 2), 

trace (DIX D2) =L(D144) 

m =1 

tpn)=(trace D1)(trace D2) = 1. 

n=1 
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Therefore D1 X D2 is a non -negative, self -adjoint operator with 

trace (D1XD2) = 1; i. e. , a density operator. 

Moreover, if p12 is the statistical state defined by D1XD2 

then the induced statistical state pi is defined by 

(4. 19. 1) p(M) = p12(M® al 2) = trace ((D1 X 
D2)PM® 141. 

2 

for all closed subspaces MC 14.1. If we denote the induced density 

operator by D1, we have from Theorem 3 -5, 

(4. 19. 2) pi(M) = trace (D1PM) 

trace (DIX D2) = ) 

= n) _ / (D 
1 

ct)m, 

D2q,n, 

a 
$m) 



for all M. From (4. 19. 1) we obtain 

pi(M) = trace ((D1X D2)PM ) = trace (D1PMX D2), 

75 

where we have used the relations PM =p PMX P = PMX 12 . 

2 2 

Evaluating trace (D1PMX D2) by means of the sequence {fimXtn } , 

we obtain 

P1(M) _ 

CC, 

((D1PM D2)(cl)mX n), ci)mX Lpn) = >(D1PMIl)mXD2kliri(1)mX Lpn) 

m,n=1 m,n=1 

m, n=1 

m =1 

PM(I) m, (i)m) 

Therefore, for all M C 

(4. 19. 3) 

m=1 

pi(M) 
1 

= trace (D1PM). 

n=1 

Since the density operator defined by the probability measure 

is unique, from (4. 19.2) and (4. 19.3) we obtain Di = D1, 

D = tr (D 1X D2). 
14.2 

a similar way one obtains 

or that 

2 

n 

= 
(D1PMc)m, 43.m)(D2iin, lin) _ 

ßi.1, 

In 

Pli 

oc 

oc 

cc 

L (Di PM$m, $m) (D 24,n, +n) 



D2 = tr (D1XD2). a 
1 Q. E. D. 
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To show that D1 and D2 do not determine D12 uniquely, 

consider an operator of the form 

D12 = t1(D1 X D2) + t2 (Dl X D2) 

where D1, D2, Dï, and D2 are density operators, and 

It is easily verified that D12 is a density operator and that the 

induced statistical states define the density operators 

D1 = tD1 + tDï 

D2 = t1D2 + t2D2 . 

Then 

=1. 

D XD =t2(D'XD')+t t (D' X D")+t t (D"X D')+t2 (D"XD") 
1 2 1 1 2 1 2 1 2 2 1 1 2 2 1 2 

also induces the density operators 

and clearly D1 X D2. D12 

on 
1 

and D2 on it 
2 

This result is not surprising, for if our knowledge of the com- 

posite system consists in knowing only D1 and D2, then none of 

the statistical dependencies which may exist between the component 

systems are apparent. However, if the component systems are known 

t1 +t2 

D1 
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to be statistically independent, this problem does not arise, for the 

statistical state of (4..12, H 12) 
is then uniquely determined by those 

of ( Ó{1,H1) and (1{2, H2). To show this, we must first define 

what is meant by statistically independent component systems in 

quantum mechanics. 

Definition 4 -20. A composite system (44,12,H12) in a sta- 

tistical state p has statistically independent components 
12 

( 14 
1,H1) and (1{2,112) if and only if their respective statistical 

states satisfy the condition 

p12(MON) = p (M)' P2(N) 

for all closed subspaces M c 
1 

and N e It2. 

This definition is clearly motivated by the classical concept 

of statistically independent events. It applies equally well to our 

definition of events in quantum mechanics. 

Statistical independence can be described alternatively in terms 

of the density operators. As shown in Theorem 4 -22 below, the com- 

posite system has statistically independent components if and only if 

D12 = D1 X D2. 

This is the justification of our assertion above that D12 is uniquely 

determined by D1 and D2 when the components are statistically 
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independent. 

To establish Theorem 4 -22, we shall need an additional lemma 

on trace class operators. 

Lemma 4 -21. Let Ae(tc) be a self -adjoint operator defined 

for all fle it1 ái2. If trace (AP) = 0 for all projection operators 

P of form PM 
M ®N' where M and N are closed subspaces in 

and respectively, then A = O. 

Proof: Choose any ale (1 and a1 e2 and extend them 

to orthonormalbases { (P } in á(1 and and {kpn } in 11.2. Let [41 1] 

and [J1] denote the one dimensional subspaces spanned by (P1 

and i1 respectively. Evaluating 

trace (A P[ 
1 

using the orthonormal basis {cp X ip 1, we obtain 
m n 

(4. 21. 1) (A(c 1 X 1), 1 X i1) = 0 

Since I:p1, q1 can be chosen arbitrarily, (4. 21. 1) holds for all 

43. 1' 
qle {1, /i2. We first show that for all (Pie 'A1 and LP1, tp2e ßi2 

(4.21.2) (A(41 X Lp1), 4 X 42) = 

Clearly 

Ai 

m 

1 1 

. 

0 . 

) 



(A($1X 4J1), X 4J2) _ (A($1X q1), 
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X ip 1)+(A(1)1X1), 12-1)) X( 

The first term on the right is zero by (4. 21. 1). The second term may 

be written 

(A[ I)1 X (LP1-LP2)] , (1)1 X 42-L,1))+ (A($1X 4J2), X 424 1)), 

where the first term is again zero by (4.21. 1), and the second term 

is 

(A($1 X 2), 41.1 x ip2) - (A(4'1 X tp2 
(1)1 

X 4'1) 

Since the first term is again zero, we obtain 

(4.21.3) (A(4'1 X kp1), 43.1 X 4J2) _-(A(4'1 -(A(41 X 412), l X 4J1) 

Now replace q1 by i4l to get 

i(A(cpl X 4J1), `1l X 4J2) = i(A(4 X 4J2),47,1 X 4J1) , 

or 

(4. 21.4) (AO) 1X 4,1), 4,1 X 4,2) = (A(4)1 X 4J2), 
(I)1 

X LP') 

Adding (4.21. 3) and (4. 21. 4) gives (4. 21. 2): 

(A(4)1 X 411), .4)1 X i,2) = 0 . 

