Timing of Volcanism in Central Oregon: Dating Tam McArthur Rim Volcano

by Katherine Landoni

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of the requirements for the degree of

Honors Baccalaureate of Science in Earth Sciences with a concentration in Geology (Honors Scholar)

Honors Baccalaureate of Science in Environmental Sciences (Honors Scholar)

Presented May 31, 2019 Commencement June 2019

AN ABSTRACT OF THE THESIS OF

Katherine Landoni for the degree of <u>Honors Baccalaureate of Science in Earth Sciences with</u> <u>a concentration in Geology</u> and <u>Honors Baccalaureate of Science in Environmental Sciences</u> presented on May 31, 2019. Title: <u>Timing of Volcanism in Central Oregon: Dating Tam</u> <u>McArthur Rim Volcano.</u>

Abstract approved:_____

Adam Kent

The Tam McArthur Rim is a volcanic center located within the Tumalo Volcanic Field (TVF), approximately 25 km west of Bend, OR. The rim comprises of shallowly dipping bedded sequences of intermediate and silicic flows with minor tephra interbedding capped by a rhyodacite dome. Glacial activity has exposed significant portions of the flow stratigraphy.

In this study we present new geochronology, petrography, mineral chemistry, and whole rock geochemistry of lava flows from the Tam McArthur Rim. Flow compositions vary significantly, ranging from basaltic andesites to trachyrhyolites. Some flows are aphyric with trachytic flow textures while others are crystal rich, lacking flow textures. Bulk rock geochemistry indicates that these rocks follow a more tholeiitic differentiation trend than typical arc rocks, implying the melt mechanism is not primarily from the introduction of water. Tholeiitic rocks in this geologic setting, like the High Lava Plains of Oregon, are likely due to corner flow of the mantle along the subducting Juan de Fuca plate slab causing decompression melting.

We provide new ⁴⁰Ar/³⁹Ar geochronology which shows lower portions of the rim are ~185 ka, suggesting volcanism is younger than a previous K-Ar age. The new age data also suggest the Tam McArthur edifice was constructed relatively

quickly, likely within a ~10 ka period. Constraining the timing of past volcanism associated with the TVF provides insights into potential future hazards, allowing for awareness and implementation of informed hazard mitigation strategies within Central Oregon communities.

Key Words: ⁴⁰Ar/³⁹Ar Geochronology, Tam McArthur Rim, Tumalo Volcanic Center, Cascade Volcano, geochemistry

Corresponding e-mail address: Landonik@oregonstate.edu

©Copyright by Katherine Landoni May 31, 2019

Timing of Volcanism in Central Oregon: Dating Tam McArthur Rim Volcano

by Katherine Landoni

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of the requirements for the degree of

Honors Baccalaureate of Science in Earth Sciences with a concentration in Geology (Honors Scholar)

Honors Baccalaureate of Science in Environmental Sciences (Honors Scholar)

Presented May 31, 2019 Commencement June 2019 <u>Honors Baccalaureate of Science in Earth Sciences: Geology</u> and <u>Honors Baccalaureate of</u> <u>Science in Environmental Science</u> project of Katherine Landoni presented on May 31, 2019.

APPROVED:

Adam Kent, Mentor, representing Geology Department

Robert Duncan, Committee Member, representing Geology Department

Nicole Rocco, Committee Member, representing Geology Department

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of Oregon State University, Honors College. My signature below authorizes release of my project to any reader upon request.

Katherine Landoni, Author

Table of Content

Preface	2
Womxn in Geosciences	2
References for Womxn in Geosciences	4
Introduction	5
Objective	8
Analytical Methods	8
Geochemistry	8
⁴⁰ Ar/ ³⁹ Ar	8
Petrographic	9
Electron Microprobe	10
Results	10
Field	10
⁴⁰ Ar/ ³⁹ Ar Ages	13
Geochemistry	14
Petrography	17
Electron Microprobe	22
Discussion	25
Field Relations	25
Ages	26
Bulk Rock Geochemistry	27
Mineral Chemistry	29
Conclusions	31
References	32
Appendix	33

1

Preface

Womxn in Geosciences

*Womxn used in this context includes people who are non-binary and women of color.

According to an AGU news report (Wendel, 2015), about 40% of undergraduates in geology are female. However, there is a dramatic decrease in post-academic careers, mostly occurring during choice of undergraduate major and then between PhD and an academic position (figure i) (Holmes et al., 2008). Oregon State University's geosciences program is no different. Womxn¹ are abundant in the undergraduate and even graduate communities. However, faculty is male dominated. According to Wendel, this dichotomy could be due to a time lag where womxn have not yet filtered into higher academic roles. We cannot expect to see parity until "…every geoscience student can see someone on the faculty whose life they wish to emulate" (Wendel, 2015). I will be discussing mentorship and my experiences at Oregon State University as an undergraduate female in Geology.

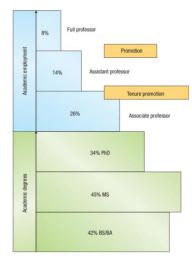


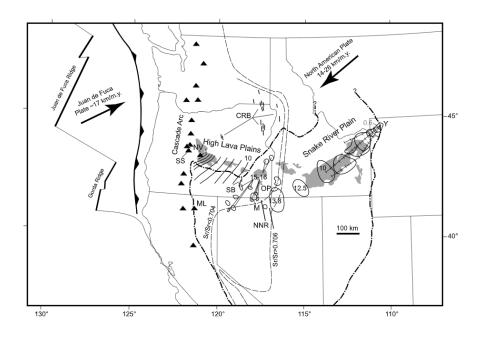
Figure i: Proportions of women in each academic rank of geosciences from the United States. Although the dropoff between the MS degree and PhD may reflect time lag, the drop off between PhD and assistant professor is real. Figure from (Holmes et al. 2008). Although this figure is relatively outdated, based on Wendel's interpretation, we still see a steep drop off of women in geosciences academic careers after undergraduate.

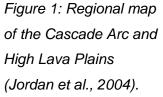
Mentoring female undergraduates is crucial for their success. Mentoring provides a window into the culture and norms of geosciences that may otherwise feel foreign. As a female undergraduate it is difficult to feel representation or discover appropriate role models when very few exist, especially those who emulate the life I wish to lead (Wendel, 2015). Although I had a hard time finding mentors who emulate the life I could someday lead in terms of faculty, I have been fortunate enough to find role models in another place, the geosciences graduate student community. I was paired with Jade Bowers in 2017 and Nicole Rocco in 2018 for the Academic Mentoring Program (AMP) through the College of Earth, Ocean, and Atmospheric Sciences (CEOAS). On the surface, this program matches an undergraduate with a graduate for a term so the undergraduate can gain knowledge about graduate school. Ultimately though, on a deeper level, the AMP program helped me kindle a relationship with a graduate student. Informally, womxn graduate teaching assistants have bolstered the mentorship from the graduate student community. These womxn graduate students have had big shoes to fill. By mentoring myself and other womxn undergraduates they potentially took on a load that their male counterparts did not.

From my general experience at Oregon State University, I have observed that womxn in CEOAS create a different atmosphere and community than men do. I have some anecdotes regarding how womxn provide a different community. I found, for example, that when I was taking a lab course, womxn teaching assistants were never purposefully trying to stump me. Instead, I would leave lab feeling as though the teaching assistant was rooting for me by showing excitement and providing resources as I learned new material.

Conversely, the lack of womxn in the laboratory settings was particularly challenging for me and proved to be a significant hurdle; admittedly, more of a hurdle than I was expecting. Most of the mineral preparation rooms and laboratories are predominantly run by men. I find that, broadly speaking, womxn take the time to explain *why* things work whereas men tend to just show *how* things work on a procedural level. My personal learning style relies heavily on the *why*, so I find learning laboratory techniques from womxn to be particularly helpful. Even if the womxn graduate students are not experts, I almost always feel more comfortable going to them for questions. In the laboratory settings I have worked in at Oregon State University, I felt out of place as a female and was definitely a minority.

A final anecdote on how womxn create a different atmosphere from my perspective at CEOAS is in regards to the course "Advanced Field Geology" (GEO 495), colloquially known as "big field camp". Field camp held some of the best and worst moments of my academic career thus far. I learned how to map under the brilliant, compassionate professor, John Dilles, who was aided by wonderful teaching assistants. I felt strong and empowered with the small group of womxn that I worked closely with as we made observations and conclusions about geologically complex areas. However, there were also some particularly challenging experiences. Several of my bright, younger womxn friends mentioned above and I were discriminated against more than I would have ever anticipated. We were doing particularly well on maps, cross-sections, and descriptions. Our cohort at field camp was dominated by older, ex-military males who had significantly different outlooks than we do. Some of these men found out that the younger womxn were receiving better grades on maps and assignments than they were. From that point forward we were verbally harassed, and our decisions about traverse objectives in the field were nullified. Oregon State brought no womxn teaching assistants. Fortunately, my small group of womxn was supportive and, despite the hardships, we gained so much from the academic and social experiences at field camp.


It would have been a disservice to my undergraduate degree to not include a section in my undergraduate thesis on womxn in geosciences because it has been such an integral part of my experience. Undergraduate womxn need more womxn mentors, period. Womxn graduate students take on this responsibility, but need help. This starts by hiring more womxn into upper-level academic positions. Let's start the dialogue about bringing more womxn, people of color, and LGBTQ+ people to geosciences. Not only do we want to create this dialogue, but we need to raise their voices and listen to them. My experiences as a womxn in geosciences have not made me cynical, but have rather have stoked my fire to incite change.


References for Womxn in Geosciences

Holmes, M. A., Oconnell, S., Frey, C., & Ongley, L. (2008). Gender imbalance in US geoscience academia. Nature Geoscience, 1(2), 79-82. doi:10.1038/ngeo113
Wendel, J. (2015), Working toward gender parity in the geosciences, Eos, 96, doi:10.1029/2015EO031573. Published on 17 June 2015.

Introduction

The Cascadia subduction zone on the West Coast of North America produces variable volcanism. The relatively young active volcanism in the Central Oregon segment is of particular interest because communities are nearby that are susceptible to volcanic hazards. The Three Sisters and Tumalo Volcanic Field, among other systems, present potential hazards to Bend, Sisters and other towns in Central Oregon. A key part of assessing hazards is understanding the ages and eruptive types of existing volcanism, but the high density of eruptive centers in Central Oregon means that there are many volcanic centers that have relatively poor age control. This study focuses on Tam McArthur Rim Volcano - a small shield volcano located northeast of Broken Top and South Sister. Dating Tam McArthur Rim Volcano provides crucial geochronological data that constrains timing of volcanism in this portion of the Central Oregon Cascades. Understanding timing of volcanism has implications for hazard planning in the communities of Central Oregon including Bend, a population center home to 95,000 people. Characterizing the timing of the Central Oregon volcanic activity is important in planning infrastructure and for community preparedness for volcanic hazards.

Some research exists on Tam McArthur Rim, but it is not extensive. Edward Taylor mapped this region in the late 1970's (figure 2) and continued research in the Tumalo Volcanic Field to understand eruptive history (Taylor, 1990). Brittain Hill continued Taylor's work for his dissertation at Oregon State University by acquiring geochemistry and ages for Tam McArthur Rim and surrounding areas (Hill, 1990, and Hill, 1991). In Hill's dissertation, he suggested volcanism shifted west from the Tumalo Volcanic Field to the Broken Top system and Tam McArthur Rim area from ~380 ka until ~100 ka (figure 3) (Hill, 1991). The Broken Top - Tumalo system rhyolites are from 30% to 50% melting of crustal tonalite from Cenozoic Cascadian arc rock and could not have been produced by fractional crystallization (Hill, 1991). These conclusions are based on ⁸⁷Sr/⁸⁶Sr data and REE depletion observations. During this time, Broken Top system rhyolites did not interact with the Three Sisters System. After ~100 ka the eruptive focus shifted from the Broken Top area, northwest to South Sister (figure 3).

Tam McArthur Rim topography was formed by Late Pleistocene glacial excavation leaving behind glacially carved cirques with steep headwalls currently filled by lakes (Taylor, 1978). The lakes that fill the cirques are Three Creek Lake and Little Three Creek Lake, both recreational destinations. From these lakes, an excellent cross-

Figure 2: Geologic map of Tam McArthur Rim (Taylor, 1978)

section of the shallow, local volcano's plumbing can be viewed. A rhyodacite dome rim caps underlying lavas at a height of 2,350m. Feeder dikes and lava flows are exposed below the dome. Previous mapping indicate lavas in the steep cliffs are basaltic andesite lavas, dacite lavas, and dacite dikes (Taylor, 1978).

