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Lambic and other barrel-aged beer styles are gaining popularity in the United States and Europe 

and are often treated as a premium product that can command a premium price. However, these 

styles can be prone to spoilage during the barrel-aging process, which represents a significant time 

and product commitment by a brewery, and thus it is important to understand what exactly is 

happening within these barrels from a microbiological point of view. 

Previous studies have used microbiome analyses to establish the similarity in microbial succession 

between traditional Belgian Lambic beer and America Coolship Ales, but to date no studies have 

been performed on a large number of barrels. The focus of this study was on the influence of oak 

barrels on the microbiome of three distinct beers produced and matured within the state of Oregon, 

USA and aged in 102 barrels.  



 

 

 

It was evident that traditionally fermented beer produced outside of Belgium exhibited a similar 

microbial profile to traditional Lambic beers during the first 36 weeks of fermentation, with 

eventual dominance of Dekkera (syn. Brettanomyces) bruxellensis and Lactobacillus. During this 

time, previously unreported instances of Gluconoacetobacter were observed, a genera more often 

associated with vinegar and kombucha production than with beer. Analysis of beer that had aged 

up to five years in barrels showed that yeast and bacterial communities follow a conserved trend, 

with the eventual dominance of Dekkera (syn. Brettanomyces) bruxellensis and acetic acid bacteria. 

At any given point in time, however, there was substantial variation between individual barrels, 

meaning the beer’s rate of progress towards terminal microbiome composition was impacted by 

the barrel. These temporal aspects played a larger role in microbiome variability than barrel origin, 

which could not be linked to specific changes in the microbiome.  
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1 Introduction 

Fermentation is one of humanity’s oldest technologies, with evidence of its routine use dating back 

9000 years. Whether through accidental discovery or purposeful pursuit, our ancestors discovered 

that a sweet, alcoholic beverage could be produced through the treatment and fermentation of grain-

sugar extract. Though its origins remain unknown, the earliest evidence of beer-like drinks dates 

back 7000 years to Neolithic China. Over time, the practice spread, with beer being produced 

wherever suitable grains could be farmed. By the height of Sumer Empire 5000 years ago, the 

production of barley-based beer was an established tradition. For the next 5000 years, continuous 

and inexorable improvements to the brewing process and lore were established. This, in a sense, 

encompasses the “traditional fermentation”: a spontaneous event once attributed to divine 

intervention, transforming a broth of extracted grain sugars and nutrients into a gift from the gods. 

Over the centuries, the combination of tradition, science, and technology have turned beer 

production into a truly global industry, with annual production reaching 195 billion liters in 2017. 

While this is predominantly comprised of lager-style beer made using inoculated yeast 

monocultures, a small but significant portion of that volume is dedicated to the ancient art of 

spontaneously inoculated “traditionally fermented” beers. These encompass a number of styles, 

ranging from Umqobothi of southern Africa, to the Berliner Weiss of northern Germany, to perhaps 

one of the most well-known representatives of traditional fermentation in the Western world: the 

barrel-aged Lambic beers of Belgium.  

Particularly within Europe and the United States, these traditionally fermented beers are often 

treated as a premium product that can command a premium price. A number of breweries solely 

focus on these types of beers, forgoing modern styles and techniques in favor of more traditional 

approaches. With a projected 7000 operating craft breweries in the United States by 2019, the 

number of breweries engaging in traditional fermentation and barrel maturation is bound to increase 
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as well. As such, the use barrels in beer production is on the rise. However, the barrel-aging process 

itself represents a significant time and product commitment by a brewery, and thus it is important 

to understand what exactly is happening within these barrels from a microbiological point of view. 

Spontaneous fermentation of beer is a complex process that is difficult to control and profile. 

Metabolic processes of a diverse range of yeast and bacterial taxa slowly develop the distinctive 

aroma and flavor profiles of Lambic beers. Understanding the development of microbial 

communities within these beers, and how local environment will affect fermentation ecology is an 

important step in improving production techniques and ultimately reducing loss. The focus of this 

study is on the reproducibility of Lambic fermentation outside of its traditional region of production 

and the influence of oak barrels on the microbial communities of three commercially available 

barrel-aged beers, produced and matured within the state of Oregon, USA.  

The collection of all microorganisms within a system, such as spontaneously fermenting beer, is 

broadly referred to as a microbiome. The fermentation microbiome encompasses the unique 

ecology that is responsible for the transformation of wort into beer. Therefore, understanding 

microbiome variability introduced into spontaneously fermenting beer systems by abiotic 

influences such as barrels will provide insight into the development of improved production 

techniques and quality control. This study used high-throughput sequencing metabarcoding to 

profile the yeast and bacterial communities of 102 barrels containing three distinct beers (Beer 1, 

Beer 2, and Beer 3) sampled over a period of ten months.  

Beer 1 was used to profile the microbial successions during spontaneous fermentation of a beer 

produced in the “Méthode Traditionnelle” outside of Belgium. Two barrels were sampled over the 

course of nine months from July 2017 to April 2018, starting from 24-hours post brewing. Beer 1 

was found to closely follow the distinctive microbial succession observed in Lambic beer produced 

in its traditional location.  
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Beer 2 allowed exploration of the effects of extended aging on the microbiome of Lambic-like beer. 

The beer was produced in three batches between May/June 2013 and November 2016, with batches 

produced approximately 20 months apart. Fifty barrels representing all three batch years were 

sampled at three separate time points between July/August 2017 and February 2018. Metadata 

analysis revealed that microbiome variability was linked to the brewing batch and time. Yeast 

populations were dominated by Dekkera (Syn. Brettanomyces) bruxellensis, and quickly stabilized 

within the first year of brewing. No divergence of yeast populations were observed after 12 months. 

Acetobacter, Gluconacetobacter, Acetobacteraeacea, and Lactobacillus dominated bacterial 

populations. The acetic acid bacteria were observed to primarily dominate the older beer batches 

while the youngest beer batch exhibited a wide distribution among samples, containing acetic acid 

bacteria and Lactobacillus. Differences in the makeup of acetic acid bacteria populations were 

evident throughout the 5 years of maturation covered by successive batches of this beer. 

Beer 3 was studied to determine the effects of a large number of barrels, and barrel origin, on a 

single batch of pre-fermented beer. Fifty representative barrels selected from a population of 

bourbon, port, sherry, cognac, rum, maple syrup, and vanilla extract were sampled at two different 

time points from July/August 2017 and February 2018.  Metadata analysis revealed that barrel type 

had no effect on microbiome composition, rather differences in yeast composition were observed 

to be linked with sample time point. Specifically, S. cerevisiae and D. bruxellensis populations 

diverged, with some barrels trending towards dominance of one yeast species over the other. In 

addition, barrels introduced microbiome variability as was noted by an increasing number of barrels 

yielding microbiome data between sample time points. No changes in bacterial profiles could be 

linked to specific metadata categories, but were again found to differ across the set of representative 

barrels. 
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Based upon the microbiome data collected, there is evidence to support that traditionally fermented 

beer placed into multiple barrels will diverge in terms of its microbiome, but trend towards a 

conserved profile over time. The observed fermentation microbiome profile of Beer 1 suggests that 

Lambic fermentations are not necessarily unique to a single geographic location. Time, more so 

than any other factor, appears to play the biggest role in microbiome variability, as barrels trend 

towards a conserved profile but at different rates. 

.   
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2 Review of Literature 

2.1 A Brief History of Beer 

2.1.1 Definition of Beer 

Beer and beer-like beverages have existed since antiquity, predating recorded history by thousands 

of years (Meussdoerffer 2009). While beer’s true origins remain unknown, surviving Sumerian 

cuneiform tablets dating back to 3200 – 3500 BCE provide tantalizing hints, with abundant and 

detailed records of grain harvests, grain allocations, and sacred grain-based alcoholic beverage 

recipes (Boulton & Quain 2001; Damerow 2012). The sophistication of these written records, along 

with archeological evidence suggest that fermented grain-based beverages developed soon after the 

development of agriculture, with advanced brewing capabilities developing in Neolithic China as 

early as 5000 BCE (Wang et al. 2016). Indeed, it is a common and important theme among 

emerging civilizations to quickly discover, and take advantage of, the phenomenon of food 

fermentation (McGovern et al. 2004; Damerow 2012).  

Because of the age and cultural significance, the term “beer” represents diverse products of discrete 

and complex processes. Therefore, it is important to establish a definition of “beer” in the context 

of this study. Within the scope of this review, fermentation and microbiome monitoring methods 

therein will be the primary focus. As such, beer as a whole will be regarded in the most basic 

modern definiton: the combination of water, malted grain, yeast, and hops. Various traditional 

definitions may be applied, including the strict Reinheitsgebot (purity decree) of Germany, which 

stipulates beer may only be produced from malted barley, water, hops, and yeast. Alternatively, 

legal definitions such as the American Code of Federal (27 CFR Part 25 - BEER) defines taxable 

beer as: 
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“Beer, ale, porter, stout, and other similar fermented beverages (including sake and similar 

products) of any name or description containing one-half of one percent or more of alcohol by 

volume, brewed or produced from malt, wholly or in part, or from any substitute for malt.” 

In the modern sense, beer is the end goal of the brewing process, which can be broken down into 

four steps: (1) mashing, (2) lautering, (3) boiling, and (4) fermenting. Mashing involves the milling 

of malted grains to produce a grist, which is infused with hot water. Milling and infusion serve the 

purpose of exposing damaged starch granules to endogenous enzymes for efficient conversion into 

fermentable sugars. After conversion, the mash is drained, leaving behind the spent grist. The result 

is a nutrient-rich liquid extract called wort, which is then boiled. Boiling serves the purpose of 

sterilization, concentration, bitterant extraction, and protein denaturation. After the boil, the wort 

is cooled, inoculated, and then place into a hermetically sealed vessel to undergo fermentation. 

Though the process may differ slightly between breweries and beer styles, the basic principles 

remain the same: extract sugar and nutrients from a grain source for conversion into beer via 

fermentation. 

2.1.2 The Traditional Fermentation 

For the majority of beer history, and fermented food production, fermentation was accomplished 

through spontaneous action of autochthonous organisms from the surrounding environment or 

within the food itself (McGovern et al. 2004; Sieuwerts et al. 2008; Meussdoerffer 2009; Capozzi 

& Spano 2011). The concept of defined starter cultures used in many industrial food fermentations 

today are a recent advancement, with first widespread use in beer brewing dating back to 1904, 

around 50 years after Louis Pasteur and his contemporaries discovered Saccharomyces cerevisiae’s 

role in the production of beer and wine. The dairy and meat industry would soon follow, with the 

development of defined starter cultures for routine use in the 1930’s (Claussen 1904; Deibel et al. 

1961; O’Toole 2004).  
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Fermented foods and beverages produced without addition of starter cultures are often referred to 

as a “traditionally fermented” product. While food fermentation will typically rely on 

microorganisms present within the raw material to initiate fermentation (Rantsiou et al. 2005), 

spontaneous beer fermentation is accomplished via direct exposure to air or previously-used 

fermentation vessels (Sparrow 2005). The result is a complex, mixed fermentation involving both 

yeast and bacteria across many taxa and genera (Spitaels et al. 2017). The fermentation process 

may last days or years, depending on the desired product. This process is the antithesis of modern 

industrialized beer brewing practices, which consider any organism other than the intended 

fermenter to be a spoilage organism (Bokulich et al. 2012a; Spitaels et al. 2017).  

One traditional beer style in particular, Lambic, is of interest in that it undergoes both spontaneous 

fermentation and extended aging, often spending up to three years in oak barrels. The Lambic-style 

beer is believed to have originated in the Pajottenland region of Belgium as a cultural remnant of 

Roman rule over 2000 years ago. Over time, these traditions eventually evolved into the belief the 

unique environment and microbial ecology of the Pajottenland itself produced the Lambic beer 

(Van Oevelen et al. 1976; De Keersmaecker 1996; Martens et al. 1997; Capozzi & Spano 2011). 

Though its true origin is lost to history, Lambic beer production represents one of the oldest brewing 

methods still in use today (De Keersmaecker 1996). Production is characterized by an extended 

mashing and boiling process, referred to as “turbid mashing” (Fig. 2.1). The result is a wort rich in 

a wide range of saccharides, from simple monosaccharides to complex maltodextrins, capable of 

supporting a host of yeast and bacteria. The boiled wort is allowed to cool overnight in open, 

shallow vessels called “coolships”, where spontaneous inoculation is believed to occur  
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Figure 2.1 Simplified flow diagram of the turbid mashing process. Total elapsed time from start 

of mashing to end of boil may run 6 to 8 hours. Extended low-temperature mashing allows 

endogenous plant enzymes within the barley and wheat to break down starch granules and wheat 

protein. Water is added as needed, making the pre-boil volume variable. 
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Once cooled to around 20°C, the wort is placed into wooden barrels where a combination of 

microbial action and stochastic chemical reactions transforms the wort into an acidic, wine-like 

beverage (Van Oevelen et al. 1977; Verachtert & Iserentant 1995; Spitaels, Van Kerrebroeck, et al. 

2015; Snauwaert et al. 2016). Much like méthode Champenoise wine, the Lambic style of beer is 

protected by both Belgian and European Union ordinances, and appellation controlée set forth by 

the European Beer Consumers Union (Sparrow 2005). As such, outside of Belgium, similar 

traditional fermentations are labeled under different style names. The American Beer Judge 

Certification Program (BJCP) lists Lambic-type beers brewed in the United States as “American 

Wild Ales” (Strong 2015). Other common colloquial style terminology includes “mixed 

fermentation beers” or “American Coolship Ales (ACA)”, if produced in the traditional Lambic 

method (Bokulich et al. 2012b).  

2.1.3 Oak Barrel Aged Beers 

Wooden vessels play an important role in the development of traditionally fermented beer. Barrels 

and their larger cousins, foudres, allow for gas exchange (micro-oxidation), a key requirement for 

the microorganisms associated with Lambic beer maturation (Sparrow 2005). Due to the longevity, 

ease of manipulation, desirable organoleptic qualities, and general robustness, oak of both 

American and European varieties are highly desired among brewers, vintners, and distillers 

(Mosedale & Puech 1998; Sparrow 2005; Sterckx et al. 2012). In wine and spirits, oak barrels play 

an important role in the maturation and development of stylistic flavors and aroma. Extended 

contact with the oak surface results in the extraction of highly desirable oak lactones and aldehydes 

that impart toasty, coconut, vanilla, and nutty characteristics to the wine or spirit (Towey & 

Waterhouse 1996; Cerdán et al. 2002; Spillman et al. 2004; Sterckx et al. 2012). In modern brewing 

practices, the use of oak barrels to condition finished beers has been employed to complete the 

transformation of the final product. Though not a true traditional fermentation in the same capacity 

as described above, maturation of strong “Imperial” and dark beers is increasingly common among 
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American craft brewers (Dornbusch 2015). These barrels will have a wide range of origins: from 

new American oak originally used once for maturation of bourbon, to second (or third, or fourth, 

etc.) -use wine, whiskey, rum, and sherry barrels. Brewers may desire the character of the previous 

contents to be imparted on their beer, requiring brief contact time in the order of weeks. 

Alternatively, a brewer may seek a softening of the harsher aspects of stronger beers through the 

stochastic chemical reactions and micro-oxidation seen in wine production, requiring extended 

aging on the order of months, or possibly years. 

This phenomenon is well studied among matured wines and spirits, but little work has been 

performed on beer (Sterckx et al. 2012). Prior to the invention of insulated stainless-steel fermenters 

and storage tanks, much of beer production, maturation, and transportation took place within 

wooden vessels. As such, the quality of containers would likely influence the quality of beer 

(Bokulich & Bamforth 2013). Beer is susceptible to spoilage from microorganisms harbored within 

the wood of the barrels, including Brettanomyces spp. (syn. Dekkera) and acetic acid bacteria. In 

most cases, these organisms impart negative quality characteristics that ruin an otherwise good 

product. However, depending on beer style, these influences may not be detrimental, and even 

desired. Traditional styles such as the Saison and Bier De Garde spend three to six months in 

previously used barrels, enough time to undergo a brief spontaneous secondary fermentation 

initiated by autochthonous Brettanomyces. During this time spicy, leathery, and earthy character 

may develop, a hallmark of Brettanomyces influence (Markowski 2004). 

2.2 Traditional Fermentation: Culture-Dependent Analysis 

To fully capture the microbial complexity of traditionally fermented beer, parallel examples of 

other traditionally fermented food and beverage products will be discussed. Fermentation is an 

ancient technology used to improve the safety and quality of various foodstuffs. Unlike industrial 

fermentation products that rely on defined starter cultures, traditional foods such as Lambic beer, 
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kimchi, komoto sake, sauerkraut, traditional Italian sausage, and various dairy products rely on 

microorganisms present within the raw ingredients with minor biotic interference from humans. 

Food produced in this manner develops over a period of several months to years, with advanced 

age being an indication of high quality. (Nout 1992; Rantsiou et al. 2005; Roh et al. 2010a; Jung et 

al. 2011; Smid & Lacroix 2013; Bokulich et al. 2014). Prior to the discovery of microorganisms, 

little was known about fermentation other than what could be empirically derived (Meussdoerffer 

2009). A semblance of control could be exerted through process refinement and standardization. 

Recurring production within each season cycle, re-using fermentations vessels, and consistent 

maturation conditions would have facilitated batch-to-batch consistency, but the final product is 

ultimately the result of capricious microbial activity and their interactions (Bokulich et al. 2012a). 

Understanding population composition of fermentation microbial communities are key to 

maintaining good functional practices for greater process control, consistency, and quality. 

2.2.1 Culture-Dependent Techniques 

Early methods of profiling the microbial communities of food systems relied on ecology-derived 

culture-dependent techniques (Fleet 1999). Culture-dependent techniques have been vital to 

understanding microbial contributions to an ecosystem, including food systems. When culturing is 

successful, the physiology and metabolism of representative organisms can be investigated under 

tightly controlled conditions (Swanson et al. 2016). By understanding the basic physiology of 

representative microorganisms, a better understanding of fermentation development can be built, 

which in turn can help to refine the production process and, ultimately, quality. 

For over 150 years, general and selective enrichment media have been the primary method of pure 

culture isolation. From there, qualitative morphological and physiological assays determine the 

physiology and thus taxonomical identification of isolated organisms (Fry 2004). Often times a 

complex array of assays are required to make even basic determinations of a single organism’s 
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taxonomic identity. In some instances as many as 73 discreet assays are required to make a 

definitive identification, thus limiting routine use (Boulton & Quain 2001). Biochemical assays, 

such as coagulase activity, fermentation capabilities, nitrate reductase activity, pH growth curves, 

and temporal heterogeneity over the course of community development are used to infer specific 

metabolic contributions by different microbial species. Various compendia exist detailing these 

assays, including Bergey’s Manual of Determinative Bacteriology, Bergey’s Manual of Systematic 

Bacteriology, and The Yeasts: A Taxonomic Study. In the United States, the Food and Drug 

Administration (FDA) maintains a Microbiological Methods & Bacteriological Analytical Manual 

(BAM) specifically designed for monitoring microbiological contamination in food and food-

related industries, and is based on the Association of Official Agricultural Chemists (AOAC) 

International Official Methods of Analysis (FDA 2016). Table 1 outlines examples of culture-

dependent methods used in identifying microorganisms in food and food systems. 
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Table 1 

2.2.2 Microbial Diversity as Revealed by Culture-Dependent Analysis 

A plethora of culture-dependent studies exists exploring microbial population dynamics of complex 

food ecosystems. As mentioned previously, understanding the contributions of specific organisms 

to a fermentation system is key to developing model industrial practices. In the context of 

traditional fermentations, kimchi fermentation represent a well-documented, complex traditional 

fermentation. Kimchi is a traditional vegetable-based Korean food that undergoes on a month-long 

spontaneous fermentation (Jung et al. 2011). As a fermentation system, industrial production of 

kimchi will typically rely upon autochthonous organisms to initiate and complete the 

transformation of raw vegetable material into the finished product.  

To illustrate, previous studies have used culture-dependent techniques to establish the role of lactic 

acid bacteria (LAB) in the production of kimchi. Methods such as Unweighted Pair Group Method 

with Arithmetic Mean (UPGMA) hierarchical clustering based on the ability of LAB to oxidize 

certain carbon sources has revealed the diversity of LAB within spontaneous kimchi fermentations 

(Lee et al. 1997). Diverse subpopulations of 12 to 15 identifiable Leuconostoc, Lactococcus, 

Pediococcus and Weissella species are believed to play a significant role in the acidification and 

breakdown of raw material (Lee et al. 1997; Cho et al. 2006; Jung et al. 2011). Microbial diversity 

and population dynamics are shown to be strongly impacted by abiotic factors, such as temperature. 

Traditional kimchi is fermented at refrigeration temperatures, thus favoring cryotolerant species 

such as W. koreensis, which are ideal in flavor and texture development of the final product (Cho 

et al. 2006). Correlation of specific species and fermentation conditions to desired quality 

characteristics has ultimately improved industrial production protocols, leading to more efficient 

and consistent process. 
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2.2.3 Major Limitations of Culture-Dependent Analysis 

Despite the prevalence and usefulness of culture-dependent food fermentation studies available, 

there are known limitations in reproducibility and taxonomic identification of cultured organisms 

(Jung et al. 2011; Spitaels et al. 2014). Outside of industrial applications, it is rare that 

microorganisms will exist as isolated species. Due to the inherent capriciousness of living 

organisms, a complete profile of species distribution and metabolic interactions remains difficult 

(Fleet 1999; Rantsiou et al. 2005; Carraro et al. 2011). Many organisms rely on the metabolic 

activity of other organisms to thrive, requiring a complex web of interactions. Thus, one of the 

significant limitations of culture-dependent techniques is that many microorganisms are simply 

uncultivable under laboratory conditions. Fastidious metabolic requirements and environmental 

conditions may be difficult to reproduce, resulting in delayed or inhibited growth. Even if metabolic 

requirements are met, microorganisms may exist in a viable but noncultureable (VBNC) state due 

to non-lethal cell damage (Swanson et al. 2016).  

Another major limitation of culture-dependent techniques are the introduction of strong bias 

through enrichment. Culturing conditions will favor organisms suited to those particular conditions, 

potentially skewing quantitiave analysis preferentially towards those individuals whose metabolic 

requirements can be artificially met (Muyzer et al. 1993; Giraffa 2004; Spiegelman et al. 2005; 

Carraro et al. 2011; Swanson et al. 2016). It has proven exceptionally difficult and impractical to 

artificially mimic ecological niches required for a complete culture-dependent assessment of 

microbial diversity (Carraro et al. 2011; Swanson et al. 2016)  

Comprehensive ecological assessments rely on specific information to assess microbial 

communities. Food systems are no different. Culture-dependent community profiling requires 

specific information to be useful: (1) reliable taxonomic diversity data, (2) quantitative growth 

cycle data, (3) spatial distribution, (4) biochemical process of inoculation, (5) impact of intrinsic 
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and extrinsic factors, and (6) correlation between growth and quality – including safety (Fleet 

1999). 

