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The broadband wireless interference in a computer platform is resulted by multiple 

electro-magnetic emission sources. This non-Gaussian interference is proved to be 

double-sided K-distributed in previous research. With the limitation of transmission 

power and dimension of the device, interference mitigation is an efficient way to improve 

received signal bit error rate (BER). When applied on the double-sided K-distributed 

interference in the presence of Gaussian noise, traditional interference/noise cancellation 

schemes are not able to produce satisfactory results. In this thesis, our target is to find an 

interference mitigation method with improved BER performance. By introducing a new 

criterion of goodness, i.e. the cross-cumulant, the new adaptive algorithm based on higher 

order statistics (HOS) is designed to reconstruct and to cancel the interference in a 

recursive fashion. It is proved to be effective on both experimental binary transmission 

system and the OFDM system which is widely applied in modern mobile communication 

devices. Compared to the previous cancellation method, the BER performance is 

improved considerably. 
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Chapter 1-Introduction 

In recent years, electronic devices with wireless connection become more and more 

widely used in people’s daily life. Apart from the most commonly used laptops and cell 

phones, there are tablets, smart phones, digital players and even cameras that are 

integrated with WIFI, Bluetooth or cellular connections. Advanced wireless standards 

like 802.11b/g/n or 4G LTE are making all kinds of devices communicate with the speed 

of hundreds of megabits per second [1][2]. Users of these communication devices are 

always asking for a better performance. Only those products with fast transmission rate, 

light weight and long battery life will attract consumers, and all these characteristics 

require a well-engineered wireless system with most efficient design. 

However, noise and interference always prevent a system to be a perfect one. Noise can 

be generated in any radio transmission/receiving circuits or in transmission channels. 

Nowadays many wireless devices transmit signals using multiple connections methods 

and sharing bandwidths, making it impossible to isolate each link completely, then 

interference becomes inevitable.  Once fast rate and low error is required simultaneously, 

high transmitted power is needed to overcome the noise and interference. Unfortunately, 

sometimes transmitted power cannot be set as high as we want. In table 1.1 the Federal 

Communications Commission (FCC) has set a series of standards to limit the emission 

power of personal digital devices in order to prevent significant interference and human 

health issues [3], and it is predictable that with the rapid-growing usage of mobile 

wireless devices the regulations can get even stricter. Another problem, caused by raising 
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the transmitted power, is that it will shorten the battery life. Higher voltage will drain the 

battery more quickly, resulting in greater battery size and weight. 

 

Table 1.1 FCC emission regulations for unintended radiator 

Since high transmission power is not an option for the cases stated above, a solution for 

noise/interference cancellation is needed to achieve the required transmission perfor-

mance. Even through regulations have been made to limit the electromagnetic emission 

of electronic devices in table 1.1, they are in terms of relatively long distance, i.e., 3m or 

10m [3]. So these regulations are made in order to make sure devices will not interfere 

with each other. However, as the circuits integrated in larger scale, emission sources get 

closer and with smaller dimension. According to FCC’s regulation, the radio circuit 

cannot be protected from the interference which is emitted by the device itself.  This 

thesis tries to solve the problem by finding an algorithm that cancels the interference 

emitted inside a computer platform.  

By computer platform we mean a platform with all components that may appear in an 

electronic computation device like a laptop or tablet, which include crystal clocks, CPUs, 

Class A digital device at distance of 10m 

Frequency of emission (MHz) Field strength(μV/m) 

30-88 

88-216 

216-960 

Above 960 

90 

150 

210 

300 

Class B digital device at distance of 3m 

Frequency of emission (MHz) Field strength(μV/m) 

30-88 

88-216 

216-960 

Above 960 

100 

150 

200 

500 
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RAM, hard drive, interconnect ports and so on. The electromagnetic emission produced 

by them can be the interference of a wireless transmitter/receiver which is also included 

in the same platform. All these interferences can be sorted into 2 categories: narrowband 

noise and broadband noise. The frequency spectrum of narrowband noise lies within the 

frequency span of the signal of interest, and the noise often appears as that whose peak 

amplitude is much greater than the signal of interest. Narrowband noise is generated by 

clocks of a certain frequency. The broadband noise, however, is the combination of 

several electromagnetic emissions, with a bandwidth that is wider than the antenna 

receiving bandwidth [4]. The central limit theorem is no longer applicable for this case so 

the broadband interference has a non-Gaussian behavior. This interference is modeled as 

a noise signal whose probability density function (PDF) as a double-sided K-distribution 

[28]. 

To mitigate interference, 3 main approaches are listed as follows [5] [6]: 

a) Suppress the interference at the emission source 

b) Decouple the transmission path and interference source 

c) Mitigation at the receiving end  

The first approach is the “first line of defense”. It tries to suppress the interference at 

source as much as possible using methods like using optimized digital pulse signal. Since 

radiation source components in a platform are usually designed separately, the source 

emission is not always carefully optimized for the platform as a whole. To make the 

coupling path inefficient, the most common method is to shield the receiver with a metal 
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enclosure. However, this is not always possible because of the weight, size and cost 

requirement of modern wireless products. In this thesis, we use approach of c), that is, we 

try to find a technique that can be applied in the receiver to cancel the interference signal. 

This approach can be cost-effective and easy to implement in a mobile computer 

platform.  The basic idea is to first estimate the interference and then subtract the 

estimated interference signal from the actual received signal. If a good estimation is 

made, the outcome will have a better bit error rate (BER) performance. 

Here we try to find an interference mitigation mechanism for an OFDM system and 

implement the cancellation algorithm on a typical OFDM receiver. OFDM stands for 

Orthogonal Frequency Division Multiplexing, whose message symbols are separately 

modulated by a series of subcarriers orthogonal to each other. The advantage of this 

technique is that each modulated subcarrier only occupies a very small bandwidth, so it is 

robust with frequency selective fading and multipath fading [14]. With the help of the 

pilot symbol inserted in each symbol frame, the fading channel issue stated above can be 

solved in a wireless system. And since each subcarrier is orthogonal, a MIMO (Multiple 

Input Multiple Output) system can be realized with OFDM. Because of the advantages 

stated above, it is widely used in modern wireless communication standards including 

IEEE 802.11a/g/n, IEEE 802.16, DVB-T and Long Term Evolution (LTE) [5].  Since an 

OFDM system is somewhat sensitive to the inter-carrier interference produced by carrier 

frequency shift and channel noise, there are many studies on channel estimation and 

interference cancellation schemes. M. Chang in [15] presented a method of channel 

estimation based on least-squares (LS) and minimum mean-square estimation (MMSE). 
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This method estimates the channel impulse response using the accurate response at the 

pilot point, which is known to the receiver. L.Davis in [16] constructed a state-space 

model for the fading channel and used it for a maximum a posteriori (MAP) equalizer to 

estimate the Channel. In [17] the author stated a method to estimate and cancel the 

Gaussian noise at the receiver. It first assumes the noise after the receiver still has a zero 

mean but it is correlated. Then use the correlation matrix of the noise and the sampled 

correlation vector in the Yule-Walker equation to obtain the estimates of the coefficient 

of an FIR filter. After that the FIR filter reconstructs the estimate of the noise. J.S.Dhanoa 

in [18] presented a blind estimation of noise with minimum information by an 

Evolutionary Algorithm (EA). EA is an iterative algorithm that imitates biological 

evolution. A pool of possible estimates of the noise is randomly generated and a certain 

amount of the value of the estimation can be exchanged with each other during an 

iteration. In each generation, the one with worst match of the actual noise is eliminated 

and finally the iteration converges to an optimized value.  

 E. Alban [5] presented several estimation and mitigation methods for this particular case. 

For the narrow band case, a Normalized Linear Mean Square (NLMS) adaptive filter can 

be used to predict and cancel the interference signal and it is proved to be efficient. The 

BER can be improved by as much as 10dB.  For the broadband case, several different 

methods were applied but the results were not satisfactory. Since the distribution of the 

interference is already known, to estimate the parameters is the most direct approach.  

The Method of Moment (MoM) is the one which has low complexity, but its performance 

depends on the sample size, while only limited number of pilot symbols in an OFDM 
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symbol frame can be used for estimation. For the special case of K-distribution the 

Fractional Moments [7] method can produce an estimate with lower variance by 

introducing a new ratio of two moments with different order and cancel the b parameter. 

Another method that can achieve similar accuracy is described in [8] by Blacknell and 

Tough. We estimate   by the empirical estimation of
2 logX X , 2X  and log X  , in 

which X is the double sided K-distributed random variable. A Maximum Likelihood 

(ML) estimator can also be obtained by maximizing the log-likelihood equation, but a 

close form of solution cannot be obtained [8].  Based on Iskander et al.’s method to 

derive a close form expression for one parameter [9], a new method is developed in [6] 

which has a close form expression for both parameters of K-distribution by approxi-

mating the modified Bessel function of the second kind with a much simpler form. By 

Monte Carlo simulation the new method outperformed the other methods mentioned 

above when the number of samples is small.  Other parameter estimation methods include 

the EM algorithm [10][11] and neural network methods [12][13]. 

In order to mitigate the broadband K-distributed interference, a method using an extended 

Kalman filter is presented in [5].  First a state-space model describing the K-distributed 

interference is required to apply the Kalman filter [19].  E. Alban derived this state-space 

model following the procedure introduced by Field and Tough in [20].  The vector form 

of a stochastic differential equation (SDE) is derived based on the fact that a double-sided 

K-distribution random variable can be expressed as the product of a Gaussian random 

variable and a square-rooted Gamma random variable [21]. These two random variables 

can be generated by a stochastic differential equation separately, so the product of them 
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can be expressed by SDE using Ito’s formula. After the SDE is found, the difference 

equation can be obtained using Euler’s method. An extended Kalman filter is built based 

on the state-space model as described in [5][19]. This method is proved to be functional 

as it can lower the BER in a baseband equivalent OFDM receiver simulation. 

Unfortunately, its efficiency is questionable. From the results in [5], we can see that the 

improvement of the BER is around 5dB in the best of the cases, and the absolute value of 

BER is between 0.1 and 0.01, which is not acceptable in an actual OFDM system. 