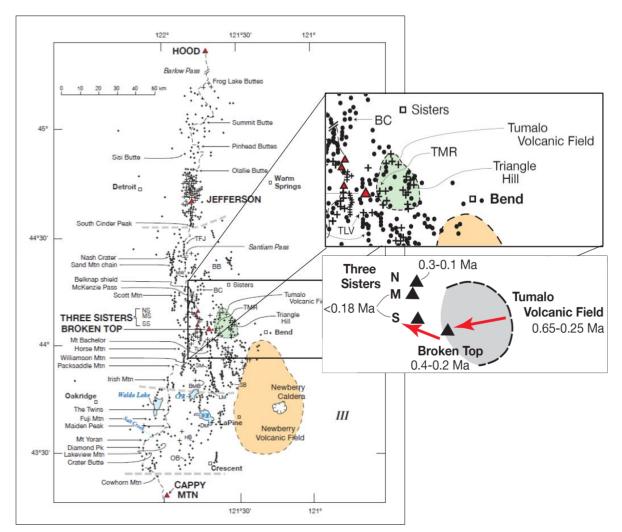


Figure 3: Regional map of the Central Oregon Cascade arcfront. The insert is of the Broken Top, Tumalo Volcanic Field, and Tam McArthur Rim area. Shifts of eruptive focus from the Tumalo Volcanic Field to South Sister. Dots represent volcanoes of basaltic to andesitic composition; crosses, those of dacitic to rhyolitic composition; and triangles, major edifices. Map adapted from (Hildreth, 2007).

Currently, there is a single, conventional K-Ar age for the rhyodacite dome at the top of the stratigraphic section at Tam McArthur Rim Volcano. The K-Ar age determined was 213 ± 9 ka (Hill, 1991) and is used to describe relative age relationships with lava from Broken Top's east flank (Sherrod et al., 2004). According to the dome age, Broken Top lavas underlying Tam McArthur Rim volcano were emplaced prior to 213 ± 9 ka (Sherrod et al., 2004). K-Ar ages can be unreliable and less precise because they

potentially do not account for excess argon at time of formation or argon loss during the time the rock has been exposed.

Objective

This study aims to update the ages for Tam McArthur Rim and underlying units using ⁴⁰Ar/³⁹Ar geochronology to ultimately aid in refining local stratigraphy. In addition to ages, this study aims to geochemically compare Tam McArthur Rim to nearby systems.

Analytical Methods

Tam McArthur Rim samples were collected in an attempt to contrast its ages and geochemistry to the nearby volcanism from Broken Top, South Sister, and Tumalo Volcanic Center. All samples were collected by Katherine Landoni and Adam Kent. Samples named "TMR-16-…" were collected in 2016 and samples named "TMR-18-…" were collected in 2018. To further understand the stratigraphy of the excavated volcano, we took panoramic photographs from the cirques, which revealed much of the volcano's stratigraphy.

Geochemistry

10 whole rock samples were analyzed for major and trace element geochemistry. TMR-16 samples were analyzed at Washington State University and TMR-18 samples were analyzed at Pomona College. These were analyzed using the X-ray fluorescence (XRF) method and trace elements were analyzed using an inductively coupled plasma source mass spectrometer (ICP-MS). This data can be found in the appendix and presented in the results.

⁴⁰Ar/³⁹Ar

A crucial part of this study was to refine the age of Tam McArthur Rim using ⁴⁰Ar/³⁹Ar geochronology. We selected three samples that characterize Tam McArthur Rim's south end lava flow stratigraphy. These samples are from a lower (TMR-16-01), a middle (TMR-16-02), and an upper (TMR-16-03) stratigraphic flow unit. I analyzed these three samples utilizing incremental heating ⁴⁰Ar/³⁹Ar (Koppers, 2002) techniques at Oregon State University's College of Earth, Ocean, and Atmospheric Sciences.

All three samples were analyzed using both Plagioclase and groundmass separates. To create separates, I crushed the hand samples. I sieved, separated, and cleaned the smaller size fractions. Plagioclase grain separates were collected by first separating them from magnetic particles using a Frantz. Cleaning samples required an leaching in 1 N HNO₃ to remove mild alteration followed by a rinse in water and drying in the oven. These were then leached in 1 N HF for 15 minutes to remove higher alteration rims on the plagioclase. Following leaching, samples were cleaned with deionized water in an ultrasonic bath and then thoroughly rinsed with deionized water. Finally, these were hand picked for purity under a microscope. Groundmass samples were separated by first leaching the samples in an ultrasonic bath in 1 N HNO₃ to remove mild alteration followed by a rinse in deionized water and drying in the oven. Next, the groundmass samples were hand picked under a microscope for purity. No HF leaching was used for the ground mass samples. TMR-16-02 did not produce enough pure plagioclase to further irradiate and subsequently date.

The separates of both plagioclase and ground mass, along with age monitors (Fish Canyon Tuff: 28.201 ± 0.133 Ma) were wrapped in copper foil and weighed. Their heights were measured and were sent to Oregon State University's TRIGA experimental reactor for irradiation. After irradiation, the samples were incrementally heated using a Merchantek integrated CO₂ laser until 100% of the cumulative ³⁹Ar was released. The released Ar was analyzed by a Thermo Scientific Model ARGUS VI multi-collector mass spectrometer. Data was analyzed in the lab using ArArCALC v2.2 (Koppers, 2002).

Petrographic

Thin sections were prepared and analyzed to understand the textures of the flows at a microscopic scale under a polarizing light microscope. I observed and characterized the textures and compositions. I photographed portions of the thin sections and completed bed scans. I determined different plagioclase size populations to analyze further with the electron microprobe.

Electron Microprobe

To characterize populations of plagioclase identified petrographically, thin sections were prepared, carbon coated, and cleaned. I acquired backscattered electron images using Oregon State University's Cameca SX-100 Electron Microprobe. To understand compositional stages, I analyzed three plagioclase populations. These three populations are relative (megacrysts, phenocrysts, and microlites) and were analyzed in samples TMR-16-01, TMR-18-04, TMR-18-08, and TMR-18-10. Microlites are defined in this study as small crystals found in the groundmass. Phenocrysts are defined as distinct from the groundmass. Megacrysts are defined as significantly larger than both the microlites and megacrysts.

The electron microprobe was calibrated to analyze plagioclase (i.e. Na, Si, Al, Fe, Ca, K, Mg, Ti, O) using the LABR standards. The beam had a diameter of 5µm with a 30 nA current.

Results

Field

The shallow dipping flanks of Tam McArthur Rim are comprised of flows that vary in composition (figure 9) from basaltic andesite to trachyte to rhyodacite at the uppermost dome. Flows vary from ~1 meter up to ~20 meters thick. In some areas flows are difficult to distinguish from each other laterally and commonly pinch out into each other (figure 6). These flows are locally interbedded with at least two thin pyroclastic units, have cross-cutting dikes, and at least one massive obsidian flow that acts as a marker bed. Based Taylor's mapping, this is the same material as the rhyodacite dome. It is referred to in the literature as a black glassy rhyodacite. In the central portion of the rim, a rhyodacite dome sits above the lava units (figures 9 and 10- point A).

Figure 4: Google Map plan view of all sample locations (top). Oblique views of sample locations (bottom). See appendix for latitudes, longitudes, and elevations of all samples.

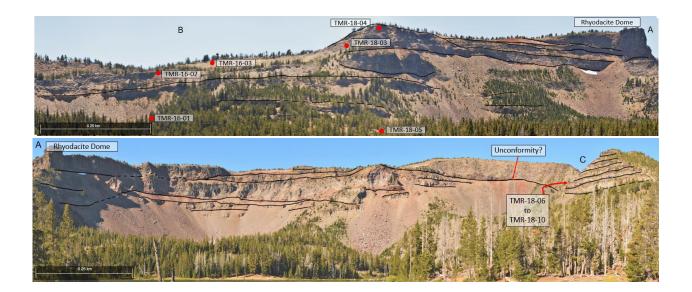


Figure 5: (previous page) Photo from Three Creek Lake (top) at the Southern cirque of TMR. The Rhyodacite dome (A) is at 44° 5' 34.24" N, 121° 38' 36.76" W. To the left are gently dipping flow units where TMR-16-01, TMR-16-02, and TMR-16-03 samples were collected for ⁴⁰Ar/³⁹Ar dating below "B".

Figure 6: (previous page)Photo from Little Three Creek Lake (bottom) of the Northern cirque of the TMR. To the left is the Rhyodacite dome (A), and the terminus of the TMR trail. To the right (C) is 44° 06' 0.14" N, 121° 39' 20.20" W, where the view of the majority of the TMR-18 suite of samples is blocked. Potential unconformity is labeled.



Figure 7: (left) Massive, thick andesite flow about 5 m tall with a horizontal platy basal layer. 1.65m human for scale. Location is C from figure 5. (middle) Horizontal platey fracturing of dike at sample location TMR-18-05 on figure 5. (Right) Massive, 1 meter thick obsidian flow. Location is TMR-18-09 from figure 6.

⁴⁰Ar/³⁹Ar Ages

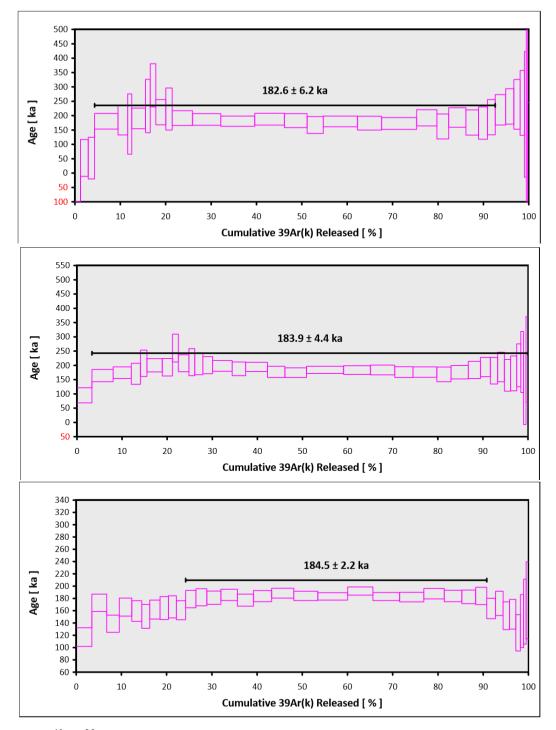


Figure 8: ⁴⁰Ar/³⁹Ar ages for TMR-16-01 (bottom), TMR-16-02 (middle), and TMR-16-03 (top). The stacking of these graphs represents their relative location in stratigraphy.

Sample ID	Total Fusion (ka)	2s error (Ka)	Isochron age (Ka)	2s error (Ka)	MSWD	40 Ar/36 Ar initial	2s error
TMR 16-03	178.6	±7.8	176.8	± 19.6	0.48	298.03	± 8.34
TMR 16-02	182.1	± 6.2 ka	194.2	± 13.4 ka	0.75	286.87	± 9.36
TMR 16-01	174.4	± 4.5 ka	187.9	± 19.2 ka	0.75	286.36	± 45.35

Sample ID	Plateau age (Ka)	2s error (Ka)	Ν	MSWD	Notes	
TMR 16-03	182.6	± 7.4 ka	33	0.48	40Ar loss at lower temperature and recoil in higher release steps.	
TMR 16-02	183.9	± 6.0 ka	34	0.85	40Ar loss at lowest temperature step and high point in plateau.	
TMR 16-01	184.5	± 4.7 ka	34	0.73	40Ar loss at lower temperature steps.	

Table 1: Total Fusion, Isochron, and Plateau ages and associated errors for groundmass separates from samples TMR-16-01, TMR-16-02, and TMR-16-03.

Geochemistry

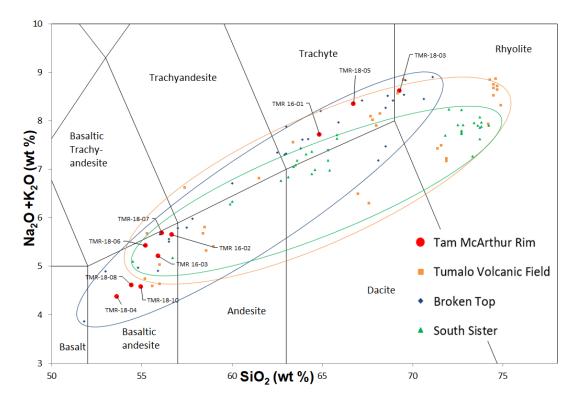


Figure 9: Total Alkali Silica (TAS) plot shows regional volcanic compositions from South Sister, Broken Top, and Tumalo Volcanic Field. Compositional fields are similar and show that Tam McArthur Rim bulk geochemistry samples follow the regional volcanic compositions, but more closely Broken Top.