Sample preparation may negatively influence qualitative assessment. Food microbiology relies on 

four basic principles of analysis: (1) maceration/blending/homogenization (2) homogenate dilution 

(3) plating on appropriate media (4) isolation and identification (Fleet 1999). Errors may be 

introduced during homogenization and dilution, while quantitative errors will inevitably 

accumulate during plating reducing the accuracy of dominant organism identification (Giraffa 

2004).  

Lastly, living communities are not static constructs. Microbial communities will always exhibit 

both spatial and temporal heterogeneity. It is typical to find food microbiology studies describing 

dominant species at singular points through a production process (Giraffa 2004). However, due to 

complex interactions between the food matrix, other organisms present, and meta-interactions 

between abiotic and biotic events, a “dominant” isolated species may in reality represent a singular 

organism selected to thrive in the isolation media rather than a population as a whole (Fry 2004; 

Giraffa 2004; Jung et al. 2011). Attempts to take into consideration all environmental, metabolic, 

and nutritional requirements for complex community profiling may result in an impractical amount 

of cultures. 

2.3 Traditional Fermentation: Culture-Independent Analysis 

With the deciphering of the generic code in 1960’s, the hunt began to find novel methods for rapid 

and accurate identification of microorganisms in clinical and industrial applications. By the late 

1980’s it was understood that the limitations of culture-dependent microbiology required the use 

of more powerful alternatives (Smalla 2004). The advent of DNA-based technology helped 

revolutionize the field of microbiology. Through chemical manipulation of environmental DNA, a 

staggering community diversity in previously unexplored ecological niches have been brought to 
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light (Muyzer et al. 1993; Cocolin et al. 2000; Wan et al. 2006; Martínez et al. 2011; Wolfe et al. 

2014; Reuter et al. 2015; De Filippis et al. 2017; Spanoghe et al. 2017). Quantitative real-time 

polymerase chain reaction (qPCR), denaturing gradient gel electrophoresis (DGGE), flow-

cytometry (FC), and DNA sequencing have all made significant contributions to understanding 

both environmental microbial ecology and food ecosystems. Collectively, these technologies are 

referred to as culture-independent methods, as they do not rely on the classical culturing methods 

of mid-20th century microbiology. The primary advantages of culture-independent techniques lay 

in direct analysis of DNA, thus adding specificity and accuracy to quantitative and qualitative 

analyses of complex microbial ecologies.  

Of note, sequencing technologies opened the door for a wide range of applications outside the realm 

of medicine, finding specialized uses in the food and beverage industry. The driving force behind 

this surge in applied food industry applications is attributed to the dramatic drop in cost. To 

illustrate, the first human genome sequence, comprising of over 3 billion base pairs and encoding 

19,000 to 20,000 protein-encoding genes, was estimated to have cost nearly $1 billion in 2001. By 

2015, this would drop to under $2000, and costs continue to fall (Reuter et al. 2015).  

Despite the wide range of culture-independent techniques available, their ecological application 

falls within two applications. Within literature, these two categories are split into (1) targeted 

analysis and (2) community profiling. Targeted analysis is used to identify taxa, specific species, 

individual strains, or the presence of specific genes depending on the requirements of the analysis. 

A targeted analysis is typically much narrower and requires some prior knowledge of organisms 

present. Community profiling is a technique used to simultaneously detect and differentiate all 

taxonomical groups present via universal marker gene polymorphism or entire genomes. 

Community profiling is less dependent on accessory knowledge of what may or may not be present. 

(Hugenholtz & Tyson 2008; Schoch et al. 2012; Franzosa et al. 2015; Yang et al. 2016).  
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2.3.1 Culture-independent analytical techniques (non-HTS based) 

 Real-Time Quantitative PCR (qPCR) 

qPCR is a common targeted analysis that is capable of quantitatively measuring target populations 

within a sample. It is related to the standard PCR methods, but differs in that a fluorogenic probe 

is introduced into the system (e.g. TaqMan Assay), allowing for direct, real-time quantification 

based on fluorescent intensity (Heid et al. 1996; Muniesa et al. 2014)  

qPCR is extremely sensitive, capable of detecting targeted organisms in concentrations as low as 

0.2 CFU/g (Cheng et al. 2009). However, several disadvantages complicate its use in the context 

of profiling active fermentation systems. It is important to define quantitative and qualitative biases 

associated with PCR-based techniques. DNA extraction efficiency, preferential amplification and 

variable copies of target gene can negatively influence quantification (Keisam et al. 2016). 

Additionally, genomic DNA from dead microorganisms will persist in most food environments, 

further confounding quantitative analysis. A common method to reduce those biases is to make use 

of reverse transcribed-RNA as the template. RNA will degrade quickly upon cell death, making it 

a better indicator of living microorganisms (Carraro et al. 2011). Another disadvantage of qPCR is 

that community profiling is generally prohibitively time-consuming and at the time of this writing 

cannot be used to characterize complex mixed communities of unknown composition beyond that 

of coarse taxonomic identification (Fierer et al. 2005; Bokulich et al. 2012a).  

Despite the limitations of complete community profiling, qPCR does have application as a rapid 

and specific detection technique for spoilage organisms. (Wan et al. 2006; Martínez et al. 2011; 

Spanoghe et al. 2017). Carraro et al (2011) describes targeted qPCR analysis applications in 

monitoring temporal heterogeneity of specific lactic acid bacteria found in ripening cheese. 

Additionally, using clone library sequencing, they show that at least a general profile of 

microorganisms present throughout a fermentation is required to take full advantage of qPCR 
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monitoring, including monitoring previously uncultivated lactic acid bacteria. Indeed, because of 

this study, Carraro et al (2011) speculate that instances and as-yet-to-be determined impact of the 

fish pathogen Lactococcus piscium are highly underestimated in dairy fermentations.  

 Denaturing gradient gel electrophoresis (DGGE) 

DGGE is a common and effective qualitative community profiling method used to study microbial 

diversity in complex systems (Muyzer et al. 1993; Cocolin et al. 2000; Randazzo et al. 2002; 

Rantsiou et al. 2005; Bokulich et al. 2012a). DNA is extracted from a community sample and PCR 

is used to amplify a highly conserved universal marker gene. Amplified DNA fragments are 

separated based on the electrophoretic mobility of partially melted DNA molecules, which is 

inversely related to melting point (Muyzer et al. 1993). The result is a visual assessment of DNA 

banding through a specialized acrylamide gel, sensitive to single-point nucleic polymorphisms. 

Unique banding patterns establish community fingerprints and community changes over time, 

revealing the degree of diversity among sample sets. Bands of interest can be physically retrieved 

and sequenced for added qualitative depth. Sequence polymorphism can then be used to 

taxonomically profile complex communities (Muyzer et al. 1993; Kisand & Wikner 2003; Cébron 

et al. 2004; Bokulich et al. 2012a). 

DGGE has provided significant insight into food systems, and numerous studies have been 

published that incorporate DGGE in fermentation community profiling. Examples include direct 

profiling of dynamic yeast populations in wine fermentation (Cocolin et al. 2000), profiling 

bacterial diversity of artisanal Sicilian cheese production (Randazzo et al. 2002), understanding the 

evolution of solid-state fermentation pits in the production of traditional Chinese spirits (Liu et al. 

2017), and profiling microbial communities present during the fermentation of traditional Italian 

sausage (Rantsiou et al. 2005). Combined with DNA sequencing technology, novel and previously 
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unknown microbial actors have been characterized as part of those particular fermentation 

processes. 

Rantsiou et al (2005) showed, to generally good effect, that additional PCR-DGGE investigation 

of fermenting sausages demonstrates the limitations of culture-dependent methods. Highly diverse 

microbial ecosystems not previously observed using standard culturing methods were revealed. A 

key aspect of which demonstrated that temporal heterogeneity may play an important role sausage 

quality. Application of culture-independent techniques also reveal potentially unknown microbial 

actors. For instance, within that same study, the identification of an aquatic angiosperm, Mayaca 

fluviatilis, is not necessarily cause for alarm. Rather, the authors note that the detection of M. 

fluviatilis coincides with the universal 26S ribosomal RNA gene commonly used in fungal 

community profiling.  The sequence itself was reported to have a poor match with known libraries 

(86.5% identical). Thus, it is therefore more likely to represent a previously undocumented fungus 

rather than a subtropical flowering plant (Rantsiou et al. 2005). Implementation of targeted 

approaches can then determine the prevalence of these unknown taxa, which may lead to a novel 

understanding of fermentation profiles. Yet, despite its versatility and established reliability, DGGE 

has distinct disadvantages in its technical difficulty, time commitment, relative expense, and 

complications of PCR bias, making it unsuitable for industry applications outside of a research 

setting (Bokulich et al. 2012a).  

 Flow Cytometry (FC) 

Originally designed for cell quantification in biomedical applications, FC is a highly versatile 

technique that is capable of both quantitatively and qualitatively analyzing microbial populations 

based on specific parameters (Swanson et al. 2016). FC coupled with cell sorting is capable of 

physically sorting individual microorganisms present in a phenotypically heterogeneous 

community. VBNC cells along with dormant, damaged, and dead cells can be distinguished from 
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each other, representing a huge advantage over culture-dependent techniques (Diaper et al. 1992; 

Spiegelman et al. 2005; Comas-Riu & Rius 2009). 

FC works on the principle of light scattering and cell fluorescence, and is capable of measuring 

thousands of cell per second. Sorting can be done using physical and physiological parameters, 

including size, membrane permeability, internal refractive index, intercellular pH, and DNA 

density. FC is highly effective when paired with fluorogenic dyes, nucleic acid-binding fluorogenic 

probes or antibodies (see below). FC has seen significant use in studying industrial fermentations 

and the decline in yeast and bacteria population viability over time. Other food industry applications 

are directly related to rapid detection of specific spoilage or pathogenic organisms. It holds 

applications in the dairy industry for monitoring the quality of defined starter cultures and detection 

of bacteriophages that can disrupt yogurt fermentation (Comas-Riu & Rius 2009). 

Bearing this in mind, FC is a still a targeted approach, requiring DNA or RNA-flurogenic probes 

for phylogenic profiling, similar to primers used in qPCR. Primary applications in industry are 

linked to studies limited to controlled monoculture-yeast and malolactic fermentation cultures 

found in the production of ciders and wine (Herrero et al. 2006). By itself, FC is limited in its ability 

to characterize complex, undefined communities (Spiegelman et al. 2005). 

 Fluorescence in situ Hybridization (FISH) 

Using the same concepts applied to qPCR and targeted FC analysis, specific fluorogenic primers 

can be designed to hybridize with complementary DNA or RNA inside living organisms. Universal 

rDNA primers are especially useful for targeted identification of yeast, bacteria, and archaeal 

species. Though useful by itself, FISH can offer significant advantages in community 

characterization and fermentation monitoring when paired with other culture-independent 

techniques. 
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FISH PCR-DGGE analysis has yielded insight into the methanogen archaeal communities found 

in Luzhou mud pits used in the production of the Chinese liquor Baijiu. The development of 

essential flavor and aroma-active compounds are contingent on complex interactions between 

hydrogen-producing bacteria and hydrogen-consuming archaea. Understanding microbial 

communities of these mud pits can lead to process improvements for greater consistency and 

product quality (Tao et al. 2014; Wu et al. 2015) 

Coupled with culture-dependent techniques, FISH-qPCR has been shown to be able to overcome 

the limitations of standard plating methodologies for assessing targeted microbial populations. 

FISH-qPCR has seen significant use in monitoring population density of Saccharomyces cerevisiae 

and Hanseniaspora guillermondii during wine fermentation. (Andorra et al. 2011). Additionally, 

FISH-qPCR has been shown to be more accurate for quantifying acetic-acid bacteria than culture-

dependent methods (Sengun 2016).  

2.3.2 Culture-independent analytical techniques (HTS-based) 

Sequencing-based approaches have revolutionized the fields of biology and microbial ecology. 

Advances in massively parallel high-throughput sequencing (HTS) technology and the growing 

availability of affordable computational power have changed the way complex microbial 

populations are explored and profiled. A sequencing-based approach can provide high-resolution 

insight into the functional potential of almost any microbial population, providing faster and more 

comprehensive results than classical culture-dependent techniques alone (Hugenholtz & Tyson 

2008; Park et al. 2011; Cao et al. 2017). The power behind HTS techniques lies in the ability to 

produce enormous amounts of data with minimal starting material, mapping out entire taxa 

regardless of organism cultivability based upon all the DNA present in the sample. This is, 

essentially, the definition of the microbiome – all of the DNA representing all of the microbes 

present in a given ecosystem. While older sequencing technologies, such as Sanger sequencing, 
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offer high confidence results, their quantitative community profiling capabilities are severely 

lacking due to decreased throughput (Churko et al. 2013), providing at best a partial view of the 

microbiome. 

 Technology 

At its core, HTS techniques rely on three basic principles: sample collection, DNA extraction, and 

DNA sequencing. How the DNA is handled post-extraction depends on the downstream 

application. Downstream HTS microbiome profiling is accomplished in one of two ways: 

metabarcoding and metagenomics, which will be discussed in detail below. While relatively new, 

both approaches have already played a significant role in profiling of microbial communities 

relevant to food quality, safety, and production (Abdelfattah et al. 2016; De Filippis et al. 2017; 

Cao et al. 2017). Within the domain of these two approaches, several technology platforms exist 

that are capable of providing inexpensive, reliable data. Roche 454 Life Sciences Pyrosequencing 

and Illumina sequencing by synthesis represent two platforms through which major strides in 

understanding food-microbiome community structures have been made (De Filippis et al. 2017; 

Cao et al. 2017). It should be noted, however, that as of 2016 the Roche 454 technology platform 

is no longer supported.  

 Metabarcode Analysis  

At the time of writing, metabarcoding is the most common and cost-effective HTS approach to the 

study of microbial communities. Barcoding in taxonomy works on the principle of using short 

regions of conserved, cross-taxa genomic DNA. This region, or regions, are referred to as a 

“barcode” – a unique identifier that can be easily and quickly amplified and sequenced. High-

confidence taxonomic identification of species or genera can be made using these unique barcodes 

(Hebert et al. 2003). Metabarcoding refers to the simultaneous detection of multiple taxonomic 

barcodes in a single sample. By virtue of the highly-parallel nature of HTS, the process allows 
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sequencing of multiple PCR amplicon libraries simultaneously, meaning multiple individual 

samples. Each library is built using a series of unique tags during PCR amplification that identify 

each individual sample and allow downstream analysis to separate multiple libraries (samples) from 

a single pooled sequence run It can be considered the next logical development of DGGE 

methodologies, in that PCR products are directly sequenced rather than first visualized in a gel, and 

rather than having to run a separate gel lane per sample, all were combined into a single lane. As 

with DGGE, metabarcoding analysis targets highly conserved microbial housekeeping-genes or 

ribosomal RNA (rRNA) genes. Community diversity is determined based on genetic 

polymorphisms within these target genes. 

In the context of food and traditional fermentations, bacterial communities are profiled using 16S 

rRNA gene amplicons. Because of the highly conserved nature and ubiquity of the 16S rRNA gene 

among prokaryotes, sequencing the 16S rRNA gene (hereafter referred to as 16S) is, at present, the 

best option for rapid phylogenetic studies of bacterial communities (Weisburg et al. 1991). The 

gene, which contains nine hypervariable regions (designated V1 trough V9), can be correlated to 

genus and, in some instances, species. Yang et al (2016) suggest that regions V4-V6 offer the best 

phylogenic resolution for bacterial communities.  

Fungal community profiling makes use of the highly conserved ribosomal internal transcribed 

spacer (ITS) region. The ITS region (hereafter referred to as ITS) fulfills two major components 

for ideal short-sequence barcoding identification: high PCR amplification performance and 

superior species discrimination across a large range of fungal families, making it ideal as a universal 

fungal marker (Schoch et al. 2012). Additionally, both 16S and ITS PCR can make use of respective 

universal primers, adding to the efficiency and efficacy of metabarcoding approaches. 

The capacity for HTS approaches to reveal previously unreported genera in food systems is 

immense. As discussed previously, techniques such as DGGE, and PCR clone libraries have 
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revealed novel microbial actors that remained unnoticed when only culture-dependent techniques 

were used. Metabarcoding goes a step further, offering insight into the taxonomic diversity and the 

mechanisms that underlie assembly of microbial communities (Wolfe et al. 2014; De Filippis et al. 

2017). In a deep, large-scale analysis of the microbial communities of cheese rinds, Wolfe et al 

(2014) was able to demonstrate the prevalence of Yaniella and Nocardiopsis, previously unreported 

genera of bacteria in food fermentation systems. Additionally, halotolerant marine bacteria such as 

Vibrio, Halomonas, and Pseudoaltermonas are found to be widespread among traditional cheeses 

regardless of geographic origin. 

Metabarcoding is fast, economical, and capable of a good phylogenic resolution. However, similar 

disadvantages seen in DGGE and qPCR also apply here: environmental contamination, PCR bias 

– which include preferential amplification, amplification of non-living DNA, DNA extraction 

efficiency and biases, and target gene redundancy are an area of concern (Glassing et al. 2016; 

Keisam et al. 2016). 

 Metagenomics 

Unlike metabarcoding, metagenomics is a fully untargeted approach that takes into account the 

total DNA present in a representative environmental sample. The result is the true “metagenome” 

of an environment: biodiversity represented by the overall genome contributed by each 

species/strains’ respective genome. The advantage of a metagenomics approach over other 

sequencing approaches is that it does not rely on PCR. Thus, a complete community profile can be 

constructed in addition to the abundance of microbial genes without the PCR biases associated with 

metabarcoding (Hugenholtz & Tyson 2008; De Filippis et al. 2017). Additionally, it is possible to 

directly asses the overall functional metabolic potential within a food or beverage matrix. In the 

context of food systems, the same cheese study mentioned above (Wolfe et al. 2014) highlights the 

ability to assess the functional potential of complex food microbiomes. Their metagenomic analysis 
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was able to establish potential function of halotolerant marine bacteria in cheese production. 

Metabolic pathways associated with flavor development were enriched in cheeses that exhibited 

the highest population of these bacteria, particularly Pseudoaltermonas. The prevalence of cold-

adapted lipase genes could be associated with lipolysis and related flavor development of cheese. 

However, like metabarcoding, metagenomic analyses cannot directly provide information on the 

metabolic activity of active communities. Furthermore, metagenomics is also associated with 

significantly higher costs and computational processing than metabarcoding and is often used as a 

secondary analysis on a subset of samples (Hugenholtz & Tyson 2008; Chen et al. 2017; Cao et al. 

2017). 

 Microbial Diversity as Revealed by Culture-Independent Analysis  

Culture-independent techniques, particularly Illumina based HTS metabarcoding analysis, are now 

playing an important role in the study of food systems, both in industrial and research capacities. 

Improvements ranging from safety, quality control to fermentation management and tracking are 

gaining traction (Cocolin et al. 2000; Bokulich et al. 2012a; Wolfe & Dutton 2015; Leonard et al. 

2015; De Filippis et al. 2017; Spanoghe et al. 2017; Chen et al. 2017). As a product of complex 

fermentation, Lambic and other barrel-aged beers provide rich grounds in which to take advantage 

of these powerful techniques, particularly within fermentation management.  

The key to understanding and reproducing large-scale traditional fermentations in a controlled and 

tractable manner is a fundamental understanding of fermentation ecologies. As Roh et al (2010b) 

and Bokulich et al (2012a) discuss, deep sequencing technologies can be used to develop innovative 

new ways to study fermentation systems, potentially answering questions that have yet to be asked. 

Pyrosequencing has been used in archaeal and bacterial diversity studies in Korean seafood 

fermentations, and have shed light on the previously invisible role of viral communities on kimchi, 

sauerkraut, and fish fermentation (Roh et al. 2010b; Park et al. 2011). Illumina sequencing has been 
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used to understand community structures of traditional fermentations, revealing previously 

undescribed bacterial involvement in foods such as traditional Italian sausages, beer, and sake 

(Rantsiou et al. 2005; Bokulich et al. 2012b; Bokulich et al. 2014). Recently, Leonard et al (2015), 

demonstrated the potential for metagenomic analysis to reveal high resolution typing of Shiga-toxin 

producing Escherichia coli in bagged leafy greens, without the extended enrichment typically 

required for E. coli characterization. However, given the limitations of both culture-dependent and 

culture-independent methods, a combination of both types of methods are often required to obtain 

a complete profile of a microbial ecosystem. 

2.4 Microbial Ecology of Traditionally Fermented Beer 

The microbial community of fermentation is one of the primary influences on the final product. 

Extensive modern studies on microbial community profiling in food systems have been published 

and reviewed, but of those, only a handful pertain to beer and its raw materials (Bokulich et al. 

2012a; Bokulich et al. 2016; Spitaels et al. 2017; De Filippis et al. 2017). The majority of modern 

beer production is performed under monoculture conditions. Despite this practice, beer production 

is influenced by a diverse range of microorganisms, both upstream and downstream of the brewing 

process (Van Oevelen et al. 1976; Vanderhaegen et al. 2003; Bokulich & Bamforth 2013; Pires et 

al. 2014). As such, raw materials, geographic location, environment, and preparation methods may 

have profound influence on the outcome of a finished beer. Traditionally fermented beer represents 

an interplay of all these factors, under a degree of freedom or stochasticity not seen in modern beer 

production. Thus, the ability to qualitatively and quantitatively analyze microbial communities of 

traditional fermentations is important to understand predictive measures of quality in the final 

product.  

The earliest comprehensive efforts to profile the microbial communities of traditionally fermented 

beer were made using the tools available at the time: culture-dependent isolation biochemical 
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assays for taxonomic classification. These methods, though limited, made important progress that 

guides later studies. Van Oevelen et al (1977) established that fermenting Lambic beer undergoes 

complex temporal microbiome shifts, representing sequential depletion of increasingly complex 

carbon sources and compositional changes of the beer itself (Fig 2.1). In this defining work that 

kick-started the quest to demystify the microbiology of Lambic beer, Van Oevelen et al put fort the 

following questions:  

 

From this study it seems apparent that the main microbial groups active in Lambic 

fermentation are wort Enterobacteriaceae, yeasts such as Kloeckera, 

Saccharomyces and Brettanomyces and bacteria such as Pediococcus. Many 

problems remain to be solved such as: (1) Where do the different organisms find 

their origin? (2) Can the development of acetic acid bacteria be controlled? (3) 

Which organisms cause ropiness when it occurs and can it be controlled? (4) What 

is the nature of the mousy smell produced by Brettanomyces? (5) Are the events 

occurring in other Lambic breweries similar? (6) Can Lambic be made with pure 

cultures? (7) Are there other unknown fermentation products in Lambic? 
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Figure 2.2 The microbial successions of spontaneously fermented beer as profiled using 

classical culture-dependent techniques. The appearance of microorganisms correspond to 

compositional changes of the beer. Isolated organisms (top of chart) are shown relative to the time 

(bottom X-axis) of their appearance. Inner-left Y-axis scales ethanol production (1). Outer-left Y-

axis scales lactic acid (2), acetic acid (6) and ethyl lactate (3). Inner-right Y-axis scales pH (4) and 

outter-right Y-axis scales real extract (5). Reproduced from Van Oevelen et al (1977). 