In this thesis, a new method using an adaptive filter is presented to improve the method 

stated above. An adaptive filter requires minimum knowledge of the interference signal 

and updates the filter coefficients according to certain “criterion of goodness”. It works in 

an iterative fashion and converges if the step size coefficient is selected judiciously. 

Compared to the Kalman filter stated above, adaptive filters are more widely applied to 

multiple kinds of interference signals. The application of adaptive algorithms to wireless 

communication systems has been widely studied. In [22] M. Lee presents a design of a 

repeater that reproduces the channel interference in an OFDM wireless system and tries 

to cancel this interference at the receiver. The repeater uses an adaptive algorithm to 

control an FIR transversal filter that predicts the channel interference. The error of the 

predicted signal (which includes the interference) is compared with the actual signal seen 

at the receiver, which is the “criterion of goodness” to input to the adaptive algorithm. M. 

Kinoshita et al. applied an adaptive filter in an OFDM system in [23]. An “adaptive 

prefix” is added at the beginning of each OFDM symbol frame just like the cyclic prefix. 

For the time interval that the “adaptive prefix” is transmitted, the adaptive algorithm 
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updates the FIR filter coefficients to predict the noise. Assuming the coefficients have 

already converged to their stable state, the adaptive algorithm is shut off when the 

adaptive prefix transmission is finished and the actual OFDM symbols arrive. An 

adaptive Wiener filter is used in [24] for channel estimation. In order to have the estima-

tion of the channel frequency response, the author first obtains an accurate response of 

the transformed domain from the location where pilots are inserted.  Then inverse 

transforms it to the time domain.  Both Normalized Least-Mean-Square (NLMS) and 

Recursive Least-Square (RLS) algorithms are applied to the adaptive filter to predict the 

actual channel impulse response. In [25], T. Zhang et al. combine a Volterra adaptive 

filter and an LMS filter to cancel the inter-carrier interference (ICI) in an OFDM receiver.      

A new adaptive algorithm is presented in this thesis and is applied to an OFDM receiver. 

An adaptive algorithm using higher order statistics are first presented in [26] by D. C. 

Shin and C. L. Nikias. Instead of using statistics of second order as the “criterion of 

goodness” like usual adaptive algorithms do (LMS, NLMS, Leaky LMS and so on), this 

algorithm uses a higher order statistics, i.e. the cumulant. Two advantages of this method 

make it a good candidate for the cancellation of wideband K-distributed interference here. 

First, since Gaussian noise and K-distributed interference coexist in the platform noise, it 

is important to minimize the effect of Gaussian noise in the canceller. Fortunately, 

Gaussian noise’s cumulant of third order above is equal to zero [27], so it will not 

influence the performance of the canceller. Second, in [26] the author showed that this 

algorithm can be used in both narrowband and wideband case, with no prerequisite of the 

type of noise. That means it may work better on non-Gaussian, wideband interference 
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compared to traditional adaptive algorithms like LMS and RLS. The only drawback of 

this algorithm is that it achieves better performance over traditional adaptive algorithms 

at the expense of more computations, but we can shorten the computation time by 

parallelism or efficient VLSI implementation. In this thesis we chose the fourth-order of 

cumulant as the “criterion of goodness” to achieve a balance of computation complexity 

and cancellation performance. Similar to what is done in NLMS, the cancellation is 

performed in a normalized fashion to achieve more stable performance for difference 

input signals. 

The fourth-order statistics (FOS) adaptive canceller can be implemented in an OFDM 

receiver by assuming that a reference signal can be collected by another antenna in the 

platform. As a result of difference locations and properties of the reference antenna and 

receiving antenna, the reference signal is different than the K-distributed interference in 

both time and frequency domains. However, with the help of the adaptive algorithm 

stated above, the FOS canceller can reconstruct an estimate of the K-distributed 

interference and cancel it out at the output. Since the OFDM signals are modulated from 

QAM symbols that include in-phase and quadrature components, we need 2 FOS 

cancellers in the system to do the cancellation as this canceller cannot work with complex 

signals. Using computer simulation we can show that this canceller is very effective with 

or without the existence of Gaussian noise. Even though the BER performance is not very 

stable at low SNR, the FOS canceller outperforms the extended Kalman filter described 

in [5] by achieving a lower BER with multiple input SNR.  



10 
 

 

The thesis is organized as follows: in Chapter 2 we show the basic nature of noise 

cancelling filters and adaptive filter algorithms. Mathematical principles of the adaptive 

filter is introduced and analyzed.  In Chapter 3 we focus on the specific problem. First, 

the derivation and properties of double-sided K-distributed interference is introduced. 

Then we present the concept of cumulant and the structure of a high order cumulent 

adaptive algorithm. Next in Chapter 4 the design of FOS canceller and the implement-

tation on a typical OFDM system is presented. The canceller performance is verified via 

the computer simulation. In Chapter 5 we conclude the thesis and propose some future 

work that can be done using FOS-based canceller. 
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Chapter 2-Theory of Noise/Interference Cancellation Filters 

The estimation of a random signal from another given signal is one of the most important 

problems in signal processing. As this technique can be applied to multiple fields 

including speech recognition, radar detection or image reconstruction, it has been studied 

since the 1940s. The cancellation of random noise or interference is also part of the 

application of random signal estimation, because the noise can be subtracted from the 

corrupted signal if a good estimate is available. A digital low-pass, high-pass or band-

pass filter may work on some ideal occasions, but they are rarely the optimum choice. 

That is why multiple new estimation and prediction filters are designed, including digital 

Wiener filter and discrete Kalman filter. However, with all these specially designed 

estimation filters, there are still some problem that cannot be solved since all these filters 

need some additional requirements of the noise or interference signal.  An adaptive filter 

may be applied on those occasions. It works in an iterative way and requires minimum 

knowledge of the input signal   

A typical random signal estimation problem is modeled as follows: suppose there is a 

random process [ ]s n that is of our interest. However, the observation of this process [ ]x n  

is corrupted by another random signal [ ]v n , that is: 

[ ] [ ] [ ]x n s n v n                                                          (2.1) 

In order to retrieve [ ]s n , a digital filter is applied to the observation-based signal [ ]y n  to 

produce [̂ ]s n , the estimate of [ ]s n . [ ]y n  depends on the actual design of a specific filter 
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application. To make the estimation [̂ ]s n accurate, we need to optimize a “criterion of 

goodness”. A very straightforward idea should be the estimation error 

                                                 ˆ[ ] [ ] [ ]e n s n s n                                                      (2.2) 

The structure of the estimation procedure is illustrated in Figure 2.1. This filter structure 

can be used for: 

a) Filtering/Smoothing: to estimate [ ]s n given current, past or future values of [ ]x n , 

as stated above. If future values are used, i.e., ( )H z  is an non-causal filter, it is 

called smoothing instead of filtering  

b) Prediction: if [ ] [ 1]s n x n  , ( )H z  is a causal filter. When we use ( )H z to 

estimate [ ]s n  we are actually predicting [ ]x n  using its previous values. 

c) Deconvolution: if [ ] [ ]* [ ] [ ]x n s n g n v n  , retrieving [ ]s n  is a deconvolution 

operation. 

 

Figure 2.1 Estimation Filter Structure 
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Next we will introduce two widely used non-adaptive filters: Wiener filter and discrete 

Kalman filter. The former can be applied to estimate stationary random process, while the 

latter is applicable to non-stationary case as well. They are called non-adaptive because 

during the filtering procedure, no filter coefficient changes it value. Then adaptive 

algorithm will be introduced by mathematical analysis. The coefficients of an adaptive 

filter change through time to adapt the varying nature of input noise. 

2.1 Non-adaptive filtering 

2.1.1 Wiener filtering 

The design of an FIR Wiener filter was first introduced by Norbert Wiener in the 1940s. 

This design assumed that [ ]x n  and [ ]s n  are jointly wide-sense stationary (WSS) with 

autocorrelations [ ]xr k and [ ]sr k , respectively, and the cross-correlation [ ]sxr k . [ ]xr k , [ ]sr k

and [ ]sxr k  are assumed known. To find the optimum filter coefficients of ( )W z , this filter   

tries to minimize the mean-square error (MSE). In other words, Wiener filter uses the 

“criterion of goodness” as follows: 

2
{ [ ] }E e n  ,                                                      (2.3) 

where [ ]e n is defined in Eq. 2.2. 

Assuming we have an N th order filter with transfer function: 

1

0

( ) [ ]
N

n

n

W z w n z






                                                  (2.4) 
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We need to find the value of ( )w n  that minimizes  . 

If [ ]x n is the input of the filter, the output estimation of [ ]s n  is the result of the following 

convolution: 

1

0

[̂ ] [ ] [ ]
N

l

s n w l x n l




                                                 (2.5) 

In order to minimize the MSE, we need set the derivatives of   with respect to *[ ]w k  

equal to zero, for 0,1,2,...,k N , i.e. 

* *

* * *
{ [ ] [ ]} { [ ] [ ]} 0

[ ] [ ] [ ]
E e n e n E e n e n

w k w k w k


  
  

  
                 (2.6) 

From Eq. 2.2 and 2.5 it follows that 

1
* * * *

0

[ ] [ ] [ ] [ ]
N

l

e n s n w l x n l




                                         (2.7) 

Then we have  

* *

*
[ ] [ ]

[ ]
e n x n k

w k


  


                                          (2.8) 

Substituting Eq. 2.8, 2.5 and 2.2 into Eq. 2.6 we have 

1
*

0

{ [ ] [ ] [ ] [ ] *[ ]} 0
N

l

E s n x n k w l x n l x n k




                              (2.9) 



15 
 

 

Notice that *{ [ ] [ ]} [ ]sxE s n x n k r k   and *{ [ ] [ ]} [ ]xE x n l x n k r k l    . With the WSS 

assumption stated before, we now have 

1

0

[ ] [ ] [ ], 0,1,2,...,
N

x sx

l

w l r k l r k k N




   ;                             (2.10) 

This is a set of N linear equations. We can represent them in matrix form 

x sxR w r                                                      (2.11) 

Rx is an N by N Hermitian Toeplitz matrix. The element at the ( , )m n  position is 

[ ]xr m n . w is a 1 by N column vector of filter coefficients. sxr  is a 1 by N column vector 

and the n th value of it is [ ]sxr k . Eq. 2.11 is called Wiener-Hopf equation. By solving this 

equation we can have the optimized coefficients of a Wiener filter 

1

x sx

w R r                                                                             (2.12) 

And we can obtain the minimum mean-square error by substituting Eq. 2.12 into Eq. 2.3 

1
* 1

min

0

(0) [ ] [ ] (0)
N

H

d dx d sx x sx

l

r w l r l r






    r R r                        (2.13) 

The superscript H stands for Hermitian transpose. 