1 



Next, we show that 

(4. 21. 5) 
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(A(4)1 X (,) 4)2 X 4,2) = 0 

Making repeated use of (4. 21. 2), we obtain 

(A(.4)1X 4,1), c1)2X = (A(4)1X LI,1), (1)1X Lpf2)+(ARI1XLI,1), (4)241)X i,2) 

= (A[(13,1-(1)2)XtP0 , (4)2-411)Xq,2)+(A(4)2X4J1),(2-41)XLP2) 

+2X42) )2X ), 
(I'2XL,2) 

-(A(4)2 X 

Therefore, since (A( 2X 1), ç2X1P2) = 0, 

), 

we obtain 

(4. 21. 6) (A((i)1Xq,1), 2X11,2) = -(AQ)2X4,1), ci1XLI,2) 

Now replace 4)1 by ill to get 

i(A(411Xq,1, 2X4,2) = i(A((i)2X 1), 13.1X1.02), 

or 

(4.21.7) (A(41Xi1, 2X42) = (A(c1)2 X411), 1X4,2) 

Adding (4. 21.6) and (4. 21.7) gives (4. 21. 5): 

(A(4,1X4,1), +2X42) = 0 . 

Now it follows that = 0 for all 1)e(`é{.1 ®é{2)' , that is,for all 

k,2) 

= 4,1X 4)2). 

(AA., .1)) 



with finite P 

_ (t X 11n) 

n=1 

By the continuity of the inner product, we have 
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(Ac), = 0 for all e áll ®ál2 It is well known [ 8, p. 38] that 

this implies A = O. 

Q. E. D. 

Theorem 4 -22. Let D and D12 be density opera- 

tors on the separable Hilbert spaces ßi, 14.2, and Ill ® 11.2 

respectively, and let pl, p2, and p12 be the corresponding 

probability measures. Then D12 = D1 X D2 if and only if 

p12(M ®N) = pl(MhD2(N) for all closed subspaces M c 41.1 and 

N C áL2. 

Proof: Suppose = D X D2. Then, by Theorem 4 -12, 
D12 

for all subspaces M C al and N c. it2' we have 

p12(M 4 N) = trace (D 12PM 
N 

= trace [ (D1 D2)(PMX X PN)] . 

Choose any orthonormal basis {clam X ii 

1.1)m } and are orthonormal bases in 

respectively. Then 

4{1 t ái2, where 

.8 " 1 
and 

} in 

{n } á2 

p 

n 

2') 

D2, 



trace [ (D1XD2)(PM PN), ((D1XD2)(PM PN)(cl)mXÍan), 

m, n=1 

= (D PMOmX D2PNLI,n, 
`1:mX 

Lpn 

m, n-1 

m, n=1 

The last equality is obtained using (4. 2. 3) and gives 

a 
p12(M®N) _ (D1PMqm, rn) (D2PNLrn, 

4)n) [m=1 
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by virtue of (3. 2, 2). Therefore 

p12(M ®N) = trace (DlPM)trace(DZPN) = p1(M).p2(N). 

Now suppose 12(m °N) = pl(M)p2(N) 

spaces MC and NC ói.. Then 

p p12(M MON) = trace 

for all closed sub- 

= DPMcm 
m=1 

Using (4. 2. 3) again, this becomes 

co 

(D1?MmXD2PNipn,cmXkrn) = 
L((D1XD2)(PM 

PN)(4mX ), fin) 

in, n=1 

D2P1NT4in, 
`Pn). 

n=1 

m, n=1 

= trace ((DIX D2)(PMX PN)) 

= trace ((Dix D2)PM ®N) . 

oc 

= 

00 

DIPM4)m, m)(D2PNn, 4)n) 

m=1 n=1 
Z 

se z 



Hence for all M,N, 

Since 

p12 MON = trace ((D1 XD2)PM 

12 
corresponds to D12, we also have 

p12 (MON) = trace (D12PM ®N) 

for all M,N. Therefore 

0 = trace ((D1XD2)PMON) -trace (D12PM ®N), 

or 

trace ([(D1XD2) -D12] PM ®N) 
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for all projection operators of the form PM ®N' Since D1XD2 and D12 

are both bounded self -adjoint operators of trace class, so is 

(Di Dz) -D12, and it follows from Lemma 4 -21 that 

D12 = X D2. 

Q. E. D. 

We conclude this chapter with a brief discussion of some 

analogies between classical and quantum statistics. Perhaps it is 

best to begin by stating again the main difference, namely, that in 

classical statistics the set of all events forms a complemented 

O 
= 
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distributive lattice whereas the complemented lattice of events in 

quantum statistics need not satisfy the distributive law. However, 

by altering the definition of a probability measure, we are able to 

define a statistical state in both cases as a probability measure on 

the set of all events. Certain analogies then become apparent. 

Whereas in classical statistics a system in a statistical state p is 

a probability space (r, , , p), in quantum statistics a system in a 

statistical state p (according to Definition 3 -1) is a triple (IL,ï 1, p), 

where 'ill is the set of all closed subspaces of the Hilbert space át.. 

