\qquad Master of Science (Name)
\qquad presented on \qquad September 18, 1975 (Major)

Tjeerd H. van Andel

A new technique for determining the amount of opal in deep-sea sediments of any age is described. Using a normative calculation, a portion of the analytical silica concentration of sediments is subtracted as non-biogenic in proportion to the concentration of aluminum in the sample. The ratio of $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ used to characterize the non-biogenic sediment fraction was determined by X-ray diffraction analysis of opal-free sediments. The procedure was tested against the X-ray diffraction method for determining opal in deep-sea sediments.

The biogenic silica content of Cenozoic sediments from 20 Deep Sea Drilling Project sites in the central equatorial Pacific was determined using the normative calculation technique for opal determination. The equatorial Pacific lies beneath the equatorial current system where upwelling of nutrient-rich waters results in high plankton productivity. Accumulation rates of biogenically produced
silica were calculated from the opal contents. Maps of these accumulation rates for time intervals during the Cenozoic show that opal accumulation was highest near the equator or paleoequator during the last $50 \mathrm{~m} . \mathrm{y}$. Superimposed on this pattern are fluctuations in the rate of opal accumulation in the entire area with time. Regional maxima in opal accumulation in the entire area with time. Regional maxima in opal accumulation occurred during the middle Eocene (42-45m.y. ago) and the late Miocene (7-10 m. y. ago). The accumulation rates during these maxima are an order of magnitude higher than those during times of minimum accumulation: the late Oligocene ($25 \mathrm{~m} . \mathrm{y}$. ago) and the present. The percent of biogenic silica in the sediments varies synchronously with the accumulation rates, but is low to the east due to dilution by non-biogenic sediment from terrigenous and volcanic sources.

Surface productivity controls the accumulation of opal in the equatorial Pacific and opaline sediments are not subject to differential solution with depth. The opal productivity indicated by opal accumulation rates is not related to changes in sea surface or bottom water temperatures and is therefore not directly governed by climate. The association of equatorial productivity and upwelling suggests that changes in circulation which cause upwelling were the principal factors controlling productivity and accumulation of biogenic silica in the past.

Biogenic Silica Sedimentation in the Central Equatorial Pacific During the Cenozoic by

Margaret Leinen

A THESIS
submitted to
Oregon State University

in partial fulfillment of
the requirements for the degree of

Master of Science

Redacted for privacy

Professor of Oceanography
 in charge of major
 Redacted for privacy

Dean of School of Oceanogrla phy

Redacted for privacy

Dean of Graduate School

A CKNOWLEDGEMENTS

I would like to take this opportunity to acknowledge three years of advice and encouragement from Dr. Tjeerd H. van Andel, who, as my major professor, bore the brunt of my frustrations over this work. Dr. G. Ross Heath has contributed above and beyond the call of duty as a committee member with patient answers and advice. My especial thanks go to these two members of my committee for their guidance and personal concern. I also wish to acknowledge the other members of my committee, Drs.E.J. Dasch and P. Klingeman, for their comments and suggestions.

I am grateful to the faculty and technicians who guided me from broken pipettes and blank diffractograms to real data: Dr. J. Dymond, J. P. Dauphin, R. Stillinger, C. Muratli, and P. Price. Mrs. C. Rathbun and Mrs. E. Asbury performed the carbonate analyses. Samples were provided by the Deep Sea Drilling Project.

As usual, my fellow students have been some of my best critics and several have been especially helpful in straightening out my more circuitous thoughts: A. Molina-Cruz, D. Stakes, M. Lyle and J. Clark. Some deserve special mention for warm encouragement on cold days: S. Hee, D. Rea, L. Dowding, C. Sancetta, C. Wenkam and R. Graham.

I would also like to thank M. Dibble for her assistance in
drafting and Mrs. M. Wolski for her patience in typing a thesis from 3000 miles distance.

Finally, I want to thank Roger and Dan, who have given and have given up the most so that I might finish. They have made it worth the effort.

The financial assistance of the National Science Foundation (Grant No. GA-31478) and a fellowship from Amoco Production Corporation are gratefully acknowledged.

TABLE OF CONTENTS
PARTI. A NORMATIVE CALCULATION TECHNIQUE FOR DETERMINING BIOGENIC SILICA IN DEEP-SEA SEDIMENTS 1
METHODS 5
RESULTS 6
Clay Mineralogy 6
Quartz and Opal 8
PART II. BIOGENIC SILICA SEDIMENTATION IN THE CENTRAL EQUATORIAL PACIFIC DURING THE CENOZOIC 17
METHODS 24
RESULTS 30
Biogenic Silica Accumulation Rates 35
Biogenic Silica Content of Carbonate-Free Sediments 38
Non-Biogenic Sediment Accumulation Rates 39
DISCUSSION 44
Effects of Errors in the Time Scale 44
Surface Productivity 48
Comparison of Carbonate and Biogenic Silica Accumulation and Supply 51
Paleoceanography 54
REFERENCES 68
APPENDIX I. Location of Deep Sea Drilling Project sites 77
APPENDIX II. Composite samples and their included Deep Sea Drilling Project samples 78

Table of Contents, continued:
APPENDIX III. Accumulation rates and percent of biogenic components 102
APPENDIX IV. Salt-free analytical concentrations 107
APPENDIX V. Carbonate-free and salt-free concen- trations 122
Figure Page
1 Percent biogenic silica determined by X-raydiffraction vs. percent biogenic silica deter-mined by normative calculation11
2 Effect of error in $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio chosen for normative calculation 13
3
Location of Deep Sea Drilling Project sites in the central equatorial Pacific 21Migration paths of DSDP sites in the centralequatorial Pacific25
Biogenic silica accumulation rates in 8 sites which crossed the equator during the last $50 \mathrm{~m} . \mathrm{y}$. 32
6 Isopleth maps of biogenic silica accumulation for various intervals of the Cenozoic 33
7 Biogenic silica accumulation rates and per- cent biogenic silica 36
8 Maps of percent biogenic silica in sediments for various intervals of the Cenozoic 40
9
Non-biogenic sediment accumulation rates 42
1011Comparison of isopleth maps of biogenic silicaaccumulation calculated from two differenttime scales47
12
Extrapolated rates of supply of biogenic com- ponents for the last 50 m . y 50

List of Figures, continued:
13 Variation in depth of calcium carbonate compensation depth with time 52
14 Present circulation of the equatorial Pacific 62
1 Semi-quantitative clay mineral abundances, the oretical $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios and quartz content of opal-free sediments7
2 Bulk and carbonate-free biogenic silica content of 0-1 million year sediment samples from DSDP sites in the central equatorial Pacific Ocean10

BIOGENIC SILICA SEDIMENTATION IN THE
 CENTRAL EQUATORIAL PACIFIC DURING THE CENOZOIC

PART I: A NORMATIVE CALCULATION TECHNIQUE FOR DETERMINING BIOGENIC SILICA IN DEEP SEA SEDIMENTS

The opaline skeletal remains of marine plankton such as diatoms, radiolarians and silicoflagellates are important constituents of marine sediments. Quantitative estimates of the amount of this biogenic silica are necessary to characterize sediments for geologic and paleoceanographic studies. Methods for determining the amount of opal in modern sediments are complicated, however, and have proven unreliable for sediments older than about one million years.

The techniques commonly used to determine opal are X-ray diffraction, infrared spectroscopy and chemical dissolution. An X-ray diffraction technique for measuring the opal content of deep-sea sediments was developed by Goldberg (1958) and Calvert (1966) and modified by Ellis (1972). The technique relies on the conversion of amorphous opaline silica to cristobalite upon heating and has been used routinely for Pleistocene sediments by many investigators. While the method gives reproducible results for modern sediments, attempts to use it on sediments older than one million years have been unsuccessful because aged opal does not seem to convert completely to cristobalite. The thermal-inversion relationship is probably
affected by bond changes in the opal molecules as they age (Heath, 1975). Opal which has been converted to quartz or which has been dissolved and redeposited as a siliceous coating on other sediment fractions is also undetected by this method.

Chester and Elderfield (1968) used infrared spectroscopy to determine opal. In this method the absorbance of carbonate-free samples is matched to a standard curve obtained from discs containing pure opal in KBr . This technique compared well with results from X-ray diffraction. However, the presence of more than 5\% quartz in the sediment interferes with the opal absorption band. In this case, which is common in marine sediments, a modified technique must be used. A "balancing disc" containing an estimated amount of quartz is placed in the reference beam of the spectrophotometer and the original carbonate-free sample is run against it. The amount of quartz in the "balancing disc" must be changed until it is within $\pm 0.5 \%$ of that in the sample, whereupon the quartz band is eliminated. Opal may then be measured from the standard absorbance curve. If the opal:quartz ratio is less than three it is not possible to estimate the opal content. A further complication arises because the technique measures $\mathrm{Si}-\mathrm{OH}$ stretch frequencies with which some marine constituents like palagonite interfere。

A dissolution method for removing amor phous silica from clays which has been used to measure the opal content of sediments was
described by Hashimoto and Jackson (1960). The technique involves repeated leaching of samples with 0.5 N NaOH . The concentration of silica in the supernatant is measured after each dissolution. The authors indicate that poorly cyrstallized clay minerals are also attacked by this treatment. In a test of the procedure on biogenous opal, Ellis (1972) found the method to be very inefficient for opal-rich samples since appreciable quantity of opal was left undissolved after four leaches. In addition, a variable number of dissolutions, ranging up to seven, was required to remove all of the opal from duplicate standards.

A second differential dissolution method using sodium carbonate has been used by Russian investigators (Bezrukov, 1955; Lisitzin, 1971a) but their results are not compared to other techniques. Hurd (1972) also dissolved samples in $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}{ }^{\circ}$. He measured the silica content of the supernatant by colorimetry (Strickland and Parsons, 1968) and related its net absorbance to a standard curve obtained from various percentages of opal mixed with an artificial sediment. Silicate minerals were also dissolved by this treatment, especially palagonite and montmorillonite. Therefore, variability and/or poor crystallinity in the non-biogenic sediment fraction introduce errors in the opal content estimated by this technique. A comparison of opal in surface sediments from the southern South Atlantic determined by sodium carbonate dissolution (Lisitzin, 1972) with those determined
by X-ray diffraction (Ellis and Moore, 1973) reveals discrepancies which indicate that this dissolution also yields low values for samples with high opal contents. Both dissolution techniques become questionable when applied to older sediments because the solubility of opal also changes with geologic age due to bond changes in the opal molecules (Heath, 1975).

Bostrom and Fisher (1971) reasoned that the $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio of oceanic and continental crust is about 4:1 (Bostrom and others, 1971, chose $3: 1$, a ratio representing the continental crust), and that chemical data could, therefore, be corrected for "excess" or opaline silica to yield non-biogenic sediment compositions. They used the relation:

$$
\mathrm{SiO}_{2} \text { "excess" }=\mathrm{SiO}_{2} \text { measured }-4 \mathrm{Al}_{2} \mathrm{O}_{3} \text { measured }
$$

(where $4 \mathrm{Al}_{2} \mathrm{O}_{3}$ is the estimate for non-biogenic silica). This technique is a potential method for determining the amount of opal in sediments of any age by making a normative calculation in which some of the analytical silica concentration is subtracted as non-biogenic in proportion to the amount of other chemical constituents in the sample. The non-biogenic fraction of marine sediments is made up of clay mineral assemblages with various admixtures of volcanic ash, authigenic minerals, manganese nodules and hydrated ferromanganese oxides. Since the proportion of each component varies widely from
one area to another, the non-biogenic fraction, taken as a whole, cannot be assumed to have an $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio equal to that of average continental crust. In clays, generally the major non-biogenic component, the ratio ranges from 2:1 to almost 7:1 (Weaver and Pollard, 1973) and varies with structure and the amount of cation substitution. In order to determine whether the method of subtracting non-biogenic silica is feasible and capable of giving reliable opal concentrations, a study was made of surface and subsurface sediments from Deep Sea Drilling Project cores in the central equatorial Pacific Ocean.

METHODS

To establish a $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio appropriate for the central equatorial Pacific, 42 samples which had little or no recognizable skeletal opal in smear slides were chosen from Deep Sea Drilling Project cores spanning the entire area and time range of interest. After calcium carbonate was removed with acetic acid buffered to $\mathrm{pH}=5$, ferromanganese hydroxyoxides were removed by the dithionite-citrate-bicarbonate technique of Mehra and Jackson (1960). The samples were Mg^{++}saturated and the $<2 \mu \mathrm{~m}$ fraction was mounted as oriented aggregates and X-rayed in duplicate. Relative proportions of the smectite, illite, kaolinite and chlorite groups were estimated from peak-areas using the weighting factors of Biscaye (1965). This technique assumes that the clays account for all the sediment finer
than $2 \mu \mathrm{~m}$.
In addition, quartz and opal were determined (Till and Spears, 1969; Ellis, 1972) on $2-20 \mu \mathrm{~m}$ carbonate-free aliquots of the same samples, as well as on thirteen composite samples made up from DSDP samples spanning the last one million years at each site.

Finally, a portion of each sample was dissolved with aqua regia and hydrofluoric acid in Teflon-lined bombs, neutralized with boric acid after dissolution (Bernas, 1968), and analyzed for Si , A1, Mg, Mn and Fe by atomic absorption spectrophotometry (AAS). In this way the $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ values estimated from ideal mineral compositions could be compared directly with the actual values for each sample.

RESULTS

Clay Mineralogy

Smectite is the dominant clay phase in all but one of the 42 samples which were analyzed for clay mineralogy (see Table l). Eight percent of the samples contained at least 60% smectite and over half contained more than 80% smectite. These results are in general agreement with those of Heath (1969b) who found that only the most recent of his cores in the equatorial Pacific ocean contained less than 60% smectite. The smectite concentration in the samples from the

TABLE 1. Semi-quantitative clay mineral abundances, theoretical $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios and quartz content of opal-free sediments.
(Sample number indicates DSDP Site. Age interval is in parentheses. Samples are listed in order of distance from East Pacific Rise at time of deposition.)

Sample	Smectite	Kaolinite	$\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ (calculated)

$80(21-22)$	91.5 ± 5.5	7.3 ± 8.9	0.5 ± 0.1	1.2 ± 1.3	3.886	1.3
$81(16-17)$	99.6 ± 0.8	0	0	0	2.4 ± 0.8	4.000
$83(10-11)$	96.9 ± 1.4	0	2.7 ± 2.3	4.000	2.0	
$77(37-38)$	85.2 ± 4.6	10.5 ± 3.8	1.7 ± 0	2.6 ± 1.0	3.808	1.8
$75(31-32) *$	14.5	63.2	0	22.3	3.052	4.8
$74(44-45)$	85.1 ± 3.4	12.3 ± 1.8	0	2.6 ± 5.2	3.816	4.0
$162(49-50)$	92.6 ± 2.4	5.5 ± 3.0	1.9 ± 0.6	0	3.880	1.5
$159(23-24)$	81.5 ± 3.2	13.2 ± 3.0	1.5 ± 3.0	3.7 ± 1.8	3.768	1.9
$159(22-23)$	91.3 ± 0.2	7.2 ± 1.3	0.6 ± 1.2	0.8 ± 0.1	3.876	1.0
$79(20-21)$	95.1 ± 1.1	2.8 ± 1.4	0	2.1 ± 2.6	3.958	0.0
$74(36-37) *$	88.4	0	5.0	6.5	3.896	2.0
$79(19-20)$	93.1	0	2.1 ± 4.2	4.8 ± 4.3	3.958	2.0
$79(18-19)$	100.0	0	0	0	4.000	2.0
$80(20-21)$	94.5 ± 1.8	0	0	5.5 ± 1.8	4.000	2.0
$77(28-29)$	51.3 ± 15.5	28.7 ± 6.7	7.8 ± 15.5	12.2 ± 0.4	3.416	5.0
$159(19-20)$	93.7 ± 6.5	3.4 ± 6.8	2.2 ± 1.1	0.7 ± 1.4	3.905	2.3
$74(33-34) *$	75.8	18.9	2.1	3.2	3.675	3.7
$79(18-19)$	100.0	0	0	0	4.000	2.0
$163(69-70)$	71.9 ± 3.0	26.0 ± 0.9	1.4 ± 0.7	0.7 ± 1.5	3.386	0.0
$72(27-28) *$	45.0	39.9	8.1	7.1	3.244	3.1
$77(20-21)$	85.4 ± 1.7	10.5 ± 1.0	1.8 ± 1.0	2.4 ± 2.8	3.807	1.1
$71(28-29)$	83.0 ± 0.8	13.4 ± 0.2	1.2 ± 2.4	2.4 ± 1.8	3.775	2.3
$75(21-22) *$	52.5	27.9	12.3	7.3	3.336	1.8
$73(20-21) *$	43.8	38.6	10.1	7.5	3.219	5.2
$75(16-18)$	89.6 ± 0.6	8.9 ± 0.1	0.4 ± 0.7	1.2 ± 1.2	3.863	3.9
$159(13-14)$	57.9 ± 0	16.2 ± 1.4	15.3 ± 1.5	10.6 ± 0.7	3.615	0.0
$160(1-2)$	73.0 ± 1.9	13.8 ± 2.2	4.1 ± 0.9	9.1 ± 0.6	3.711	5.3
$75(1-2) *$	59.5	23.0	9.0	8.5	3.475	4.0
$40($	68.5 ± 8.5	21.3 ± 10.8	4.8 ± 1.4	5.5 ± 3.7	3.589	3.2
$41(0-1)$	49.5 ± 2.9	30.5 ± 0.4	9.8 ± 1.5	10.2 ± 1.0	3.347	3.9

* Insufficient sample to run duplicate
study area decreases roughly with distance from the East Pacific Rise at the time of deposition from $90-100 \%$ smectite in samples deposited at or near the rise crest to approximately 50% in samples furthest from the rise crest. Illite was next in abundance and made up 0-40\% of the clay fraction. It is negatively correlated with the smectite content. Kaolinite and chlorite exceed 10% only in samples with low smectite concentrations. The negative correlation between smectite and the remaining components results from forcing the data to sum to 100% when one component is dominant (Chayes, 1960).

An $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio was estimated for the clay phase of assigning each clay group an average ratio based on compiled analyses of clay minerals (Weaver and Pollard, 1973). The ratios chosen were: smectite - 4:1; illite - 2.5:1; kaolinite - 2:1; and chlorite-4:1. Using these values, ratios were calculated for the clay fraction which ranged from about $4.0: 1$ for samples deposited near the East Pacific Rise to about 3:1 for samples deposited furthest from the rise crest. Samples representing the last one million years of sedimentation had ratios of about $3: 1$. The average for the entire group was 3.68:1, but it is biased toward samples with high smectite contents.

Quartz and Opal

Quartz made up approximately $1-5 \%$ of the $2-20 \mu \mathrm{~m}$ fraction of all samples except those from the last 5 million years, which had

2-20 $\mu \mathrm{m}$ fraction quartz contents of $10-11 \%$. Rex and Goldberg (1958) found that most detrital quartz in their Pacific sediment samples was in the $2-20 \mu \mathrm{~m}$ size range. This fraction made up about half of the carbonate-free sediment, by weight, in samples from this study. Therefore, 5% of the carbonate-free silica content of the 0-1 million year samples was attributed to quartz. Based on the quartz contents of older samples determined in this study and in a study of equatorial Pacific sediments by Heath (1969) a similar quartz correction can be made for samples older than one million years. Assuming the $2-20 \mu \mathrm{~m}$ size fraction to account for about half of the carbon-ate-free sediment, 2.5% of the carbonate-free silica of samples between one and 40 million years old is detrital quartz and 1% of the carbonate-free silica of samples older than 40 million years is detrital quartz.

The opal content of the thirteen 0-1 million year samples as determined by the X-ray technique and the normative calculation (using a $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ of $3: 1$) is shown in Table 2. The values are calculated on a salt-free (bulk sediment) and on a carbonate-free and salt-free basis. All values are corrected for quartz contents. The agreement between the two methods for the salt-free calculation is very good ($\mathbf{r}=.942$, see Figure 1). On a carbonate-free basis the agreement is not as close ($r=.883$) because the differences are multiplied by carbonate correction factors.

TABLE 2. Bulk and Carbonate-Free Biogenic Silica Content of $0-1$ Million Year Sediment Samples from DSDP Sites in the Central Equatorial Pacific Ocean

Site	Bulk Biogenic Silica Percent				Carbonate-Free Biogenic Silica				
	$\begin{gathered} \text { X-Ray\# } \\ \text { (calculated) } \end{gathered}$		A.AS\#		X-Ray\#		AAS\# (calculated)		$\mathrm{CaCO}_{3} \%{ }^{*}$
70	20.35	1.4	20.39	1.4	20.42	1.4	20.65	1.4	1.16
71	7.27	0.3	7.09	0.1	37.19	1.3	36.26	0.31	80.45
72	13.81	0.4	13.45	0.5	76.74	2.0	74.72	2. 80	82.00
73	14.93	0.7	7.07	0.6	99.61	4.6	47.16	4.0	85.01
74	42.07	2.0	40.48	1.2	41.57	2.1	40.95	1.2	1.17
75	0.00	0.5	1.85	0.1	0.00	0.5	1.87	0.1	0.87
77	15.43	0.1	12.77	0.6**	73.48	0.5	60.08	2.9\%*	79.00
79	11.86	0.6	12.09	0.8\%\%	74.46	4.0	75.89	4. 8% \%	84.07
81	9.47	0.2	6.13	0.1	85. 38	3.1	55.27	0.1	88.91
82	18.35	1.1	17. 23	0.8**	76.55	12.5	71.88	3.5**	76.03
83	15.42	0.1	15.03	0.1**	35.61	0.2	34.70	0.3**	56.69
159	3.26	1.6	1.33	2.3**	3.27	1.6	1.34	2.3**	0.26
160	18.90	1.5	8.34	1.6	19.54	1.5	8.62	1.8	3.27

* Values below 80% from LECO- 714 analyzer, values above 80% from AAS
\# Samples run in duplicate
\#\# Samples run in triplicate

Figure 1. Percent biogenic silica in bulk sediment calculated from X-ray diffraction data vs. Percent biogenic silica in bulk sediment determined by normative calculation technique. Bars on sample points indicate error.

DISCUSSION

The X-ray technique has an accuracy of $\pm 5 \%$ for samples having less than 60% opal, but may be less accurate for those with greater opal contents (Ellis, 1972). The precision of the atomic absorption analyses varies from about 1 to 2% for Si and Al in samples low in calcium carbonate to about 2 to 5% for those high in carbonate. Comparison with USGS standard rocks and pure opal standard indicated no systematic error. Determinations of Al in standard rocks were accurate to ± 1 weight percent and Si determinations were accurate to ± 1.5 weight percent. The maximum error for the opal determinations using a $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio of $3: 1$ is, therefore, about $\pm 5 \%$ for low carbonate samples and $\pm 6 \%$ for high carbonate samples.

A known and consistent $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio for the area studied is a prerequisite for accurate biogenic silica estimates. The effect or ratio variability is greatest at low opal concentrations. At 0\% opal, the error is 12% for each integral departure from the actual $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio (see Figure 2). The error decreases linearly so that at 100% opal all ratios correctly determine the opal content because there is no alumina in the sample. This makes the normative calculation more accurate for samples with high opal content where X-ray diffraction and differential solution techniques are particularly unreliable. Estimates of the chemical composition of the non-biogenic

Figure 2. Effect of error in $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio chosen for normative calcula tion. Curves represent integral departures from an actual ratio of $n: 1$.
fraction based on clay mineralogy provide reasonable $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ values for the calculation since clays are usually the major nonbiogenic component that contains silica. Where clay mineral data are not available, it is probably more accurate to use an average ratio based on pelagic clays than the continental ratio of 3:1. El Wakeel and Riley (1961) list chemical analyses of 11 pelagic clays. If these are corrected for their biogenic silica contents, the average SiO_{2} : $\mathrm{Al}_{2} \mathrm{O}_{3}$ is 4.3:1. Analyses of nine pelagic red clays from the Pacific described by Revelle (1944) have an average $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ of 3.9:1. These values are appropriate for samples with little terrigenous influence. The value originally used by Bostrom and Fisher (1971) of 4:1 is therefore a good estimate of the ratio for deep-sea sediments. An important source of error for determining opal on a car-bonate-free basis lies in the calcium carbonate values themselves. The effect of errors in carbonate content is particularly great for samples having more than 85% carbonate. For example, a bulk sample biogenic silica content of 3% represents 43% of the carbonatefree sediments if the carbonate content is 93%, but represents 60% of the carbonate-free sediment if the carbonate content is 95%. Carbonate determinations for this study were initially calculated from measurements by a LECO-714 carbon analyzer. These values seemed to be systematically low compared to measurements made on the same core intervals by the Deep Sea Drilling Project. Ca was then
measured by atomic absorption and calcium carbonate was calculated using the relation:

$$
\text { CARBONATE } \%=100\left(\frac{\mathrm{Ca} \%-(0.0041 \mathrm{SALT} \%)-0.73}{39.31}\right)
$$

which corrects for calcium in the salt and non-carbonate fractions. The error introduced by assuming a constant Ca content of the nonbiogenic fraction (0.73%) is less than 1% for samples with more than 90% calcium carbonate and less than 3% for samples with more than 80% calcium carbonate (Dymond and others, in press). The error increases exponentially with decreasing carbonate content. Therefore, the atomic absorption value for $C a$ was used to calculate calcium carbonate contents above 80% and the LECO value was used for those below 80%. The carbonate contents estimated by atomic absorption differed by as much as 10% from the carbonate percentages determined by LECO and markedly improved agreement between the X-ray estimate and the calculated normative estimate of carbonatefree opal concentrations. Biogenic silica values for bulk samples are unaffected by carbonate values so that accumulation rate calculations can be made regardless of the quality of the carbonate data for the sediments.

The normative calculation method described above gives results which are compatable with those of the standard X-ray technique for sediments younger than one million years, but the X-ray technique
may still be preferable for such samples since it measures opal and quartz directly. Both methods involve a moderately extensive laboratory preparation. There are two applications for which the normative calculation has a distinct advantage. One is the case where samples are to be analyzed for chemical composition so that the normative calculation requires no additional laboratory work. The second is for pre-Pleistocene sediments for which X-ray and dissolution techniques are unreliable.

PART II. BIOGENIC SILICA SEDIMENTATION IN THE CENTRAL EQUATORIAL PACIFIC DURING THE CENOZOIC

In the span of a few years the central equatorial Pacific Ocean has become one of the most intensively studied pelagic geologic provinces in the world ocean. This area lies beneath the biologically productive equatorial current system, which has existed through the Cenozoic. The plankton of the equatorial current have supplied abundant skeletal material which, together with terrigenous and authigenic sediment, has produced an unusually thick and complete marine record. Because the high productivity of the region is a direct consequence of the large nutrient concentrations associated with upwelling at the equator, this sedimentary section is a record of the paleoceanography and history of productivity of the equatorial Pacific.

Since Arrhenius (1952) described the first long piston cores from the east Pacific, various aspects of equatorial Pacific sedimentation have been studied (e. g. Burckle, 1967; Heath, 1969a, b; Hays and others, 1969; Winterer, 1973), three Deep Sea Drilling Project legs have focused on the area and its history (Tracey and others, 1971; Hays and others, 1972; van Andel and Heath, 1973) and two summary studies of the sedimentation history have been made (Berger, 1973; van Andel and others, 1975). In spite of this wealth of published information, only the history of carbonate sedimentation in the central
equatorial Pacific is well known. The DSDP summaries and the study by Berger (1973) have dealt primarily with sedimentary facies and furnish general descriptions of the types of sediment present and of the sedimentation history. The DSDP summaries and the study by Berger (1973) have dealt primarily with sedimentary facies and furnish general descriptions of the types of sediment present and of the sedimentation history. The work of van Andel and others (1975) modeled the depositional history primarily on the basis of carbonate sediments and interpreted the paleoceanography in terms of the calcite compensation depth and carbonate sedimentation.

Carbonate sedimentation, however, is not well suited for reconstructing the paleoceanography of surface waters. Ocean waters are under saturated in carbonate beneath the upper few hundred meters, leading to dissolution of calcareous sediments in the water column and after deposition. The dissolution rate increases rapidly below the lysocline (Heath and Culberson, 1970) until the rate of solution equals the rate of supply of calcium carbonate at the calcite compensation depth (CCD; Bramlette, 1961; Berger, 1970) below which no calcareous sediment is preserved. The distribution and concentration of calcareous sediments are, therefore, determined by the balance between the supply of calcium carbonate from the surface and the dissolution of calcite at depth. Since the depth of the lysocline and of the calcite compensation depth fluctuate with time it is impossible to
estimate the original supply of sediment without knowing the level of the lysocline and the gradient of dissolution.

