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Autonomous multiagent teams can be used in complex exploration tasks to both expedite

the exploration and improve the efficiency. However, use of multiagent systems presents

additional challenges. Specifically, in domains where the agents’ actions are tightly cou-

pled, coordinating multiple agents to achieve cooperative behavior at the group level is

difficult. In this work, we demonstrate that reward shaping can greatly benefit learn-

ing in tightly coupled multiagent exploration tasks. We argue that in tightly coupled

domains, effective coordination depends on rewarding stepping stone actions, actions

that would improve system’s objective but are not rewarded because other agents have

not yet found their proper actions. To this end, we build upon the current work in

multiagent structural credit assignment literature and we extend the idea of counterfac-

tuals introduced in difference evaluation functions [2]. Difference evaluation functions

have a number of properties that make them ideal as learning signal, such as sensitiv-

ity to agent’s actions and alignment with the global system objective. However, they

fail to tackle the coordination problem in domains where the agent coupling is tight.

Extending the idea of counterfactuals, we propose a novel reward structure, D++. We

investigate the performance of the D++ in two different multiagent domains. We show

that while both global team performance and the difference evaluation function fail to

properly reward the stepping stone actions, our proposed algorithm successfully rewards

such behaviors and provides superior performance (166% performance improvement and

a quadruple convergence speed up) compared to policies learned using either the global

reward or the difference reward [2].



©Copyright by Aida Rahmattalabi
August 2, 2016

All Rights Reserved



D++: Structural Credit Assignment in Tightly Coupled Multiagent
Domains

by

Aida Rahmattalabi

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented August 2, 2016

Commencement June 2017



Master of Science thesis of Aida Rahmattalabi presented on August 2, 2016.

APPROVED:

Major Professor, representing Robotics

Head of the School of Mechanical, Industrial and Manufacturing Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Aida Rahmattalabi, Author



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my adviser, Professor Kagan Tumer,

for supporting my research, providing guidance and advising me to the completion of

this work. Without his patience and insight, none of this would have been possible. I

would like to thank my committee members for their precious time and support, and the

AADI laboratory for providing me with useful insight, support, and feedback throughout

this process. Lastly, I would like to thank my family for their unwavering support and

constant encouragement.



TABLE OF CONTENTS
Page

1 Introduction 1

2 Background 6

2.1 Multiagent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Contribution of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Agent Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Cooperative Coevolutionary Algorithms . . . . . . . . . . . . . . . 12

2.4 Structural Credit Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Factoredness and Learnability . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Difference Evaluation Function . . . . . . . . . . . . . . . . . . . . 14

3 D++: Rewards for Potentially Good Actions 16

3.1 Counterfactuals for Potential Actions . . . . . . . . . . . . . . . . . . . . . 16

3.2 D++ for Homogeneous Agents . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 D++ for Heterogeneous Agents . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Cooperatively Coupled Stateless Rover Domain 23

4.1 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Objective: Step Function . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Objective: Linear Function . . . . . . . . . . . . . . . . . . . . . . 28

4.3.3 Objective: Smooth Function . . . . . . . . . . . . . . . . . . . . . 29

5 Cooperatively Coupled Continuous Rover Domain 31

5.1 Agent State Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Agent Action Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Rover Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



TABLE OF CONTENTS (Continued)
Page

5.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Homogeneous Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6.1 12 Agents, 10 POIs, 3 Required Observations . . . . . . . . . . . . 36

5.6.2 12 Agents, 10 POIs, 6 Required Observations . . . . . . . . . . . . 38

5.7 Computation Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.8 Heterogeneous Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.8.1 9 Agents, 15 POIs, 3 Required Observations of 3 Different Types . 41

5.8.2 9 Agents, 15 POIs, 5 Required Observations of 3 Different Types

as ([1, 1, 3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.9 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusion 46

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 48



LIST OF FIGURES
Figure Page

1.1 Rover domain representation with sample rover paths. Multiple simulta-

neous observations (in this case two) must be made of a particular POI

to have any value to the system. Starting from different locations, well-

coordinated rovers navigate to the POIs and make observations. . . . . . 3

2.1 Diagram for a two layer feed-forward Neural Network (NN). The network’s

input, hidden and output variables are represented by neurons, and the

weights are shown by links that connect neurons. In a feed-forward NN the

information flows through the network from input to hidden and finally

to the output layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Different objective functions for observing a single POI. The first type is

a smooth function providing an observation value even when fewer ob-

servations than the required threshold are executed, the second type is a

linear functions and the third objective is an step that strictly requires a

minimum number of observations to be made to account as success. . . . 25

4.2 Observation performance of policies trained on G, D, D++ for 40 agents,

25 POIs, 6 required observations for the step objective function . . . . . . 27

4.3 Final Observation performance of policies trained on G, D, D++ for 40

agents, 25 POIs with respect to different observation thresholds for the

step objective function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Final Observation performance of policies trained on G, D, D++ for 40

agents, 25 POIs with respect to different observation thresholds for the

linear objective function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Final Observation performance of policies trained on G, D, D++ for 40

agents, 25 POIs with respect to different observation thresholds for the

smooth function objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



LIST OF FIGURES (Continued)
Figure Page

5.1 Diagram of the rover domain. The world is broken up into four quadrants

relative to the rovers position and orientation. POIs and fellow rovers

that are observed in each quadrant are summed resulting in 8 state input

variables. At each time-step, the agent’s neural network controller yields

two continuous outputs [dx, dy], which determine the rover’s motion in the

next time-step. Each POI has an observation radius such that only rovers

within that radius are able to observe that POI. . . . . . . . . . . . . . . 32

5.2 The figure shows the rover heading and the x and y axis with respect

to the rover’s heading. At each time step the rover has two continuous

outputs (dy, dx) giving the magnitude of the motion in a two-dimensional

plane relative to the rover’s orientation. . . . . . . . . . . . . . . . . . . . 33

5.3 Observation performance of policies trained on G, D, D++ for 12 rovers,

10 POIs each requiring 3 simultaneous observations. . . . . . . . . . . . . 37

5.4 Rover paths executed by policies learned using the D++ reward function.

POIs are represented as pink circles; larger circles indicate that the POI

has a higher observation value. . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Observation performance of policies trained on G, D, D++ for 12 rovers,

10 POIs each requiring 6 simultaneous observations. . . . . . . . . . . . . 39

5.6 Average calls to G across progressive learning generations in the D++

calculation for two cases where POIs require 3 and 6 simultaneous obser-

vations, respectively. Averages over 50 trial runs are plotted along with

the shaded region showing the 95% confidence interval. . . . . . . . . . . . 40

5.7 Observation performance of policies trained on G, D, D++ for 9 rovers,

15 POIs each requiring simultaneous observations from the rovers, one of

each type t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.8 Rover paths executed by policies learned using the D++ reward function.