For brevity let us call (It p) a "Q- space" . If (lt 1'1111, p1) 

and. (142,742,p2) are two Q- spaces, we may denote by /Pi ®ia2 

the set of all closed subspaces of Ó{.1 ®iß.2. We may then rephrase 

Theorem 4 -22 in a form analagous to the theorem on product meas- 

ures in classical probability theory: 

Theorem 4 -23. Let 
( {1'1'p1) and ( 2,Ì112,p2) be two 

Q- spaces. Then there exists one and only one probability measure on 

'M10712' denoted by p1 ® p2, such that 

(p1 ®p2)(M1 M2) - pl(M1 

for all closed subspaces M1 ® M2. 

It is then trivial to define the tensor product of two Q- spaces: 

® (M2) 



-{2 
( a12'12' p12) I 

-- 
i=1 

(R pi) ijili, _ (' t 
1 

11,2, om2, p1 ®p2). 
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Therefore in quantum mechanics a composite system composed of two 

statistically independent components is the Q -space 

( il ® éi2, l ®m2, pl 

The analogous structure in classical mechanics is of course the direct 

product 

(rlX r2, tlx 2, plXp2). 

In both cases the extension of the theory of composite systems to the 

case of an arbitrary but finite number of statistically independent 

components is now straightforward. 

We summarize the analogies between classical and quantum 

statistics in the following table: 
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Phase space 

Mechanical state 

Event 

Statistical state 

Observable 

Probability density 

Composite phase space 

Composite statistical 
state 

Composite probability 
density 

Induced states 

Induced densities 

Statistical independence 

Classical 
Mechanic s 

differentiable 
measure space r 
point in r 
measurable 
subset in r 
probability 
measure on £. 

real valued 
measurable 
function on r 
probability density 
D(z) on r 
direct product 
rl X r2 

probability 
measure 
p 

12 
on t 1 X t2 

probability density 
.D12(zl,z2) on r1Xr2 

1(A) 
= p12(AX 

F2) 

p2(B) = p12(r1 X B) 

Dl(zi.)4D12(z1,z2)gdz2; 

r2 

2L)= 

Quantum 
Mechanic s 
Hilbert space V. 

unit vector in '( 

closed linear 
subspace in J( 

probability 
measure on In 

self- adjoint 
operator on It 

density operator 
D on It 

tensor product 
Ill /I 

probability 
measure 
1312 on /111 in 2 

density operator 
D12 on 'K1 V-2 

Pl(M) -p12(M'` 1(2) 

P 2(N) =P12( 12 ($L 1 N) 

2(zl,z2)µ(dzi) 

yl 

p12(AX 
B)_p1(A) p2(B) 

D12(zl,z2)=Dl(zl)D2(z2) 

D = tr 
D12 1 

"2 

D = tr D12 

1 
2(M®N) =p1(M) p4N) 

12 - D1 X D2 

6 
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CHAPTER V. THE MAIN THEOREM 

Our purpose in this chapter is to present a characterization of 

the canonical equilibrium states for quantum mechanical systems. We 

shall work with a collection Q of quantum systems, such that each 

system (V, H) of Q is inanequilibrium statistical state p. The 

set Q, the Hamiltonian operators, and the statistical states are as- 

sumed to have certain properties listed below as axioms. These as- 

sumptions imply that each system is in a canonical state at a tempera- 

ture which is the same for all systems. The possibility of zero abso- 

lute temperature is included (see Chapter III). 

We shall view Q as a set in the mathematical sense. How- 

ever, Q may be interpreted physically as a large collection of sys- 

tems, each pair of which can be brought together into equilibrium at 

a common temperature. We do not treat the mechanism for attaining 

equilibrium; this presumably would require some mechanical inter- 

action between the members of each pair. We deal instead with the 

limiting case of zero interaction, and postulate that each system is in 

a limiting state p, independent of the second system of the com- 

posite pair. It is not necessary to make an explicit assumption re- 

garding a common temperature for all systems. The temperature 

simply appears as a free parameter in the class of canonical states. 

The axioms fall into three separate categories. The first 
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axiom restricts the collection Q to systems whose Hamiltonian op- 

erators have pure point spectra, and the next three axioms ensure 

that Q. is a "sufficiently large" collection for our characteri- 

zation to succeed. The last two axioms place natural restrictions on 

the equilibrium states. 

Axiom 1. For each system in Q, the Hamiltonian operator H has 

a pure point spectrum S(H) consisting of zero and a sequence of 

real numbers increasing to infinity: 

where 

0= X 0<X1<...<X n<..., 

liin X = 00 
n n-cc 

This axiom is usually interpreted physically as restricting 

each system to a finite enclosure, or at least to an infinitely deep 

potential well, as in the case of a harmonic oscillator. The require- 

ment that the smallest characteristic value X1 is zero is imposed 

as a matter of convenience; it merely requires that each Hamiltonian 

be "normalized" by a constant energy shift (see Chapter III). 

Axiom 2. Q is closed under the pairwise formation of noninteracting 

composite systems. That is, if (áil,Hl) and (i2, H2) are any 

two members of Q, then the noninteracting composite system 

n 
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1 
42, H1 X I2 + I1 X H2) also belongs to Q. 

This axiom provides the mathematical counterpart for the 

physical assertion that each pair of systems can be brought into 

equilibrium with each other in the limit of zero interaction. Notice 

that Axioms 1 and 2 are consistent in the sense that when two systems 

are normalized so that the lowest characteristic values of their 

Hamiltonians are zero, then their noninteracting composite system 

is also normalized in the same way (see Theorem 4 -17). It also fol- 

lows from Axiom 2 and Theorem 4 -17 that the set ß consisting of 

all Hamiltonian spectral values for systems in Q is closed under 

addition. The next axiom ensures that 4 is also closed under 

positive differences: 

Axiom 3. Let b be the union of the Hamiltonian spectra of all 

systems in Q. Then is closed under subtraction, in the sense 

that if X X e ob and X 2> X then X - 
X 1 

, . 