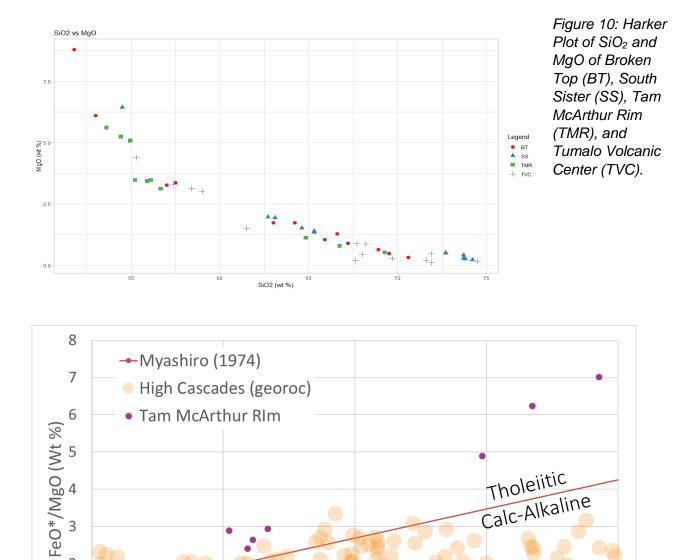


Figure 11: Tam McArthur Rim lava flows and High Cascades plotted to differentiate between tholeiitic and calc-alkaline determined by Myashiro (1974). Thee points plotting as tholeiitic are from overlying Broken Top lavas.

60

SiO₂ (Wt %)

2

1

0

50

55

Tholeiitic

65

Calc-Alkaline

70

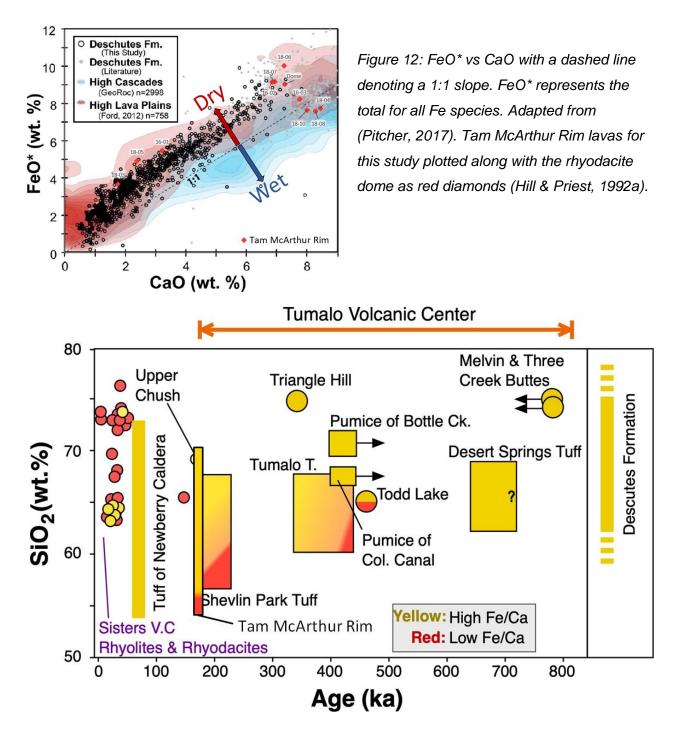
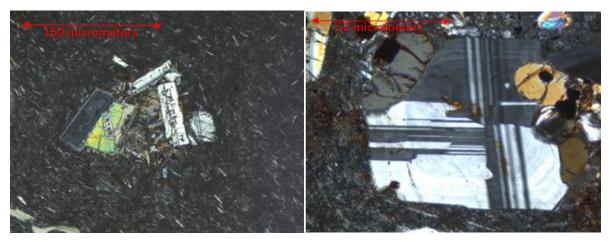
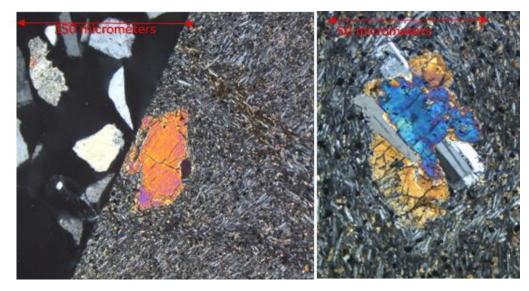



Figure 13: Summary figure of geochemistry and age data. Fe/Ca ratios for the Tumalo Volcanic Center region and other nearby systems are plotted to represent dry (yellow) and wet (red) mamas. Tam McArthur Rim plots over part of the Shevlin Park Tuff. SiO₂ increases with increasingly dry magma for the Tam McArthur Rim. Adapted from (Kent, unpublished).

Petrography


Petrographic analysis was used to characterize the lava flows and served as a precursor to Electron Probe Analysis. Samples fell into two main categories (trachytic and felty).

TMR-16-01

Glomerocrysts were observed and consist of plagioclase, olivine and pyroxenes. Plagioclase crystals show a sieved textures, twinning, and oscillatory zoning. Ground mass has weakly trachytic plagioclase elongate needles and oxides.

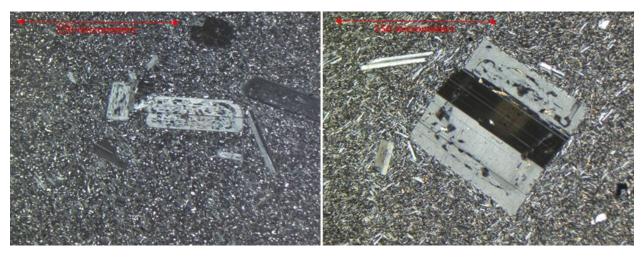
TMR-16-02

This sample is ~95% ground mass and ~5% crystals. Groundmass has a subophytic, trachytic texture of plagioclase, pyroxenes, and magnetite. Glomerocryst clots of plagioclase, olivine, and pyroxenes. Plagioclase phenocrysts have olliatory zonation, twinning, and sieved textures.

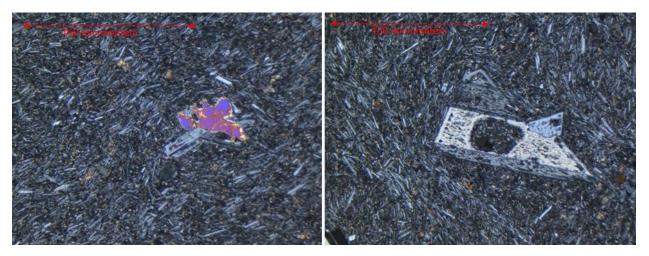
TMR-16-03

Moderately trachytic groundmass texture is subophytic. Plagioclase phenocrysts range from twinned and euhedral (left), to almost entirely sieved with replacing mineral inclusions (right).

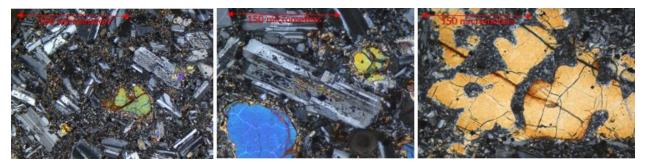
TMR-18-04


This sample is vesicular, crystal rich, and non-trachytic. It has many different sized phenocrysts from groundmass subophytic microlites to macrocrysts. Glomerocrysts clots (left) are common. Skeletal Olivine (middle) displays a dissolution texture replaced with plagioclase. Plagioclase grains are twinned, sieved, oscillatory zoned, have melt inclusions, and show undulatory extinction. This sample shows more olivine than other samples in this suite.

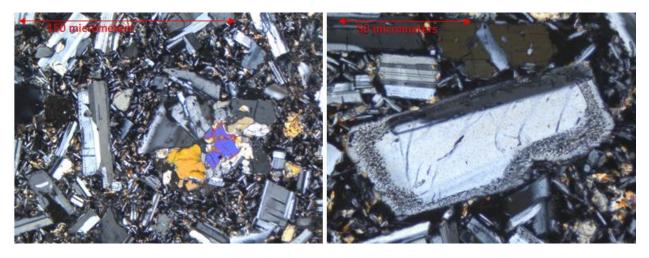
TMR-18-05


This sample is a porphyritic, moderately trachytic, crystal poor, groundmass dominated sample. Olivine, plagioclase, and orthopyroxenes are present as both glomerocrysts and phenocrysts. This sample was taken from a potential feeder dike.

TMR-18-06


Groundmass dominates this sample and is subophytic with oxides. The phenocrysts are dominantly plagioclase with sieved, zoned, and twinned textures. Some portions show weak trachytic flow textures.

TMR-18-07


This sample is dominated by an trachytic, subophytic groundmass with oxides and is porphyritic. The phenocrysts compositions are olivine and plagioclase and have sieved and dissolution textures.

TMR-18-08

Similar to sample TMR-18-04, 18-08 is crystal rich and not trachytic. Glomerocrysts and phenocrysts are present. Olivine, orthopyroxenes, and plagioclase are present. However, many crystal show sieved and disequilibrium textures. Dissolution textures are in the center and right photos showing plagioclase and olivine dissolving respectively.

TMR-18-10

TMR-18-10 is similar to both TMR-18-08 and TMR-18-04. It shows no trachytic flow textures, is crystal rich. The ground mass is subophytic and magnetite groundmass. However, it varies from these sample because its dominant phenocryst is plagioclase. Radial glomerocryst (left) and twinned, plagioclase with sieved texture below the rim.

Electron Microprobe

Electron Microprobe analysis provided backscatter images and grain compositions. Populations of plagioclase analyzed were microlites, phenocrysts, and megacrysts.

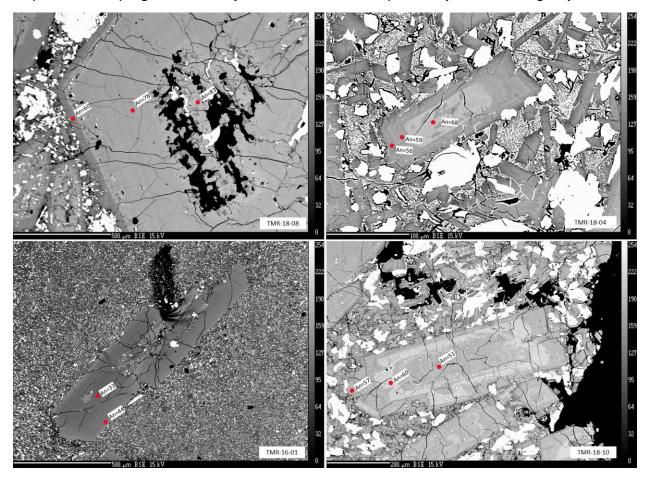


Figure 14: BSE images.

TMR-18-08: (top left) Plagioclase megacryst showing sieved core, some oscillatory zoning, but overall normal zoning. The rims are underlain by a sieved texture.

TMR-18-04: (top right) Plagioclase phenocryst showing normal zoning, surrounded by other plagioclase phenocrysts and microlites.

TMR-16-01: (bottom left) Megacryst of plagioclase showing reverse compositional zoning. Groundmass is composed of mostly microlites.

TMR-18-10: (bottom right) Megacryst of plagioclase showing oscillatory zoning. Surrounded by phenoycrystic and microlitic plagioclase.

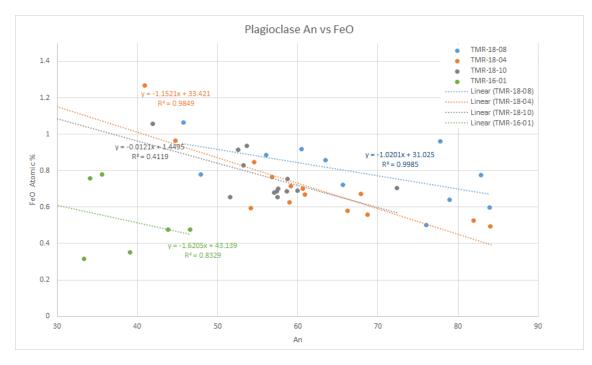


Figure 15: Plagioclase compositions of An vs FeO (Atomic %) from Electron Microprobe analysis (Appendix B).

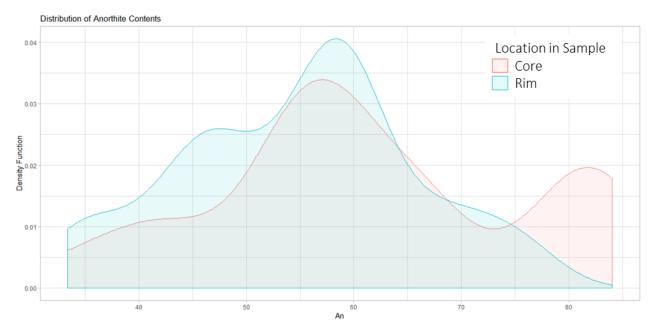


Figure 16: Distribution of anorthite contents by location in crystal (core vs rim) determined in Electron Microprobe analysis (Appendix B).