Seawater is also undersaturated with respect to opaline silica (Krauskopf, 1956; Jones and Pytkowicz, 1973). The opaline tests of radiolarians, diatoms and silicoflagellates dissolve in the water column and in surface sediments, but the rate of solution is almost indpendent of depth (Heath, 1974; Edmond, 1974). For siliceous sediments below 2000 m Johnson (1974) found that the only preservation - depth correlation for the eastern tropical Pacific was a result of hydraulic sorting: deeper depositional sites receive a statistically higher amount of opaline tests than do shallow sites. Because preservation is largely independent of depth, opaline sediments are a less distorted indicator of surface productivity than are carbonate sediments. Studies of Holocene and Quaternary opal distributions in the equatorial Pacific (Heath and others, in prep.) reflect the patterns of primary productivity in the area (Ryther, 1963; Koblentz-Mishke and others, 1970; Lisitzin, 1972).

All previous studies of the Cenozoic sedimentation history of the equatorial Pacific have, of necessity, dealt qualitatively with siliceous biogenic sediments because there has been no analytical technique for determining the opal content of sediments older than one million years. The development of a new technique for determining the opal content of marine sediment of any age (see Part I) permits a
quantitative evaluation of the Cenozoic budget of opaline silica. This procedure has been used in this study to determine the opal content of selected samples from DSDP sites in the central equatorial Pacific. With this information to estimate the rate of accumulation of biogenic silica can be estimated which, together with the history of carbonate accumulation, can be used to reconstruct changes in the equatorial current system and in its associated biologic productivity during the past 50 million years.

Biostratigraphic and Tectonic Models

This study supplements van Andel and others' (1975) larger synthesis of central equatorial Pacific sedimentation. Their synthesis provides the tectonic framework and a detailed analysis of carbonate sedimentation with which the analysis of biogenic silica sedimentation can be coupled. To facilitate comparison, the biostratigraphic and tectonic models used in the previous study have been adopted unchanged. In addition, the samples were chosen to complement those of the first study as much as possible.

Samples were chosen from 22 drill sites from Legs 5, 8, 9 and 16 of the Deep Sea Drilling Project (Figure 3; Appendix I); which are the same ones used by van Andel and others (1975). The biostratigraphic zonation for each site is presented in that study. This zonation is based on the biostratigraphic zonations presented in the Initial

Figure 3. Location of Deep Sea Drilling Project sites in the central equatorial Pacific. Dots represent sites which ended in basalt interpreted as basement. Open circles are sites which did not reach basement.

Reports for each of the DSDP legs with revisions by D. Bukry. The absolute chronology is based on Berggren (1972). Ages of sedimentbasement contacts and ages of the oldest cored sediment in holes which did not reach basement were taken from van Andel and Bukry (1973). One-million-year absolute age boundaries were determined for the entire length of cored sediment at each site by plotting the absolute ages of all available biostratigraphic zone boundaries against ages of all available biostratigraphic zone boundaries against depth in the hole. A curve, fitted by hand to all points, was then used to determine the depth of all one million year age boundaries at each site. The uncertainty in the absolute ages of zone boundaries used to determine one million year age boundaries does not exceed $1 \mathrm{~m} . \mathrm{y}$. for intervals less than 10 million years old, $2 \mathrm{~m} . \mathrm{y}$. for those 10 to 27 million years old and 3 m . y 。for intervals 27 to 50 million years old. An extensive discussion of the assumptions and uncertainties associated with the biostratigraphic zonation, absolute ages and one million year age boundaries is given in van Andel and others (1975).

All sites used in the study except one, site 83 on the Cocos Plate, are on the Pacific plate which has moved northwestward with respect to the present equator throughout the Cenozoic (Francheteau and others, 1970). This movement has produced a progressive northward displacement of equatorial deposits with increasing age (van Andel and Heath, 1973; van Andel and others, 1975; Winterer, 1973).

Consequently, it is essential to know the exact migration path of each site with time for paleoceanographic reconstructions. This location of the Pacific pole of rotation and the motion of the Pacific plate around this pole of rotation during the Cenozoic have not yet been determined unambiguously. Several pole positions and rates of rotation have been suggested (Morgan, 1972; Clague and Jarrard, 1973; Minster and others, 1974). The time of shift from the Cretaceous and early Cenozoic Emper or pole of rotation to the present Hawaiian pole is also uncertain. Van Andel (1974) and van Andel and others (1975) determined axes of maximum equatorial sedimentation for several time intervals during the Cenozoic. These axes were migrated according to several rotation schemes and a model was finally chosen which kept the axis parallel and well-centered on the present equator. The rotation system used in that study and in this one is:

INTERVAL
POLE
ROTATION
Pacific Plate:

$$
\begin{array}{rll}
0-25 \mathrm{~m} . \mathrm{y} . & 67^{\circ} \mathrm{N}, 59^{\circ} \mathrm{W} & 0.83^{\circ} / \mathrm{m} . \mathrm{y} \\
25-50 \mathrm{~m} . \mathrm{y}_{0} & 67^{\circ} \mathrm{N}, 59^{\circ} \mathrm{W} & 0.25^{\circ} / \mathrm{m} . \mathrm{y} \\
>50 \mathrm{~m} . \mathrm{y} . & 1^{\circ} \mathrm{N}, 84^{\circ} \mathrm{W} & 0.80^{\circ} / \mathrm{m} . \mathrm{y}
\end{array}
$$

Cocos Plate:

$$
0-15 \mathrm{~m} . \mathrm{y} . \quad 23^{\circ} \mathrm{N}, 119^{\circ} \mathrm{W} \quad 1.47^{\circ} / \mathrm{m} \cdot \mathrm{y}
$$

The migration paths of the sites used in this study are shown in

Figure 4. A detailed discussion of alternative Pacific plate poles and rotation rates and of the basis for choosing the rotation scheme above is included in van Andel and others (1975).

Finally, ocean crust formed at rise crests gradually subsides as it ages. This subsidence can be described by a quantitative relationship between crustal age and basement depth (Sclater and others, 1972; Berger, 1973). The depth of each site during its northwestward migration has been computed on the basis of a subsidence curve constructed from the age and present depth of basement at the DSDP sites (van Andel and others, 1975). This curve parallels the one determined by Sclater and others (1972).

METHODS

Composite samples were made up of several 1 cm DSDP sediment samples which were chosen from cores spanning a series of one million year time intervals at each site. Where possible, samples from time intervals used by van Andel and others (1975) to map sedimentation, accumulation and carbonate accumulation rates were used so that the opal data could be compared directly with those maps. A complete list of the composite samples and the DSDP samples used to make them is compiled in Appendix 2. Using the procedures outlined above, each of the 122 composite samples has been assigned to a one million year age interval and its paleolatitude, paleolongitude

Figure 4. Migration paths of DSDP sites used in this study. Circles are present locations of sites and squares are positions of sites at time of origin. Solic characters represent drill sites ending in basement, open characters are those ending in sediment. Paths are marked at 5 m . y. intervals for the past $25 \mathrm{~m} . \mathrm{y}$. Rotation model is given in text. Dashed portion of migration path of Hawaiian pole rotations indicates change in rotation rate.
and paleodepth have been determined. In choosing samples, portions of the core in which mixing across one million year boundaries was obvious from core photographs and/or biostratigraphy were rejected, as were anomalous samples which were not typical of the time interval.

The DSDP samples were freeze-dried and combined in equal weight to form the composite samples. The composites were then ground briefly, split and recombined ten times to homogenize the sediment. The calcium carbonate and organic carbon content of each sample were determined from measurements by a LECO-714 carbon analyzer. Duplicates which did not agree to within 1 weight percent total carbon were rerun. Samples of 100 to 300 mg , depending on carbonate content, were used for chemical analysis. They were dried overnight, reweighed, and then dissolved with aqua regia and hydrofluoric acid in Teflon-lined bombs. The samples were neutralized with boric acid after dissolution (Bernas, 1969) and analyzed for $\mathrm{Si}, \mathrm{Al}, \mathrm{Mg}$, Mn and Fe by atomic absorption spectrometry using standard solutions made from pure metals. The standard solutions and experimental accuracy were tested against USGS standard rocks, AGV-1 and GSP-1.

Since most of the DSDP samples arrived partially dried, the usual correction for water loss and salt content based on weight loss after drying could not be made. Instead, the water loss was
calculated from the porosities and bulk densities of the sediments using the following relationships:

$$
\begin{aligned}
& \text { WATER LOSS }(\%)=\left(\frac{\text { true porosity }}{1.012 \times \text { bulk density }}\right) \times 100 \\
& \text { SALT }(\%)=\left(\frac{\text { Water loss }(\%) \times .035}{100-\text { Water loss }(\%)}\right) \times 100
\end{aligned}
$$

Porosities and bulk densities are routinely measured on DSDP cores onboard by the Gamma Ray Attenuation Porosity Evaluator (GRAPE). The error in GRAPE porosity is about $\pm 5 \%$ and that for bulk density is $\pm .05 \mathrm{~g} / \mathrm{cm}^{3}$ (Bennett and Keller, 1973). Plots of the original GRAPE data were used since those in the Initial Reports are on a small scale and are frequently matched to the core sections improperly. From these plots, the porosity and bulk density of the individual samples were read directly. Improper alignment of the GRAPE data with depth in core could introduce an additional error, but this error is minimal since the ends of sections are easily picked out on the plots. Errors due to core distortion are also minimal since samples from badly disturbed sections were not used. Maximum reading errors are about 1% for porosity and about $0.02 \mathrm{~g} / \mathrm{cm}^{3}$ for bulk density, so that errors in the water loss and salt corrections should not exceed 6%.

The biogenic silica content of the composite samples was determined by a normative calculation method in which a fraction of the
analytical silica concentration proportional to the concentration of other elements in the sample is subtracted as non-biogenic. For composite samples from the $0-1 \mathrm{~m} . \mathrm{y}$. time interval, the opal content was also determined by X-ray diffraction using the method developed by Goldberg (1958) and Calvert (1966), as modified by Ellis (1972). These determinations served as a cross-check on the validity of the results from the normative calculation. A complete discussion of the normative calculation technique and a comparison with the X-ray diffraction technique is given in Part .

Detrital quartz is a common constituent of marine sediments in the central equatorial Pacific, Heath (1969) has shown that the percentage of quartz in the $2-20 \mu \mathrm{~m}$ carbonate-free sediment fraction of equatorial Pacific sediments depends on age. A correction was made for the detrital quartz content of the composite samples based on his data. Five percent of the SiO_{2} content of samples $0-1$ m. y. in age were subtracted from the carbonate-free silica concentration before determining opal content with the normative calculation. For samples $1-40 \mathrm{~m}$. y. old, $2.5 \% \mathrm{SiO}_{2}$ were subtracted and for samples older than $40 \mathrm{~m} . \mathrm{y} .1 \%$ was subtracted from the carbonatefree SiO_{2} concentration before correcting for non-biogenic silica. Three different $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios were used to correct the bulk silica content for non-biogenic silica depending on the age of the sample. These ratios were determined by a study of the analytical
and theoretical $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio in the principal non-biogenic sediment fraction, the clay minerals, $\mathrm{A} \mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio of $3: 1$ was used to represent the non-biogenic silica fraction of sediments $0-5 \mathrm{~m}$. y 。 old. Thus, three times the analytical concentration of $\mathrm{Al}_{2} \mathrm{O}_{3}$ were subtracted from the SiO_{2} concentration; the remainder is biogenic silica. A ratio of $3.5: 1$ was used for subsequent samples except for those within 300 km of the point at which the site originated on the East Pacific Rise. (It took 5 to 8 m . y. for sites to migrate 300 km from their point of origin depending on the rotation rate of the Pacific plate during the interval.) For these samples a ratio of $4: 1$ was used.

The precision of the atomic absorption analyses varies from about 1 to 2% for Si and Al in samples low in calcium carbonate to about 2 to 5% for those high in carbonate. Comparison with USGS standard rocks and pure opal standard indicated no systematic error. Determinations of Al in standard rocks were accurate to ± 1 weight percent and Si determinations were accurate to ± 2 weight percent. The maximum error for the opal determinations using a $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio of $3: 1$ is, therefore, about $\pm 5 \%$ for low carbonate and $\pm 6 \%$ for high carbonate samples. For an $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio of $4: 1$ the errors are $\pm 6 \%$ and $\pm 7 \%$, respectively. An additional source of error arises from using an $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio that is too high or too low. The effect of ratio variability is greatest at low opal concentrations
and increases from zero at 100% opal to 12% when there is no opal in the sample for each integral departure from the correct ratio.

The X-ray technique for opal determination is thought to be accurate to $\pm 5 \%$ opal (Ellis, 1972). Only two of the thirteen samples run by both techniques differed by more than 5% opal when calculated on a salt-free basis. On a carbonate-free and salt-free basis the agreement was not as good, but it is likely that much of the error is due to inaccurate carbonate determinations.

RESULTS

The biogenic silica content of the composite samples was calculated on a bulk sediment basis and on a carbonate-free basis. All values were corrected for salt content. Using the bulk biogenic silica percentages, a biogenic silica accumulation rate was calculated using van Andel and others (1975) bulk accumulation rates in $\mathrm{g} / \mathrm{cm}^{2} / \mathrm{my}$ 。 These rates are independent of factors such as differential compaction of sediments and the dilution or masking effects of calcareous and non-biogenic sediments.

Carbonate accumulation rates were also calculated from the measured calcium carbonate contents. The percent biogenic silica, percent carbonate, and accumulation rates for each composite sample are listed in Appendix 3. The original chemical data used for the calculations are given in Appendix 4 (corrected for salt only)
and Appendix 5 (corrected for salt and carbonate).
The first-order feature in the pattern of biogenic silica deposition in the central equatorial Pacific through the Cenozoic is a zone of maximum accumulation along the equator. Eight sites were sampled at intervals which included the time during which they crossed the equator ($1^{\circ} \mathrm{N}$ to $1^{\circ} \mathrm{S}$). The remainder either did not cross the equator, had a hiatus at the time of crossing, or were not cored over the equator-crossing interval. Of the eight sites sampled, five have distinct maxima associated with the crossing, one has a minimum, and two were not sampled at close enough intervals to define an equator-crossing peak, but do have accumulation rates charactertistic of the equatorial zone during that time interval (Figure 5).

The best evidence for the influence of the equatorial zone of high productivity on biogenic silica accumulation appears in a set of maps covering 9 discrete time intervals during the last 50 m 。 y . (Figure 6). The 9 intervals chosen correspond roughly to those of van Andel and others (1975) so that carbonate and biogenic silica accumulation can be compared. They chose 11 time intervals which were keyed to maxima and minima which they observed in the sedimentation rate ($\mathrm{m} / \mathrm{m} . \mathrm{y}_{0}$), accumulation rate ($\mathrm{g} / \mathrm{cm}^{2} / 1000 \mathrm{yr}$) and carbonate accumulation rate data. The time intervals used to map biogenic silica accumulation rates have been made somewhat longer in order to include enough data for reliable contouring. Where

$\int_{\mathrm{O}_{\mathrm{S}}}^{1 \mathrm{~N} \mathrm{~N}}$ EQUATORIAL ZONE
1.0 ACCUMULATION RATE ($\mathrm{g} / \mathrm{cm}^{2} / \mathrm{m} . \mathrm{y}$.)

Figure 5. Biogenic silica accumulation rates in 8 sites which crossed the equatorial zone ($1^{\circ} \mathrm{N}$ to $\mathrm{l}^{\circ} \mathrm{S}$) during the last 50 m . y.

BIOGENIC SILICA ACCUMULATION RATE
 (contours in $\mathrm{g} / \mathrm{cm}^{2} / \mathrm{IOOO} \mathrm{yr} \times \mathrm{IOO}$)

Figure 6. Isopleth maps of biogenic silica accumulation for various intervals of the Cenozoic. Stippled pattern represents areas which have been eroded. Sites sampled during the interval are shown as dots. Open circles represent data extrapolated from within 1 m . y . of the mapped time interval.
justified, extrapolated data from either side of the interval for the remaining sites were used as a guide in contouring. Although the maps are based on widely spaced points, the excellent match between the 0-1 m.y. map and similar maps from the central equatorial Pacific based on many more points (Heath and others, in prep.) suggests that the shape of the equatorial zone and the range of accumulation rates defined by the data points are correct. Each time interval is characterized by an axis of maximum biogenic silica accumulation centered on or near the equator. For intervals prior to 25 m . y. the axes seem to be consistently offset to the south. At present, both the axis of maximum primary productivity and the axis of maximum opal content of recent central equatorial Pacific sediments are associated with meridional divergence located about 2° south of the geographic equator (Pak and Zaneveld, 1974; Heath and others, in prep.). It is unclear whether the southerly offset of the maximum accumulation axes for the four oldest intervals reflects this productivity pattern, or whether it results from an error in the Pacific plate rotation parameters used for 25-50m.y. Van Andel and others (1975) also noted a southward offset of their oldest carbonate accumulation axes which they attributed to either imprecision in the positioning of the axes or to slight errors in the rotation parameters.

Biogenic Silica Accumulation Rates

The rate of accumulation of biogenic silica on the ocean floor is virtually indpendent of depth or of hydrographic features. Thus, it is a valuable tool for interpreting past rates of production of biological detritus in surface waters. Figure 7 shows the accumulation rate of biogenic silica at all sites during the last 50 m . y 。. The curves lack detail because the average sample spacing is $4 \mathrm{~m} . \mathrm{y}$. Nevertheless, three intervals of intensified opal accumulation can be recognized. During the Middle Eocene from about 42-45m.y. ago, five of the seven sites show clear maxima. The remaining two, at 10° to $15^{\circ} \mathrm{S}$, were well outside the equatorial high productivity zone. Deposition declined gradually from this time until about 25 m . y . ago. A second maximum is centered at 15 to 16 m . y ., when all except one of the equatorial Pacific sites show an increase in opal accumulation rate. Two sites have major peaks and none of the sites have a minimum at this time. Finally, there is some suggestion of greater biogenic silica accumulation during the Upper Miocene to Pliocene (about 5 $7 \mathrm{~m} . \mathrm{y}$. ago), although this maximum is not well defined. A distinct minimum occurred 25-27m. y. ago when biogenic silica accumulation rates were lowest for the entire Tertiary and every site had a minimum or a declining accumulation rate. Except for sites near the East Pacific Rise, beneath the zone of highest Holocene primary

Figure 7. Biogenic silica accumulation rates and percent biogenic silica curves for each site plotted on the Berggren (1972) and van Andel and others (1975) time scales.
productivity, the interval from $0-1 \mathrm{~m}$. y . is also characterized by very low opal accumulation rates.

Maps of the changes in opal accumulation through time (Figure 6) define the geographic limits of accumulation and of high productivity areas. The alternating periods of high and low productivity during the Cenozoic are especially striking in these maps. During the Oligacene biogenic silica accumulation rates in the equatorial Pacific decreased from their highest Tertiary values (250-500 g/cm ${ }^{2} / \mathrm{m}$ 。y. during the Middle Eocene) to a mid-Tertiary low when accumulation rates averaged $30 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{m}$. y. Opal deposition then increased to a second maximum during the Middle Miocene. Although opal accumulation rates during this maximum are clearly larger than those of the rest of the Miocene, they are only about half those of the Middle Eocene. Several sites having low Middle Miocene accumulation rates were well outside the equatorial belt of high productivity (Figure 6). Since the Middle Miocene the deposition of biogenous silica has changed little, although there is some evidence for a small increase during the Pliocene. Further work is needed to determine whether this increase is real or due to a slight error in absolute age assignments.

Since the Middle Eocene, the biogenic silica accumulation has been highest along the equator (or just south of it). Since the Late Miocene a pattern of very high opal accumulation at the eastern end of the equatorial zone has been superimposed on the axial maximum.

It is difficult to set limits on the extent of the equatorial zone of biogenous deposition from the maps since the zero contour is poorly defined. Before the Early Miocene, southern sites indicate that the zero contour extended to at least $20^{\circ} \mathrm{S}$ in the east. Van Andel and others (1975) attribute a similar feature in carbonate accumulation rate maps to a broad shoal which enabled more carbonate to escape dissolution. However, since the dissolution of opal is not depth dependent, the similar pattern of opal accumulation suggests that this feature is related to surface productivity rather than bottom topography. There are no data for the Neogene to determine whether the feature persisted into upper Tertiary time. Similarly, a lack of data for the southwestern part of the central equatorial Pacific prior to 24 $27 \mathrm{~m} . \mathrm{y}$. makes it impossible to determine whether the feature was a southward extension of the eastern high productivity zone or whether the entire zone was much wider during the early Tertiary and the contours should be more parallel to lines of latitude.

Biogenic Silica Content of Carbonate-Free Sediments

Additional insight into opal deposition patterns can be found in the percentage of biogenic silica in the carbonate-free sediment fraction (Figure 7). The carbonate-free opal percent is not modified by differential dissolution effects of depth, but it is sensitive to changes in the amount of non-biogenic sediment being deposited. Temporal
variations in the percent biogenic silica parallel those of the biogenic silica accumulation rate．After the middle Eocene when opal made up more than 50% of the carbonate free sediment fraction，the percentage decreased in all sites until 38 m 。y．ago and in all but two sites until 27 m 。 y．ago．Upper Oligocene samples contain less than 25% biogenic silica in the carbonate－free fraction（Figure 7）．After this minimum in opal content，which coincides exactly with that of the biogenic silica accumulation rate，the percent opal in equatorial Pacific sediments in－ creased to a maximum centered at 8 m ． y ．Biogenic silica makes up about $40-50 \%$ of the carbonate－free fraction of those sediments． Since then，the biogenic silica content first decreased to a low about $3 \mathrm{~m} . \mathrm{y}$ 。 ago and then increased to present levels Maps of silica content（Figure 8）show the equator－centered pattern seen in the accumulation rates，but the pattern is modified by the influx of non－biogenic sediment from the east which decreases the opal per－ centage．The dilution effect is seen most clearly in the Paleogene when opal content decreased to the east and west from a maximum centered along the equator，and is also apparent again in Quaternary sediments．

Non－Biogenic Sediment Accumulation Rates

The final element in any budget of central equatorial Pacific deposition is the non－biogenic sediment．This fraction is composed

Figure 8. Maps of percent biogenic silica in sediments for various intervals of the Cenozoic. Stippled pattern represents areas which have been eroded. Open circles represent data extrapolated from within $1 \mathrm{~m} . \mathrm{y}$. of the mapped time interval.
of terrigenous material brought to the area from the east, volcanic ash and altered volcanic debris, and authigenic and hydrothermal material. The rate of accumulation of this component through time is dependent on a great many facts, but, with the exception of six points, all sampled intervals had accumulation rates below $400 \mathrm{~g} /$ $\mathrm{cm}^{2} / \mathrm{m}$. y. and the rates did not vary systematically through time (Figure 9). This argues against serious distortion of the time scale and implies that long-term changes in opal content (Figure 7) did not result from dilution by non-biogenic sediment. Five of the accumulation rates above $400 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{m}$. y. reflect deposition close to the East Pacific Rise, a source of non-biogenic sediment: a lobate zone of accumulation extending west from the East Pacific Rise along the equator, and a zone of enhanced accumulation along the East Pacific Rise. The lobate forms of the isopleths of Figure 10 resemble the patterns for the biogenic sediments (Figure 6), but are not wellcentered on the equator. There are two possible explanations. The normative silica correction may be too large and a portion of the biogenic silica may be included in the non-biogenic component. If this were true, however, the non-biogenic accumulation rates should display a periodicity like that of the biogenic silica accumulation rates. Furthermore, since the $\mathrm{SiO}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio used is largest in the early Tertiary samples, these should have the largest amount of excess non-biogenic sediment. This is clearly not the case; the lobate

NON-BIOGENIC SEDIMENT ACCUMULATION RATES

Figure 9. Non-biogenic sediment accumulation rates for each site plotted on the Berggren (1972) and van Andel and others (1975) time scales.

Figure 10. Isopleth maps of non-biogenic sediment accumulation for various intervals of the Cenozoic. Stippled pattern represents areas which have been eroded. Open circles represent data extrapolated from within 1 m . y . of the mapped time interval.
distribution pattern is least well developed during the early Tertiary. Although the accumulation rate along the East Pacific Rise crest varies a great deal through the Tertiary, the area enclosed by the lower value isopleths (the $10 \mathrm{~g} / \mathrm{cm}^{2} / 1000 \times 100$ isopleth, for example) stays about the same until the Quaternary.

Secondly, the dispersal of non-biogenic sediment may be influenced by some factor or factors which also affect the distribution of plankton, for example, transport by the north and south equatorial currents. The South Equatorial Current, in which the upwelling responsible for high biological productivity occurs, may carry volcanic ash and terrigenous material westward. The northeast and southeast trade winds may complement the currents by depositing eolian dust in a belt along the equator.

DISCUSSION

Effects of Errors in the Time Scale

Van Andel and others (1975) found several maxima and minima in the rate of carbonate accumulation in the central equatorial Pacific. These authors considered the possibility that these maxima were due to internal distortion in the Berggren (1972) time scale, especially during the Miocene. They treated the problem in two ways: first by generating a time scale based on a constant sedimentation rate at
each site (with the exception of equator crossings), and second, by constructing an alternative time scale for the Miocene based on radiometric ages from marine sections. They concluded that the constant sedimentation rate model as applied to five drill sites does not provide a reasonable time scale. The alternative Miocene time scale reduced a $14-15 \mathrm{~m} . \mathrm{y}$. sedimentation rate maximum and moved it to $14-16$ m. y., but did not eliminate it. A new maximum was introduced at 10-11 m. y. Van Andel and others (1975) concluded that the rate maxima did not result from time scale errors and adopted the alternate time scale. Of the maxima in carbonate accumulation only those at $6-7,14-15$ and $42-46 m$. y 。are also evident in the biogenic silica accumulation rate. This is itself strong evidence against major distortion of the time scale. If the carbonate maxima were caused by errors in the time scale, apparent opal maxima would also occur and would match the carbonate maxima in relative magnitude and age.

Opal accumulation rates which were recalculated using the alternate Miocene time scale are compared with the earlier values based on Berggren's (1972) time scale in Figure 7. On the basis of the recalculated rates, only two sites have clear maxima at $14-16$ $m . y$. and one of these represents an equator crossing. The accumulation rate increases in all sites from the 25 m . y. minimum to a maximum at 6-7m.y. A comparison of accumulation rate maps for the Miocene time intervals using the Berggren (1972) time scale and the
alternate time scale (Figure ll) confirms the change in biogenic silica accumulation. The new maps suggest that the Late Miocene was the time of most active silica sedimentation in the late Cenozoic.

The accumulation patterns for both time scales are plausible; neither has unreasonable maxima or minima. Thus, a choice between the two must be based on other information. Berggren and van Couvering (1974) proposed a scale similar to that of van Andel and others (1975) based on biostratigraphy and radiometric dating. There are also indications from within the data set that the alternate time scale proposed in van Andel and others (1975) is more reasonable than the Berggren (1972) time scale for the Middle Miocene. For example, with the exception of the Middle to Late Miocene, changes in the carbonate-free opal percent mirror changes in accumulation rates (calculated from the Berggren, 1972, scale). But there is no maximum in opal content to match the $14-16 \mathrm{~m}$. y . opal accumulation rate maximum. The percent biogenic silica gradually increases from about $27 \mathrm{~m} . \mathrm{y}$. until about $7-10 \mathrm{~m} . \mathrm{y}$ 。ago. The alternate time scale changes the positions of the curves of percent biogenic silica vs. time (Figure 7) but does not change the silica percents themselves since they are experimentally determined values independent of the time scale. The maximum in opal content at about 7 m . y. ago become more pronounced using the alternate time scale. Thus, the accumulation rate and opal content data match more closely when the alternate

BIOGENIC SILICA ACCUMULATION RATE ($\left.\mathrm{g} / \mathrm{cm}^{2} / 1000 \mathrm{yr}\right) \times 100$

BERGGREN (1972) TIME SCALE

VAN ANDEL AND OTHERS (1975) TIME SCALE
Figure 11. Comparis on of isopleth maps of biogenic silica accumulation calculated with the Berggren (1972) and van Andel and others (1975) time scales. Stippled pattern represents areas which have been eroded. Open circles represent data extrapolated from within $1 \mathrm{~m} . \mathrm{y}$. of the mapped time interval.
time scale is used. The alternate scale will be used in all further discussion.

