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The determination of failure is complicated when a structural

element is subjected to combined rather than simple stresses. This

is especially true when the principle of superposition does not apply.

For such cases, tests of the element under the expected loads are

required to determine its failure criteria.

In this investigation, a rectangular beam is subjected to com-

bined shear and axial loads and studied experimentally. It is the ob-

ject of this investigation to determine the effect of the axial compres-

sion on the maximum stresses created by the shear load. As a pre-

liminary objective, the stress distribution along the shear plane will

be determined using photoelastic techniques.

The distortion energy theory of failure, and its corollary the

octahedral shear stress theory, establish a relationship between the

combined applied loads and the yield stress of the material and will be



used in this investigation.

The distortion energy theory shows that, as axial compression

increases, the distortion energy (and octahedral shear stress) in-

creases indicating that the beam is approaching failure along the shear

plane.

The normal stress distributions at the shear plane were deter-

mined and the effect of axial compression established. The shear

stress was found to be a maximum near the edges of the beam. Under

axial compression the shear stresses near the edges were reduced

and the minimum stresses (at the midsection) were increased some-

what.

The normal stresses perpendicular to the plane of investigation

were found to be compressive near the edges and tensile in the mid-

section. Axial compression is superimposed on the original profile,

thereby increasing the stresses uniformly over the entire cross sec-

tion.

The normal stresses parallel to the shear plane are of the same

general shape and magnitude as the shear stress and are effected only

under high axial compressive loads, probably due to the poisson effect.
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A PHOTOELASTIC STRESS ANALYSIS
OF A BEAM UNDER SHEAR AND

COMPRESSIVE LOADS

I. INTRODUCTION

The determination of the ultimate strength of a structural mem-

ber requires a knowledge of the stress distribution and the physical

properties of the material. From these the ultimate load can be eval-

uated utilizing a suitable failure theory as a criteria.

For most ductile materials, failure is considered to occur when

the material begins to yield. At and beyond the yield point, strain is

no longer linearly proportional to stress and a specimen will be per

manently deformed after the load is removed.

For a brittle material, fracture constitutes failure. In either

case, failure is that point at which the material first deviates from

the elastic stress-strain relationship.

The analysis of failure is complicated when the structural ele-

ment is subjected to combined rather than simple stresses. This is

especially true when the principle of superposition does not apply as

is the case when a beam is subjected to bending and torsion. For such

cases, tests of the element under the expected loads are required to

determine its failure criteria.

Another way of estimating the failure of a structural element is

by simulating its load conditions with a model and analyzing the model.
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Such a procedure will be reported in this investigation. A rectangular

beam subjected to a combined shear and axial load (Figure 1) is stud-

ied experimentally. It is the object of this investigation to determine

the effect of the axial compression (F
c

) on the maximum stresses

created by the shear load (Fs) at the shear plane, section A-A, Figure

As a preliminary objective, the stress distribution along the

plane of interest will be determined experimentally using photoelastic

techniques. The photoelastic analysis, combined with a numerical

integration of the equations of equilibrium, gives the normal and shear

stresses at selected points along the plane.

Fs

A

A

it

Figure 1. Load schematic diagram.

F
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The distortion energy theory of failure, and its corollary, the

octahedral shear stress theory, establishes a relationship between the

combined applied loads and the yield stress of a material. It will be

used in this investigation.

One way of determining the stress distribution theoretically

consists of finding a stress function which satifies the boundary con-

ditions. In this case, an exact mathematical solution is precluded by

the fact that the load is discontinuous at the point of interest resulting

in a discontinuity in the boundary conditions. Durant and Garwood (3)

found it impossible to derive a stress function which satisfied all nec-

essary boundary conditions.

A literature survey shows that little experimental or theoretical

work has been performed on the load configuration with which this in-

vestigation concerns itself. A discussion of similar investigations,

however, will serve as an introduction to the topic and provide valuable

background information and insight for this analysis.

In an attempt to analytically determine the stresses along sec-

tion A-A, Figure 1, Inglis (1, p. 607) approximated the problem by

deriving a stress function involving a Fourier series for the area

immediately around the shear plane. Two cases are considered; first,

the plate ABCD (Figure 2a) has its edges AB and CD absolutely fixed,

while the two edges AD and BC are subjected to uniformly distributed

shear, and second, the plate ABCD is subjected to shear uniformly
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distributed along all four edges.

If the stress functions for these cases are combined and made to

satisfy the displacement condition of the boundaries, the edges AD and

BC can be freed from shear and a close approximation to the analyti-

cal case is obtained.

Inglis found that the shear stress was a maximum near the edges

of the beam and decreased somewhat in the central portion.
Y

A B B'

DL D

0/

(a)
C'

(b)

A

X

A

Shear stress dis-
tribution at section
A-A

(c)

Figure 2. Ingus and Fukuda investigations.
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Fukuda reached the same conclusion experimentally (1, p. 611).

In his photoelastic analysis, a transparent beam C (Figure 2b) of

rectangular cross section is supported by block D of the same materi-

al in a rigid frame E. The load is applied through block B. The use

of the same material in supporting the beam and applying the load was

found by this author to be a significant factor in distributing the load

properly and obtaining an accurate stress pattern. The stress tra-

jectories (which are curves the tangent to which represents the direct-

ions of one of the principal stresses at the points of tangency) indicate

that the stress distribution at section A-A is not one of pure shear be-

cause they do not intersect the section A-A at an angle of 450. The

shear stress (Figure 2c) across section A-A is seen to be at a maxi-

mum near the top of the beam. Such a stress profile is typical of this

load configuration and will be encountered frequently in the chapters

to follow.