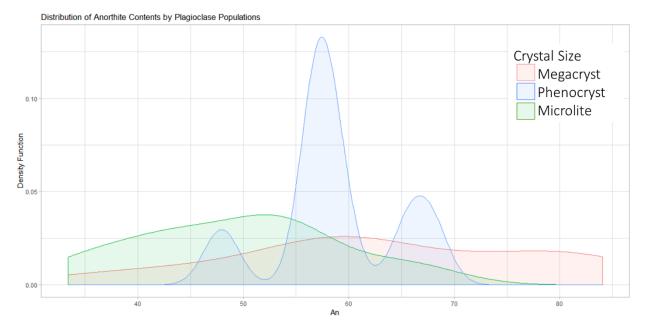


Figure 17: Distribution of anorthite contents by plagioclase population crystal sizes of megacryst, microcryst, and phenocryst determined by Electron Microprobe analysis (Appendix B).

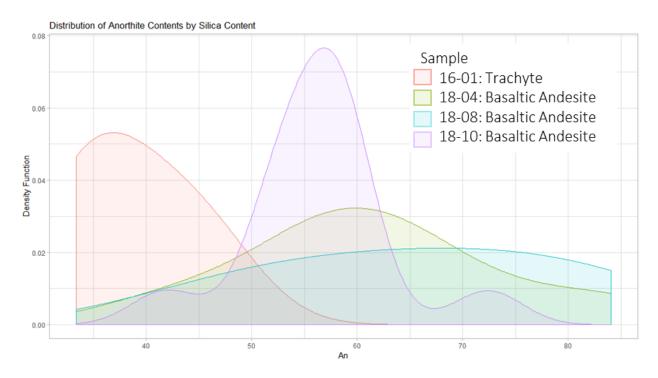


Figure 18: Distribution of anorthite contents by Silica content determined by microprobe analysis (Appendix B).

Discussion

Field Relations

Tam McArthur Rim is a small shield volcano with shallow dipping lava flows away from the presumed vent area, marked by a rhyodacite dome that sits atop the flow layers. Flows are cut by dikes and are ultimately exposed as glacial cirques due to Late Pleistocene glaciation (Taylor, 1978). Glacial erosion has exposed 300 vertical meters of the shallow plumbing and lava flow stratigraphy of Tam McArthur Rim volcano. The flows range from less than a meter thick to over 20 m thick in some places. Interbedded with the lava flows are at least two thin pyroclastic deposits of unknown origin, and a one meter thick massive obsidian flow. An unconformity was observed in the northwestern cirque (figure 19). Lava flows that overlie this unconformity do not conform to the dip of the flow beds beneath them and are likely Broken Top lavas (Taylor, 1978).

Flows directly below the unconformity have developed what appears to be a paleosol that drapes the slopes as a red talus as seen in figure 5 and are likely from Tam McArthur Rim. Future dating will assess the ages of the Broken Top flows above the unconformity (figure 19).

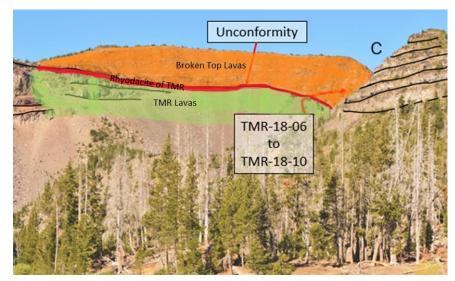


Figure 19: Broken Top lavas overlying the unconformity that represents the youngest Tam McArthur Rim flows.

Samples were obtained on the sloping lava flow flanks, but we did not directly sample the dome or vent area. The sample locations are bimodal, one area to the southeast of the dome, and one to the northwest of the dome. Mapping lava flow units proved to be difficult based on steep topography. The flows are relatively horizontal with a slight dip away from the rhyodacite dome. Many flows were too variable in their thickness and too thin to be mapped as distinguished units.

Ages

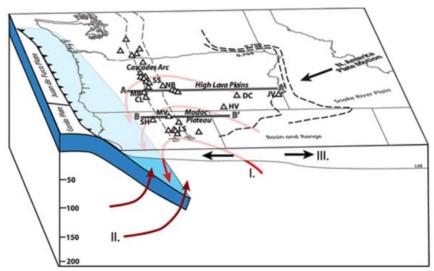
 40 Ar/ 39 Ar dating analyses of three units from the southeast flanks of Tam McArthur Rim volcano all corroborate observed stratigraphic field relations. The plateau age from the oldest trachytic flow unit (TMR-16-01) is 184.5 ± 2.2 ka. This sample is the most silicic and alkaline of the dated rocks and is from the bottom of the exposed stratigraphic section, closest to Three Creek Lake. The second sample, a basaltic andesite flow unit (TMR-16-02) has a plateau age of 183.9 ± 4.4 ka is found in the middle of the stratigraphic section. Finally, the youngest basaltic andesite flow unit (TMR-16-02) has a plateau age of 183.9 ± 4.4 ka is found in the middle of the stratigraphic section. Finally, the youngest basaltic andesite flow unit (TMR-16-03) has a plateau age of 182.6 ± 6.2 ka and is found closest to the rim of the cirque and is part of the upper stratigraphic flow units. This youngest flow, with an age of 182.6 ± 6.2 ka, underlies a rhyodacite dome that has a previously cited K-Ar age of 213 ± 9 ka (Hill, 1991). We did not date the rhyodacite dome, but found that, outside of error, the previous rhyodacite dome K-Ar age is too old.

I propose the dome's age is actually younger than 182.6 ka based on stratigraphic superposition. ⁴⁰Ar/³⁹Ar dating has provided more better age constraints of the local systems. However, ⁴⁰Ar/³⁹Ar dating is necessary at the northeastern rim, where the majority of the TMR-18 sample suite was obtained. Redating the dome itself with ⁴⁰Ar/³⁹Ar analysis could prove fruitful as it could provide a minimum age for Tam McArthur Rim. Additionally, dating the Broken Top flow that overlies the unconformity could help clarify how Tam McArthur Rim volcano is temporally related to Broken Top. Relative to nearby volcanoes, Tam McArthur Rim is on the younger end of the Tumalo Volcanic Center which ranges from about ~150 - ~800 ka (figure 13). However, because Tam McArthur Rim lavas cover the Triangle Hill vent, it is likely that Tam McArthur Rim and other contemporaneous Broken Top lavas are younger than the Tumalo Volcanic Center itself (Hill, 1990). Broken Top was active between ~150 - ~300 ka contemporaneous with Tam McArthur Rim deposits (Hildreth, 2007). Recent eruptions at the Sisters Volcanic Center are significantly younger than Tam McArthur Rim between ~2 - ~50 ka.

Bulk Rock Geochemistry

Bulk geochemical analyseis of these rocks show a general bimodal distribution. The two rock types are basaltic andesite and trachyte/trachyrhyolite (Figure 9). The three most mafic samples, basaltic andesites, are found stratigraphically highest and likely from Broken Top (TMR-18-04, TMR-18-08, and TMR-18-10). The rest of the samples are all basaltic andesite and trachyte and are found lower in the stratigraphic sequence of lava flows. The remaining samples are thought to be directly from Tam McArthur Rim Volcano. In general, this implies more silicic and alkali rich lavas were erupted first from Tam McArthur Rim Volcano, followed by the more mafic basaltic andesites from Broken Top.

Arc rocks are typically calc-alkaline due to the presence of water during mantle melting and differentiation. We observe that MgO does decrease with increasing SiO₂, and follows the same broad trends as Broken Top, South Sister, and the Tumalo Volcanic Field (figure 10). However, a more significant observation is that Tam McArthur Rim compositions follow a sub-tholeiitic differentiation trend, and not calc-alkaline differentiation trend. However, Broken Top, South Sister, and the Tumalo Volcanic Field also show tholeiitic compositions (figure 11).


To investigate this further, I plotted FeO* by CaO to compare them to the High Lava Plains, the High Cascades, and the Deschutes Formation (figure 12) (Pitcher, 2017). Points plotting above the 1:1 line are presumed to have followed a tholeiitic liquid line of descent and are derived from dryer magmas. Points plotting below that 1:1 line are thought follow a calc-alkaline liquid line of descent and are derived from wetter magmas (Miyashiro, 1974). A reducing environment can also produce FeO*/MgO contents that plot in the thoeilitic region (Sisson et al., 2005).

Most Tam McArthur Rim samples, especially the felsic rocks, plot above this 1:1 line. The three most mafic samples, likely from Broken Top, plot below the 1:1 line. The more felsic rocks (SiO₂ > 55 wt %) in this study are likely derived from a dryer magma, following a tholeiitic differentiation trend. The more mafic rocks (SiO₂ < 55 wt %) may be derived from a wetter magma, following a calc-alkaline differentiation trend, more analogous with typical arc rocks. Lower water in a magma means the magma is in a

reducing state. This means magma to preferentially crystallizes Mg bearing minerals first, initially enriching the melt in Fe bearing minerals. Eventually, after the magma has crystallized out much of the Mg, Fe bearing minerals start to mineralize, enriching the sample in alkalis. Ultimately, this means this magma is following a more Fe rich liquid line of descent, analogous to a tholeiitic differentiation trend.

Some Tam McArthur Rim rocks have compositions that are derived from a dryer magma and this observation more closely follows data collected for the High Lava Plains than for the High Cascades (figure 12). More locally, we see the transition from wetter magmas to dryer magmas as silica content increases throughout the region. The Shevlin Park Tuff, Tumalo Tuff, and Todd Lake deposits all display a trend similar to Tam McArthur Rim (figure 13) (Kent, unpublished).

The general implication of more tholeiitic compositions is that the melting mechanism is dry, hot decompression. Within the geologic context of the Cascade Arc and Cascadia subduction, decompression melting is observed in the High Lava Plains of Oregon. The High Lava Plains are located in the back arc of the Cascades and are comprised of young volcanism that has moved across southeastern Oregon terminating at Newberry Volcano (Jordan et al., 2004). Decompression melting in southeastern Oregon the Section 2004.

subducting slab (Till, 2017) (figure 20). Tam McArthur Rim rock compositions fall within the same compositional range as the High Lava Plains rocks (tholeiitic), it is possible that volcanism is partly attributed to this corner flow of the mantle

Figure 20: Corner Flow along subducting slab (I) potentially causing anhydrous melts in southeastern Oregon and Northern California. Figure from (Till, 2017)

(Till, 2017). Calc-alkaline rocks from Broken Top that overlie Tam McArthur Rim volcano are likely due to introduction of subducting slab fluids. However, because we also observe a few calc-alkaline rocks, it is likely two endmember styles of mantle melting are occurring. The two end members commonly observed together are decompression melting and fluid flux melting (Rowe et al., 2009).

Mineral Chemistry

Petrographic analysis yielded an insightful look into microscopic scale textures of Tam McArthur Rim rocks. All samples have glomerocrystic clots of plagioclase, olivine, and pyroxene. I found that TMR-18-10, TMR-18-08, and TMR-18-04 are all crystal rich with felty textures meaning there is no flow fabric. All other samples have at least some trachytic fabric that presumably indicate flow direction. Many samples displayed a subophytic texture in the groundmass meaning plagioclase laths are larger than and enclose the pyroxenes. A subophytic texture implies a moderate cooling rate and represents the final melt in the system before eruption. Skeletal olivine replaced by subophytic groundmass was observed in TMR-18-04 and TMR-18-08 meaning the olivine is not in equilibrium with this system. These could either be xenocrysts or from an introduction of new magma into the system.

All samples have a plagioclase-dominant phenocryst phase. Plagioclase is observed as megacrysts, phenocrysts, and microlites. Some crystals exhibit significant disequilibrium sieve textures and oscillatory zoning while other crystals are euhedral. There is significant variation of plagioclase sizes and forms within individual thin sections. Plagioclase disequilibrium textures imply that the plagioclase was not in equilibrium at some point throughout its time in the magma. Some crystals show oscillatory zoning and multiple layers of sieve textures suggesting that they may have gone through multiple phases of both equilibrium and disequilibrium with the melt. To explore these plagioclase populations further, I used an electron microprobe to analyze individual plagioclase crystal compositions. Normal zoning means the system was evolving by crystallizing anorthite first and then albite, following normal cooling within the magma from more mafic to more felsic. The goal of using the electron microprobe was to analyze the major elements of the three populations of plagioclase crystals observed. To have a general understanding of the crystals, I analyzed cores and rims of plagioclase crystals from TMR-16-01, TMR-18-04, TMR-18-08, and TMR-18-10. In general, cores had higher anorthite contents and rims had lower anorthite contents (figure 16). This means that cores are more calcic and rims are more sodic, this follows normal zoning. Both cores and rim had modes at ~An₅₇.