 

Between 1977 and 1997, much of the information gleaned was limited to what could be cultured 

and identified based upon now-outdated taxonomical information (Bokulich et al. 2016; Spitaels et 

al. 2017). As stated previously, one of the significant limitations of culture-dependent techniques 

is that many microorganisms are simply uncultivable under laboratory conditions. Organisms of 

interest may exist in a VBNC state, are too fastidious for current culturing techniques, or require 

syntrophic communities to grow. Thus what is cultured may not be fully representative of the 

microbial population (Herrero et al. 2006; Wu et al. 2015; Swanson et al. 2016). Additionally, when 

dealing with casks, barrels, or other large vessels, it is unclear whether a representative microbial 

sample is obtainable. This problem is illustrated by the fact modern sampling techniques are all 
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derived from the original Van Oevelen et al (1977) methods with the working assumption that 

viable organisms remain in suspension and thus sampling from this point is representative of the 

important (viable) part of the microbial population (Van Oevelen et al. 1977; Snauwaert et al. 

2016). 

2.4.1 Microbial Phases of Traditionally Fermented Lambic Beer 

Some of the earliest comprehensive work done on the ecology of Lambic beer had begun in the 

1970’s, with preliminary culture work starting as early as the 1930’s in Belgium. Using culture 

dependent techniques on a 24-month Lambic fermentation, Van Oevelen et al (1977) was able to 

build a temporal model of the progression of Enterobacteriaceae genera, Kloeckera apiculate (now 

known as Hanseniaspora uvarum), Pediococcus spp., Saccharomyces cerevisiae, and 

Brettanomyces spp. (Fig. 2.1). This was later expanded upon to separate successive blooms into 

five overlapping phases (Table 2). By this point, correlation between microbial population trends 

to aroma and flavor development of Lambic beer had begun to be established (Priest et al. 1974; 

Van Oevelen et al. 1976; Van Oevelen et al. 1977; Verachtert & Iserentant 1995). 

 

 

 

 

 

 

 

 



 

 

 

31 

 

Table 2 Five microbial phases of Lambic beer as outlined by Veracher and Iserntant (1995) 

Enterobacterial phase Occurs immediately after wort cooling. Characterized by 

a strong presence of Enterobacter, Klebsiella and 

Citrobacter. Consumes glucose.  

Saccharomyces phase Begins approximately one month after the start of 

Enterobacterial phase. Enterobacteria decline 

significantly. Sacharomycese spp. increase. Marks the 

start of primary ethanol fermentation. Consumes 

remaining glucose, maltose, maltotriose. pH begins to 

rapidly drop. 

Acidification phase Begins approximately four months after the start of 

Enterobacterial phase. Characterized by Pediococcus and 

Lactobacillus. Marks the decline of Saccharomyces spp. 

Ripening phase Begins approximately ten months after the start of 

Enterobacterial phase. Primarily dominated by 

Brettanomyces (Syn. Dekkera) spp. and Pediococcus 

spp. Acetic acid bacteria begin to increase in numbers.  

Bottle re-fermentation phase Depending on the style, mature Lambic beer will be 

packaged with younger beer to initiate a bottle 

conditioning phase with the intention of carbonating beer 

in bottle. Microbial diversity may rise due to the 

introduction of younger beer. 

 

 

Recent work has revealed the limitations of culture-dependent techniques in understanding the 

microbiome of Lambic beer. A combination of culture-dependent and culture-independent methods 

explicate a more complex sequential process in the development of Lambic and Lambic-like beers. 

The current model for Lambic beer temporal heterogeneity views the process as a gradual gradient 

of phases, with periodic bursts of activity. The Enterobacteriaceae phase is reported to start three 

to seven days after transfer to coolship has occurred and typically lasts 30 to 40 days. During this 

time, Enterobacter cloacae, Klebsiella aerogenes, Enterobacter aerogenes, Citrobacter freundii, 

Escherichia coli, and Hafnia pralvei can be detected. Other known organisms include Enterobacter 

hormaechei, Enterobacter kobei, Klebsiella oxytoca, Citrobacter gillenii, and Raoultella terrigena. 

Hanseniaspora uvarum, Naumovia dairensis, and Saccharomyces uvarum have been reported to 

be the main yeasts present during the Enterobactericeae phase. Variation in genera and species 

distribution occur depending on the sources cited. Enteribacteriaceae begin to decline rapidly, 
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disappearing almost entirely within 30 to 40 days, attributed to depletion of glucose and the drop 

in wort pH to below 4.2 (Van Oevelen et al. 1977; Bokulich et al. 2012b; Spitaels et al. 2014; 

Spitaels et al. 2017). Most of these organisms represent spoilage organisms in unfermented wort 

and pitching yeast, but may represent important metabolic activity instrumental to the sensory 

qualities of finished Lambic beer (Bokulich & Bamforth 2013; Spitaels, Wieme, et al. 2015) 

Debaryomyces hansenii and Saccharomyces cerevisiae can be detected immediately after transfer 

into wooden casks, but will significantly lag behind Enterobacteriaceae-phase organisms. 

Saccharomyces pastorianus and Naumovia castelii are detectable within a week afterwards. 

Primary, or alcoholic, fermentation will pick up after 30 to 40 days, coinciding with the decline of 

Enteribacteriaceae. This will last three to four weeks, with a steady decline in Saccharomyces 

cerevisiae in favor of Saccharomyces pastorianus. 

After the primary fermentation phase, Cryptococcus, Candida, Pichia, and Torulopsis spp. will 

form a pellicle at wort-air interface. Around this time, Pediococcus damnosus will be detected. 

Additionally, acetic acid bacteria begin to make more of an appearance, with Acetobacter lambici 

and Gluconobacter cerevisiae appearing sporadically throughout fermentation (Spitaels et al. 2014; 

Spitaels et al. 2017).  

Two to three months after transfer, Pediococcus damnosus will be consistently present. This will 

also coincide with depletion of carbon sources usable by Saccharomyces spp. and a significant drop 

in pH (acidification phase). The acidification phase is rapid, occurring somewhere between three 

to six months, at which point almost all Saccharomyces will be out-competed by Brettanomyces 

spp. (Van Oevelen et al. 1977; Spitaels et al. 2017). 

Four to eight months after transfer, both lactic acid bacteria and Brettanomyces spp. become 

increasingly prevalent. It is during this phase that Lambic beer reaches high attenuation. 
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Brettanomyces produces alpha-glucosidase, allowing for breakdown and use of complex 

maltodextrins that could not be used by Saccharomyces spp. during primary fermentation.  

Ten months after transfer, most bacteria populations decrease, marking the start of the 

Brettanomyces-dominated phase of fermentation (Van Oevelen et al. 1977; Verachtert & Iserentant 

1995). Modern analysis reveals that two to three-year old Lambic beer is dominated by Acetobacter 

lambici, Pseudomonas membranifaciens, Brettanomyces bruxellensis, Brettanomyces anomalus, 

Candida patagonica, and Wikerhamomyces anomalus (Spitaels, Van Kerrebroeck, et al. 2015). 

2.5 Aims and Approach 

The primary aim of this study is to evaluate the repeatability of traditional Lambic fermentations 

outside of Belgium and the impact of oak barrels on the microbial populations of barrel-aged beer. 

Though it is generally assumed that barrels will introduce variation, the degree to which this occurs 

is uncertain. Previous use, treatments, and care could potentially affect the microbial population 

distribution between barrels. To study this, three different commercially available beers using 

different production methods will be examined. Microbial community profiling will primarily 

make use of metabarcode analysis to build a profile based upon ITS and 16S sequencing. Culture-

dependent analysis will also be performed. Because of the limitations of culture-dependent 

techniques, and the scope of the sampling involved, culture-dependent analysis will be limited to 

the set parameters based on preliminary media and incubation conditions. Multiple, in-depth 

culture-dependent studies have been performed on the isolation and enumeration of dominant 

microorganisms of Lambic and other spontaneously fermented beer (Martens et al. 1992; 

Verachtert & Iserentant 1995; Martens et al. 1997; Bokulich et al. 2012b; Spitaels et al. 2014; 

Spitaels, Van Kerrebroeck, et al. 2015; Spitaels, Wieme, et al. 2015). 

The similarity between American Coolship Ales (ACAs) and traditional Lambic beer provide an 

excellent opportunity to explore the microbiome of traditionally fermented beer across multiple 
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geographic ranges. Bokulich et al. (2012) have established that resident brewery microbiomes were 

responsible for the inoculation of ACAs in a similar fashion to that of traditional Lambic style beer, 

and that ACAs exhibit microbial diversity and subsequent population succession previously 

thought to be unique to beer production in the Pajottenland region of Belgium, as established by 

Van Oevelen et al (1977), Verachtert & Iserentant (1995), and Martens et al (1997).  

The similarity between traditional Belgian Lambic beers and ACAs suggests that enrichment of 

certain microorganism particularly suited to a beer environment occur through the movement raw 

materials (grain, hops, etc.), people, and regular brewery activity (Bokulich et al. 2012b; Bokulich 

et al. 2015). Other recent studies have made significant contributions to understanding microbial 

diversity of traditional fermentations through the use of culture-independent techniques (Spitaels 

et al. 2014; De Roos et al. 2018).  

Differences in brewing cultures and age have led to a divergence among traditional European 

brewers and the American craft beer industry. Many breweries in the United States simply have 

not had enough time to develop an ideal brewery microbiome to serve as a primary inoculant for a 

spontaneously fermented beer. By virtue of the fact, American craft breweries are producing many 

different beers alongside other more “wild” offerings. Rigorous cleaning and sanitation processes 

are a standard requirement to prevent cross contamination, potentially eliminating an enriched 

environment suitable for producing Lambic-like beers. Thus, relying on barrel microbiomes is 

believed to be a suitable alternative, reasoning that the barrel biomes are rich in similar 

microorganisms thought to be required to produce a satisfactory Lambic-style beer. At present, 

there is very little microbiological management or control in place for traditionally fermented beer, 

and breweries within the United States have no standardized methods in place, relying on trial and 

error for individual circumstance. The trend within American craft beer, and the rising popularity 

of ACAs, has led to the increased demand for oak barrels of both known and unknown histories. 
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With the rising use of barrels, it is becoming increasingly important to understand the effect of 

diverse microbiomes on the quality of a finished product. With much of the quality control relying 

on subjective sensory experiences rather than quantifiable microbial and metabolic data, 

understanding the effect of individual barrel microbiomes on the final product is necessary to 

maintaining a high quality, consistent product.  

Two Lambic-inspired beers are examined at different stages of production. The first beer is 

designated Beer 1, a small-batch beer brewed and matured in Oregon, USA. Beer 1 was sampled 

the day after brewing and followed over the course of eight months. The second beer, designated 

Beer 2, was also produced and matured in Oregon, USA. Beer 2 represents a cross section of 

maturation already in progress when the study was initiated, and follows a staggered aging process, 

with samples being examined at three time points from a population of near-identical batches 

brewed and aged approximately 20 months apart. These samples represent a five, three, and two-

year old beers prior to blending. Ageing took place in French Pinot Noir barrels from four different 

vineyards, and white American oak barrels used for Repasado and Anejo Tequila.  

The third beer, designated as Beer 3, does not represent a traditional fermentation. Rather this beer 

has been aged for ten months with the intent of taking on specific organoleptic properties of the 

barrel’s previous contents for later blending. Aging took place in bourbon, cognac, maple syrup, 

port, rum, sherry and vanilla-extract barrels. Barrel maturation in this case is done primarily as a 

stylistic choice, with any secondary fermentation considered unintentional. However, extended 

aging in barrels provides a unique opportunity to compare different beer styles and insight into 

microbiome variability introduced by a large inventory of barrels.   
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3 Materials and methods 

3.1 Sample collection and processing 

Samples were collected from two commercial breweries located in Oregon, USA, predominantly 

taken from beer held in traditional oak barrels undergoing fermentation and/or maturation. All 

barrels were of standard cooperage construction, at a capacity of 235 liters and fitted with two 

access points: a bunghole located on the side of the barrel and a nail port located on the head. The 

primary bunghole was inaccessible for sampling due to stacking. As such, samples were collected 

as aseptically as possible from sample ports located in the head of the barrel, approximately 7.5 – 

10 cm  above the rim of the barrel. 100 ml of beer was allowed to flow from sample port before 

100 ml were collected into two sterile 50-ml centrifuge tube. The tubes were designated “A” and 

“B”, where tube B acted as a backup for later HPLC analysis should insufficient volume remain 

after processing tube A. Samples were immediately stored in a cooler at 4°C and brought back to 

the lab for processing within 24 hours. 

Samples were handled aseptically at all times. The centrifuge tube labeled “A” was vortexed on 

high for five seconds to ensure sample was fully homogenized. A 10 ml sterile serological pipette 

was used to aseptically distribute two 10 ml aliquots into two separate 15 ml centrifuge tubes 

designated “Extraction” and “Cryo”. The tubes were then centrifuged (Eppendorf 5810 R) at 3900 

xG for 15 minutes. After which the supernatant was carefully removed, leaving behind the resulting 

pellet.  

Samples for backup cryogenic storage were re-suspended in 1 ml sterile yeast-extract peptone 

dextrose (YPD) broth. The re-suspended material was then transferred to a 2 ml cryogenic storage 

tube. 1 ml of 30% v/v sterile glycerol solution was then added to each tube and mixed. The tubes 

were then labeled and stored under -80°C conditions for long-term storage. 
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3.1.1 Beer 

Three beers were sampled from two breweries. Beers were designated as Beer 1, Beer 2, and Beer 

3. Beer 1 was brewed and held by Brewery 1, an independent craft brewery located in the 

Willamette Valley region of Oregon. Beer 1 was an Oud Lambic-style beer, brewed in the 

traditional Lambic method (Fig. 2.1). The purpose of this beer was to follow microbial succession 

and compare observed trends to those outlined in literature for both Belgian Lambic beers and 

American Coolship Ales, and to act as a frame of reference for the other two beers. The beer was 

placed into two replicate stainless steel fermenters after spending the night in a coolship. Sampling 

began 24 hours after brewing and coolship inoculation. The beer was then transferred into two 

designated barrels (barrel ID 114 and 115) five days after brewing to undergo primary alcoholic 

fermentation and maturation. Sampling took place at regular intervals for eight months, totaling ten 

sample points for both barrels. As part of the standard brewery protocol, regular top-offs and mixing 

between previous batches of the same beer occurred during the fermentation process to minimize 

headspace. 

Beer 2 and Beer 3 were brewed by Brewery 2 in Eastern Oregon. Two separate styles of barrel-

aged beers were sampled from Brewery 2. Beer 2 was a Lambic-inspired beer using a modified 

malt bill and mashing process. Three batches of Beer 2 were prepared between May 2013 and 

November 2016, and placed into 235-liter oak barrels previously used for other aging projects 

(Appendix A1). The barrels were allowed to undergo spontaneous fermentation. In instances where 

primary alcoholic fermentation took longer than a week to begin, the barrels were inoculated with 

a house blend of yeast and bacteria species commonly found in Lambic and American Brett beers. 

Fifty barrels were randomly selected from a population of 175 barrels across the entire age range 

(2013 – 2016), resulting in 23 representative barrels from 2013 (Batch 1), 15 representative barrels 

from 2015 (Batch 2) and 12 representative barrels from 2016 (Batch 3). None of the barrels were 

topped off during aging. 
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Beer 3 was a strong Imperial porter and brewed and fermented in three batches during the month 

of June 2017 with the intention of aging for a single year. The beer had undergone standard primary 

alcoholic fermentation in stainless steel fermentation vessels prior to being placed into 235-liter 

oak barrels. As with Beer 2, the oak barrels used for ageing had been previously used for other 

projects. Fifty barrels were randomly selected from a population of 440 barrels. The brewers were 

neither expecting nor desiring microbial growth to occur within these barrels. Barrels that had been 

topped off were noted (Appendix A2).  

Sampling was done at three different intervals for Beer 2 and twice for Beer 3. Sampling began on 

July 13, 2017 and extended through to February 28, 2018. During that time, Beer 2 was sampled at 

four and two-month intervals from the initial sampling in July 2017, representing a collective 

sample point from July/August, December, and February. Beer 3 was sampled in July/August 2017 

just after initial placement into oak barrels for aging. Beer 2 was sampled again in February 2018, 

marking the midpoint of its aging cycle. 

3.2 Culture-Dependent Analysis: 

3.2.1 Media Selection 

Microbiological media was selected out of 13 possible media combinations, derived from common 

laboratory media types outlined by the American Society of Brewing Chemists (ASBC) methods 

for microbial enumeration and differentiation (ASBC Methods: Microbiological Control 4; 

Microbiological Control 5; http://methods.asbcnet.org/toc.aspx#microbiology) (Appendix A3). 

Further refinement of the remaining media was performed using pure cultures of control yeast and 

bacteria species. Yeast species were assessed using Lee’s Multi-differential Agar (LMDA; Weber 

Scientific), Lysine agar (Sigma-Aldrich), De Man, Rogosa and Sharpe (MRS; Sigma-Aldrich) agar, 

Universal Beer Agar (UBA; Sigma-Aldrich), Wallerstein (WL; Webber Scientific) agar, and yeast 
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extract peptone dextrose (YPD; Sigma-Aldrich) agar. Bacteria species were assessed on LMDA, 

Lysine, MRS, and WL agar. 

The media was tested with two types of bottled barrel-aged beer supplied by Deschutes Brewery 

and a maturing, microbial-active Flanders Red ale (FRA) supplied by Jeff Clawson of Oregon State 

University. For the bottled beers, volumes of 10 ml per sample were filtered through membrane 

filtrations was used to concentrate viable organisms onto a MicroCheck® II Beverage Monitor 0.45 

um sterile filters (Pall Corporation). The process was repeated with serial dilutions of each beer, 

this time including the FRA. Three spread plates of each media were prepared using 100 ul of 

serially diluted beer, with dilution factors of 0, 10, and 100. All media were incubated aerobically 

at 30°C for five days, and gross colony morphologies were observed and imaged. Colony types 

were confirmed through the use of wet-mount microscopy to ensure the presence both bacteria and 

yeast. 

Further testing was performed using the Miles, Misra and Irwin method of microbial quantification 

(Miles et al. 1938). The purpose of this test was to ensure that representative species expected to 

occur naturally in spontaneously fermented beer (Spitaels et al. 2017) would grow as expected on 

available media, and to determine expected colony morphology for gross observation. Control yeast 

and bacteria species were cultured in 5.0 ml liquid media. Yeast was cultured in yeast-extract 

peptone dextrose (YPD; Sigma-Aldrich) broth, lactic acid bacteria were cultured in De Man, 

Rogosa and Sharpe (MRS; Sigma-Aldrich) broth, acetic acid bacteria were cultured in yeast-extract 

mannitol peptone (M0013; Sigma-Aldrich) broth. Control yeast were centrifuged and washed with 

HyPure™ molecular biology-grade water prior to creation of serial dilutions to remove excess 

growth medium. Bacteria were not washed. Serial dilutions of 100, 1000, 10000 and 100000 

dilution factors were prepared for each control species. A 10 µl aliquot of each dilution was then 
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placed in designated rows on the test media plate. All media were incubated aerobically at 30°C 

for five days, and gross colony morphologies were observed and imaged. 

Selection of final experimental media was based on the observation of overlapping growth patterns 

between two media types. As discussed previously, behavior of known species guided the final 

media selection. All samples were serially diluted twice in sterile DI water to obtain 10-fold and 

100-fold dilutions. Direct spread plates were prepare using 100 µl of the undiluted sample and each 

subsequent dilution. Dilutions were used to ensure at least some quantifiable data could be 

collected. Each dilution was spread in singlet onto general media yeast-extract peptone dextrose 

(YPD; Sigma-Aldrich) with 10 mg/L chloramphenicol (Sigma-Aldrich) for yeast enumeration and 

identification. Lee’s Mult-Differential Agar (LMDA; Webber Scientific) with 10 mg/L 

cycloheximide (Sigma-Aldrich) for bacterial and cycloheximide-resistant yeast enumeration and 

identification. MicroCheck® II Beverage Monitor 0.45 um sterile filter were used in addition to 

spread plates in the event that viable and culturable organisms were too diffuse. MicroCheck® II 

Beverage Monitor membranes were incubated on same media used for spread plating. Isolation 

media was selected based on preliminary testing performed on a mid-process barrel-aged wild 

Flanders Rad ale supplied by Oregon State University pilot brewery. Plates were allowed to 

incubate for 7 days under aerobic conditions at 30°C. Plates were imaged at 5 days and 7 days and 

the colonies were counted. 

3.2.2 Yeast and Bacteria Enumeration 

Microbial growth was quantified where colonies were in statistically significant range of ≥25 

colonies to ≤ 250 colonies. Separate tallies were determined for each media type and sample time 

points. Quantification were treated as single replicates per sample and was therefore treated as an 

estimated measurement of Log10 CFU/ml per sample. Average Log10 CFU/ml were calculated 

across all sample time points for each media type. JMP® Pro 13 (v. 13.0.0) was used to perform 



 

 

 

41 

 

one-sided analysis of variance (ANOVA) to determine the difference in average Log10 CFU/ml 

across batch years. Post hoc analysis was performed using Tukey-Kramer Honestly Significant 

Difference to determine group differences. Paired t-tests were performed to determine differences 

in average Log10 CFU/ml between sample time points for each media type within each batch year 

(α = 0.05).  

3.2.3 Isolate Selection 

Plates were split into quadrants depending on the amount of growth exhibited post incubation. Six 

to eight randomized colonies were selected for identification from single quadrants, ensuring that 

all gross morphology types on each plate were accounted for. The process was repeated for both 

media types. Colonies were selected based on least crowded dilution sets, from plates with 50 – 

250 colonies where possible. For sample sets where < 10 colonies were present, all colonies were 

selected. Wet-mount light microscopy was used to differentiate between yeast and bacteria 

colonies. Selected colonies were plated onto UBA agar in a 6 x 6 grid using the patch-plate method 

and incubated for five days. Colony isolates were then transferred into 250 µl YPD broth in a 1000 

µl 96 deep-well plate and incubated for 5 days. 250 µl 30% v/v sterile glycerol was then added to 

each well and aseptically sealed. The deep-well plates (referred to hereafter as cryoblocks) were 

placed in -80°C storage until sub-culturing and Sanger sequencing could be performed. Ten 

cryoblocks, containing 827 individual isolates were prepared (784 yeast, 43 bacteria).   

3.2.4 Sanger Sequencing Identification  

Colony isolates were identified using Sanger sequencing of the internal transcribed spacer (ITS) 

region 2 PCR amplicon for yeast and 16S amplicon for bacteria. Two yeast isolates were randomly 

selected from each cryoblock, and all bacterial isolates were selected for DNA extraction and PCR. 

Streak plates were prepared directly from each cryoblock by aseptically streaking onto YPD for 

yeast isolates and LMDA plates for bacterial isolates. Plates were incubated aerobically at 30°C for 
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five days. A 96-well lysis plate was then prepared from single colony picks of each plate. Small 

amounts of biomass (estimated 1 – 20 ng) were placed into 200 µl of 5% w/v Chelex® 100 (Bio-

Rad) in HyPure™ molecular biology-grade water and heated with agitation at 90°C and 1000 RPM 

for 20 minutes using a ThermoMixer C (Eppendorf) to lyse cells and chelate potential PCR-

inhibitory substances. The lysis plate was centrifuged at 3900 xG for 2 minutes and a 1:10 dilution 

plate of extracted material was prepared. Table 3 and 4 list reagents and primers used for Sanger 

sequencing. 