J. N. Goodier (9) developed an analytical solution for the stress

perpendicular to the line of force in a block compressed on opposite

sides by a concentrated force (Figure 3a). He showed that the normal

stress (Figure 3b) is compressive near the load points but becomes

tensile in the central portion of the beam. Since assigning the proper

arithmetic signs to the terms of the shear difference equation (Equa-

tion 22a) is critical, this observation is valuable since it gives an

indication of what form the stress profile should take.
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In a paper presented to the Royal Society of London, L. N. G.

Filon (7) derived an expression for the shear stress distribution for a

beam loaded as shown in Figure 4a. He not only verified the results

of previous investigations (Inglis, Fukuda) (Figure 4b), but he also

showed that the shear stress distribution across the shear plane under

consideration is a function of the distance between the load points (the

distance 2i in Figure 4a), This is an important point to note when

performing a series of analyses, particularly on beams of different

depths. The effect of varying the load and beam dimensions on the

stress profile will not be masked by a variation in the load point sep-

aration (2/ ) if the ratio of the depth to the load point separation is

kept constant in all trials.
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II. ENERGY OF DISTORTION THEORY

Total Strain Energy

The total elastic strain energy per unit volume (Wt) at a point

in a stressed element involves both the stress and strain at the point

in question and can be expressed in terms of principal strains and

stresses as

Wt 21 + 21 (T2E + 12 0-3E3 ( 1 )

The principal strains el, E E are related to the principal

stresses 0-1' 0-2 and CT
3

through Hooke's law as follows:

0- 0-2 cr
31

1 E li E 1/ E

0-2 0-1 0-3
E =

2 li E µ E
(T3 0- CT

21
E =

3 E I/ E 11 E

(2)

Substituting Equations (2) into Equation (1), Wt can be expressed in

terms of the principal stresses only.
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Figure 5. Component stress system.

Distortion Energy
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Von Mises and Hencky (13) proposed that the total strain energy

be resolved into two parts; first, the strain energy of uniform tension

or compression (that associated with the change in volume of the unit

volume) and second, the strain energy of distortion or change of shape.

They proposed that the energy absorbed in changing the volume in an

ideal material has no effect in causing failure by yielding, and that

failure by inelastic action is associated with the energy absorbed in

changing shape.

To resolve the total strain energy into these two parts, the

principal stresses (Figure 5) are resolved into two component states

of stress (Figure 5b and c) such that in one of the component states

the average of the principal stresses, (rave, act on the three faces of

the unit volume (Figure 5b) and produce strains equal to the average
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of the three principal strains, E . The second component stateave

as shown in Figure 5c consists of the remainder of each of the three

principal stresses.

The average principal stress, 0-ave,
produces the entire vol-

ume change (E
v
) of the unit cube. The remaining components of the

three principal stresses (Figure 5c) do not produce a volume change

since the sum of the three strains in Figure 5c is zero. These

stresses do distort the cube and a change of shape occurs. The sum

of the strain energies produced by the two component states of Figure

5b and c is equal to the total strain energy, Wt. Therefore,

Wt = Wv + Wd (4)

where Wv is the energy of volume change per unit volume and Wd

is the distortion energy per unit volume.

Wv can be computed from the stresses and strains shown in

Figure 5b and is given by

Since

W = 1
0- E +

1
(T E -1 1

E = E (5)v 2 ave ave 2 ave ave 2 ave ave 2 ave v

0
a

E = ave
v Ey

Equation (5) becomes

((r) 2 0- + 0- + 0-
ave 1 2 3where 0-ave and E

v 3 v 3(1-202E ave
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From Equation (4), the energy of distortion can be determined by

subtracting the energy of volume change from the total strain energy.

Thus

Wd = Wt - Wv

(gave)
=

1 EPT + + 0-2 - 211( G" + + 0- (T -
2 1 2 3 1 2 2 3 1 3 2Ev

This reduces to

2

+Wd = 1
1

1 (r2i 2 3
2 2

6E
p,

" (0-1 0-3)2] (6)

Distortion Energy of Failure Theory

Equation (6) is the basis for determining failure of ductile

materials having a pronounced yield point stress, 0- , in simple
YP

tension. The distortion energy theory of failure states that yielding

begins when the distortion energy reaches a maximum and equals the

value of the distortion energy at the yield point in a simple tensile test.

Therefore, letting

Equation (6) becomes

= 0-
YP

02 = g
3

= 0

(1 +p.) 2
Wd

3E yp

This is the value of Wd at which yielding occurs.
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Octahedral Shear Stress Theory

A corollary to the distortion energy theory is the octahedral

shear stress theory. This theory will be employed here because it is

in familiar terms of stress rather than energy terms.