As stated above, Wiener filtering design can be applied to multiple tasks including 

filtering, linear prediction and noise cancellation. The approach of noise cancellation by 

Wiener filter can be further developed to the method we use in this thesis for interference 

cancellation. Unlike the filtering problem presuming the autocorrelation of the noise is 
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known, the noise-cancellation problem need a reference signal input, generated by a 

secondary receiver or sensor. The reference signal is not equal to the noise itself but has 

to be correlated to it. This may be the result of the difference of sensor characteristics, 

propagation path or any other reasons depend on the actual application. Then a noise 

canceller with the structure illustrated in Figure 2.2 can be designed: 

 

Figure 2.2: Noise canceller with Wiener filter 

If we denote the actual noise as 1[ ]v n  and the reference signal as 2[ ]v n , we will have the 

noise-corrupted signal as 

1[ ] [ ] [ ]x n s n v n  ,                                              (2.14) 

where [ ]s n is the signal of interests. We try to use the Wiener filter to estimate the actual 

noise 1[ ]v n from the reference signal 2[ ]v n . That is, we estimate [ ]s n  by 

1
ˆ ˆ[ ] [ ] [ ]s n x n v n                                                 (2.15) 

The Wiener-Hopf equation for the noise canceller can be derived directly from the 

Wiener-Hopf equation of the Wiener filter. By comparing the structure of the noise 
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canceller and the Wiener filtering problem discussed before, we can use the Wiener-Hopf 

equation of the filter 

2 1 2v v vR w r                                                      (2.16) 

The k th element of 
1 2v vr  is 

1 2

* * *

1 2 2 2[ ] { [ ] [ ]} { [ ] [ ]} { [ ] [ ]}v vr k E v n v n k E x n v n k E s n v n k     
    

    (2.17) 

If we assume that [ ]s n is uncorrelated with 2[ ]v n (which makes sense because the noise 

should not be statiscally related with the transmitted signal), then 

*

2{ [ ] [ ]} 0E s n v n k                                              (2.18) 

And it follows that 

1 2 2

*

2[ ] { [ ] [ ]} [ ]v v xvr k E x n v n k r k                                  (2.19) 

So the Wiener-Hopf equation of this noise canceller is 

2 2v xvR w r                                                   (2.20) 

By solving this function we will be able to find the optimum filter coefficients that 

produce the minimum MSE estimation of the signal of interest.  

The design of a Wiener noise canceller, together with the idea of using a reference signal 

input, is widely applied to create other more complicated noise/interference cancellation 
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systems especially the cancellers with an adaptive algorithm, which will be presented 

later in this thesis. 

2.1.2 Discrete Kalman filter    

While a Wiener filter can produce a minimum MSE estimation by a relatively simple and 

stable structure, its drawback is obvious. It requires that both the signal of interest [ ]s n

and the observation [ ]x n  be jointly WSS with the knowledge of autocorrelation and 

cross-correlation. Unfortunately for most practical cases, WSS is not guaranteed. A 

discrete Kalman filter can be designed to solve the problem. Working in a recursive 

fashion, the discrete Kalman filter predicts the upcoming input signal using the signal 

already received, and updates the estimate every time a new upcoming input signal is 

available.  The following derivation is based on the state-space model of [ ]s n , and 

assuming [ ]s n  is an auto-regressive (AR) process corrupted by a zero mean noise. The 

discussion starts with the stationary case but soon a more generalized result will be 

presented.  

Assuming that the signal of interests is a WSS AR(p) process generated by 

1

[ ] [ ] [ ] [ ]
p

k

s n a k x n k w n


                                          (2.21) 

the observation is 

[ ] [ ] [ ]x n s n v n                                                 (2.22) 
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  From Eqs. 2.21 and 2.22 we can construct the state-space model of the process 

[ ] [ 1] [ ]n n n  s As w                                            (2.23) 

[ ] [ ] [ ]Tx n n v n c s ,                                            (2.24) 

where 

 [ ] [ ] [ 1] [ 1]
T

n s n s n s n p   s  

(1) (2) ( 1) ( )

1 0 0 0

0 1 0 0

0

0 0 0 1 0

a a a p a p 
 
 
 
 
 
 
 

A  

 [ ] 1 0 0 0 [ ]
T

n w nw  

 1 0 0 0c  

The superscript T stands for transpose. 

Now, we update the estimate of [ ]ns as follows: 

ˆ[ ] [ 1] ( [ ] [ 1])Tn n x n n    s As K c As                             (2.25) 

K is a 1 by p constant vector called Kalman gain vector. Similar to a Wiener filter, we 

need to find the value of K that minimizes the MSE, i.e.,
2

ˆ{ [ ] [ ] }E n ns s . 
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We can generalize the result of Eq. 2.23 by substituting the constant matrix A  with a 

time-varying matrix [ 1]nA , and c becomes a time varying q by p matrix [ ]nc . Then [ ]ns

will be a non-stationary process but all the derivation and applications of discrete Kalman 

filter are still valid. Then Eqs. 2.24 and Eq. 2.25 become 

[ ] [ ] [ ] [ ]Tn n n n x C s v                                           (2.26) 

ˆ[ ] [ -1] [ 1] ( [ ] [ ] [ -1] [ 1])Tn n n n n n n    s A s K x c A s                  (2.27) 

If we denote ˆ[ | ]m ns  as the estimate of ˆ[ ]ms  at time m given the first n observations, then 

the corresponding estimation error is 

ˆ[ | ] [ ] [ | ]m n m m n e s s                                         (2.28) 

and the error covariance matrix is 

( | ) { [ | ] [ | ] }Hm n m n m nP = E e e                                   (2.29) 

The Kalman gain matrix K can be found in two steps: 

Step 1: Find ˆ[ | 1]n ns given ˆ[ 1| 1]n n s  and the corresponding error covariance matrix. 

Step2: Find the optimized ˆ[ | ]n ns  given the new observation [ ]nx . Optimization means to 

find K that minimizes the following MSE: 

2
[ ] { ( | ) } { ( | )}n E e n n tr n n   P                                   (2.30) 
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In step 1, we can make a prediction of [ ]ns from Eq. 2.23. Since the noise [ ]nw  is zero 

mean, the estimate of [ ]ns  based on the first n-1 observations is 

ˆ ˆ[ | 1] [ -1] [ 1| 1]n n n n n   s A s                                    (2.31) 

It follows that the estimation error is 

ˆ[ | 1] [ ] [ | 1] [ 1] [ 1| 1] [ ]n n n n n n n n n        e s s A e w              (2.32) 

Notice that if we assume ˆ[ 1| 1]n n s is an unbiased estimate, ˆ[ | 1]n ns  will also be 

unbiased since [ ]nw is zero mean. 

Now, since [ ]nw and [ 1| 1]n n e are uncorrelated, the correlation matrix of [ | 1]e n n is 

[ | 1] [ 1] [ 1| 1] [ 1] [ ]H

wn n n n n n n      P A P A Q ,                  (2.33) 

where [ ]w nQ  is the covariance matrix of the noise [ ]nw . 

In step two we try to find the expression of [ | ]n nP  so a minimum value can be found. 

We update the estimate of [ ]ns  by the following linear estimator: 

'ˆ ˆ[ | ] [ ] [ 1| 1] [ ] [ ]n n n n n n n   s K s K x                                 (2.33) 

First we need to make sure that ˆ[ | ]n ns  is still an unbiased estimate, because this is what 

we assumed in step one. We need this for the next iteration from ˆ[ | ]n ns  to ˆ[ 1| 1]n n s . 

The estimate error can be calculated as 
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'

' '

ˆ[ | ] [ ] [ ] [ 1| 1] [ ] [ ]

          [ [ ] [ ] [ ]] [ ] [ ] [ | 1] [ ] [ ]

n n n n n n n n

n n n n n n n n n

    

     

e s K s K x

I K K C s K e K v
        (2.34) 

We already know { [ | ]} 0E n n e and { [ ]} 0E n v , so if we set 

'[ ] [ ] [ ]n n n K I K C ,                                             (2.35) 

we will have { [ | ]} 0E n n e  and ˆ[ | ]n ns  is an unbiased estimator. 

Substitute Eq. 2.35 to Eq. 2.33 and 2.34 for simplicity, i.e. 

ˆ ˆ ˆ[ | ] [ | 1] [ ]( [ ] [ ] [ | 1])n n n n n n n n n    s s K x C s                        (2.36) 

[ | ] [ [ ] [ ]] [ | 1] [ ] [ ]n n n n n n n n   e I K C e K v                          (2.37) 

Similar to what we do in step one, we can have the error covariance matrix given the fact 

that [ ]nv is uncorrelated with [ | ]n ne , namely, 

[ | ] [ [ ] [ ]] [ | 1][ [ ] [ ]] [ ] [ ] [ ]H H

vn n n n n n n n n n n    P I K C P I K C K Q K ,    (2.38) 

where [ ]v nQ  is the covariance matrix for noise [ ]nv . 

Now, to find the value of [ ]nK that minimizes the MSE, we set the first order derivative 

of [ | ]}tr n n{P with respect to [ ]nK  zero, and find [ ]nK  as follows: 

[ ] [ | 1] [ ]( [ ] [ | 1] [ ] [ ])H H

vn n n n n n n n n   K P C C P C Q                  (2.39) 
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This completes the derivation of the Kalman gain vector, [ ]nK , at time n . For time 1n  , 

what needed to do is to update the estimation by taking into account the new observation 

[ 1]nx  and calculate the new [ 1]nK  . 

The only problem left is the initial condition. What we need is an unbiased estimate at 

time 0 without any observation. So it can be set as 

ˆ[0 | 0] { [0]}Es s                                                (2.40) 

Notice that in the discrete Kalman filter design, the Kalman gain matrix [ ]nK  and the 

error covariance matrix [ | ]n nP  are not functions of the actual signal of interest, [ ]ns . 