Axiom 4. For each X600, X 0, there is a system (ói H) in 

Q such that S(H) consists of zero and all positive integral multi- 

ples of X; that is, 

S(H) = {nA: n = 0,1,2, }. 

Harmonic oscillators and composite systems of two or more identical 

harmonic oscillators have spectra of the form required by Axiom 4. 

® 

, 

, 

L 
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For the sake of convenience, we shall call the systems guaranteed by 

Axiom 4 "harmonic oscillators" , bearing in mind that true harmonic 

oscillators are not specifically required. 

Axiom 5. Let (A, H) be a system in Q, p be the corresponding 

equilibrium state, and D the density operator for this state. Then 

there is a function f(X) defined on S(H) such that 

D = f(H). 

The significance of this standard restriction is discussed in 

Chapters II and III. It ensures, among other things, that each state 

p qualifies as a true equilibrium state. 

Our final axiom presents the main statistical assumption, 

which, rather loosely interpreted, asserts that the mechanical inde- 

pendence of any pair of systems in Q implies their statistical inde- 

pendence also: 

Axiom 6. For a composite system 
( 12,H12) composed of two 

noninteracting components (ó{1,H1) and ( 44.2, H2) in Q, the 

component systems are statistically independent; that is, their sta- 

tistical states satisfy 

p12(M ®N) = p1(M) p2(N) 

for all closed linear subspaces Mc and N G 11.2. ${1 
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It must be stressed that the axioms do not determine the set 

Q uniquely. For example, Q might consist only of those sys- 

tems which can be built up by composition from a single harmonic 

oscillator, in which case all systems in Q would have the same 

spectrum: 373 = {0, X , ZX , } . Therefore it is important to know 

that any collection Q0 of systems which we may wish to consider 

can be enlarged to obtain a collection Q satisfying Axioms 1 

through 4, provided only that Q0 satisfies Axiom 1: 

Theorem 5 -1. Let Q0 be any collection of systems satis- 

fying Axiom 1. Then there is a second collection Q which contains 

Q0 and satisfies Axioms 1 through 4. 

Proof: Let be be the union of all Hamiltonian spectra of 

systems in Q0, and let d8 be the smallest set containing del 

such that fÌ is is closed under addition, subtraction, and multiplica- 

tion by integers. Then 

{n1X1 
+... +nkXk: k = 1,2,.. = 0,t1,t2, 

for all j =1, 2, k; X.c t)0 

Let D+ = {X s b 
1: 

X > 0 } . Then Lib is closed under addition, 

positive differences, and multiplication by positive integers. To show 

this, let X X 2c 43+. Then X X 2E h1 and X +X 2E . Since 

X 
1 

+X 2> 0, X +X 2c Moreover, if X > X then X -X 
1c 

111, 

1 

o 

.e) = 
J 

} 

J 

1 S +. 

1 

n. 



and since X 
2 

-X 
1 

> 0, X2.XlEb +. Since S1 is closed under 
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multiplication by positive integers, so is 

Now for each non -zero X E (0+ adjoin to Q0 the harmonic 

oscillator whose Hamiltonian spectrum is Sx _ {nX : n=0,1,2, } 

and denote the enlarged collection by Q1. Clearly for each Asc0+, 

SxC S so that the union of all Hamiltonian spectra of systems in 

Q1 is just Moreover, if Q' is the collection of systems 

obtained by noninteracting pairwise composition of members of Q1, 

the union of all Hamiltonian spectra of the collection 

is also 

Q2 
Q 

1 
Li 

Q1 

Now for each integer > 1, let Q' be the col- - m 

lection of systems obtained by noninteracting pairwise composition of 

members of Q , and define m 

Finally, let 

Q ' m+1 m Qm v Q ' 

co 

Q = v Q . 

m=1 m 

We shall show that Q satisfies Axioms 1 through 4. 

Clearly Axiom 1 is satisfied, by virtue of Theorem 4 -17. 

Now let ( 41.1, H1) and (t2, H2) be any two systems in Q. 

z +' 

= 

+ m 



Then for some ml, m2 = 1, 2, ... , ( al, H1 
1 

and 
1 

( 44.2, H2)6Qm . Suppose m2 > ml, then (3{1, H1) and 
2 

together with their composition (1.112,H12) are all in Qm , 

2+ 1 
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( X2,112) 

hence in Q. Consequently Q satisfies Axiom 2. 

Let 13 be the union of all Hamiltonian spectra of members in 

Q. Then 13 _ I)+, and since 
Ge,+ 

is closed under positive differ- 

ences, Q satisfies Axiom 3. 

Finally,Axiom 4 is satisfied, for if X e1b, then ñ e PJ 

Hence the harmonic oscillator whose spectrum is {nX :n=0, 1, 2 . 

is in Qlc- Q. 

Q. E. D. 

Turning now to the consequences of our axioms, we have 

Lemma 5 -2. Let D = f(H) be the density operator for the 

equilibrium state p of a system in Q. Let S(H) _ {Xk} be the 

spectrum of H, where the characteristic values Xk 
have multi- 

plicities mk respectively. Then the function f satisfies the 

conditions 

(5. 2. 1) f(Xk) > 0 for all k = 1, 2, 

(5. 2. 2) 

a 
mkf(Ak) = 1 . 

//k==1 

} 

j3+ 

k=1 
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Proof: Let Pk be the projection operator onto the charac- 

teristic subspace Mk (of dimension mk) corresponding to the 

characteristic value Xk of H. Evaluating 

p (Mk) = trace (D Pk) 

by means of any complete orthonormal sequence of characteristic 

vectors of H, we obtain 

p(Mk) = mkf X ) . 