The same condition for yielding may be obtained by considering

the shear stress acting on an octahedral plane (15) such as ABC in

Figure 6. The unit volume in Figure 6 is acted upon by the principal

x

Figure 6. Octahedral element.

stresses 0l, 0-2 and 0-3. Resolving the unit stress S acting on the

octahedral plane into three components S , S and S and knowingx y z

that the cosine of the angle between the normal to the octahedral plane
1

3
and the coordinate axis is it is found that

Nr



1 2 3
S

0-

Sx 'f3 Y 'f3 z ,,[3

The resultant unit stress S acting on the octahedral plane is then

S = Nis 2 2 2
x y

1 + CT 2 +
Nr3 1 2 3

13

The normal component Sn of the stress S is obtained by pro-
.3.jecting S , S and S in the direction of the normal, n,x y z

0-1 + 0-2+ 0-3
Sn =

3

The shear stress Toct on the octahedral plane is then given by

T = N 2S
2 - S

noct

1
=

3
( 0-

1
- 02)2 + ( (1-

2
- 0-3)

2
+ 0-

1
- 0-

3
)

2
. (7)

The octahedral shear stress can be expressed in terms of the energy

of distortion in Equation (6) by multiplying and dividing the right side
/1 4- 0,of Equation (7) by . Thus6E

1 N./6E + 2 2 2
o c t 17--p, 6E 112 ) ( ) G3 )

( 8 )
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Referring to Equation (6), Equation (8) becomes

-1

6EWd

oct 3 1 +

According to the energy of distortion theory, the failure criterion

states that inelastic action begins when Wd reaches a maximum and
(1+00- 2

Wd
3E

YP
= . Therefore, Equation (7) becomes

T Nr2

oct 3 v = .47 0-
YP YP

The octahedral shear stress theory states that inelastic action

at any point in a body subjected to any combination of stresses begins

only when the octahedral shear stress becomes equal to the octahedral

shear stress at the yield point in a simple tensile test.

The failure criteria of a point in a body can be displayed in a

plot of Equation (7) which is an ellipse (Figure 7). The ellipse repre-

sents the combination of principal stresses at which failure will occur.

In a specimen stressed below the elastic limit of the material, the

stresses at all points within the body fall within the ellipse. As the

load is increased and failure approaches, the points move toward the

boundary.

The octahedral shear stress distribution at all points on a cross

section may be displayed in a continuous curve which has the ratio of

the coordinate distance Y to the depth of the model D on the abscissa,

and the octahedral shear stress on the ordinate. As the load increases,
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the curve is displayed in the direction of increasing octahedral shear

stress indicating that the specimen is approaching failure.

The distortion energy theory has been found to agree very well

with experimental results and seems to combine the best points of the

various failure theories.

Figure 7. Distortion energy theory failure criteria.

Orthotropic Materials

The distortion energy theory as presented thus far applies to

isotropic materials exclusively. Norris (12) extended this theory to

orthotropic materials (e. g. wood, fiber glass laminations) in the

following manner.
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Equation (6) expressed in terms of normal and shear stresses

becomes

1 2 2W = [ ( - )
2

+ (0" - 0- ) 2
+ (0" - 0" )2] ÷ -LAT + + 7 2]x y y z x z 2G xy zy xz

where

G =
2(1 +1.1)

E

(9)

An orthotropic material is considered to be made up of an isotropic

material with equally spaced rectangular voids. The walls of isotropic

material between these voids are parallel to the x, y, and z axes

so that these represent the natural axes of the orthotropic material.

If the walls of an element are subjected to a two-dimensional

stress system, Equation (9) becomes

1
W = [°-

2
(1. °-

2]
4.d 6G x y y 2 xy

2

If it is assumed that the stresses in the isotropic walls (0) are pro-

portional to the values of the stresses (f) applied to the orthotropic

material,

0-x = r fx x

0- = r f
Y Y

T = r f .xy xy xy
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Substituting these values into Equation (9) yields

1 1 2 2
W [r2f

2 - r f r f +r 2f2] +--r f . (10)
d 6E xx xx yy yy 2G xyxy

If a specimen is caused to fail in a uniaxial state of stress,

r 2F 2
x x

Wd
6G

where Fx denotes the stress at failure.

Solving the above equation for rx gives

PT6GWd
rx = Fx

Repeating this procedure for the other stresses, gives

r

r

q6GWd

F

'i2GW
d

xy xy

When these values are substituted into Equation (1), the following

equation is obtained

f2 f f f2 f2x xi_ _E 25i
F 2 F2Yx y xy

This is the distortion energy theory of failure as applied to an ortho-

tropic material.
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III. PHOTOELASTICITY

Certain transparent materials exhibit optical anisotropy when

they are subjected to stress. This birefringence, or double refraction,

forms the basis of the photoelastic technique of stress analysis.

Light traveling through an isotropic medium propagates with

the same velocity in every direction (5). Light entering an anisotropic

medium is divided or refracted into two plane-polarized components

traveling with velocities that are inversely proportional to the index

of refraction of their respective planes.

Let

then

nl' n2 = indices of refraction for the two principal

directions of the plate.

v1, v2 = velocities of propagation of the components of

light.

tl' t
2

= times required for the component of light to

travel through the plate.

n, v = index of refraction and velocity of propagation

in the isotropic medium outside the plate.

c = velocity of light in a vaccum.

c c cn = .n = n2
1 vl 2 v2

(12)
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Substituting the following

d
v v =v1 tl 2 t

2

into Equation (12) yields

cct
1

t2
n = ctn = n =

1 d 2 d

where t is the time required for the light to travel a distance d in

the isotropic medium (outside the plate).