Different colors of blue, green and red are used to represent different types

of rovers in the system. As seen, two groups of rovers, bounded in the

dashed box, consist of all the three required types and have successfully

formed teams to explore the POIs in that region. However, the remaining

rovers are still optimizing their policies trying to observe the remaining

POIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



LIST OF FIGURES (Continued)
Figure Page

5.9 Observation performance of policies trained on G, D, D++ for 9 rovers,

15 POIs each requiring simultaneous observations of a total of 5 rovers,

including one of each types of t = 1 and t = 2, and three rovers of type

t = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.10 Observation performance of policies trained on G, D, D++ for 12 agents,

10 POIs each requiring simultaneous observations of a total of 3 agents.

At 2000 generations, 25% of agents fail (stay static). . . . . . . . . . . . . 45



LIST OF TABLES
Table Page

3.1 Comparison of number of calls to G for three different reward functions . 21



LIST OF ALGORITHMS
Algorithm Page

1 Monte Carlo Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Standard CCEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 D++ (Homogeneous Agents) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 D++ (Heterogeneous Agents) . . . . . . . . . . . . . . . . . . . . . . . . . 21



Chapter 1: Introduction

Autonomous multiagent teams can be used in complex tasks, such as environment ex-

ploration for improved information gathering over single robot systems in terms of both

speed and effectiveness. However, coordinating a team of agents so that they collec-

tively achieve a common goal is a complex control problem. Especially, as the coupling

between the agents increases, the mutual dependence of the agents on each others’ per-

formance [19] will grow and this poses additional challenges to the coordination task. In

such cases, the performance of the multiagent system is highly sensitive to the level of

coordination among the individuals’ policies.

Additionally, in many multiagent problems, such as space exploration, environmental

monitoring, and search and rescue tasks, only a high-level description of the task is at

hand. Communication, which is a means to improve the performance of cooperative

agents is also often expensive or limited. Effective team performance becomes even

more challenging when robots’ actions are tightly coupled requiring agents to extensively

coordinate their actions in order fulfill their mission. In such cases, coordinated policies

can be difficult to define a priori and distributed policy learning is often employed to

optimize team strategies.

Distributed policy learning has been demonstrated to produce effective team per-

formance in different multiagent tasks [21, 25, 40, 43, 44]. In particular, reward-shaping

techniques [13, 14, 31] have been used to address the structural credit assignment prob-

lem for implicit coordination solutions where inter-agent communication is unavailable.

Structural credit assignment is inherent in multiagent domains and it is the problem of

determining how a single agent contributes to a system involving many other agents.

For a reinforcement learner to properly learn the task, this credit assignment problem

needs to be solved such that the resulting reward is both aligned to the system’s global

objective and sensitive to the individual agent’s action. The structural credit assignment

problem has been studied in numerous domains including foraging robots [29], robotic

soccer [48] and network routing [47] and multi-rover domain [5]. Particularly, the differ-

ence evaluation function introduced in [2, 4] makes use of counterfactuals to query the
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direct effect of an individual’s contribution to the team performance. This reward signal

has been shown to be computed from locally available information [9] and it is both

aligned to the system’s global objective and sensitive to the individual agent’s action,

and therefore provides an effective training signal when the system reward function is

smooth.

However, most of the multiagent problems that have been the subject of the mul-

tiagent learning studies can be considered as loosely coupled. This is in comparison to

tasks such as pushing heavy boxes that require multiple agents to collaborate for success

and demands a higher level of inter-agent coordination.

In general, most multiagent tasks can be broadly categorized into [20]:

• Tasks where a single agent can accomplish, but having multiple agents expedites

the process or improves the outcome. In this work, we refer to such tasks as loosely

coupled. Examples of this type of task are terrain mapping or vacuum cleaning

robots.

• Tasks where multiple agents are required for their success. We refer to such tasks

as tightly coupled tasks. Examples of this type of task are carrying an object or

pushing a heavy box where only multiple agents can manage to perform.

While in both cases, different levels of coordination are required, in the first case, a failure

of coordination leads to inefficient use of resources and prolonged task accomplishment

whereas in the second, it leads to a complete system failure and therefore the success of

the system is highly dependent on establishing proper coordination among the agents.

From an agent learning perspective, missions that introduce tightly coupled actions

consist of reward functions that are inherently non-smooth and often involve step changes

that represent the specific multiagent coupling requirements of the tasks. In other words,

agents do not receive any reward, which is vital to their learning, until they accomplish

the task. This is one of the major problems that challenges many existing reward-

shaping techniques since they are not capable of providing an adequate evaluation signal

for learning joint policies necessary for achieving such tightly coupled tasks.

In this work and in order to improve policy learning for tightly coupled problems,

we focus on the credit assignment in multiagent learning and we attack the reward

shaping problem by proposing the notion of stepping stone actions. Stepping stone
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actions are defined as agent actions that are aligned with the system objective and are

potentially useful for the task achievement. We focus on rewarding such actions to

improve coordination. To this end, we extend the idea in the difference reward and

explore the manipulation of counterfactuals to provide agents with a stronger feedback

signal on potential joint actions. D++, our proposed reward function computes the effect

of introducing multiple identical agents to the system and executes a targeted sweep over

the number of available agents providing a rapid estimate of the joint action required

to achieve a task. D++ is then used to compute the evaluation signal in a cooperative

coevolutionary algorithm for training the neural network control policies of each agent.

http://www.teciber.com/wp-content/uploads/2015/03/marte.jpg

Figure 1.1: Rover domain representation with sample rover paths. Multiple simultaneous observations
(in this case two) must be made of a particular POI to have any value to the system. Starting from
different locations, well-coordinated rovers navigate to the POIs and make observations.

We demonstrate our proposed reward framework on a Cooperatively Coupled Rover

Domain (CCRD), figure 1.1, which is an extension of the Continuous Rover Domain

developed by [4]. In this domain, a set of rovers must coordinate their actions to col-

lectively optimize coverage over a set of environmental points of interest (POIs). The

CCRD increases the coordination complexity by requiring teams of agents to simulta-

neously observe each POI. Here, agents must not only optimize coverage of POIs, but
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they must also form teams and the teams must coordinate within themselves to optimize

coverage of their POI as well (since the proximity to the POIs influences the observation

value). This is difficult because there are two different coordination problems going on

concurrently. At a high level, all agents within the system must coordinate to provide

an optimal coverage of POIs. Also, agents must coordinate among themselves to form

observation teams, and the agents comprising the teams must coordinate their actions

to optimally select and observe a given POI within its observable range (teams either

observe a POI together or not at all). This tight coupling between agents both at a

system level and at a team level presents a complex coordination problem.