Since p(Mk) is necessarily positive, it follows that f(Xk) is 

positive. Evaluating p(a4.) = trace D = 1 by the same orthonormal 

sequence, we obtain (5. 2. 2). 

Q. E. D. 

Lemma 5 -3. Let (a{ H1), (a{.2, H2) be two systems in 

Q, and (12,H12) be their noninteracting composition. If 

D1 = f1(H1), D2 = f2(H2), and D12 
T f 12(H12) 

are the correspond- 

ing equilibrium density operators, then the domain of f12 is 

(5. 3. 1) S(H12) = 1+X. 2: X le S(H1), X 2e S(H2) 

and the identity 

(5. 3. 2) 2) = f1(X. 1)f2(y2) f12 (X 



holds for all X 1ES(H1) and X 2eS(H2) 95 

Proof: Since the component systems are noninteracting, it 

follows from Axiom 6 and. Theorem (4 -22) that 

or 

(5. 3. 3) 

everywhere in 

D12 = D1 X D2 

1 2' 

f12(H12) =fl(H1) X f2(H2) 

From Definition 4 -18, H12 = H1XI2 + I1XH2, and by Theo- 

rem (4 -17), H1X12 + I X H2 is essentially self -adjoint and has the 

pure point spectrum (5. 3. 1). Therefore, by Axiom 5, f12 has the 

domain (5.3. 1). 

If we identify H12 = H1 X I2 + Il X H2 with its smallest 

closed extension, then from (3. 6. 2a) it has the spectral representa- 

tion 

OG 

where P is the projection operator onto the characteristic sub- 
m 

space corresponding to the characteristic value µm of H12. 

The operator f12(H12) is uniquely defined by (3. 6. 3a) to be 

(5. 3. 4) 

, 

H12 = 
P µm m' 

m=1 

oc 

f12(H12) _ f 12(µm) Pm, 

m=1 



and from (5. 3. 2), 

fl(H1) X f2(H2) = 

oc 

m=1 
) Pm 
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Now let X1, A2 be any characteristic values of H1, H2 

respectively, and let 4, qi be any corresponding unit characteristic 

vectors. Then when µn = X + X we have 

and we obtain 

or 

Hence 

Pm(c1)X = smn ( 

(fl(H1) X f2(H2)) (43 X do _ 

(1)] X [f 

X 4), 

f (µ )P (4) X LP), 

m=1 

co 

[f2(H2)+] _ f12(µm) 
Smn( 

m=1 

f1(X1)(I)X f2 2)4' 
_ f12(µn)(44)X , 

which gives 

fl (X X 1)f 2(X 2)(4) q) = f12(X1 +Á2)(4X LP). 

Therefore 

= f12 (X + X 2). 

X 

Q. E. D. 

' 

44 

0' 

44 

fl (A 1)f2(X 2) 
1 
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As a consequence of Lemma 5 -3, every pair of systems in 

Q yields a functional equation of the form (5. 3. 2) where the functions 

f depend on the systems involved. By considering each pair 

(ln, Hn) 

functional equations 

(5. 3. 5) 

of systems in Q, one obtains a system of 

fmn(X m+X n) = 1(X m)fn(X n) 

which holds for all X eS(H ) and all X eS(H). The subscripts 
m m n n 

m,n index the systems in Q and range over a possibly non 

denumerable set. Our object is to determine the equilbirium state 

of each member of Q by solving this system to obtain the equilibr- 

ium density operators. The solution is not as difficult as it may at 

first appear. In fact, the great profusion of systems in Q actually 

simplifies our task. 

Lemma 5 -4. Let (14.,H) be any system in Q. If 

D = f(H) is its equilibrium density operator, then f(0) O. 

Proof: We first consider the harmonic oscillators of Axiom 

4. Let ('t , H) be a harmonic oscillator with 

S(H) = {nX : n =0, 1, 2, . 1. Form the composite system (12' H12) 

consisting of the identical components ( ,H) and (It , H). Then, 

by Lemma 5 -3,we obtain the functional equation 

(11m, Hm), 

- 

n 

mm m n 
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f (nX + mX ) = f (nX. )f (mA ) 

for all m, n = 0, 1, 2 . Now suppose f(0) = 0, then for all 

m = 0, 1, 2 , we have 

f12 (mX) = f(0)f(mX) = 0 . 

Hence f12 is zero everywhere on S(H12) _ {nX +mX : m,n =0, 1, 2,} 
= {nX :n=0,1, 2, . 1. This is a contradiction since we must have 

trace D12 
= 

n=1 

mnf (nX ) = 1 . 

Therefore, if ('}(,H) is any harmonic oscillator, f(0) O. 

Now let (' (, H) be an arbitrary system in Q, with 

D = f(H), and suppose that f(0) = O. Then for some X'eS(H), X' >0, 

we have f (A') 4 0. If ( ' , H') is the harmonic oscillator having 

S(H') = :n=0,1,2, } and D' = f' (H' ), then by forming the 

composite system (V12' Hi z) ) composed of (11,H) and (It' ,H'), 

we obtain 

f12 (X' ) = f' (0)f(X' ) = f' (A' )f(0) . 

Here f' (A' )f(0) is zero, but f' (0)f (X' ) is not, which again is a 

contradiction. 

Q. E. D. 

# 

{nX' 
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Lemma 5 -4 permits an important simplification. It allows the 

system (5. 3. 5) to be replaced by a single functional equation. This 

is contained in the next lemma. 