The phase angles of two waves with respect to the medium out-

side the birefringent material are

al = w(t
1

=
cod 2Trd(n1 - n) = 7.-- (n1 - n)

cod Trd
= (t2 - t) = --c (n2 - n) = 2 (n2 - n)

The angular phase difference is

Tr 2d= al - a2=
X

(n1 - n2)

The linear phase difference is

6
aX.

=

(13)

(14)

where X is the wavelength of light.

The linear phase difference is related to the wavelength and call-

ed the relative phase difference

(15)



Combining Equations (13), (14) and (15) gives

R = (n
1

- n
2

)

20

(161

This relative linear phase difference is called the relative re-

tardation and is proportional to the thickness of the plate, the differ-

ence in principal indices of refraction and inversely proportional to

the wavelength of the light source.

Stress-Optic Law

It was found that the principal stresses are linearly related to

the indices of refraction and that the difference in indices of refraction

between the unstressed material no and the stressed material n
a,

nb and nc bears a relationship to the principal stresses similar to

that which exists between stress and strain.

Recalling the definition of strain and Hooke's law gives

11
1

- Qo = 2OE1 = E 0-1 _
E12

(
2

+ 0-3 )

Similarly, it was found that

n
a

- n
o 1

= C 0-
1 2

- C (0"
2

+
3

)

where C
1

and C2 are stress-optical coefficients.

For a two-dimensional case,

n
a

- no = C10-1 - C 20-2

- no = C10-2 - C
(17)
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Equation (17) is the two-dimensional stress-optical law in terms of

absolute retardation. Since the determination of absolute retardation

is very time-consuming and delicate, most analyses make use of rela-

tive retardation.

Eliminating no from Equation (17),

na - nb = (C1 + C2)(0-1 - 0-2)

and substituting into Equation (17)

(C1 + C2)
R = -T. (fla nb) =

X
(0-1 - 0-2) .

Combining the stress-optic coefficients into one, we obtain

R = t
( - 0- 2) .

Optics of the Polariscope

(18)

The plane polariscope consists of a light source, a polarizer

and an analyzer. The polarizer and analyzer produce plane-polarized

light; that is, they pass only light that vibrates in one particular

plane.

When a stressed photoelastic model, made of a birefringent

material, is placed between the polarizer and analyzer with one of its

principal axes oriented at an angle 0 with the horizontal, a light

beam enters the plate and is resolved into two components (Figure 8):

Al = a cos 0 sin (JJ t

A2 = a sin 0 sin wt.
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These components emerge with an angular phase difference a

which is related to the indices of refraction, wavelength and plate

thickness as given in Equation (13). The two emerging components

are

Light
Source

A3 = a cos 0 sin cot

A4 = a sin 0 sin LA + a).

y

Plane of vibration Plane of vibration

w lir 0 ler
Polarizer

(Leaving) Analyzer Emerging
Doubly refracting light

plate
x, y = principal axes

Figure 8. Optic of the polariscope.

If the plane of polarization of the polariscope is vertical and that

of the analyzer is horizontal (the polarizer and analyzer are therefore

crossed), then only the horizontal components of A3 and A4 will

pass through the analyzer. The emerging beam is

A5 = A3 cos 0 - 4
sin 0

= b cos (wt +
2
a )
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2
i

awhere b = a sin 20 sin () is the amplitude.

The intensity of a light beam is taken as twice the square of the

amplitude. Therefore

I = 2a2 sing 20 sing
2
a .

Light extinction occurs when the intensity is equal to zero.

There are two possibilities;

(1) 20 = n Tr

where n is an integer. Of special interest is

0 = 0 or
2

Tr

That is, one principal axis of the birefringent plate is parallel to the

orientation plane (or vibration) of the polarizer and the other axis is

perpendicular to the plane of vibration.

The other possibility for extinction is

(2) a
= n-rr

or, from Equations (14) and (15),

a
R= ,--- n

2Tr (19)

which indicates that the relative retardation is an integral number of

wavelengths.
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Is ochromatic s

Viewing the photoelastic model through the analyzer of the polari-

scope (using monochromatic light), it is seen that fringes appear as

the load is increased. These fringes represent consecutive integral

values of relative retardation (Equation 14). Therefore, each fringe

is said to have a fringe order which corresponds to its value of relative

retardation. Figures 15 and 16 show examples of the fringe patterns

developed at section A-A of Figure 1.

Returning to Equation (18), and considering what has been learn-

ed in Equation (19), Equation (18) can be written as

n = t
( o-

1
- o- 2) (20)

where n is the fringe order.

From Equation (20), it can now be stated that every fringe of a

given fringe order is a locus of points representing a constant princi-

pal stress difference (0- - (T2).
1

Since

Equation (20) becomes

where

13-1 0-2

Tmax =
2

nX
= = nFmax 2Ct

F = 2Ct

( 21 )
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is called the model fringe value measured in psi/fringe.

Isoclinics

As noted previously, there are two conditions which lead to the

extinction of light, or the formation of fringes, in a photoelastic model.

The first is due to the relative retardation (isochromatics). The sec-

ond is associated with the angel 0 between the reference axis and the

principal stress axis. The fringes associated with this condition are

referred to as the isoclinics. The isoclinic is the locus of all points

where one principal stress is at an angle 0 from the reference axis.