Table 3 PCR mastermix recipe for Sanger sequencing preparation 

Reagent: 1 Reaction – 50 ul n-Reaction Master Mix 

EconoTaq® DNA Polymerase 

(SigmaAldrich): 

25.0 ul (25.0 ul)n 

Forward primer: 0.4 ul (0.4 ul)n 

Reverse Primer: 0.4 ul (0.4 ul)n 

HyClone™ HyPure H2O: 19.2 ul (19.2 ul)n 

Template DNA: 5.0 ul -- 

Total: 50.0 ul (30.8 ul)n 

 

Table 4 Primer sequences for ITS and 16S Sanger sequencing PCR 

ITS Primers - 10 mM working stock (Invitrogen, Thermo Fisher Scientific): 

ITS1(F): TCCGTAGGTGAACCTGCGG 

ITS4(R): TCCTCCGCTTATTGATATGC 

16S Primers - 10 mM working stock (Invitrogen, Thermo Fisher Scientific): 

27F: AGAGTTTGATCMTGGCTCAG 

1492R: TACGGYTACCTTGTTACGACTT 

 

The following thermocycler parameters were used for both ITS and 16S PCR: initial denaturation 

phase at 95°C for five minutes (x1) and x35 cycles of denaturation at 95°C for one minute, 

annealing at 55°C for two minutes, and extension at 72°C for two minutes, with a final extension 

at 72°C for ten minutes.  

PCR products were visualized on a 1.8% w/v agarose gel to determine success of individual 

reactions. The final PCR product was cleaned using EZ-10 Spin Column BS364 Kit (BIO Basic 
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Inc.) and quantified using SpectraMax® Quant™ AccuClear™ Nano dsDNA Assay Kit (Molecular 

Devices, Danaher Life Sciences Platform). DNA was normalized to 50 ng DNA for ITS product 

and 250 ng DNA for 16S product. DNA was submitted to the Oregon State University Center for 

Genomics Research and Biocomputing for sequencing (https://cgrb.oregonstate.edu/core/sanger-

sequencing). Sequencing was performed using BigDye® Terminator v. 3.1 Cycle Sequencing Kit. 

Equipment used was ABI Prism® 3730 Genetic Analyzer using ABI Prims® Data Collection v 3.0 

and DNA Sequencing Analysis Software v. 5.2. Species identification was performed using 

nucleotide Basic Local Alignment Search Tool (BLAST) through NCBI 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) 

3.3 Culture-Independent Analysis: 

3.3.1 DNA Extraction 

Samples were re-suspended in 1 ml sterile, HyPure™ molecular biology-grade water and place into 

2 ml PowerFood® DNA extraction collection tube (QIAGEN, DNeasy PowerFood® Microbial Kit 

21000-100). The samples were then centrifuged at 15,000 xG for 5 minutes and supernatant was 

removed as completely as possible with extra care not disturb the pellet. The prepared samples 

were stored -20°C until extractions were ready to be performed. 

DNA extraction was performed on 223 beer samples as per DNeasy PowerFood® Microbial Kit 

21000-100 extraction protocol with minor adjustments. Extractions were performed in batches of 

24 samples when possible. Extraction efficiency was evaluated using 75 µl ZymoBIOMICS® 

Microbial Community Standard (Zymo Research; Table 5) control included as a discrete sample 

with each extraction batch. Omni Bead Ruptor 24 (Omni International, INC.) replaced traditional 

bead-vortexing, using 15 s pulses at 8.00 M/s for with a 55 s pause between each pulse for 10 

cycles, based on previous testing to determine extraction efficiency (Appendix A4). Extracted DNA 
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was quantified using SpectraMax® Quant™ AccuClear™ Nano dsDNA Assay Kit (Molecular 

Devices, Danaher Life Sciences Platform) at 468/507 nm. 

Table 5 Microbial Community Standard composition  

Family: Species:  Theoretical Composition: 

Gram(+) Bacteria: 12% 

Listeriaceae Listeria monocytogenes 12% 

Bacillaceae Bacillus subtilis 12% 

Lactobacillaceae Lactobacillus fermentum 12% 

Enterococcaceae Enterococcus faecalis 12% 

Staphylococcaceae Staphylococcus aureus 12% 

Gram(-) Bacteria:  

Pseudomonadaceae Pseudomonas aeruginosa 12% 

Enterobacteriaceae Escherichia coli  12% 

Enterobacteriaceae Salmonella enterica 12% 

Yeast:  

Saccharomycetaceae Saccharomyces cerevisiae 2% 

Tremellaceae Cryptococcus neoformans 2% 

 

3.3.2 Sample Indexing 

Metabarcoding libraries were prepared using the extracted DNA. Separate libraries were prepared 

for yeast and bacterial community analysis. All PCR libraries were constructed as outlined by 

Comeau et al. 2017 (https://github.com/LangilleLab/microbiome_helper/wiki) with minor 

adjustments made as necessary. For yeast community profiling the internal transcription spacer 

(ITS) region 2 was amplified using BITS-F and B58S3-R universal primers. For bacterial 

community profiling the V4-V5 domain of the bacterial 16S rRNA gene was amplified using F515 

and R926 universal primers. Two PCR were performed for each yeast and bacteria communities to 

build duplicate libraries with identical barcode designations. The first PCR was performed using 

2.5 ul of undiluted template DNA. The second PCR was performed using 2.5 ul of a 1:10 dilution 

of the template DNA. A total of 968 individual PCRs were performed in six 96-well PCR plates 

(Eppendorf twin.tec; Fig. 3.1). 
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INDEX 

ID 
→ N701 N702 N703 N704 N705 N706 N707 N710 N711 N712 N714 N715 

↓ 
 1 2 3 4 5 6 7 8 9 10 11 12 

S502 A                         

S503 B                         

S505 C                         

S506 D                         

S507 E                         

S508 F                         

S510 G                         

S511 H                         
 

Figure 3.1 Demonstration of ITS 96-well PCR plate indexing set up. Forward set 1 primers are 

loaded column-wise and reverse set 1 primers are loaded row-wise. Ninety-six unique index 

combinations are created. e.g., the PCR amplicons in well A1 will be tagged with the index ID 

S502/N701, enabling downstream sample demultiplexing and differentiation. 

 

Differentiation between samples and libraries was accomplished through the use of sample 

indexing. Specialized primers were used in sequential combination to index individual PCRs with 

a unique identification tag (Fig 3.2). This allows for the use of single-round PCR, which reduces 

overall PCR bias. Table 6 and 7 list reagents and primers used for HTS library preparation. 
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Figure 3.2 Original primer indexing table. Primers are laid out column-wise (Forward Set 1 and 

2) and row-wise (Reverse Set 1 and 2). Sequential combination of primer sets (e.g. Forward Set 1 

x Reverse Set 1, etc.) allows for the 384 unique index combinations. Figure reproduced from 

Comeau et al. 2017.  

Table 6 PCR mastermix recipe for HTS sequencing preparation 

Reagent: 1 Reaction – 25 ul n-Reaction Master Mix 

Platinum™ Hot Start PCR Master Mix, 2x 

(ThermoFisher Scientific): 

12.5 ul (12.5 ul)n 

Forward primer: 5.0 ul (5.0 ul)n 

Reverse Primer: 5.0 ul (5.0 ul)n 

HyClone™ HyPure H2O: 9.0 ul (9.5 ul)n 

Template: 2.5 ul (2.0 ul)n 

Total: 25.0 ul (25.0 ul)n 

 

Table 7 Primer sequences for ITS and 16S HTS sequencing PCR 

ITS Primers - 10 Mm working stock (Nextera Ultramer II, Integrated DNA Technologies): 

BITS (F): ACCTGCGGAR GGATCA 

B58S3 (R): GAGATCCRTTGYTRAAAGTT 

16S Primers - 10 Mm working stock (Nextera Ultramer II, Integrated DNA Technologies): 

515F: GTGYCAGCMGCCGCGGTAA 

926R: CCGYCAATTYMTTTRAGTTT 
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3.3.3 HTS PCR Parameters 

The following thermocycler parameters were used for both ITS and 16S PCR: initial denaturation 

phase at 94°C for three minutes and 30 cycles of denaturation at 94°C for 45 seconds, annealing at 

55°C for 45 seconds, and extension at 72°C for one minute thirty seconds with a final extension at 

72°C for 10 minutes and hold at 4°C.  

Each PCR plate was accompanied by a positive control (ZymoBIOMICS® Microbial Community 

Standard Isolated DNA; Table 5) and negative control containing no template. The PCR products 

were then combined and visualized on a 1.8% w/v agarose gel to determine the success of 

individual reactions After which the combined PCR products for each sample were normalized 

using a 96-well SequalPrep™ Normalization Plate Kit (Applied Biosystems™), following 

manufacturer’s instructions. Each normalized sample was then pooled into a single library, in a 1.5 

ml Eppendorf tube. Invitrogen Qubit 4 HS dsDNA assay was used to determine the concentration 

of DNA in each pooled library. Library concentrations were adjusted as needed using a Savant® 

DNA 120 Speed Vac (Thermo Fisher Scientific). 3 µl aliquots at a concentration of 50 ng/ul DNA 

were submitted to the Oregon State University CGRB to determine fragment size distribution using 

Agilent Bioanalyzer 2100 High Sensitivity DNA assay. 

3.3.4 HTS library preparation 

Based upon the concentration obtained by the Qubit 4 assay, and the fragment size distribution 

obtained from the Bioanalyzer analysis, molar concentrations of each library was calculated: 

(
500 𝑏𝑝

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒, 𝐿𝑖𝑏𝑟𝑎𝑟𝑦 − 𝑛
) × (𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

𝑛𝑔

𝑢𝑙
) × (3.29 𝑛𝑀) 

For ITS a single pooled sample was prepared at equimolar concentrations of 10 mM, spiked with 

5% PhiX to overcome low sequence diversity. The process was repeated for 16S pooled library 
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preparation. Final pooled libraries were submitted and run by Oregon State University CGRB on 

MiSeq chemistry v3 2x300 bp.  

3.3.5 Data Analysis and Raw read processing  

Raw Illumina FASTQ files were analyzed using QIIME1 (v. 1.9.1; Caporaso et al. 2010) in 

Microbiome Helper v. 2.0.0 virtual box (Comeau et al. 2017). Bacterial profiling was performed 

using a 16S QIIME1 pipeline. Operational taxonomic units (OTUs) were picked using 

pick_otu_indexdb_rna/97_otus reference database and QIIME1 implemented 

sortmerna_sumaclust method comparison with 80% coverage and 97% pair-wise identity. Low 

confidence OTUs were then removed. Samples were then rarified with a cutoff of 1000 reads per 

sample to produce a high-confidence OTU table. The same process was repeated for yeast profiling 

using sh_refs_qiime_ver7_dynamic_01.12.2017_dev.fasta database reference database with 50% 

coverage and 97% pair-wise identity.  

 Paired-read stitching 

Illumina sequencing generates sequencing data using both the forward and reverse sense of DNA 

fragments to increase data robustness. Raw Illumina files were received as FASTQ files and 

processed using Paired-End Read Merger (PEAR v. 0.9.8; Zhang et al. 2014) to stitch the forward 

and reverse read together into one cohesive file set.  The same process was repeated for both ITS 

and 16S data files.  

 Filtering 

FastQC (Andrews 2016) was used to check the quality of the stitched reads prior to filtering with 

read_filter.pl.  A quality score of 30 over 90% of the bases used as the parameters for filtering. A 

fragment cut-off size (L) was based on the FastQC quality metrics to ensure all relevant detected 

fragments were included in downstream analysis. Fragments length of L > 100 bp for ITS data and 

L > 379 bp for 16S data were used.  
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 Chimera detection 

FASTQ files were converted to FASTA format using fastq_to_fasta.pl, which also removes fully 

ambiguous reads. Chimeric reads were then detected and removed using the QIIME-wrapped 

VSEARCH chimera_filter.pl command (Rognes et al. 2016). Chimera search removal for ITS data 

sets were compared to uchime_reference_dataset_ITS1_28.06.2017.fasta and 16S data sets were 

compared to Bacteria_RDP_trainset15_092015.fasta.  

 OTU picking 

Operational taxonomic unit (OTU) define a taxonomic group based on sequence similarity of all 

organisms present in a sample (Comeau et al. 2017). OTUs for ITS and 16S microbiome data were 

picked using open-reference methods. ITS region 2 was sequenced for this experiment. Since this 

specific region has a large degree of variability, reference alignment is not possible. Therefore, 

alignment and tree building were suppressed. ITS OTU picking was done sortmerna and sumaclust 

using pick_open_reference_otus.py against sh_refs_qiime_ver7_dynamic_01.12.2017_dev.fasta 

database. 16S data was processed the same way, and OTU picking was performed using 

pick_otu_indexdb_rna/97_otus reference database. Alignment and tree building were not 

suppressed for 16S OTU picking. Low confidence OTUs were removed using 

remove_low_confidence_otus.py, based on the accepted criteria of OTUs identified by fewer than 

0.1% of total reads (Comeau et al. 2017). 

 Rarefaction 

Rarefaction was performed using single_rarefaction.py to subsample all samples to the same read 

depth. Both ITS and 16S were rarefied to drarefaction = 1000. Meaning, 1000 random reads were taken 

from every sample that provided >1000 reads. Additional rarefaction was done to find an optimum 

balance between highest rarefaction value possible while retaining the greatest number of 
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meaningful samples. Iterations of drarefaction = 1000, 2000, 5000 and 10000 were performed, with 

drarefaction = 1000 offering greatest number of reads while retaining the highest number of samples. 

 Metadata statistical analysis 

Beta diversity was assessed using QIIME1-wrapped python script compare_categories.py to 

determine statistical significance of metadata grouping based upon PERMANOVA analysis of 

distance matrices (α = 0.05). Default permutations (n) of 999 were used.  

The processed microbiome data was also analyzed using Statistical Analysis of Metagenomic 

Profile (STAMP) software (v. 2.1.0; Parks & Beiko 2010 ), which was used to generate Unweighted 

Pair Group with Arithmetic Mean clustered heatmaps. Metadata-derived groups (beer_type, 

barrel_type, sample_time_points, beer_average_age, and batch year) were used to perform one-

way analysis of variance (ANOVA) to find statistically significant OTUs.  

Other data such as colony count data, was analyzed using JMP® Pro v. 13.0.0.  

 Manual post-processing 

Completion of rarefaction generated high-confidence OTU tables, in which contained all OTUs 

that made it past filtration criteria. High-confidence OTU tables were further refined manually. 

Read depth (drarefaction) selection of high-confidence OTUs resulted in some taxa being represented 

at < 0.1% relative abundance in some samples and were pruned. OTUs where relative abundance 

was > 0.1% but in < 5% of samples was used to as additional criteria to remove potentially spurious 

taxa from further analysis for this study.  
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4 Results 

This study focused upon samples of beer undergoing spontaneous barrel fermentation and 

maturation. In the context of spontaneous fermentation community profiling, the microbiology of 

beer has remained poorly understood. While the last eight years have seen ubiquitous application 

of culture-independent high-throughput sequencing microbiome approaches being applied to food 

systems, to date only two studies of beer and its raw materials specifically using HTS techniques 

have been published (Bokulich et al. 2012b; Justé et al. 2014). Furthermore, these studies drew 

upon relatively small sample sizes, which may give an incomplete view of the microbiome given 

the inherent variability likely due to maturation in non-sterile, difficult to clean, oak barrels. In this 

study, sampling was performed across a large barrel set (ntotal = 102) in which three distinct beer 

types were undergoing fermentation and/or maturation. Beer 1 was brewed using the traditional 

turbid mashing process used for Lambic production and allowed to cool overnight in an indoor 

coolship prior to being placed into two replicate fermenters for five days, and was then transferred 

to two replicate barrels. Beer 2 was a Lambic-inspired beer brewed using a brewery-dependent 

method and standard operating procedures put forth by the brewery of origin and relied primarily 

on barrel microbiomes to inoculate the wort. Beer 3 was brewed using high-gravity brewing 

practices to produce a high-ethanol, monoculture beer specifically intended to age in multiple barrel 

types over the course of a year. These sample sets were gathered from two craft breweries in the 

state of Oregon. Within the constraints of production requirements, best endeavors were made to 

minimize uncontrolled variation. The main methodology used in this study was microbiome 

sequencing, which allowed for simultaneous, massively paralleled analysis of hundreds of samples, 

vastly improving the efficacy of microbial community profiling. Culture-based methodology was 

used for some sample sets to provide support for the microbiome data but was not performed 

routinely due to the large sample size. 
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4.1 Choice of media for culture-based analysis of beer microbiota 

Prior to initiating sampling from large barrel sets for Beer 2 and Beer 3, preliminary work was 

performed to select appropriate culture media.  

YPD spiked with 10 mg/L chloramphenicol supported the greatest degree of growth across all of 

the control yeast species with little to no inhibition. Lysine was second, displaying moderate 

inhibition of S. cerevisiae while the remaining species were unaffected. It should be noted that 

Lysine media would ideally completely inhibit S. cerevisiae due to the inability of S. cerevisiae to 

metabolize lysine. The presence of residual nitrogen compounds from culturing will allow weak 

growth to occur. Sequential washing of control yeast prior to plating would likely result a more 

complete inhibition. Additionally, beer samples will contain nitrogen compounds in sufficient 

concentrations that could hamper the Lysine media’s ability to fully inhibit non-lysine metabolizing 

yeast (Gorinstein et al. 1999; Fumi et al. 2009). LMDA spiked with 10 mg/L cycloheximide 

completely inhibited S. cerevisiae and Z. bailii. LMDA supported the greatest degree of growth 

across all the known bacteria species, with low but visible growth of Pediococcus spp. and A. 

pasteurianus under aerobic conditions. LMDA also supported Lactobacillus plantarum. and 

Lactobacillus brevis growth. MRS completely inhibited the growth of both Pediococcus spp. and 

A. pasteurianus, while displaying moderate Lactobacillus plantarum. and Lactobacillus brevis 

growth. YPD spiked with 10 mg/L chloramphenicol completely inhibited control bacterial species 

with the exception of A. pasteurianus (data not shown). Based on observed growth trends a final 

selection of two media types was made. YPD spiked with 10 mg/L chloramphenicol was selected 

for enumeration of total yeast. A. pasteurianus was capable of growing in the presence of 

chloramphenicol and exhibited a distinct morphology that was readily distinguishable from yeast 

colonies. LMDA spiked with 10 mg/L cycloheximide was selected for enumeration of bacteria and 

cycloheximide-resistant yeast. Lysine media was used for some isolation purposes at sample time 

point 1 and are noted in section 4.5.3.  
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4.2 Description of datasets 

Data from Beer 1 displays the progression of yeast and bacterial communities over the course of 

36 weeks through the lens of microbiome analysis. Yeast and bacterial OTU changes over time 

were observed and noted. It should be noted specifically that the OTU reference database 

documented in section 3.3.5.4 classifies Brettanomyces species under the synonym genus Dekkera 

across all Beers and will be referred to as such throughout the remaining sections. Results are shown 

in section 4.4.  

Data from Beer 2 was used to explore the effect of extended barrel aging on the microbiome of the 

same beer brewed in separate batches over the span of 2 to 5 years. Beer 2 is split into three batch 

years: 2013, 2015, and 2016. While the beer recipe and brewing procedures were consistent across 

the three batches, there was some variation in the amount and type of hops used in the 2016 batch 

year, with higher alpha-acid content going into the 2016 batch compared to 2013 and 2015. 

Statistical analyses were performed to compare microbiome composition according to batch years 

and by sample time points. Culture-dependent techniques were used to quantify the yeast and 

bacterial populations and obtain pure isolates from selected sample points to enable verification of 

microbiome data. Results are shown in section 4.5.  

Data from Beer 3 was used to explore the effect of multiple barrel types (origins) on the microbiome 

of one batch of an imperial porter-style beer. Statistical analyses were performed to compare 

microbiome composition according to barrel type and sample time points. Culture-dependent 

techniques were used for the purpose of observing the frequency of viable microbe detection on a 

per-barrel basis. Results are shown in section 4.6. 

4.3 Summary of microbiome sequencing data 

A total of 506 samples were sequenced and comprised of 253 ITS sequencing samples and 253 16S 

sequencing samples. Sequencing was performed in two batches. The first batch, comprised of 11 
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replicate Beer 1 samples obtained in the months of August through December, was sequenced in 

December 2017. The remaining 484 samples were processed and sequenced in May of 2018. Table 

8 outlines raw sequence read data spread across all beer samples. Variation in median sequence 

reads generated per sample for each dataset reflects uneven pooling of samples and libraries, and 

the likelihood that some sample sets were generated from beer that contains low numbers of 

microbes. 

Table 8 Summary of stitched sequence reads generated for samples from each beer 

 Beer 1 

(ITS) 

Beer 1 

(16S) 

Beer 2 

(ITS) 

Beer 2 

(16S) 

Beer 3 

(ITS) 

Beer 3 

(16S) 

Min: 86.0 0.0 178.0 53.0 1401.0 1472.0 

Max: 293663.0 248398.0 294134.0 441526.0 292121.0 327700.0 

Median: 5637.0 1499.5 997.0 629.0 27852.0 86966.0 

Mean: 33320.160 33377.83 22414.320 6468.092 73914.714 106622.667 

St. dev.: 54769.0 58878.601 63143.073 47286.304 93000.953 95935.301 

 

4.3.1 Microbiome sequencing data QC 

In order to directly compare the microbiome of each sample, it is necessary to simulate equivalent 

‘sequencing effort’ per sample. This is achieved by randomly rarefying each dataset to an 

equivalent number of sequence reads. Rarefaction of each set of sequencing data was performed at 

four depths (d) independently for each dataset. By comparing the number OTUs detected at each 

level of rarefaction (d = 1000, 2000, 5000, 10000), a read depth of 1000 was selected as a 

compromise to maintain the greatest number of samples while still providing meaningful OTU 

distribution. Figure 4.1 provides an example of the lack of impact of rarefaction on relative OTU 

abundance, in this case for Beer 3. Relative proportions of detected OTUs remain consistent.  
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Figure 4.1 Stacked bar chart displaying relative proportions of selected fungal OTUs detected 

in beer three at four rarefaction levels. Bottom X-axis represents rarefaction depth (d). The top 

X-axis represents samples with sufficient sequencing reads generated to remain across all four 

rarefaction depths. Y-axis represents relative abundance. Bars are stacked in ascending order from 

d = 1000 to 10000 and sorted by HTS sample ID.  
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A higher d-value attributed to rarefaction resulted in a loss of samples retained in the dataset, and 

an overall loss in detected OTUs. For this example, 47 samples are represented at d = 1000 and 17 

at d = 10000. At d = 10000, 35% of detected OTUs were lost due to removal of samples from the 

dataset. Where d = 1000, the relative abundance of those OTUs made up 0.0 to 30.4% of total reads 

within their respective samples (Table 9). OTUs absent where d = 10000 made up 4.5% ± 7.2% 

relative abundance in each sample at d = 1000.  