Surface Productivity

Because ocean waters are so highly under saturated with respect to amorphous silica, most opal secreted as skeletal material dissolves in the water column during settling and in the bioturbated sediment layer. Hurd (1973) found that only 0.05 to 0.15% of the opal produced at the surface was preserved in his samples from the equatorial Pacific. However, his estimate was based on the amor phous silica productivity for equatorial regions given by Lisitzin (1972) which was calculated assuming that all opal productivity is a function of the primary productivity of organic carbon by diatoms. In the equatorial Pacific, radiolarians which are zooplankton of the second trophic level (grazers), make up a significant portion of the siliceous plankton. This increased the calculated production of opal which implies that Hurd's estimate of the amount of opal preserved is too low. Calvert (1968) suggested that about 2% of the opal produced through time has been incor porated into sedimentary rocks. This value is consistent with those proposed for marine sediments by Lisitzin (1971) and Heath (1974) and seems to be a reasonable estimate of the amount of opal finally incorporated into the geologic record. This figure has been used to estimate the siliceous surface productivity of
the central equatorial Pacific during the last 50 m 。 y . (Figure 12). Two opal supply curves are shown. The first, "regional supply," is the supply of biogenic silica to the area averaged over all sites in each time interval. The second, "equatorial supply," is a curve for sites within 3° of the equator or paleoequator. The values are rough estimates and the supply is assumed to be a linear function of accumulation rate (supply $\times 0.02=$ accumulation). The large supply indicated for 4-7m. y . is strongly influenced by one value from the eastern end of the high productivity zone. This site was on the East Pacific Rise at the time the accumulation rates for all components are almost an order of magnitude higher than those for the rest of the equatorial Pacific, the high biogenic silica accumulation rates may represent addition of hydrothermal silica or downslope transport of material to a sediment pond on the East Pacific Rise. The dashed curve represents the regional supply rate recalculated without the anomalous point. In addition, Figure 12 shows an estimate of the carbonate supply rate. This estimate is van Andel and others' (1975) "extrapolated surface supply in the equatorial area" ($3^{\circ} \mathrm{N}$ to $3^{\circ} \mathrm{S}$) which assumes a constant dissolution rate to the surface. In fact, of course, some of the variation in "extrapolated supply" is undoubtedly due to changes in the depth of the lysocline.

If one assumes that calcareous and siliceous productivity generally co-vary, the biogenic silica supply can be used to interpret the

EXTRAPOLATED SURFACE
SUPPLY RATE

OPAL

EQUATORIAL SUPPLY

	U	M	L	U	L	U	M
QPLI	MIOCENE			OLIGOCENE		EOCENE	

Figure 12. Extrapolated rates of supply of biogenic components for the last $50 \mathrm{~m} . \mathrm{y}$. Carbonate supply diagram from van Andel and others (1975). Opal supply represented by "equatorial" curve includes only sites within 3° of the paleoequator. "Regional" supply includes all sites. Dotted curve is regional supply recalculated to exclude anomalous accumulation rates along the East Pacific Rise.
carbonate supply curve. This may not be a good assumption for intervals prior to the Late Eocene, when there are indication that the carbonate supply was very low (van Andel and others, 1975; van Andel, 1975) at a time of high siliceous productivity. Since that time, however, the equatorial current system seems to have been stable and to have supplied nutrients to support a plankton population whose distribution is much like that of the present.

Comparison of Carbonate and Biogenic Silica Accumulation and Supply

Van Andel and others (1975) found carbonate accumulation rate maxima at 2, 6-7, 10-11, 21-22, and 28-30m.y. ago. Two maxima in siliceous productivity are indicated by this study: one at 42-46 m. y. ago and one at about 10-12m.y. The middle Eocene maximum is missing in the carbonate accumulation rate curves. At that time the CCD for the entire Pacific ($C C D D_{\text {pac }}$) and for the equatorial zone (CCD ${ }_{\text {eq }}, 3^{\circ} \mathrm{N}$ to $3^{\circ} \mathrm{S}$) were far above their present levels (see Figure 13 after van Andel and others, 1975), so that calcite was deposited only at sites on the East Pacific Rise. At the end of the Eocene the CCD dropped precipitously and carbonate accumulation increased gradually to the maximum between 28 and 30 m . y . ago. Van Andel and others (1975) suggests that in addition to enhanced preservation of calcareous skeletal material following the deepening of

Figure 13. Variation in depth of calcium carbonate compensation depth with time (from van Andel and others, 1975).
the CCD, the supply of carbonate increased during this time. They also suggest that an increase in the non-carbonate accumulation rate at the same time reflects increased biogenic silica supply. When the non-biogenic component is subtracted from the non-carbonate fraction, however, this increase in biogenic silica is not apparent. The accumulation rate over the entire area was actually less than the early Oligocene rate. Both the "equatorial zone" and "regional" supply of opal were declining during this interval (Figure 12). Thus, the increased "extrapolated supply" of carbonate reported by van Andel and others (1975) probably represents a deepening of the lysocline rather than an increase in supply.

Both carbonate and biogenic silica curves have accumulation rate minima at $25 \mathrm{~m} . \mathrm{y}_{\mathrm{o}}$, suggesting that the middle of the Late Oligocene was a period of very low plankton productivity in the equatorial Pacific. The appreciable carbonate accumulation at that time must have been due only to reduced dissolution of calcite.

The early Miocene maximum (21-22 m. y.) in carbonate accumulation was not as large as the $38-40 \mathrm{~m} . \mathrm{y}$. peak. There is no corresponding peak in opal accumulation rates which were still extremely low compared to other Tertiary times although about twice the $25 \mathrm{~m} . \mathrm{y}$. minimum values. The smaller size of the carbonate high may show the effect of the generally low productivity when coupled with enhanced dissolution and/or a shoaling lysocline.

The next major peak in carbonate accumulation is at $10-11$ m.y. (alternate time scale). Two composite silica samples in the interval from $10-12 \mathrm{~m} . \mathrm{y}$. show opal maxima, but they do not, by them themselves, define a peak in the opal accumulation. If carbonate accumulation rates are plotted for only those time intervals in which biogenic silica accumulation rates are available, the $10-11 \mathrm{~m} . \mathrm{y}$. peak is not evident. Only a peak at $7 \mathrm{~m} . \mathrm{y}$ 。 is apparent. A Late Miocene silica productivity maximum at 7 m . y . corresponds to a small peak in carbonate accumulation. Since the $C C D$ eq and $C C D$ pac were shallower than at any other time during the Neogene at $7-8$ $\mathrm{m} . \mathrm{y}$. and were above the paleodepth of several sites at that time, a significant increase in carbonate supply may be masked by enhanced dissolution. Holocene and Quaternary carbonate accumulation rates have remained low even though the $C C D D_{\text {eq }}$ and $C C D D_{p a c}$ have returned to deep levels. The surface productivity is indicated by opal accumulation rates has decreased since the Late Miocene. The present situation seems analogous to the $25-27 \mathrm{~m}$. y. period when the $C C D$ was deep but little carbonate accumulated because of low surface productivity.

Paleoceanography

Opal accumulation in the equatorial Pacific is directly related to the productivity of surface waters (Pisias, 1974). The high
plankton productivity is, in turn, dependent on high nutrient concentrations in waters upwelled from below the thermocline (Ryther, 1963). Therefore, changes in opal accumulation in the central equatorial Pacific through time can be used to place constraints on the strength of upwelling at the equator in the past.

Upwelling along the central and eastern Pacific equator is related to two features of the circulation:
l) Most upwelling is due to meridional divergence of waters in the South Equatorial Current under the influence of the southeast trade winds. Since the deflecting Coriolis force disappears at the equator, the Eckman transport changes from southwest to northeast across the equator causing deeper waters to rise to the surface (Cromwell, 1953; Pak and Zaneveld, 1974).
2) Since the discovery of the Equatorial Undercurrent or Cromwell Current, it has been postulated that this current brings regenerated nutrients in the upper part of the thermocline to the surface by vertical mixing and by forcing waters above it to diverge (Knauss, 1966; Jones, 1973). Surfacing of the Undercurrent has been observed to cause upwelling southwest of the Galapagos (Pak and Zaneveld, 1974).

It can, therefore, be inferred that changes in the intensity of equatorial upwelling with time are due to changes in the strength or position of the South Equatorial Current or to changes in the strength,
position or amount of vertical mixing in the Equatorial Undercurrent. There are two ways in which these changes may have taken place:

1) Climatically controlled changes in the position of the southeast trade winds may have led to variation in the strength of the South Equatorial Current and Equatorial Undercurrent. This would cause variation in the total amount of upwelling and/or in the proportion of upwelling due to meridional divergence compared with that due to surfacing of the Equatorial Undercurrent.
2) Tectonic changes in the boundaries of the Pacific Ocean may have caused reorganization of equatorial circulation and have changed the strength and position of equatorial upwelling.

Wyrtki (1974b) has related fluctuations in the position and strength of the equatorial currents to the trade winds and has shown that the equatorial currents are influenced more by the position of the trade winds than by their strength. Fluctuations in the Equatorial Undercurrent fluctuations are synchronous with those in the South Equatorial Current while those of the Equatorial Countercurrent are synchronous with the North Equatorial Current (Wyrtki, 1974a). The two sets of currents are out of phase. During the Northern Hemisphere summer the southeast trade winds extend furthest to the North. The South Equatorial Current and the Equatorial Undercurrent are weakest at this time (Wyrtki, 1974b).

Climatically controlled variation in circulation have certainly
influenced productivity of the equatorial Pacific during the Quaternary (Luz, 1973; Dinkelman, 1974; Pisias, 1974; Molina-Cruz, 1975). In a study of Quaternary sediments from the southeastern subtropical Pacific Molina-Cruz (1975) found that the strength of the South Equatorial Current was related to the position of the southeast trade winds during the late Quaternary as indicated by the concentration of detrital quartz carried to the ocean by these winds. The strength of the South Equatorial Current also determined the amount of upwelling associated with the Equatorial Undercurrent: when the South Equatorial Current was weak the Undercurrent was able to surface causing upwelling and intensified productivity of its associated fauna. Molina-Cruz (1975) also found that the faunal component associated with the Equatorial Undercurrent was highly correlated with opal production and that opal accumulation rates were highest where the Equatorial Undercurrent broke the surface, both at present and in the past. Opal accumulation rates in the Panama Basin determined by Dinkelman (1974) were also highly correlated to a faunal assemblage associated with the Equatorial Undercurrent.

The high productivity associated with equatorial upwelling is reflected in maps of biogenic silica accumulation for the last $50 \mathrm{~m} \cdot \mathrm{y}$. (Figures 6 and ll). Holocene primary productivity is also highest at the eastern end of the central equatorial Pacific where there is intensified upwelling associated with the Equatorial Undercurrent west of the

Galapagos. Without additional evidence it is difficult to determine whether similar upwelling took place in the Cenozoic, but map intervals since the middle Miocene (Figure 6) do show enhanced opal accumulation rates to the east.

Quaternary climate changes have taken place over a few thousand years so that it is difficult to draw analogies between them and the long term trends in global climate of the last 50 m . y. Nevertheless, one important characteristic should be common to any global change in climate: cooler climates appear to be accompanied by greater equator-to-pole temperature gradients, which cause the major wind belts to shift toward the equator and to become stronger (Lamb and Woodroffe, 1970; Newell, 1974). A northward shift and intensification of the southeast trade winds would cause enhanced upwelling in the South Equatorial Current. An extreme southward shift would cause the South Equatorial Current to weaken but might allow the Equatorial Undercurrent to surface.

Cenozoic paleotemperatures for surface and bottom waters based on oxygen isotope determinations in the central north Pacific (Douglas and Savin, 1973) and in the high latitudes of the south Pacific (Shackleton and Kennett, 1975) indicate that the overall climate trend for the entire Cenozoic has been on of global cooling. The temperature of the Pacific has gradually declined through the Cenozoic with a major phase of cooling at the boundary between the Eocene and the

Oligocene and some warming during the early to middle Miocene. If a major drop in surface water temperature like the one at the EoceneOligocene boundary (about 5° of cooling, Shackleton and Kennett, 1975) affected equatorial circulation in the same manner as cooling associated with Quaternary glacial ages, it should have caused an overall intensification of the southeast trade winds, strengthening of the South Equatorial Current, and an increase in upwelling related productivity. There is, however, no increase in opal accumulation during the early Oligocene (Figure 6) and no increase in extrapolated surface supply of opal (Figure 12). In fact, the late Eocene and early Oligocene are times of decreasing opal supply and accumulation in the equatorial Pacific. Not until the early Miocene (20-23m.y. ago) did opal supply rates begin to increase again and they did not reach the late Eocene values until the middle to late Miocene. Thus, global cooling does not lead inevitably to increased equatorial productivity. The middle Miocene to early late Miocene (10-13 m. y. ago) was also a time of major development of the ice cap on East Antarctica and of the first recorded ice rafting in northern Antarctic waters (Kennett and others, 1975). Thus, the increasing opal supply may be related to circulation changes accompanying ice cap development rather than to those associated with non-glacial global cooling. Newell (1974) has suggested that ice ages are caused by changes in the poleward energy flux in the atmosphere and ocean. Geological
evidence for reduced oceanic energy transport during glacial ages (McIntyre and others, 1972), increased temperature of upwelling water before ice caps begin to melt (Imbrie and others, 1973) and a lag time between changes in bottom water temperature and changes in surface circulation (Pisias and others, 1975) supports Newell's model. Polar ice cover and low latitude upwelling are important constraints on temperature fluctuations and atmospheric circulation in this model suggesting that they may be closely related.

From the preceding discussion, it is apparent that only the increase in opal supply during the middle Miocene to late Miocene can be explained in terms of climatic controls on the circulation of the equatorial Pacific. The decline in opal supply from the middle Eocene to early Miocene, on the other hand, cannot be related to the global cooling that took place during that time. In addition, the decrease in opal supply in the Equatorial Pacific since the Pliocene, while glaciation has been extended to the Northern Hemisphere and sea surface temperatures have decreased slightly (Shackleton and Kennett, 1975) indicates that even the Pliocene change should not be attributed to global climatic fluctuations.

The circulation pattern in the equatorial Pacific is influenced not only by the wind patterns, but by the shape of the Pacific Ocean basin. The South Equatorial Current is fed by eastern boundary currents moving north along the coast of South America and by the

Equatorial Undercurrent which is deflected to the south in the eastern Pacific (Figure 14). The western Pacific is blocked by land masses so that the trade winds pile up water and create a pressure gradient which drives subsurface water back to the east as the Equatorial Undercurrent (Veronis, 1960).

During the last $50 \mathrm{~m} . \mathrm{y}$. three major tectonic events have changed the geography and the circulation patterns of the equatorial Pacific:

1) The northward migration of Australia has closed a passage from the western Pacific to the Indian Ocean and to the low latitude interocean seaway, Tethys.
2) The separation of Australia from Antarctica has allowed the development of the high latitude Antarctic Circumpolar Current.
3) The elevation of Central America and closing of the Isthmus of Panama has interrupted low latitude circulation between the Pacific and Atlantic Oceans.

The closing of the western Pacific was probably the first of these events to occur. Separation of Australia from Antarctica started about 55 m . y. ago (Weissel and Hayes, 1972). A deep equatorial passage existed north of Australia and south of Asia until the middle Eocene (Kennett and others, 1972), but as the Australian landmass moved north the exchange of Indian and Pacific waters was gradually restricted. India was also moving north at this time

Figure 14. Present circulation of the equatorial Pacific Ocean (from Wyrtki, 1967).
(McKenzie and Sclater, 1971) further inhibiting Pacific to Indian flow. This passage was closed in the late Eocene to early Oligocene (Moberly, 1972) by tectonism in southeast Asia (Katili, 1971), in the Philippines (Gervasio, 1964) and in northern Australia (Veevers, 1969). Before this closure a "Tethys" current is presumed to have circulated from east to west through the passage between North America and South America, across the north Pacific and into the Indian Ocean. There is also evidence of a strong current from the Indian Ocean to the Pacific north of Australia at this time (Kennett and others, 1972).

The Eocene and Oligocene were times of declining siliceous productivity in the equatorial Pacific. The Equatorial Undercurrent could not have developed before the early Oligocene when the western Pacific was blocked off. This implies that unless there was another mechanism for bringing nutrient-rich waters to the surface, the decline in fertility of equatorial Pacific waters was due to a decrease in the upwelling associated with meridional divergence. Luyendyk and others (1972) have postulated that closure of the western Pacific led to sluggish circulation in the equatorial Pacific because the Tethys current could no longer flow around the globe and because the strong Indian to Pacific current north of Australia was cut off. The gradually declining opal productivity during the Eocene and Oligocene is consistent with such a model.

The development of the Antarctic Circumpolar Current after the separation of Australia from Antarctica was the second major event in the development of modern Pacific circulation. It was not until the middle to late Oligocene that the separation was complete and that the Antarctic Circumpolar Current was free to circulate through the passage between the two continents (Kennett and others, 1975). The effect of this even on the equatorial Pacific productivity was indirect. The development of the circumpolar current increased the residence time of waters in high latitudes and probably contributed to the global cooling that has taken place through the Neogene even though there was no abrupt change in surface temperatures associated with the initiation of the current.

The initiation of the Antarctic Circumpolar Current has had a major effect on the vertical structure of the Pacific Ocean, however, through its influence on the production of bottom waters near the Antarctic continent (Kennett and others, 1975). These bottom waters have largely controlled the record of carbonate accumulation in the central equatorial Pacific through solution effects (van Andel and others, 1975), but have not directly influenced rates of opal supply or accumulation. Minor upwelling associated with mixing in the Antarctic convergence zone is first evident in early Miocene sediments deposited about 22 m 。y. ago (Kennett and others, 1975). The intensity of upwelling remained low until the late Miocene to early

Pliocene (4.2-5 m. y. ago) when there was a major increase in upwelling and biological productivity (Keany and Kennett, 1975). This is contemporaneous with the decline in opal productivity in the equatorial Pacific that has continued to the Holocene. If the decline in opal productivity in the equatorial Pacific that has continued to the Holocene. If the decline in opal productivity in the equatorial Pacific during the last $4-5 \mathrm{~m}, \mathrm{y}_{0}$. is due to increased productivity of the Antarctic convergence zone it is analogous to changes in equatorial Pacific carbonate accumulation which have also been attributed to changes in rates of deposition in other parts of the ocean (van Andel, 1975; van Andel and others, 1975; Luz and Shackleton, 1975).

The final important tectonic event for Pacific circulation was the closing of the seaway across the Isthmus of Panama during the middle or late Pliocene (Kaneps, 1970; Malfait and Dinkelman, 1972). There is little available information about the effect of this closure on Pacific circulation. Since the seaway was north of the equator, flow from the Atlantic to Pacific (Luyendyk and others, 1972) probably influenced the North Equatorial Current rather than the South Equatorial Current with which present upwelling is associated. In summary, the history of biogenic silica productivity and accumulation during the last $50 \mathrm{~m} . \mathrm{y}$. in the equatorial Pacific may be separated into three phases:

Phase I: Middle Eocene - late Oligocene (50-25 m. y.)
During this time the influence of the low latitude circum-global Tethys seaway on the equatorial Pacific was waning, apparently producing a decrease in the intensity of equatorial circulation, reduced meridional divergence and lowered fertility of equatorial Pacific waters. The supply and accumulation of opaline sediments decreased gradually throughout this interval to reach its lowest Tertiary level about $25 \mathrm{~m} . \mathrm{y}$. ago. Global ocean temperatures declined, possible as a result of the transition from the long term residence of ocean waters in low latitudes (Tethys) to the long term residence in high latitudes (Antarctic Circumpolar current) but did not directly affect equatorial Pacific productivity.

Phase II: Late Oligocene - late Miocene (25-5 m. y.)
After the late Oligocene the fertility of equatorial Pacific waters increased. The onset of glaciation in Antarctica in the early Miocene was accompanied by intensified circulation in the equatorial Pacific. The blocking of the western Pacific allowed the development of an equatorial undercurrent. Upwelling related to this current probably supplemented meridional divergence beginning the Late Miocene and further increased the fertility of equatorial Pacific waters. Opal supply continued at high levels through the Miocene.

Phase III: Pliocene - present (5-0 m. y.)
After the full development of upwelling at the Antarctic convergence zone, opal supply in the equatorial Pacific declined. This may be due to the concentration of oceanic biogenic silica productivity at the Antarctic convergence at the expense of equatorial regions.

REFERENCES

Arrhenius, G., 1952, Sediment cores from the East Pacific: Rept. Swedish Deep-Sea Exped., 1947-1948, v. 5, pt. 3, p. 189-201.

Bennett, R. H., and Keller, G. H., 1973, Physical properties evaluation, in van Andel, Tj. H., and Heath, G. R., eds., Initial Reports of the Deep Sea Drilling Project: U.S. Government Printing Office, Washington, D. C., v. 16, p. 513-519.

Berger, W. H., 1970, Planktonic foraminifera; selective solution and the lysocline, Marine Geol., v. 8, p. 1ll-138.
_ 1973, Cenozoic sedimentation in the eastern tropical Pacific, Geol. Soc. Amer. Bull., v. 84, p. 1941-1954.

Berggren, W. A., 1972, Cenozoic time scale: some implications for regional geology and paleo-biogeography, Lethaia, v. 5, p. 195215.

Berggren, W. A., and van Couvering, J. A., 1974, The late Neogene, biostratigraphy, geochronology and paleoclimatology of the last 15 million years in marine and continental sequences, Paleogeog., Paleoclimat., Paleoecol., v. 16.

Bernas, B., 1968, A new method for decomposition and comprehensive analysis of silicates by atomic absor ption spectrometry, Anal. Chem., v. 40, p. 1682-1686.

Bezrukov, P. L., 1955, Distribution and rate of deposition of silicate sediments in the Sea of Okhotsk, Doklady Acad. Nauk., v. 103, p. 473-476.

Biscaye, P. E., 1965, Mineralogy and sedimentation of recent deepsea clay in the Atlantic Ocean and adjacent seas and oceans, Geol. Soc. Amer. Bull., v. 76, p. 803-832.

Boström, K., and Fisher, D. E., 1971, Volcanogenic uranium, vanadium, and ir on in Indian Ocean sediments, Earth Planet. Sci. Lett., v. 11, p. 95-98.

Boström, K., Joensuu, O., Valdes, S., and Riera, M., 1972, Geochemical history of South Atlantic Ocean sediments since the last Cretaceous, Marine Geol., v. 12, p. 85-122.

Bramlette, M. N., 1961, Pelagic sediments, in Sears, M., ed., Oceanography, Amer. Assoc. Advancement Science, Washington, D. C. , Publ. 67, p. 345-366.

Burckle, L. D., Ewing, J. I., Saito, T., and Leyden, R. R., 1967, Tertiary sediments from the East Pacific Rise, Science, v. 157, p. 537-540.

Calvert, S. E., 1966, Accumulation of diatomaceous silica sediments in the Gulf of California, Geol. Soc. Amer. Bull., v. 77, p. 569-596.
\qquad , 1968, Silica balance in the ocean and diagenesis, Nature, v. 219, no. 5157, p. 919-920.

Chayes, F., 1960, On correlation between variables of constant sum, Jour. Geophys. Research, v. 65, p. 4185-4193.

Chester, R., and Elderfield, H., 1968, The infrared determination of opal in siliceous deep-sea sediments, Geochim. Cosmochim. Acta, v. 32, p. 1128-1140.

Clague, D. A., and Jarrard, R. D., 1973, Tertiary plate motion derived from the Hawaiian - Emperor chain, Geol. Soc. Amer. Bull., v. 84, p. 1135-1154.

Cromwell, T., 1953, Circulation in a meridional plane in the central equatorial Pacific, Jour. Marine Research, v. 12, p. 196-213.

Dinkelman, M. G., 1974, Late Quaternary radiolarian paleooceanography of the Panama Basin, eastern equatorial Pacific, Ph. D. Thesis, Corvallis, Oregon State University. 123 numb. leaves.

Douglas, R. G., and Savin, S. M., 1973, Oxygen and carbon isotope analyses of Cretaceous and Tertiary foraminifera from the central north Pacific, in Winterer, E. L. , Ewing, J. I., and others, Initial Reports of the Deep Sea Drilling Project, v. 17, U. S. Government Printing Office, Washington, D. C., p. 591-605.

Dymond, J., Corliss, J. B., and Stillinger, R., in press, Chemical composition and metal accumulation rates of metalliferous sediments from Site 319, 320B and 321, in Initial Reports of the Deep Sea Drilling Project, v. 34, U. S. Government Printing Office, Washington, D. C.

Edmond, J. Mo, 1974, On the dissolution of carbonate and silicate in the deep ocean, Deep Sea Research, v. 21, p. 455-480.

Ellis, D. B. . 1972, Holocene sediment of the South Atlantic Ocean: the calcite compensation depth and concentration of calcite, opal and quartz. Master's Thesis, Corvallis, Oregon State University, 77 numb。leaves.

Ellis, D. B., and Moore, T. C., Jr., 1973, Calcium carbonate, opal and quartz in Holocene pelagic sediments and the calcite compensation level in the South Atlantic Ocean, Jour. Marine Research, v. 31, p. 210-227.

El Wakeel, S. K. , and Riley, J. P., 1961, Chemical and mineralogical studies of deep-sea sediments, Geochim. Cosmochim. Acta, v. 25, p. 110-146.

Francheteau, J., Harrison, C. G. A., Sclater, J. G., and Richards, M. L., 1970, Magnetization of Pacific seamounts: a preliminary polar curve for the northeastern Pacific, Jour. Geophys. Research, v. 75, p. 2035-2061.

Gervasio, F. C., 1964, A study of the tectonics of the Philippine archipelago, abstr., Int. Geol. Congress, 22nd, India, Rept. v. Abstr. p. 41.

Goldberg, E. D., 1958, Determination of opal in marine sediments, Jour. Marine Research, v. 17, p. 178-182.

Hashimoto, I., and Jackson, M. L., 1960, Rapid dissolution of allophane and kaolinite-halloysite after dehydration, in Proc. of the 7th National Conf. on Clays and Clay Minerals, Washington, D. C., 1958, Pergamon Press, p. 102-113.

Hays, J. D., Saito, T., Opdyke, N. D., and Burckle, L. H., 1969, Pliocene-Pleistocene sediments of the equatorial Pacific: their paleomagnetic, biostratigraphic and climate record, Geol. Soc. Amer. Bull., v. 80, p. 1481-1514.

Hays, J. D., Cook, H., Jenkins, G., Orr, W., Goll, R., Cook, F., Milow, D., and Fuller, J., 1972, An interpretation of the eastern equatorial Pacific from the frilling results of the Glomar Challenger, Leg 9, in Hays, J. D., ed., Initial Reports of the Deep Sea Drilling Project, U. S. Government Printing Office, Washington, D. C., v. 9, p. 909-931.

Heath, G. R., 1969a, Carbonate sedimentation in the abyssal equatorial Pacific during the past 50 million years, Geol. Soc. Amer. Bull., v. 80, p. 689-694.
, 1969b, Mineralogy of Cenozoic deep-sea sediments from the equatorial Pacific Ocean, Geol. Soc. Amer. Bull., v. 80, p. 1997-2018.
 W. W., ed., Soc. Econ. Paleont. and Mineral. Spec. Publ., p. 77-93.
_ 1975, Processes controlling siliceous biogenous deposits, in Seibold, E., and Riedel, W. R., eds., Marine plankton and sediments, Third Planktonic Conference, Kiel.

Heath, G. R., and Culberson, C., 1970, Calcite: degree of saturation, rate of dissolution and the compensation depth in the deep ocean, Geol. Soc. Amer. Bull., v. 81, p. 3157-3160.

Heath, G. R., Moore, T. C., Jr., Dauphin, J. P.., and Opdyke, N. D., 1975, Quartz, organic carbon, opal and calcium carbonate in Holocene, $600,000 \mathrm{yr}$., and Brunhes-Matuyama age pelagic sediments of the North Pacific, Geol. Soc. Amer. Bull., in press.