This angle is the angle 20 on Mohr's circle (Figure 19) and is there-

fore used in calculating the shear stress (Equation 25).

Since the intensity in a plane polariscope is a function of both

the angle 0 and the relative retardation or fringe order n, the iso-

chromatic and isoclinic fringe patterns are superimposed on each

other. This hinders the recording of photoelastic data since it may be

difficult to distinguish between the two.

The isoclinics are eliminated in what is called the circular polar-

iscope. This polariscope has quarter-wave plates on either side of the

photoelastic model which retards the beam by one quarter of a wave-

length. The principal axis of the quarter-wave plates are at 45o angler;

to the horiiontal aids. This causes the sin 220 term in the intensity

equation to always be equal to one. Thus the expression for the
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intensity becomes

a
I = a sing 2

and is related only to the relative retardation.



IV. APPARATUS

Loading Fixture
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The photoelastic model to be analyzed is placed in a fixture cap-

able of loading the model in shear and axial compression at two sec-

tions (Figure 1). Because the photoelastic process is a sensitive one,

the fixture must be carefully designed to prevent alterations of the

stress pattern in the model. Therefore, this fixture is designed with

a maximum degree of flexibility to allow adjustments of the model in

the fixture and the fixture in the polariscope. In this way, erroneous

loads can be detected photoelastically and removed by adjustment.

For simplicity, the fixture was designed in two separate assem-

blies. The Shear Assembly applies the shear load by placing the

model between two opposing members as shown in Figure 9. One end

of the fixture is attached to a load cell in the loading frame of the polar-

iscope to measure the total shear applied to the model. The other end

of the fixture is attached to the movable end of the load frame. The

load is applied at this end by moving the fixed and free ends of the

frame apart, thereby placing the model in shear at section A-A, Fig-

ure 1. All joints in the shear assembly are pinned to relieve any

bending moments caused by misalignment of the fixture. Figure 11

shows the fixture in the loading frame and Figure 12 shows the loading

frame in the polariscope.
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Figure 9. Shear assembly.

Specimen

I !WA Wr
I

Specimen

Load cell

Figure 10. Compressive assembly.
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Bearing pads made of the model material must be used between

the aluminum surfaces of the fixture and the surfaces of the plastic

model to reduce the high stress concentration between the dissimilar

materials at section A-A near the edges of the model. This practice

is in accordance with Coker and Filon and was discussed in Chapter I.

The model is subjected to axial compressive force by the Com-

pressive Assembly shown in Figure 10. The compressive load is

applied with and monitoredby a cantilever beam load cell. The load

cell is composed of an aluminum beam with a strain gage mounted on

the edges over the pivot hole. Placing the gages in this manner per

mits greater sensitivity because that is the point of maximum flexure.

The strain gages are connected to adjacent arms (11, p. 7-5) of a

Baldwin-Lima-Hamilton Strain Indicator. The load cell was calibrated

using another load cell.

At high loads, the load cell travels through a relatively large

arc. This causes the beam to rotate about the opposite end. A ful-

crum is provided to facilitate this rotation and eliminate any bending

moment which might develop if that end was fixed.

Axial compression is applied while the fixture is in the polari-

scope so any bending can be detected photoelastically and the appro-

priate adjustment made.
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Figure 11. Fixture in loading frame.

Nko",
SDHACOVVC4V N.

Figure 12. Fixture in polariscope.



31

Models

The three models used in the analysis are rectangular beams

shaped from a quarter-inch sheet of Columbia Resin, CR-39, a ther-

mosetting plastic. This material was selected because of optical

clarity, freedom from residual stresses and availability.

With CR-39, a clear and colorless material, isoclinic and iso-

chromatic patterns are not obscured. This is often the case when

dark isoclinics and isochromatics blend with the dark color of trans-

lucent model materials. In this application, optical clarity is of

major importance because isoclinics tend to wash out under compres-

sive loads.

The disadvantage of using CR-39 is its optical creep, an increase

of retardation which causes a gradual increase in the fringe order and

therefore, a decrease in the stress-optic coefficient (8, vol. 1, p. 367).

It is assumed that optical creep affects the moduli of elasticity

and rigidity in the same way so that the stress distribution (the iso-

clinics and isochromatics considered as a family of curves) remain

unchanged (6, p. 86). Accordingly, the stress-optic coefficient must

decrease to preserve a direct proportionality between the stress and

the fringe order.

Figure 13 (5, p. 114) shows the variation of fringe order with

time at different loads in CR-39. Two points should be noted. First,
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the fringe order changes most rapidly shortly after the load is applied,

and second, the higher the load the more appreciable the creep. These

two points should be considered when deciding what loads to apply and

when to record the data.

Because strain is proportional to stress only below 3000 psi in

CR-39 (2, p. 79), a low load is necessary to reduce the effect of

creep. A one-hour lapse between loading and recording data allows

time-dependent effects of creep to dissipate.

The models were cut to their approximate dimensions on a jig-

saw then machined to the final dimensions as shown in Figure 14. The

edges must be polished with fine emery cloth to insure the removal

of small surface discontinuities which often cause a drastic distortion

of the fringe pattern.