This implies 2 things: first, we can compute the Kalman gain matrix even before the 

filtering procedure starts. That means a discrete Kalman filter can be very computational 

effective, since we do not need to go through the complex derivation for each recursive 

time. On the other hand, this means that if we can do some real-time updating to the 

filtering procedure, we may achieve even better performance. 

2.2 Adaptive Filtering 

Almost every estimation and prediction technique, including Wiener filtering we 

discussed above, requires stationary signals. Unfortunately, most of practical filtering 

applications involve non-stationary signals. Apart from the discrete Kalman filter 

described in 2.1.2, adaptive filtering is another recursive method that can be applied to 

non-stationary processes. Unlike the discrete Kalman filter, an adaptive filter has the 

same basic structure as a FIR Wiener filter but it measures the estimation error in each 
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recursion and uses it to update the filter coefficient directly. Even for the stationary case, 

an adaptive filter is still advantageous at some point. In order to solve the Wiener-Hopf 

Eq. 2.11, we need to calculate the inverse of the autocorrelation matrix, 
xR . This may be 

computational costly for a filter with high order. Also, 
xR  can be almost singular, which 

may lead to an inaccurate calculation of 1

x


R . More importantly, in most cases we have no 

knowledge of the ensemble average of xR and sxr , so we need at least the first P 

measurements to complete the estimate using a time average (it is assumed the processes 

are ergodic). If an estimation of high accuracy is required, P needs to be large so a large 

time delay is introduced.  

2.2.1 Adaptive filter architecture 

Consider a Wiener filter for a WSS signal. The coefficient can be found by solving the 

Wiener-Hopf Eq. 2.11. However, if the input signal is non-stationary, we are not able to 

find the autocorrelation matrix xR and the cross-correlation matrix sxr . So, to solve for the 

Wiener coefficients for a non-stationary input, we need to solve the following modified 

Wiener-Hopf equation instead: 

[ ] [ ]x n sxn nR w r                                                     (2.41) 

And the optimized Wiener filter coefficients become time-varying, i.e. 

1

0

[̂ ] [ ] [ ]
N

n

k

s n w k x n k




  ,                                               (2.42) 
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where [ ]nw k  is the k th Wiener filter coefficient at time n . Unfortunately, it is difficult to 

design the time-varying filter directly since we need to optimize it at every iteration n . A 

better way to do this is through iteration. Instead of optimizing [ ]nw k  for all n at one time, 

we only need to update it recursively by 

1[ ] [ ]n n nk k  w w w                                            (2.43) 

As long as nw  moves towards the optimum direction, we will find an optimized 

solution after enough iterations (assuming the convergence condition is satisfied).  

The structure of a typical adaptive filter system is illustrated in Figure 2.3. 

The key component of an adaptive filter system is the adaptive algorithm block. This 

block has two inputs, one is the error signal and the other is some reference signal. In the 

special case depicted in Figure 2.3, they are the observation signal [ ]x n and the error 

signal ˆ[ ] [ ] [ ]e n s n s n  , respectively. In a later discussion we will see that these two 

signals can be different for different applications. Although the algorithm cannot find the 

optimized filter coefficients directly, it finds nw  that modifies the filter coefficients to 

have a better “criterion of goodness”, according to the knowledge of the error signal and 

the reference signal. For the stationary case, it will converge to the solution of the 

Wiener-Hopf equation. For the non-stationary case, the filter can adapt to the changing 

statistics and change the coefficient accordingly. 
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Figure 2.3 Block diagram for a typical adaptive filter system 

A typical FIR adaptive filter using minimum MSE estimation has the form illustrated in 

Figure 2.4 

 

Figure 2.4 An FIR adaptive filter 
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2.2.2 The steepest descent method 

The steepest decent method is one of the most commonly used iterative methods to find 

the optimized nw . The general idea of this method is as follows: If nw is the best 

estimate we have at iteration time n, then at iteration time n+1, we try to move nw toward 

the optimized direction for a short length. In a quadratic surface for instance, nw is 

moved in the direction of the maximum descent, i.e., the direction given by the gradient 

of the error, and the length moved is scaled by the step-size coefficient  . Even though 

this “movement” is only based on the current “location” of nw  and maybe is not toward 

the accurate optimization, it will bring nw  closer to the optimized point before next 

iteration.  

For an adaptive filter of order N, the gradient of the error is 

[ ] [ ] [ ]
[ ] ...

[0] [1] [ 1]

n n n
n

w w w N

  


   
   

    
                        (2.44) 

The gradient vector is always orthogonal to the contour of nw  in the current iteration. 

The gradient is towards the steepest ascent but what we need is its opposite direction. 

Thus, the way to find the nw is given as follows: 

1[ ] [ ] [ ]n nk k n    w w                                         (2.45) 

 The step-size coefficient  can be critical for the convergence behavior of an adaptive 

filter. If it is too small, the filter will take longer time to converge. But a large  will 
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cause it not to converge at all or introduce some other unstable issues.  For an adaptive 

filter with a stationary input, the coefficient will converge to the solution of Wiener-Hopf 

equation as long as the following condition is satisfied [19]: 

max

2
0 


  ,                                                  (2.46) 

where max  is the maximum eigenvalue of the autocorrelation matrix xR .  

Next we will find the convergence behavior or the “learning curve” of the error [ ]n  if 

the condition above is satisfied. We define the error vector nc as 

n n c w w ,                                                    (2.47) 

where nw  is the filter coefficient vector at iteration time n and w is the solution of 

Wiener-Hopf equation, i.e., the optimized coefficient vector. The eigenvalue factorization 

of xR  is given as 

H

x  R V V                                                   (2.48) 

Now if we define  

H

n nu V c                                                    (2.49) 

It follows that [15] 

1
22

min 0

0

[ ] (1 ) ( )
N

n

k k

k

n u k   




   ,                               (2.50) 
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where 0 ( )u k  is the k th element of the rotated error vector nu at time 0. 

nu  is still the error vector but in a transformed coordinate system with respect to the 

eigenvectors of  
xR . From Eq. 2.50 we can see [ ]n decays to the minimum value 

exponentially as long as (1 ) 1k  for all k . This condition is equivalent to the 

condition described by Eq.2.46. Notice that the derivation above is based on the fact that 

the input signals are WSS, so simply setting  to satisfy condition 2.46 will not guarantee 

convergence or stability in a practical application. This result will be improved in both 

LMS algorithm and the FOS algorithm which will be introduced later in this thesis.    

2.2.3 The LMS algorithm 

2.2.3.1 Algorithm and convergence condition  

A least mean-square (LMS) algorithm sets the error signal as follows: 

ˆ[ ] [ ] [ ]e n s n s n  ,                                             (2.51) 

and tries to minimize the mean-square error 

2
[ ] { [ ] }n E e n                                               (2.52) 

To apply the steepest descent method, we substitute [ ]n into Eq.2.45 and it follows that 

2 * *[ ] { [ ] } { [ ] [ ]} { [ ] [ ]}n E e n E e n e n E e n n      x               (2.52) 

Then Eq.2.45 becomes 
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*

1[ ] [ ] { [ ] [ ]}n nk k E e n n  w w x .                              (2.53) 

However, since we do not have any knowledge of the expectation *{ [ ] [ ]}E e n nx , the en-

semble average is needed for estimation, i.e. 

1
* *

0

1ˆ{ [ ] [ ]} [ ] [ ]
L

l

E e n n e n l n l
L





  x x                                (2.54) 

Then, if we set the initial condition 0 w 0 , the LMS algorithm can be described as 

1
*

1

0

[ ] [ ]
L

n n

l

e n l n l
L

 





   w w x                                  (2.55) 

In the simplest case, we set 1L   and use the one-point ensemble mean to estimate the 

expectation *{ [ ] [ ]}E e n nx . For an N th order adaptive filter, we need 1N  multipli-

cations and 1N   additions to calculate the N coefficients. After that, calculating the 

output signal needs N multiplications and 1N   additions. So the computational 

complexity is 2 1N   multiplications and 2N additions.  

The convergence condition given in Eq.2.46 can be further specified in an LMS adaptive 

filter. Unlike in the WSS input case discussed previously, [ ]n kw  is a random variable 

based on the estimation of *{ [ ] [ ]}E e n nx , so the convergence property of it should be 

studied within a statistical framework. That is, instead of studying the condition that 

[ ]n kw converges to a certain value, we study the expectation of [ ]n kw  . For simplicity, in 

following derivation we assume 1L  . It follows Eq.2.55 that 
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*

1 ( [ ] [ ]) [ ]T

n n ns n n n   w w w x x                                   (2.56) 

Taking the expected value for both sides, yields 

*

1

* *

{ } { } {( [ ] [ ]) [ ]}

             { } { [ ] [ ]} { [ ] [ ]} { }

             ( ) { }

T

n n n

T

n n

x n sx

E E E s n n n

E E s n n E n n E

E



 

 

   

  

  

w w w x x

w x x x w

I R w r

            (2.57) 

Through the same coordinate system transformation from Eq. 2.47 to 2.49, it follows that 

0{ } ( )n

nE  u I u                                            (2.58) 

Similarly we need 1I   to make sure { }nE u converges, which results in the same 

condition as Eq. 2.46. 

However, this upper bound is not tight enough for an LMS filter and not practical to use. 

It only guarantees the expectation convergence but has no constraint on the variance. And 

still, the eigenvalue of the autocorrelation matrix is needed and we have to use multiple 

signal samples to estimate xR . This will result in time delay and additional computation 

complexity. One way to solve the problem is use the upper bound of maximum 

eigenvalue as follows: 

2

max ( ) { [ ] }xtr NE x n  R                                       (2.59) 
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This will tighten the constraint of  and also simplify the computation since 
2

{ [ ] }E x n

can be easily estimated by time averaging. Then the convergence condition for an LMS 

adaptive filter becomes 

  
2

2
0

{ [ ] }NE x n
                                              (2.60) 

From Eq. 2.60 we can design an improved LMS algorithm, the Normalized LMS 

(NLMS). If we set  as a time variable, i.e. 