The three plagioclase populations appear to vary by anorthite content (figure 17). Microlites had lower anorthite contents, with a mode of ~An₅₀ but range from ~An₃₇ to ~An₇₅. Macrocrysts have higher anorthite contents in general having a mode around ~An₆₀, but range from ~An₃₇ to ~An₈₇. Phenocrysts fall more in the middle of the An spectrum with a mode at ~An₅₇ with two other minor modes at ~An₄₈ and ~An₆₇. This follows normal cooling within magma. Anorthite will crystallize first creating megacrysts leaving the melt relatively albite enriched. Phenocryst crystallization joins the megacrysts crystallization to drive the system to have an even more albite enriched melt. Finally, the groundmass microlites represent final stages of crystallization of the albite enriched melt.

Grouping anorthite content frequencies by silica content allows us to analyze anorthite by rock type (figure 18). This plot shows that the trachyte (TMR-16-01) has low anorthite contents with a mode at ~An₃₇. Both TMR-18-10 and TMR-18-04 are basaltic andesites and have moderate anorthite contents with modes around ~An₅₆ and ~An₆₀ respectively. TMR-18-08 is a basaltic andesite and shows no significant mode of anorthite content. This follows what would be expected because trachytes are high in alkalis, driving it toward a more albite composition.

Several analyzed electron microprobe data points were disregarded because of their departures from an Si vs Al correlation. All of the samples, except TMR-16-01 show R²>0.98 for a correlation of Si vs Al after data points are removed. TMR-16-01 (R²= 0.83) did not have a higher R² value because data points were too sparse. I found that microlites (~30 µm) were difficult to analyze because the resolution and refresh time on the microprobe display made it difficult to determine where these crystals

actually were. The beam diameter, 5µm, was too large and some crystal widths are on a similar order of magnitude making it especially difficult to analyze the microlites. In future studies, there needs to be a better approach to analyzing the microlites. Additionally, three of the samples analyzed (those from the TMR-18 suite), unintentionally are actually likely from Broken Top lavas that overlie Tam McArthur Rim lavas. Microprobe analysis of Tam McArthur Rim lavas from below the unconformity can shed more light on plagioclase compositions.

Conclusions

Tam McArthur Rim is a small Central Oregon shield volcano in the High Cascades. According to our new 40 Ar/ 39 Ar ages, most of the lava flows that underlie the rhyodacite dome were extruded between 182.6 ka and 184.5 ka, likely within a ~10 kyr period. Our ages imply that the overlying dome's older K-Ar age of ~213 ka (Hill, 1991) may be incorrect based on the principle of superposition. Timing of the shift of eruptive focus that passed under Tam McArthur Rim is now better understood. Previous interpretations of when volcanism ceased in both the Tumalo Volcanic Fields and Broken Top systems at ~0.2 Ma can be adjusted to the younger age I acquired of < ~0.18 Ma.

Most samples from Tam McArthur Rim display tholeiitic compositions that are analogous to compositions of the High Lava Plains of Oregon, implying that the melt is anhydrous. Ultimately, the melt mechanism for these tholeiitic rocks is decompression melting. Because hydrous, calc-alkaline Broken Top lavas are found overlying Tam McArthur Rim lavas means Broken Top lava are from a hydrous magma. Melt generation that formed the Broken Top lavas and Tam McArthur Rim rocks in this study is likely from two processes: decompression melting and fluid flux melting.

Tam McArthur Rim is a unique location because it could represent a nexus of the High Lava Plains and High Cascades of Oregon. It is spatially located in the High Cascades, but is chemically analogous to the High Lava plains. Tam McArthur Rim may represent the most western extent of the High Lava Plains' decompression melting tholeiitic rocks.

References

- Hildreth, W. (2007). Quaternary magmatism in the Cascades; geologic perspectives: U.S. Geological Survey professional Paper 1744 (125 pp). USGS.
- Hill, B. E., & Scott, W. E. (1990). Field trip guide to the central Oregon High Cascades Part 2 (conclusion): Ash-flow tuffs in the Bend area. Oregon Geology: DOGAMI, 52(6), 122-126.
- Hill, B. E., (1992), Petrogenesis of Compositionally Distinct Silicic Volcanoes in the Three Sister Region of the Oregon Cascade Range: The Effects of Crustal Extension on the Development of Continental Arc Silicic Magmatism. Oregon State University [dissertation].
- Jordan, B.T., Grunder, A.L., Duncan, R.A., Deino, A.L., 2004. Geochronology of ageprogressive volcanism of the Oregon High Lava Plains: Implications for the plume interpretation of Yellowstone. Journal of Geophysical Research: Solid Earth 109, B10202. doi:10.1029/2003JB002776
- Koppers, A.A.P., 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers & Geosciences 28 (5), 605–619.
- Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. Am J Sci 274, 321–355. doi:10.2475/ajs.274.4.321
- Pitcher, B.W., 2017, The Deschutes Formation: Evidence of Extension-Enhanced Explosivity in the Early High Cascades. Oregon State University [dissertation].
- Rowe, M., Kent, A. J., & Nielsen, R. L. (2009, January 07). Subduction Influence on Oxygen Fugacity and Trace and Volatile Elements in Basalts Across the Cascade Volcanic Arc. Retrieved from https://doi.org/10.1093/petrology/egn072
- Sherrod, D. R., Taylor, E. M., Ferns, M. L., Scott, W. E., Smith, G. A., & Conrey, R. M. (2004). *Geologic map of the Bend 30- x 60-Minute Quadrangle, Central Oregon.* USGS.
- Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F., 2005. Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148, 635–661. doi:10.1007/s00410-004-0632-9
- Taylor, E. 1987. Field geology of the northwest quarter of the Broken Top 15 quadrangle, Deschutes County, Oregon: Special Paper 2. DOGAMI. doi:10.2172/6067987
- Taylor, E.M., 1990. Volcanic history and tectonic development of the Central High Cascades Range, Oregon. Journal of Geophysical Research: Solid Earth 95, 19611–19622. doi:10.1029/JB095iB12p19611
- Till, C.B., Grove, T.L., Carlson, R.W., Donnelly-Nolan, J.M., Fouch, M.J., Wagner, L.S., Hart, W.K., 2013. Depths and temperatures of <10.5 Ma mantle melting and the lithosphereasthenosphere boundary below southern Oregon and northern California. Geochemistry, Geophysics, Geosystems 14, 864–879. doi:10.1002/ggge.20070
- Till, C. (2017). A review and update of mantle thermobarometry for primitive arc magmas. American Mineralogist, 102(5), 931-947. doi.org/10.2138/am-2017-5783

Appendix

Appendix A-1: Whole Rock major element geochemistry data from Washington State University XRF (16-) and Pomona College XRF(18-).

Oxide	16-01	16-02	16-03	18-03	18-04	18-05	18-06	18-07	18-08	18-10
SiO ₂	64.84	56.67	55.92	69.28	53.62	66.73	55.22	56.12	54.43	54.96
TiO ₂	0.93	1.53	1.27	0.56	0.99	0.69	1.49	1.29	0.95	0.87
Al ₂ O ₃	16.33	16.57	17.81	15.16	18.58	15.63	16.46	16.69	18.34	18.45
FeO*	5.47	9.18	8.25	3.69	7.75	4.93	10.05	9.19	7.60	7.66
MnO	0.12	0.15	0.14	0.11	0.18	0.14	0.16	0.15	0.12	0.12
MgO	1.12	3.12	3.43	0.53	5.61	0.79	3.47	3.47	5.24	5.08
CaO	3.21	6.82	7.72	1.76	8.41	2.38	7.22	6.92	8.25	7.96
Na ₂ O	5.83	4.61	4.32	5.72	3.61	5.99	4.48	4.61	3.76	3.80
K₂O	1.88	1.04	0.89	2.89	0.76	2.36	0.94	1.07	0.85	0.77
P2O₅	0.28	0.31	0.25	0.11	0.24	0.18	0.31	0.29	0.24	0.13
Total	100.00	100.00	100.00	99.80	99.76	99.81	99.79	99.78	99.77	99.80

ppm	TMR-16-01	TMR-16-02	TMR-16-03
La	23.17	15.53	13.1
Ce	47.92	35.08	29.23
Pr	6.9	4.8	4.07
Nd	29.86	21.31	17.82
Sm	7.35	5.21	4.51
Eu	2.02	1.79	1.5
Gd	7.26	5.44	4.53
Tb	1.19	0.88	0.74
Dy	7.51	5.45	4.42
Ho	1.56	1.06	0.89
Er	4.25	2.85	2.4
Tm	0.6	0.4	0.34
Yb	3.86	2.55	2.14
Lu	0.6	0.39	0.33
Ва	573	402	350
Th	3.54	1.64	1.38
Nb	11.73	7.73	6.29
Y	39.9	27.03	22.62
Hf	6.09	3.66	3.12
Та	0.77	0.48	0.39
U	1.42	0.71	0.58
Pb	8.19	10.15	4.4
Rb	34.6	16.6	13.6
Cs	0.84	0.25	0.31
Sr	322	512	564
Sc	15.2	27.9	25.1
Zr	242	146	123

Appendix A-2: Whole rock trace element geochemistry: Washington State University ICP-MS.

Sample	TMR-18-03	TMR-18-04	TMR-18-05	TMR-18-06	TMR-18-07	TMR-18-08	TMR-18-10
Rb	56.66	9.54	42.97	16.93	16.94	10.97	11.06
Sr	182.12	788.71	226.83	513.83	591.07	795.96	643.36
Ва	739.60	331.81	661.51	366.45	416.64	321.18	266.39
Zr	339.95	124.03	324.76	133.44	135.56	116.70	88.46
Y	38.45	19.08	47.96	24.89	22.93	16.96	15.08
Nb	18.21	9.54	19.99	9.96	8.97	7.98	5.03
Cs	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sc	7.08	20.14	7.99	27.88	25.92	22.94	24.13
V	15.18	166.44	18.99	278.82	224.27	144.63	159.83
Cr	5.06	115.55	0.00	15.93	15.95	80.79	88.46
Ni	10.12	109.19	0.00	4.98	6.98	93.76	84.44
Cu	22.26	65.73	5.00	107.55	70.77	57.85	59.31
Zn	70.82	136.75	84.94	93.60	90.70	71.82	67.35
Ga	19.22	19.08	19.99	18.92	19.93	19.95	19.10
La	25.29	11.66	35.97	18.92	22.93	15.96	11.06
Ce	63.74	29.68	59.96	33.86	37.88	28.93	30.16
Pr	6.07	3.18	7.99	3.98	5.98	3.99	3.02
Nd	24.28	11.66	31.98	19.92	21.93	13.96	18.09
Hf	7.08	0.00	6.00	1.99	3.99	1.99	3.02
Pb	9.11	0.00	8.99	1.99	1.99	0.00	0.00
Th	4.05	0.00	4.00	1.99	2.99	0.00	0.00
U	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Appendix A-3: Whole rock trace element geochemistry from Pomona College.