Lemma 5 -5. Consider the set i which is the union of the 

Hamiltonian spectra for all systems in Q. There is a function F 

defined on 13 satisfying the functional equation 

(5. 5. 1) F(X 1+A 2) = F(X 1)F(A 2) 

for all X 
1, 

X 
2E 

and the initial condition 

F(0)=1 

such that for each system (M,H) in Q, with equilibrium density 

operator D = f(H), the function f satisfies 

(5. 5. 2) f(X) = f(0)F(X ) 

for all X cS(H). 

Proof: Choosing any system in Q we may, in view of 

Lemma 5 -4, define a function F on S(H) by the equation 

F(A) = f(1`) 
f(0) 

Indeed, this serves to define F onallof 0 provided we obtain 

, 

43 

. 
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the same ratio f(X )/f(0) for any two systems whose Hamiltonian 

spectra share a common value X . That this is the case follows by 

first setting Xi = X, X2=0 and then X 1= 0, X = X in 

(5. 3. 2) to obtain 

whence 

f12(X ) = f 
1 

(X )f2(0) = fl (0)f IX ), 

f1(X) f2(X) 

f1(0) f2(0) 

Taking X = 0, we see at once that F(0) = 1. To derive 

the functional equation (5. 5. 1), substitute (5. 5. 2) into (5. 3. 2) and 

obtain 

f12(0)F(X +X 2) = f1 (0)f2(0)F(X 1)F(X 2). 

But with X 
1 

= X = 0, we have 

f12(0) = f1(0)f2(0) 0 

and the result follows. 

Q. E. D. 

Lemma 5 -6. Let F(X) be the function defined in Lemma 

5 -5. Then 0 < F(X) < 1 for all X c , X > O. 

# 

S 
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Proof: Let X e D and X O. Consider the harmonic 

oscillator (14.,H) having S(H) _ {nX : n =0, 1, 2 1. Then from 

(5.5.1), 

F([ n+l] X ) = F(nA )F(X ) , 

and it follows by induction that 

(5.6.1) 
n 

F(nX) _ [F(X)] . 

Hence, if D = f(H), the characteristic values of D are given by 

n 
f(nA)'= f(0) F(nX ) = f(0)[F(X)] 

for all n = 0, 1, 2 In order for 

n n 
trace D = mnf(nX) = f(0) mn[f(X)] > f(0) [F(X)] 

nLLI=O 

n=0 n=0 

to converge, we must have 0 < F(X) < 1. 

Q. E. D. 

Lemma 5 -7. If F(X) = 0 for some X > 0, then 

F(X) = 0 for all X > 0, and each system in Q is in its 

canonical state of zero absolute temperature. 

Proof: The proof depends on the fact that l is closed 

under subtraction. Let F(X l) = 0, and let X be any positive 

. 

n=0 

# 

Y 
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number in D . There are two cases: 

Case I. If X2 > X then by Axiom 3, X -X 
1£D, 

and from (5. 5.1) 

we obtain 

F(X2) = F(A1)F(A2-a1). 

Since F(X1) = 0, we have F(X2) =0. 

Case II. If X2 < X1' then for some positive integer n we ob- 

tain nX 
2 

> Xi, and by case I, F(nX 2) = 0. It follows from 

(5. 6. 1) that F(X 2) = O. 

Therefore F(X) = 0 for all X > O. Now if (CH) H) is 

any system in Q, with equilibrium density operator D = f(H), then 

trace D = m0f(0) = 1, 

where m0 is the multiplicity of the characteristic subspace cor- 

responding to X = O. From (5. 5. 2), we obtain 

f(X) _ 

mif X = X0 = 0 

0 

if X 0 

This is the canonical state of zero absolute temperature. 

Q. E. D. 

0 

2 
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In view of Lemma 5 -6, we are able to distinguish two cases, 

As we have just shown, the case where F(X) = 0 for all positive 

X e defines the situation where each system in Q is in a canoni- 

cal state of zero absolute temperature. We shall show that the alter- 

native case, that is, where F(X) 0 for all X e d l , leads to a 

canonical state for each system in Q corresponding to a uniform 

absolute temperature T > 0. Here we have F(0) = 1, and 

0 < F(X) < 1 for all positive X c . It is convenient to define the 

function 

so that y(X) satisfies 

(5.7.1) 

y(X) = .Qn F(X), 

Y(x 1+x 2) = Y(x 1) + Y(x 2) 

for all X , X Est) . By defining 

y(-X) _ -Y(X ) , 

we may extend the definition of y(X) to negative numbers, that is, 

y(X) is now defined on the extended domain sj - , where 

- = {-X: X e 1. We will show that every such extended solution 

of (5.7.1) satisfies 

X .) 

D 

L 

J 
fb 

b 

y(X 1+X 2) = y(X 1) + 
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for all X 
1, 

X 
2 

in the extended domain cb Li-1 The following 

lemma is needed. 

Lemma 5 -8. 

multiplication by integers. 

is closed under addition and under 

Proof: Clearly cif) and - rD are each closed under addi- 

tion. Let -X 
2e 

-1i and X le sel . Then if X +( -X 2) = 0, we have 

X +( -X 2)Eí1 v -:i . If X +( -X 2)> 0, then X +( -X 2)c D since 

is closed under subtraction. If X +( -X 2) < 0, then X +( -X 1) 

is in h Hence -(X +( -X 1)) X 
1 
+( -X 2)E- 

Since h and - aß are each closed under multiplication 

by positive integers, then so is ,) -33. Hence for any positive 

integer m and any X e,r) -4J , mX e v -h If mX e 1 
then ( -m)X E -J) , and if mX e -. , then ( -m)X e . Therefore 

v-15 is closed under multiplication by negative integers also. 

Q. E. D. 

Lemma 5 -9. Let y(X ) be any function, defined on v - , 

which satisfies the identities 

(5. 9.1) Y(X 1+X = Y(X1)+Y 2) 

for all X1,X2e. , and 

(5. 9. 2) y(-X ) = -Y(X ) 

. 