Hurd, D. C. , 1972, Interactions of biogenic opal, sediment and seawater in the central equatorial Pacific, Ph. D. Thesis, Honolulu, University of Hawaii, 81 numb. leaves.
, 1973, Interactions of biogenic opal, sediment and seawater in the central equatorial Pacific, Geochim. Cosmochim. Acta, v. 37, p. 2257-2282.

Imbrie, J., van Donk, J., and Kipp, N. G., 1973, Paleoclimatic investigation of a Late Pleistocene Caribbean deep-sea core: comparison of isotopic and faunal methods, Quat. Research, v. 3, p. 10-38.

Johnson, T. C., 1974, The dissolution of siliceous microfossils in surface sediments of the eastern tropical Pacific, Deep-Sea Research, v. 21, p. 851-864.

Jones, J. H., 1973, Vertical mixing in the equatorial undercurrent, Jour. Phys. Oceanog., v. 3, p. 286-296.

Jones, M. M., and Pytkowicz, R. M., 1973, Solubility of silica in seawater at high pressures, Bull. de la Soc. Sciences de Liege, v. 42, p. 125-127.

Kaneps, A., 1970, Late Neogene biostratigraphy (planktonic Foraminifera), biogeography and depositional history, Ph. D. Thesis, New York, Columbia University, 185 numb, leaves.

Katili, J. A., 1971, A review of the geotectonic theories and tectonic maps of Indonesia, Earth Sci. Reviews, v. 7, p. 143-163.

Keany, J., and Kennett, J. P., 1974, Pliocene-Pleistocene radiolarian stratigraphy and paleoclimatology at DSDP Site 278 on the Antarctic convergence, in Kennett, J. P., and Houtz, R. E。, 1974, Initial Reports of the Deep Sea Drilling Project, v. 29, Washington (U. S. Government Printing Office), p. 757768.

Kennett, J. P., Houtz, R. E., Andrews, P. B., Edwards, A. R., Gostin, V. A., Hajos, M., Hampton, M., Jenkins, D. G., Margolis, S. V., Ovenshine, A. T., and Perch-Nielsen, K., 1974, Cenozoic paleoceanography in the southwest Pacific Ocean, Antarctic glaciation, and the development of the Circum-Antarctic Current, in Kennett, J. P., and Houtz, R. E., and others, 1974, Initial Reports of the Deep Sea Drilling Project, v. 29, Washington (U. S. Government Printing Office), p. 1155-1169.

Koblentz-Mishke, O. J., Volkovinsky, V. V., and Kabanova, J. G., 1970, Plankton primary productivity of the world ocean, in Wooster, W. S., ed. , Scientific exploration of the South Pacific, U. S. National Acad. Science, Washington, D. C., p. 183-193.

Krauskopf, K. B., 1956, Dissolution and precipitation of silica at low temperatures, Geochim. Cosmochim. Acta, v. 10, p. 1-26.

Lamb, H. H., and Woodroffe, A., 1970, Atmospheric circulation during the last Ice Age, Quat. Research, v. l, p. 29-58.

Lisitzin, A. P., l97la, Distribution of siliceous microfossils in suspension and in bottom sediments, in Funnel, M. N., and Riedel, W. R., ed., The Micropaleontology of Oceans, Cambridge, 1971, Cambridge Univ. Press, p. 173-195.

Lisitzin, A. P., 1971 b , Geochemical, mineralogical, paleontologic studies, Leg 6, in Fisher, A. G. and others, Initial Reports of the Deep Sea Drilling Project, v. 6, Washington (U. S. Government Printing Office), p. 829-961.
\qquad , 1972, Sedimentation in the world ocean, Soc. Econ. Paleontologists and Mineralogists Spec. Publ. 17, 218 p.

Luyendyk, B. P., Forsyth, D., and Phillips, J. D., 1972, Experimental approach to the paleocirculation of oceanic surface waters, Geol. Soc. Amer. Bull., v. 83, p. 2649-2664.

Luz, Bo, 1973, Stratigraphic and paleoclimate analysis of Pleistocene tropical southeast Pacific cores, Quat. Research, v. 3, p. 5672.

Luz, B., and Shackleton, N. J., 1975, CaCO_{3} solution in the tropical east Pacific during the past 130,000 years, Cushman Foundation for Foram. Research, Spec. Publ. 13, p. 142-150.

Malfait, B. T., and Dinkelman, M. G., 1972, Circum-Caribbean tectonic igneous activity and the evolution of the Caribbean plate, Geol. Soc. America Bull., v. 83, p. 251-272.

McIntyre, A., Ruddiman, W. F., and Jantzen, R., 1972, Southward penetrations of the North Atlantic Polar Front: faunal and floral evidence of large-scale surface water mass movements over the last 225, 000 years, Deep-Sea Research, v. 19, p. 61-77.

McKenzie, D. P., and Sclater, J. G., 1971, The evolution of the Indian Ocean since the late Cretaceous, Roy. Astron. Soc. Geophys. Jour., v. 29, p. 65-78.

Mehra, O. P., and Jackson, M. L., 1960, Ir on oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate, in Swineford, A., ed., Clays and Clay Minerals, Proc 7th National Conf., Pergamon Press, London, p. 317-327.

Minster, J. B., Jordan, T. H., Molnar, P., and Haines, E. , 1974, Numerical modeling of instantaneous plate tectonics, Roy. Astron. Soc. Geophys. Jour., v. 36, p. 541-576.

Moberly, R., 1972, Origin of lithosphere behind island arcs with reference to the western Pacific, in Shagam, R., ed., Studies in earth and space sciences, Geol. Soc. Amer. Memoir 132, p. 35-56.

Molina-Cruz, A., 1975, Paleoceanography of the subtropical southeastern Pacific during Late Quaternary: a study of radiolaria, opal and quartz contents of deep-sea sediments, Master's Thesis, Corvallis, Oregon State University, 179 numb. leaves.

Morgan, W. Jo, 1972, Plate motions and deep mantle convections, in Shagam, R., ed., Studies in earth and space sciences, Geol. Soc. America Memoir 132, p. 7-32.

Newell, R.E., 1974, Changes in the poleward energy flux by the atmosphere and ocean as a possible cause for ice ages, Quat. Research, v. 4, p. 117-127.

Pak, H., and Zaneveld, J. R. V., 1974, Equatorial front in the eastern Pacific Ocean, Jour. Phys. Oceanog., v. 4, p. 570578.

Pisias, No, 1974, Model of late Pleistocene-Holocene variations in rate of sediment accumulation: Panama Basin, Eastern Equatorial Pacific. Master's Thesis, Corvallis, Oregon State University, 77 numb。leaves.

Pisias, No, Heath, G. R., and Moore, T. C., Jr., 1975, Lag time for oceanic responses to climatic change, Nature, v. 256, n. 5520, p. 716-717.

Revelle, R., 1944, Marine bottom samples collected in the Pacific Ocean by the Carnegie on its seventh cruise, Carnegie Inst., Washington, D. C., Pub. 556, 182 p.

Rex, R. W., and Goldberg, E. D., 1958, Quartz contents of pelagic sediments of the Pacific Ocean, Tellus, v. l, p. 153-159.

Ryther, J. H., 1963, Geographic variations in productivity, in Hill, M. N., ed., The Sea, v. 2, Interscience, New York, p. 347380.

Sclater, J. G., Anderson, R. N., and Bell, M. L., 1971, Elevation of ridges and evolution of the central eastern Pacific, Jour. Geophys. Research, v. 76, p. 7888-7915.

Shackleton, N. J., and Kennett, J. P., 1974, Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281, in Kennett, J. P., and Houtz, R. E., 1974, Initial Reports of the Deep Sea Drilling Project, v. 29, Washington (U. S. Government Printing Office), p. 743-756.

Strickland, J. D. H., and Parsons, T. R., 1968, A handbook of seawater analysis, Bull. 167, Fisheries Research Board Canada (Ottawa), p. 65-70.

Till, Ro, and Spears, D. A., 1969, The determination of quartz in sedimentary rocks using an X-ray diffraction technique, Clays and Clay Min., v. 17, p. 323-327.

Tracey, J. I., Nesteroff, W. D., Galehouse, J. S., von der Borch, C. C., Moore, T. C., Jr., Bilal-ul-haq, U. Z., and Beckmann, L. P., 1971, Leg 8 summary, in Tracey, J. I. and Sutton, G. D., eds., Initial Reports of the Deep Sea Drilling Project, V. 8, Washington (U. S. Government Printing Office), p. 17-42.

Weaver, C.E., and Pollard, L. D., 1973, The chemistry of clay minerals, v. 15, Developments in Sedimentology, Amsterdam Elsevier, 213 p.

Weissel, J. K., and Hayes, D. E., 1972, Magnetic anomalies in the southeast Indian Ocean, in Antarctic Oceanology II: The Australian - New Zealand Sector, Antarctic Research Series, no. 19, p. 165-196.

Winterer, E. L., 1973, Sedimentary facies and plate tectonics of the equatorial Pacific, Amer. Assoc. Petroleum Geologists Bull., v. 57, p. 265-282.

Wyrtki, K., 1967, Circulation and water masses in the eastern equatorial Pacific Ocean, Internat. Jour. Oceanol. Limnol., v. 1, p. 117-147.
, 1974a, Equatorial currents in the Pacific from 1950 1970 and their relations to the trade winds, Jour. Phys. Oceanog., v. 4, p. 372-380.

Wyrtki, K., 1974b, Sea level and the seasonal fluctuations of the equatorial currents in the western Pacific Ocean, Jour. Phys. Oceanog。, v. 4, p. 91-103.
van Andel, Tj. H., 1975, Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments, Earth Planet. Sci. Lett., v. 26, p. 187-194.
van Andel, Tj. H., and Buckry, D., 1973, Basement ages and basement depths in the eastern equatorial Pacific, Geol. Soc. Amer. Bull., v. 84, p. 2361-2370.
van Andel, $\mathrm{Tj}_{\mathrm{o}} \mathrm{H}_{0}$, and Heath, G. R., 1973, Initial Reports of the Deep Sea Drilling Project, Washington (U. S. Government Printing Office), v. 16, 949 p.
van Andel, Tj. H., and Moore, T. C., Jr., 1974, Cenozoic calcium carbonate distribution and calcite compensation depth in the central equatorial Pacific Ocean, Geology, v. 2, p. 87-92.
van Andel, Tj. H., Heath, G. R., and Moore, T. C., Jr., 1975, Cenozoic history and paleoceanography of the central equatorial Pacific, Geol. Soc. America Memoir 143, in press.

Veevers, J. J., 1969, Paleogeography of the Timor Sea region, Paleogeog., Paleoclimat., Paleoecol., v. 6, p. 125-140.

Veronis, Go, 1960, An approximate theoretical analysis of the equatorial undercurrent, Deep Sea Research, v. 6, p. 318327.

APPENDICES

APPENDIX I. Locations and Depths of Deep Sea Drilling Project Sites

Site	Leg	Latitude	Longitude	Depth
42	5	$13^{\circ} 50.6{ }^{\prime} \mathrm{N}$	$140^{\circ} 11.3^{\prime} \mathrm{W}$	4844
69	8	$6^{\circ} 00.0^{\prime} \mathrm{N}$	$152^{\circ} 51.9^{\prime} \mathrm{W}$	4978
70	8	$6^{\circ} 20.1{ }^{\prime} \mathrm{N}$	$140^{\circ} 21.7^{\prime} \mathrm{W}$	5059
71	8	$4^{\circ} 28.31 \mathrm{~N}$	$140^{\circ} 18.9^{\prime} \mathrm{W}$	4419
72	8	$0^{\circ} 26.5^{\prime} \mathrm{N}$	$138{ }^{\circ} 52.0^{\prime} \mathrm{W}$	4326
73	8	$1^{\circ} 54.6{ }^{\prime} \mathrm{S}$	$137^{\circ} 28.1^{\prime} \mathrm{W}$	4387
74	8	$6^{\circ} 14.2{ }^{\prime} \mathrm{S}$	$136^{\circ} 05.8^{\prime} \mathrm{W}$	4431
75	8	$12^{\circ} 31.0^{\prime} \mathrm{S}$	$134{ }^{\circ} 16.0^{\prime} \mathrm{W}$	4181
77	9	$0^{\circ} 28.9{ }^{\prime} \mathrm{N}$	$133^{\circ} 13.7^{\prime} \mathrm{W}$	4291
78	9	$7{ }^{\circ} 57.0^{\prime} \mathrm{N}$	$127^{\circ} 21.3^{\prime} \mathrm{W}$	4363
79	9	2'33.0' N	$121{ }^{\circ} 34.0{ }^{\prime} \mathrm{W}$	4566
80	9	$0{ }^{\circ} 57.71 \mathrm{~N}$	$121^{\circ} 33.2^{\prime} \mathrm{W}$	4399
81	9	$1^{\circ} 26.5^{\prime} \mathrm{N}$	$113^{\circ} 48.5^{\prime} \mathrm{W}$	3854
82	9	2'35. $5^{\prime} \mathrm{N}$	$106^{\circ} 56.5^{\prime} \mathrm{W}$	3689
83	9	$4^{\circ} 02.8{ }^{\prime} \mathrm{N}$	$95^{\circ} 44.3^{\prime} \mathrm{W}$	3632
159	16	$12^{\circ} 19.9^{\prime} \mathrm{N}$	$122^{\circ} 17.3^{\prime} \mathrm{W}$	4484
160	16	$11^{\circ} 42.31 \mathrm{~N}$	$130^{\circ} 52.8{ }^{\prime} \mathrm{W}$	4940
161	16	$10^{\circ} 14.31 \mathrm{~N}$	$139^{\circ} 57.2^{\prime} \mathrm{W}$	4939
162	16	$14^{\circ} 52.2^{\prime} \mathrm{N}$	$140^{\circ} 02.6{ }^{\prime} \mathrm{W}$	4854
163	16	$11^{\circ} 14.7{ }^{\prime} \mathrm{N}$	$150^{\circ} 17.5^{\prime} \mathrm{W}$	5230

APPENDIX II. Composite Samples and Their Included DSDP Samples

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
42	(24-25 m. y_{0})	JD06818	EP0958	35-195	1	1	35-36
					1	1	115-116
					1	2	44-45
42	(30-31 m. y.)	J D06819	EP0959	1569-1650	2	5	69-70
					2	5	100-150
42	(37-38 m. y.)	J D06820	EP0960	3175-3324	4	4	25-26
					4	5	23-24
42	(44-45 m. y.)	JD06821	EP0961	6621-7247	8	3	21-22
					8	5	24-25
					9	1	46-47
42	(46-47 m. y.)	JD06822	EP0962	9617-10576	11	5	17-18
					1 A	1	28-29
					1 A	3	15-16
					1 A	5	75-76
69	(9-12 m. y.)	JD08124	EP0963	29-838	1	1	29-30
				-	1	3	47-48
					1	6	87-88

APPENDIX II. Continued.

					DSDP Samples		
Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	Core	Section:	Depth in Section
69	(15-16 m. y.)	JD08125	EP0964	2870-2941	3	4	120-121
					3	4	30-31
					3	5	40-41
69	(24-25 m. y.)	JD08126	EP0986	6150-6748	1 A	1	50-51
					1 A	3	60-61
					1 A	5	47-48
69	(28-29 m. y.)	JD08128	EP0987	9530-10161			
					5A	1	$75-76$
					5 A	3	60-61
69	(38-39 m. y.)	JD07140	EP0988	14750-15056	9A	3	50-51
					9 A	4	90-91
					9A	5	55-56
69	(43-44 m. y.)	J D07139	EPl472	18770-19316	6	1	70-71
					6	3	$60-61$
69	(45-46 m. y.)	J D08127	EP0990	21586-22207			
					11 A	4	40-41
					11 A	6	56-57

APPENDIX II. Continued.

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	Core	DSDP Samples	
						Section	Depth in Section
70	(28-29 m.y.)	JD06834	EP0996	18220-19881	9 A	2	73-74
					9A	4	50-51
					10A	2	84-85
					10A	4	80-81
70	(32-33 m. y.)	JD08130	EP0997	29655-29801	23A	1	55-56
					23A	2	50-51
70	(36-37.5 m. y.)	JD06836	EP0998	32325-32521	27A	2	25-26
					27A	2	110-111
					27A	3	70-71
71	(0-1 m.y.)	JD07153	EP0999	71-276			$71-72$
					1	2	$55-56$
					1	2	115-116
71	(6-7 m. y.)	JD07154	EP1000	2445-2769	3	5	45-46
					3	6	80-81
					4	1	68-69
71	(8-9 m. $\mathrm{y}_{\text {. }}$)	JD07155	EP1001	4240-4690	5	6	90-91
					6	1	65-66
					6	3	90-91

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
71	(13-14 m, y.)	J D07156	EPl 002	8555-14056	10	5	55-56
					10	6	55-56
					11	2	50-51
					11	4	50-51
					11	6	50-51
					12	2	50-51
					12	4	100-101
					12	6	50-51
					13	1	50-51
					13	3	60-61
					13	5	55-56
					14	1	55-56
					14	3	$55-56$
					14	5	50-51
					15	2	$55-56$
			*		15	4	55-56
					15	5	$60-61$
					16	1	56-57
71	(20-21 m. y.)	JD08131	EP1021	27910-29810	31	6	60-61
					32	2	50-51
					32	4	50-51
					32	6	50-51
cont.					33	2	50-51

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
71	(20-21 m. y_{0})	J D081 31	EP1021	27910-29810	33	4	50-51
					33	6	60-61
71	(26-27 m. y_{\bullet})	JD08132	EPl 022	41020-42045	46	2	70-71
					46	4	41-42
					47	2	94-95
71	(31-33 m. y.)	JD08133	EP1023	52855-52896	$1 \mathrm{~A}$	1	55-56
					$1 \mathrm{~A}$	1	95-96
71	(39-40 m, y.)	J D09841	EP1471	55591-55720	3A		$91-92$
					3A	2	$69-70$
72	(0-1 m. y.)	J D06823	EPl 024	260-820	1	2	110-111
					1	4	60-61
						6	
72	(3-4 m. y.)	J D06824	EP1025	3550-4741			
					$4 \mathrm{~A}$	2	$65-66$
					4A	4	$71-72$
					4A	6	$66-67$
					5A	2	90-91

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
72	(9-10 m. y.)	J D06825	EP1 026	11110-11421	3	4	60-61
					3	5	30-31
					3	6	70-71
72	(14-15 m. y.)	JD06826	EP1 027	21320-21921	5	2	70-71
					5	4	90-91
					5	6	70-71
72	(27-28 m. y.)	JD06654	EP1028	31448-32041	7	2	98-99
					7	4	$117-118$
72	(36-37 m. y.)	J D06827	EPl 029	33500-33721			
					9	6	$40-41$
					9	5	120-121
72	(37-38 m. y,)	JD06828	EP1030	33909-34159	10	3	9-10
					10	3	110-111
					10	4	109-110
72	(39-40 m. y.)	JD06829	EP1031	34395-34471	11	1	24-25
					11	1	120-121

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
73	(0-1 m. y.)	JD07148	EPl032	240-856	1	2	90-91
					2	1	125-126
					2	3	105-106
73	(4-5 m. y.)	JD07149	EP1033	5103-5251	7	2	53-54
					7	3	42-43
					7	6	100-101
73	(8-9 m. y.)	JD07150	EP1034	6795-6971			95-96
						2	61-62
					9	2	120-121
73	(14-15 m. y.)	JD07151	EPl 035	8436-8976	10	6	86-87
					11	2	45-46
					11	4	25-26
73	(20-22 m. y.)	J D06659	EP1036	20800-21391	13	2	50-51
					13	4	60-61
					13	6	40-41
73	(32-33 m. y.)	JD07152	EP1037	26320-27071	16	2	70-71
					16	4	70-71
					16	6	80-81
					17	1	70-71

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
73	(39-40 m. $\mathrm{y}_{\text {。 }}$)	JD081 34	EPl 038	29310-29311	19	4	60-61
73	(43-44 m. y.)	JD08135	EP1039	30000-30191	21	2	10-11
					21	3	70-71
					21	3	140-141
74	(0-1 m.y.)	JD06655	EP1 040	70-191	1	1	70-71
					1	1	115-116
					1	2	40-41
74	(7-8 m. y.)	JD06814	EP1 041	1440-1721			90-91
					2	2	$70-71$
					2	3	70-71
74	(17-18 m. y.)	J D06815	EP1 042	2470-2616	3	4	70-71
					3	4	120-121
					3	5	65-66
74	(25-26 m. y.)	JD06816	EP1043	5120-5720	6	4	70-71
					6	6	90-91
					7	2	70-71

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access.\#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
74	(29-30 m. $\mathrm{y}_{\text {c }}$)	J D06817	EPl 044	7395-7671	9	1	95-96
					9	2	30-31
					9	3	70-71
74	(44-45 m. y.)	J D07138	EPl 045	10023-10200	12	1	23-24
					12	1	60-61
					12	2	60-61
					12	3	35-36
75	(0-1 m. y.)	JD06381	EP1046	40-81	1	1	130-131
					1	2	20-21
75	(16-18 m. y.)	J D06661	EP1 047	280-411			
					1	3	$125-126$
					1	4	50-51
75	(21-22 m.y.)	JD06382	EPl 048	1420-2170			70-71
					2	6	70-71
					3	1	100-101
					3	3	70-71
75	(24-25 m. y.)	JD06383	EP1049	3500-3791			
	(21-25 m. y.)				5	1	70-71
					5	2	40-41

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
75	(29-30 m. y.)	JD06384	EP1050	6020-6791	7	4	70-71
					8	1	30-31
					8	3	90-91
75	(31-32 m, y.)	JD06385	EP1051	7802-8181	9	4	52-53
					9	5	40-41
					9	5	140-141
					9	6	40-41
					9	6	70-71
					9	6	130-131
77	(0-1 m. y.)	JD06652	EP1052	50-1120	1	1	50-51
					1 A	2	132-133
					1 A	4	50-51
					1 A	6	138-139
					1 B	2	60-61
75	(3-4 m. y.)	JD06657	EPl 053	4656-5903	5B	1	96-97
					5B	3	63-64
					5B	5	75-76
					6B	1	70-71
					6B	3	122-123

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
77	(7-8 m. y.)	JD06651	EP1054	13642-15093	14B	6	92-93
					15 B	2	70-71
					15B	4	80-81
					15 B	6	65-66
					16B	2	90-91
					16 B	4	22-23
77	(15-16 m. y.)	J D06662	EP1055	23990-25211	26B	4	80-81
					26B	6	70-71
					27 B	2	$75-76$
					27B	4	$75-76$
					27B	6	$80-81$
77	(22-23 m. y.)	J D06658	EP1056	30098-31287	33B	2	$88-89$
	(22-23 m. ${ }^{\text {. }}$)				33B	4	$45-46$
					33 B	6	$53-54$
					34 B	2	$72-73$
					34B	4	56-57
77	(26-27 m. y.)	JD06656	EP1057	35580-36776	39B	2	70-71
					39B	4	$75-76$
					39B	6	60-61
					40B	2	65-66

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
77	(30-31 m, y,)	JD06660	EPl 058	43699 - 44219	48B	1	119-120
					48B	3	18-20
					48B	5	38-39
77	(37-38 m, y.)	JD06653	EP1059	47190-47339	$52 . \mathrm{B}$	1	110-111
					52 B	2	28-29
					52 B	2	108-109
78	(12-13 m. y.)	J D08136	EP1060	50-573		1	50-51
					1	2	90-91
					1	4	122-123
78	(15-16 m, y_{0})	JD08137	EP1 061	2160-2611	3	3	40-41
					3	4	$7-8$
					3	5	34-35
					3	6	40-41
78	(18-19 m. y.)	JD08138	EP1062	4451-5131	5	6	41-42
					6	2	30-31
					6	4	110-111
78	(25-26 m. y.)	J D081 39	EP1063	17581-18764	20	2	61-62
					20	4	27-28
					20	6	80-81

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
78	(25-26 m. y.)	J D081 39	EP1063	17581-18764	21	2	123-124
					21	4	23-24
78	(31-32 m. y.)	JD08140	EP1064	27312-28832	30	6	53-54
					31	2	47-48
					31	4	30-31
					31	6	23-24
					32.	2	83-84
					32	4	31-32
78	(34-35 m. y.)	J D08141	EP1065	31660-31966	35	4	120-121
					35	6	125-126
79	(0-1 m. y.)	J D07141	EP1066	277-478	1		127-128
					1	4	$27-28$
79	(5-6 m.y.)	JD08142	EP1067	6818-7721	2	6	38-39
					2 A	2	75-76
					2 A	4	24-26
					2 A	6	20-21
79	(9-10 m. y.)	J D08143	EP1068	14517-15124	3 A	1	7-8
					3 A	3	90-91
					3 A	5	13-14

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
79	(15-16 m. y.)	JD08144	EP1069	19470-20025	4A	1	120-121
					4A	3	10-11
					4 A	5	74-75
79	(19-20 m. y.)	JD07377	EPl 070	36873-37227	11	4	2-3
					11	6	56-57
79	(22-23 m. y.)	JD08145	EP1071	40735-40993	16	1	135-136
					16	2	100-101
					16	3	92-93
80	(0-1 m.y,)	JD08146	EPl072	275-781	1	2	125-126
					1	4	40-41
						6	30-31
80	(6-7 m. y.)	J D08147	EP1073	6600-6872			
					2	5	80-81
					2	6	21-22
80	(13-14 m.y.)	JD08148	EPl 074	8765-9171	3 A	1	105-106
					3 A	2	29-30
					3A	4	60-61

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
80	(16-17 m. y_{0})	JD08149	EP1 075	13390-15566	3	5	40-41
					3	6	60-61
					5A	1	65-66
80	(21-22 m. y.)	J D06386	EP1076	19390-19651	5	1	60-61
					5	2	55-56
					5	3	20-21
81	(0-1 m. y.)	JD07143	EP1077	29-621	1	1	29-30
					1	2	27-28
					1	3	50-51
					1	5	20-21
81	(14-15 m, y.)	JD07142	EPl 078	31998-32601	2	1	28-29
					2	3	30-31
					2	5	30-31
82	(0-1 m. y.	JD07144	EP1080	30-656			30-31
					1	3	90-91
					1	5	55-56
82	(5-6 m. y.)	JD07145	EP1081	20185-21740			$135-136$
					5	2	$25-26$
					5	2	71-72

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
82	(5-6 m. y.)	JD07145	EP1081	20185-21740	6	2	55-56
					6	4	25-26
					6	6	29-30
83	(0-1 m, y.)	JD07146	EP1082	90-1772	1	2	60-61
					1	4	79-80
					2	1	19-20
					2	3	105-106
					2	5	8-9
					1 A	2	60-61
					1 A	4	17-18
					3	1	130~131
					3	3	41-42
83	(8-9 m. y.)	JD07147	EP1083	22660-22981	7	4	30-31
					7	6	50-51
159	(0-1 m. y.	JD06388	EP1084	12-382			
					1	3	$80-82$
159	(6-7 m. y.)	J D06389	EP1085	1120-1216	2	2	70-72
					2	3	70-72
					2	3	15-16

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
159	(13-14 m. y.)	JD06390	EPl 086	2170-2472	3	3	70-72
					3	4	70-72
					3	5	70-72
159	(15-16 m. y.)	JD06391	EP1087	3070-3372			70-72
					4	4	60-62
					4	5	70-72
159	(17-18 m. y.)	JD06392	EP1088	4110-4412	5	4	60-62
					5	5	60-62
					5	6	60-62
159	(20-21 m. y.)	J D06393	EP1089	6077-6962	7	5	77-79
					7	6	60-62
					8	1	60-62
					8	2	60-62
					8	3	$130-132$
					8	4	$60-62$
					8	5	60-62
159	(23-24 m. y.)	J D06394	EP1090	10410-10712	12	4	60-62
					12	5	$60-62$
					12	6	60-62

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
160	(0-1 m. $\mathrm{y}_{\text {c }}$)	J D06395	EPl 091	70-390	1	1	70-72
					1	2	60-62
					1	3	88-90
160	(15-16 m. y.)	JD06396	EP1092	540-692	2	4	90-92
					2	5	15-16
					2	5	90-92
160	(21-22 m. $\mathrm{yc}_{\text {c }}$)	JD06397	EP1093	3690-3936	5	1	90-92
					5	2	90-92
					5	3	35-36
160	(26-27 m. y.)	JD06398	EPl 094	6090-6960	7	5	90-92
					7	6	90-92
					8	1	90-92
					8	2	80-82
					8	3	90-92
					8	4	$90-92$
					8	5	58-60
160	(29-30 m. y.)	JD06399	EP1095	8790-9242			
					10	6	90-92
	.				11	1	90-92
					11	2	90-92

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
160	(34-35 m. $\mathrm{y}_{\text {。 }}$)	JD06400	EP1097	10675-10761	12	6	25-26
					12	6	90-92
					12	6	110-111
161	(18-19 m. y.)	JD08150	EP1098	55-232	1	1	55-57
					1	1	80-82
					1	2	80-82
161	(22-23 m. y.)	J D08151	EP1099	1730-2242			80-82
					3		$80-82$
					3	2	80-82
					3	3	$80-82$
					3	3	140-142
161	(29-30 m. y.)	JD08152	EPl100	9830-10882	11	6	80-82
					12	1	40-42
					12	2	80-82
					12	3	$38-40$
					12	4	$80-82$
					12	5	$124-126$
					12	6	70-72
					13	1	80-82

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
161	(34-35 m. $\mathrm{y}_{\text {¢ }}$)	JD08153	EP1101	17550-18282	7A	2	100-102
					7A	3	50-52
					7A	4	62-64
					7 A	5	90-92
					7A	6	80-82
					$8 \mathrm{~A}$		$80-82$
161	(40-41 m, y.)	JD08154	EPl102	21153-21522		2	103-105
					$11 \mathrm{~A}$	3	90-92
					$11 \mathrm{~A}$	4	80-82
161	(43-44 m. y.)	J D08155	EP1103	23598-23723	14A	1	98-100
					14 A	2	71-73
162	(30-31 m. y.)	JD08156	EPl104	90-382	1	1	90-92
					1	2	60-62
					1	3	80-82
162	(35-36 m. y.)	JD08157	EPl105	1030-1472	3	2	80-82
					3	3	80-82
					3	4	80-82
					3	5	70-72

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
162	(37-38 m. y.)	J D08158	EPl106	2930-3472	4	2	80-82
	-				4	3	80-82
					4	4	80-82
					4	5	76-78
					4	6	20-22
162	(43-44 m. y.)	JD08159	EP1107	6380-7882	8	1	80-82
					8	2	80-82
					8	3	$80-82$
					8	4	80-82
						5	80-82
					8	6	80-82
					9	1	$80-82$
					9	2	$80-82$
					9	3	$80-82$
					9	4	80-82
					9	5	80-82
162	(46-47 m. y.)	JD081 60	EPl119	11030-12232	13	2	80-82
					13	3	$80-82$
					13	4	80-82
					13	5	80-82
					13	6	80-82
	ont.				14	1	80-82

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
162	(46-47 m, yo)	JD08160	EPl119	11030-12232	14	2	80-82
					14	3	80-82
					14	4	80-82
162	(48-49 m, y.)	JD08161	EP1120	13590-14742	16	1	90-92
					16	2	90-92
					16	3	90-92
					17	1	39-41
					17	2	80-82
					17	3	40-42
162	(49-50 m. y.)	JD08162	EP1121	14974-14976	17	4	124-126
163	(25-26 m. y.)	JD08115	EPl122	210-482	2	1	110-112
					2	2	80-82
					2	3	80-82
163	(35-36 m. y.)	JD08116	EPl123	2515-2636	4	5	15-16
					4	5	$80-82$
					4	5	$135-136$
163	(42-43 m. y.)	JD08117	EPl124	4680-5226			80-82
					7	2	80-82
					7	3	80-82

APPENDIX II. Continued.