Point	Na	Si	AL	Fe	Ca	K	Mg	Ti	0	Total	X	Y	Z	Comment	Mean Z	Point#
171.	0.0349	25.5216	0.459	10.3976	1.4204	0	16.5096	0.1447	44.0099	98.4977	16997	-5366	209	TMR-18-08_Plag1	12.1578	1
1/2.	0.1436	24.5425	0.8917	14.0198	1.6199	0.0075	13.9126	0.2438	42.7925	98.1738	16803	-5519	206	TMR-18-08_Plag1	12.6848	2
271.	1.6995	22.2413	17.1742	0.3689	11.2476	0.0395	0.0547	0.0191	45.8614	98.7062	19133	-10495	180	TMR-18-08 Plag2	11.566	3
272.	1.2737	21.8041	17.6193	0.3969	11.8316	0.0487	0.0458	0.0197	45.8486	98.8883	18572	-10481	175	TMR-18-08_Plag2	11.6397	4
2/3.	1.8723	22.9471	16.8374	0.4991	10.6284	0.0862	0.036	0.0187	46.2133	99.1386	18067	-10608	176	TMR-18-08 Plag2	11.5847	5
371.	1.35	22.0932	17.5605	0.466	11.6993	0.0583	0.0325	0.0045	46.1023	99.3665	20206	-15319	149	TMR-18-08_Plag3	11.6896	6
372.	1.7581	22.8131	17.0721	0.3899	10.9687	0.0672	0.0642	0.0265	46.354	99.5137	19896	-15359	146	TMR-18-08 Plag3	11.6363	7
3/3.	3.088	24.5426	15.3826	0.6044	8.5279	0.193	0.0449	0.0414	46.3948	98.8196	19570	-15384	146	TMR-18-08 Plag3	11.4009	8
471.	2.6558	24,1489	15.59	0.7472	9.2153	0.1886	0.053	0.0426	46.3007	98.9421	12366	-25656	57	TMR-18-08 Plag4	11.4926	9
472.	4.0285	26,1996	14.1906	0.7146	6.808	0.3592	0.0536	0.0679	46.9521	99.3741	12518	-25806	57	TMR-18-08_Plag4	11.3491	10
571.	3.4214	24.9779	14.9822	0.5616	7.8719	0.1964	0.0764	0.0378	46.3954	98.521	12989	-25687	59	TMR-18-08 Plag5	11.3078	11
5/2.	2.9112	24.1428	15.7518	0.6049	9.1256	0.1797	0.0595	0.0425	46.4525	99.2706	13001	-25699	59	TMR-18-08 Plag5	11.4972	12
5/3.	4.1562	26.5808	13.9876	0.6898	6.4678	0.4134	0.042	0.065	47.1089	99.5115	13009	-25704	57	TMR-18-08 Plag5	11.3364	13
671.	2.5071	23.0316	15.5866	0.6666	9.2547	0.1825	0.0348	0.0434	44.9529	96.2603	6471	-38900	-48	TMR-18-08 Plag6	11.1954	14
6/2.	3.8736	25.693	14.1992	0.8272	6.7864	0.3413	0.0432	0.071	46.3437	98.1785	6472	-38908	-45	TMR-18-08 Plag6	11.2345	15
771.	1.2882	21.8395	17.631	0.3855	12.07	0.0434	0.0588	0.0147	46.0004	99.3314	-23495	-8050	80	TMR-18-04 Plag1	11.7041	16
772.	3.0896	24.7741	15.4269	0.5055	8.6389	0.1614	0.0873	0.0373	46.7371	99.4721	-23345	-8188	79	TMR-18-04 Plag1	11.4649	17
871.	1.4197	22.0397	17.4088	0.4095	11.5594	0.0693	0.0453	0.00116	45.8742	98.8378	-20040	-5855	142	TMR-18-04 Plag2	11.6144	18
872.	3.2385	24.7029	15.2011	0.4855	8.3506	0.1494	0.1037	0.0346	46.3886	98.6549	-8802	-5655	148	TMR-18-04_Plag2	11.3467	19
8/3.	2.7162	24.4694	14.9592	1.3011	8.7616	0.2377	0.4585	0.0346	46.4336	99.4595	-8766	-5502	148	TMR-18-04_Plag2	11.6015	20
8/4.	2.6958	23.9441	15.83	0.4516	9.4225	0.2377	0.4385	0.0256	46.2858	98.8471	-8795	-5465	146	TMR-18-04_Plag2	11.4475	20
971.	3.5076	26.0011	14.6772	0.4609	7.4479	0.1066	0.0851	0.0256	46.2858	99.5578	-0735	-36024	-102		11.3714	21
														TMR-18-04_Plag3		
972.	2.4777	23.9942 24.7205	16.1717 15.5456	0.4343 0.545	9.7018 8.5957	0.1033	0.0786	0.0317	46.6766	99.6698 99.5895	-15748 -15799	-35988 -35943	-101 -98	TMR-18-04_Plag3 TMR-18-04_Plag3	11.5575 11.4769	23
9/3.	3.108															
1071.	2.5261	23.9795	16.0554	0.5222	9.524	0.106	0.0841	0.0301	46.5306	99.358	-16051	-35888	-101	TMR-18-04_Plag4	11.5221	25
10/2.	3.2198	24.9885	15.2175	0.5557	8.3433	0.1433	0.0943	0.0479	46.7407	99.3509	-16078	-35902	-99	TMR-18-04_Plag4	11.4323	26
10/3.	3.4053	25.409	14.9343	0.594	8.0673	0.2003	0.1006	0.0494	46.9502	99.7105	-16094	-35912	-100	TMR-18-04_Plag4	11.4582	27
1171.	3.5338	25.0418	14.771	0.6572	7.675	0.2187	0.0952	0.064	46.3028	98.3596	-4858	-39813	-90	TMR-18-04_Plag5	11.292	28
11/2.	4.3222	27.2541	12.9417	0.9851	5.6206	0.5623	0.0732	0.1598	46.8641	98.783	-4889	-39804	-94	TMR-18-04_Plag5	11.2536	29
1271.	4.2554	26.5836	13.7004	0.7502	6.3027	0.3538	0.0662	0.0858	46.8602	98.9583	-8513	-40020	-107	TMR-18-04_Plag6	11.2693	30
12/2.	3.5324	29.2985	7.7761	4.3026	2.4482	1.8938	0.3011	0.993	44.9871	95.5329	-8518	-40020	-111	TMR-18-04_Plag6	11.323	31
1371.	3.2824	24.8687	15.2692	0.535	8.3523	0.1661	0.0802	0.0335	46.6555	99.243	6847	37836	408	TMR-18-10_Plag1	11.4183	32
1372.	3.2538	24.551	15.199	0.5875	8.3549	0.1931	0.0841	0.0442	46.2525	98.5201	7177	37740	412	TMR-18-10_Plag1	11.3514	33
1373.	2.2014	23.4539	16.7217	0.5489	10.4295	0.1327	0.0834	0.0297	46.7852	100.386	7232	37782	409	TMR-18-10_Plag1	11.7127	34
1374.	3.7741	27.5469	12.0305	1.8382	5.3364	0.8561	0.0959	0.452	46.5978	98.5279	7246	37796	410	TMR-18-10_Plag1	11.3823	35
1471.	3.7373	25.5768	14.7622	0.7101	7.5128	0.2523	0.0531	0.0612	46.9029	99.5686	7485	37854	411	TMR-18-10_Plag2	11.4181	36
1472.	3.6927	25.5643	14.8752	0.6439	7.5823	0.2182	0.0644	0.0441	46.9714	99.6563	7477	37847	410	TMR-18-10_Plag2	11.4194	37
1571.	4.0067	25.1874	14.6017	0.5101	7.6891	0.2248	0.0796	0.0509	46.4283	98.7787	20666	40016	439	TMR-18-10_Plag3	11.3134	38
1572.	3.1878	24.6697	15.4884	0.5353	8.5624	0.1464	0.0808	0.0351	46.6721	99.3778	20513	39956	441	TMR-18-10_Plag3	11.4486	39
15/3.	3.3818	25.0575	15.0332	0.546	8.2127	0.1551	0.0805	0.0457	46.6489	99.1615	20388	39931	441	TMR-18-10_Plag3	11.4	40
1671.	3.8787	29.0153	12.0379	0.8211	5.1956	0.4348	0.0532	0.1424	47.6451	99.2241	18131	41055	439	TMR-18-10_Plag4	11.2383	41
1672.	3.6782	25.4616	14.8083	0.727	7.7084	0.2345	0.0448	0.0451	46.8552	99.5631	18131	41051	441	TMR-18-10_Plag4	11.4333	42
1771.	3.4019	25.3062	15.0538	0.5345	8.2462	0.1769	0.0787	0.0422	46.9684	99.8086	10896	34471	397	TMR-18-10_Plag5	11.4721	43
1772.	3.3679	25.1022	15.2196	0.5079	8.1967	0.1918	0.0824	0.0301	46.8417	99.5403	10828	34595	399	TMR-18-10_Plag5	11.435	44
1773.	3.4019	25.2648	15.0331	0.528	8.1138	0.1746	0.0833	0.0469	46.8539	99,5003	10794	34635	399	TMR-18-10_Plag5	11.4274	45
1871.	5.1882	28.093	13.2866	0.2449	4.7671	0.4633	0.0094	0.0176	47.7181	99.7882	-8174	20412	308	TMR-16-01_Plag1	11.1586	46
1872.	4.3989	26.8402	14.2289	0.3717	6.2304	0.2971	0.0154	0.0292	47.4523	99.8641	-8122	20295	311	TMR-16-01_Plag1	11.2949	47
1971.	4.7939	27.0356	13.6294	0.2741	5.5692	0.306	0.0115	0.0305	46.9874	98.6375	-11491	14519	263	TMR-16-01_Plag2	11.0945	48
1972.	4.2095	26.3528	14.3031	0.3717	6.5952	0.2174	0.0242	0.0316	47.0339	99.1395	-11592	14519	259	TMR-16-01_Plag2	11.2414	49
2071.	4.2704	28.919	8.3202	6.0836	1.8954	1.0827	0.4822	1.0658	45.5868	97.706	-11885	13660	254	TMR-16-01_Plag3	11.7058	50
2072.	5.0011	28.3	13.147	0.5886	4.7997	0.5287	0.0258	0.0525	47.9236	100.367	-11868	13695	254	TMR-16-01_Plag3	11.2832	51
2171.	4.0755	26.5695	10.7234	3.2439	5.6186	0.6015	1.0864	0.1662	45.3508	97.4358	-12197	14176	258	TMR-16-01_Plag4	11.4385	52
2172.	4.7701	27.4676	13.3709	0.6064	5.0059	0.7169	0.0173	0.0506	47.213	99.2186	-12213	14155	259	TMR-16-01_Plag4	11.1937	53