We evaluate our method in two different monitoring tasks, one which is agnostic to

the types of agents that form an observation team (homogeneous case), and one which

requires a specific set of heterogeneous agent types to successfully perform the task.

We show that with D++, the team of agents is able to greatly improve policy learning

rates over existing shaped rewards in terms of the overall team information gathering

performance and time it takes to achieve such performance. Furthermore, in cases where

learning via the global system evaluation or difference reward completely fail to achieve

an effective policy, the team policies learned using D++ are able to successfully achieve

the mission objectives.

The remainder of this thesis is structured as follows. Chapter 2 provides the back-

ground on the multiagent systems and it also provides an overview of previous work and

various studies in the area of learning in multiagent systems. It describes mathemat-

ical models of learning for multiagent systems and details on the learning algorithms

used in the current work. Finally, we describe the structural credit assignment problem

and discuss some of the properties that are important in a reward function. We then

describe the difference evaluation function which forms the basis of the present work’s

contribution and we define the idea of counterfactuals introduced within that context.

In chapter 3, the D++ is introduced as the extension to difference evaluation function.

In this section, we will provide details on how the idea of counterfactuals is extended

in the definition of D++ and we discuss implementation details. We then discuss the

computation complexity of D++ compared to both G and D.

Chapter 4 and 5 introduce two different tightly coupled problems as our test do-

mains for studying tightly coupled multiagent learning. The first domain is devised as

a simplified version of the rover domain. As mentioned earlier, the second domain is an
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extension of the continuous rover domain for a tightly coupled environmental monitoring

task. We also provide experimental results for different learning scenarios in both cases,

such as homogeneous/heterogeneous agents and robustness analysis. Finally, chapter 6

contains the discussion and conclusions of this work. We also provide suggestions for

future research directions.



6

Chapter 2: Background

2.1 Multiagent Systems

Multiagent systems have many benefits compared to single agent systems including scala-

bility, robustness to component failures and environmental uncertainty, and adaptability

to changing system requirements. Several successful applications of agent coordination

include search and rescue, mine collection and mobile sensor network tasks. [21, 25, 44].

Comparing to the single-agent systems, multiple agents often perform the task faster

and in a more efficient manner. In addition, in some cases, multiple agents are actually

required to cooperate to successfully perform the task since the task is either too difficult

for a single agent or outside its capabilities. For such tasks, a single robot with more

functionality may be able to accomplish the task at hand, however, it consumes a great

deal of time and resources to fulfill the task and it is also potentially less robust.

However, multiagent systems present additional challenges mainly because they in-

volve multiple interacting agents which have a mutual impact on each others’ perfor-

mance. The problem complexity rapidly rises with the number of agents and the level of

the agent-to-agent coupling. To reduce such complexity, different approaches have been

investigated. For example, non-learning approaches such as auctions attempt to reduce

complexity by limiting agent interaction and with bidding for tasks based on individual

preferences. In this regard and for the case of tightly coupled problems, the task of box

pushing has been investigated in [19]. Gerkey et al. [19] propose an algorithm based on

a negotiation-style task allocation framework to automatically assign tasks to agents.

Behavior-based approaches as developed in [33,34] also aim to remove the need for inter-

agent communication and determine agents’ fitness based on certain internal motivators

that are computed based on the task. While the majority of non-learning multiagent

approaches to agent coordination are in the areas of behavior-based and market-based

task allocation, in both of these scenarios, simplifications are obtained by including prior

knowledge of the task requirements into individual agents’ preferences.

Distributed learning techniques including Markov Decision Processes for online mech-
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anism design [35], developing reinforcement learning based algorithms [1, 8, 39], or de-

vising agent-specific objective functions [4,42] have also proved quite successful in many

loosely coupled tasks [6, 32, 40, 43]. However, they also greatly suffer from the level of

system coupling, and as the coupling increases the coordination becomes increasingly

more difficult.

In this thesis, we are primarily interested in tightly coupled multiagent tasks and

how learning techniques can benefit coordination and tackle the tight coupling between

agents. We claim that one of the major barriers for coordinating tightly coupled agents

is that the probability of agents collectively taking the right actions is low. This is

crucially important since learning-based approaches rely on the agent’s experience to

learn the task, and with limited domain knowledge, agents’ actions are initially random.

Therefore in a tightly coupled domain, the agents receive no learning signal from the

environment until they actually accomplish the task and as discussed, the probabilities

of task accomplishment are very low due the agent couplings. It is noteworthy that this

probability exponentially decreases as the degree of coupling among the agents increases.

In other terms, as the number of required agents increases it becomes increasingly more

difficult for the agents to coordinate and achieve the task at hand. To address this

issue, we propose a reward structure to reward early policies that are aligned with the

system objective regardless of the actions of other members of the multiagent team. The

following section will be dedicated to giving an overview of our approach to solving such

multiagent tasks.

2.2 Contribution of This Work

In this thesis, we define the notion of stepping stone actions as agent policies that are

important in the ultimate task accomplishment but are not rewarded since they are not

accompanied by the proper actions of their teammates. We claim that by rewarding such

stepping stone actions, we can greatly improve the multiagent coordination in tightly

coupled tasks. While most of the current literature in multiagent credit assignment

in tightly coupled tasks uses reward functions that are hand-engineered and domain

specific, we propose a general rewarding structure that rewards good agent policies using

minimum domain knowledge. We extend the idea of counterfactual agents introduced in

difference evaluation function, D [2], and proposeD++. UnlikeD, inD++, counterfactual
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agents are added by each agent to inflate its capabilities and in this way the agent is

able to assess its own performance even when its teammates are not present or have not

fount their right actions. The way D++ is defined and deployed requires minimal domain

knowledge and it is able to successfully reward the stepping stone actions by providing

agent-specific feedback on agents’ policies.

Finally, we present results in two multiagent simulation domains, proving the thesis

presented in this work by demonstrating that the policies learned via D++ significantly

outperform policies learned using either global team performance, G, or difference eval-

uation function, D, both in terms of performance and speed. We also demonstrate the

efficiency of D++ by analyzing the computation cost and we show how it is increasingly

more efficient as learning continues. Additionally, we evaluate how well D++ learners

can react to the system failure which is crucially important specifically in tightly coupled

tasks where the failure of each agent greatly impairs the system.