2 2
[ ] ,0 2

{ [ ] } [ ]
n

NE x n n

 
    

x
                            (2.61) 

and replacing  in Eq. 2.61. Also assuming L=1, we will have the NMLS algorithm 

*

1 2

[ ]
[ ]

[ ]
n n

x n
e n

n
  w w

x
                                      (2.62) 

Comparing Eq. 2.62 to Eq. 2.55, in the LMS algorithm the actual correction made to nw

is proportional to [ ]nx . So when [ ]nx is large, the LMS algorithm will experience noise 

amplification effects. NMLS solved this problem by normalizing the step-size by
2

[ ]nx . 

However, if
2

[ ] 1n x , NLMS will still experiences a similar noise problem, so we 

introduce a small offset to
2

[ ]nx  as follows: 

*

1 2

[ ]
[ ]

[ ]
n n

x n
e n

n



  


w w
x

,                                 (2.63) 
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where is a small but positive number. 

2.2.3.2 Noise cancellation scheme 

A reference input is necessary for most kinds of adaptive algorithm if they are used for 

noise/interference cancellation. We should notice that the filtering procedure requires the 

actual value of SOI to calculate the error by Eq. 2.2. However, in the specific problem of 

noise/interference cancellation, the actual value of SOI is unavailable to the canceller (if 

not, then we do not need the canceller at all). So a reference input is needed to help the 

adaptive algorithm finding the optimum filter coefficients. Fig.2.5 is the block diagram of 

a typical LMS adaptive noise canceller with reference interference. In fact, the structure 

illustrated in Fig. 2.5 is a modified version of Fig. 2.2, only changing the Wiener filter to 

an adaptive one. Similar to what we discussed in above, 1[ ]v n  and 2[ ]v n need to be 

correlated to each other. If an LMS based algorithm is used in the adaptive filter, the 

primary input [ ]x n itself can also be a reference input after a time delay 0n , and the output 

of the adaptive filter is the LMS estimate of the SOI, because minimizing
2

{ [ ] }E e n is 

equivalent to minimizing
2

1 1̂{ [ ] [ ] }E v n v n [19]. 

In [5], E.Alban used this noise-cancellation scheme with an NMLS algorithm to cancel 

the narrowband noise in a computer platform. Although it is not directly applicable to the 

broadband case this thesis focuses on, the new adaptive algorithm introduced is 

developed with a similar designing idea. Based on the fundamental structure of this 
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normalized adaptive filter, an algorithm using a different kind of “criterion of goodness” 

instead of MSE is designed.  

 

Figure 2.5 Diagram of an LMS Noise canceller with reference input 
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Chapter 3-A New Adaptive Algorithm Using Higher Order Statistics 

E. Alban concluded in [5] that the wireless interference a computer platform suffered is 

K-distributed. Even though an NLMS adaptive filter is designed to eliminate the 

narrowband interference, it cannot be used for the broadband case. D. Shin pointed out 

two major difficulties of using LMS based adaptive filter in [26]: First, an LMS based 

adaptive filter is affected directly by uncorrelated noises at primary and reference inputs. 

In this particular problem, the primary and reference inputs (include the K-distributed 

interference) are both corrupted by uncorrelated Gaussian noise, so the performance of 

LMS based algorithm will be lowered. Second, the performance of LMS based 

algorithms highly depends on the specific problem, which means they can be very 

sensitive to interference signal and step size.  To mitigate the broadband K-distributed 

interference, a more robust interference cancellation mechanism needs to be designed to 

meet the following requirements: 

a) It is able to mitigate broadband, non-Gaussian, non-stationary interference. 

b) It must work with the existence of uncorrelated Gaussian noise. 

c) Its BER performance satisfies general wireless communication requirement 

The LMS algorithm described in Eq. 2.51 and 2.52 minimizes the mean square error. 

Second order statistics is used to be the “criterion of goodness”. Here we present a new 

adaptive algorithm that utilizes a higher order statistics (HOS) called cumulants. The 

adaptive canceller designed with this algorithm will be proved to work efficiently with K-

distributed interference and all 3 requirements stated above are met. We will first discuss 
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some aspects of double sided K-distributed random process, and then come to the HOS 

cancellation algorithm. 

3.1 K-distributed interference 

3.1.1 Double-sided K-distribution 

Before E. Alban modeled the computer platform interference as K-distributed, this 

distribution was widely used to model the clutter or reverberation of a radar or sonar 

system [29][30]. It can be described by the following probability density function 

(PDF)[7]: 

1
1

,   0
( ) ( 1) 2

0,                                           . .

X

x x
K x

f x b b b

o w






    
          




                                   (3.1) 

where a  is a positive scalar parameter and   is the shape parameter which satisfies 

1   . ( )   is the Gamma function, i.e. 

1

0

( ) z tz t e dt



     

and  K  is the modified Bessel function of order   

0

( ) exp( cosh )cosh( )K x x t t dt 


   
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A graph of Eq. 3.1 given 1b   is shown in Fig. 3.1(a). Since the PDF of a K-distributed 

 

 (a) 

 

 (b) 

Figure 3.1 PDF of K-distribution 

random variable (RV) is only non-zero for positive x , it is also called single-sided K-

distribution. Obviously it is not appropriate to describe a random interference that can be 
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positive or negative. We can derive the double-sided K-distribution PDF by deriving the 

distribution of another RV Y that X Y , in which X is single-sided K-distributed. The 

double-sided K-distribution PDF is 

1

2

1

2

1
( ) ,    

2( 1)
X

x x
f x K x

b bb



 





   
       

     
,                    (3.2) 

in which 0b   and 1   . This distribution is used to describe the computer platform 

interference in [5]. A graph of Eq. 3.2 given 1b   is shown in Fig 3.1(b). 

3.1.2 Moments of double-sided K-distribution 

The k th moments of a double-sided K-distribution RV are computed as [5]: 

1
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




   
    

     


     


 


                             (3.3) 

Notice that when k is odd, { } 0kE x  . 

Because { } 0E x  , we only need to set 2k  to find the variance: 

2 2var( ) { } 2 ( 1)x E x b v                                         (3.4) 

The result of Eq. 3.4 is important because this is how we compute the interference signal 

power when computer simulation is performed. Once either b or v is fixed, the interference 
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signal power varies with the change of the other parameter. Then the input signal-to-

interference ratio (SIR) can be set to a desired value. 

3.1.3 Generation of double-sided K-distributed random process   

S. Kay in [21] found a simple way to generate a double-sided K-distributed random 

process. This random process with arbitrary power spectral density (PSD) can be 

generated by the product of a Gamma distribution and a Gaussian distributed random 

process, as follows: 

X VU                                                            (3.5) 

If X is double-sided K-distributed with parameter b and  , then 
1

~ ( 1, )
2

V   and

2~ (0, )U N b . This is how we generate a WSS double-sided K-distributed random 

variable in the computer simulation. Since all we need is a white broadband noise 

interference signal, no further manipulation after Eq. 3.5 is needed.  

E. Alban in [5] also generated the process by another method. A state-space model of the 

process is derived from the stochastic differential functions of a double-sided K-

distributed RV. This model is only used to design a Kalman filter, so the detail will not be 

presented in this thesis. 
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3.2 Higher Order Statistics (HOS) Algorithm 

3.2.1 Cumulants 

The high order statistics used in this algorithm are cumulants. In [31], given a set of n  

real value random variables 1 2, ,..., nx x x , their cumulants of r th order are defined as 

1 2 1 21 2

1 2
... , ,..., 0

11 2

ln ( , ,..., )
( ) | ,

...n nn

r n
r n

k k k ikk k
in

c j k r  

  

  




 
 

  
  ,                   (3.6) 

where ( ) is the joint characteristic function of 1 2, ,..., nx x x : 

1 2

1

( , ,..., ) {exp( )}
n

n k k

k

E j x   


                                         (3.7) 

Notice that the the r th order joint moments are defined as 

1 2 1 21 2
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  
                              (3.8) 

So we can express the cumulants in terms of the moments. Especially, we consider the k

th moment of 1x , i.e., 2 3, ,..., 0nk k k  . If we assume 1 1{ } 0E x m  , from Eq.3.7 and 3.8 

we can have 
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Similarly, 

2

2 2 1 1{ } var( )c m E x X                                              (3.10) 

 3

3 3 1{ }c m E x                                                      (3.11) 

2 2

4 4 2 4 23 3c m c m m                                                 (3.12) 

Next, for a random process ( )X t , we define the correlation ( )kc  using Eq. 3.9-3.12, i.e. 

 2 2{ ( ) ( )} ( ) ( )E x t x t m c                                          (3.13) 

1 2 3 1 2 3 1 2{ ( ) ( ) ( )} ( , ) ( , )E x t x t x t m c                                 (3.14) 
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  

  
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  

 

 

                                (3.15) 

From Eqs.3.13 and 3.15, we have 

4 1 2 3

4 1 2 3 2 1 2 3 2 2 2 2 3 1 2 3 2 2 1

   ( , , )

( , , ) ( ) ( ) ( ) ( ) ( ) ( )

c

m m m m m m m

  

                 
  (3.16) 

In the Fourth Order Statistic (FOS) algorithm, Eq. 3.16 is used to estimate the cumulants 

of the inputs. [31] pointed out that third or higher order cumulants of a Gaussian process 

are zero. That is one of the reasons why cumulants are chosen to be the “criterion of 

goodness” in an algorithm mitigating non-Gaussian interference with the existence of 
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Gaussian noise. In other words, cumulants of third-order or above can work regardless 

the existence of Gaussian noise, while an LMS based algorithm cannot.   

3.2.2 Primary and Reference inputs 

The general structure of a HOS interference canceller is illuminated in Fig. 3.2. The 

received signal is corrupted by both K-distributed interference and Gaussian noise: 

[ ] [ ] [ ] [ ]K px k s k I k n k   ,                                           (3.17) 

in which [ ]s k is the signal of interest (SOI), [ ]KI k is the broadband K-distributed noise 

and [ ]pn k is the Gaussian noise.  The corrupted SOI is the primary input of the canceller. 