The bearing pads mentioned previously must be machined and

polished with the same care that is given to the model,
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Figure .13. Optical creep in CR-39.
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Trial L D

3 2.5 .252

4 2.5 .505
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Figure 14. Model dimensions.
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V. RECORDING PHOTOELASTIC DATA

After sufficient experimentation, the forces in Table 1 were

adopted for this experiment. The shear force Fv and the axial com-

pressive force Fc are defined in Figure 1. The force ratio is equal

to F
c
/F

v
and "LPS" is the load point separation (Figure 20). L/D

is the length to depth ratio (Figure 14).

Since the shear plane thickness has a very definite effect on the

stress distribution (Figure 4), the ratio of the load point separation

to the model depth is held constant for all trials. This measurement

was made directly on the polariscope screen which displays a model

image ten times actual size.

Table 1. Loads

Trial

Shear
Force
(lbs. )

Compressive
Force
(lbs..)

Force
Ratio L/D

LPS
(Inches)

31 100 0 0 10 . 015

32 100 124 1. 24 10 . 015

33 100 167 1.67 10 . 015

43 125 0 0 5 .020

44 125 247 1.96 5 . 020

45 1 25 33 2.97 5 . 020

51 150 0 0 3.3 .025

52 150 183 1: 22 3. 3 . 025

53 150 340 2.26 3.3 .025
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Recording Data

Departing from the traditional graphic and photographic methods

of recording photoelastic data, a fast and accurate system was

developed for this investigation. The Shear Difference Method of

calculating normal stresses requires data at a series of points on

three parallel sections across the model. With some prior knowl-

edge of the expected fringe pattern, (shown in Figures 15 and 16)

these points can be laid out on tissue paper and placed over the model

image on the polariscope screen. Using Tardy's method of compen-

sation and a monochromatic filter to sharpen the fringes, the fringe

order at each point may be determined accurately to at least one-

hundredth of a fringe order. The isoclinic parameter at a point is

determined by rotating the analyzer and polarizer to find the isoclinic

that passes through that point. The isoclinic and isochromatic

parameters may be fed into a computer and computed with the proper

program with no further manipulation (Appendix I).

Traditional methods of recording data involve time-consuming

and inaccurate tracing of fringe patterns and isoclinics, drawing

curves of these parameters and interpolation from these curves.
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Figure 15. Isochromatic patterns - shear only.

Figure 16. Isochromatic patterns - shear and axial.
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Static Checks

Using static checks, the error of the curves associated with

Equations (25) and (26) is established. In this investigation, a static

check involves integrating the area under a curve (e. g. shear stress)

and determining what force it represents. The integration is accom-

plished by determining the area under the curve with a polar plani-

meter and dividing by the length of the curve's base, and multiplying

by the unit scale on the vertical axis. Then, multiplying by the cross

sectional area yields the force. The difference between this force and

the applied force, divided by the applied force, constitutes the error

of the curve.

Fringe Value Determination

Because of the excessive creep in CR-39, determination of the

fringe value under actual test conditions is advisable. The shear

stress curve may be used for this purpose. This allows the fringe

value to be found and the photoelastic analysis to proceed without de-

lay rather than performing preliminary tests to establish the fringe

value and then embark on the actual analysis.

The shear stress distribution is plotted and its average stress

(T ) calculated by means of a static check. The actual average

shear stress (T t) is calculated knowing the applied shear force and
a
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cross-sectional area of the beam.

A graph of the two average shear stresses Tact and Tave, and

the actual shear stress distribution are shown in Figure 17. It is

assumed that the curve is of the correct profile, but not in the correct

position with respect to the Y axis. Therefore, if the average of the

experimentally determined curve coincides with the average of the

actual shear stress, the curve will represent the shear stress distri-

bution. Point A, Figure 17, is the average of the curve of the experi-

mentally determined shear stress. If it is moved to B, the above

condition will be met.

The stress at A can be calculated from Equation (25)

Tave = n F. sin2O
y 1

where F. is some initial fringe value taken from literature. For A

to coincide with B,

T = T
ave act

Finding n and 0 (Figure 17) by interpolation from the photoelastic
y y

data, the correct value becomes

F
-ract

ny sin28y

This fringe value may be verified by performing the same calcu-

lation on the other point of average shear stress, C in Figure 17.
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After several trials, F will be established for an approximate

load and there will be no need to repeat this procedure for subsequent

calculations.

The fringe value was determined initially by placing a CR-39

specimen in a tensile tester and calculating the fringe value in the

usual manner. These results were very close to those obtained by the

self-calibrating method.

Tave

Tact

T

y

Figure 17, Fringe value determination,
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VI. DATA REDUCTION

Shear Difference Method

The equations of equilibrium (8, vol. 1, p. 262)

ao- aT
x xy

+ 0
a x ay

ao- aT
--Y + = 0ay ax

are the basis for determining the normal stresses 0- and 0- across
x y

a straight section such as OY, Figure 18.

From the above,

(CT = (Cr )
Y P y 0

P aT
dy

0 ax
( 2 2)

where P and 0 denote points on Figure 18 and (0- ) and (0- )
Y P y 0

are the stresses at those points.

Taking a section X-X through P parallel to the X axis and

plotting the shear stress for that section, aTxy y at point P repre-

sents the slope with respect to the X axis of the shear stress curve

at P' (Figure 18). The first approximation of the slope of the shear

stress curve at P' is obtained by calculating the shear stress at P

and an adjacent point A lying on the section X-X, and dividing their

difference by the distance between them.
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T xy =f(3r)

X _
0

Figure 18. Shear difference method.