2.3 Agent Learning

Learning is often an important component of autonomous systems and autonomous

multiagent systems are not an exception. In general, learning can be grouped into three

different categories: supervised, unsupervised, and reward-based learning. Supervised

learning is learning in the presence of a teacher, meaning that whether an agent’s ac-

tion is right or wrong is known to the system supervisor. Supervised learning works

well for classification problems in which a set of training examples are available. How-

ever, in many complex real-world domains, dynamic interactions between agents and

stochasticity in the environment make it impossible to know what the correct actions

are. Unsupervised learning occurs when an agent simply learns patterns from its inputs

and observations without receiving any supervision. A common example of unsuper-

vised learning is clustering, in which potentially useful or related clusters are detected

from a set of input examples [38]. Reward-based learning is often called semi-supervised

learning since there is no explicit target function, but there are rewards which provide

feedback for actions taken. In this work, we will focus on reward-based learning methods

and we use both Monte Carlo policy evaluation and evolutionary algorithms for two dif-

ferent multiagent domains studied in this work. In the following sections, we will provide

details on each of the learning algorithms that are applied in the problem domains.
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2.3.1 Reinforcement Learning

Reinforcement learning concerns how agents should take actions in an environment so as

to maximize some notion of cumulative reward. Reinforcement learners observe the state

of the environment and have to learn based on the feedback received while interacting

with the environment. In a multiagent system, an agent’s environment consists of both

the environment and the entire team of agents, making it an inherently non-static envi-

ronment. The agents learn their actions by repeatedly modifying their behavior based

on the rewards they receive while exploring the environment [41]. At each step, an agent

chooses an action in its current state. The action is executed in the world and results in

a change of state, and the agent receives a subsequent reward. In reinforcement learning,

an agent has four key elements including a policy, reward function, value function, and

optionally a model of the world. [41]. It is required for an agent to have a policy in order

to act in an environment. By definition, the agent policy is the probability of taking an

action a when the agent is in state s.

π(s, a) = p(at = a|st = s), (2.1)

An agent’s reward function reflects the agent’s goal in a reinforcement learning prob-

lem [41]. The reward function provides an agent with a learning signal for actions taken.

The rewards an agent receives are coupled with a value function in order to update the

agent’s policy. The value function approximates the expected reward for the agent to be

in that state.

V π(s) = Eπ(Rt|st = s, at = a), (2.2)

A reinforcement learning agent can use different value function formulations to update

its policy based upon the rewards it receives, which differ based on the problem domain.

2.3.1.1 Monte Carlo Policy Evaluation

Monte Carlo (MC) policy evaluation is a simple learning method that can be used to

estimate value functions. Monte Carlo methods require only experience sequences of

states, actions, and rewards from on-line or simulated interactions in an environment



10

and it is based on averaging the sample returns. The learning algorithm is explained

below:

Algorithm 1 Monte Carlo Policy Evaluation

1: Initialize
π: the agent’s policy
V (s): an arbitrary value function

2: Repeat forever:
Generate an episode using π
For each state observed, update the value function
V (st)← V (st) + α[Rt − V (st)]

In the above algorithm, α is the learning rate, st consists of the state-action of the

agent and Rt is the reward received at time t. Finally, V (st) is the approximation of the

value function. In section 4, we will explain why and how we use the MC method for

our problem domain and we will provide more implementation details.

2.3.2 Neural Networks

Known as universal approximators [24], neural networks (NN) have been used in many

applications including classification, controls and nonlinear signal-processing [7, 22, 28].

NNs are a powerful mathematical tool to represent both discontinuous and continuous

functions to arbitrary accuracy [24]. Each neural network maps a set of inputs to a set

of outputs. A feed-forward neural network consists of a set of input neurons, output

neurons, and hidden layer of neurons which are connected via weights, figure 2.1. Each

neuron also has an activation function, which is typically a nonlinear function [30].

The weighted sum of the inputs is forwarded through the network to generate a set of

outputs. As mentioned in section 2.3, there are supervised, unsupervised and reward-

based methods to train neural networks. Supervised learning techniques are suitable for

cases where the neural network controller has a teacher that knows the correct mapping

from a set of inputs to a set of corresponding outputs, and therefore can provide the

neural network with constructive feedback on actions taken, by calculating the error in

the output neurons. By back-propagating the error to the network, one can adjust the

weights and improve the neural network’s performance over time. Unsupervised learning

approaches, on the other hand, are used in cases where a neural network attempts
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to cluster a set of unlabeled data using some similarity metric. Finally, reward-based

learning with neural networks utilizes reward feedback based upon the network output in

order to update the neural networks weights [12,22]. In the present work, each agent uses

one-hidden-layer feed-forward neural networks as its controller. And since the correct

policies are not known, we take a reward-based training approach that will be explained

in the following sections.

Input layer

Hidden layer

Output layer

Figure 2.1: Diagram for a two layer feed-forward Neural Network (NN). The network’s input, hidden and
output variables are represented by neurons, and the weights are shown by links that connect neurons.
In a feed-forward NN the information flows through the network from input to hidden and finally to the
output layer.

2.3.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of stochastic search algorithm inspired by

biological evolution, that often outperform classical optimization algorithms [18]. These

algorithms have been proved successful in many single-agent and multiagent control

problems [15, 27, 45]. Typically, EAs contain three basic mechanisms: solution gener-

ation, mutation, and selection. Starting with an initial set of candidate solutions (the

population), these mechanisms are used to generate new solutions and retain existing
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solutions that show improvement based on a system utility. Simple EAs can be applied

to a variety of single-agent learning tasks, however, when dealing with large cooperative

multiagent problems, modifications are required for an effective performance. One such

modification is coevolution, where multiple populations evolve simultaneously in order to

develop policies for interacting agents. Before explaining how coevolution works, we ded-

icate a section to describing how neural network controllers and evolutionary algorithms

are combined together to solve the control problem in the present work.

2.3.3.1 Neuro Evolutionary algorithms

Neuro-evolutionary algorithms are a subset of evolutionary algorithms that evolve neural

network policies. These algorithms evolve a pool of neural networks, representing agent

policies, that is randomly created. A policy is selected based on an ε-greedy selection

mechanism, then the selected neural network is mutated by adding a random number

from Cauchy distribution to its weights. Then the quality of this policy is evaluated

based on a fitness function and it is compared to the rest of the policies. The worst

policy in the pool is removed and the cycle continues until a convergence criterion is

met [17,32].

Neuro-evolutionary methods have been shown to work well in many multiagent do-

mains involving continuous state spaces and complex agent interactions such as the

continuous rover domain in this work [4].