-f 

b 

2 = . 

v 
d.) 

cel 

. 

.a 
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Then (5. 9. 1) holds for all X X 
2e 

- D . Moreover, if m is 

any integer, then 

for all X -1L 

Y(mx ) = mY(x ) 

Proof: Let -X1, -X 2e- f3 , then by Lemma 5 -8, y( -X 1-X 2) 

is defined, and 

y(-X 1-X 2) = y(-(x 1+x 2)) = -y(x 

= y(-X + y(-X 2) . 

1+A 2) = -(y (Xi) + y(X 2)) _ -y(x 1)-(X2) 

Hence (5. 9. 1) holds for all X X 2e -,13 . Now let X le O and 

-X 2e- Then y(X -X 2) is defined, and if X -X = 0, 

Y(X 1-X 2) = Y(0) = 0= Y(X 1) - y(X 

If X 1-X > 0, then X 1-X 2e ,f5 , and 

Y(X 1-X 2) + Y(X 2) = Y(X 1-X 2+ 
X 

2) = Y(X 1) 

X ) + y(-X 2) 

Hence 

Y(X 1-X 2) = Y(X 1) - Y (X 2) = Y(X 1) + y(-X 2) 

If X1 -X2 < 0, then X2 > 0 and X2 -X1eJ. Hence 

D j 

1) 

. 2 

2) 



or 

Then 

which gives 

Y(X 2-X 1) + R - y(X 

Y(X 2-X 1) = Y(X 2) - y(X 1) 

-Y(x 2-x 
) 

= Y(x 1) - Y(x 2), 

Y(X 1-X 2) = y(x 1) + y(-X2). 

Therefore (5. 9. 1) holds for all X1, X 2E 4 v -et) 

If n is any integer, then for all X E d.! v- d 

defined, and since (5. 9. 1) now holds for all Xi, X 2E b v - , 

Y([ m +l] X) = y(mX) + y(X). 

It follows by induction that 

Y(mX) = mY(X) 

for all integers m and X E 0 -b 

Q. E. D. 
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is 

Lemma 5 -10. Consider the case where 0 < F(X) < 1 for all 

positive Xe . Then there is a positive constant 0 such that 

F(X) = e-9A 

2), 

, y(mX ) 

S 



and each system in Q is in the Gibbs canonical state with the 

density operator 

-OH 
D = e 

trace e 
8H 
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Proof: As above, define y(X) = in F(X ), and extend y(X) 

to 4 L- by the equation y( -X) = -y(X ). We shall show that 

A 
- -8 for all positive X e b , where e is a positive constant. 

Suppose that Y(X) is not constant. Then for some 

X 1,X e 21, 

(5.10.1) 
Y(X 1) Y(X 2) 

1` 1 
X2 

Let a and b be any two positive numbers, and consider the 

equations 

aY(X 1) + ßY(X 2) 

aX 
1 

+ ßX 

= a 

By (5. 10. 1), the determinant X 
2y(1` 

1)-X 
ly(1` 2) 

is not zero; hence 

these equations can be solved for the real coefficients and ß 

In general, a and ß will be irrational numbers. However, we 

can always choose rational numbers 

close to a, (3, so that 

r1 

sl and 
r2 

s2 
sufficiently 

a 

' 



(5. 10. 2a) 

(5. 10. 2b) 

2 sl y(X sy(X2)> 0 

1 2 

r1 
'T. 

1 s2 2 
X 

2 
> 0 

1 2 
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Moreover, we may suppose that the denominators sl, 52 are posi- 

tive. Multiplying both sides of (5. 10. 2a) and (5. 10. 2b) by sls2, 

we obtain 

mly(X 
) 

+ rn2y( 2) > 0 

m 
m1X 

X 
1 

+ m2X > 0 , 

where m 
1 

and m2 are integers (not necessarily positive). By 

Lemma 5 -9, these inequalities become 

y(m1X + m2A.2) > 0 

m1X + m2X > 0 , 

Now m1X + m2X 2E t I and in F(m1X + m2X 2) > 0 contradict 

the fact that 0 < F(X) < 1 for all positive X E . Consequently, 

we must have 

y(X ) = -OX 

for some constant O. Here 0 is positive since 0 < F(X) < 1. 

1 

1 1 

PJ 
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Thus for each system (1,H) in Q, having the equilibrium 

density operator D = f(H), - we obtain,from (5. 5.2), 

f(X) - f(0)e-6A 

for all X ES(H). It follows that 

D = f(0)e-AH 

Since trace D = 1, this is 

-OH 

D 
e 

-OH trace e 

Q. E. D. 

Our main theorem summarizes the results of Lemmas 5 -7 and 

5 -10: 

Theorem 5 -11. Let Q be any collection of quantum sys- 

tems, each in an equilibrium state, satisfying Axioms 1 through 6. 

Then each system is in a Gibbs canonical state at some absolute 

temperature T > 0. The temperature is arbitrary, but it is the 

same for all systems in Q. 
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APPENDIX 

The fact that density operators are completely continuous is 

fundamental to our discussion (see the discussion following Definition 

3 -6), and we shall include here a proof of this theorem. 