8T (T )P )_a/ - xy P xy A
ax Ax
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(23)

In Figure 18, T denotes the tangent to the shear curve at P', and T1

denotes the first approximation, Equation (23).

A second approximation can be obtained by taking the shear

stress difference between the shears at two points, A and B, on

opposite sides of P and on section X-X, and dividing by the dis-

tance between them.

This slope represented by T2 in Figure 18, is seen to be a

better approximation to T than T1. Thus



(T ) (T )aT xy A xy )B
a x Ax

Substituting this into Equation (22),

(0 ) = (a. ) - (AT ) AYy P y 0 xy Ax

or

where
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(24)

(CT ) P = (G )0 - ATxyC (22a)
y y

C = AY
Ax

Applying this method in a step-wise fashion across a section, a

profile of the normal stress is obtained.

The shear stress (5, p. 184) at each point is calculated using

photoelastic data and is given by

T = nF sin 20
xy

(25)

The stress parallel to the X axis can be derived from Mohr's circle.

From Figure 19,

and

d = T cos 20max

0-x = 0-
y

- 2Tmaxcos 20



since,

T

Figure 19. Mohr's Circle.

nFmax
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(21)

= 6 - 2nF cos 20 (26)
x y

Figure 20 shows the Cartesian coordinate system used in this

analysis. The origin, 0, is located on the edge of the model under

the load as indicated; and sections one and two, adjacent to the plane

of investigation, are the sections on which the shear stress is deter-

mined for calculating the shear stress difference (Equation 25). The

digital computer program written for solving Equations (25), (22a)

and (26) and calculating the octahedral shear stress is shown in

Appendix I.
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0

2

-4-- Load point separation

Y

Figure 20. Cartesian coordinate system.
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VII. RESULTS AND CONCLUSIONS

Octahedral Shear Stress

Using the principal stresses determined from the photoelastic

analysis, the octahedral shear stress at selected points along the

section of interest (section A-A, Figure 1) can be calculated. The

results for each point is plotted on a coordinate axis system having

the ratio of coordinate distance Y (Figure 20) to the depth of the

model D (Figure 14) on the abscissa, and the octahedral shear stress

on the ordinate.

The octahedral shear stress for trial 4 is shown in Figure 21

with results of trials 3 and 5 appearing in Figure 22. Trial 4 is used

as an example because the stress ratios (Table I) are the greatest and

best display the increased octahedral shear stress.

From Figure 21, it is apparent that the octahedral shear stress

increases as the axial compression increases. In view of the princi-

ples of failure outlined in Chapter II, it is concluded that a beam

loaded in shear will approach failure as axial compression is applied.

The curves in Figure 21 and Figure 22 indicate that the greatest

increase in octahedral shear stress occurs under the load point near

the top of the beam.

As discussed in Chapter II, the approach of failure of an indi-

vidual point may also be plotted (Figure 7) as a function of the principal
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Curve Trial Shear Force Compressive Force
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Beam dimensions: 1/4 x 3/4 x 2-1/2 in.

Figure 21. Octahedral shear stress - trial 4.
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Curve Trial Shear Force Compr. Force

A 31 100 lb. 0 lb.

B 32 100 lb. 129 lb.

C 33 100 lb. 167 lb

Beam Dimensions: 1/4 x 1/2 x 2-1/2 in.

Octahedral Shear Stress - Trials 31, 32, 33

A

-

A 51 1501b. 015.

B 52 150 lb. 183 lb.

MEM 150 lb. ME
Beam Dimensicns 1/4 x 1 x 2-1/2 in.

Octahedral Shear Stress - Trials 51, 52, 53

Figure 22. Octahedral shear stress - trials 3 and 5.
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stresses. Figure 23 shows the principal stresses for point Y/D =

.20 and .50 in Trial 4. The points A, B, and C represent the

principal stresses as the axial force is increased. It is seen that the

points approach the elliptical boundary (in this case arbitrarily placed)

and that if the test were continued to failure, the line ABC would

intersect the boundary (hypothetically) at D indicating that the yield

point had been reached and failure will ensue.

-2000

-2000

Figure 23. Distortion energy failure criteria - trial 4.

Normal Stresses

02

As stated in the Chapter I, it is a preliminary objective of this

investigation to photoelastically determine the normal stresses at

section A-A, Figure 1. The normal stresses, as calculated from the

photoelastic data using the computer program (Appendix I), are
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displayed as curves plotted on an abscissa of the ratio of Y/D des-.

cribed previously.

The results of Trial 3 are plotted in Figure 24 while those of

Trials 4 and 5 are shown in Figure 25.

The shear stress curve for Trial 31 (top figure, Figure 24) is

very much like that cited by Coker and Filon as described in Chapter I,

in which the maximum stress occurs near the edges of the beam.

The application of axial compression reduces the peak shear

stress near the edges somewhat and increases the stress in the central

portion of the beam. Since the area under the shear stress must re-

main constant for a given shear load even though axial compression

is added, the change in the shear stress can only be refected in a

redistribution of the area about the line of average shear stress.

The 6
x

profile indicates that the model is in compression near

the edges and in tension in the midsection. This is substantially the

same results obtained by Goodier in his analysis of a block compress-

ed by two concentrated forces.