2.3.4 Cooperative Coevolutionary Algorithms

The standard Cooperative Coevolutionary Algorithm (CCEA) [37] has been used in this

study as a base algorithm for learning control policies. CCEAs are an extension of EAs

for multiagent systems and have been shown to perform well in cooperative multiagent

domains [16]. The standard CCEA is detailed in Algorithm 2. In CCEA, N co-evolving

populations of neural networks (neuro-controllers) are utilized to form teams comprised

of N agents. One member of each population is extracted for each agent to form a team

which then operates in the problem domain. At each generation, k mutated networks are

generated in each population by mutating the parent networks. Then, 2k teams of agents

are formed and simulated. The performance of each simulated team is subsequently
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evaluated using a fitness function, F (z), and assigned to every agent in the team. In

this paper, we propose D++ as the fitness function, and we compare it to using G and

D. Finally, k networks from each population are selected based on ε-greedy selection to

proceed to the next generation. This process is repeated for a set of generations.

Algorithm 2 Standard CCEA

1: Initialize N populations of k neural networks
2: for Generation do
3: for Population do
4: produce k successor solutions
5: mutate successor solutions
6: for i = 1→ 2k do
7: randomly select one agent from each population without replacing it into the

population pool
8: add agents to team Ti
9: simulate Ti in domain

10: assign fitness to each agent in Ti using F (z)

11: for Population do
12: select k solutions using ε-greedy selection

2.4 Structural Credit Assignment

In many multiagent coordination domains, there is a difference between maximizing the

system fitness function and maximizing a single agent’s fitness value. The main problem

is how to provide agents with a reward signal that is more sensitive to their own actions

while still reflecting the system’s global objective. The problem can be referred to as

structural credit assignment and is aimed at shaping the agent’s reward such that it

enhances its learning. In this context, Hoen and De Jong shaped the utilities of the

agents such that an agent maximizing its individual utility would act to also increase the

system evaluation function [36]. This work is similar to that of Agogino and Tumer, and

Knudson and Tumer, who utilized difference evaluations as fitness functions to improve

coordination in multiagent systems [2,26]. The difference evaluation function is a shaped

reward that uses counterfactual agents to provide agent-specific rewards. The following

section will first define the two major properties of a good learning signal and finally in

section 2.4.2 we will elaborate on the definition of the difference evaluation function and
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how these properties are reflected in its definition, which will also provide the necessary

background for the proposed reward structure, D++.

2.4.1 Factoredness and Learnability

In the context of agent policy evaluation functions used in this work, two metrics have

been introduced by [2] for determining the quality of a policy evaluation function. Ideally,

an agent’s policy evaluation function should be able to determine:

• How its action impacted the overall system performance

• How its action impacted the evaluation it received

Feedback on how an agent impacted the system performance allows that agent to make

decisions that are aligned with the global system objective. Providing agents with feed-

back on how their individual action impacted the evaluation they received allows agents

to change their own actions in order to benefit both themselves and the system. The

first property has been defined as the degree of factoredness or alignment between the

agent policy evaluation function and the system objective, G. Detailed formulation is

presented in [46]. A high degree of factoredness means that agents improving their

own policy evaluation function are simultaneously improving the system performance,

whereas actions that harm an agent’s policy evaluation function are also harmful to the

system. The second property is defined as learnability or sensitivity, which is the de-

gree to which an agent’s policy evaluation function is sensitive to the agent’s actions as

opposed to the actions of other agents. The learnability of a policy evaluation function

is also defined rigorously in [46]. The learnability provides a ratio of the portion of the

agents evaluation that depends upon its own actions, known as signal, and portion of its

evaluation signal that depended upon all other agents’ actions which are considered as

noise.

2.4.2 Difference Evaluation Function

The difference evaluation function [2] is a shaped reward signal that provides agent-

specific evaluation by removing a large amount of the noise created by the actions of
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other agents in the system [10]. It is defined as:

Di = G (z)−G (z−i ∪ ci) , (2.3)

where z is the joint state, G(z) is the global system performance, z−i are all the state-

actions on which agent i has no effect and ci is the counterfactual term, which is a fixed

vector used to replace the effects of agent i. Thus, G(z−i ∪ ci) is the evaluation of a

theoretical system without the contribution of agent i. Any action taken by agent i to

increase Di simultaneously increases G. This property is defined as factoredness in the

previous section, and is a key property of any shaped reward. Further, the second term in

(2.3) removes portions of G(z) that are not related to agent i, resulting in an improved

signal-to-noise ratio. In other terms, agent i’s impact on Di is much higher than its

relative impact on G (z) [46]. This is the sensitivity property as explained in section 2.4.1.

Both [4], [11] have previously shown that the factoredness and sensitivity properties

of the difference evaluation function result in agent-specific feedback, which leads to

superior learning performance. Intuitively, the difference reward provides each agent

with a reward that is proportional to its own contribution to the system performance.
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Chapter 3: D++: Rewards for Potentially Good Actions

One of the challenges in distributed learning is that with no/limited prior knowledge of

the task and limited communication capabilities, agents must randomly search the state-

action space until they receive a reward signal to evaluate their policies. It is particularly

more challenging in tightly coupled domains since the task cannot be accomplished un-

less tight coordination among the agents is established and maintained while considering

the huge joint state-action space of a multiagent system, the probability of agents si-

multaneously executing the right actions is very low. Thus, agents receive no feedback

on their policies in large portions of the joint space. In such domains, it is critical to

provide rewards for stepping stone actions, actions that would lead to good outcomes if

joined by other agents.

3.1 Counterfactuals for Potential Actions

To illustrate, consider an exploration scenario where three rovers are required to simul-

taneously observe a POI. The rovers start from random locations and should synchronize

their movements to reach the POIs simultaneously. However, it is unlikely that randomly

moving rovers are able to learn this task within a reasonable amount of time since only

after all three rovers successfully observe a POI do they receive a reward. In the absence

of system feedback, they are not capable of evaluating any potential improvement in

their policies or distinguishing what policies would benefit the task accomplishment in

the long term.

Clearly, being able to distinguish between a case where there are two rovers close

enough to a POI, waiting for one more rover to complete their subteam and a case where

all three rovers are randomly moving in the world can greatly influence the learning

performance.

A good reward function should enable agents to evaluate their actions in the absence

of their teammates. This can lead to a huge reduction in the search space and an increase

in the probability of success. Building upon the above argument, we extend the idea
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of counterfactuals in the difference reward and we propose a reward function, referred

to as D++, to address the present coordination problem. The counterfactual that we

propose computes the effect of introducing multiple agents to the system and compares

it to the current state of the system. Here, let us first consider a case where only one

counterfactual agent is added. D++ for one counterfactual agent is computed using the

equation below:

D1
++ (i) = G (z+i)−G (z) , (3.1)

In equation 3.1, the agent will evaluate what the team performance would have been

if there were two agents performing the task, instead of one and therefore it can evaluate

whether there is any potential to score a reward with its current policy.