Table 9 OTUs detected at d = 1000 not present in dataset at d =10000 

OTU Max Value 

Alternaria unclassified 4.0% 

Sclerotinia sclerotiorum* 0.1% 

Lachancea fermentati 9.2% 

Torulaspora indica 1.0% 

Zygosaccharomyces rouxii 1.4% 

Armillaria mellea* 0.5% 

Agaricales unidentified* 3.7% 

Atheliaceae unidentified* 1.8% 

Trametes cubensis* 1.8% 

Ceriporia lacerate* 1.9% 

Cabalodontia unidentified* 2.5% 

Stereum hirsutum* 2.0% 

Malassezia restricta 0.8% 

Sporobolomyces roseus 5.0% 

Filobasidium wieringae* 2.2% 

Vishniacozyma victoriae 0.3% 

Cryptococcus neoformans 30.3% 

Wallemia muriae 5.0% 

(*) indicates multicellular fungi not normally associated with beer production 

 

As discussed in section 2.3.2.2, DNA extraction efficiency and biases are an area of concern for 

microbiome analyses. For that reason, a quantitative and qualitative community standard was used 

throughout sample processing. Each sample extraction batch was accompanied by a community 

standard that was extracted and sequenced alongside the beer microbiome samples. The use of 

DNA extraction community standards serves to assess extraction efficiency of specific organisms 
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based upon physiology and to assess potential biases in absolute quantitation of detected OTUs. 

Additionally, a manufacturer pre-extracted DNA community standard was included in each PCR 

batch. Both the extraction and PCR controls were prepared from a cocktail of microbes at the 

proportions outlined in Table 5. Figures 4.2  and 4.3 display the relative distribution of community 

standards sequenced with beer microbiome samples.  

 

Figure 4.2 Stacked bar chart displaying relative proportions of yeast OTUs detected in each 

extraction and PCR community standards at d = 1000. Bottom X-axis represents community 

standard ID and representative extraction batch. Y-axis represents percent relative abundance. 

Community standard CS.B02a and CS.B06a represent extractions performed on a 37.5 µl aliquot 
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community standard in addition to the standard 75 µl outlined in §3.3.1. CS.DNA 1, CS.DNA2, 

and CS.DNA3 represent microbial DNA community standard for each PCR batch. 

 

 

Figure 4.3 Stacked bar chart displaying relative proportions of bacterial OTUs detected in 

each extraction and PCR community standards at d = 1000. Bottom X-axis represents 

community standard ID and representative extraction batch. Y-axis represents percent relative 

abundance. Community standard CS.B02a and CS.B06a represent extractions performed on a 37.5 

µl aliquot community standard in addition to the standard 75 µl outlined in §3.3.1. CS.DNA 1, 

CS.DNA2, and CS.DNA3 represent community standard DNA for each PCR batch. CS.B01 did 

not yield 16S data.  
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Comparing the differences of the average relative abundance for each taxa across all extraction 

standards to the average relative abundance of each microbial DNA standard displayed no 

statistically significant difference between extracted S. cerevisiae (p = 0.3671) and C. neoformans 

(p = 0.1736) DNA and the microbial DNA standards. Bacillaceae, Enterobacteriaceae, 

Pseudomonadaceae (p < 0.0001 respectively) displayed statistically significant differences between 

relative abundance of extracted DNA standards when compared to microbial DNA standards. 

Listeriaceae (p = 0.7976), Staphylococcaceae (0.3183), Enterococcaceae (0.3135), 

Lactobacillaceae (0.4482) displayed no statistically significant difference between standards. 

Extraction batch control CS.B01 did not display the expected profile of yeast genera and did not 

yield 16S data. Close inspection of data for samples extracted in the same batch and comparison 

alongside equivalent samples (same beer, same time-point) did not reveal notable aberrations, 

therefore we did not exclude these data from subsequent analyses.  

ITS PCR no-template negative (NT) control sequence data of replicate PCR plate 1 through 3 fell 

well below the rarefaction value of d = 1000. 16S PCR NT control sequence data of replicate PCR 

plate 1 and 2 also fell below rarefaction value of d = 1000. The exception was NT control of PCR 

plate 2 (NT.002), displayed 1220 sequence reads, representing 12 bacterial OTUs (Fig. 4.4). 
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Figure 4.4 Stacked bar chart displaying relative proportions of bacterial OTUs detected in 

each the no template negative control of combined replicate PCR plate 2 at d = 1000. X-axis 

represents no template negative control ID. Y-axis represents percent relative abundance. 

 

4.4 Beer 1 

4.4.1 Beer 1 fungal community composition as revealed by ITS microbiome data 

A total 21 fungal operational taxonomic unites (OTUs) were detected across the Beer 1 sample set, 

of which 11 were retained for community analyses based upon relative abundance cutoff criteria. 

Relative abundance of these OTUs is shown in Figure 4..5, where it can be seen that initial samples 

taken 24 hours after brewing displayed a significant presence of S. cerevisiae (58.2% abundance 

sample A, 72.7% abundance sample B) and D. bruxellensis (41.7% abundance sample A, 6.4% 

abundance sample B). Wickerhamomyces anomalus was also detected in one of the initial samples 

(19.7% abundance fermentor sample B). Other species detected were Hanseniaspora uvarum, 
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Metschikowia pulcherrima, Cryptococcus neoformans (not shown), and the mold Cladosporium 

ramotenellum.  

 

 

Figure 4.5 Stacked bar of fungal OTUs at greater than 0.1% abundance in Beer 1 measured 

using HTS sequence data. Species and family-level identification, and normalized relative 

abundance from 0 to 100%. Y-axis indicates relative OTU abundance, bottom X-axis represents 

replicate sample from Fermentor A and B, and then from barrel A and barrel B. Top axis represents 

sample time point in weeks relative to brew day. (*) on top X-axis indicates samples taken 24 hours 

post brewing. 
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The relative abundance of detected fungal OTUs changed over time, with S. cerevisiae and D. 

bruxellensis making up the bulk of the sequenced population throughout fermentation.  The number 

of detectable fungal OTUs peaked by week 3, with 15 OTUs present above the cut off criteria. 

These OTUs were assigned to yeast species including H. uvarum, S. cerevisiae, S. bayanus, 

Lachancea fermentati, D. bruxellensis, D. anomala, W. anomalus, Aureobasidium pullulans, along 

with various unclassified Ascomycota, and C. ramorenellum. 

The number of detectable fungal OTUs decreased by week 11, with S. cerevisiae, D. bruxellensis, 

D. anomala, W. anomalus, and H. uvarum representing the most abundant yeast species. S. 

cerevisiae had significantly declined by week 17, with D. bruxellensis becoming the dominant 

fermentative species. D. anomala, A. pullulans, W. anomalus and unclassified Pichiaceae were 

also detectable at this time but in relatively low abundance (0.1 – 1.0%). By week 36, D. 

bruxellensis (98.6-99.2%) had become completely dominant, with D. anomala (0.4-0.5%) and S. 

cerevisae (0.4-0.5%) present at relatively low abundance.  

A degree of variation between replicate samples was observed. Slight variations in which fungal 

OTUs were detected accounted for some of this variation, with D. anomola detected in greater 

relative abundance in barrel B at both 3 (13.2% relative abundance) and 9 weeks (8.3% relative 

abundance), before ultimately leveling off at 36 weeks (0.4-0.5% relative abundance). Relative 

abundance of S. cerevisiae and D. bruxellensis appeared to be in constant flux for the first half of 

fermentation, only stabilizing between 13 and 17 weeks. Lachancea fermentati made a brief 

appearance in barrel A at 3 weeks (2.2% relative abundance), coinciding with peak number of 

detectable OTUs for this beer. By this time a total of 12 unique OTUs were identified in barrel A 

and 15 unique OTUs were identified in barrel B.   

Fungal taxa such as Cladosporium ramotenellum, Penicillium roqueforti, and Malassezia restricta, 

which are not normally associated with beer fermentation were detected throughout. Data for these 
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OTUs are not displayed in Figure 4.5. A complete list of all detectable fungal OTUs and their 

relative abundances are provided in Appendix A5. 

4.4.2 Beer 1 bacteria community composition as revealed by 16S microbiome data 

Compared to ITS microbiome data, fewer OTUs were detected in 16S microbiome data. Eighteen 

bacterial OTUs were identified after data processing and rarefaction. Of these , seven were retained 

based upon previously established cutoff criteria, with their relative abundance shown in Figure 

4.6.  

 

Figure 4.6 Stacked bar of bacterial OTUs at greater than 0.1% abundance in Beer 1 measured 

using HTS sequence data. Taxon identification and normalized relative abundance from 0 to 

100%. Y-axis indicates relative OTU abundance, bottom X-axis represents replicate sample from 
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Fermentor A and B, and then from barrel A and barrel B. Top axis represents sample time point in 

weeks relative to brew day. (*) on top X-axis indicates samples taken 24 hours post brewing. 

 

The first two sample time points displayed complete dominance by bacterial family 

Enterobacteriaceae (98.6-98.1%). Genus Erwinia (1.0-1.4%) belongs to family 

Enterobacteriaceae but was maintained as a separate OTU in the dataset. The total number of 

detectable bacterial OTUs increased from two to seven by week 9, with Acetobacter, 

Gluconoacetobacter, Lactobacillus, Acetobacteraceae, and Lactobacillaceae present at varying 

relative abundance. By week 11, Lactobacillaceae had begun to dominate the bacterial community, 

marking the decline of Enterobacteriaceae. Lactobacillaceae, along with Lactobacillus 

(maintained as separate OUT), continued to dominate the bacterial community, reaching > 98% 

relative abundance by 36 weeks. Acetobacter, Gluconacetobacter, and Acetobacteraceae were 

detected from week 3 through week 19, prior to Lactobacillaceae dominating the bacterial 

community. As seen with the detected fungal OTUs, there was a degree of variation between 

sample replicates. Barrel A exhibits a higher relative abundance of Lactobacillus than barrel B that 

carried through most of the fermentation. Barrel A also tended to exhibit a higher relative 

abundance of Gluconacetobacter than barrel B.  

Bacterial taxa such as Geobacillus, Sphingobium, Staphylococcus, and Listeriaceae, which are not 

normally associated with beer fermentation, were detected throughout the sampling period even 

after rigorous OTU. A complete list of all detectable bacterial OTUs and their relative abundances 

are provided in Appendix A6. 
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4.5 Beer 2 

4.5.1 Beer 2 fungal community composition as revealed by ITS HTS data: 

Through regular brewery operations, eight barrels were removed from the sample pool over the 

course of sampling. By the end of the sampling period, a total of 135 individual samples for Beer 

2 were collected and sequenced, represented by 48 from sample time point 1, 45 from sample time 

point 2, and 42 from sample time point 3. Of those, 106 remained in the dataset after rarefaction (d 

= 1000). Amongst the rarefied samples, 86 fungal OTUs were identified of which 19 were retained 

according to established relative abundance cutoff criteria. The proportion of samples for each fill 

year and sample time point that yielded microbiome data is listed below in Table 10. 

Table 10 Proportion of barrels from each batch year that yielded ITS microbiome data at 

each time point 

 Sample Time Point 1 Sample Time Point 2 Sample Time Point 3 

Batch 

Year: 2013 2015 2016 2013 2015 2016 2013 2015 2016 

Proportion: 86% 87% 92% 71% 80% 92% 33% 80% 58% 

 

Metadata analysis of Beer 2 ITS microbiome data revealed a statistically significant difference by 

batch year (p = 0.035).  However, clustering of samples according to overall ITS profile similarity 

(Fig 4.7) suggests a the lack of association between these clusters and batch year. 
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Figure 4.7 Truncated heatmap of fungal OTUs at greater than 0.1% abundance in Beer 2 

clustered according to overall microbiome similarity. Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA) clustering of samples based upon microbiome profile derived from 

relative abundance of  OTUs represented on a scale of 0 to 100%. Batch year is indicated by color 

above that sample profile, with orange representing batch year 2016, green batch year 2015, and 

blue batch year 2013. HTS sample ID are indicated along the bottom of the heatmap. OTU 

assignments are indicated on the right hand side of the heatmap, where suffix characters “g” 

indicates genus, “f” indicates family, and “o” indicates order. See Appendix A7 for full heatmap 

with all detected taxa. 

 

Analysis of abundance for each OTU individually (as opposed to overall sample microbiome 

similarity) revealed a statistically significant difference between sample time points within 2016 

batch, but not the 2013 or 2015 batches. Figure 4.8 shows changes in relative abundance of S. 

cerevisiae (p = 5.66e-6) and D. bruxellensis ( 0.011) between sample time points for the 2016 batch.  

The average relative abundance of S. cerevisiae across all samples dropped from 8% to 

approximately 1.5% between 35 and 52 weeks. D. bruxellensis displayed the opposite trend, with 

a shift to complete dominance across samples over the same period. At 35 weeks, there was 

substantial variation between samples from individual barrels in their relative proportion of these 

two species, indicated by wider distribution of boxplot quartiles, whereas for the later time point 

samples, tighter boxplot quartiles indicated less variation among barrels within the 2016 batch year.  
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Figure 4.8 Box and whisker plot of relative abundance of S. cerevisiae (A) and D. bruxellensis 

(B) between sample time points of Beer 2 2016 batch year. Change in relative proportions of S. 

cerevisiae (p = 5.66e-6) and D. bruxellensis (0.011) between sample time points of the 2016 batch 

 

Fungal taxa such as Penicillium corylophilum, Phlebia radiata, Filobasidium chernovii, and Mucor 

circinelloides, which are not normally associated with beer fermentation, were detected even after 

rigorous fungal OTU rarefication. A complete list of all detected OTUs present are provided in 

Appendix A8. 

 

4.5.2 Culture-dependent yeast enumeration of Beer 2 samples 

Colonies on LMDA and YPD displaying yeast-like morphology were enumerated (Fig. 4.9). 

Average counts across all sampled barrels differed significantly between batch years 2013 and 2016 

on LMDA at sample time point 1 (p = 0.0137), and at sample time point 3 (p = 0.0267), and on 
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YPD at sample time point 1 (p = 0.0023). No statistically significant difference was found for YPD 

at sample time point 2 (p = 0.4230).  

Because the LMDA medium contained cylohexamide to inhibit Saccharomyces yeasts, counts on 

the two media were also compared at each time point for each batch year to determine the relative 

abundance of Saccharomyces and non-Saccharomyces yeasts. In each case there were no 

significant differences (p > 0.05), suggesting that the culturable yeast population was 

predominantly composed of cycloheximide tolerant species. 
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Figure 4.9 Box and whisker plots of yeast population size as evaluated on each media type in 

Log10 CFU/ml across three batch years. Significant differences of means within each panel are 

indicated by letters above box plot. Two outliers (●) are accounted for in LMDA Time Point 1 for 

the 2016 batch year. 



 

 

 

70 

 

 

It should be noted that the lower limit of quantitation by spread-plating was 250 CFU/ml, and 

samples below this threshold were excluded from statistical analysis. A clear trend was observed 

that more barrel samples from the older beer batches were in this category (Table 11), supporting 

the observation that yeast population size was higher in the youngest beer batch.  

Table 11 Summary of relative proportion of agar plates below lower quantitation 

limit (LQL) within each batch year. 

 LMDA + Cycloheximide  YPD + Chloramphenicol 

Fill Year 

Sample Time 

Point 1 

Sample Time 

Point 3   

Sample Time 

Point 1  

Sample Time 

Point 3  

2013 52% 62%  62% 76% 

2015 20% 47%  33% 40% 

2016 25% 50%  33% 33% 

  

 

4.5.3 Sanger sequencing identification of random Beer 2 yeast isolates 

A total of 784 representative yeast colonies were randomly picked from available plates. From this 

representative set a random number generator was used to select 44 isolates for molecular 

identification. A laboratory strain of S. cervisiae (S288c) was used as a control for PCR and 

sequencing quality control purposes. The randomly-selected isolates consisted of 12 from the 2013 

batch year, 16 from 2015 batch, and 15 from the 2016 batch. Isolates from samples 170810-07, 

170810-17, 170810-18, 170810-23, 170810-28, 170810-29 were obtained through plating on 

Lysine media. Lysine media was not used for any other sample time point or for quantification 

purposes. Forty-two of the sequenced isolates were identified as D. bruxellensis. Isolate No. 31 

returned as a 92% match with Pichia membranifaciens. Isolate No. 44 was unable to be identified. 

Complete Sanger identification are listed in Appendix A9. 
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4.5.4 Beer 2 bacterial community composition as revealed by 16S microbiome data: 

16S microbiome data was processed according to a similar rarefaction process to that applied for 

ITS microbiome data, where d = 1000. Of the original 135 collected samples, 70 remained after 

processing and rarefaction. From these remaining samples, 75 bacterial OTUs were identified. Of 

those OTUs, 39 were retained according to established relative abundance cutoff criteria. The 

proportion of samples for each fill year and sample time point that yielded microbiome data is listed 

below in Table 12. 

Table 12 Proportion of barrels from each batch year that yielded 16S microbiome data at 

each time point 

 Sample Time Point 1 Sample Time Point 2 Sample Time Point 3 

Batch 

Year: 2013 2015 2016 2013 2015 2016 2013 2015 2016 

Proportion: 0% 67% 92% 33% 27% 75% 5% 60% 75% 

 

Metadata analysis of the Beer 2 16S microbiome data revealed a statistically significant difference 

according to batch year (p = 0.001) and by sample time point within each batch year (p = 0.001). 

Figure 4.10 shows clustering of the microbiome profiles according to overall similarity, which 

revealed four distinct clusters.  Cluster A is comprised of samples from the 2015 (orange) and 2016 

(green) batch years. Cluster B is comprised of samples solely from the 2016 batch year. Cluster C 

is made up of samples from the 2016 and 2013 (blue) batches. Cluster D is comprised of samples 

from all three batch years, though most were from 2013.  
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Figure 4.10 Truncated Heatmap of bacterial OTUs in Beer 2 clustered according to overall 

microbiome similarity. UPGMA clustering of samples based upon microbiome profile derived 

from relative abundance of 26 bacterial OTUs represented on a scale of 0 to 100%. Batch year is 

indicated by color code above that sample profile, with orange representing batch year 2016, green 

batch year 2015, and blue batch year 2013. OTU assignments are indicated on the right hand side 

of the heatmap, where suffix characters “g” indicates genus, “f” indicates family, and “o” indicates 

order. 

 

The observed clusters were differentiated primarily by relative abundance of OTUs corresponding 

to acetic and lactic acid bacteria, which make up the bulk of the overall bacterial population across 

all samples. Figure 4.11 shows the relative abundance of the key acetic acid and lactic acid bacteria 

OTUs that differ significantly according to batch year.  
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Figure 4.11 Box and whisker plot displaying the average distribution of Acetobacter (A), 

Gluconoacetobacter (B), Acetobacteraceae (C), and Lactobacillus (D) that drive differences in 

clustering in each batch year of Beer 2. Differences in clustering are driven by these four primary 

taxa, within the 2016 batch year displaying the greatest relative abundance of Acetobacter and 

Lactobacillus.  

 

Acetobacter (p = 3.64e-9) was detected across all three batch years, with relative abundance ranging 

between 0 and 100% in the 2016 batch year, 80 to 100% relative abundance in the 2015 batch year, 

0 to approximately 23% abundance in the 2013 batch year.  
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Gluconoacetobacter (p = 1.09e-7) was also detected across all three batch years, with relative 

abundance ranging between 0.5 to 5.4% in the 2016 batch year, 0 to 58% relative abundance in the 

2015 batch year, and 0 to 61% relative abundance in 2013 batch year. 

Unclassified Acetobacteraceae (p = 3.07e-6) appeared in all three batch years, with relative 

abundance ranging between 0 to 5.4% in the 2016 batch year, 0 to 0.3% in the 2015 batch year, and 

0 to 21.6% in the 2016 batch year. Given the low proportion of samples from the 2013 batch year 

(n = 9), unclassified Acetobacteraceae represents the lowest relative abundance of these four taxa, 

and it was almost entirely absent from the 2015 batch year.  

Lactobacillus (p = 4.16 e-5) appeared in all three batch years, ranging from 0 to 100% in the 2016 

batch year, 0 to 13.6% relative abundance in the 2015 batch year and 0 to 4.7% relative abundance 

in the 2013 batch year.  

Bacterial taxa such as Agrococcus, Sphingobium, Sphingomonas, and Ralstonia, which are not 

normally associated with beer fermentation were detected even after rigorous fungal OTU 

rarefication. A complete list of all detectable OTUs present are provided in Appendix A10. 

4.5.5 Culture-dependent bacterial enumeration of Beer 2 samples 

Few Beer 2 samples when plated (~3%) exhibited bacterial colony morphology, and of those only 

a small number were able to be enumerated, the results of which are summarized in Table 13. 

Enumeration was problematic due to the dominance of yeast colonies on most plates, combined 

with relative size of colonies vs. the particulate background of LMDA media. There were 

insufficient enumerated samples within valid counting ranges to allow for statistical comparison of 

bacterial population size according to batch year, time point, or media type. It is worth noting that 

only samples from the 2015 and 2016 batch years contained culturable bacteria above the limit of 

detection (10 CFU/ml). 
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Table 13 Average Time Point (ATP) colony counts of samples yielding both 

detectable and quantifiable bacterial growth 

  LMDA + Cycloheximide  YPD + Chloramphenicol 

Barrel 

ID 

Fill 

Year 

ATP 1 

(Log10 

cfu/ml) 

ATP 2 

(Log10 

cfu/ml)  

ATP 1 

(Log10 

cfu/ml) 

ATP 2 

(Log10 

cfu/ml) 

142820 2015 --* --*  --* 4.0 

142826 2015 --* --*  --* --* 

155125 2016 4.9 >5.4  3.8 --* 

155134 2016 >5.4 --*  >5.4 >5.4 

155185 2016 4.3 --*  >5.4 --* 

142816 2015 3.3 --*  --* 3.5 

155124 2016 --* 4.1  --* 4.2 

155130 2016 --* --*  --* 4.5 

155179 2016 --* 3.5  --* 3.4 

(*) bacterial colony morphology evident 

Upper limit of quantitation (LOQ) 5.4 log10 cfu/ml 

 

4.5.6 Sanger Sequencing of isolates 

A total of 43 bacterial isolates were collected and stored, however only 33 were able to be re-

cultured from cryopreserved stocks at the time of analysis. Acetobacter aceti DNA (BCCM LMG 

00005) was used as a PCR reference and for sequencing quality control. Of the 33 isolates, 24 were 

identified as belonging to the Acetobacter genus, with A. fabarum, A. malorum, A. pomorum and 

A. pasterurianus being the four represented species. Four colonies were identified as 

Staphylococcus spp. and three were Bacillus spp. The reference species was positively identified 

as A. aceti BCCM LMG00005 (Appendix A11). 
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4.6 Beer 3 

4.6.1 Beer 3 fungal community structure as revealed by ITS HTS data: 

Random selection of Beer 3 barrels provided a cross-section analysis of the entire barrel inventory. 