An important assumption before we study the HOS interference cancellation mechanism 

is that there is another signal input available, we use it the reference input. As stated in 

Chapter 2, in a noise-cancellation problem when the original SOI is not available, a 

reference signal is needed to aid the algorithm to find the optimum solution. Here, the 

HOS canceller assumes a reference input [ ]w k is available. [ ]w k and the interference 

signal, [ ]KI k  is related as follows: 

[ ] [ ] [ ]K

j

I k g j w k j                                            (3.18) 
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Figure 3.2 Diagram for a HOS interference canceller 

That means, we can get [ ]KI k by passing [ ]w k through a linear time-invariance (LTI) 

system ( )G z .  More specifically, ( )G z  is a moving average (MA) filter. Thus, [ ]KI k and

[ ]w k are correlated. 

The reference signal is also corrupted by Gaussian noise, [ ]rn k . So the reference input of 

the interference canceller is 

[ ] [ ] [ ]rz k w k n k                                               (3.19) 

Notice [ ]rn k and [ ]pn k  are supposed to be uncorrelated so they are independently gene-

rated in computer simulation. 

Then, the output of the adaptive filter in Fig. 3.2 is 

1

0

ˆ [ ] [ ] [ ]
N

K

j

I k h j z k j




  ,                                          (3.20) 
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where N is the order of the FIR adaptive filter and [ ]h j is the j th coefficient of the filter. 

ˆ [ ]KI k  is the estimate of the input interference [ ]KI n . 

So the output of the canceller, [ ]e k , is the estimate of the SOI, namely, 

ˆ ˆ[ ] [ ] [ ] ( ) [ ] [ ]K ee k x k I k s k s k n k                                   (3.21) 

[ ]en k is the output noise or the estimation error, which can be expressed as 

1 1

0 0

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
N N

e K r p

j j

n k I k h j w k j h j n k j n k
 

 

                       (3.22) 

3.2.3 General Scheme for the Algorithm  

In [26] the general scheme for an HOS algorithm is introduced. Because the n th order 

cumulants of any Gaussian process is identically zero if 3n  , this general scheme 

applies on all high order statistics with 3n  .  Let ... 1 2 1( , ,..., )xz z nC m m m  denote the n th 

order cross-cumulants of the primary input [ ]x k and the reference input [ ]z k , and 

... 1 2 1( , ,..., )yz z nC m m m  denote the n th order cross-cumulants of the adaptive filter output

ˆ[ ] [ ]Ky k I k  and the reference input [ ]z k . If we use the cumulant operator []Cum  

introduced in [32], i.e. 

31 2

1 2 1 21 2

1 2
1 2 3 ... , ,..., 0

1 2

ln ( , ,..., )
[ , ,..., ] ( ) |

...n nn

r
kk k r n

k k k kk k

n

Cum x x x c j   
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  


 
 
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,    (3.23) 

then ... 1 2 1( , ,..., )xz z nC m m m  and ... 1 2 1( , ,..., )yz z nC m m m  can be defined as 
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... 1 2 1 1 2 1( , ,..., ) [ [ ], [ ], [ ],..., [ ]]xz z n nC m m m Cum x k z k m z k m z k m             (3.24) 

... 1 2 1 1 2 1( , ,..., ) [ [ ], [ ], [ ],..., [ ]]yz z n nC m m m Cum y k z k m z k m z k m             (3.25) 

From the linear property of the cumulant operator described in [32], we have 
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(3.26) 

Notice that 
pn and rn are Gaussian processes. So the second term of the result in Eq. 3.26 

is zero. Since { [ ]} 0E s k  , then the last term is zero. Thus, 
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                                                      (3.27) 

Substituting Eq. 3.18 into Eq.3.27, yields 
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                                       (3.28) 
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Similarly, we can express
... 1 2 1( , ,..., )yz z nC m m m 

in terms ... (.)w wC , i.e. 

1

... 1 2 1 ... 1 2 1
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( , ,..., ) [ ] ( , ,..., )
N
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C m m m h j C j m j m j m

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                  (3.29) 

Comparing Eq. 3.28 and 3.29, we can find that if [ ] [ ]h j g j , then ... 1 2 1( , ,..., )xz z nC m m m 

and
... 1 2 1( , ,..., )yz z nC m m m 

will be identical and the adaptive filter will produce the 

optimum estimate of the interference [ ]KI k . That is why we use the difference of 

... 1 2 1( , ,..., )xz z nC m m m   and
... 1 2 1( , ,..., )yz z nC m m m 

to measure the error. The new “criterion of 

goodness” is 

1 2 1

2

... 1 2 1 ... 1 2 1... [ ( , ,..., ) ( , ,..., )]
n

g xz z n yz z n

m m m
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

                     (3.30) 

While 1 2 1, ,..., nm m m  can be defined to include the whole ( 1)n dimensional space, it is 

not practical because of the computational complexity. What we do in reality is to choose 

a proper domain P that is a subset of the ( 1)n dimensional space. Thus, the simplified 

error measurement is 

1 2 1

2

... 1 2 1 ... 1 2 1

, ,...,

[ ( , ,..., ) ( , ,..., )]
n

xz z n yz z n

m m m P

C m m m C m m m


 



                 (3.31) 

Because  
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                                                 (3.32) 

We have 

... 1 2 1 ... 1 2 1( , ,..., ) ( , ,..., )z z n w w nC m m m C m m m                              (3.33) 

From Eq. 3.33, 3.29 and 3.31, we can express the “criterion of goodness” in terms of the 

cumulants of primary and reference inputs 
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 
    (3.34) 

In matrix form 

... ... ... ...( ) )T

xz z z z h xz z z z h   C C H (C C H                            (3.35) 

If we denote the number of points in set P as M and N is the number of taps of the FIR 

filter, then ...xz zC is an 1M  column vector and ...z zC is an M N matrix. [26] indicated 

that we need M N to guarantee the reliability of the filter coefficients. hH is an 1N   

vector of filter coefficients 

[ [0], [1],..., [ 1]]T

h h h h N H                                    (3.36) 
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To apply the steepest descent method, we first calculate the gradient of   with respect to 

hH , i.e. 

... ... ... ...( ) 2( ( ) )
( )

T T

h z z z z h z z xz z

h

k k
k


   


C C H C C

H
                  (3.37) 

Then update the filter coefficients 

( 1) ( ) ( )h h hk k k   H H                                   (3.38) 

The value of the step size   depends on the order of the algorithm and the noise signal. 

The way to find a proper value of  will be discussed later under the condition that a 

FOS algorithm is applied on K-distributed interference. 

3.3 The FOS algorithm   

According to the general scheme of HOS method, there are still 3 problems left for the 

specific FOS algorithm: 

1) The proper selection of cross-cumulants domain. Choosing , 1,2,..., 1im i n  by 

including the whole ( 1)n dimensional space is both computationally costly and 

unnecessary. So a smaller domain is needed to be decided to simplify the algorithm 

without the sacrifice of cancellation performance.   

2) The estimation of cumulants. Both the prime and reference input signal are random 

processes. No statistical knowledge of them is available to the canceller. Estimations 

with the observations of these processes are needed.  
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3) A suitable step size is needed to make sure the algorithm converges. 

To solve problem 1), since the fourth order statistic is used, we only need a domain such 

that 

3

1 2 3{( , , )}P m m m  . 

[26] provided the following domain selection when cancelling a sinusoidal interference 

with uniform-distributed random phase. It will be proved later to be efficient when the 

interference is K-distributed, where 

1 2 3

1 2

2 3

0 , , 1m m m L

m m

m m

  





, 

in which the domain size L is a positive interger that is chosen to determine the number 

of elements in the domain. Note that the number of points M satisfies 

( 1)(2 1)

6

L L L
M

 
                                                 (3.39) 

If the number of filter taps is chosen as 8N  , then we need at least 3L  to make sure 

M N . Thus, 14M  and the points in the domain are: 

{(0,0,0);(1,0,0);(1,0,1);(1,1,0);...;(2,2,2)} 

Form Eq. 3.16 we can find the way to estimate cumulants from observations over time. 

Assuming the input process is ergodic, then the cross-moment term in Eq. 3.16 can be 

estimated by a time average. This estimation also needs to be updated for each iteration 
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when new observations are available to the canceller. If we denote the estimator of the 

cross-moment at the k th iteration as 1 2 3
ˆ( , , , )R k m m m (because they are equivalent to cova-

riance in this case),  then the second and fourth order cross-moment estimation will be 

1 2 3 1 2 3
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,                                       (3.41) 

respectively. 

Then, from Eq. 3.16 we can have the estimation of the fourth-order cumulants 

1 2 3
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                                             (3.42) 
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                                             (3.43) 

To solve problem 3), a loose bound is given in [26] as follows: 
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1
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z z z ztr
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Eq.3.44 is a quite loose bound. We will see in the simulation that convergence for all SIR 

cases cannot be guaranteed. Similar to what we did in NMLS algorithm, we can mani-

pulate the range by introducing 2 parameters 

... ...

0 ,0 1, 0
{ }

f

fT

z z z ztr


  


    

 C C
,                          (3.45) 

where
f is the adaptation constant parameter and  is the offset parameter that used to 

minimize the noise amplification effect. The proper value of 
f  is highly dependent on 

the input SIR and will be discussed shortly in the simulation. 

3.4 Simulation for the FOS algorithm  

FOS algorithm is applied on an input binary sequence corrupted by K-distributed 

interference. Notice that the SOI used in this simulation is only for a typical experiment 

but not the SOI on a computer platform as we described earlier. The ensuring results are 

only to verify the capability of FOS algorithm to cancel the K-distributed noise. Figure 

3.3 shows the block diagram for the experimental test scheme. 