We can further extend the above formulation to n counterfactual agents. The math-

ematical formulation for this case can be expressed as:

Dn
++ (i) =

G
(
z+(∪i=1,...,n)i

)
−G (z)

n
, (3.2)

In the above equation, z+(∪i=1,...,n)i indicates all the states on which agent i has

added n counterfactual agents. This allows the primary agent to investigate the effect of

hypothetically introducing n other agents. Also, in the formulation of Dn
++, if the value

of n is set to -1, Dn
++ will yield the definition of D as described in equation (2.3) noting

that the counterfactual term ci is an arbitrary vector which can indeed be set to ~0. Also

the division by n is to normalize with respect to the number of counterfactual agents.

By adding counterfactual agents, an agent inflates its capabilities and this way it is

able to assess its own performance even when its teammates are not present or have not

found their proper actions yet. As defined in equation 3.2, in order to calculate D++,

an agent needs to know about the number of required agents for a task so that it can

decide on the number of counterfactual agents. Since we assume no prior knowledge on

the number of agents required to fulfill the task, the agents should execute a sweep over

the number of counterfactual agents.

Regarding the search computation, we make a basic assumption that in any state

of the agent, the entire multiagent system should be able to accomplish the task (if at

all possible). For example in the case of an exploration task, if a rover is within the
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observable region of a POI, by adding the entire team of agents as counterfactual agents,

the system can make an observation of that POI. This simple assumption is important

in two ways. First, it gives us an upper bound for the number of allowable counterfactual

agents. Second, it helps us to evaluate whether there exists a solution before we begin

searching over the numbers of counterfactual agents in D++ algorithm and in this way

we can greatly improve the search computation.

The search space also depends on the heterogeneity of agents as well as the hetero-

geneity of their actions. In the next section, first we discuss an algorithm that searches

over different numbers of counterfactual agents, assuming that all the agents are ho-

mogeneous. Next, in section 3.3, we discuss the modification needed to address agent

heterogeneity. As for the action heterogeneity, it should be noticed that the search space

increases rapidly if the agent actions are heterogeneous, requiring a search over the joint

action space at each state. This type of heterogeneity necessitates some knowledge about

the requirements of the task to help guide the search.

To finalize the reward calculation, there is another subtlety that has to be taken

into account. And that is with the difference reward, agents optimize the global system

objective by calculating each agents’ contribution to the system performance. This is

calculated based on the difference an agent makes by executing a certain action. D++

further extends this idea by evaluating the impact of introducing multiple agents. In

tightly coupled tasks, D does not provide any feedback unless tight coordination among

the agents is established and maintained. On the other hand, D++ fails to provide

this gradient information where sufficient number of agents have coordinated. So it is

reasonable to leverage both D and D++ to the benefit of the system. This leads us to

the final definition of our reward framework which is based on the idea of both removing

and adding agents, described by D and D++, respectively.

At this stage, we need a criterion to choose between Dn
++ for different n values and D.

For the selection, it is reasonable to choose the highest reward value since it corresponds

to where the agent has the most impact. Accordingly, at each policy evaluation stage,

both D and Dn
++ are calculated and while incrementing n, Dn

++ values are compared

to D and whenever a value is found that is greater than D the algorithms exists and

returns the highest value.
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3.2 D++ for Homogeneous Agents

In cases where the entire team is made of agents of identical construction (homogeneous

agents), the tasks are limited to redundant observations of an environment to provide

robustness, or mechanical tasks that require multiple individuals to provide enough effort.

In this case and in order to calculate D++, each agent adds counterfactual agents that

are identical to the agent itself, executing the same policy. The agent keeps incrementing

the number of counterfactual agents until it reaches a value greater than D. Algorithm 3

summarizes all the steps to calculate the final reward value.

Algorithm 3 D++ (Homogeneous Agents)

1: calculate D−1++ using (3.2)

2: calculate DtotalAgents−1
++ using (3.2)

3: if DtotalAgents−1
++ ≤ D−1 then

4: Return D−1++

5: else
6: n← 0
7: repeat
8: n = n+ 1
9: Calculate Dn

++ using (3.2)
10: if Dn

++ > Dn−1
++ then

11: Return Dn
++

12: until (n ≤ totalAgents − 1)

13: Return D−1++

Algorithm 3 begins with the calculation of D = D−1++ and DtotalAgents−1
++ . Note

that the totalAgents − 1 plus the agent itself make up the entire team of agents. If

DtotalAgents−1
++ is less or equal to D, it means that adding agents does not benefit the

agent. In other terms, it does not receive a higher reward from the system if there

were more agents helping it in performing the task. In our exploration domain, this

corresponds to either a case where an agent is outside the observable region of all the

POIs and thus it is not possible to observe any of the POIs or a case where there are

sufficient number of agents within the observable range. In the second case, D can simply

be used to reward each agent based on its contribution. It can be seen that by making

this assumption, we can greatly reduce the computation by eliminating the need to loop
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over all the values of n before realizing all of this computation is in vain.

3.3 D++ for Heterogeneous Agents

So far, we have only considered agents that are homogeneous. However, some tasks

may require multiple agents of differing construction and capabilities to partner with

one another in order to perform a task. Using heterogeneous agents in a multiagent

domain adds a great deal of potential and power at the price of added complexity. In

such domains, team formation is indeed more challenging since each agent must both

identify the subset of agents that it needs to collaborate with and to synchronize its

action with its teammates in order to fulfill the task. In this section, we extend the D++

algorithm to handle coordination of heterogeneous agents.

Let us assume there are t types of agents, and in order to successfully accomplish

a certain task, at least a minimum number of agents of each type should partner with

each other. As an example, we refer to the exploration domain where in order for an

observation to be counted as successful, ni agents of each type i should simultaneously

observe the POI within its observation radius. That is, a total of
∑t

i=1 ni agents must

be present in the observable region surrounding each POI.

Comparing to the homogeneous case described before, it is clear that coordination

is more challenging since the probability that the sufficient number of agents of the

exact required types select the right actions is even further reduced. Thus, we need a

coordination mechanism that is able to provide the useful incentive for each agent and to

guide them toward the more promising policies even in the absence of their teammates.