Table 14 shows the relative proportion of barrel types within Beer 3 sample sets. Beer 3 was 

collected at two sample points spaced 27 weeks apart. As seen with Beer 2, regular brewery 

operations removed three barrels from sample pool over the course of collection, resulting in 46 

samples in sample set 1 and 47 samples in sample set 2. A total of 93 samples were collected and 

sequenced. Of those samples, 37 remained in the dataset after rarefaction (d = 1000). Sample point 

1 at 9 weeks represented 13 barrel microbiomes. Sample point 2 at 36 weeks represented 24 barrel 

microbiomes, with six barrels intersecting between both sample time points (HTS sample ID 

AS.145, 147, 148, 143, 168, 175, 221, 223, 194, 212, 216, 220). From those remaining samples, 47 

fungal OTUs were identified of which 12 fungal OTUs were kept according to established relative 

abundance cutoff criteria.  

Table 14 Barrel types and their relative proportions with Beer 3 

sample sets.  

Barrel type (origin) No. of barrels % population 

Bourbon 26 52% 

Cognac 2 4% 

Maple syrup 8 16% 

Port 1 2% 

Rum 8 16% 

Sherry 3 6% 

Vanilla Extract 2 4% 

   

 

Metadata analysis of Beer 3 ITS microbiome data found there was no statistically significant 

difference between barrel types (p = 0.152). Figure 4.12 illustrates this as samples clustered 

according to microbiome profile similarity do not group according to barrel type.  
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Figure 4.12 Truncated Heatmap of fungal OTUs at greater than 0.1% abundance in Beer 3 

clustered according to overall microbiome similarity and barrel type. UPGMA clustering of 

samples based upon microbiome profiles derived from relative abundance of each OTU represented 

on a scale from 0 to 100%. Samples were taken from different barrel types, indicated by color, with 

blue representing bourbon, green maple syrup, pink vanilla extract, blue rum, orange cognac, purple 

port, red sherry. OTU assignments are indicated on the right hand side of the heatmap, where suffix 

characters “g” indicates genus, “f” indicates family, and “o” indicates order. See Appendix A12 for 

full heatmap with all detected taxa. 

 

Further metadata analysis of Beer 3 ITS microbiome data found a statically significant difference 

between sample time points (p = 0.0439). Clustering based upon similarity of microbiome 

composition by sample time point, as shown in Figure. 4.13, shows a trend in statistically 

significant composition of  S. cerevisiae (p = 0.033) and D. bruxellensis (0.034) changes over time, 

along with unclassified Saccharomycetales (p = 0.033) and Metschnikowia (0.013), both present 

below 6.5% and 0.6% relative abundance respectively in all samples. Variations in the relative 
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abundance of S. cerevisiae and D. bruxellensis display a temporal trend in the gradual dominance 

of D. bruxellensis over time, (Fig. 4.6.2 D and C), with samples beginning to display a presence of 

S. cerevisiae at sample time point 2 (Fig. 4.6.2 B) 

 

Figure 4.13 Heatmap of statistically significant fungal OTUs at greater than 0.1% abundance 

in Beer 3 clustered according to overall microbiome similarity. UPGMA clustering of samples 

based upon microbiome profiles derived from relative abundance of each OTU on a scale from 0 

to 99.8%. Sample are grouped according similar microbiome composition of four statistically 

significant taxa. Temporal variations are outlined by cluster, with  OTU assignments are indicated 

on the right hand side of the heatmap, where suffix characters “g” indicates genus, “f” indicates 

family, and “o” indicates order. 

 

Figure 4.14 shows the distribution of the relative abundance of S. cerevisiae and D. bruxellensis at 

sample time point 1 (9 weeks) and sample time point 2 (36 weeks). The S. cerevisiae proportion of 

the population declined slightly as the beer aged while the D. bruxellensis proportion increased 

slightly with beer age, as shown by percent relative abundance per sample time point.  
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Figure 4.14. Box and whisker plot of relative abundance of S. cerevisiae (A) and D. 

bruxellensis (B) between sample time points of Beer 3. One-way ANOVA was performed to 

determine the relationship individual OTUs and sample time points, with a measurement value of 

relative OTU abundance and a nominal value represented by sample time point. S. cerevisiae (p = 

0.033) and D. bruxellenis (0.034) were detected in all barrels that yielded microbiome data. All 

samples at each time point were treated as replicates. Sample time points represent the average age 

of Beer 3. 

 

4.6.2 Culture-dependent microbiome analysis 

Beer 3 was initially treated the same way as Beer 2, with 276 plates across three dilutions at sample 

point 1, including single replicates of 10 ml filter plates on each media type for a total of 92 filter 

plates. No growth occurred on any of the spread plates. Beer 3 sample time point 2 was performed 

using filter plates only. A total of 96 filter plates were prepared using 25 ml of each Beer 3 sample, 

representing single replicates on each media type. Filter plates yielded some microbial growth as 
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outlined by Table 15. No isolates were obtained from Beer 3 cultures and therefore no Sanger 

sequencing was performed at this time.  

Table 15 Beer 3 barrels yielding microbial growth.  

Barrel HTS ID 

Volume 

(ml) 

Counts 

LMDA 

Estimated 

CFU/mL 

Counts 

YPD 

Estimated Log 

CFU/mL 

175303 AS.141 10.0 TNTC >25 <LOQ <25 

175258 AS.144 10.0 TNTC >25 <LOQ <25 

175554 AS.147 10.0 8 <25 <LOQ <25 

175258 AS.185 25.0 3 <10 <LOQ <10 

175303 AS.191 25.0 TNTC >10 TNTC >10 

175340 AS.195 25.0 TNTC >10 TNTC >10 

175352 AS.196 25.0 1 <10 TNTC >10 

175361 AS.198 25.0 TNTC >10 TNTC >10 

175386 AS.200 25.0 <LOQ <10 9 <10 

175391 AS.201 25.0 <LOQ <10 TNTC >10 

175424 AS.206 25.0 3 <10 <LOQ <10 

TNTC = filter completely overgrown 

LQL = lower quantitation limit 

 

4.6.3 Beer 3 bacterial community structure as revealed by ITS HTS data: 

Beer 3 16S microbiome data was processed and analyzed using the same pipeline as Beer 2 16S 

microbiome analysis (d = 1000). Eighteen samples remained out of the original 93 samples 

collected following rarefaction. In total, 84 bacterial OTUs were identified, which was reduced to 

34 bacterial OTUs according to established relative abundance cutoff criteria  

Metadata analysis of overall Beer 3 16S microbiome data did not show a statistically significant 

difference between barrel types (p = 0.094) and no differences was found when sample time points 

were compared (p =0.615). Figure 4.15 shows clustering of 16S microbiome data compared to 

barrel type, exemplifying this lack of association. Four samples displayed relatively high 

abundance of Acetobacter, Lactobacillus and Sphigobium (AS.164, AS.205, AS.191, AS.190), 

none of which were associated with barrel type or sample time point.  
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Figure 4.15 Heatmap of bacterial OTUs at greater than 0.1% abundance in Beer 3 clustered 

according to overall microbiome similarity. UPGMA clustering of samples based upon 

microbiome profiles derived from relative abundance of each OUT represented on a scale from 0 

to 100%. Samples were obtained from different barrel types: indicated by color, bourbon (blue), 

maple syrup (green,) vanilla extract (pink), rum (blue), cognac (orange,) port (purple), and sherry 

(red). OTU assignments are indicated on the right hand side of the heatmap, where suffix characters 

“g” indicates genus, “f” indicates family, and “o” indicates order. 

 

Analysis of abundance for each individual OTU revealed that Lactococcus (Fig 4.16) differed 

significantly (p = 0.049) between sample time point 1 and sample time point 2. 
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Figure 4.16 Box and whisker plot of relative abundance of Lactococcus between sample time 

points of Beer 3.. One-way ANOVA was performed to determine the relationship individual OTUs 

and sample time points, with a measurement value of relative OTU abundance and a nominal value 

represented by sample time point. Lactococcus (p = 0.049) was only detected at 9 weeks in five 

barrels at an abundance greater than 0.1%, and was not represented in the microbiome of any barrels 

at 36 weeks. 
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5 Discussion 

As technology becomes more affordable and automated, the applications of culture-independent 

techniques are becoming more practical within the food and beverage industry. Though mainstream 

use of metabarcoding HTS technology (hereafter referred to as HTS in the context of this 

discussion) as it applies to complex microbiome profiling is gaining traction, its application within 

the beer industry is still lagging. Sixty-six published studies from 2010 to 2016 offer in-depth 

analysis of food systems through HTS technology, and of those studies only two are directly related 

to traditional beer fermentation and its raw materials (Bokulich et al. 2012b; Justé et al. 2014; De 

Filippis et al. 2017). Primary application has been to reveal complex bacterial communities of 

common fermentation systems, using 16S HTS to explore changes in bacterial populations overs 

time, often focusing on single-family dominated microbiomes (Justé et al. 2014; De Roos et al. 

2018). Despite a narrow focus, those studies combined with works making use of other culture-

independent techniques, such as DGGE, have begun to reveal the complex microbial consortia of 

spontaneously fermented beer. 

Culture-independent studies, including those outlined in section 2.3 and 2.4.1, of traditionally 

fermented beer have been accompanied by culture-dependent techniques to help reinforce derived 

microbiome data. While those studies were limited in sample sizes to around 20 barrels, routine 

and in-depth use of culture-dependent techniques are an important validation method for culture-

independent techniques in previously unexplored food systems. Taking this into consideration, the 

increasingly common use of barrels in the American craft beer industry, and with some breweries 

working with upwards of 4000 individual barrels, the impact of large-scale barrel fermentation and 

maturation has yet to be explored from a microbiome point of view. Application of HTS technology 

is potentially a boon to barrel-aging programs and large-scale traditional fermentations, allowing 

for simultaneous processing and monitoring of hundreds of barrel samples at once. The primary 

goal of this study was to use HTS techniques to investigate the impact of a large number of oak 



 

 

 

85 

 

barrels on the microbiome of a traditionally fermented beer and barrel aged beer. Additionally, we 

sought to investigate the microbiome progression of a traditional Lambic-style beer brewed in a 

geographically distinct location from those previously described in the literature. 

5.1 Culture-independent data QC 

An important aspect of HTS technology is the ability to quantitative and qualitatively assess 

microbial profiles. Maximum recovery of DNA is critical to fully exploring any microbial 

ecological niche and as such, extraction methods will play an important role in how a given 

microbiome is assessed and described (Keisam et al. 2016). This holds particularly true for systems 

where expected biomass recovery is low. Understanding the impact of commercially available 

DNA extraction kits and methods on DNA recovery are still being explored (Glassing et al. 2016; 

Keisam et al. 2016; Hermans et al. 2018). The application of a single standardized extraction 

procedure is generally unfeasible when applied to food systems. The diversity of both mechanical 

and chemical properties of fermented foods often makes it difficult to apply a standardized process 

to any one food system (Quigley et al. 2012; Thomas et al. 2013; Vojkovska et al. 2015; Keisam et 

al. 2016). Additionally, different organisms will display varying degrees of ‘extractability’. Fungi 

are protected by a tough cell wall made of chitin and Gram-positive bacteria contain a thick 

peptidoglycan layer, which may further complicate DNA extraction.  

The validation and curation of microbiome data is one of the most important aspects of microbiome 

profiling. In situ extractions from a liquid matrix does offer some advantages, in as much that 

inherently lower concentrations of tough structural biopolymers compared to solid food are 

expected to have interference with the extraction process. To be able to properly assess extraction 

efficiencies and PCR amplicon generation, manufactured microbial standards comprised of 

representative taxa are used to great effect, though by no means are they universally applied. By 
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processing community standards with unknown samples, estimations of overall extraction 

efficiencies and validity of relative quantitation can be made.  

Community extraction and PCR standard results are dependent on the DNA content, and may not 

necessarily reflect the theoretical composition in terms of 1:1 proportions. Rather, microbiome data 

will reflect the percent composition of targeted genes. In the extraction standards used for this 

study, yeast genome copies were expected to be 0.57% C. neoformans and 0.37% S. cerevisiae, 

based upon approximately equal proportions of total genomic DNA. As a further complication, the 

C. neoformans genome encodes approximately 60 copies of the ribosomal RNA gene cluster, while 

S. cerevisiae has approximately 109 copies. As seen in Figure 4.2, C. neoformans made up roughly 

66 to 75% relative abundance of the extracted community standards, illustrating one the challenges 

in relating microbiome data to the true microbial community composition. Recent work using these 

extraction standards have yielded similar results, displaying a preferential amplification of C. 

neoformans DNA within the same ITS region 2 (Hermans et al. 2018). Ultimately, there are a 

number of reasons as to why this may occur. Assuming the community standards contained the 

correct proportions of DNA, the three main possibilities come down to PCR bias, extraction 

efficiency, or ‘tag-jumping’/‘index-hopping’. C. neoformans was preferentially amplified, either 

through higher ITS primer affinity, or by virtue of there being more C. neoformans DNA physically 

available.  Misidentification could occur through a process known as ‘tag jumping’ or ‘index 

hopping’, in which metabarcode tags will get swapped through recombination events during 

sequencing or library construction, leading to the appearance of sample contamination (Schnell et 

al. 2015). However, due to the data processing pipelines in place, it is expected that the effect of 

tag-jumping should be mitigated to 0.1 – 2.0% (Minimizing Index Hopping). The relative 

consistency of C. neoformans versus S. cerevisiae distribution, as noted by the lack of statistical 

difference between extracted DNA and PCR standards, would support the notion of preferential 

PCR amplification. More work would have to be done to determine extraction efficiency using the 
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protocols outlined in section 3.3.1. Relative quantitation of S. cerevisiae based upon our 

microbiome data is therefore expected to be skewed slightly, and may be more abundant than 

reported. Likewise, presence of C. neoformans in the dataset may be over-represented due to a 

combination of tag-jumping and preferential amplification.  

Bacterial community standards behaved in the manner expected by the Zymo Research Corp 

microbial community standard protocol. Extraction replicates of bacterial community standards 

remained roughly proportional to each other, with Enterobacteriaceae, Pseudomonadaceae, and 

Bacillaceae showing the widest variability. It should be noted that Enterobacteriaceae comprises 

both Salmonella and Escherichia from the community standard. Expected composition, based upon 

theoretical 16S composition (10.4% and 10.1% respectively) was approximately 18 to 20% of 

relative abundance, as seen the PCR community standards and outlined in the microbial community 

standard protocol. (ZymoBIOMICSTM Microbial Community Standard Instruction Manual). 

Preferential amplification of Bacillaceae was observed, while Lacotobacillaceae, 

Staphylococcaeae, and Listeriaceae were more in line with expected recovery. At the time of 

writing, one of the major limitations of HTS technology is the difficulty of resolving bacterial 

genera and species using 16S microbiome data alone. The universal primers used in this study, 

while useful in allowing the detection of many taxa, are not ideal for genera resolution in highly 

diverse bacterial families. Therefore, it is impossible to assess the recovery and extraction 

efficiency of both S. enterica and E. coli from the extraction standards alone, as their overall 

extraction and amplification was much lower than expected. Despite this, all family-level OTUs 

are accounted for, and present in relative abundances above the established cut-off criteria. As such, 

bacterial DNA recovery from samples was expected to be representative of barrel microbiomes. 

Extraction data overall highlights the necessity of further extraction protocol optimization. In terms 

of potential impact upon the beer microbiomes generated in this study, the desired outcome was 

the ability to ensure that representative DNA would be extracted from barrel samples. Absolute 
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abundance, while important, is not the primary goal. To determine microbiome variability 

introduced by specific metadata categories, repeatable extraction events are required. Thus, while 

high extraction efficiency is ideal, consistent quantifiable results are more important at this stage. 

As noted earlier, the extraction concern over low extraction efficiency of Gram-positive bacteria 

was a concern coming into this study, but ultimately was shown to be a non-issue 

The low number of reads for NT controls for each PCR plate indicated negligible contamination. 

The detectable OTUs found in NT.002 indicates that there may have been minor bacterial 

contamination during processing. PCR plate 2 was comprised of samples from Beer 2 at sample 

time point 3 and Beer 3 at sample time point 1. The implications of this potential contamination 

event are discussed in sections 5.3 and 5.4. 

5.2 Beer 1 

Beer 1 provided the opportunity to profile the microbiome of a traditional Lambic beer produced 

outside of Belgium. Only one published work (Bokulich et al. 2012) has previously described the 

microbiome of traditionally fermented beer produced in the United States, or indeed anywhere 

outside of Belgium. In that study, Bokulich et al. found strong evidence to support that American 

Coolship Ales undergo a similar microbial succession seen in the traditional Belgian Lambic. What 

had previously been established as important taxa required for Lambic beer production (Van 

Oevelen et al. 1977; Martens et al. 1997; Spitaels et al. 2014), were all accounted for with evidence 

supporting a much richer and more dynamic microbiome than previously thought. Bearing this in 

mind, what was once thought to be a geographically unique process could potentially be quite 

reproducible and tractable elsewhere.  

The fermentation of Beer 1 over the course 36 weeks displayed strong resemblance to Lambic beer 

microbiomes previously profiled using non-HTS culture independent techniques, with some 
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notable differences. Both yeast and bacterial communities were profiled in parallel using HTS 

technology, allowing for a high-resolution analysis of both communities at the same time.  

Yeast community profiling was able to achieve species-level identification of detectable OTUs, 

with the exception of five taxa that could only be matched to their respective families, and in one 

instance, phylum. These represent a minority of detected OTUs, making up an average 

0.094±0.052% relative abundance. Yeast community profiling revealed a core population of S. 

cerevisiae and D. bruxellensis within 24 hours post-brewing, approximately three weeks ahead of 

previously described isolation points (Van Oevelen et al. 1977; Spitaels et al. 2017). Early detection 

may be due to a yeast-enriched environment in the facility where Beer 1 was brewed and fermented 

relative to other studies. 

Three key factors play into this assumption. The brewery environment in which this Lambic-style 

beer was brewed is an isolated area of the brewery that serves as a quarantine for beers that contain 

or will contain Dekkera species (Brettanomyces), and is not subject to the same level of hygiene as 

the rest of the brewery. Brewing is performed in an open manner, allowing for the accumulation of 

steam and water vapor from the process, providing an ideal environment for the proliferation of 

many fungal and bacterial species within the brewery. The presence of exposed wooden beams may 

also play a role in environmental enrichment, as they are believed to sequester a wide range of 

microorganisms (Bokulich et al. 2012b; Spitaels et al. 2014; Bokulich et al. 2015). Lastly, the 

barrels used for fermentation, A and B, were ozone-treated French oak wine barrels used in the 

production of Pinot Nior and were obtained from a vineyard within the same geographic region as 

the brewery itself. While ozone treatment is effective at reducing microbial populations, it will not 

eliminate everything (Guzzon et al. 2017). Resident yeast within those barrels may act to inoculate 

the wort, however sampling began from two sterile fermenters prior to the beer being placed into 

barrels, suggesting that the presences of both S. cerevisiae and D. bruxellensis originated from the 
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local environment rather than the barrels. To determine the origins of these yeasts, environmental 

sampling of both pre-filled barrels and brewery environments would need to be performed.  

Other fungal species not normally associated with beer fermentation were detected and identified 

over the course of sampling. In the case of Beer 1, these species are represented only sparsely, 

making up an average 5.8±8.5% observed relative abundance. For instance, Cladosporium 

ramotenellum is a common environmental fungi found in soil, dust, and is associated with woody 

plants and food (Schubert et al. 2007). This detected 3 weeks into fermentation but not detected 

afterwards. Wickerhamomyces anomalus has been associated with malting and grain ecosystems 

relevant to beer production (Laitila et al. 2011) and was detected sporadically during the during the 

first half of the fermentation. Of note, C. neoformans appears in 12 out of 20 samples, ranging from 

0.1 – 21.4%, albeit at low media (0.3%) abundance. C. neoformans has not been described to have 

any role in beer fermentation, and it is likely that for most samples its detection at low abundance 

is the result of Illumina sequencing bleed over (tag-hopping), given the presence of C. neoformans 

in the microbial community standards. 

By comparing higher-level taxonomic composition, Beer 1 closely followed previously established 

temporal community changes of Lambic beer fermentations (Van Oevelen et al. 1977; Spitaels et 

al. 2014). Bacterial community profiling was able to achieve genus-level taxonomic identification 

for nine of the 17 detected bacterial OTUs. The remaining detected OTUs could be identified at the 

family level, with one unassigned bacterial OTU not associated with listed taxa. Other bacterial 

OTUs not normally associated with beer microbiology were detected as well, at varying relative 

abundances. Taxa such as Staphylococcus, Lysteriaceae, Sphingobium, and Geobacillus were 

detected among Beer 1 samples. Of those, both Staphylococcus and Lysteriaceae were part of the 

extraction community standard and again, their relatively low abundance and frequency of 

occurrence within sample sets is consistent with potential tag-hopping as discussed previously. 
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However, genera such as Geobacillus and Sphingobium are more likely indicative of low-level 

environmental contamination than any meaningful contribution to the 16S microbiome of 

traditionally fermented beer. Both Geobacillus and Sphigobium are known environmental bacteria 

genera, associated with soil, fresh water, and human habitats (McMullan et al. 2004; Kelley et al. 

2004; Glaeser & Kämpfer 2014).  Their occurrence was limited to two samples, AS.237 and 

AS.238, with Sphingobium only appearing in AS.238. Given their relatively high abundance (5.4 

– 31% relative abundance), and the close spacing of early sample points for Beer 1, both genera 

would likely be detectable at earlier and later dates if they were an important contributor within the 

beer, due to persistence of DNA within the environment and the overall extraction efficiency seen 

in the community standards. Negative PCR controls back this up, as no bacterial OTUs were 

associated with Beer 1 PCR (data not shown). A more rigorous brewery environmental profiling 

would be ideal to assess origin of potential environmental contaminants in the beer samples.  

5.3 Beer 2 

Beer 2 provided the opportunity to observe microbiome changes across a larger set of replicated 

beer samples, across different maturation phases. Primary fermentation had already been completed 

for all barrels at the time this study was initiated. At the start of sampling, the age of Beer 2 ranged 

from 8 to 50 months and thus were in what would be considered the final maturation phase of a 

Lambic beer (Spitaels et al. 2014). During this period, D. bruxellensis has been previously shown 

to slowly attenuate the remaining complex sugars left behind by early yeast and bacteria species. 

This also marks the slow decline of lactic acid bacteria populations and the gradual increase in 

abundance of acetic acid bacteria. 

By eight months into maturation, the 2016 batch started with a small, but significant population of 

S. cerevisiae. One of the key features of the 2016 batch year was the substantial variation among 

barrels at the start of sampling. As shown in Figure 4.8, there was a rapid decline of the remaining 
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S. cerevisiae population between the first and second sample time points in favor of D. bruxellensis. 

Variation amongst barrels quickly stabilized in first year of maturation. Behavior observed in Beer 

1, where S. cerevisiae stabilized to similar relative abundances in the same period (8 to 9 months), 

appears to reinforce this trend. This behavior could potentially explain the small, but statistically 

significant difference found when Beer 2 ITS metadata was analyzed according to batch year.  