The error of the 6x
curve is determined with a polar planimeter

as described in Chapter V. In Trial 31, Figure 24, where there is no

axial force, the area above the abscissa must equal that below the

abscissa or static equilibrium will not be maintained.

As axial compression is applied, Trials 32 and 33, Figure 24, it

is superimposed on the Gx profile of Trial 31, This is apparent since the
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profile is approximately the same for all three trials; only the position

with respect to the abscissa changes.

The 0- profile is similar in shape and magnitude to the shear

stress curve. It is not affected much by axial compression except at

higher axial loads where the increase in 0- is due primarily to the

Poisson effect. It is not possible to check the error of the 0- curve

using a static check. The only way of verifying the curve is by the

fact that there is no load on the bottom of section A-A, Figure 1.

Therefore, the 0- curve must approach zero near Y/D = 1. 0. In

the region of the origin, the 0- curve should be approximately equal

to the boundary condition (ay)0 In actuality, if the 0-x curves

prove satisfactory by a static check then the 0- curve must be cor-
Y

.rect because they are dependent upon one another.

Experimental Error

The percent error of these curves is generally in the range of

1. 5% to 2. 0%, as determined by means of a static check (see Chapter

V).

Although steps were taken to compensate for optical creep, it

can not be eliminated completely in cases where the photoelastic data

is recorded over a length of time. The fringe value may change from

one side of the beam during the recording of data to another due to

optical creep. For this reason, the self-calibration technique used
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in this investigation will yield average values.

On several occasions, the stress created at points in the model

were in the area of 3000 psi. As discussed in Chapter IV, this is the

region where the stress-strain relationship starts to become non-

linear and the accuracy of photoelasticity decreases.

The stress pattern in the model under high axial compression

becomes quite complicated (Figure 16) and it is difficult to determine

the fringe order.
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VIII. RECOMMENDATIONS

It is recommended that further investigations be conducted using

a wider range of beam dimensions (L/D) and force ratios (F /F ) to
c s

better establish the effect of combined shear and axial compression on

a shear plane.

If greater force ratios are to be used, another method of apply-

ing the axial compression will have to be found. It is the opinion of

the author that the compression assembly (Figure 10) developed for

this investigation was employed to its capacity and can not be used to

achieve greater loads with acceptable reliability.

Some bending may be present due to the method used to apply

the shear load. These effects could be minimized by confining the top

edges of the beam as was done by Fukuda (Figure 2).

It would be of great interest to conduct these tests to failure to

varify the conclusions reached in this investigation and to study the

mode of failure. This area might well be investigated employing

photoelasticity.
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APPENDIX I

Shear Difference Method
Computer Program
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DECEMBER 3, 1969 11:22 AM TERMINAL 033

#EDIT

] FIN, PHOTOEL

LIST
00001: PROGRAM PHOTOEL

00002: REAL, N, N1, N2
00003: WRITE(61, 9)
00004:9 FORMAT ('SHEAR DIFFERENCE METHOD')

00005: WRITE(61, 10)
00006:10 FORMAT('SUBSCRIPTS 1 AND 2 REFER TO SECTION ADJACENT')
00007: WRITE961, 11)

00008:11 FORMAT('TO SECTION TO BE ANALYZED')
00009 WRITE(61, 12)

00010:12 FORMAT('N IS THE FRINGE ORDER, F IS THE FRINGE VALUE')

00011: WRITE(61, 13)
00012:13 FORMAT(' C IS DX/DY, SIGMAY IS BOUNDARY CONDITION')
00013: F = TITYIN(3HF=)
00014: SIGMAY = TITYIN(4HSIGM, 4HAY =)
00015: WRITE(61, 14)
00016:14 FORMAT ( ' YD SIGMAX SIGMAY P Q TAU T'

00017: 1'AUMAX TAUOCT')
00018:5 READ(35, 1) YD, N, N1, N2, THETA1, THETA2, C
00019:1 FORMAT (F5 3, 3F6. 2, 3F5. 1, FS. 3)
00020: IF(N) 8, 8, 2
00021:2 TAU=F*N*SIN(2. 0*THETA*. 01745)
00022: TAU1=F*Nl*SIN(2. 0*THETA*. 01745)
00023: TAU2=F*N2*SIN(2. 0*THETA* 01745)
00024: D ELTAU=TAU1 -TAU2
00025: DTAU=C*DELTAU
00026: SIGMAY=SIGMAY-DTAU

00027: A=2. 0*N*F*COS(2. 0*THETA*. 01745)
00028: IF(THETA-45) 3, 3, 6
00029:3 SIGMAX=SIGMAY+ABS(A)
00030 GO TO 7
00031:6 SIGMAX=SIGMAY-ABS(A)
00032: GO TO 7
00033:7 TAUMAX=N*F
00034: G=(SIGMAX+SIGMAY)/2. 0
00035: P=G+TAUMAX

00036: Q=G-TAUMAX
00037: TAUOCT=(SORTWP-9)**2)+((ABS(P)**2)+((ABS(Q))**2)))/3. 0

00038: WRITE(61, 4) YD, SIGMAX, SIGMAY, P, 9, TAU, TAUMAX, TAUOCT
00039:4 FORMAT(' , F5.3, 7F. 0)
00040: GO TO 5
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00041:8 STOP
00042: END

l