Appendix B-1: Oregon State University Electron Microprobe data: Weight %

Point	Na	Si	AL	Fe	Ca	К	Mg	Ti	0	Total	Х	Y	Z	Comment	Mean Z	Point#
171.	0.0331	19.8332	0.3713	4.0635	0.7735	0	14.8254	0.0659	60.0341	100	16997	-5366	209	TMR-18-08_Plag1	12.1578	1
172.	0.1401	19.6069	0.7415	5.6327	0.9069	0.0043	12.8436	0.1142	60.0098	100	16803	-5519	206	TMR-18-08 Plag1	12.6848	2
271.	1.5865	16.9954	13.6603	0.1418	6.0226	0.0217	0.0483	0.0086	61.515	100	19133	-10495	180	TMR-18-08 Plag2	11.566	3
272.	1.1898	16.6736	14.0247	0.1526	6.34	0.0268	0.0405	0.0088	61.5432	100	18572	-10481	175	TMR-18-08 Plag2	11.6397	4
2/3.	1.7369	17.4245	13.3083	0.1906	5.6553	0.047	0.0316	0.0083	61.5975	100	18067	-10608	176	TMR-18-08 Plag2	11.5847	5
371.	1.2545	16.8059	13.9044	0.1783	6.2361	0.0319	0.0285	0.002	61.5584	100	20206	-15319	149	TMR-18-08 Plag3	11.6896	6
372.	1.6256	17.267	13.4504	0.1484	5.8176	0.0366	0.0562	0.0118	61.5865	100	19896	-15359	146	TMR-18-08 Plag3	11.6363	7
3/3.	2.8523	18.5562	12.1064	0.2298	4.5182	0.1048	0.0393	0.0184	61.5746	100	19570	-15384	146	TMR-18-08 Plag3	11.4009	8
471.	2.4589	18.3015	12.2985	0.2848	4.8939	0.1027	0.0464	0.0189	61.5945	100	12366	-25656	57	TMR-18-08 Plag4	11.4926	9
472.	3.6782	19.5812	11.0399	0.2686	3.5655	0.1929	0.0463	0.0298	61.5977	100	12518	-25806	57	TMR-18-08 Plag4	11.3491	10
571.	3.1607	18.8879	11.7929	0.2136	4.1712	0.1067	0.0667	0.0168	61.5837	100	12989	-25687	59	TMR-18-08 Plag5	11.3078	11
5/2.	2.683	18.2131	12.3692	0.2295	4.8241	0.0974	0.0519	0.0188	61.5131	100	13001	-25699	59	TMR-18-08 Plag5	11.4972	12
5/3.	3.7843	19.8108	10.8516	0.2585	3.3779	0.2213	0.0362	0.0284	61.6311	100	13009	-25704	57	TMR-18-08 Plag5	11.3364	13
671.	2.3882	17.9592	12.6511	0.2614	5.0569	0.1022	0.0314	0.0199	61.5297	100	6471	-38900	-48	TMR-18-08 Plag6	11.1954	14
672.	3.5833	19.4551	11.1918	0.315	3.6009	0.1856	0.0378	0.0315	61.599	100	6472	-38908	-45	TMR-18-08 Plag6	11.2345	15
771.	1.1988	16.6368	13.9805	0.1477	6.443	0.0238	0.0517	0.0066	61.5112	100	-23495	-8050	80	TMR-18-04 Plag1	11.7041	16
772.	2.8336	18.5992	12.0556	0.1962	4.5447	0.087	0.0757	0.0164	61.5915	100	-23345	-8188	79	TMR-18-04_Plag1	11.4649	17
871.	1.3257	16.8454	13.8503	0.1574	6.1911	0.0381	0.04	0.0052	61.5469	100	-8605	-5855	142	TMR-18-04 Plag2	11.6144	18
872.	2.9915	18.6784	11.9642	0.1846	4.4245	0.0811	0.0906	0.0153	61.5698	100	-8802	-5655	148	TMR-18-04 Plag2	11.3467	19
8/3.	2.5057	18.4769	11.7579	0.4941	4.636	0.1289	0.4001	0.0541	61.5463	100	-8766	-5502	148	TMR-18-04 Plag2	11.6015	20
874.	2.4953	18.1419	12.4848	0.1721	5.0027	0.058	0.0745	0.0114	61.5595	100	-8795	-5465	146	TMR-18-04_Plag2	11.4475	21
971.	3.1972	19.4004	11.3993	0.173	3.8941	0.103	0.0793	0.0192	61.7346	100	-15542	-36024	-102	TMR-18-04 Plag3	11.3714	22
972.	2.276	18.0423	12.6577	0.1642	5.112	0.0558	0.0683	0.014	61.6096	100	-15748	-35988	-101	TMR-18-04 Plag3	11.5575	23
9/3.	2.847	18.536	12.1334	0.2055	4.5164	0.0841	0.0841	0.0167	61.5769	100	-15799	-35943	-98	TMR-18-04 Plag3	11.4769	24
1071.	2.3276	18.0865	12.6052	0.1981	5.0337	0.0574	0.0733	0.0133	61.6049	100	-16051	-35888	-101	TMR-18-04 Plag4	11.5221	25
10/2.	2.9536	18.7638	11.8943	0.2098	4.3901	0.0773	0.0818	0.0211	61.6083	100	-16078	-35902	-99	TMR-18-04 Plag4	11.4323	26
10/3.	3.1099	18.9946	11.621	0.2233	4.226	0.1076	0.0869	0.0216	61.609	100	-16094	-35912	-100	TMR-18-04 Plag4	11.4582	27
1171.	3.2699	18.9674	11.6458	0.2503	4.0736	0.119	0.0833	0.0284	61.5622	100	-4858	-39813	-90	TMR-18-04 Plag5	11.292	28
11/2.	3.9616	20.4481	10.1071	0.3717	2.955	0.3031	0.0634	0.0703	61.7198	100	-4889	-39804	-94	TMR-18-04 Plag5	11.2536	29
1271.	3.8949	19.9167	10.6844	0.2827	3.3089	0.1904	0.0573	0.0377	61.627	100	-8513	-40020	-107	TMR-18-04 Plag6	11.2693	30
1272.	3.402	23.0977	6.3812	1.7058	1.3524	1.0725	0.2743	0.459	62.255	100	-8518	-40020	-111	TMR-18-04_Plag6	11.323	31
1371.	3.0145	18.6951	11.9483	0.2023	4.3998	0.0897	0.0696	0.0148	61.566	100	6847	37836	408	TMR-18-10 Plag1	11.4183	32
1372.	3.0126	18.6065	11.9903	0.2239	4.437	0.1051	0.0737	0.0197	61.5312	100	7177	37740	412	TMR-18-10 Plag1	11.3514	33
1373.	2.015	17.5728	13.0413	0.2068	5.4758	0.0714	0.0722	0.013	61.5317	100	7232	37782	409	TMR-18-10 Plag1	11.7127	34
1374.	3.4894	20.8483	9.4776	0.6996	2.8301	0.4654	0.0839	0.2006	61.9051	100	7246	37796	410	TMR-18-10 Plag1	11.3823	35
1471.	3.4139	19.1243	11.4896	0.267	3.9364	0.1355	0.0459	0.0268	61.5606	100	7485	37854	411	TMR-18-10 Plag2	11.4181	36
1472.	3.3689	19.0915	11.5633	0.2418	3.9679	0.1171	0.0555	0.0193	61.5747	100	7477	37847	410	TMR-18-10 Plag2	11.4194	37
1571.	3.6884	18.9797	11.4532	0.1933	4.0601	0.1217	0.0693	0.0225	61.4119	100	20666	40016	439	TMR-18-10_Plag3	11.3134	38
1572.	2.9259	18.5347	12.1127	0.2023	4.5078	0.079	0.0701	0.0155	61.552	100	20513	39956	441	TMR-18-10 Plag3	11.4486	39
1573.	3.1067	18.8426	11.7672	0.2065	4.3276	0.0838	0.0699	0.0202	61.5756	100	20388	39931	441	TMR-18-10 Plag3	11.4	40
1671.	3.5249	21.5841	9.3212	0.3072	2.7083	0.2324	0.0457	0.0621	62.2141	100	18131	41055	439	TMR-18-10 Plag4	11.2383	41
1672.	3.3626	19.0538	11.5349	0.2736	4.0422	0.1261	0.0387	0.0198	61.5484	100	18131	41051	441	TMR-18-10 Plag4	11.4333	42
1771.	3.1045	18.9039	11.7054	0.2008	4.3165	0.0949	0.068	0.0185	61.5876	100	10896	34471	397	TMR-18-10 Plaq5	11.4721	43
1772.	3.0812	18.7986	11.8641	0.1913	4.3014	0.1032	0.0713	0.0132	61.5758	100	10828	34595	399	TMR-18-10 Plag5	11.435	44
1773.	3.1127	18.9229	11.7203	0.1989	4.2584	0.0939	0.0721	0.0206	61.6001	100	10794	34635	399	TMR-18-10_Plag5	11.4274	45
1871.	4.6659	20.6808	10.1812	0.0907	2.4591	0.245	0.008	0.0076	61.6618	100	-8174	20412	308	TMR-16-01 Plag1	11.1586	46
1872.	3.9771	19.8637	10.9613	0.1383	3.2311	0.158	0.0132	0.0127	61.6447	100	-8122	20295	311	TMR-16-01_Plag1	11.2949	40
1971.	4.3754	20.1985	10.5993	0.103	2.9156	0.1642	0.0099	0.0121	61.6208	100	-11491	14519	263	TMR-16-01 Plag2	11.0945	48
1972.	3.839	19.6728	11.1144	0.1395	3.45	0.1166	0.0209	0.0138	61.633	100	-11592	14519	259	TMR-16-01 Plag2	11.2414	49
2071.	4.0389	22.3892	6.7051	2.3686	1.0283	0.6021	0.4314	0.4838	61.9525	100	-11885	13660	254	TMR-16-01 Plag3	11.7058	50
2072.	4.4819	20.7605	10.039	0.2171	2.4673	0.2786	0.0219	0.0226	61.7111	100	-11868	13695	254	TMR-16-01 Plag3	11.2832	51
2171.	3.8396	20.49	8.6081	1.2581	3.0363	0.3332	0.9681	0.0220	61.3914	100	-12197	14176	258	TMR-16-01_Plag4	11.4385	52
21/2.	4.3337	20.4272	10.3506	0.2268	2.6087	0.383	0.0149	0.0221	61.6331	100	-12213	14155	259	TMR-16-01 Plag4	11.1937	53
6116.	4.000r	20.7212	10.0006	0.2200	2.0001	0.303	0.0143	0.0221	01.0331	100	-12210	14100	200	THE PROPERTING AND PROPERTING A	11.1331	33

Appendix B-2: Oregon State University Electron Microprobe data: Atomic %

Point	Na2O	SiO2	AI2O3	FeO	CaO	K2O	MgO	TiO2	Total	Х	Y	Z	Commen	Mean Z	Point#
171.	0.0471	54.6003	0.8673	13.3765	1.9874	0	27.3778	0.2414	98.4977	16997	-5366	209	R-18-08_F	12.1578	1
172.	0.1936	52.5056	1.6848	18.0364	2.2666	0.009	23.0713	0.4066	98.1738	16803	-5519	206	R-18-08_F	12.6848	2
271.	2.2909	47.5825	32.4504	0.4746	15.7376	0.0476	0.0906	0.0319	98.7062	19133	-10495	180	R-18-08 F	11.566	3
272.	1.7169	46.6471	33.2915	0.5106	16.5548	0.0587	0.0759	0.0329	98.8883	18572	-10481	175	R-18-08_F	11.6397	4
273.	2.5239	49.0924	31.8141	0.6421	14.8712	0.1039	0.0597	0.0312	99.1386	18067	-10608	176	R-18-08 F	11.5847	5
371.	1.8197	47.2656	33.1804	0.5995	16.3696	0.0702	0.0539	0.0075	99.3665	20206	-15319	149	R-18-08 F	11.6896	6
372.	2.3698	48.8056	32.2576	0.5016	15.3474	0.081	0.1065	0.0442	99.5137	19896	-15359	146	R-18-08 F	11.6363	7
3/3.	4.1625	52.5058	29.0654	0.7776	11.9322	0.2324	0.0745	0.0691	98.8196	19570	-15384	146	R-18-08 F	11.4009	8
471.	3.58	51.6634	29.4571	0.9613	12.894	0.2272	0.0879	0.0711	98.9421	12366	-25656	57	R-18-08 F	11.4926	9
472.	5.4303	56.0507	26.8131	0.9193	9.5257	0.4328	0.0889	0.1133	99.3741	12518	-25806	57	R-18-08 F	11.3491	10
571.	4.612	53.437	28.3089	0.7225	11.0144	0.2365	0.1267	0.0631	98.521	12989	-25687	59	R-18-08 F	11.3078	11
572.	3.9243	51.6505	29.763	0.7782	12.7686	0.2165	0.0986	0.0708	99.2706	13001	-25699	59	R-18-08 F	11.4972	12
5/3.	5.6025	56.8662	26.4295	0.8874	9.0497	0.498	0.0697	0.1084	99.5115	13009	-25704	57	R-18-08 F	11.3364	13
671.	3.3795	49.2733	29.4507	0.8576	12.9492	0.2198	0.0578	0.0725	96.2603	6471	-38900	-48	R-18-08 F	11.1954	14
672.	5.2215	54.9669	26.8293	1.0642	9.4955	0.4111	0.0716	0.1184	98.1785	6472	-38908	-45	3-18-08 F		15
771.	1.7364	46.7228	33.3137	0.4959	16.8883	0.0523	0.0975	0.0245	99.3314	-23495	-8050	80	R-18-04 F	11.7041	16
772.	4.1647	53.001	29.1491	0.6684	12.0876	0.1944	0.1447	0.0623	99.4721	-23345	-8188	79	B-18-04 F	11.4649	17
871.	1.9138	47.1512	32.8939	0.5269	16.174	0.0835	0.0751	0.0194	98.8377	-8605	-5855	142	R-18-04 F	11.6144	18
872.	4.3654	52.8487	28.7224	0.6246	11.6842	0.1799	0.172	0.0577	98.6549	-8802	-5655	148	R-18-04 F	11.3467	19
8/3.	3.6614	52.3491	28.2654	1.6738	12.2592	0.2863	0.7604	0.2037	99.4595	-8766	-5502	148	R-18-04 F		20
874.	3.6339	51.2255	29.9107	0.581	13.1839	0.1284	0.1411	0.0426	98.8471	-8795	-5465	146	R-18-04 F		21
971.	4.7282	55.6261	27.7324	0.593	10.4211	0.2314	0.1525	0.0732	99.5578	-15542	-36024	-102	R-18-04 F		22
972.	3.3399	51.3326	30.5562	0.5588	13.5747	0.1245	0.1303	0.0529	99.6698	-15748	-35988	-101	R-18-04 F		23
9/3.	4.1895	52.8864	29.3733	0.7011	12.0271	0.188	0.1609	0.0632	99.5896	-15799	-35943	-98	R-18-04 F		24
1071.	3.4051	51.3011	30.3366	0.6718	13.326	0.1276	0.1395	0.0502	99.358	-16051	-35888	-101	R-18-04 F		25
10/2.	4.3402	53.4597	28.7533	0.7149	11.6739	0.1726	0.1563	0.0799	99.3509	-16078	-35902	-99	R-18-04 F		26
10/3.	4.5903	54.3594	28.2183	0.7642	11.2878	0.2413	0.1669	0.0823	99.7105	-16094	-35912	-100	R-18-04 F		27
1171.	4.7635	53.5738	27.9098	0.8455	10.7388	0.2634	0.1579	0.1068	98.3596	-4858	-39813	-90		11.292	28
1172.	5.8262	58.3067	24.4532	1.2673	7.8643	0.6774	0.1213	0.2666	98.783	-4889	-39804	-94	R-18-04 F		29
1271.	5.7362	56.8723	25.8868	0.9652	8.8187	0.4262	0.1098	0.1431	98.9583	-8513	-40020	-107	R-18-04 F		30
12/2.	4.7616	62.6805	14.693	5.5353	3.4255	2.2813	0.4993	1.6564	95.5329	-8518	-40020	-111	R-18-04 F		31
1371.	4.4246	53.2035	28.8511	0.6883	11.6866	0.2001	0.133	0.0559	99.243	6847	37836	408	B-18-10 F	11.4183	32
13/2.	4.3861	52.5237	28.7185	0.7559	11.6901	0.2326	0.1395	0.0738	98.5201	7177	37740	412	B-18-10 F		33
13/3.	2.9675	50.1766	31.5955	0.7061	14.593	0.1598	0.1383	0.0495	100.386	7232	37782	409	B-18-10 F		34
1374.	5.0874	58.9331	22.7316	2.3649	7.4667	1.0313	0.1591	0.754	98.5279	7246	37796	410	B-18-10 F		35
14 / 1.	5.0378	54.7182	27.8931	0.9136	10.5119	0.3039	0.088	0.1021	99.5686	7485	37854	411	R-18-10 P	11.4181	36
14/2.	4.9777	54.6916	28.1065	0.8283	10.6091	0.2629	0.1067	0.0735	99.6563	7477	37847	410		11.4194	37
1571.	5.4009	53.8852	27.5899	0.6563	10.7586	0.2708	0.132	0.085	98.7787	20666	40016	439	R-18-10 P		38
15/2.	4.2971	52.7776	29.2651	0.6887	11.9804	0.1763	0.1339	0.0586	99.3778	20513	39956	441	R-18-10_P		39
15/3.	4.5586	53.6074	28.4052	0.7024	11.4913	0.1869	0.1335	0.0763	99.1615	20388	39931	441	R-18-10 P	11.4	40
1671.	5.2284	62.0746	22.7455	1.0563	7.2696	0.5238	0.0882	0.2376	99.2241	18131	41055	439	R-18-10 P		41
16/2.	4.9581	54.472	27.9801	0.9352	10.7857	0.2825	0.0743	0.0753	99.5631	18131	41051	441	R-18-10_P		42
1771.	4.5857	54.1394	28.444	0.6876	11.5381	0.2131	0.1306	0.0703	99.8086	10896	34471	397	R-18-10_P		43
1772.	4.5399	53.703	28.7574	0.6534	11.4689	0.231	0.1366	0.0502	99.5403	10828	34595	399	R-18-10 P	11.435	44
17/3.	4.5857	54.0507	28.405	0.6793	11.3528	0.2103	0.1382	0.0782	99.5003	10794	34635	399	R-18-10 P		45
1871.	6.9936	60.1014	25.1049	0.3151	6.6701	0.5581	0.0156	0.0294	99.7882	-8174	20412	308	B-16-01 F	11.1586	46
18/2.	5.9296	57.4211	26.8854	0.4782	8.7176	0.3579	0.0255	0.0487	99.8641	-8122	20295	311	B-16-01 F		47
1971.	6.4621	57.8392	25.7527	0.3526	7.7924	0.3686	0.019	0.0508	98.6375	-11491	14519	263	R-16-01 P		48
1972.	5.6743	56.3785	27.0256	0.4781	9.2281	0.2618	0.0402	0.0528	99,1395	-11592	14519	259	R-16-01 P		49
20/1.	5.7564	61.8685	15.721	7.8265	2.6521	1.3042	0.7996	1.7778	97.706	-11885	13660	254	R-16-01 P		50
20/2.	6.7414	60.5444	24.8411	0.7572	6.7157	0.6369	0.0428	0.0875	100.367	-11868	13695	254	R-16-01 P		51
21/1.	5.4937	56.8422	20.2618	4.1733	7.8616	0.7246	1.8016	0.2772	97.4358	-12197	14176	258	R-16-01_P		52
21/2.	6.43	58.7634		0.7801	7.0042	0.8636	0.0287	0.0845	99.2186	-12213	14155	259	R-16-01 P		53