Indeed, intra-batch ITS microbiome variation was conserved in both the 2015 and 2013 batches, 

favoring a homogenous yeast microbiome among barrels within those batch years. The trend that 

the 2016 batch displayed, combined with observed yeast communities in the 2015 and 2013 batches 

provides strong evidence that yeast populations will quickly reach a conserved profile. This 

observation was backed up by culture-dependent analysis where it was evident that the bulk of the 

yeast population was cycloheximide tolerant, and 95% of identified isolates belonged to D. 

bruxellensis. 

Beer 2 bacterial community structures were more dynamic than the observed yeast communities, 

but were represented by fewer barrels. This fits with the relative scarcity of barrel samples where 

culturable bacteria could be observed. 16S microbiome metadata analysis showed a distinct 

clustering by batch year that was primarily driven by four main bacterial taxa. Clustering shown in 

figure 4.10  displays a distinct trend within each batch year. Cluster C clearly shows barrels in 2016 

batch shows containing distinct populations of both Acetobacter and Lactobacillus while Cluster B 

is primarily dominated by Lactobacillus. Cluster A contains a portion of the 2016 batch which are 

almost completely dominated by Acetobacter. Barrels from the 2015 batch are observed in Cluster 

A and D, and dominated by Acetobacter and contain almost no Lactobacillus.  Lastly, the  2013 

batch, which represents the lowest relative number of barrels, is found in Cluster C and D, and 

dominated by all three acetic acid taxa while hosting some Lactobacillus. This is further illustrated 

in Figure 4.11, where these four taxa displayed distinct trends within each batch year. Though these 

batches cannot be meaningfully compared as a continuum, their individual trends appear to show a 
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strong temporal element associated with bacterial communities. That some individual barrel 

samples from the 2016 batch year clustered with barrel samples from the 2013 batch year, and vice 

versa, suggests that while the bacterial populations trend towards a conserved profile, the rate at 

which this occurs will vary.  

While it may seem surprising that none of the bacterial isolates collected from the culture-

dependent portion of this study corresponde to lactic acid bacteria, this makes sense based upon 

their relatively low average abundance according to microbiome data. All isolated bacteria 

belonged to the genus Acetobacter, with A. fabarum, A. malorum, A. pomorum and A. pasterurianus 

being the four represented species. No Gluconacetobacter was isolated from any sample, again 

consistent with its relatively low abundance. Given that this genera has yet to be described as part 

of traditional beer fermentations, it would prove interesting to further explore its origins and effect 

on the sensory aspects compared to other acetic acid bacteria, once it’s presence as an active 

member of the microbial consortia is established.  

The other sequenced isolates returned as Staphylococcus and Bacillus species (Appendix A11). 

While not ruling out their presence in beer samples, there is a high likelihood that these represent 

contamination during subsequent re-culturing rather than presence during isolation from beer 

samples. Noted detected bacterial OTUs such as Staphylococcus and Propionibacterium are unable 

to grow at pH levels associated with Lambic beers (< 4.5) and are strongly associated human skin 

(Korting et al. 1992). They also appear in low relative abundances in Beer 2 data, ranging from 0 

0 to 6% relative abundance (median xx%). The exception would be Bacillus, and in particular, 

Bacillus subtilis. This species is a ubiquitous environmental bacteria, associated with humans and 

capable of persisting in harsh environments as spores (Setlow 2006; Earl et al. 2008). Though used 

in some food fermentations, these tend to be alkaline and therefore Bacillus is not likely to grow 

during traditional beer fermentation (Tamang et al. 2016). Therefore, persistent environmental 
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Bacillus spores may represent a strong environmental contaminant that needs to be accounted for 

through environmental sampling. 

Careful consideration was made when determining what were considered important bacterial taxa. 

Potentially spurious taxa were evaluated based upon their primary ecological niche, rate of 

occurrence within sample sets, and overall abundance. Under conditions where the number of 

returned sequences from a given sample set were considered low, in this case those samples with 

read values at close the rarefaction value (d = 1000), PCR stochasticity will compound any 

environmental contamination, which is a known problem for low-template PCR (Alberdi et al. 

2018). As seen with Beer 1, a number of taxa not normally associated with beer microbiomes were 

detected across all three batch years. Because negative PCR controls did not return any significant 

sequence data (d < 1000) (data not shown), it was assumed that many of the taxa present are the 

result of environmental contamination. Additionally, unlike Beer 1 samples, which returned a 

consistently higher number of sequence reads per sample, the concentration of microorganisms 

present in Beer 2 was significantly reduced. This is due to the fact that older beer is a rarefied 

environment as shown by the culture-dependent plating data in Tables 10 and 11. Thus, in such a 

rarefied system, minor levels of environmental contamination, cross contamination, and index 

jumping will be compounded, significantly increasing the level of genetic background noise. This 

is particularly true for some bacterial taxa, such as Ralstonia, which is a known and fairly 

ubiquitous contaminant of DNA extraction kits (Salter et al. 2014; Glassing et al. 2016). 

5.4 Beer 3 

By collecting and analyzing microbiome data on Beer 3, the impact of different barrel types, or 

origins, could be explored. ITS HTS microbiome data revealed a near complete dominating 

presence of S. cerevisiae and D. bruxellensis. Additionally, the number of barrels yielding 

microbiome data between sample time points doubled. Maximum relative abundance of each 
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species were observed at 99.1% and 99.9% respectively. Though no correlation between barrel 

types and ITS microbiome composition could be determined, the presence of detectable fungal 

OTUs and the increase in microbiome yielding barrels between sample sets indicates that barrels 

contribute to the variability of barrel-aged beers. As with Beer 2, the temporal aspect revealed a 

small, but significant difference between sample sets. As Figure 4.13 displays, the ITS microbiome 

composition displays a temporal trend in barrel clustering by sample time point. Divergence is 

highlighted by the fact that some barrels exhibited an initial S. cerevisiae phase and then became 

D. bruxellensis dominant (e.g. HTS sample ID AS.148 and AS.194), while other barrels appear to 

become S. cerevisiae dominant within the same period (e.g. HTS sample ID AS.168 and AS.212). 

Figure 4.14 illustrates this divergence between S. cerevisiae and D. bruxellensis, noting that the 

average relative abundance of S. cerevisiae decreased between sample time points, yet the number 

of barrels yielding some S. cerevisiae sequence data increased. In that same vein, there was an 

average increase in relative abundance D. bruxellensis, along with a slight increase in the number 

barrels yielding D. bruxellensis sequence data within that same period.   

The 16S microbiome data revealed a large number of bacterial OTUs, many of which fell below 

the established cutoff criteria. As with ITS HTS microbiome data, barrel type did not significantly 

influence the overall bacterial population composition. The only taxa that differed significantly in 

abundance between sample time points was Lactococcus, as shown in Figure 4.16. However, it was 

only detected in the first sample time point and at low relative abundances. Interestingly, samples 

AS.141 and AS.191 represent the same barrel at 9 weeks and 36 weeks respectively. This barrel 

was observed to follow the same trend seen in Beer 2, where Lactobacillus (3.1% abundance at 9 

weeks, and 0% abundance at 36 weeks) declined over time while Acetobacter (10.3% at 9 weeks, 

and 94.7% at 36 weeks) increased over time. 
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Representative Beer 3 OTUs for both ITS microbiome data and 16S microbiome data were picked 

after careful consideration, based upon how Beer 2 data was treated. Sample processing saw 

extremely low DNA recovery from Beer 3 and as discussed in Beer 2, this could lead to over-

representation of environmental contaminants. Low recovery rates are illustrated in the culture-

dependent analysis. Standard spread plates using 100 µl of undiluted beer yielded no growth at 

either sample time points. Microbial growth was not observed until 10 to 25 ml of sample was 

filtered through 0.45 µm sterile filter, therefore viable microbial density was on average ~25 

CFU/ml. And even then, not all barrels yielded microbial growth. Despite best possible practices, 

truly aseptic collection was impossible due to the practicalities of sampling from barrels. Thus, for 

many of the detected OTUs, a combination of low overall sequencing reads and low rarefaction 

depth allows for the overrepresentation of common environmental contaminates, such as Bacillus, 

Sphigobium, and Geobacillus. It is likely that the 16S microbiome data for Beer 3 represents genetic 

background noise and artifacts of sequencing. Instances of relatively high abundance of known 

spoilage organisms (e.g  Acetobacter observed in sample AS.191) may represent opportunistic 

spoilage, but more work is required to fully understand the implications of low DNA recovery on 

the microbiome of rarefied beer.  
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6 Conclusions 

Previous studies have compared and explored the microbial successions of Lambic beer 

fermentation. The distinct phases that occur during a spontaneous beer fermentation were once 

believed to be unique to the Belgian Lambic beers, giving them their characteristic aromas and 

flavors. Beer 1 provided evidence that similar microbial successions will happen regardless of 

geography, likely owing more to the selective nature of the unfermented wort itself, and a 

microbially enriched brewery environment, than to microbes occurring in surrounding 

geographical niches. A beer brewed and fermented in Oregon, USA with ingredients and vessels 

originating from local sources still displayed the same microbial successions observed in beer 

produced on an entirely different continent. A caveat to this is the potential importance of strain-

level variation. While at a macro level, all relevant taxa are accounted for in both yeast and bacteria 

communities, differences may arise in the strains of important microorganisms. Strain-level 

variations may influence the overall metabolic profile of the beer, leading to unexpected 

development of different organoleptic properties. 

Further exploration into the aging process revealed that the microbiomes of barrel-aged beers were 

strongly influenced by temporal aspects. In the case of Beer 2, the same beer brewed and aged over 

the course of 5 years displayed a trend towards a conserved yeast and bacterial profile, with D. 

bruxellensis and acetic acid bacteria becoming the dominant organisms over long-term maturation. 

A clear trend was observed that though barrels began to look similar in terms of microbiome 

composition, the rate at which this occurred varied. Some barrels will reach what could be thought 

of as an “end phase” profile in two years, while others may take much longer. This variation may 

be introduced by barrels in terms of microorganisms present in the barrels themselves, a 

combination of beer composition and abiotic stressors such as temperature may favor enrichment 

of one taxa over another, or handling by brewers during filling.  
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This temporal aspect was further reinforced by observation of the divergence of barrel microbiomes 

observed in Beer 3, which appeared to occur independent of barrel type.  The same beer batch 

placed into 50 different barrels began to experience microbiome shifts, despite being a finished 

beer. 

To further explore this notion of conserved microbial profiles, the drivers of flavor and aroma are 

important to consider. It has been long understood that microorganism have a profound impact on 

the flavor and quality of beer. Introduction of unwanted microbial species within a beer system 

could result in over-attenuation or the production of off-flavors and aromas, ruining a perfectly 

good product. However, in the context of the traditional fermentation, previous work has 

established the importance of microbial influences on flavor and aroma. In Lambic beer, 

microbiome shifts are directly associated with the production of the specific aroma and flavor 

compounds sought after in traditionally fermented beers (Van Oevelen et al. 1976; Van Oevelen et 

al. 1977; Verachtert & Iserentant 1995; Martens et al. 1997; Vanderhaegen et al. 2003; Pires et al. 

2014; Snauwaert et al. 2016). Unfortunately, because of inherent capriciousness of living systems 

(including fermentation, raw materials, human influences), perfect batch to batch consistency for 

traditionally fermented beer is likely impossible. Should the popularity of these beers continue to 

grow, however, brewers will need to meet demand. Building a deeper understanding of complex 

mixed fermentations in the context of beer production, is the first step to creating standardized 

processes and approaches to maximize production while minimizing waste.  
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APPENDICES  

Appendix A1: Barrel ID number, Origins, volume and fill date of Beer 2 barrels allocated for 

sampling 

Number Origin Character Vol (liter) Fill Date 

131520 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131488 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131483 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131507 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131523 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131453 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131461 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131468 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131472 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131480 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131486 Canoe Ridge French Pinot 5-yr 227 5/30/13 

131576 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131579 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131529 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131574 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131585 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131586 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131588 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131597 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131599 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131650 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131664 Canoe Ridge French Pinot 5-yr 227 6/12/13 

131665 Canoe Ridge French Pinot 5-yr 227 6/12/13 

142774 Domain Serene French Pinot 5-yr 227 4/29/15 

142836 Adelsheim French Pinot 5-yr 227 4/29/15 

142844 Adelsheim French Pinot 5-yr 227 4/29/15 

142847 Adelsheim French Pinot 5-yr 227 4/29/15 

142770 Domain Serene French Pinot 5-yr 227 4/29/15 

142787 Domain Serene French Pinot 5-yr 227 4/29/15 

142790 Domain Serene French Pinot 5-yr 227 4/29/15 

142792 Domain Serene French Pinot 5-yr 227 4/29/15 

142794 Domain Serene French Pinot 5-yr 227 4/29/15 

142798 Domain Serene French Pinot 5-yr 227 4/29/15 

142816 Adelsheim French Pinot 5-yr 227 4/29/15 

142817 Adelsheim French Pinot 5-yr 227 4/29/15 

142820 Adelsheim French Pinot 5-yr 227 4/29/15 

142826 Adelsheim French Pinot 5-yr 227 4/29/15 
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Appendix A1. (continued) Barrel ID number, Origins, volume and fill date of Beer 2 barrels 

allocated for sampling 

Number Origin Character Vol (liter) Fill Date 

142850 Adelsheim French Pinot 5-yr 227 4/29/15 

155134 RMBC Tequila 227 11/1/16 

155184 RMBC Tequila 227 11/1/16 

155185 RMBC Tequila 227 11/1/16 

155188 RMBC Tequila 227 11/1/16 

155124 RMBC Tequila 227 11/1/16 

155125 RMBC Tequila 227 11/1/16 

155130 RMBC Tequila 227 11/1/16 

155135 RMBC Tequila 227 11/1/16 

155149 RMBC Tequila 227 11/1/16 

155157 RMBC Tequila 227 11/1/16 

155179 RMBC Tequila 227 11/1/16 

155183 RMBC Tequila 227 11/1/16 

 

Appendix A2: Barrel ID number, Origins, volume and fill date of Beer 2 barrels allocated for 

sampling 

Number Origin Character Vol (liter) Fill Date 

175277 River Drive Cooperage Maple Syrup 199 6/8/17 

175330 River Drive Cooperage Maple Syrup 199 6/8/17 

175303 River Drive Cooperage Vanilla Extract 199 6/8/17 

175391 River Drive Cooperage Rum 199 6/8/17 

175258 River Drive Cooperage Vanilla Extract 199 6/8/17 

175262 River Drive Cooperage Maple Syrup 199 6/8/17 

175263 River Drive Cooperage Maple Syrup 199 6/8/17 

175271 River Drive Cooperage Maple Syrup 199 6/8/17 

175289 River Drive Cooperage Maple Syrup 199 6/8/17 

175323 River Drive Cooperage Maple Syrup 199 6/8/17 

175332 River Drive Cooperage Maple Syrup 199 6/8/17 

175380 River Drive Cooperage Rum 199 6/8/17 

175401 River Drive Cooperage Rum 199 6/8/17 

175340 River Drive Cooperage Sherry 223 6/12/17 

175361 River Drive Cooperage Port 223 6/12/17 

175339 River Drive Cooperage Sherry 223 6/12/17 

175352 River Drive Cooperage Sherry 223 6/12/17 

175357 River Drive Cooperage Cognac 223 6/12/17 

175386 River Drive Cooperage Rum 199 6/12/17 

175396 River Drive Cooperage Rum 199 6/12/17 

175397 River Drive Cooperage Rum 199 6/12/17 



 

 

 

110 

 

Appenix A2 (continued) Barrel ID number, Origins, volume and fill date of Beer 2 barrels 

allocated for sampling 

Origin Origin Origin Origin Origin 

175411 River Drive Cooperage Rum 199 6/12/17 

175424 River Drive Cooperage Rum 199 6/12/17 

175437 Great Lakes Bourbon Bourbon Whisky 199 6/13/17 

175460 Great Lakes Bourbon Bourbon Whisky 199 6/13/17 

175473 Great Lakes Bourbon Bourbon Whisky 199 6/13/17 

175477 Great Lakes Bourbon Bourbon Whisky 199 6/13/17 

176192 Great Lakes Bourbon Bourbon Whisky 199 6/13/17 

175430 Santa Ynez BR Cognac 223 6/14/17 

175710 Bendistillery Black Butte Whisky 199 6/14/17 

175467 Great Lakes Bourbon Bourbon Whisky 199 6/14/17 

175442 Great Lakes Bourbon Bourbon Whisky 199 6/14/17 

175454 Great Lakes Bourbon Bourbon Whisky 199 6/14/17 

175469 Great Lakes Bourbon Bourbon Whisky 199 6/14/17 

175628 Great Lakes Bourbon Bourbon Whisky 199 6/14/17 

175637 Great Lakes Bourbon Bourbon Whisky 199 6/14/17 

175677 Great Lakes Bourbon Bourbon Whisky 199 6/14/17 

176198 Great Lakes Bourbon Bourbon Whisky 199 6/14/17 

175538 Great Lakes Bourbon Bourbon Whisky 199 6/15/17 

175496 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175547 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175550 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175554 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175492 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175514 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175521 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175526 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175555 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175574 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

175578 Great Lakes Bourbon Bourbon Whisky 199 6/28/17 

 

Appendix A3. Total colony forming unit (CFU) data in singlet. 

  LMDA + Cycloheximide  YPD + Chloramphenicol 

Barrel 

Fill 

Year 

Avg Time 

Point 1 (Log 

cfu/ml) 

Avg Time 

Point 3 (Log 

cfu/ml)  

Avg Time Point 

1 (Log cfu/ml) 

Avg Time 

Point 3 (Log 

cfu/ml) 

131453 2013 3.8 < LQL*  < LQL < LQL 

131461 2013 < LQL < LQL  < LQL < LQL 

131468 2013 < LQL --  < LQL -- 

131480 2013 4.1 2.7  < LQL 2.4 



 

 

 

111 

 

Appendix A3. (continued). Total colony forming unit (CFU) data in singlet  

  LMDA + Cycloheximide  YPD + Chloramphenicol 

Barrel 

Fill 

Year 

Avg Time 

Point 1 (Log 

cfu/ml) 

Avg Time 

Point 3 (Log 

cfu/ml)  
Avg Time Point 

1 (Log cfu/ml) 

Avg Time 

Point 3 (Log 

cfu/ml) 

131483 2013 4.0 2.6  3.6 < LQL 

131486 2013 2.6 < LQL  < LQL < LQL 

131488 2013 3.6 < LQL  3.7 < LQL 

131507 2013 < LQL < LQL  < LQL < LQL 

131520 2013 < LQL < LQL  3.2 < LQL 

131523 2013 < LQL < LQL  < LQL < LQL 

131529 2013 4.1 2.7  3.3 2.6 

131574 2013 < LQL 2.6  < LQL 2.4 

131576 2013 2.5 < LQL  < LQL < LQL 

131579 2013 3.7 < LQL  3.9 < LQL 

131586 2013 < LQL < LQL  < LQL < LQL 

131588 2013 < LQL < LQL  < LQL < LQL 

131597 2013 < LQL --*  < LQL -- 

131599 2013 < LQL --*  < LQL -- 

131650 2013 < LQL < LQL  1.9 < LQL 

131664 2013 3.0 3.3  2.9 3.1 

131665 2013 3.0 < LQL  2.7 3.3 

142770 2015 3.7 < LQL  < LQL 4.2 

142774 2015 < LQL --*  < LQL --* 

142787 2015 4.3 < LQL  4.0 4.3 

142790 2015 < LQL 3.4  < LQL 3.0 

142792 2015 3.1 < LQL  3.1 < LQL 

142794 2015 < LQL 2.4  < LQL 2.4 

142798 2015 3.6 4.1  < LQL < LQL 

142816 2015 4.2 3.3  4.3 2.9 

142817 2015 4.3 < LQL  4.3 < LQL 

142820 2015 3.6 4.0  3.7 < LQL 

142826 2015 3.8 < LQL  3.9 3.1 

142836 2015 4.2 < LQL  4.1 3.6 

142844 2015 4.1 --  4.1 --* 

142847 2015 3.1 < LQL  3.0 4.2 

142850 2015 4.2 3.8  4.1 3.6 

155124 2016 < LQL < LQL  3.4 < LQL 

155125 2016 4.9 < LQL  < LQL < LQL 

155130 2016 4.0 < LQL  3.8 4.8 

155134 2016 4.3 --*  < LQL -- 

155135 2016 4.3 < LQL  4.3 3.6 

155149 2016 4.2 4.1  4.2 3.8 

155157 2016 < LQL 4.9  < LQL 4.8 

155179 2016 < LQL 3.4  4.4 3.2 

155183 2016 4.1 < LQL  4.0 2.5 

155184 2016 3.9 3.6  4.2 3.5 

155185 2016 4.0 < LQL  4.3 < LQL 
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Appendix A3. (continued). Total colony forming unit (CFU) data in singlet  

  LMDA + Cycloheximide  YPD + Chloramphenicol 

Barrel 

Fill 

Year 

Avg Time 

Point 1 (Log 

cfu/ml) 

Avg Time 

Point 3 (Log 

cfu/ml)  
Avg Time Point 

1 (Log cfu/ml) 

Avg Time 

Point 3 (Log 

cfu/ml) 

155188 2016 3.4 3.3  < LQL 3.0 

(--) barrels missing at this sample time point. (*) Lower Quantitation Limit, Log(10) 2.4 

CFU/ml 

 

Appendix A4. Triplicate extraction runs performed on 24-hour single-strain liquid cultures of 

Saccharomyces cerevisiae (Y 1- 3) and Pediococcus spp. (B1-3). DNA extraction 

concentrations of BeadRuptor 24 method vs. Vortex method. SpectraMax® Quant™ 

AccuClear™ Nano dsDNA Assay Kit used for DNA quantification. 

 BeadRuptor24  Vortex 

Replicate: Response ng/µl  Response ng/µl 

Y1 2788.54 51.63  551.779 9.55 

Y2 3065.842 56.85  324.284 5.27 

Y3 3979.978 74.04  355.05 5.85 

 60.84 ±9.58  6.89±1.90 

B1 2365.418 43.67  918.143 16.44 

B2 2703.475 50.03  1383.078 25.19 

B3 2609.405 48.26  860.723 15.36 

 47.32±2.68  19.00±4.40 

 

 

Appendix A5. Complete list of fungal OTUs detected in Beer 1, their maximum relative 

abundance, mean relative abundance and rate of occurrence (No.) at greater than 0.1% out 

of 21 samples.  