In order for D++ to account for such heterogeneity, we need to slightly modify the search

procedure. Here we assume that the number of different types of agents as well as the

number of agents of each type are known to all agents. We start by assigning ~n = ~0,

where ~n is a vector of size t, equal to the number of types of agents. ~n holds the number

of counterfactual agents needed to be added for each type in order to receive a value

greater than the difference reward. In order to find ~n, we add one agent of each type at

each step, and we continue incrementing the number of agents of all types until we reach

a value greater than D. Algorithm 4 summarizes the approach.
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Algorithm 4 D++ (Heterogeneous Agents)

1: calculate D−1++ using (3.2)

2: calculate DtotalAgents−1
++ using (3.2)

3: ~n← ~0
4: if DtotalAgents−1

++ ≤ D−1 then
5: Return D−1++

6: else
7: repeat
8: for t = 1 : totalTypes do
9: nt = nt + 1

10: Calculate Dn
++ using (3.2)

11: if Dn
++ > Dn−1

++ then
12: Return Dn

++

13: until (n ≤ totalAgents − 1)

14: Return D−1++

3.4 Computational Complexity

In computing the difference reward, two calculations of the global evaluation function

are made by each agent (G (z) and G (z−i ∪ ci)) while an agent learning with the global

reward only calls G (z) once for each policy evaluation. Here, the assumption is that

each agent makes the reward computations locally and no feedback is broadcast to the

system. For D++, however, this number is increased since agents must continue adding

counterfactual agents until they reach a value greater than D, and each iteration requires

additional calls to G (z). This adds to the computational time of the learning algorithm.

Table 3.1 compares the computational complexity for evaluating a single policy as the

number of calls to G (z).

Table 3.1: Comparison of number of calls to G for three different
reward functions

Evaluation function G D D++

Calls to G 1 2 ci + 3

In Table 3.1, ci is the minimum number of counterfactual agents needed to be added
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by agent i. This term is bounded between [0, total number of agents− 1] since we assume

the entire team of agents should be able to accomplish the task. In cases where a sufficient

number of agents are present to complete a coupled task, ci is equal to 0 (i.e. D provides

a sufficient learning signal). In cases where adding any number of agents cannot increase

the system performance, ci is also 0. This is because, when calculating the D++ reward,

first (total number of agents− 1) agents are added and if the returning reward is not

greater than D, it can be understood that iterating over fewer counterfactual agents will

similarly not yield a better reward. Lastly, if not enough agents are within the observable

radius of a POI, ci takes a value between [1, required number of observations− 1]. We

will revisit this problem in the results section where we show that the average value of ci

decreases for the team of agents throughout learning, making it increasingly more efficient

to use D++ as the learning signal. Also, when studying the computation complexity, one

of the immediate concerns is the scalability of the algorithm. Similar to D, D++ also

scales linearly with respect to the number of agents which makes it scalable to larger

domains.
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Chapter 4: Cooperatively Coupled Stateless Rover Domain

In many real world applications such as search and rescue, and exploration and data

gathering [3, 23], using a team of agents greatly decreases the amount of time required

to complete tasks and significantly improves the overall performance. The rover domain

is a prime example of a system where multiple autonomous agents need to coordinate

their actions in order to collectively optimize the system performance. In this domain,

a team of rovers is looking for a set of Points of Interest (POIs) to observe, explore

or rescue depending on the application. Every POI has a value associated with it.

Also, the tight coupling of this domain originates from the fact that each POI requires

multiple simultaneous observations to be successfully observed. In this work and in

order to investigate the performance of the proposed reward function D++, we defined

two different test domains based on the cooperatively coupled rover domain. In this

chapter, we will explain the Cooperatively Coupled Stateless Rover Domain (CCSRD)

and in chapter 5, we will describe the more complicated version of the tightly coupled

rover domain that includes continuous states and actions. The goal of both domains is to

collectively observe as many environmental POIs as possible. Specifically, we investigate

the interactions and coordination between the rovers when multiple rovers are required

to observe a POI.

The Stateless Cooperative Rover Domain is a simplified version of the actual coop-

erative rover domain which is the main subject of this work. The stateless domain is a

benchmark arena that allows us to rapidly test and compare different policy evaluation

functions without many of the external confounding factors that can impact learning.

Over time, the agents can estimate the expected reward of each policy by selecting

that policy for a number of times and observing the outcome. As mentioned, in this

domain, each agent has no state (or we can define it as a single state problem) and

can only select from a fixed set of actions which correspond to different POIs in the

system. However, in order to introduce the tight coupling to the system, we require each

POI to be observed by a certain number of agents and below this required number of

observations, agents will not receive credit for observing that POI. Finally, we use the
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MC policy evaluation method described in algorithm 1 for learning coordinated policies.

The policy selection strategy is ε-greedy meaning that the algorithm chooses the action

with the highest value with probability (1 − ε) and with probability ε will choose a

random action.

4.1 Objective Functions

The global utility of the system is the sum of the observation values of all the POIs,

formally expressed bellow.

G(z) =

N∑
n=1

Vn(z), (4.1)

In equation 4.1, Vn(z) is the value of observing the n-th POI which is a function of

the number of observations for that POI. In other terms, the number of agents that have

selected the POI. In a tightly coupled domain, this function is defined as a step function

as below, in which v is a fixed value and C is the number of required observations for

each POI (Local Reward).

Vn(z) =

v, if numberofobservations ≥ C

0, otherwise

Generally, different objective functions can be defined depending on the task require-

ments. Figure 4.1 shows three different functions representing the observation value for

a POI. In figure 4.1, the left function indicates an smooth transition from zero to the

ultimate reward that can be received for observing a POI. However, at C (C=5 in this

case), this reward becomes constant since there is no added value for redundant agents

observing the same POI. Another function studied in this work, is linear (see figure

4.1.b). Like the smooth function, here the agents still receive a reward for observing a

POI even if they are not sufficient to fully accomplish the task. And finally, the step

function strictly requires C number of agents to choose the same POI in order to receive

a reward.

While the main focus of the present work is to address the multiagent coordination

in tightly coupled tasks which is equivalent to the step objective function in figure 4.1,
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Figure 4.1: Different objective functions for observing a single POI. The first type is a smooth function
providing an observation value even when fewer observations than the required threshold are executed,
the second type is a linear functions and the third objective is an step that strictly requires a minimum
number of observations to be made to account as success.

we also study the linear and smooth objective functions and we show that how the

choice of objective function can greatly change the expected behavior from the agents.