Appendix B-3: Oregon State University Electron Microprobe data: Oxide %

Point	Na	Si	AL	Fe	Ca	К	Mg	Ti	0	X	Y	Z	Comment	Mean Z	Point#
171.	209	378	188	396	278		160	182		16997	-5366	209	TMR-18-08_Plag1	12.1578	1
1/2.	229	383	198	409	283	214	155	182		16803	-5519	206	TMR-18-08_Plag1	12.6848	2
271.	248	378	266	385	343	217	91	180		19133	-10495	180	TMR-18-08_Plag2	11.566	3
272.	245	373	261	365	338	208	92	183		18572	-10481	175	TMR-18-08_Plag2	11.6397	4
2/3.	259	383	251	366	316	213	91	184		18067	-10608	176	TMR-18-08_Plag2	11.5847	5
371.	242	373	254	359	340	214	92	183		20206	-15319	149	TMR-18-08_Plag3	11.6896	6
372.	254	384	256	348	334	210	92	182		19896	-15359	146	TMR-18-08_Plag3	11.6363	7
373.	277	378	254	360	297	213	92	180		19570	-15384	146	TMR-18-08_Plag3	11.4009	8
471.	268	373	247	347	317	214	89	179		12366	-25656	57	TMR-18-08_Plag4	11.4926	9
472.	288	369	241	359	310	211	90	177		12518	-25806	57	TMR-18-08_Plag4	11.3491	10
571.	284	377	251	356	327	216	90	181		12989	-25687	59	TMR-18-08_Plag5	11.3078	11
572.	273	377	254	351	318	214	90	181		13001	-25699	59	TMR-18-08_Plag5	11.4972	12
573.	301	376	248	355	310	217	91	177		13009	-25704	57	TMR-18-08_Plag5	11.3364	13
671.	263	367	250	355	333	210	88	178		6471	-38900	-48	TMR-18-08_Plag6	11.1954	14
672.	292	368	245	353	297	209	88	177		6472	-38908	-45	TMR-18-08_Plag6	11.2345	15
771.	244	368	259	368	333	220	92	184		-23495	-8050	80	TMR-18-04_Plag1	11.7041	16
772.	282	373	253	356	308	208	91	183		-23345	-8188	79	TMR-18-04 Plag1	11.4649	17
871.	241	381	265	348	302	212	93	183		-8605	-5855	142	TMR-18-04_Plag2	11.6144	18
872.	282	376	253	357	325	214	92	182		-8802	-5655	148	TMR-18-04_Plag2	11.3467	19
8/3.	270	384	250	352	331	209	93	181		-8766	-5502	148	TMR-18-04 Plag2	11.6015	20
8/4.	272	383	257	361	316	216	91	183		-8795	-5465	146	TMR-18-04 Plag2	11.4475	21
971.	295	383	254	343	305	215	91	181		-15542	-36024	-102	TMR-18-04 Plag3	11.3714	22
9/2.	267	381	258	358	333	213	92	182		-15748	-35988	-101	TMR-18-04 Plag3	11.5575	23
9/3.	270	382	263	347	319	214	90	182		-15799	-35943	-98	TMR-18-04 Plag3	11.4769	24
1071.	267	369	251	345	332	213	90	180		-16051	-35888	-101	TMR-18-04 Plag4	11.5221	25
10/2.	283	380	249	360	339	214	90	177		-16078	-35902	-99	TMR-18-04_Plag4	11.4323	26
1073.	275	376	246	354	315	215	88	176		-16094	-35912	-100	TMR-18-04 Plag4	11.4582	27
1171.	291	371	252	352	296	211	91	179		-4858	-39813	-90	TMR-18-04 Plag5	11.292	28
11/2.	301	388	247	357	306	215	90	180		-4889	-39804	-94	TMR-18-04 Plag5	11.2536	29
1271.	302	384	249	352	302	215	90	179		-8513	-40020	-107	TMR-18-04 Plag6	11.2693	30
1272.	295	402	224	385	283	238	92	188		-8518	-40020	-111	TMR-18-04_Plag6	11.323	31
1371.	284	394	252	359	322	211	91	180		6847	37836	408	TMR-18-10 Plag1	11.4183	32
1372.	280	380	252	362	310	207	90	180		7177	37740	412	TMR-18-10_Plag1	11.3514	33
1373.	263	381	253	345	343	206	91	182		7232	37782	409	TMR-18-10_Plag1	11.7127	34
1374.	293	383	241	356	328	222	91	183		7246	37796	410	TMR-18-10 Plag1	11.3823	35
1471.	294	370	245	358	318	210	91	176		7485	37854	411	TMR-18-10 Plag2	11.4181	36
14/2.	284	383	246	346	320	215	89	176		7477	37847	410	TMR-18-10 Plag2	11.4194	37
1571.	295	375	239	355	339	208	89	178		20666	40016	439	TMR-18-10 Plag3	11.3134	38
1572.	277	372	246	341	319	217	89	179		20513	39956	441	TMR-18-10 Plag3	11.4486	39
1573.	284	373	249	343	296	212	91	177		20388	39931	441	TMR-18-10 Plag3	11.4	40
1671.	299	387	233	339	335	214	90	180		18131	41055	439	TMR-18-10 Plag4	11.2383	41
1672.	295	381	254	362	300	216	92	183		18131	41051	441	TMR-18-10 Plag4	11.4333	42
1771.	280	370	243	349	310	211	90	177		10896	34471	397	TMR-18-10 Plag5	11.4721	43
1772.	287	377	245	346	301	212	89	179		10828	34595	399	TMR-18-10 Plag5	11.435	44
1773.	281	370	249	347	318	215	89	178		10794	34635	399	TMR-18-10 Plag5	11.4274	45
1871.	317	382	239	346	310	219	89	180		-8174	20412	308	TMR-16-01 Plag1	11.1586	46
18/2.	313	376	253	339	325	216	90	180		-8122	20295	311	TMR-16-01_Plag1	11.2949	47
1971.	309	378	241	335	307	210	88	174		-11491	14519	263	TMR-16-01 Plag2	11.0945	48
19/2.	295	381	244	362	308	206	90	178		-11592	14519	259	TMR-16-01 Plag2	11.2414	49
20/1.	315	388	218	385	296	228	90	186		-11885	13660	254	TMR-16-01_Plag3	11.7058	50
20/2.	316	381	239	351	321	217	88	176		-11868	13695	254	TMR-16-01 Plag3	11.2832	51
21/1.	303	371	225	376	321	218	97	181		-12197	14176	258	TMR-16-01 Plag4	11.4385	52
21/2.	312	386	239	372	289	217	88	180		-12213	14155	259	TMR-16-01 Plag4	11.1937	53

Appendix B-4: Oregon State University Electron Microprobe data: Det. Lim (ppm)

Point	Na	Si	AI	Fe	Ca	к	Mg	Ті	0	Total	х	Ŷ	z	Comment	Mean Z
1/1.	2.5553	23.7898	16.3997	0.3463	9.7144	0.0986	0.0836	0.028	46.6532	99.6689	-9528	27462	324	LABR	11.5437
1/2.	2.593	24.2102	16.5787	0.352	9.8099	0.0872	0.0829	0.0332	47.3449	101.0918	-9506	27462	324	LABR	11.7048
1/3.	2.549	24.0735	16.3665	0.3663	9.7692	0.0861	0.0845	0.0341	46.9745	100.3037	-9505	27480	324	LABR	11.6194
1/4.	2.5454	23.9177	16.3278	0.3562	9.8278	0.0859	0.0801	0.03	46.7761	99.9471	-9493	27497	324	LABR	11.5839
1/5.	2.5272	24.208	16.2832	0.3158	9.6687	0.0862	0.0805	0.025	46.9827	100.1773	-9476	27507	324	LABR	11.5899

Appendix B-5: Oregon State University Electron Microprobe data: LABR standard (weight %)

Appendix C: Sample Locations

Sample ID	Latitude	Longitude	Elevation (ft)
TMR-16-01	44.090049	-121.63217	6703
TMR-16-02	44.089717	-121.63304	7146
TMR-16-03	44.089216	-121.63400	7278
TMR-18-03	44.091360	-121.63790	7579
TMR-18-04	44.090660	-121.63733	7483
TMR-18-05	44.094900	-121.63371	6778
TMR-18-06	44.100360	-121.65291	7378
TMR-18-07	44.099860	-121.65322	7250
TMR-18-08	44.100520	-121.65323	7437
TMR-18-09	44.100610	-121.65377	7500
TMR-18-10	44.100260	-121.65546	7532