 

Figure 3.3 Interference simulation scheme 
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Simulation parameters: 

Number of taps 8N   

Domain size 3L   

Adaptation constant parameter 0.1/ 0.01f   

Offset parameter  2   

Number of iteration 51 10  

Table 3.1 Simulation parameters for experimental environment 

f is set to 2 different values to compare the convergence behavior. For the K-distributed 

interference, v  is fixed at -0.5 and SIR are set by changing the value of b , as indicated in 

Eq.3.4. As the Gaussian noise is not the major noise/interference source, its power is set 

to be weaker than that of the K-distributed interference: 

( ) ( ) 5GaussianSNR dB SIR dB dB                                        (3.46) 

Simulation cases: 

 Case 1: 0.1f   

Fig. 3.4-3.7 shows the comparison of the interference signal before and after the canceller, 

at SIR=5dB, 7.5dB, 10dB and 12.5dB, respectively. 
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Figure 3.4  Interference signal comparison, SIR=5dB 

 

Figure 3.5  Interference signal comparison, SIR=7.5dB 

Fig.3.8 shows the BER improvement after the canceller is implemented; SIR range is 

from 0dB to 15dB.  
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Figure 3.6  Interference signal comparison, SIR=10dB 

 

Figure 3.7  Interference signal comparison, SIR=12.5dB 
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between 5dB and 12.5dB. The result usually converges before the first 20000 samples, 

which takes milliseconds in most modern wireless communication system. The BER 

improvement can be found in Fig 3.8, which shows 5 simulation results at each SIR from 
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5dB. Some simulation resulted a higher BER because the algorithm is not converging. 

Solving this problem requires a smaller step-size coefficient. Here we choose 0.01f  . 

Since 0.1f  works good when SIR is higher than 10dB, we only change the step-size 

for the lower SIR so the convergence time is minimized.  This is called a variable step-

size method and its simulation results are showed in Case 2. 

 

Figure 3.8  BER performance comparison with constant step-size, 0.1f   

Case 2: Variable step-size 

Following simulation used the variable step-size scheme: 
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0.01,    11

0.1,       
f

SIR

elsewhere



 


                                             (3.49) 

Fig. 3.9 shows the BER performance. Obviously, the BER performance on low SIR is 

improved, which made the FOS-canceller fully applicable on this K-distributed 

interference cancellation problem.  

 

Figure 3.9  BER performance comparison with variable step-size 
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Chapter 4-FOS Interference Canceller in an OFDM System 

4.1 OFDM System 

The previous research of computer platform interference by E. Alban is based on an 

Orthogonal Frequency-Division Multiplexing (OFDM) system, which is widely used in 

modern communication standards including WiFi, WiMax and LTE.  OFDM is a 

multicarrier modulation scheme. In an OFDM modulator, the original baseband signal is 

modulated by a QAM modulator first, generating a complex QAM symbol stream. A 

symbol stream can be split into a multiple symbol frame [0], [1],..., [ 1]X X X N   of length

N . The QAM symbol stream is passed through a serial-to-parallel converter. It is 

considered as “frequency domain” signal as it contains the discrete frequency com-

ponents of the OFDM modulator output signal. Then, to modulate this QAM symbol by 

multiple subcarriers orthogonal to each other, the inverse discrete Fourier transform (DFT) 

is performed, using inverse fast Fourier transform (IFFT). Thus, the QAM symbol stream 

is transformed to the “time domain”, with multiple discrete frequency subcarriers, as 

follows:  

 

21

0

1
[ ] [ ] , 0,1,..., 1

iN j n
N

i

x n X i e n N
N





                                     (4.1) 

As a result, each QAM symbol [ ]X i is modulated by multiple carriers, i.e.  

2

, 0,1,..., 1
i

j n
Ne n N


  . 
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To avoid ambiguity, we use transformed domain and modulated domain instead of 

“frequency domain” and “time domain”, respectively. Then, a cyclic prefix of length  is 

added to avoid the inter-carrier interference (ICI) in the transmission channel.  Then, the 

output of an OFDM modulator is 

[ ],..., [0], [1],..., [ 1]x N x x x N   

 

Figure 4.1(a) OFDM modulator 

 

Figure 4.1(b) OFDM demodulator 

At the demodulator, the cyclic prefix is first removed, and then the signal stream is 

passed through an FFT and a parallel-to-serial converter. After that, QAM demodulation 

is performed to retrieve the original signal. Fig 4.1(a) shows the structure of an OFDM 

modulator and Fig. 4.1(b) shows the receiver. 
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Notice that k pilot symbols are inserted before IFFT for channel estimation. Usually, they 

are added in different location of consecutive symbol frame in order to “scan” the whole 

bandwidth for better estimation results. 

The modulation and demodulation of OFDM can be represented in matrix form by 

introducing the DFT matrix, i.e. 

2

2 1

1 2( 1) ( 1)

1 1 1 1

11

1

N

N N N

N N N

N N N

W W W

N

W W W



  

 
 
 
 
 
  

Q ,                                     (4.2) 

where 2 /j N

NW e  . Thus, if we denote [0], [1],..., [ 1]X X X N  and [0], [1],..., [ 1]x x x N  by 

two vectors X and x , respectively, the IFFT of X  can be represented as: 

1X Q x                                                          (4.3) 

Notice Q is unitary, so we have 

HX Q x                                                          (4.4) 

Similarly, the FFT of x can be represented as 

x QX                                                          (4.5) 

Thus, the demodulation of OFDM can be written as 

Y Qy ,                                                         (4.6) 
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where y  is the vector which represents the received data stream, i.e. 

 y Hx                                                         (4.7) 

where H is the channel impulse response matrix and   is the noise/interference.  

4.2 Implementation of FOS canceller  

The FOS interference canceller, although proved to be efficient on K-distributed 

interference, still needs some modification to work in an OFDM system. First, the 

received OFDM-modulated signal is complex but the FOS canceller can only work on 

real value signals. Second, similar to the NMLS algorithm, we need to normalize the  

 

Figure 4.2  FOS canceller in an OFDM receiver 

input signal to make sure the algorithm will converge.  The cancellation scheme is 

depicted in Fig 4.2. 

If the received signal is denoted as [ ]r n , the prime and reference input signal are 

normalized by multiplying the following scale factor: 
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1

s

a
E

 ,                                                               (4.8) 

where sE is the average symbol energy.                                     

4.3 Simulation and analysis     

4.3.1 Frame composition 

In order to compare our result to the performance of discrete Kalman filter designed by E. 

Alban in [5], the same OFDM modulation parameters are used in this simulation, i.e. 

FFT size 1024 

Number of data carriers 720 

Number of pilot symbols 120 

Prefix size 128 

Table 4.1 OFDM parameters 

Thus, the composition of each frame during the ODFM modulation is described as 

follows: After the serial to parallel conversion, the pilot symbols are inserted evenly 

throughout the frame. If the n th pilot symbol is denoted as nP  and the n th QAM 

modulated symbol is denoted as nX , the frame can be presented as    

1 1 2 6 2 7 1 6( 1) 120 720[ , , ,..., , , ,..., , ,..., ,..., ]n nP X X X P X P X P X   

Note that in a real OFDM modulator, the location of pilot symbol should not be the same 

for each frame. However, since the locations of pilot symbols have nothing to do with the 
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cancellation algorithm in this problem, the pilot symbols are set at fixed location for each 

frame. 

The IFFT is performed right after the pilot symbol insertion. Note that the IFFT size 

applied here is 1024 and it is greater than the actual number of symbols in a single frame, 

i.e., 840. Zeros are added at the beginning and the end of each frame to make each frame 

contains exactly 1024 symbols, as follows: 

1 1 2 6 2 7 1 6( 1) 120 720[0,...,0, , , ,..., , , ,..., , ,..., ,..., ,0,...0]n nP X X X P X P X P X 
 

After the IFFT of length 1024, the frame is  

1 2 1024[ , ..., ]x x x  

where nx  denote the n th symbol in modulated domain. 

Then the prefix symbols are added. The OFDM modulated frame is 

897 1024 1 2 1024[ ,..., , , ..., ]x x x x x . 

4.3.2 Result analysis for different step-size parameters
f  

In chapter 3 the step-size problem is solved by the variable step-size approach. Even 

though the scheme described in Eq. 3.49 works for the simulation environment in Chapter 

3, it does not apply in this case. 0.01f  does not guarantee convergence for low SIR 

any more. In this section, the K-distribution parameters are set to 
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1, 2.5b v   

The simulation time is 55 10  samples for SIR=2.5, 5, 7.5 and 10dB. For SIR=12.5dB, 

the simulation time is set to 61.5 10 samples due to the low BER rate. 

Fig. 4.3 shows the interference signal after cancellation when SIR=7.5dB. We can clearly 

see that in Fig. 4.3(a) when 0.01f   the result is not as good as that in Fig. 4.3(b) when 

0.001f  . However, similar to the simulation result in Chapter 3, when the SIR is high, 

using a smaller 
f may cause a very long converge time. Fig. 4.4(a) shows the inter-

ference after cancellation when SIR=12.5dB and 0.001f  . Notice that the even after 

61.5 10  samples, the cancellation result does not have any obvious difference compared 

to the original K-distributed interference.  This means that the step-size is so small that 

barely influences the interference signal in the limited time. In Fig. 4.4(b), step-size is set 

as 0.01f  . Both the figures and the BER show the improvement of performance. So, 

the variable step-size scheme is 

0.001,    10

0.01,       
f

SIR

elsewhere



 


                                                (4.9) 
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(a) 0.01f   

 

(b) 0.001f   

Figure 4.3 Cancellation comparison with different step-size when SIR=7.5dB 
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(a) 0.001f   

 

(b) 0.01f   

Figure 4.4 Cancellation comparison with different step-size when SIR=12.5dB 
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Using this scheme, the BER performance of FOS canceller when 1, 2.5b v  is 

illustrated in Fig. 4.5. 

 

Figure 4.5 BER performance of variable step-size scheme 

 SIR=5dB SIR=12.5dB 

0.001f   BER=0.0171 BER=6.67×10
-6 

0.01f   BER=0.0227 BER=2.67×10
-6

 

Table 4.2 BER result for high and low SIR with different step-size 

4.3.3 Result of different K-distribution parameters 

[5] pointed out that the change of  K-distribution parameters may result in different BER 

performance for the same cancellation algorithm. In case a) 2, 1.5b v  the cancellation 

algorithm described in [5] can improve the BER by 6db while in case b) 1, 2.5b v  , the 
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improvement is less than 4dB. Now, Fig. 4.6 shows the performance of FOS canceller in 

both situations. 

Although when the SIR is low there is no obvious difference between the two cases, it is 

clear that as the SIR increases, case a) still performs better than case b). However, this 

difference is not as high as it was in [5].  More importantly, the BER performance is 

much better than the result in [5], especially for small SIR. When SIR=2.5, FOS canceller 

and the discrete Kalman filter both can produce a BER between 0.1 and 0.01. But when 

SIR=10, the BER produced by FOS canceller is around 410  while the result of discrete 

Kalman filter is still above 0.01. This improvement is at the cost of computational 

complexity and the additional knowledge from the reference signal. 