Site	Age Interval	Carbonate Access. \#	Atomic Abs. Access. \#	Depth Interval at Site	DSDP Samples		
					Core	Section	Depth in Section
163	(42-43 m. $\mathrm{y}_{\text {。 }}$)	JD08117	EP1124	4680-5226	7	4	80-82
					7	5	24-26
163	(49-51 m. y.)	JD08118	EPl125	9180-9482	12	1	80-82
					12	2	116-118
					12	3	80-82
163	(63-64 m. yo)	JD08119	EP1126	14244-14532	1 A	2	94-96
					1 A	3	80-82
					1 A	4	80-82
163	(71-72 m. y.)	JD08120	EP1127	17180-17782	16	1	80-82
					16	2	80-82
					16	3	80-82
					16	4	80-82
					16	5	80-82
163	(77-78 mıy.)	J D08121	EP1128	27033-27126	27	1	33-34
					27	1	78-80
					27	1	125-126

APPENDIX III. Accumulation Rates and Percent of Biogenic Components
Accumulation Rates are in $\mathrm{g} / \mathrm{cm}^{2} / \mathrm{m}, \mathrm{y}$ 。
Two values are given for all accumulation rates:
1 Accumulation rate calculated using Berggren (1972) time scale
2 Accumulation rate calculated using alternate time scale of van Andeal and others (1975)
Bulk Sediment Accumulation Rates from van Andel and others (1975)

Site	$\begin{gathered} \text { Age } \\ \text { Interval } \end{gathered}$	Bulk Sed. Accum. Rate $1 \quad 2$		\% Biog. Silica Bulk Carb-free		Biog. Silica Accum. Rate $1 \quad 2$		$\stackrel{\%}{\mathrm{CaCO}_{3}}$	Carbonate Accum. Rate $1 \quad 2$		Non-biog. Accum. Rate \qquad	
42	(24-25)	200		18.64	42.09	37		53.45	107		56	
42	(30-31)	210		10.01	61.90	21		81.79	172		17	
42	(37-38)	150		40.61	42.14	61		3.42	5		84	
42	(44-45)	810		35.23	62.07	285		41.00	332		193	
42	$(46-47)$	550		44.82	57.58	247		20.83	115		188	
69	(9-12)	130	325	48.44	48.83	63	157	. 99	1	3	69	165
69	(15-16)	230	150	33.44	33.71	77	50	. 75	2	1	151	99
69	(24-25)	590		11.50	26. 50	68		55.26	326		196	
69	(28-29)	900		5.74	26.19	52		76.15	685		163	
69	(38-39)	220		66.24	66.65	146		. 59	1		73	
69	$(43-44)$	710		82.77	83.07	588		. 33	2		120	
69	$(45-46)$	1340		76.62	76.76	1027		. 28	4		309	
70	(0-2)	40		20,39	20.65	8		1,16	0		32	
70	(9-10)	100		56.81	57.27	57		. 73	1		42	
70	(14-15)	300	120	19.80	25.98	59	24	23.05	69	28	172	68
70	(16-17)	280		39.48	40.93	110		3.38	9		161	
70	(20-21)	2160		5.31	26.05	115		78.03	1685		360	

APPENDIX III. Continued.

Site	$\begin{aligned} & \text { Age } \\ & \text { Interval } \end{aligned}$	Bulk Sed. Accum. Rate 12		\% Biog. Silica Bulk Carb-free		Biog. Silica Accum. Rate $1 \quad 2$		$\stackrel{\%}{\mathrm{CaCO}_{3}}$	Carbonate Accum. Rate $1 \quad 2$		Non-biog。 Accum. Rate\qquad	
70	(28-29)	2610		3.70	28.90	97		86.05	2246		267	
70	(32-33)	980		9.32	28.93	91		66.81	655		234	
70	(36-37.5)	275		45.45	59.00	125		21.97	60		90	
71	(0-1)	240		7.09	35.46	17		80.45	193		30	
71	(6-7)	500		19.81	84.84	99		76.65	383		18	
71	(8-9)	700		7.27	45.65	51		82.39	577		72	
71	(13-14)	5970	5970	4.61	32.82	275	275	84.32	5034	5034	661	248
71	(20-21)	2820		2.35	16.92	66		84.93	2395		359	
71	(26-27)	2190		1.39	12.06	30		87.48	1916		244	
71	(31-32)	1740		10.52	14.69	183		28.10	489		1068	
71	(39-40)	390		49.86	74.23	194		32.63	127		69	
72	(0-1)	820		7.65	47.16	63		85.01	697		60	
72	(3-4)	1120		11.79	26.64	132		53.31	597		391	
72	(9-10)	1020		9.95	53.11	102		79.41	810		108	
72	(15-16)	3420	1800	4.70	45.16	161	85	87.88	3005	1582	254	133
72	(27-28)	1260		1.03	20.77	13		93.89	1180		67	
72	(36-37)	340		3.95	29.88	13		85. 54	291		36	
72	(37-38)	280		27.03	60.72	76		53,88	51		53	
72	(39-40)	90		13.54	49.15	12		70.29	63		15	
73	(0-1)	720		7.07	47.16	51		85.01	612		57	
73	(4-5)	480		23.79	42. 19	114		41.39	199		167	
73	(8-9)	110		40.73	50.06	45		17.23	19		46	
73	(14-15)	1260	500	3.52	21.18	44	18	82.15	1035	411	181	71
73	(20-22)	1165		. 96	18.95	11		94.05	1096		58	
73	(32-33)	1370		4.14	40.06	57		88.68	1215		98	

APPENDIX III. Continued.

Site	Age Interval	Bulk Sed. Accum. Rate $1 \quad 2$	\% Biog. Silica Bulk Carb-free	Biog. Silica Accum. Rate $1 \quad 2$	$\stackrel{\%}{\mathrm{CaCO}_{3}}$	Carbonate Accum. Rate \qquad	Non-biog. Accum. Rate \qquad
73	(39-40)	610	13.83 40.46	84	64.98	396	130
73	(43-44)	270	5.50 21.50	15	73.32	198	57
74	(0-1)	90	$33.21 \quad 33.56$	30	1.17	1	6
74	(7-8)	220	$33.02 \quad 33.32$	73	. 79	2	145
74	(17-18)	210	5.1519 .64	11	70.74	149	50
74	(25-26)	660	2.2215 .26	15	83.28	550	95
74	(29-30)	460	. $49 \quad 15.68$	2	94.85	436	22
74	(44-45)	340	1.66 4.21	6	58.69	200	134
75	(1-2)	60	$1.85 \quad 1.87$	1	. 87	1	58
75	(16-18)	100	. $38 \quad 3.24$	0	86.40	86	14
75	(21-22)	1220	00	0	86.64	1057	163
75	(24-25)	510	$0 \quad 0$	0	85.60	437	73
75	(29-30)	990	$0 \quad 0$	0	83.73	829	161
75	(31-32)	750	. 08 . 45	1	79.67	598	151
77	(0-1)	820	$12.77 \quad 60.08$	105	79.00	648	67
77	(3-4)	880	$11.96 \quad 30.07$	105	56.64	498	277
77	($7-8$)	1590	9.42 47.12	150	77.23	1228	212
77	(15-16)	14101105	7.6139 .39	10784	78.93	1113872	190149
77	(22-23)	1540	$2.21 \quad 28.86$	34	90.93	1400	106
77	(26-27)	2030	1.12 26.30	23	93.83	1905	102
77	(30-31)	1030	$17.06 \quad 63.82$	176	71.67	738	116
77	(37-38)	490	16.5429 .93	81	43.67	214	195
78	(12-13)	570570	$2.40 \quad 13.38$	$14 \quad 14$	79.35	452452	104104
78	(15-16)	520310	$4.45 \quad 23.29$	2314	77.83	405241	9255
78	(18-19)	620	3.9019 .36	24	77.14	478	118

APPENDIX III. Continued.

APPENDIX III. Continued,

Site	Age Interval	Bulk Sed. Accum. Rate 12	\% Biog。Silica Bulk Carb-free		Biog. Silica Accum. Rate $1 \quad 2$	$\stackrel{\%}{\mathrm{CaCO}_{3}}$	Carbonate Accum. Rate 12	Non-biog. Accum. Rate 12
159	(23-24)	1040	6.08	14.24	63	55.61	578	399
160	(0-1)	320	8.34	8. 37	27	. 37	1	292
160	(15-16)	140	0	0	0	. 27	0	140
160	(21-22)	270	11.60	26.33	31	53.13	143	96
160	(26-27)	1150	1.82	12.27	21	82.96	954	175
160	(29-30)	690	1.59	15.94	11	88.26	609	70
160	(34-35)	170	9.68	50.99	16	79.42	135	19
161	(18-19)	180	16.04	19.56	29	17.40	31	120
161	(22-23)	600	10.39	29.87	62	62.57	375	163
161	(29-30)	1890	2.41	19.06	46	85.82	1620	222
161	(34-35)	1010	5. 27	29.95	53	79.91	807	150
161	(40-41)							
161	(43-44)	910	27.79	52.65	253	46.26	421	236
162	(30-31)	360	10.81	18.24	39	72.00	259	62
162	(35-36)	420	6.68	23.80	28	69.96	294	98
162	(37-38)	200	50.65	52.51	101	3.30	7	92
162	(43-44)	1080	27.63	48.36	298	40.77	440	342
162	$(46-47)$	680	47.44	62.14	323	22.16	151	206
162	$(48-49)$	500	32.08	39.30	160	17.93	90	250
162	(49-50)	1360	3.08	9.78	42	68.04	925	393
163	(25-26)	120	3.75	3.79	5	. 80	1	114
163	(35-36)	30	51.24	51.66	15	. 74	0	15
163	(42-43)	290	74.11	74.63	215	. 63	2	73
163	(49-51)	180	89.17	89.65	161	. 48	1	18

APPENDIX IV. Salt- Free Analytical Concentrations of Elements Analyzed by Atomic Absorption (AAS), Error (1σ) and Percent Error.

Sample	AAS Access. No.	Ele- ment	Concentration	Error (1)	\% Error
EP 42(24-25)	EP 958				
		${ }_{\text {M }} \mathrm{AL}$	7050.8969 20491.1178	152.4238 137.2235	2.15
		AL	16285:044?	296.4 ${ }^{\text {c }}$	1 : ${ }^{3}$?
		${ }_{\text {AL }}$ AL	14401.5159 190590830	$\begin{aligned} & 498.2114 \\ & 2 \\ & 299.2772\end{aligned}$	3.37
		SI	144026.2992	5264.8925	4.35
		MN	2117.8129	36.5343	$1: 73$
		1 N	2240.5540 2365095	33.1592 18.9515	1.48,
		FE	12049.3541	437.3915	3.53
		FE ${ }_{\text {F }}^{\text {E }}$	$12635.10 ? 2$ 11551.0259	120.0437	$1: 39$
E042(30-31)	FO 359				
		$\triangle 15$	4222.8651	56.9378	$\frac{1}{3} \cdot 19$
		AL	5990.15%	58.5245 189.883	3: ${ }^{1} 17$
		Sİ	53746.0307	220]:2959	3:43
		YN	575.8565 506.7239	5.2174	1.37
		FF	2738.1735	249.4476	$9 \cdot 11$
EP42 (37-39)	FP 963				
		${ }^{\text {AL }}$	26103.4356 25317834	15.65821	- 05
		SI	2790j4.3090	1304? 5 502	4.55
		FE	205558. 79811	55 550.9550 4251	$\frac{1}{2}: 1_{2}^{13}$
EP $42(44-45)$	EP 961				
		MG,	7252.5012	167.9515	
		${ }_{\text {A }}{ }_{\text {a }}$ L	7533.1294	? $177.931 \frac{1}{4}$	2.72
		ST	195469:79?a		$5 \cdot 17$
		MN	7777.8216	70.090?	2.44
		$\stackrel{M N}{\text { F }}$		$44^{5,3.1103}$	$\frac{1}{2} \cdot 57$
		F:	15.473:7671	26.0537	1:? 2
$E D+2(48-47)$	EF 76,				
		M 5	7312.5914	1170608	1.52
		${ }_{\text {AL }}$ AL	6635.7347 5939.4172	$153 \cdot 6109$	2:33,
		St	235394.455,	955, 7 : 153	4: ${ }^{1}$
		F	17112.7170	524:035 ${ }^{2}$	\% 5
		fe	17747:2940	24: 35 ¢	$1 .+1$
EPS9(9-12)	CP 353				
		$A L$	26768.96 .1	15.c5ita	- 55
		AL	35709.6725	c. 2 : 35.77	- ${ }^{2}$
		ST	370889.5716		14.55
		FE.		9420975	2.51
FP63(15-15)	FO 3F:-				
		${ }^{\text {AL }}$	42337.3679	522.1975	12.33
		M. ${ }^{\text {a }}$	2991130920	21. $3150 \cdot 505$	3.4\%
		FF	24374.3949	297: 545	$1: 3$

Sample AAS Access. No. Ele- ment Concentration Error (l σ) \% Error

Sample	AAS Access. No.	Element	Concentration	Error (10)	\%Error
EP71(26-27)	EP1022				
		$\begin{aligned} & A L \\ & A L \\ & \text { SI } \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 748.1897 \\ 961.7653 \\ 11460.8117 \\ 234.3991 \\ 1157.5066 \\ 1111.5955 \end{array}$	$\begin{array}{r} 115.4457 \\ 56: 9365 \\ 420.6118 \\ 11.5002 \\ 144: 7003 \\ 133.8502 \end{array}$	$\begin{array}{r} 15.43 \\ 5: 92 \\ 3.67 \\ 1.64 \\ 12.27 \end{array}$
EP71(31-33)	EP1023				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { FI } \end{aligned}$	$\begin{array}{r} 2518.3108 \\ 72598.2889 \\ 1995.9620 \end{array}$	193.9099 152.4564 10.2382	7.70 $: 21$.54
EP $72(0-1)$	EP1024				
		MG AL $A L$ $A L$ $A L$ SI $M N$ MN $M N$ FE $F E$ $F E$ $F E$	$\begin{array}{r} 1223.3460 \\ 4161.6144 \\ 4217.6951 \\ 5138.5951 \\ 3788.47449 \\ 51758.90440 \\ 631.0575 \\ 637.5567 \\ 651.1143 \\ 2851.6711 \\ 2859.4854 \\ 2892.6054 \\ 2781.5967 \end{array}$	$\begin{array}{r} 34.6207 \\ 121.9353 \\ 296.9257 \\ 154.6717 \\ 161.3890 \\ 307.4389 \\ 6.1844 \\ 4.1441 \\ 4.3634 \\ 269.8830 \\ 0 \\ 0 \\ 08.9834 \end{array}$	$\begin{array}{r} 2.83 \\ 2.93 \\ 7.04 \\ 3.01 \\ 4.26 \\ 1.56 \\ 0.98 \\ .65 \\ 0.56 \\ 7.35 \\ 0 \\ 0 \\ 2.43 \end{array}$
EP 72 (3-4)	EP1025				
		$\begin{aligned} & \text { MG } \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 4679.1129 \\ 8978.8908 \\ 801102575 \\ 82817: 7940 \\ 2145.8451 \\ 1931.4579 \\ 6909.9262 \end{array}$	$\begin{array}{r} 75.7375 \\ 169.7010 \\ 10602 \\ 2004.1906 \\ 7.2959 \\ 477.9082 \\ 537.3032 \end{array}$	1.54 1099 2.72 2.42 2.48 7.49
EP 72(9-10)	FP1025				
		$\begin{aligned} & \text { MG } \\ & \text { AL } \\ & \text { SI } \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 1510.0358 \\ 951: 0243 \\ 5161.1574 \\ 262.0378 \\ 259.2056 \\ 759.1415 \end{array}$	$\begin{array}{r} 30.6537 \\ 62.8527 \\ 956.5849 \\ 4.6975 \\ 2.6439 \\ 29.1510 \end{array}$	2.07 6.61 1.99 1.79 1.92 3.94
EP 72 (14-15)	EP1327				
		$\begin{aligned} & \text { MG } \\ & \text { MG } \\ & \text { AL } \\ & A L \\ & \text { AL } \\ & \text { MN } \\ & M N \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 1452.4624 \\ 1574.7222 \\ 1989.9519 \\ 940.1857 \\ 925: 5879 \\ 26226.7736 \\ 355.3557 \\ 359.9373 \\ 362.254 \\ 742.5216 \\ 777.2856 \\ 994.7942 \end{array}$	$\begin{array}{r} 30.7922 \\ 37.7933 \\ 75.64227 \\ 57.5394 \\ 1255.8925 \\ 1258.8851 \\ 5.2948 \\ 3.9233 \\ 4.2131 \\ 2202014 \\ 30.4696 \\ 14.1377 \end{array}$	2.12 $2: 43$ 6.94 6.172 13.60 4.97 1.49 1.09 1.15 2.99 3.92 1.53
EP72(27-28)	E01029				
		$\begin{aligned} & \text { MG } \\ & \text { AL } \\ & \text { SL } \\ & \text { MN } \\ & M N \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 2744.9978 \\ 657.1776 \\ 692.6118 \\ 7494.1519 \\ 130.4631 \\ 156.9659 \\ 592.6362 \end{array}$	$\begin{array}{r} 23.3325 \\ 49.1354 \\ 24.0459 \\ 415.9254 \\ 6.3043 \\ 306990 \\ 7.6450 \end{array}$	

Sample	AAS Access. No.	Element	Concentration	Error (1 σ)	\% Error
EP $73(20-22)$	EP1036				
		MG	1231.5175	26.8471	2.19
		AL	971.0484	89.6278	9.23
		AL	927.7998	79.8836	8.61
		SI	8001.9627	321.6789	4.02
		MN	147.9184	4.5972	3.11
		MN	151.1092 5111.844	17.3271	$\frac{1}{3}: 54$
		FE	$652.553 ?$	$11: 3297$	1.71
EP 73(32-33)	EP1037				
		MG	1228.2813	29.9731	2.44
		AL			
		AL	875.3867 232350811	104.2596	11.91 2.55
		MN	23259.8811 169.5029	59.5796	2.11
		MN	13402332	2.1746	1.52
		FE	958.3223		1.15
EP73(39-43)	EP1033				
		MG	3477.3275	81.7172	2.35
		AL	6497.2717	113.7323	1.75
		${ }^{\text {AL }}$ S	6255.4023 88363.4658	2111.28868	2.29
		MN	1419.8294	64.034	4.51
		FE	9194.3327	308.5936	3.36
		FE	4291.200\%	411.0979	9.59
EP73(43-44)	FP1C39				
		${ }^{\text {AL }}$	2443.5070	218.4495	8.94
		SI		2014.8258	5.63
		$\stackrel{\text { MN }}{\text { F }}$	$\begin{array}{r} 2982.3147 \\ 15375.1670 \end{array}$	$\begin{aligned} & 52.7875 \\ & 279.2905 \end{aligned}$	1.71
EP74(0-1)	EP1040				
		AL	40142.4842	959.4554	2.39
		${ }^{\text {AL }}$	35520.21 c 9	73 P .8206	2.03
		AL	34806.9796	1735.8648	4.99
		${ }^{\text {a }}$	46575.5275	+3535.0825	7.59
		SI	291883.1851	13893.6396 12189.0069	4.58
		CA	4563 E -974C	4362.6531	9.43
		MN		117.1468	1.13
		MN	9627.7234	\%83\% 2145	3. 3.21
		FE	43552.3861	766.5220	1.75
		FE			2.43
		$\underset{\text { FE }}{\text { F }}$	4714410647	$\begin{array}{r} 28.285 \\ 509.520 \end{array}$	1:95
EP74(7-3)	EP1041				
			33129.5499	1202.6025	3.63
		SI	25, 411.960 ?	10817.0024	4.33
		MN	20766.6133 51829557	165. 1329	- 37
		$\stackrel{F}{F}$	54705.6353	1290.1119	2:34
EP $74(17-18)$	EP104?				
		${ }^{\text {MG }}$	5258.1945 73078995	134.4904 $127.8882 ~$	2.51
		AL	5940.2110	122:9524	2:07
		SI	47632.5265	3158.0365	6.53
		M ${ }_{\text {c }}$	11913.137	161.483	2.25
		FE	12334.9231	195.1575	1.53

Sample	AAS Access. No.	Element	Concentration	Error (10)	$\begin{array}{r} 113 \\ \% \text { Error } \end{array}$
EP 74(25-25)	EP1043				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 3695.2973 \\ 5444.0940 \\ 4901.2341 \\ 28100.2736 \\ 1686.6361 \\ 9171.0607 \\ 7457.6324 \end{array}$	$\begin{array}{r} 89.7957 \\ 117.5924 \\ 16 R: 1123 \\ 615: 3960 \\ 12.3124 \\ 257.3887 \\ 199: 9311 \end{array}$	$\begin{aligned} & 2.43 \\ & 2.15 \\ & 3.43 \\ & 2.19 \\ & 3.73 \\ & 2.15 \end{aligned}$
EP74(29-3)	EP1044				
		$\begin{aligned} & \text { MG } \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 2986.8573 \\ 1090.4251 \\ 1183.1425 \\ 6143.9191 \\ 431.3365 \\ 382.9149 \\ 2924.4119 \\ 1463.3511 \end{array}$	$\begin{array}{r} 24.7910 \\ 77.5745 \\ 103.6433 \\ 377.2366 \\ 7.0308 \\ 4.6333 \\ 173.7313 \end{array}$	$\begin{array}{r} .33 \\ 7: 19 \\ 8.75 \\ 6.14 \\ 1.63 \\ 1 . ? 1 \\ 6.15 \\ 0 \end{array}$
EP 74 (44-45)	EP1045				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & E E \\ & F E \end{aligned}$		$\begin{array}{r} 136.3849 \\ 134.9226 \\ 932.9656 \\ 2032.5734 \\ 511.3385 \\ 255.6023 \\ 537.5320 \\ 3915.0596 \end{array}$	$\begin{array}{r} 1.85 \\ 1: 42 \\ 10.49 \\ 5.03 \\ 2: 55 \\ 1: 19 \\ 5.79 \\ 5.49 \end{array}$
EP75(1-2)	EP1045				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & C A \\ & M N \\ & M N \\ & M N \\ & M N \\ & F E \\ & F F \\ & F E \end{aligned}$	$\begin{array}{r} 45367.3859 \\ 53716.8335 \\ 152572.9512 \\ 153229: 2479 \\ 60325.2441 \\ 40056.1596 \\ 40928.3563 \\ 43112.0770 \\ 45951.3087 \\ 145814.2357 \\ 168794.2950 \\ 197138.3763 \end{array}$	$\begin{array}{r} 1590.4013 \\ 3009.1427 \\ 35090.2350 \\ 9530.8599 \\ 5832.0509 \\ 584.8190 \\ 1363.6571 \\ 405.2535 \\ 280.3930 \\ 9965.4355 \\ 1485.3892 \\ 5951.0004 \end{array}$	
EP75(16-18)	EP1047				
		$A L$ $A L$ SI SI MN MN FE		$\begin{array}{r} 117.7954 \\ 171.199 \\ 483.2735 \\ 517.5553 \\ 51.3527 \\ 63.7047 \\ 289.8195 \\ 219.3529 \end{array}$	4.79 5.55 4.01 4.77 1.54 1.74 1.55 1.23
EP75(21-22)	FP1049				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 711.4797 \\ 3159.6854 \\ 708.0353 \end{array}$	$\begin{array}{r} 124.2953 \\ 594.633 \\ 9.6293 \end{array}$	17.47 18.75 1.35
EP75 (24-25)	EP1049				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \\ & C E \end{aligned}$	$\begin{array}{r} 1198.9934 \\ 1090.3473 \\ 4259.7698 \\ 699.3295 \\ 783.4912 \\ 8531.7318 \\ 7950.3758 \end{array}$	$\begin{array}{r} 190.3033 \\ 127.2435 \\ 317: 2438 \\ : 9749 \\ 301.9931 \\ 192: 5702 \end{array}$	$\begin{array}{r} 17.15 \\ 11.57 \\ 7.43 \\ .15 \\ 3.76 \\ 2.45 \end{array}$