Completely continuous operators on a Hilbert space have been 

discussed rather thoroughly in the literature (see N. Aronsazajn and 

K. T. Smith [ 1 ] , and the many texts on functional analysis such as 

F. Riesz and B. Sz -Nagy [ 19, p. 203 ]. For a recent discussion of 

spaces of completely continuous operators, the reader is referred to 

R. Schatten [ 20]). It is well known that a completely continuous oper- 

ator on an infinite- dimensional Hilbert space need not admit a charac- 

teristic value other than zero. However, much more can be said if 

the operator is also assumed to be self -adjoint. On a finite- dimen- 

sional unitary space, every self -adjoint operator admits a basis in 

that space made up of its characteristic vectors. The infinite - 

dimensional extension of this theorem asserts that every self -adjoint 

completely continuous operator T on a Hilbert space a (separ- 

able or non -separable) admits a complete orthonormal family of char- 

acteristic vectors. Its non -zero (necessarily real) characteristic 

values are of finite multiplicity and form either a finite or denumer- 

ably infinite sequence {Xk } . If the corresponding sequence of char- 

acteristic vectors 14)k} is finite or denumerable but not complete, 



we may represent any fe as 

f = 
(f , (1)k)(1)1 

g 

where g is some vector in the null space of T. Thus 

Tf = , 
(1)k)X klk° 
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Adjoining to 14)k} any orthonormal basis in the null space of T 

then gives a complete orthonormal family of characteristic vectors 

of T. Of course if V. is a separable space, this family is a se- 

quence. 

We can go one step further if zero is not a characteristic value 

of T. In fact, in order that the sequence 14)k} corresponding to the 

non -zero characteristic values {Xk} form a complete orthonormal 

sequence in It , it is necessary and sufficient that zero not be a 

characteristic value of T, that is Tf 0 whenever fi O. The 

characteristic values are still of finite multiplicity but denumerable 

in number. Thus for any f ea, we have the simple decompositions 

f = 

k=1 
oo 

Tf = 

k=1 

fl 
k)`kciS k' 

it 

/ 
k 

i 

L. (f 1+1,41c 
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where 
Xk 

runs through the characteristic values of T each as 

many times as its multiplicity indicates. In this latter case, we 

necessarily have - 0. 

The following proof is based on a proof given by R. Schatten 

[ 20, p. 41] . 

Theorem. Let T be a non -negative, self- adjoint operator 

of the trace class defined on a separable Hilbert space it . Then 

T is completely continuous. 

Proof: Let {c } be a complete orthonormal sequence in 

{ . Since T&(tc) and is non -negative, we have 

oc 

(T (I)/ s ) = M, where M is a non -negative real number. 

Then 

[ 

oc oc oc 

(Tcf).f , (I) )] 2 = M2 = (Tc1)n n) (Ti) , ) 

f=1 n=1 /=1 

oc 

(Ti)n, cOn)(Tci)f, (1)1) 

n,. =1 

Since T is also self- adjoint, it satisfies the inequality 

(Tg, f) 1 < [ (Tf, f)(Tg, g)]l /2 

1 , 

1=1 

, 

= / 

I 

/ 



for all f, g£N [ 17, p. 101] . Hence 

I (T'zi)x , (i)n) I 2 = Cr n' )( , LI) 

n, =1 n,Q=1 

Since {o/ } is a complete orthonormal sequence, we have 

(f, g) = 

/ =1 

f(1).(2)(q).e,g) 

for all f, g E 44. . Therefore 

and 

M2 > , (T4)n Tcfc.n) = 

n=1 
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II II 
T(i)n 2 must converge since its terms are all non -negative. 

n=1 
Now let {frill be a weakly convergent sequence: f f. 

Yn m 

Then [ 15, vol. 1, p. 90] for some constant c, we have 

IIf II 
< c for all m, and therefore II 

f II < c. Since 

oc, 

IIT(1)nII2 

=1 

converges, for each E > 0 there exists a positive 

integer no such that 

IIT(1).nII2< 
n=n. 

Expanding fm-f, we obtain 

2 
E 

16c2 

M2? 

/ 

> 

cc 

cc 

IIT$nI'2, 
n=1 

+ 

m - 



and 

fm-f = 

OG 

n=1 
oc 

fm-f, 4)n)in, 

Tf -Tf m 
= ) (f -f, 

n )T n . m 
n=1 

For every positive integer m, 

II Tfm-Tf 
II 2 = II 

_< 211 

OG 

n=1 

n0-1 

n=1 

fm-f, cl)n)T4)nY=i1 (fm-f, 4>n)T4)n+ 

n=1 

m (1) II n)Tn + 211 

00 
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f f,q)n)T4) nI 2 

n=n 

fm-f, (1)n)Ti)n II 2 

n=n 

The first term in the last expression is a finite sum, so for sufficiently 

large m, say m > m0, we have 

n0 -1 

211 (fm-f, (1)n)T4nll 2 

n=1 

2 
E 

2 

since f f implies lim (fm -f, fin) = 0. The second term is 
m-o 

less than or equal to 

co 

2 
II (fm-f, st.n)T(l)n II 2= 2 I (fm-f, (1)n) I 2 II T:1)n II 2 

n=n0 n=n 

OG 

n=n n=n 

, 

n0-1 
0 

cc / 

< 2 
I (fm-f, 4)n) I 2 II Tct)n II 2. 

cc 

/ 

m 



Since 

co 

/ ( (fm-f, n) I 2 = II fm-f II 2, 
n=1 

this last expression is less than or equal to 

211f m-f II 2YIIT 
(1 )n II 2 

n=n0 
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and since II fm II , 11f II < c implies 
II fm -f II < 2c, we have 

211 fm -f II 

2 2 

II T(I)nII 2< 2(2c)2 E 

16c 
n=n 

for all m > m0. Therefore 

2 

all (fm-f, n) TnI) 2 

n=n 

and consequently 

II Tfm-Tf 
II 

2< 2 

for all m > m0. Thus we have shown that f f implies 

II 
Tf 

m 
-Tf 

II 
0, that is, T is completely continuous. 

Q. E. D. 

a 

< 2 

= 

, 

-» 