 

Figure 4.6 BER performance comparison for different K-distribution parameter 
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Chapter 5-Conclusion 

This thesis applied a new noise/interference cancellation algorithm on the computer 

platform interference cancellation problem. Based on previous research, this new 

algorithm focused on the cancellation of the broadband K-distributed interference 

generated by multiple electronic-magnetic emission sources in a computer platform, in 

the presence of Gaussian noise. By introducing a new criterion of goodness instead of the 

regular mean square, the new adaptive algorithm is designed to reconstruct and to cancel 

the interference in a recursive fashion. It is proved to be effective on both experimental 

binary transmission system and the OFDM system which is widely applied in modern 

mobile communication devices. Compared to the previous cancellation method, the BER 

performance is improved considerably.  

The broadband noise/interference in a computer platform is usually considered as 

Gaussian distributed. However, in E. Alban’s previous work, it is proved that the 

interference is double-sided K-distributed. Thus, a new cancellation approach is needed 

for this specific interference. A discrete Kalman filter is designed but the performance is 

not satisfactory. It only improves the BER to around 210 , which is not enough for 

modern wireless communication.  

Adaptive filtering is one of the efficient ways to solve the noise/interference cancellation 

problem. It requires minimum knowledge of the interference signal. Since the traditional 

LMS/NMLS are not suitable for this particular problem because of the existence of 

Gaussian noise, the higher order statistic algorithm is needed. Higher order cumulants are 
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introduced as the new criterion of goodness. The new algorithm compares the higher 

order cumulants to improve the filter coefficients and reconstructs the interference signal 

from the reference signal.  We verified through simulation that the fourth order statistics 

(FOS) algorithm is capable of mitigating the effect of K-distributed interference. A 

variable step-size mechanism is also introduced to ensure the convergence of the 

algorithm. 

Furthermore, the FOS algorithm is implemented in an ODFM system and its performance 

is compared to that of the discrete Kalman filter. The BER performance of FOS canceller 

is better than the previous method. However, the large delay due to computational 

complexity and the availability of the reference signal are the problem left to be solved. A 

more efficient way to estimate the cross-cumulant from the process may simplify the 

computation procedure.  The techniques that generate the reference signal at the receiver 

also need to be further studied. 

   

 

 

 

 

 

 

 

 



70 
 

 

Bibliography 

[1] Parkvall, Stefan, and David Astely. "The Evolution of LTE towards IMT-

Advanced."Journal  Of  Communications 4.3 (2009): 146-54. 

[2] IEEE Standard for Information technology-- Local and metropolitan area networks-- 

Specific requirements-- Part 11: Wireless LAN Medium Access Control (MAC) and 

Physical Layer (PHY) specifications Amendment 8: IEEE 802.11 Wireless Network 

Management," IEEE Std 802.11v-2011, vol., no., pp.1,433, Feb. 9 2011 

[3] F.C.Commission, “Radiated Emission Limits,” code of federal regulations.Title  

47(47CFR). Part 15 Subpart B,vol. 109, pp800, Oct 2012 

[4] Alban, E.X.; Magana, M.E.; Skinner, H.G.; Slattery, K.P., "Statistical Modeling of the 

Interference Noise Generated by Computing Platforms," Electromagnetic Compatibility, 

IEEE Transactions on , vol.54, no.3, pp.574,584, June 2012 

[5] E.X Alban, Immune Radio Architecture for Platform Interference, Oregon State 

University, May 2011 

[6] P.R.Clayton, Introduction to Electromagnetic Compatibility, 2
nd

 ed. Wiley-

Interscience, January 2006 

[7] Iskander, D.R.; Zoubir, A.M., "Estimation of the parameters of the K-distribution 

using higher order and fractional moments [radar clutter]," Aerospace and Electronic 

Systems, IEEE Transactions on , vol.35, no.4, pp.1453,1457, Oct 1999 

[8] Blacknell, D.; Tough, R. J A, "Parameter estimation for the K-distribution based on [z 

log(z)]," Radar, Sonar and Navigation, IEE Proceedings - , vol.148, no.6, pp.309,312, 

Dec 2001 

[9] Iskander, D.R.; Zoubir, A.M.; Boashash, B., "A method for estimating the parameters 

of the K distribution," Signal Processing, IEEE Transactions on , vol.47, no.4, 

pp.1147,1151, Apr 1999 

[10] Ming Yan, "Soft decision directed MAP estimate of fast Rayleigh flat fading 

channels," MILCOM 2000. 21st Century Military Communications Conference 

Proceedings , vol.1, no., pp.368,372 vol.1, 2000 

[11] Roberts, William J J; Furui, S., "Maximum likelihood estimation of K-distribution 

parameters via the expectation-maximization algorithm," Signal Processing, IEEE 

Transactions on , vol.48, no.12, pp.3303,3306, Dec 2000 

[12] Mezache, A.; Sahed, M., "A method for estimating the parameters of the K-

distribution using a nonlinear network based on fuzzy system and neural 

networks," Signals, Circuits and Systems, 2008. SCS 2008. 2nd International Conference 

on , vol., no., pp.1,6, 7-9 Nov. 2008 



71 
 

 

[13] Wachowiak, M.P.; Smolikova, R.; Zurada, J.M.; Elmaghraby, A.S., "Estimation of 

K distribution parameters using neural networks," Biomedical Engineering, IEEE 

Transactions on , vol.49, no.6, pp.617,620, June 2002 

[14] A. Goldsmith, Wireless Communication, Cambridge University Press, 2005 

[15] Ming-Xian Chang; Su, Yu-T, "Model-based channel estimation for OFDM signals in 

Rayleigh fading," Communications, IEEE Transactions on , vol.50, no.4, pp.540,544, 

Apr 2002 

[16] Davis, L.M.; Collings, I.B.; Hoeher, P., "Joint MAP equalization and channel 

estimation for frequency-selective and frequency-flat fast-fading 

channels," Communications, IEEE Transactions on , vol.49, no.12, pp.2106,2114, Dec 

2001  

[17] Grami, A.; Makrakis, D.; Pasupathy, S., "Detection Using a Noise Estimation-

Cancellation Technique," Communications, IEEE Transactions on , vol.35, no.8, 

pp.786,794, Aug 1987 

[18] Dhanoa, J.S.; Ormondroyd, R.F.; Hughes, E.J., "Blind cancellation of wideband 

frequency modulated interference in a wideband acoustic communication 

channel," OCEANS, 2005. Proceedings of MTS/IEEE , vol., no., pp.1065,1069 Vol. 2, 17-

23 Sept. 2005  

[19] M.H.Hayes, Statistical Digital Signal Processing and Modeling, John Wiley & Sons 

Inc, 1996 

[20]T.  R. Field and R. J. A. Tough, “Dynamical models of weak scattering,” JOURNAL 

OF MATHEMATICAL PHYSICS, vol. 46, 2005 

[21] Kay, S., "Representation and Generation of Non-Gaussian Wide-Sense Stationary 

Random Processes With Arbitrary PSDs and a Class of PDFs," Signal Processing, IEEE 

Transactions on , vol.58, no.7, pp.3448,3458, July 2010 

[22] Moohong Lee; Byungjik Keum; Minjae Park; Young Serk Shim; Hwang-Soo Lee; 

Dae Ho Woo, "A frequency domain approach for complexity reduction in wideband radio 

interference cancellation repeaters," Signal Processing, 2008. ICSP 2008. 9th 

International Conference on , vol., no., pp.1971,1976, 26-29 Oct. 2008 

[23] Kinoshita, M.; Sasaoka, N.; Danno, S.; Itoh, Y.; Sai, B., "A study on noise canceling 

system based on adaptive filter for OFDM system," Intelligent Signal Processing and 



72 
 

 

Communication Systems, 2005. ISPACS 2005. Proceedings of 2005 International 

Symposium on , vol., no., pp.697,700, 13-16 Dec. 2005 

[24] Schafhuber, Dieter; Matz, G.; Hlawatsch, F., "Adaptive Wiener filters for time-

varying channel estimation in wireless OFDM systems," Acoustics, Speech, and Signal 

Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on , 

vol.4, no., pp.IV,688-91 vol.4, 6-10 April 2003 

[25] Tangdi Zhang; Caixiang Wang; Xiaowen Li, "Frequency offset and channel 

estimation in OFDM systems by blind adaptive filter," Mobile Congress (GMC), 2010 

Global , vol., no., pp.1,5, 18-19 Oct. 2010 

[26] Dae C.Shin; Nikias, C.L., "Adaptive interference canceler for narrowband and 

wideband interferences using higher order statistics," Signal Processing, IEEE 

Transactions on , vol.42, no.10, pp.2715,2728, Oct 1994 

[27] Nikias, C.L.; Raghuveer, Mysore R., "Bispectrum estimation: A digital signal 

processing framework," Proceedings of the IEEE , vol.75, no.7, pp.869,891, July 1987. 

[28] Kay, S., "Representation and Generation of Non-Gaussian Wide-Sense Stationary 

Random Processes With Arbitrary PSDs and a Class of PDFs," Signal Processing, IEEE 

Transactions on , vol.58, no.7, pp.3448,3458, July 2010 

[29] Watts, S., "Radar detection prediction in sea clutter using the compound K-

distribution model," Communications, Radar and Signal Processing, IEE Proceedings F , 

vol.132, no.7, pp.613,620, December 1985 

[30] Abraham, D.A.; Lyons, A.P., "Novel physical interpretations of K-distributed 

reverberation," Oceanic Engineering, IEEE Journal of , vol.27, no.4, pp.800,813, Oct 

2002 

[31] Nikias, C.L.; Raghuveer, Mysore R., "Bispectrum estimation: A digital signal 

processing framework," Proceedings of the IEEE , vol.75, no.7, pp.869,891, July 1987 

[32] C.L. Nikias and A. P.  Petropulu,  Higher-Order Spectra Analysis: A Nonlinear 

Signal Processing Framework, PTR Prentice Hall, 1993  

 