Sample	AAS Access. No.	Element	Concentration	Error (1 \quad)	\% Error
EP 75 (29-39)	EP1050				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 2969.5696 \\ 1143.3429 \\ 1171.1236 \\ 4760.8390 \\ 2788.6892 \\ 2511.5514 \\ 16976.9580 \\ 9201.0929 \end{array}$	$\begin{array}{r} 21.6795 \\ 109: 0749 \\ 270: 6571 \\ 105: 1335 \\ 42.4452 \\ 191.3159 \\ 524.4622 \end{array}$	$\begin{aligned} & .72 \\ & 9.54 \\ & 5.51 \\ & 3.77 \\ & 1.59 \\ & 1.19 \\ & 5.70 \end{aligned}$
EP75(31-32)	EP1051				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & M N \\ & \text { ME } \end{aligned}$	$\begin{array}{r} 833.9914 \\ 839.7213 \\ 3597.4191 \\ 19258.8968 \\ 40489.5170 \end{array}$	$\begin{aligned} & 130 .\lceil 193 \\ & 184.3188 \\ & 645.8160 \\ & 304.2936 \\ & 558.7553 \end{aligned}$	$\begin{array}{r} 15.59 \\ 21: 95 \\ 17: 98 \\ 1: 59 \\ 1.39 \end{array}$
E0 $77(0-1)$	EP1052				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & A L \\ & S I \\ & S I \\ & S I \\ & M N \\ & M N \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 3036.3305 \\ 4009.0945 \\ 4935.5931 \\ 4878.7569 \\ 78839.3952 \\ 58095.4050 \\ 56480.3886 \\ 1729.5057 \\ 1521.5109 \\ 1569.5550 \\ 4037.6960 \\ 3259.7018 \\ 3245.0685 \end{array}$	$\begin{array}{r} 61.0302 \\ 67.3529 \\ 259.1438 \\ 222.2499 \\ 1352.7258 \\ 10260.4705 \\ 1150.1107 \\ 12.1065 \\ 27.8438 \\ 53.6788 \\ 125.1596 \\ 0 \\ 0 \end{array}$	2.31 1.59 5.45 4.75 2.35 15.37 1.73 10.73 3.47 3.17 4
EP77(3-4)	FD1053				
		$\begin{aligned} & \text { AL } \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 5970.9579 \\ 79743.5174 \\ 2520.4952 \end{array}$	$\begin{array}{r} 212.5297 \\ 1244.1475 \\ 6: .744 ? \end{array}$	$\begin{aligned} & 3 \cdot 5 ? \\ & 1: 5 \\ & 2.41 \end{aligned}$
E077(7-9)	FP1054				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & M N \end{aligned}$	$\begin{array}{r} 1189.9120 \\ 50055: 9625 \\ 351.0549 \end{array}$	$\begin{array}{r} 165.3355 \\ 1977: C 965 \\ 4.4233 \end{array}$	$\begin{array}{r} 13 \cdot 71 \\ 3: 75 \\ 1.26 \end{array}$
EP77(15-15)	FP1055				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 1351: 8615 \\ 42721: 7313 \\ 529.3962 \end{array}$	$\begin{aligned} & 150.1918 \\ & 50010 \\ & 10.115 \end{aligned}$	$\begin{array}{r} 11.11 \\ \frac{1}{1}: 4 \\ 1.91 \end{array}$
EP77(23-24)	EP:055				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 696.2853 \\ 13371.5712 \\ 395.5486 \end{array}$	$\begin{array}{r} 177.4724 \\ 383.7679 \\ 4.8774 \end{array}$	$\begin{array}{r} 25.35 \\ 2: 37 \\ 1.23 \end{array}$
EP77(26-27)	EP1057				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 758.3211 \\ \times 192.6903 \\ 150.5958 \end{array}$	$\begin{array}{r} 207.6904 \\ 331: 203 \\ 2.1383 \end{array}$	$\begin{array}{r} 27.02 \\ 4.17 \\ 1.42 \end{array}$
EPT7(30-31)	FO1059				
		$\begin{aligned} & M G \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 2523.7069 \\ 870.7729 \\ 95559.6992 \\ 192.6569 \\ 126.4423 \\ 2492.9662 \end{array}$	$\begin{array}{r} 33 \cdot 9150 \\ 203 \cdot 6738 \\ 1565 \cdot 7425 \\ 6: 1529 \\ 1: 8399 \\ 435 \cdot 5212 \end{array}$	$\begin{array}{r} 1 \cdot 15 \\ 23: 37 \\ 1: 33 \\ 3: 35 \\ 17: 43 \\ 17: 47 \end{array}$

Sample	AAS Access. No.	Ele- ment	Concentration	Error (10)	\% Error
EP77(37839)	EP1059				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 10278.94 \mathrm{E} \\ 120114.0752 \\ 18028.9069 \end{array}$	$\begin{array}{r} 496.4731 \\ 1321: 2548 \\ 1.8029 \end{array}$	4.83 1.13 .11
EP78(12-13)	EP1360				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 4197.2509 \\ 26295.8944 \\ 1433.6044 \end{array}$	$\begin{aligned} & 285.4137 \\ & 528 \cdot 3465 \\ & 112.1079 \end{aligned}$	$\begin{aligned} & 6.90 \\ & 2.71 \\ & 7.92 \end{aligned}$
EP79(15-15)	EP1061				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 4372.8248 \\ 36567.7844 \\ 1229.4984 \end{array}$	$\begin{aligned} & 271.1151 \\ & 495.0083 \\ & 16.9671 \end{aligned}$	$\begin{aligned} & 6 \cdot 20 \\ & 1: 34 \\ & 1: 38 \end{aligned}$
EP79(18-19)	EP1052				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 3332.5242 \\ 30902.2113 \\ 1268.5752 \\ 1567.5423 \\ 9597.7422 \end{array}$	$\begin{array}{r} 181.6226 \\ 336: 9341 \\ 89.2311 \\ 60.1935 \\ 319.0472 \end{array}$	5.45 $1: 09$ 8.52 3.44 3.22
EP78(25-25)	EP1063				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 4912.5895 \\ 29092.9129 \\ 462.7306 \end{array}$	$\begin{array}{r} 479.0775 \\ 362 \cdot 0158 \\ \cdot 1553 \end{array}$	9.75 1.31 .$: 1$
EP79(31-32)	EP:364				
		AL AL SI FE	$\begin{array}{r} 1563.9251 \\ 1625.7581 \\ 21482.6414 \\ 3554.8274 \end{array}$	$\begin{aligned} & 159.3541 \\ & 103.8859 \\ & 296.4743 \\ & 345.0753 \end{aligned}$	$\begin{array}{r} 10 \cdot 19 \\ 6: 39 \\ 1: 39 \\ 9.59 \end{array}$
EPTR(34-35)	EP1055				
		$\begin{aligned} & A L \\ & S I \\ & C A \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 3257.5671 \\ 47494.9824 \\ 358242.0156 \\ 1590.1222 \\ 9365.9873 \end{array}$	$\begin{array}{r} 289.5743 \\ 3698.2591 \\ 2686.6274 \\ 92.9529 \\ 314.7274 \end{array}$	$\begin{aligned} & 8 \cdot 25 \\ & 7: 77 \\ & 5: 51 \\ & 5: 2 \frac{1}{2} \\ & 3: 35 \end{aligned}$
EP $79(0-1)$	EP1066				
		MG $A L$ $A L$ SI SI $C A$ CA CA MN MN $M \mathrm{~N}$ MN EE FE	$\begin{array}{r} 4.32 .6475 \\ 7596.5976 \\ 8076.3072 \\ 5777.4771 \\ 83051: 0027 \\ 97021.9636 \\ 257239.8125 \\ 322368.2343 \\ 334542.6250 \\ 4171.6024 \\ 3048.7510 \\ 4196.3375 \\ 4332.2440 \\ 8008.2918 \\ 7635.2992 \\ 9256.7678 \end{array}$	$\begin{array}{r} 58.9532 \\ 105: 97 ? 4 \\ 309.8441 \\ 329.7222 \\ 2701.5272 \\ 9502.7984 \\ 7519.3358 \\ 25202.8290 \\ 19997.8394 \\ 115.1303 \\ 69.4980 \\ 51.2664 \\ 77.1139 \\ 199.4955 \\ 172.5598 \\ 277.4274 \end{array}$	$\begin{array}{r} 1.71 \\ 1: 41 \\ 3: 97 \\ 4 \cdot 37 \\ 2: 41 \\ 10: 72 \\ 2.17 \\ 10: 95 \\ 5: 99 \\ 2: 64 \\ 1: 75 \\ 1: 45 \\ 1: 72 \\ 2: 47 \\ 2: 25 \\ 3.35 \end{array}$
EP7 (5-6)	FP1067				
		AL SI FE	$\begin{array}{r} 4995.4096 \\ 19125.1125 \\ 5549.0526 \end{array}$	$\begin{array}{r} 169.4921 \\ 2448.0141 \\ 184.0297 \end{array}$	3.44 12.37 2.81

Sample	AAS Access．No．	Ele－ ment	Concentration	Error（1 σ ）	$\begin{array}{r} 116 \\ \% \text { Error } \end{array}$
EP79（9－10）A J008	EP1068				
		AL	4730.1704	154.7595	3． 24
		$\begin{gathered} S I \\ F E \end{gathered}$	$\begin{array}{r} 138332.2974 \\ 15622.3123 \end{array}$	$\begin{array}{r} 22077.8347 \\ 476.4895 \end{array}$	15.96 3.05
EP79（15－16）АJロ91	F01069				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 2559.9023 \\ 9451.1723 \\ 684.1990 \\ 5183.2249 \end{array}$	$\begin{array}{r} 99.3003 \\ 330.8591 \\ 13.0692 \\ 107.8111 \end{array}$	$\begin{aligned} & 3.84 \\ & : 35 \\ & 1: 31 \\ & 2: 03 \end{aligned}$
E077（22－23）A JOO	EP1071				
		$\begin{aligned} & A L \\ & S I \\ & F E \end{aligned}$	$\begin{aligned} & 1349.5360 \\ & 21448.6434 \\ & 11221.8301 \end{aligned}$	$\begin{array}{r} 59.9194 \\ 394.6550 \\ 461.2172 \end{array}$	$\begin{aligned} & 4.44 \\ & 1.44 \\ & 4.11 \end{aligned}$
ED8才（0－1）A JD814	EP1072				
		$\begin{aligned} & \text { AL } \\ & S I \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 2999.5690 \\ 34136.4173 \\ 493.1263 \\ 1213.7551 \end{array}$	$\begin{array}{r} 143.4072 \\ 102.4793 \\ 0.2708 \\ 31.4353 \end{array}$	5.93 030 $1: 83$ 2.59
EP80（6－7）A J0581	ED1073				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & \text { FE } \\ & F E \end{aligned}$	$\begin{array}{r} 3954.5773 \\ 3444.9243 \\ 192449.2364 \\ 105861.9773 \\ 2982.8914 \\ 3744.8979 \end{array}$	$\begin{aligned} & 104.2445 \\ & 110.5790 \\ & 602.0955 \\ & 296.4135 \\ & 202.8365 \\ & 110.2952 \end{aligned}$	2.73 $30 ? 1$ 0.3 0.3 6.39 $3.5 ?$
E080（13－14）AJO91	EO1074				
		$\begin{aligned} & A L \\ & S I \\ & F E \end{aligned}$	$\begin{array}{r} 2131.9672 \\ 18937: 6472 \\ 2632.2709 \end{array}$	$\begin{array}{r} 70.5196 \\ 15064.2304 \\ 135.9312 \end{array}$	2．73
EP8U゙（16－17）${ }^{\text {a }}$	EP1075				
		$\begin{aligned} & A L \\ & A L \\ & S T \\ & S I \\ & S I \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 4313.8793 \\ 2611.7992 \\ 65598.2943 \\ 65134.6868 \\ 52751.935 \\ 27138.0149 \\ 5234.5936 \end{array}$	$\begin{array}{r} 111.7293 \\ 69 . C 714 \\ 2567.1411 \\ 7229.949 \\ 1526.7558 \\ 1753.1158 \\ 159.2635 \end{array}$	$\begin{array}{r} 2.59 \\ 2: 30 \\ 3.92 \\ 11.12 \\ 2.53 \\ 5: 46 \\ 3.25 \end{array}$
EPRO（21－22）AJ063	EP1076				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$		$\begin{array}{r} 155 \cdot 4958 \\ 360: 2842 \\ 4.5572 \\ 607.2396 \end{array}$	$\begin{aligned} & 8.41 \\ & 1.15 \\ & 2.15 \\ & 2.17 \end{aligned}$
ED81（0－1）A J0071	EP1077				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & C A \\ & M N \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 2907.2247 \\ 2619.3456 \\ 41341.7565 \\ 41555.0140 \\ 356055.9375 \\ 541.6326 \\ 510.5417 \\ 477.9922 \\ 3216.2744 \\ 2113.4547 \\ 3314.9366 \end{array}$	$\begin{array}{r} 124.7199 \\ 155.8511 \\ 2294.4575 \\ 2954.5515 \\ 22568.6 .332 \\ 5.0530 \\ 4.6970 \\ 9.9302 \\ 3.3215 \\ 74.2005 \\ 7453 \end{array}$	$\begin{aligned} & 4 \cdot 27 \\ & 5: 35 \\ & 5: 55 \\ & 7: 11 \\ & 9: 17 \\ & 1: 17 \\ & 2: 37 \\ & : 31 \\ & : 77 \\ & 2: 25 \end{aligned}$
EP81（14－15）A J70	FP1078				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 1221 \cdot 1895 \\ 96415 \cdot 1140 \\ 2393.9511 \end{array}$	$\begin{array}{r} 179: 7925 \\ 1301: 6175 \\ 49: 9337 \end{array}$	$\begin{array}{r} 14.54 \\ 1: 35 \\ 2.34 \end{array}$

Sample	AAS Access. No.	Element	Concentration	Error (1\%)	$\begin{gathered} 117 \\ \% \text { Error } \end{gathered}$
EPS2 (0-1)	EPICRO				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & S I \\ & S I \\ & C A \\ & M N \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 5990.9292 \\ 3231.3326 \\ 100355.5505 \\ 82771.0701 \\ 41119.5347 \\ 36591.2897 \\ 353430.7197 \\ 1291.2872 \\ 1235.6178 \\ 6655.1200 \\ 6925.4606 \\ 6259.2592 \end{array}$	$\begin{array}{r} 170.2111 \\ 108.2496 \\ 4475 \cdot 8576 \\ 139140.4916 \\ 2940 . c 457 \\ 4605.5944 \\ 39772.9594 \\ 8.9099 \\ 50.1651 \\ 2 C 2.9814 \\ 126.5347 \\ 93.8389 \end{array}$	3.35 3.35 4.45 16.59 7.15 12.59 11.25 4.59 3.75 2.17 1.50
EP82 (5-6)	EP1081				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 1618.1762 \\ 9482.6518 \\ 960.4509 \\ 6924.7870 \end{array}$	$\begin{aligned} & 103.8969 \\ & 243.0549 \\ & 15.3574 \\ & 144.7290 \end{aligned}$	$\begin{aligned} & 6.42 \\ & 1.35 \\ & 2.09 \end{aligned}$
EP83($C-1)$	EP1082				
		AL $A L$ $A L$ AL SI SI SI CA $M N$ MN FF: FE FE	$\begin{array}{r} 20512.1711 \\ 18355.136 \\ 18830.2151 \\ 17891.2352 \\ 131965.5977 \\ 127345.9592 \\ 107810.0729 \\ 104347.6329 \\ 230474.8476 \\ 7703.5676 \\ 7902.0201 \\ 7879.8256 \\ 31921.9145 \\ 34244.5598 \\ 36459.5022 \end{array}$	$\begin{array}{r} 0 \\ 514.8969 \\ 373.8242 \\ 992.2152 \\ 3027: 0120 \\ 5727.3582 \\ 7594.5995 \\ 8953.0269 \\ 6509.8955 \\ 119.6249 \\ 129.1100 \\ 14508334 \\ 1117.2670 \\ 308.2910 \\ 473.9619 \end{array}$	
EP838891	EP1083				
		$\begin{aligned} & A L \\ & S I \\ & F E \end{aligned}$	$\begin{array}{r} 3540.5929 \\ 168799.5561 \\ 25135.3872 \end{array}$	$\begin{array}{r} 118.2559 \\ 3527.919 \\ 755.8596 \end{array}$	3.34 2.199 3.02
EP159(0-1)	EP1084				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & S I \\ & S I \\ & C A \\ & C A \\ & \text { YN } \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$		$\begin{array}{r} 4256.4084 \\ 5245 \cdot 0857 \\ 10988.9615 \\ 15799.5837 \\ 18143.7577 \\ 14712.0967 \\ 389.8856 \\ 512.4392 \\ 577.1891 \\ 635.23216 \\ 15.6235 \\ 31.8752 \\ 6439.9751 \end{array}$	4.73 $E .77$ 4.99 $6: 57$ $6: 74$ 7.35 $3: 71$ 4.93 2.93 3.73 $: 33$ 0.05 4.65
EP159(6-7)	F.P1 185				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 82437.0715 \\ 254555 \cdot 1918 \\ 12756.897 \\ 55937.5999 \end{array}$	$\begin{array}{r} 3033.5242 \\ 2987: 434 \\ 457.9429 \\ 352.4071 \end{array}$	$\begin{array}{r} 3.53 \\ 3: 93 \\ .53 \end{array}$
EP159(13-14)	EP1985				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { SI } \\ & \text { YN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 97690.8327 \\ 271051.1664 \\ 259555.4456 \\ 11437.0504 \\ 79474.5471 \end{array}$	$\begin{array}{r} 4376.5493 \\ 3204.4521 \\ 17531.2938 \\ 122.3756 \\ 1295.02797 \end{array}$	$\begin{aligned} & 4: 49 \\ & 1: 47 \\ & 5: 79 \\ & 1: 37 \\ & 1.6 ? \end{aligned}$

Sample	AAS Access. No.	Element	Concentration	Error (10)	\% Error
ED159(15-16) B J	EP1387				
		AL SI FE	$\begin{array}{r} 34057.7448 \\ 152011.2247 \\ 47942.1927 \end{array}$	$\begin{aligned} & 1789.8365 \\ & 5502.8753 \\ & 6841.3509 \end{aligned}$	$\begin{array}{r} 5 \cdot 17 \\ 3: 5 \\ 14.27 \end{array}$
EP159(17-1a)B J7	EP1089				
		$\begin{aligned} & \text { AL } \\ & S I \\ & M N \\ & \text { FF } \end{aligned}$	$\begin{array}{r} 44302.3430 \\ 173299.8680 \\ 1057.6710 \\ 76507.5219 \end{array}$	$\begin{array}{r} 3313.2153 \\ 12217: 6407 \\ 269: 7975 \\ 1117.0598 \end{array}$	$\begin{aligned} & 7.49 \\ & 7.05 \\ & 2059 \\ & 1.46 \end{aligned}$
159(20-21)A JJ63	EO1099				
		$\begin{aligned} & A L \\ & S I \\ & F E \end{aligned}$	$\begin{aligned} & 16116.9449 \\ & 76986.2192 \\ & 43771.020 \end{aligned}$	$\begin{array}{r} 14 \mathrm{~F} \cdot \mathrm{F9}+3 \\ 1368.69 \mathrm{FK} \\ 515.6431 \end{array}$	$1 \cdot 45$ $1: 3$ $1 \cdot 51$
159(28-24) A J 5 ?	FP1.90				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$		$\begin{array}{r} 152.7345 \\ 1036.1299 \\ 123.6455 \\ 361.2901 \end{array}$	3.11 $2 \cdot 81$ 0.51
9 EP16)(5-: 1 Jก53	EP1091.				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & C A \\ & C A \\ & M N \\ & M N \\ & F E \end{aligned}$	28359.6751 88994.2928 294295.7217 260969.7812 20952.7754 19915.1919 10284.9055 9996.8618 53141.3635	$\begin{array}{r} 459.5223 \\ 4245: 0273 \\ 11559.9123 \\ 12991.3151 \\ 3819: 3136 \\ 1790: 3159 \\ 115.1979 \\ 290: 947 \\ 2374.1152 \end{array}$	$.5 ?$ $4: 77$ $3: 7 ?$ 4.78 $18: 79$ $9: 99$ 1.17
EP160(15-16)9 70	EP1992				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F F \end{aligned}$	$\begin{array}{r} 95343.4363 \\ 230322.4342 \\ 10440.4159 \\ 66330.7969 \end{array}$	$\begin{array}{r} 366.5 \cdot 3722 \\ 5145: 4323 \\ 116: 6735 \\ 759.3540 \end{array}$	$4 \cdot 31$ $2: 15$ $1: 35$ 1017
EP160(21-??)A J	[P1993				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 12054.4514 \\ 96845.7557 \\ 2156.4753 \\ 77555.8353 \end{array}$	$\begin{array}{r} 191.6559 \\ 2454.0909 \\ 47.01122 \\ 94.6470 \end{array}$	1.59 2.54 2.19 2.52
EP150(26-27) AJ	FP1094				
		AL SI $M N$ FE	$\begin{array}{r} 3 ? 15.6257 \\ 20515.8427 \\ 438.7117 \\ 7289.4617 \end{array}$	$\begin{aligned} & 169 \cdot 1072 \\ & 332 \cdot 3567 \\ & 145: 0513 \\ & 145.003 \end{aligned}$	$5 \cdot 77$ $1: 57$ 1014 1.99
E0150(27-39) J053	EP1095				
		MG $A L$ $A L$ $A L$ SI FE FE FE	$\begin{array}{r} 3675.19114 \\ 2257.4232 \\ 2252.4360 \\ 1945.6232 \\ 14056.2343 \\ 395.8327 \\ 3410.9905 \\ 3231.6775 \\ 3274.5928 \end{array}$	$\begin{array}{r} 54.3928 \\ 70: 9703 \\ 94.1173 \\ 94.9651 \\ 239.4577 \\ 3.4612 \\ 160.3166 \\ 221.5167 \\ 60.7496 \end{array}$	$\begin{aligned} & 1: 43 \\ & 3:: 3 \\ & 4: 11 \\ & 5: 14 \\ & 1: 53 \\ & 1: 17 \\ & 4: 77 \\ & 6: 57 \\ & 2.13 \end{aligned}$
FP160(34-35)A, 775	EP1097				
		$\begin{aligned} & A L \\ & S I \\ & F E \end{aligned}$	$\begin{array}{r} 3913.0271 \\ 51299.8068 \\ 4437.2219 \end{array}$	$\begin{array}{r} 102.9126 \\ 1134.0464 \\ 179.933 \end{array}$	$\begin{aligned} & 2.52 \\ & 1.95 \\ & 3.95 \end{aligned}$

Sample	AAS Access. No.	Element	Concentration	Error (10)	$\begin{gathered} 119 \\ \% \text { Error } \end{gathered}$
P161(18-19)	EP1098				
	*	$\begin{aligned} & \text { AL } \\ & \text { AL } \\ & S I \\ & S I \\ & S I \\ & S I \\ & \text { SE } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 30249.5184 \\ 40206.1099 \\ 186524.9412 \\ 195974.5343 \\ 180160.7757 \\ 211534.4263 \\ 30555.4558 \\ 31596.9737 \end{array}$	$\begin{array}{r} 12.0998 \\ 2637.5207 \\ 1269.3696 \\ 7737.0441 \\ 13954.3637 \\ 9984.4249 \\ 14990.7504 \\ 754.0253 \end{array}$	$\begin{aligned} & .04 \\ & 6: 56 \\ & 3: 68 \\ & 7.99 \\ & 4.7 ? \\ & 4.96 \\ & 2.37 \end{aligned}$
EP161(22-23)	EP1099				
		$\begin{aligned} & A L \\ & \text { SI } \\ & \text { SI } \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 7899.1658 \\ 75218.0032 \\ 78993.1926 \\ 1588.2200 \\ 8479.2928 \end{array}$	$\begin{array}{r} 135.6937 \\ 3587.8986 \\ 4993.9391 \\ 22.5527 \\ 226.3969 \end{array}$	$\begin{aligned} & 1.72 \\ & 4.77 \\ & 6: 33 \\ & 1.42 \\ & 2.67 \end{aligned}$
EP161(29-30)	EP1100				
		MG $A L$ AL SI SI MN MN FE FE	$\begin{array}{r} 2630.9521 \\ 1790.4831 \\ 1608.7698 \\ 18121.4036 \\ 17910.9493 \\ 472.9488 \\ 428.9297 \\ 1192.0365 \\ 1530.8748 \end{array}$	$\begin{array}{r} 34: 4555 \\ 88: 2708 \\ 48: 1022 \\ 527.3445 \\ 549: 8561 \\ 12: 1547 \\ 4.3751 \\ 141: 8183 \\ 26: 7903 \end{array}$	$\begin{array}{r} 1.31 \\ 4: 93 \\ 2: 99 \\ 2.91 \\ 3: 97 \\ 2: 57 \\ 1: .92 \\ 11: 93 \\ 1: 75 \end{array}$
EP161(34-35)	EP1101				
		$\begin{aligned} & \Delta L \\ & S I \\ & S I \\ & F E \end{aligned}$	$\begin{array}{r} 2257.9242 \\ 34474.9792 \\ 32934.9795 \\ 2774.7450 \end{array}$	$\begin{array}{r} 51.9303 \\ 1348.6399 \\ 355.5742 \\ 70.1254 \end{array}$	$\begin{aligned} & 2.39 \\ & 3: 9 ? \\ & 1: 11 \\ & 3: 39 \end{aligned}$
EP151(40-41)	FP110?				
		AL	10183.9770	193.4956	1.97
EP161(4.3-44)	EP1103				
		$\begin{aligned} & A L \\ & S I \\ & S I \\ & M N \\ & F F \end{aligned}$	$\begin{array}{r} 4274.0320 \\ 135599.7890 \\ 158284.7917 \\ 3334.0222 \\ 14330.0272 \end{array}$	$\begin{array}{r} 111: 1244 \\ 471 ?: 6996 \\ 7950.9257 \\ 46: 3429 \\ 307.7937 \end{array}$	$\begin{aligned} & 2.50 \\ & 3.45 \\ & 4.95 \\ & 1.39 \\ & 1.72 \end{aligned}$
EP162 (30-31)	ED1104				
		AL SI SI SI FI	$\begin{array}{r} 22044.9296 \\ 159419 \cdot 6426 \\ 12597.6990 \\ 125025 \cdot 3544 \\ 22437.7925 \end{array}$	$\begin{array}{r} 4.4090 \\ 821.5893 \\ 864.5541 \\ 8424.4069 \\ 170.527 ? \end{array}$	$\begin{array}{r} .7 ? \\ : 75 \\ 6.57 \\ .76 \end{array}$
EP152 (35-36)	EP:105				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	6573.4238 6699.3355 55030.5475 $\begin{array}{r} 1990.6420 \\ 10575.353 ? \end{array}$	$\begin{array}{r} 114.2776 \\ 122.5795 \\ 3055.2071 \\ 33.6419 \\ 143.8248 \end{array}$	$\begin{aligned} & 1.74 \\ & 1: 93 \\ & 5.57 \\ & 1.59 \\ & 1.35 \end{aligned}$
EP152 (37-39)	EP1106				
		$\begin{aligned} & A L \\ & S I \\ & F E \end{aligned}$	$\begin{array}{r} 22958 \cdot 2605 \\ 319.97 .2915 \\ 37566.8157 \end{array}$	$\begin{array}{r} 179.1525 \\ 9126.1768 \\ 3200.6245 \end{array}$	$\begin{array}{r} .78 \\ 2: 95 \\ 8.5 ? \end{array}$

Sample	AAS Access. No.	Element	Concentration	Error (1σ)	$\begin{gathered} 120 \\ \% \text { Error } \end{gathered}$
EP162(43-44)	EP1167				
		AL AL SI FE	7245.2534 157383.4045 17596.5045	$\begin{array}{r} 163.7427 \\ 191: 8552 \\ 1101.6528 \\ 415.2775 \end{array}$	$\begin{aligned} & 2.25 \\ & 2.56 \\ & 2: 70 \\ & 2.35 \end{aligned}$
EP162 (45-47)	EP1119				
		$\begin{aligned} & A L \\ & S T \\ & \text { FI } \end{aligned}$	$\begin{array}{r} 14698.6021 \\ 277003.4271 \\ 23754.9319 \end{array}$	$\begin{array}{r} 105.1819 \\ 8514.8055 \\ 254.2837 \end{array}$	3:72 1.07
EP162 (48-49)	EP1120				
		$\begin{aligned} & \text { AL } \\ & \text { AL } \\ & S T \\ & \text { SI } \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 5986.8156 \\ 6978.7316 \\ 179462.3823 \\ 254530.5199 \\ 13415.8121 \\ 47068.6067 \end{array}$	$\begin{array}{r} 139.0376 \\ 282.0386 \\ 1195.6980 \\ 9934.08247 \\ 191.8461 \\ 983.8564 \end{array}$	$\begin{aligned} & 1.99 \\ & 4: 05 \\ & 3: 57 \\ & 1: 41 \\ & 1: 45 \end{aligned}$
EP152(49-50)	EP1121				
		AL SI FE	$\begin{array}{r} 4537.2189 \\ 20735: 54 \\ 4357.3536 \end{array}$	$\begin{array}{r} 57.9497 \\ 7710.4645 \\ 4965.573 \end{array}$	1 2.52 12.54
F0153125-25)	FP1122				
		AL SI FI	$\begin{array}{r} 7 C 799.9749 \\ 249096.080 \\ 44389.3428 \end{array}$	$\begin{array}{r}1817 \\ 13397494 \\ 2290.4304 \\ \hline 294\end{array}$	2.55 5.43 $5: 16$
EP163(35-35)	EP1123				
		AL $A L$ $S I$ SI	$\begin{array}{r} 36846.3645 \\ 27130.125 \\ 351779.1505 \\ 25534.5271 \end{array}$	$\begin{array}{r} 1333.8275 \\ 1354.2460 \\ 11116.2214 \\ 495.3597 \end{array}$	3.59 4.93 1.15 1.34
EP15314?-43)	FF1124				
		$\begin{aligned} & A L \\ & S I \\ & F E \end{aligned}$	$\begin{array}{r} 11845.5299 \\ 397727.2531 \\ 145340470 \end{array}$	$\begin{array}{r} 133.8569 \\ 8569.7725 \\ 302.3092 \end{array}$	$\begin{aligned} & 1: \frac{1}{2} \\ & \begin{array}{l} 2 \\ 2 \end{array}, 0^{3} \end{aligned}$
ED153(42-51)	EP1125				
		AL SI FE	$\begin{array}{r} 2422.4962 \\ 43120293705 \\ 7295.5970 \end{array}$	$\begin{array}{r} 162.7390 \\ 15609.5261 \\ 126.6821 \end{array}$	
EP153 5 (63-54)	EP 1126				
		AL SI MN FE	$\begin{array}{r} 74155.1625 \\ 259752.1411 \\ 9275.1951 \\ 53219.7364 \end{array}$	$\begin{array}{r} 2283.9792 \\ 5896.335 \\ 237.473 \\ 5330.3149 \end{array}$	3.29 2.37 2.55 1.17
EP163(71-72)	FP1127				
		AL ST MN FE	$\begin{aligned} & 10180.6087 \\ & 56839.1450 \\ & 2892.4538 \\ & 17579.0351 \end{aligned}$	$\begin{array}{r} 675.7257 \\ 319608546 \\ 30.6474 \\ 221.493 ? \end{array}$	5.67 4.71 1.14 1.25
ED153(77-73)	EP1123				
		AL SI MN FE	$\begin{array}{r} 6227.3655 \\ 40142.319 \\ 1112.4011 \\ 9161.9069 \end{array}$	$\begin{aligned} & 110.7289 \\ & 895: 1737 \\ & 154.9230 \\ & 154.2500 \end{aligned}$	1.75 $2: 23$ $1: 25$ 1.89

APPENDIX V. Salt-Free and Carbonate-Free Analytical Concentration of Elements Analyzed by Atomic Absorption (AAS), Error (1σ) and Percent Error.