OTU ID Maximum  Median Mean No.  > 0.1% 

Cladosporium ramotenellum 0.017 0.000 0.001333 3 

Aureobasidium pullulans 0.017 0.000 0.001429 4 

Penicillium roqueforti 0.005 0.000 0.000238 1 

Metschnikowia chrysoperlae 0.026 0.000 0.001571 2 

Metschnikowia pulcherrima 0.017 0.000 0.001619 4 

Wickerhamomyces anomalus 0.197 0.000 0.011143 6 

Pichiaceae unclassified 0.007 0.000 0.000905 7 

Dekkera anomala 0.132 0.003 0.013381 15 

Dekkera bruxellensis 0.992 0.430 0.51319 21 

Lachancea fermentati 0.022 0.000 0.001286 3 

Saccharomyces bayanus 0.006 0.000 0.000714 5 

Saccharomyces cerevisiae 0.975 0.485 0.429 21 

Zygosaccharomyces parabailii 0.001 0.000 4.76e-05 1 
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Appendix A5. (continued) Complete list of fungal OTUs detected in Beer 1, their 

maximum relative abundance, mean relative abundance and rate of occurrence (No.) at 

greater than 0.1% out of 21 samples. 

OTU ID Maximum  Median Mean No. > 0.1% 

Starmerella;s  unidentified 0.029 0.000 0.001619 5 

Hanseniaspora uvarum 0.039 0.000 0.003667 7 

Saccharomycetales unclassified 0.002 0.000 0.000143 2 

Saccharomycetales unclassified 0.008 0.000 0.000619 4 

Ascomycota unclassified 0.017 0.000 0.001333 4 

Malassezia restricta 0.006 0.000 0.000333 2 

Sporobolomyces roseus 0.056 0.000 0.002667 1 

Cryptococcus neoformans 0.214 0.001 0.013762 12 

 

 

Appendix A6. Complete list of bacterial OTUs detected in Beer 1, their maximum relative 

abundance, mean relative abundance and rate of occurrence (No.) at greater than 0.1% out 

of 21 samples. 

OTU ID Maximum Mean Mean No. > 0.1% 

Unassigned 0.032 0.0016 0.002 2 

Streptophyta 0.091 0.0044 0.004 1 

Bacillus 0.006 0.0013 0.001 7 

Geobacillus 0.310 0.0232 0.023 2 

Listeriaceae;Other 0.004 0.0004 0.000 3 

Staphylococcus 0.073 0.0040 0.004 4 

Enterococcaceae 0.001 0.0002 0.000 2 

Lactobacillaceae 0.885 0.3306 0.331 16 

Lactobacillus 0.777 0.1304 0.130 17 

Acetobacteraceae 0.018 0.0033 0.003 10 

Acetobacter 0.114 0.0235 0.024 13 

Gluconacetobacter 0.139 0.0353 0.035 11 

Sphingobium 0.054 0.0026 0.003 1 

Enterobacteriaceae (Other) 0.003 0.0007 0.001 6 

Enterobacteriaceae 0.986 0.4324 0.432 20 

Enterobacter 0.004 0.0008 0.001 7 

Erwinia 0.016 0.0052 0.005 16 
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Appendix A7: Full heatmap version of Figure 4.7 
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Appendix A8. Complete list of Fungal OTUs detected in Beer 2, their maximum relative 

abundance, mean relative abundance and rate of occurrence (No.) at greater than 0.1% out 

of 168 samples. 

OTU ID Maximum Median Mean No.  > 0.1% 

Fungi unclassified 0.033 0.000 2.976E-04 6 

Cladosporium unclassified 0.020 0.000 1.786E-04 7 

Cladosporium delicatulum 0.015 0.000 3.988E-04 29 

Cladosporium ramotenellum 0.012 0.000 4.464E-04 27 

Mycosphaerella tassiana 0.041 0.000 4.702E-04 13 

Ramularia eucalypti 0.002 0.000 1.190E-05 1 

Aureobasidium pullulans 0.449 0.000 3.881E-03 46 

Didymellaceae unclassified 0.013 0.000 8.333E-05 2 

Epicoccum nigrum 0.006 0.000 5.952E-05 5 

Neoascochyta desmazieri 0.002 0.000 1.190E-05 1 

Alternaria unclassified 0.039 0.000 2.500E-04 4 

Aspergillus restrictus 0.001 0.000 5.952E-06 1 

Aspergillus sydowii 0.019 0.000 5.060E-04 15 

Penicillium corylophilum 0.234 0.000 2.935E-03 4 

Penicillium roqueforti 0.008 0.000 8.929E-05 4 

Crocicreas 0.003 0.000 1.786E-05 1 

Phacidium unclassified 0.033 0.000 1.964E-04 1 

Meyerozyma guilliermondii 0.007 0.000 4.762E-05 2 

Clavispora lusitaniae 0.002 0.000 2.381E-05 3 

Metschnikowia unclassified 0.008 0.000 5.595E-04 37 

Metschnikowia chrysoperlae 0.031 0.000 2.226E-03 64 

Metschnikowia pulcherrima 0.019 0.000 8.571E-04 27 

Metschnikowia;s  unidentified 0.014 0.000 4.464E-04 23 

Wickerhamomyces anomalus 0.192 0.000 1.357E-03 9 

Pichiaceae unclassified 0.001 0.000 5.952E-06 1 

Dekkera unclassified 0.002 0.000 6.548E-05 9 

Dekkera anomala 0.569 0.002 2.610E-02 103 

Dekkera bruxellensis 1.000 0.834 6.256E-01 165 

Dekkera custersiana 0.870 0.000 1.402E-02 26 

Kregervanrija fluxuum 0.001 0.000 1.190E-05 2 

Pichia kluyveri 0.003 0.000 9.524E-05 10 

Pichia membranifaciens 0.674 0.000 1.057E-02 37 

Issatchenkia orientalis 0.265 0.000 1.738E-03 8 

Kluyveromyces marxianus 0.002 0.000 3.571E-05 4 

Lachancea fermentati 0.103 0.000 2.280E-03 33 

Lachancea quebecensis 0.008 0.000 1.548E-04 11 
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Appendix A8. (continued) Complete list of Fungal OTUs detected in Beer 2, their 

maximum relative abundance, mean relative abundance and rate of occurrence (No.) at 

greater than 0.1% out of 168 samples. 

OTU ID Maximum Median Mean No.  > 0.1% 

Naumovozyma baii 0.001 0.000 5.952E-06 1 

Saccharomyces bayanus 0.025 0.000 5.238E-04 25 

Saccharomyces cerevisiae 0.994 0.010 1.908E-01 145 

Torulaspora delbrueckii 0.048 0.000 5.952E-04 17 

Torulaspora indica 0.012 0.000 7.143E-05 1 

Zygosaccharomyces bailii 0.013 0.000 4.345E-04 22 

Zygosaccharomyces bisporus 0.008 0.000 3.452E-04 18 

Zygosaccharomyces kombuchaensis 0.002 0.000 5.357E-05 7 

Zygosaccharomyces parabailii 0.007 0.000 1.131E-04 7 

Zygosaccharomyces rouxii 0.015 0.000 8.929E-05 1 

Candida parapsilosis 0.002 0.000 1.190E-05 1 

Starmerella;s  unidentified 0.084 0.000 5.054E-03 53 

Hanseniaspora uvarum 0.041 0.000 2.363E-03 47 

Hanseniaspora valbyensis 0.015 0.000 2.917E-04 14 

Saccharomycetales unclassified 0.067 0.001 4.351E-03 91 

Schizosaccharomyces pombe 0.004 0.000 1.131E-04 9 

Beauveria unidentified 0.010 0.000 5.952E-05 1 

Myrmecridium phragmitis 0.008 0.000 4.762E-05 1 

Taphrina carpini 0.003 0.000 1.786E-05 1 

Taphrinomycetes 0.032 0.000 1.905E-04 1 

Symbiotaphrina buchneri 0.045 0.000 2.917E-04 3 

Ascomycota unclassified 0.485 0.001 6.107E-03 87 

Agaricomycetes unclassified 0.002 0.000 1.190E-05 1 

Galerina triscopa 0.002 0.000 1.190E-05 1 

Agaricales 0.027 0.000 1.786E-04 2 

Corticium unidentified 0.001 0.000 5.952E-06 1 

Tubulicrinis glebulosus 0.001 0.000 5.952E-06 1 

Trametes versicolor 0.010 0.000 1.190E-04 5 

Ceriporia lacerata 0.026 0.000 1.548E-04 1 

Phlebia radiata 0.084 0.000 9.048E-04 3 

Polyporus tubaeformis 0.020 0.000 1.190E-04 1 

Heterobasidion abietinum 0.005 0.000 2.976E-05 1 

Stereum hirsutum 0.023 0.000 1.369E-04 1 

Pseudomicrostroma phylloplanum 0.002 0.000 5.952E-05 8 

Malassezia globosa 0.031 0.000 1.845E-04 1 

Malassezia restricta 0.008 0.000 2.976E-04 18 

Rhodotorula mucilaginosa 0.005 0.000 5.952E-05 5 

Sporobolomyces roseus 0.058 0.000 3.452E-04 1 

Sporobolomyces ruberrimus 0.010 0.000 9.524E-05 4 
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Appendix A8. (continued) Complete list of Fungal OTUs detected in Beer 2, their 

maximum relative abundance, mean relative abundance and rate of occurrence (No.) at 

greater than 0.1% out of 168 samples. 

OTU ID Maximum Median Mean 

Occurrence 

at > 0.1% 

Cystofilobasidium ferigula 0.001 0.000 5.952E-06 1 

Cystofilobasidium infirmominiatum 0.002 0.000 1.190E-05 1 

Guehomyces pullulans 0.021 0.000 1.250E-04 1 

Filobasidium chernovii 0.037 0.000 2.619E-04 5 

Filobasidium wieringae 0.019 0.000 1.429E-04 4 

Piskurozyma capsuligena 0.001 0.000 1.190E-05 2 

Vishniacozyma victoriae 0.003 0.000 9.524E-05 11 

Cryptococcus saitoi 0.001 0.000 5.952E-06 1 

Cryptococcus neoformans 0.790 0.006 8.719E-02 130 

Wallemia muriae 0.049 0.000 1.149E-03 8 

Mucor circinelloides 0.041 0.000 2.560E-04 3 

 

Appendix A9. Sanger sequencing identification of randomized Beer 2 yeast isolates. 
Sample 

ID Sample ID 

Fill 

Year Media Species Accession 

Query 

Cover %Identity 

01 170810-01 2013 LMDA D. bruxellensis KY103320.1 99% 99% 

02 170810-06 2013 YPD D. bruxellensis KY103319.1 98% 100% 

03 170810-07 2013 Lysine D. bruxellensis KY103320.1 99% 99% 

04 170810-10 2013 YPD D. bruxellensis KY103320.1 99% 99% 

05 170810-13 2013 LMDA D. bruxellensis KY103319.1 97% 100% 

06 180228-01 2013 LMDA D. bruxellensis KY103319.1 100% 100% 

07 180228-01 2013 LMDA D. bruxellensis KY103319.1 99% 100% 

08 180228-16 2013 LMDA D. bruxellensis KY103319.1 99% 100% 

09 180228-17 2013 LMDA D. bruxellensis KY103319.1 98% 100% 

10 180228-17 2013 LMDA D. bruxellensis KY103319.1 99% 100% 

11 180228-18 2013 LMDA D. bruxellensis KY103319.1 99% 100% 

12 180228-18 2013 LMDA D. bruxellensis KY103319.1 97% 100% 

13 170810-23 2015 Lysine D. bruxellensis KY103319.1 97% 100% 

14 170810-23 2015 YPD D. bruxellensis KY103319.1 97% 100% 

15 170810-28 2015 LMDA D. bruxellensis KY103319.1 99% 99% 

16 170810-28 2015 Lysine D. bruxellensis KY103319.1 100% 100% 

17 170810-29 2015 Lysine D. bruxellensis KY103321.1 98% 99% 

18 170810-31 2015 LMDA D. bruxellensis KY103319.1 99% 100% 

19 170810-31 2015 YPD D. bruxellensis KY103319.1 97% 100% 

20 180228-27 2015 LMDA D. bruxellensis KY103319.1 98% 100% 

21 180228-27 2015 LMDA D. bruxellensis KY103319.1 97% 100% 

22 180228-27 2015 LMDA D. bruxellensis KY103319.1 99% 99% 
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Appendix A9. (continued)Sanger sequencing identification of randomized Beer 2 yeast 

isolates. 
Sample 

ID Sample ID 

Fill 

Year Media Species Accession 

Query 

Cover %Identity 

23 180228-27 2015 LMDA D. bruxellensis KY103319.1 99% 99% 

24 180228-27 2015 LMDA D. bruxellensis KY103320.1 98% 99% 

25 180228-28 2015 LMDA D. bruxellensis KY103319.1 99% 100% 

26 180228-29 2015 LMDA D. bruxellensis KY103319.1 98% 99% 

27 180228-30 2015 LMDA D. bruxellensis KY103319.1 98% 99% 

28 180228-30 2015 LMDA D. bruxellensis KY103319.1 100% 100% 

29 170810-16 2016 LMDA D. bruxellensis KY103319.1 100% 100% 

30 170810-17 2016 LMDA D. bruxellensis KY103319.1 99% 100% 

31 170810-17 2016 Lysine 

P. 

membranifaciens KY104622.1 100% 92% 

32 170810-17 2016 YPD D. bruxellensis KY103319.1 98% 100% 

33 170810-17 2016 YPD D. bruxellensis KY103320.1 99% 99% 

34 170810-19 2016 YPD D. bruxellensis KY103319.1 97% 100% 

35 170810-20 2016 YPD D. bruxellensis KY103320.1 99% 99% 

36 170810-20 2016 YPD D. bruxellensis JQ327829.1 97% 99% 

37 170810-21 2016 LMDA D. bruxellensis KY103319.1 99% 100% 

38 180228-32 2016 LMDA D. bruxellensis KY103319.1 97% 99% 

39 180228-32 2016 LMDA D. bruxellensis KY103319.1 97% 99% 

40 180228-33 2016 LMDA D. bruxellensis KY103319.1 100% 100% 

41 180228-33 2016 LMDA D. bruxellensis KY103319.1 98% 100% 

42 180228-42 2016 LMDA D. bruxellensis KY103319.1 97% 100% 

43 180228-42 2016 LMDA D. bruxellensis KY103319.1 97% 99% 

44 170810-18 2016 Lysine Too short, no significant similarity found 

45 PCR Control  S. cerevisiae MH380196.1 99% 99% 

 

Appendix A10. Complete list of bacterial OTUs detected in Beer 2, their maximum relative 

abundance, mean relative abundance and rate of occurrence (No.) at greater than 0.1% out of 

70 samples. 

OTU ID Maximum Median Mean No. > 0.1% 

Acidobacteria 0.006 0.000 8.571E-05 1 

Corynebacterium 0.084 0.000 3.043E-03 16 

Dermacoccus 0.003 0.000 4.286E-05 1 

Geodermatophilaceae 0.010 0.000 1.429E-04 1 

Agrococcus 0.006 0.000 8.571E-05 1 

Micrococcaceae 0.006 0.000 8.571E-05 1 

Arthrobacter 0.001 0.000 1.429E-05 1 

Propionibacterium 0.032 0.000 1.629E-03 14 

Parabacteroides 0.011 0.000 1.571E-04 1 
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Prevotella 0.007 0.000 1.000E-04 1 

Appendix A10. (continued) Complete list of bacterial OTUs detected in Beer 2, their 

maximum relative abundance, mean relative abundance and rate of occurrence (No.) at 

greater than 0.1% out of 70 samples. 

OTU ID Maximum Median Mean No.  > 0.1% 

Hymenobacter 0.001 0.000 1.429E-05 1 

Ornithobacterium 0.029 0.000 4.143E-04 1 

Chloroflexi, Ellin6529 0.015 0.000 2.143E-04 1 

Cyanobacteria 0.005 0.000 1.143E-04 2 

Streptophyta 0.067 0.000 1.800E-03 5 

Anoxybacillus 0.001 0.000 1.429E-05 1 

Bacillus 0.223 0.000 8.443E-03 26 

Geobacillus 0.131 0.001 1.679E-02 38 

Virgibacillus 0.024 0.000 3.429E-04 1 

Listeriaceae 0.159 0.000 3.429E-03 20 

Planococcaceae 0.012 0.000 2.286E-04 4 

Sporolactobacillus 0.010 0.000 1.429E-04 1 

Staphylococcus 0.067 0.000 4.471E-03 26 

Lactobacillales 0.001 0.000 1.429E-05 1 

Facklamia 0.001 0.000 1.429E-05 1 

Enterococcus 0.102 0.000 3.571E-03 23 

Lactobacillus 0.999 0.003 1.249E-01 49 

Lactococcus 0.286 0.000 1.309E-02 17 

Streptococcus 0.047 0.000 2.300E-03 15 

Clostridium 0.461 0.000 3.010E-02 15 

Thermoanaerobacterium 0.067 0.000 9.857E-04 2 

Caldicellulosiruptor 0.032 0.000 7.429E-04 5 

Thermoanaerobacteraceae 0.008 0.000 2.857E-04 5 

Thermoanaerobacter 0.026 0.000 4.143E-04 2 

Caulobacter 0.026 0.000 3.714E-04 1 

Mycoplana 0.002 0.000 7.143E-05 3 

Bradyrhizobiaceae 0.017 0.000 3.571E-04 4 

Methylobacteriaceae 0.014 0.000 4.143E-04 3 

Paracoccus 0.017 0.000 4.429E-04 3 

Acetobacteraceae 0.216 0.000 1.040E-02 33 

Acetobacteraceae 0.054 0.000 6.800E-03 31 

Acetobacter 1.000 0.857 6.328E-01 70 

Gluconacetobacter 0.612 0.000 4.630E-02 16 

Gluconobacter 0.004 0.000 1.000E-04 2 

Rhodospirillaceae 0.048 0.000 6.857E-04 1 

mitochondria 0.028 0.000 4.429E-04 2 

Novosphingobium 0.065 0.000 1.200E-03 4 
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Appendix A10. (continued) Complete list of bacterial OTUs detected in Beer 2, their 

maximum relative abundance, mean relative abundance and rate of occurrence (No.) at 

greater than 0.1% out of 70 samples.. 

OTU ID Maximum Median Mean No.  > 0.1% 

Sphingobium 0.210 0.001 2.064E-02 36 

Sphingomonas 0.071 0.000 3.043E-03 14 

Sphingopyxis 0.058 0.000 1.143E-03 2 

Burkholderia 0.005 0.000 1.286E-04 3 

Comamonadaceae 0.001 0.000 1.429E-05 1 

Comamonadaceae 0.017 0.000 4.286E-04 4 

Delftia 0.002 0.000 2.857E-05 1 

Tepidimonas 0.004 0.000 5.714E-05 1 

Oxalobacteraceae 0.009 0.000 1.714E-04 4 

Oxalobacteraceae 0.033 0.000 8.143E-04 6 

Ralstonia 0.708 0.000 3.603E-02 19 

Neisseriaceae 0.039 0.000 1.029E-03 3 

Neisseria 0.004 0.000 5.714E-05 1 

Vogesella 0.006 0.000 1.714E-04 2 

Dechloromonas 0.006 0.000 1.714E-04 3 

Myxococcales 0.011 0.000 1.571E-04 1 

Myxococcales 0.021 0.000 3.571E-04 2 

Enterobacteriaceae 0.020 0.000 4.857E-04 7 

Enterobacteriaceae 0.066 0.000 2.000E-03 19 

Haemophilus 0.003 0.000 1.143E-04 4 

Acinetobacter 0.074 0.000 1.686E-03 9 

Enhydrobacter 0.022 0.000 3.286E-04 2 

Moraxella 0.008 0.000 2.714E-04 4 

Pseudomonas 0.041 0.000 1.343E-03 5 

Opitutus 0.006 0.000 8.571E-05 1 

Deinococcus 0.085 0.000 3.529E-03 16 

Meiothermus 0.031 0.000 1.343E-03 13 

Thermus 0.142 0.000 5.800E-03 26 
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Appendix A11. Sanger sequencing identification of all Beer 2 bacterial isolates. 
Sanger 

ID Sample ID Media 

Fill 

Year Species Accession 

Query 

Cover %Ident 

01 170810-01 LMDA 2013 Staphylococcus capitis FJ380955.1 100% 100% 

02 170810-01 LMDA 2013 

Staphylococcus 

epidermidis KU922146.1 100% 99% 

03 170810-23 LMDA 2015 

Staphylococcus 

epidermidis MH732996.1 100% 100% 

04 170810-23 Lysine 2015 Bacillus velezensis MH373544.1 100% 99% 

05 170810-23 YPD 2015 Bacillus subtilis KT945024.1 100% 99% 

06 170810-32 LMDA 2015 

Staphylococcus 

epidermidis KU922146.1 100% 99% 

07 170810-32 Lysine 2015 Bacillus subtilis KY515422.1 100% 99% 

08 180228-31 LMDA 2015 

Acetobacter 

pasteurianus HM357879.1 100% 99% 

09 180228-32 LMDA 2015 Acetobacter fabarum MH633719.1 100% 99% 

10 180228-32 LMDA 2015 Acetobacter fabarum KX150620.1 100% 100% 

11 180228-32 LMDA 2015 Acetobacter fabarum MH549126.1 100% 99% 

12 180228-32 YPD 2015 Acetobacter fabarum MH633719.1 100% 99% 

13 180228-32 YPD 2015 Acetobacter fabarum MH549126.1 100% 99% 

14 180228-34 LMDA 2015 Acetobacter malorum MH424758.1 100% 99% 

15 180228-34 LMDA 2015 Acetobacter malorum MH424758.1 100% 99% 

16 180228-34 LMDA 2015 Acetobacter malorum FJ157243.1 100% 100% 

17 180228-34 LMDA 2015 Acetobacter malorum KX131150.1 99% 99% 

18 180228-34 YPD 2015 Acetobacter pomorum CP023189.1 100% 99% 

19 170810-16 YPD 2016 Acetobacter pomorum CP023189.1 100% 99% 

20 170810-17 Lysine 2016 Acetobacter pomorum CP023189.1 100% 99% 

21 170810-18 LMDA 2016 

Acetobacter 

pasteurianus MF179549.1 100% 99% 

22 170810-18 LMDA 2016 

Acetobacter 

pasteurianus HM357879.1 100% 99% 

23 170810-18 LMDA 2016 Acetobacter pomorum CP023189.1 100% 100% 

24 170810-18 Lysine 2016 

Staphylococcus 

epidermidis KU922146.1 99% 99% 

25 170810-18 Lysine 2016 Acetobacter pomorum CP023189.1 100% 99% 

26 170810-18 Lysine 2016 Acetobacter pomorum CP023189.1 100% 100% 

27 170810-18 YPD 2016 Acetobacter pomorum CP023189.1 100% 99% 

28 170810-18 YPD 2016 Acetobacter pomorum CP023189.1 100% 99% 

29 170810-18 YPD 2016 

Acetobacter 

pasteurianus MF179549.1 100% 99% 

30 170810-18 YPD 2016 Acetobacter pomorum CP023189.1 100% 100% 

31 170810-18 YPD 2016 

Acetobacter 

pasteurianus MF179549.1 100% 100% 

32 170810-19 YPD 2016 Acetobacter pomorum CP023189.1 100% 100% 

33 170810-20 Lysine 2016 Staphylococcus capitis KT719458.1 100% 99% 

34 PCR Control  Acetobacter aceti  CP014692.1 100% 100% 
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Appendix A12. Full heatmap of fungal OTUs at greater than 0.1% abundance in Beer 3 clustered 

according to overall microbiome similarity and barrel type. 

 