Sample	AAS Access. No.	Element	Concentration	Error (1 σ)	\% Error
EF $42(2+-25)$	EP 953				
		MG $A L$ $A L$ AL ${ }_{S}^{A L}$ MN MN MN FE FE FE	$\begin{array}{r} 15942.4924 \\ 46249.9753 \\ 36776.7533 \\ 32521.1629 \\ 45574.9511 \\ 325223.2145 \\ 4783.4685 \\ 5453.5665 \\ 5389.6588 \\ 27239.5668 \\ 28534.5429 \\ 26484.2566 \end{array}$		
EP42(30-31)	EP 957				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 2993.5197 \\ 21949.7369 \\ 37553.4444 \\ 399753.977 \\ 3561.3644 \\ 3756.7242 \\ 16936.22 \\ 19475.496 \end{array}$		
$5 \mathrm{P}+2(37-33)$	EP 3n)				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 27.89 .62+9 \\ 27317.6043 \\ 29649.1236 \\ 468.6593 \\ 34779.2911 \end{array}$	$\begin{array}{r} 13 \cdot 2534 \\ 01923 \\ 15530325 \\ 5=9924 \\ 63303454 \end{array}$	
EP 4 2(44-73)	EP ab:				
		$\begin{aligned} & \text { MG } \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 12777 \cdot 9149 \\ 13276 \cdot 344 \\ 127769452 \\ 34467.3027 \\ 5775: 1789 \\ 596.4547 \\ 27935: 4150 \\ 27252.65 .4 \end{array}$		
$E P+2(45-47)$	FP Y62				
		MG AL AL SI MN FE	$\begin{array}{r} 9346.512 \\ 9424.16 .3 \\ 7524.3651 \\ 32531.7578 \\ 4496.1823 \\ 21978.4341 \\ 21994.9122 \end{array}$	$\begin{array}{r} 145.9639 \\ 192.4399 \\ 131.2379 \\ 277.6755 \\ 111.1433 \\ 30306259 \\ 324.7232 \end{array}$	$\begin{aligned} & 1 \cdot 52 \\ & 2: 23 \\ & 1: 7 \frac{2}{3} \\ & 4: 27 \\ & 3: 57 \\ & 30+1 \end{aligned}$
t. $209(4-12)$	LF 16.3				
		$\begin{aligned} & A L \\ & A L \\ & A L \\ & S I \\ & M H \\ & F E \end{aligned}$	$\begin{array}{r} 2755.9942 \\ 27844.5679 \\ 26937.6625 \\ 324140.2968 \\ 5461.5770 \\ 32545.2819 \end{array}$	$\begin{array}{r} 16 \cdot 2342 \\ 22 \cdot 2+37 \\ 215977 \\ 13127: 6317 \\ 58: 9831 \\ 35200419 \end{array}$	$\begin{array}{r} 0 \\ \because \\ 0 \\ 0 \\ 4 \\ 4 \\ 0 \\ 0 \\ 0 \end{array}$
EP6)(15-10)	E.P $95 \begin{aligned} & \text { a }\end{aligned}$				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 42641.9144 \\ 3667.1447 \\ 5155.3174 \\ 24199.1746 \end{array}$	$\begin{array}{r} 5363 \cdot 5557 \\ 10393755 \\ 50 \cdot 650 \\ 30 \cdot 6534 \end{array}$	$\begin{array}{r} 12033 \\ 3: 45 \\ 0.97 \\ 102+ \end{array}$

Sample	AAS Access．No．	Ele－ ment	Concentration	Error（1）	$\begin{array}{r} 124 \\ \text { \% Error } \end{array}$
E975（？-21$)$	\＆p 9y5				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & S I \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 13354.4595 \\ 21575.2748 \\ 18998.4237 \\ 242474.6512 \\ 184991.635 \\ 4345.8631 \\ 3649.5934 \\ 29162.6475 \\ 21956.8599 \end{array}$	$\begin{array}{r} 282.9352 \\ 360.7797 \\ 1299.4922 \\ 6965.129 \\ 3496.351 \\ 41.6724 \\ 1399.4072 \\ 1082.4731 \end{array}$	$\begin{aligned} & 2 \cdot 34 \\ & 1: 7 \\ & 604+ \\ & 3047 \\ & 19.33 \\ & 10.3 \\ & 3 \cdot 77 \\ & 40.35 \end{aligned}$
	EP 190				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 36747 \cdot 3173 \\ 2153.747 \\ 2166.4353 \\ 213674.5992 \\ 4646.9778 \\ 4134.95 \\ 25692.1513 \end{array}$		$\begin{aligned} & \cdot 93 \\ & 3: 75 \\ & 0.25 \\ & 3: 25 \\ & 2: 12 \\ & 10.31 \\ & 5.30 \end{aligned}$
E07）（32－33）	Ep 391				
		$\begin{aligned} & \text { AL } \\ & 3 I \\ & S I \\ & \text { HV } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 1540.7522 \\ 245253.442 \\ 19425 \cdot 1214 \\ 4478.335 \\ 17440353 \end{array}$	$\begin{array}{r} 748 \cdot 364 \\ 15507 \cdot 697 \\ 11478997 \\ 68: 9653 \\ 334.335 \cdots \end{array}$	$\begin{aligned} & 4.74 \\ & 7 \\ & 6 \\ & 105 \\ & 1: 3 \end{aligned}$
EP7（35－37．5）	$\because \mathrm{HP} 993$				
		$\begin{aligned} & \text { MG } \\ & A L \\ & \text { AL } \\ & \text { SI } \\ & \text { YN } \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 534.4041 \\ 26762.3053 \\ 19123.5223 \\ 35844.7712 \\ 3277.7292 \\ 4139.4096 \\ 32933.7952 \end{array}$	$\begin{array}{r} 29 \cdot 54,7 \\ 174 \cdot 307 \\ 110.9164 \\ 233.5331 \\ 137: 5,534 \\ 60.5421 \\ 629.5355 \end{array}$	
EP 7（ $6-7)$	EPさu゙u				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & S I \\ & M V \\ & M H \\ & F E \\ & F E \\ & F E \end{aligned}$		$\begin{array}{r} 853 \cdot 1853 \\ 1054.592 \\ 13: 9107 \\ 4642.7839 \\ 1254.7531 \\ 1732.1825 \\ 224.2415 \\ 2847.933 \\ 23.857 \\ 2125.5593 \end{array}$	
EP7－$(8-7)$	tP＝－61				
		$\begin{aligned} & A L \\ & M G \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 10539.1553 \\ 2942.5565 \\ 26549.2424 \\ 26484.9457 \\ 3.14 .3122 \\ 3660.9727 \\ 3541.583 ? \end{array}$		
EP $71(13-14)$	EP1G0？				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 11273.5475 \\ 9746.5489 \\ 11912.6724 \\ 244276.7265 \\ 1197.576 \\ 1297.8189 \\ 7659.1111 \\ 7526.5048 \end{array}$	$\begin{array}{r} 184.877 \\ 430: 879 \\ 2035: 159 \\ 4757.197 \\ 27: 437 \\ 210.247 \\ 184.9447 \\ 72.2544 \end{array}$	

Sample	AAS Access. No.	Element	Concentration	Error (1\%)	\% Error
EP7 ${ }^{\text {a }}$ (c)-21)	EP1021				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 9983 \cdot 6623 \\ 128928.9675 \\ 1531.5943 \\ 25997.5479 \end{array}$	$\begin{array}{r} 83.59 .8 \\ 63430.955 \\ 9470937 \end{array}$	$\begin{aligned} & 8 \cdot 32 \\ & 4: 72 \\ & 2: 53 \end{aligned}$
EP7: 166 -27)	EP1j22				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & \text { MN } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 6491.778 \\ 9344.8986 \\ 9944104252 \\ 20338 \\ 1034302789 \\ 9645.7963 \end{array}$	$\begin{aligned} & 1001.6813 \\ & 494.619 \\ & 3649.5 \\ & 15.0163 \\ & 127.549 \\ & 1196.078 . \end{aligned}$	$\begin{array}{r} 15: 43 \\ 5: 57 \\ 0.54 \\ 1: 27 \\ 12: 43 \end{array}$
EP71(31-33)	EP1023				
		$\begin{aligned} & A L \\ & S I \\ & F E \end{aligned}$	$\begin{array}{r} 3518.1969 \\ 101423.1720 \\ 2648.7467 \end{array}$	$\begin{aligned} & 27 \mathrm{C}: 9312 \\ & 212: 9837 \\ & 14: 3.32 \end{aligned}$	7.75 $: 215$
EP 72 $3-11$	EP1024				
		$M G$ $M L$ $A L$ $A L$ $A L$ $S I$ $M N$ $M N$ $M N$ $F E$ $F E$ $F E$ $F E$			
FP 72(3-4)	roives				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 19570.6714 \\ 2528433798 \\ 18798.3814 \\ 18735.2257 \\ 4347.7128 \\ 4363.3925 \\ 15334.4315 \end{array}$		104 1 1 0 0 0
E0 $72(3-16)$	EP1325				
		$\begin{aligned} & \text { MG } \\ & A L \\ & \text { SI } \\ & 4 N \\ & M N \\ & F E \end{aligned}$			2.03 $6,0.3$ 1 1
E.P 2 (14-1)	EP1:27				
		$A G$ $M G$ $M L$ $A L$ $A L$ $S I$ $M N$ $M N$ $M A$ $F E$ $F E$ $F E$			$2 \cdot 13$ $2: 43$ $6: 34$ 6.12 13 4

Sample	AAS Access．No．	Ele－ ment	Concentration	Error（1／$)^{\text {）}}$	126 \％Error
EP72（27－23）	FP1うて3				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 55229.3711 \\ 13922415 \\ 13935.3541 \\ 150732.3794 \\ 3932.1133 \end{array}$	$\begin{array}{r} 469.4437 \\ 967.89 \\ 2495.8219 \\ 8368.427 \\ 126.8431 \end{array}$	
		$\begin{aligned} & \text { MN } \\ & =0 \\ & \hline= \end{aligned}$	$\begin{array}{r} 3359.2942 \\ 32237.4228 \end{array}$	$\begin{array}{r} 74.244 \\ 1579.6532 \end{array}$	2．
EP 72（30－31）	8．91023				
		$\begin{aligned} & \text { MG } \\ & A L \\ & A L \\ & A L \\ & \text { SI } \\ & \text { SI } \\ & M N \\ & M N \\ & \text { FE } \\ & F E \\ & F E \end{aligned}$			
EP72（37－38）	［Piu3j				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F I \end{aligned}$	$\begin{array}{r} 14299.6636 \\ 339494.77746 \\ 3128.6754 \\ 21297.7301 \end{array}$	$\begin{array}{r} 542.8192 \\ 896.5115 \\ 438.1815 \\ 687.5937 \end{array}$	$\begin{aligned} & 3 \cdot 32 \\ & 2 \cdot 5= \\ & 1,24 \\ & 3.23 \end{aligned}$
EP $72(39-+$.	ヒP1us：				
		$\begin{aligned} & \text { MG } \\ & A L \\ & A L \\ & \text { SI } \\ & \text { MN } \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 27321.9347 \\ 17831025 \\ 17599.74 \\ 296319.3524 \\ 8929842 \\ 835218441 \\ 41443.7244 \\ 43313.6099 \end{array}$	$\begin{array}{r} 816.9244 \\ 354.049 \\ 574.213 \\ 55110541 \\ 33.651 \\ 177547 \\ 1554.244 \\ 506.7692 \end{array}$	$\begin{aligned} & 2.37 \\ & 1: 73 \\ & 4: 97 \\ & 1: 37 \\ & 2: 37 \\ & 3: 75 \\ & 1: 17 \end{aligned}$
EP73（j－1）	ED．332				
		MG AL AL AL SI MN $M N$ $M N$ $M N$ FE $F E$		$\begin{array}{r} 189.8192 \\ 258.613 \\ 959.4341 \\ 959.0967 \\ 16521.1978 \\ 35.4176 \\ 42.5104 \\ 27.955 \\ 31.9135 \\ 137.553 \\ 389.1934 \end{array}$	$\begin{aligned} & 1: 08 \\ & 1: 29 \\ & 5: 51 \\ & 5: 3+ \\ & 7: 47 \\ & 1: 53 \\ & 1: 34 \\ & 1: 34 \\ & 1013 \\ & 2 \end{aligned}$
ED $73(4-5)$	ED：333				
		$\begin{aligned} & \text { MG } \\ & \text { AL } \\ & \text { AL } \\ & \text { SI } \\ & \text { MN } \\ & M N \\ & F \\ & F E \end{aligned}$	$\begin{array}{r} 8398.6120 \\ 12537.7561 \\ 12657.6375 \\ 2443228275 \\ 249452.191 \\ 11777.6632 \\ 1120.332 \\ 993559775 \\ 11229.81 .3 \end{array}$	$\begin{array}{r} 149.4951 \\ 161.7533 \\ 44=4698 \\ 5581.965 \\ 32219661 \\ 14.8395 \\ 1938299 \\ 492.8245 \\ 326.7875 \end{array}$	
E－73（8－9）	EP1034				
		$\begin{aligned} & M C, \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$		$\begin{array}{r} 141: 575 \\ 201: 711 \\ 881: 722 \\ 121: 6716 \\ 55.698 \\ 423.1956 \\ 277.5107 \end{array}$	$\begin{aligned} & 1.54 \\ & \frac{1}{3}: 22 \\ & 2: 34 \\ & : 33 \\ & 2: 4 \frac{2}{2} \\ & 1.55 \end{aligned}$

Sample	AAS Access. No.	Element	Concentration	Error (1 σ)	\% Error
EP 73(14-15)	EP1035				
		MG	11512.9751	233.7134	2.03
		AL	16271.8534	1244.7953	7.55
			17330.5615	538.9836	3.11
		SIN	162687.1219	$2375.232 i$	1.46
		MN	4829.3623 4777.2891	$35.737{ }^{3}$	
		$\stackrel{\text { Fe }}{\text { F }}$	12148.2870 13145.2024	238.1123 289.1945	$\frac{1}{2} \cdot 95$
EP 73(20-22)	EP1036				
		MG	24375.2123	531.3796	2.19
		AL	19219.7922	1773.9858	9.23
		${ }_{\text {A }} \mathrm{SI}$	158363.78 .456	1581.1215	8.61
		MN	158381.4586 2925.7448	6366.9346 99.9937	4.32 3.11
		MN	2990.8782	46.0595	1.54
		FE		354.1224	$3.5 j$
		FE	13113.7996	224.2460	1.71
EP 73(32-33)	EP1037				
		MG	11897.9215	290.3093	2.44
		$A L$	8816.1562	705.2739	8.38
		SI	225077.6589	5739.4835	$\frac{1}{2}: 55$
		MN	1642.8823	34.6648	2.11
		$\stackrel{M N}{\text { F }}$	1304.2644 9282.9254	21.0644 97.4737	$1.5 \frac{1}{1}$
EP73(39-4j)	FP1.j9				
		MG	10175.29:6	239.1193	2.35
		AL	1912.1941	332.7134	1.75
		AL	258554.44 545	417.1717 619	$\frac{2}{2} \cdot 29$
		MN	4154:678.	187.376	40.51
		FE	26875.1214	963.0767	3.30
		FE	12556.8574	1202.9469	9.54
EP7S(43-44)	EP1039				
			9459.5556	345.4399	8.94
		SI	138675.4133	7807.4258	5.63
		$\begin{aligned} & \text { MN } \\ & F E \end{aligned}$	11556.4279 59578.561	12040.5483	1.77
EP74(u-1)	EPIU4J				
		${ }_{\text {AL }} \mathrm{AL}$	40569.754	769.6171	2.37
		AL	35177.3884	1755.3517	4:39
		${ }^{\text {AL }}$	47.71.2697	3572.7494	7.59
		SI	294989.9434 268946.1561	14041.5212	4.75
		CA	- 45631.8744	- 4362.6531	4.43
		MN		111.3192	1.13
		MN	979.8483 9125.1557	84.2513 292.9175	- 3.31
		FE	44.15 .95 , 4	774.6837	1.75
		FE	47340.5447	1154.955?	2.43
		$\underset{\text { FE }}{\text { F }}$	47643.4326 45616.7316	766.5851	1.55
EP74(7-8)	EP1041				
			33427.2694	1213.4099	3.63
		SI	270824.0679	10914.2699	4.63
		M ${ }_{\text {M }}$	20953.2376 52295.4257	167.6258 941.3177	1:83
		FE	55197.2544	1291:6157	2:34

Sample	AAS Access. No.	Element	Concentration	Error (1 σ)	\% Error
EP 74 (17-13)	EPLO42				
		MG AL AL SI FE FE	$\begin{array}{r} 20427.9240 \\ 27861.1523 \\ 22646.8432 \\ 181597.6343 \\ 11726.4568 \\ 45418.4674 \\ 45982.4161 \end{array}$	$\begin{array}{r} 512.7409 \\ 487.57 j 2 \\ 469.7905 \\ 12039.9232 \\ 615.639 \\ 1067.334 \\ 747.8934 \end{array}$	$\begin{aligned} & 2.51 \\ & 1.75 \\ & 2.57 \\ & 6.53 \\ & 5.25 \\ & 2.35 \\ & 1.63 \end{aligned}$
EP 74 (25-25)	EP1.343				
		MG AL SI MN FE FE	$\begin{array}{r} 25346.4685 \\ 37341.6654 \\ 33618.1278 \\ 192743.3022 \\ 11568.83 .8 \\ 56346.3453 \\ 51221.3477 \end{array}$	$\begin{array}{r} 615.9192 \\ 866.585 \\ 1153.1518 \\ 4221.6717 \\ 84.4525 \\ 1765.4586 \\ 1295.9001 \end{array}$	$\begin{aligned} & 2: 43 \\ & 2.16 \\ & 3: 43 \\ & 2: 19 \\ & 3: 73 \\ & 2: 15 \end{aligned}$
EP7+(23-3i)	EPIU44				
		$\begin{aligned} & \text { MG } \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 96015 \cdot 9365 \\ 34731: 38.5 \\ 39333.3377 \\ 197502.5944 \\ 13355: 7559 \\ 12309.1948 \\ 95793.6391 \\ 47040.9332 \end{array}$	$\begin{array}{r} 796.9323 \\ 2493 \cdot 7131 \\ 3331.7294 \\ 12125 \cdot 6593 \\ 225: 118 \\ 14300423 \\ 5583.8338 \end{array}$	¢ 7 $9: 3$ $6: 3$ 0
EP 74 (44-45)	EP1045				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & S I \\ & M N \\ & M N \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 18648.4647 \\ 24164.8447 \\ 20194.8747 \\ 102770.3545 \\ 56998.5638 \\ 54846.7145 \\ 163778.5557 \\ 177132.7152 \end{array}$	$\begin{array}{r} 345 \cdot 8514 \\ 343: 1432 \\ 2118: 4424 \\ 5169343 \\ 136: 4534 \\ 652: 6.45 \\ 1621: 4977 \\ 9765.2293 \end{array}$	
EP75 (i-2)	EP1346				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & C A \\ & M N \\ & M N \\ & M N \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 46774.9235 \\ 54188.9734 \\ 153913.9797 \\ 154576.1374 \\ 60025.2441 \\ 40408.2301 \\ 41187.2139 \\ 43491.0372 \\ 46355.1922 \\ 167271.5474 \\ 175277.93,3 \\ 188783.2145 \end{array}$	$\begin{array}{r} 1634.331 \\ 3034.5825 \\ 35367.8559 \\ 9614.6295 \\ 6332.0539 \\ 589: 060 \\ 1375.6529 \\ 449.81155 \\ 282.7607 \\ 20353.0254 \\ 1498.4455 \\ 6463.3262 \end{array}$	
EP75(15-18)	EP1347				
		$\begin{aligned} & \text { AL } \\ & \text { AL } \\ & \text { SI } \\ & \text { MI } \\ & \text { MN } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 23659.1653 \\ 25974.2396 \\ 103590.1612 \\ 92882.9767 \\ 26276.5755 \\ 28228.3101 \\ 150993.5759 \\ 153303.8323 \end{array}$	$\begin{array}{r} 1412.6123 \\ 147.1419 \\ 4155.9655 \\ 4449: 0946 \\ 441: 4465 \\ 547: 629 ? \\ 2491.394 \\ 1885.6371 \end{array}$	4.23 $5: 65$ 4.51 4.79 $1: 53$ 1.94 1.55 1.23
EP75(21-22)	EP1048				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { MN } \end{aligned}$	$\begin{array}{r} 6062.2019 \\ 27007.5178 \\ 6032.8626 \end{array}$	$\begin{array}{r} 1059.6567 \\ 5066.6103 \\ 82.0469 \end{array}$	$\begin{array}{r} 17.47 \\ 18: 75 \\ 1.35 \end{array}$

Sample	AAS Access. No.	Element	Concentration	Error (1)	129 \% Error
EP75 (24-25)	EP1049				
	.	$\begin{aligned} & A L \\ & A L \\ & \text { SI } \\ & M N \\ & M N \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 8542.8992 \\ 8399: 2516 \\ 32891.2680 \\ 4693.772 \\ 6335.4527 \\ 61976.7634 \\ 60550.7556 \end{array}$	$\begin{array}{r} 1465: 9613 \\ 980.1938 \\ 2443.8212 \\ 7.5108 \\ 2326.3406 \\ 1483.4935 \end{array}$	$\begin{array}{r} 17.16 \\ 11: 67 \\ 7 .+3 \\ .15 \\ 3.75 \\ 2.45 \end{array}$
EP 75(29-3,	EP1350				
		$\begin{aligned} & \text { MG } \\ & \text { AL } \\ & \text { AL } \\ & \text { SI } \\ & \text { MN } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 20214.2934 \\ 778896419 \\ 7971.7423 \\ 29003.1831 \\ 18982.3728 \\ 1709509250 \\ 109434.5393 \\ 62631.0739 \end{array}$	$\begin{array}{r} 147.5644 \\ 742: 4644 \\ 1899.7982 \\ 7155.6355 \\ 288.9921 \\ 1302.271 \\ 3569.9712 \end{array}$	$\begin{aligned} & : 73 \\ & 9: 54 \\ & 6: 54 \\ & 3: 77 \\ & 1: 59 \\ & 1: 19 \\ & 5: 73 \end{aligned}$
EP75 (31-32)	EP1051				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 4531.4635 \\ 4633.0778 \\ 19848.3979 \\ 126259.0252 \\ 223396.8354 \end{array}$	$\begin{array}{r} 717.3682 \\ 1016.960 \\ 3568.7419 \\ 1678.9926 \\ 3182.8763 \end{array}$	
EP 77(0-1)	FP1052				
		$\begin{aligned} & M G \\ & A L \\ & A L \\ & A L \\ & S I \\ & S I \\ & S I \\ & M N \\ & M N \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 10011.7839 \\ 13219.03077 \\ 16277.5439 \\ 15427.4025 \\ 259959.5366 \\ 22450050517 \\ 219237.7828 \\ 570207345 \\ 54160.9533 \\ 5175.348 \\ 13313.0164 \\ 167488.3126 \\ 10700.6618 \end{array}$	$\begin{array}{r} 201.2359 \\ 2220.044 \\ 887.1251 \\ 732.8415 \\ 5109.0484 \\ 3382.1578 \\ 3792.2945 \\ 39.9191 \\ 91081, \\ 175.997 \\ 412.7221 \end{array}$	$\begin{array}{r} \frac{2}{2}: 55^{2} \\ 5: 45 \\ 4: 75 \\ 2035 \\ 15: 37 \\ 1: 73 \\ 1: 73 \\ \frac{2}{3}: 83 \\ 8: 43 \end{array}$
EP77(3-4)	EP1053				
		$\begin{aligned} & A L \\ & S I \\ & \text { MN } \end{aligned}$	$\begin{array}{r} 14756.9843 \\ 1979266.279 j \\ 6335.4099 \end{array}$	$\begin{array}{r} 534.2029 \\ 3127: 2352 \\ 152.6834 \end{array}$	3.52 103 20.4
EP77(7-8)	EP1054				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { MN } \end{aligned}$	$\begin{array}{r} 5051.7100^{2} \\ 250372.1516 \\ 1755.9223 \end{array}$	$\begin{array}{r} 927.2977 \\ 9388: 9557 \\ 22.1246 \end{array}$	$\begin{array}{r} 13.93 \\ 3: 75 \\ 1.25 \end{array}$
EP77(15-16)	EP1355				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { MN } \end{aligned}$	$\begin{array}{r} 699 \varepsilon \cdot 1992 \\ 217472.2723 \\ 2739.75 ? 1 \end{array}$	$\begin{array}{r} 777.2777 \\ 3109.853 \\ 52.329 .3 \end{array}$	11 $1: 4$ $1: 93$ 1.91
EP77(23-24)	EP1055				
		$\begin{aligned} & A L \\ & S I \\ & \text { SN } \end{aligned}$	$\begin{array}{r} 8945.2975 \\ 174291: 3349 \\ 5168.6577 \end{array}$	$\begin{array}{r} 2313.2539 \\ 5002 \cdot 1513 \\ 63.5745 \end{array}$	$\begin{array}{r} 25.85 \\ 2: 37 \\ 1: 33 \end{array}$
EP77(26-27)	E.P1657				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { MN } \end{aligned}$	$\begin{array}{r} 18495.4253 \\ 1905788.2478 \\ 35466.6356 \end{array}$	$\begin{array}{r} 4889.3841 \\ 7914: 5292 \\ 5: .3618 \end{array}$	$\begin{array}{r} 27: 1 ? \\ 4: 1: \\ 1: 4 ? \end{array}$

Sample	AAS Access．No．	Ele－ ment	Concentration	Exror（1 σ ）	$\begin{array}{r} 130 \\ \% \text { Error } \end{array}$
EP77（30－31）	FP1054				
		MG AL SI MN MN FE	$\begin{array}{r} 10994.7419 \\ 3273.3927 \\ 321634.3479 \\ 690.4371 \\ 476.9771 \\ 9371.5038 \end{array}$	$\begin{array}{r} 127.4926 \\ 765.6455 \\ 5885.9036 \\ 23.1296 \\ 5.9162 \\ 1637.2029 \end{array}$	$\begin{array}{r} 1 \cdot 15 \\ 23: 39 \\ 1: 33 \\ 3: 35 \\ 1: 45 \\ 17: 47 \end{array}$
EP77（37： 38$)$	EP1しらす				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & M N \end{aligned}$	$\begin{array}{r} 18590.9817 \\ 217360.7623 \\ 32625.4598 \end{array}$	$\begin{array}{r} 898.4274 \\ 2390.9684 \\ 3.2625 \end{array}$	4.83 1.15 0.31
EP73（12－13）	EP106）				
	＇	$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 23422.4270 \\ 146686.4431 \\ 8300.6997 \end{array}$	$\begin{array}{r} 1592 \cdot 7254 \\ 2948 \cdot 3895 \\ 625.6277 \end{array}$	$6 \cdot 8]$ $2: 31$ 703
EP78（15－16）	EPIU61				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 22844 \cdot 6.53 \\ 191372.7348 \\ 6434.4187 \end{array}$	$\begin{array}{r} 1418.8455 \\ 2564.3942 \\ 89.795 \end{array}$	6.29 $1: 39$ 1.39
EP73（19－13）	$[P 1562$				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 16535.9299 \\ 153336.2571 \\ 679.9471 \\ 7778.1146 \\ 47623.8269 \end{array}$	$\begin{array}{r} 941.2932 \\ 1671.3552 \\ 442.7632 \\ 293.6798 \\ 1533.4372 \end{array}$	$\begin{aligned} & 5.45 \\ & 1: 39 \\ & 6: 52 \\ & 3.44 \\ & 3.22 \end{aligned}$
EP7ヶ（25－23）	FP1J63				
		$\begin{aligned} & A L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 30191: 344 \\ 172591: 2876 \\ 4271: 5582 \end{array}$	$\begin{array}{r} 2942 \cdot 6539 \\ 2265 \cdot 9459 \\ .4572 \end{array}$	9.75 1.31 0.1
E078（51－32）	［P：364		－${ }^{\text {－}}$		
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & F E \end{aligned}$	$\begin{array}{r} 12721.7939 \\ 13224.7675 \\ 174759.1890 \\ 28998.1730 \end{array}$	$\begin{aligned} & 1296.3538 \\ & 845.0625 \\ & 2411.6758 \\ & 2967.0232 \end{aligned}$	$\therefore .6 .19$ 5037 1.39 9.59
EP73（34－35）	$E P 1 \pm 65$				
		$\begin{aligned} & A L \\ & S I \\ & C A \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 14948 \cdot 1451 \\ 217273.3479 \\ 368340.156 \\ 7315: 439 \\ 42850.3155 \end{array}$	$\begin{array}{r} 123.2154 \\ 1688 \cdot 1391 \\ 2486.6294 \\ 384: 0635 \\ 1439.7746 \end{array}$	$\begin{aligned} & 8: 25 \\ & 7: 77 \\ & 5,51 \\ & 5: 25 \\ & 3: 35 \end{aligned}$
EP 79（J－1）	EP1066				
		MG $A L$ AL AL SI CA CA CA MN MN MN MN FE FE	$\begin{array}{r} 11981.7232 \\ 22541.4469 \\ 23788.1827 \\ 26116.3387 \\ 246759.5078 \\ 258557.9502 \\ 357238.8125 \\ 322368.2343 \\ 334542.5250 \\ 12394.5830 \\ 11732.4540 \\ 12468.0548 \\ 12571.8784 \\ 23794.4793 \\ 22586.1214 \\ 24532.346 \end{array}$	$\begin{array}{r} 214.8375 \\ 317.8344 \\ 920.6027 \\ 979.6542 \\ 5945.9341 \\ 28234.5282 \\ 7519.3658 \\ 35292.8389 \\ 19997.8394 \\ 327.2174 \\ 206.4912 \\ 182.0336 \\ 229.1194 \\ 592.4726 \\ 512.7653 \\ 824.2864 \end{array}$	$\begin{array}{r} 1: 71 \\ 1: 4 \frac{1}{3}: 97 \\ 4: 37 \\ 2.41 \\ 10.92 \\ 2.17 \\ 14.95 \\ 5: 93 \\ 2.64 \\ 1.76 \\ 1.45 \\ 1.78 \\ 2.49 \\ 2.26 \\ 3.36 \end{array}$

Sample	AAS Access. No.	Element	Concentration	Error (10)	$\begin{gathered} 131 \\ \text { \% Error } \end{gathered}$
EP79(5-6)	EP-U67				
		$\begin{aligned} & A L \\ & \text { SI } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 9290.3700 \\ 36295: 1014 \\ 12428.6372 \end{array}$	$\begin{array}{r} 319.5897 \\ 4645: 773 \\ 349.2445 \end{array}$	$\begin{array}{r} 3.49 \\ 12.91 \\ 2.31 \end{array}$
EP79(9-1u)	EP2068				
		${ }_{\text {AL }} \mathrm{SI}$	$\begin{array}{r} 7466.5934 \\ 256284.7002 \end{array}$	$\begin{array}{r} 286.7172 \\ 40903.0381 \end{array}$	3.84 5.96 3.95
		FE	28943.0592	882.7633	3.65
EP79(土5-15)	EP1069				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 6368.0604 \\ 2351557.4028 \\ 1770.0229 \\ 12893.8813 \end{array}$	$\begin{aligned} & 244.5335 \\ & 823.0509 \\ & 32.5086 \\ & 269.1927 \end{aligned}$	$\begin{aligned} & 3.34 \\ & 1: 35 \\ & 2: 01 \end{aligned}$
EPア9(22-23)	EP1071				
		$\begin{aligned} & A L \\ & S I \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 8468.6368 \\ 1345994.9845 \\ 70419.4677 \end{array}$	$\begin{array}{r} 376.6075 \\ 2476.5477 \\ 2894.24 .51 \end{array}$	$4.4+$ $1.3+4$ 4.11
EP8. (6-1)	EP1472				
		$\begin{aligned} & A L \\ & S I \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 12824.4424 \\ 218434.845 \\ 311.993 \\ 7411.1136 \end{array}$	$\begin{aligned} & 875.6352 \\ & 685.3 .45 \\ & 56.6403 \\ & 191.9473 \end{aligned}$	$\begin{array}{r} 6: 83 \\ : 3 \\ 103 \\ 2: 53 \end{array}$
EP8J (6-7)	EP1573				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 9568.8752 \\ 8551.6754 \\ 253334.2375 \\ 262799.2451 \\ 74434945 \\ 7558.8695 \end{array}$	$\begin{array}{r} 26.2734 \\ 27405988 \\ 1494.06724 \\ 735.8379 \\ 543.536 \\ 273.6311 \end{array}$	2.72 $3: 21$ $: 53$ 0.29 3.52
EPBu(13-14)	EP1074				
		$\begin{aligned} & A L \\ & S I \\ & \text { FI } \end{aligned}$	$\begin{array}{r} 4224.3135 \\ 374579.7639 \\ 4422.9067 \end{array}$	$\begin{array}{r} 157.5659 \\ 31339: 2799 \\ 269.3439 \end{array}$	3.73 8.5 6.59
EP8) (16-17)	EP1075				
		$\begin{aligned} & \text { AL } \\ & \text { AL } \\ & \text { SI } \\ & \text { SI } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 17267.2724 \\ 10454.330 \\ 262132.1499 \\ 266716.6736 \\ 2323656.3721 \\ 108626.2250 \\ 20832.9984 \end{array}$	$\begin{array}{r} 447.2224 \\ 243.4436 \\ 10275.5303 \\ 88939.553 \\ 511 \pm .2356 \\ 7017.2541 \\ 637.4998 \end{array}$	$\begin{array}{r} 2.57 \\ 2: 35 \\ 3.92 \\ 11013 \\ 2.63 \\ 5.45 \\ 3.06 \end{array}$
EP8j(21-22)	EP1076				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 6585.8333 \\ 111639.7795 \\ 31526.0792 \\ 99689.9671 \end{array}$	$\begin{array}{r} 553.9527 \\ 1283.8575 \\ 176.5460 \\ 2163.2723 \end{array}$	8.41 1.15 2.55 2.17

Sample	AAS Access. No.	Element	Concentration	Error (1)	$\begin{array}{r} 132 \\ \% \text { Error } \end{array}$
EPB1(1-1)	EP1477				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & C A \\ & M N \\ & M N \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 12475.5502 \\ 11240.1967 \\ 17746.7378 \\ 178321.8431 \\ 356955.9375 \\ 2324.2662 \\ 2190.8493 \\ 2151.1714 \\ 13801.7662 \\ 13360.5293 \\ 14224.7640 \end{array}$	$\begin{array}{r} 535.2311 \\ 668.7917 \\ 9446.723 \\ 2678.693 \\ 32566.6338 \\ 25.5659 \\ 20.1558 \\ 42.8695 \\ 1.3802 \\ 129.5971 \\ 321.4793 \end{array}$	$\begin{aligned} & 4: 27 \\ & 5: 95 \\ & 5: 55 \\ & 7: 112 \\ & 9: 12 \\ & 1: 13 \\ & 2: 32 \\ & : 41 \\ & 2: 25 \end{aligned}$
EP3:(14-15)	EP107*				
		$\begin{aligned} & \Delta L \\ & S I \\ & M N \end{aligned}$	$\begin{array}{r} 4410 \cdot 514 \\ 348229: 8251 \\ 7562.4436 \end{array}$	$\begin{array}{r} 545.7139 \\ 4731925 \\ 179.9962 \end{array}$	$\begin{array}{r} 14.54 \\ 1.3 \frac{4}{2} \\ 2.34 \end{array}$
EP82(:-1)	EP1J8]				
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & S I \\ & S I \\ & C A \\ & M N \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 19595 \cdot 0127 \\ 12455: 5346 \\ 386331: 7495 \\ 319053.3933 \\ 158499.8686 \\ 14106.5931 \\ 35343.7137 \\ 4977.4116 \\ 4762.8279 \\ 25652.9429 \\ 23225.8151 \\ 24127.1183 \end{array}$	$\begin{array}{r} 656.0979 \\ 417.2604 \\ 17252.690 \\ 3349.5106 \\ 11332.74=6 \\ 17752.7427 \\ 39773.8544 \\ 34.3441 \\ 193.37 .8 \\ 782.4148 \\ 487.7421 \\ 361.9 .53 \end{array}$	$\begin{array}{r} 3.35 \\ 3: 37 \\ 4.40 \\ 16.69 \\ 7: 15 \\ 12: 5 \frac{3}{2} \\ 1: .63 \\ 4: .6 \\ 3: 35 \\ 2: 10 \\ 1.5: \end{array}$
EP82 (5-6)	EP1081				
		$\begin{aligned} & \text { AL } \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 5185.2435 \\ 299553.4854 \\ 3077.6771 \\ 22189.6153 \end{array}$	$\begin{aligned} & 332.8926 \\ & 778.8391 \\ & 49.2429 \\ & 463.763 \end{aligned}$	6.42 $: 25$ $2 \cdot 53$
EP83 (0-1)	EP1082				
		$\begin{aligned} & A L \\ & A L \\ & A L \\ & A L \\ & S I \\ & S I \\ & S I \\ & S I \\ & C A \\ & M N \\ & M N \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 33596.1544 \\ 30063.2144 \\ 30923.234 \\ 29303.0418 \\ 216141.7354 \\ 224955.6921 \\ 175281.0912 \\ 170907.2710 \\ 230474.8476 \\ 12617.3939 \\ 12942.4526 \\ 1296.0946 \\ 52283.7666 \\ 56087.9418 \\ 59714.2458 \end{array}$	$\begin{array}{r} 1447.1177 \\ 612.281 . \\ 1608.737 \\ 4949.6457 \\ 9384.6524 \\ 12602.7145 \\ 14663.8439 \\ 6509.8855 \\ 194.3379 \\ 196.7253 \\ 189.7194 \\ 1829.9318 \\ 504.7915 \\ 775.2852 \end{array}$	$\begin{aligned} & 3.35 \\ & 1: 98 \\ & 5: 49 \\ & 2: 27 \\ & 4: 17 \\ & 7: 19 \\ & 8: 59 \\ & 2: 32 \\ & 1: 54 \\ & 1: 52 \\ & 1: 47 \\ & 3: 53 \\ & 1: 31 \end{aligned}$
EP83889)	EP1383				
		$\begin{aligned} & A L \\ & S I \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 5544.1363 \\ 264319.4331 \\ 39452.7335 \end{array}$	$\begin{array}{r} 185.1742 \\ 5524.2752 \\ 1183.5820 \end{array}$	3.34 2.09 3.35
EP159(0-1)	EP1084			-	
		$\begin{aligned} & A L \\ & A L \\ & S I \\ & S I \\ & S I \\ & S I \\ & C A \\ & C A \\ & M N \\ & M N \\ & F E \\ & F E \\ & F E \end{aligned}$	$\begin{array}{r} 86657.8385 \\ 86365 \cdot 2273 \\ 221274.2372 \\ 242997: 3777 \\ 269942.2601 \\ 254944.7519 \\ 10471: 9790 \\ 10603.5264 \\ 19748.8216 \\ 21022.9436 \\ 52222.9183 \\ 53274.4408 \\ 52484.2171 \end{array}$	$\begin{array}{r} 4272.2314 \\ 5259.6423 \\ 11119.4570 \\ 15843.4290 \\ 18194.1183 \\ 18763.9337 \\ 388.8856 \\ 512.4302 \\ 578.6405 \\ 636.9952 \\ 15.6659 \\ 31.9647 \\ 2445.7645 \end{array}$	$\begin{array}{r} 4.93 \\ 6.09 \\ 4.98 \\ 6.52 \\ 6: 74 \\ 7: 36 \\ 3: 71 \\ 4: 83 \\ 2.93 \\ 3.33 \\ : 03 \\ 4: 56 \\ 4.65 \end{array}$

Sample	AAS Access．No．	Ele－ ment	Concentration	Error（1 σ ）	
EP159（6－7）	EP1085				
		$\begin{aligned} & A L \\ & S I \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 82639.9237 \\ 255191.5885 \\ 12787.4836 \\ 56075.3321 \end{array}$	$\begin{array}{r} 3041.1491 \\ 252.571 \\ 459.0476 \\ 353.2746 \end{array}$	$\begin{array}{r} 3.53 \\ 082 \\ 3.59 \\ .63 \end{array}$
EP159（13－14）	EP1085				
		$\begin{aligned} & A L \\ & S I \\ & S I \\ & M N \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 78592.0225 \\ 218059.9596 \\ 208900.1781 \\ 9201.0930 \\ 63904.8873 \end{array}$	$\begin{array}{r} 352 i .9226 \\ 3205.4814 \\ 14184.3221 \\ 98.4517 \\ 1035.2592 \end{array}$	$\begin{aligned} & 4.48 \\ & 1: 47 \\ & 6: 77 \\ & 1: 07 \\ & 1: 62 \end{aligned}$
EP159（15－15）	EP1087				
		$\begin{aligned} & A L \\ & S I \\ & \text { SI } \end{aligned}$	$\begin{array}{r} 42708.5699 \\ 185712.9137 \\ 58571.2293 \end{array}$	$\begin{aligned} & 2186.6527 \\ & 5722.8075 \\ & 8358.1144 \end{aligned}$	$\begin{array}{r} 5.12 \\ 3.5 \\ 34.52 \end{array}$
EP159（17－19）	EP1JB3				
		$\begin{aligned} & A L \\ & S T \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 47258.4225 \\ 1849.22 .4376 \\ 107414698 \\ 91629.7634 \end{array}$	$\begin{array}{r} 3535.673 \\ 13056.6214 \\ 287: 864 \\ 1191.7946 \end{array}$	7.43 7.43 20.45
159（2．－2：）	EP：U8G				
		$\begin{aligned} & A L \\ & S I \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 21325.1429 \\ 152650.453 \\ 85940.5669 \end{array}$	$\begin{array}{r} 344.2146 \\ 22520.6758 \\ 1297.7441 \end{array}$	1 1 1 1 0
159（ごっこ2）	EP1j9j				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & \text { FE } \end{aligned}$	$\begin{aligned} & 11497.9587 \\ & 118911.5880 \\ & 361884.9829 \\ & 124397.0997 \end{aligned}$	$\begin{array}{r} 357.5834 \\ 2425.7764 \\ 289.4799 \\ 845.8322 \end{array}$	3011 204 0.54
8 EpI6u（i－1）	EP1591				
		$A L$ $A L$ SI SI CA $C A$ $M N$ $M N$ FE	$\begin{array}{r} 88696.50 .8 \\ 89323.4186 \\ 295986.3619 \\ 261834.581 \\ 26952.0854 \\ 19916.1919 \\ 10322.8438 \\ 103333.8341 \\ 53374.8851 \end{array}$		a 4 4 7778
EP150（15－15）	EP1092				
		$\begin{aligned} & A L \\ & S I \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 85289.8357 \\ 240015.8231 \\ 10470: 8554 \\ 66222.0978 \end{array}$	$\begin{aligned} & 3675.9919 \\ & 516,: 34.2 \\ & 11 \\ & 761.5541 \end{aligned}$	4.31 2015 $1: 30$ 10
EP160（ $21-22)$	EP1093				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { MN } \end{aligned}$	$\begin{array}{r} 27366.8359 \\ 219411.2277 \\ 48957675 \\ 8526.7356 \end{array}$	$\begin{array}{r} 435.1322 \\ 5573.06453 \\ 106: 7277 \\ 214.8737 \end{array}$	1.59 2.54 2.18 2.52
EP160（26－27）	EP：094				
		AL SI MN FE	$\begin{array}{r} 22311.3712 \\ 138054.3479 \\ 29522.1553 \\ 49051.9399 \end{array}$	$\begin{array}{r} 1131.1865 \\ 2236.4804 \\ 33.6546 \\ 976.1336 \end{array}$	5.67 1.62 $1: 14$ 1.97

Sample	AAS Access. No.	Element	Concentration	Error (1)	\% Error
EP150(29-30)	EP1095				
		MG	36818.1053	544.938	1.43
		AL	22715.758	71.9819	3.13
		${ }^{\text {AL }}$	22655.1136	742.8687 95 95	4.15
		AL SI	149936.4326	2398.8369	1.5 ${ }^{\text {a }}$
		MN	14963.6637	34.674 ${ }^{2}$	1.17
		FE	34171.3493	$1506 . c 534$ 2219.1564	4.75 6.65
		${ }_{F}^{\text {Fe }}$	32804.7940	598.7421	2.13
EP16j(34-35)	EP1:97				
		AL	20613.2734	542.1291	2.53
		SI	322918.7133	5975.9962	
		FE	23374.6522	899.9241	3.35
P16i(18-19)	EP1093				
		AL	36887.2926	14.7549	- 54
		SI	49328.5931 227454.8641	3216.2826	6. ${ }^{5} 5$
		SI	238956.754	9434.815	3.95
		SI	219694.1941	16394.4323	7.69
		SI	257952.2819	12175.3477	4.72
		FE	36518.10 ${ }^{3}$	-92: 583	2:37
EP151(22-23)	EP1093				
			22674.6533	39.004 0	1.72
		SI	216187.8851	$10312 \cdot 1621$	4.77 $6: 33$
		MN	25564.7839	64.8199	1.42
		FE	24370.73 36	65,.6997	2.67
EP161(29-3.)	EP1100				
		MG	20780.4649	272.2241	
		AL	14142.3556	697.2533 379.934	4.93 2.97
		SI	143134.3089	4165 . 2094	2.91
		SI	141468.8767	434300945	3.57
		MN	$3735.55 \% 9$	96.0837	2.57
		MN	3387.8836	34.5564	1.32
		$\stackrel{\text { FE }}{\text { F }}$	9415.2739 12991.5492	1113.8259 211.6021	11.83 1.75
EP161(34-35)	EP1101				
			128333.3297	295.1666 7665.5836	2.35 3.92
		SI	187200.3259	2077:9236	1.11
			11792.7238	$\begin{array}{r} 398.5941 \end{array}$	3.38
EP161(40-41)	EP11c2				
		AL	12998.8643	246.9734	1.93
EP161 $143-44)$	EP1103				
-			8097.0382	210.523	2.63
		SI	258784.9886 299866.2636	8928.0821 1487365	3.45 4.95
		MN	6315.2149	87.7954	1.39
		FE	30370.1511	583.1069	1.92
EP162(3]-31)	EP1104				
			37221.8039	7.4444	
		SIT	184749.8112 211559.1508	1464.0986 $1459: 7581$. 76
		SI	212618.9336	14224.2067	6:69
		FE	37885.1358	287.927j	.76

Sample	AAS Access. No.	Element	Concentration	Error (1σ)	\% Error
EP102 (35-35)	EP1105				
		$\begin{aligned} & A L \\ & A L \\ & \text { SI } \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 23419.6373 \\ 23954.5697 \\ 196961.8775 \\ 7592.2153 \\ 37677.6151 \end{array}$	$\begin{array}{r} 407.5317 \\ 1036: 7235 \\ 124.6466 \\ 119.8584 \\ 512.4156 \end{array}$	$\begin{aligned} & 1.74 \\ & 5: 37 \\ & 5: 57 \\ & 1: 53 \\ & 1.35 \end{aligned}$
EP162 (37-38)	EP1iu6				
		$\begin{aligned} & A L \\ & S I \\ & \text { SE } \end{aligned}$	$\begin{array}{r} 23813.4649 \\ 330839.3554 \\ 38948.3846 \end{array}$	$\begin{aligned} & 185.7453 \\ & 9462.0454 \\ & 3318.4624 \end{aligned}$	$\begin{aligned} & .74 \\ & 2: 85 \\ & 8.52 \end{aligned}$
EP162(43-44)	EP1167				
		$\begin{aligned} & \text { AL } \\ & A L \\ & S I \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 12683.1849 \\ 12626.0281 \\ 275582.4070 \\ 30863.5757 \end{array}$	$\begin{array}{r} 286.6404 \\ 335.8523 \\ 1928.5163 \\ 725.9644 \end{array}$	$\begin{aligned} & 2.26 \\ & 2: 55 \\ & : 7 \\ & 2: 35 \end{aligned}$
EP162 (46-47)	EP1119				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { F } \end{aligned}$	$\begin{array}{r} 19134.0677 \\ 362913.791 \\ 31125.7224 \end{array}$	$\begin{array}{r} 137.7653 \\ 11283: 5899 \\ 333.0559 \end{array}$	0 0 0 1.51
EP152 (48-4.3)	EPI12j				
		AL AL SI SI MN FE	$\begin{array}{r} 8559.7863 \\ 854988824 \\ 218646.3567 \\ 311334.1551 \\ 16436.1694 \\ 58767.9776 \end{array}$		$\begin{aligned} & \frac{1}{4}: 97 \\ & 3: 57 \\ & 3: 5 \frac{1}{3} \\ & \frac{1}{2}: 4 \frac{3}{3} \end{aligned}$
EP162 (49-5j)	EP1121				
		$\begin{aligned} & A L \\ & S I \\ & F E \end{aligned}$	$\begin{array}{r} 13364.0093 \\ 97630.1356 \\ 138357.6295 \end{array}$	$\begin{array}{r} 203.1320 \\ 245: 5164 \\ 15: 72.7693 \end{array}$	$\begin{array}{r}1 \\ 2 \\ 11\end{array} . \begin{array}{r}52 \\ 51 \\ 5\end{array}$
EP163(25-25)	EP112?				
		$\begin{aligned} & A L \\ & S I \\ & \text { SE } \end{aligned}$	$\begin{array}{r} 71434.5297 \\ 250324.5893 \\ 44786.1776 \end{array}$	$\begin{array}{r} 1328.724 \\ 3517: 2948 \\ 2317.9568 \end{array}$	2.55 5.4 5.25
EP163(35-36)	EP1123				
		AL AL SI FE	$\begin{array}{r} 37148.9974 \\ 27362.3441 \\ 354671.3443 \\ 25744.4542 \end{array}$	$\begin{array}{r} 1344.7937 \\ 1365: 381 \\ 11247.6144 \\ 494.4424 \end{array}$	3.67 4.97 3.15 1.94
EP163(42-43)	EP 1124				
		$\begin{aligned} & \text { AL } \\ & \text { SI } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 11929.7561 \\ 390447.8929 \\ 14636.0304 \end{array}$	$\begin{array}{r} 134.8962 \\ 862888984 \\ 304.4294 \end{array}$	$\begin{aligned} & \frac{1}{2}: \frac{13}{2}: 21 \\ & 2: 13 \end{aligned}$
EP103(49-51)	EP1125				
		$\begin{aligned} & A L \\ & S I \\ & \text { SI } \end{aligned}$	$\begin{array}{r} 2837.4979 \\ 433493.7640 \\ 7319.2636 \end{array}$	$\begin{array}{r} 143.2849 \\ 15692.4743 \\ 127.3553 \end{array}$	$\begin{aligned} & 3.64 \\ & 3: 62 \\ & 1.74 \end{aligned}$
EP163(63-64)	EP1125				
		$\begin{aligned} & A L \\ & \text { SI } \\ & \text { MN } \\ & \text { FE } \end{aligned}$	$\begin{array}{r} 74843.5354 \\ 262164.3751 \\ 93622.3051 \\ 53713.7641 \end{array}$	$\begin{array}{r} 2345.1809 \\ 59511.1313 \\ 239.675 \\ 639.1938 \end{array}$	3.18 2.27 2.56 1.19

Sample	AAS Access. No.	Element	Concentration	Error (1)	$\begin{array}{r} 136 \\ \% \text { Error } \end{array}$
EP163(71-72)	EP1127				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 25438.5949 \\ 168333.5465 \\ 7299.8179 \\ 44270.657 i \end{array}$	$\begin{array}{r} 1721.2423 \\ 8346.3196 \\ 83.2179 \\ 557.91: 3 \end{array}$	5.59 $4: 74$ $1: 34$ 2.35
EP103(77-79)	EP11<8				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 26339.8375 \\ 167106.2199 \\ 4555.7297 \\ 33976.7475 \end{array}$	$\begin{array}{r} 46.947 \\ 3725.4897 \\ 58.1956 \\ 54 ? .1675 \end{array}$	1.75 $\frac{7}{2}: \frac{3}{3}$ $1: 3$. 1.87
EP71(39-4i)	EP1471				
		$\begin{aligned} & A L \\ & S I \\ & C A \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 9531.5738 \\ 395682.3945 \\ 145283.2934 \\ 116.6838 \\ 23443.275 \end{array}$	5 5h. 1266 $\begin{array}{r} 16499.9554 \\ 506.4374 \\ 34.5334 \\ 424.9734 \end{array}$	$\begin{aligned} & 5 \cdot 31 \\ & 4.17 \\ & 4 \cdot 13 \\ & 2 \cdot 33 \\ & 1.32 \end{aligned}$
EP69(43-44)	EP147?				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 5985.3566 \\ 411521.0361 \\ 462.6479 \\ 6508.1467 \end{array}$	$\begin{array}{r} 295.6533 \\ 24593469 \\ 1453.9748 \\ 143.923 \end{array}$	$\begin{array}{r} 4.93 \\ 2.53 \\ 22.35 \end{array}$
EPLっU (1-2).	FP1481				
		$\begin{aligned} & A L \\ & S I \\ & M N \\ & F E \end{aligned}$	$\begin{array}{r} 95186.5655 \\ 235778.8757 \\ 10922.1645 \\ 68661.8987 \end{array}$	$\begin{aligned} & 2427.265 \\ & 5422.9141 \\ & 326.5727 \\ & 2567.955 . \end{aligned}$	$\begin{aligned} & 2.55 \\ & 2: 35 \\ & 2: 79 \\ & 3.74 \end{aligned}$