In the following sections, we show that the tightly coupled task is where D++ is the

most beneficial to use as the learning signal compared to D, whereas for both linear and

smooth objective functions shown in figure 4.1, D and D++ result in very close learning

performance. More discussion will be provide in sections 4.3.2 and 4.3.3.
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4.2 Experimental Setup

To investigate the performance of the proposed shaped reward, different sets of exper-

iments have been performed. We use both G and D as the baseline rewards and we

compare the performance of D++ learners against those. We initialize the CCSRD do-

main with 40 agents and 25 POIs. The number of POIs is intentionally set high to make

it harder for multiple agents to stumble upon one POI. It also allows us to investigate

how well D++ learners perform if the number of actions increases. It is clear that by in-

creasing the number of actions, the joint-action space of the team of agents exponentially

increases, making the coordination more difficult. We show the results for the different

objectives shown in figure 4.1. We test the D++ performance for different numbers of

required observations. Here the results are averaged over 50 statistical runs.

4.3 Results

4.3.1 Objective: Step Function

Figure 4.2, indicates the learning performance with respect to the number of calls to G.

These results show how the agents learn policies using either G, D or D++ as the learning

signal. As you can see, D++ learners significantly learn faster than G and D learners.

This can be explained in terms of the stepping stone actions. D++ manages to reward

good agent policies early in the learning process, preventing agents from continuing their

random behaviors. This hugely boosts the performance and expedites learning (6 times

faster learning compared to D). Also noteworthy is that these results are compared

against equal number of calls to G which takes into account the fact that D++ requires

more calls to G in order to find the right number of counterfactual agents.

In figure 4.3, we investigate the impact of different numbers of required observations

on the ultimate performance of policies learned using the three reward signals. The y axis

represents the performance scaled by the best achievable performance in this domain.

It is expected that by increasing the observation threshold, both G and D quickly

start to perform poorly. Reason is the the fact that by increasing the observation thresh-

old, we are requiring more and more agents to stumble on the same POI and the prob-

ability of this event is really low at higher threshold values. Ultimately at C = 10, both

G and D result in zero performance while D++ yields high-reward policies and shows
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Figure 4.2: Observation performance of policies trained on G, D, D++ for 40 agents, 25 POIs, 6 required
observations for the step objective function

less sensitivity to the observation threshold. Also, as you can see, at C = 2, D performs

slightly better than D++. To explain this, consider a scenario where one agent has cho-

sen a POI and needs one other agent to accomplish the observation. In this case and

according to the formulation of D++ (see equation 3.1), by adding one counerfactual

agents, the agent receives a value that is equal to the reward it receives if it had actually

achieved the task. Therefore, in both of these cases, the agent is rewarded equally which

impedes learning the right action. However, you should note that the policies learned

using D++ still outperform those learned using G and the reason explained above does

not have the same impact in higher observation thresholds.
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Figure 4.3: Final Observation performance of policies trained on G, D, D++ for 40 agents, 25 POIs with
respect to different observation thresholds for the step objective function.

4.3.2 Objective: Linear Function

In figure 4.4, you can see the final learning performance for G, D and D++ learners

with an objective function that linearly rewards them for observing a POI based on the

number of present agents. In this case, even if an insufficient number of agents observe

a POI, they still receive a reward. An example of this can be the case where having

more agents taking scans of a POI provides more useful data but this is until we have

enough agents giving a full coverage of the POI and no more information will be added

by having redundant agents.

As you can see, both D and D++, perform very closely to the optimal performance

and keep this high performance as the observation threshold increases. Part of the reason

is that initially the agents randomly choose POIs and this in fact is close the optimal

behavior expected for this type of objective function. Another reason is the power of

both D and D++ in providing agent-specific reward signals that change with respect to

agents’ own actions. These results also show that if the objective function is continuous,

D++ performs very closely to D. This is because in both D and D++, agents are looking

for a gradient in the the objective function and if objective function is a relatively smooth
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Figure 4.4: Final Observation performance of policies trained on G, D, D++ for 40 agents, 25 POIs with
respect to different observation thresholds for the linear objective function.

function (not step-like), D can provide the gradient feedback needed to evaluate policies.

Thus D and D++ do not differ greatly in their learning performance.

4.3.3 Objective: Smooth Function

In this section, we present the result for the final performance of G, D and D++ learners,

learning the smooth function for observing the POI.

Likewise, both D and D++ learn the optimal behavior for any value of observation

threshold. Whereas, it is harder for G to gain such optimal behavior. Comparing to the

results presented in 4.4, G even performs slightly worse. We explain this by pointing

to the types of the functions agents should learn. In the previous section, the function

was piece-wise linear whereas the current function is composed of both nonlinear and

linear functions which makes the learning more challenging. However, because of the

properties of both D and D++, they are able to extract a signal that is easier for them

to learn compered to the actual nonlinear function. Finally, similar to the linear objective

function, here D and D++ perform very closely and the reason is that they are both based

on the objective function’s gradient which returns similar values if the objective function
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is continuous, leading to almost equal learning performance.
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Figure 4.5: Final Observation performance of policies trained on G, D, D++ for 40 agents, 25 POIs with
respect to different observation thresholds for the smooth function objective.
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Chapter 5: Cooperatively Coupled Continuous Rover Domain

In this section, we discuss the Cooperatively Coupled Rover Domain that has been

adapted and modified from the original Continuous Rover Domain [4]. This domain

contains a set of rovers (agents) that are able to move around in a two-dimensional plane

to observe Points of Interest (POIs). Unlike the Stateless Cooperative Rover Domain

explained in section 4, each rover has a state that is determined by two types of sensors

that recognize POIs and other Rovers. Each rover has a total of 8 sensors (four of each

type), similar to the original continuous rover domain as described in [5]. These sensors

return the density of either POIs or other rovers in this domain, which serves as the

state input of the rovers’ controllers.

Each POI has an observation radius which is the maximum distance from which a

rover can observe the POI. The goal of these rovers is to collectively observe as many

environmental POIs as possible. The key difficulty of this domain is that multiple si-

multaneous observations of a POI are required otherwise no reward is received by the

team for those observations. A POI is considered observed only if m > C rovers ob-

serve a POI from within a specified but unknown sensing distance (C is the number of

required observations). If fewer than m rovers observe the POI, or if m rovers are not

in the observation distance, no credit is obtained for those observations. This problem

formulation ensures that team coordination is essential to the completion of the task. In

this domain, it is impractical for an individual rover to search the entire environment.

Instead, the rovers must coordinate in order to divide up the coverage areas and to max-

imize the number of POIs found while still forming teams of observations for each POI.

This requirement that multiple rovers are necessary to observe each POI leads to the

Cooperatively Coupled Rover Domain used in this work.

Each POI in this domain has a value Vi assigned to it. The goal of the agents is to

form teams and for the teams to optimize the observation value of the environmental

POIs. The value of an observation is dependent of the proximity to the POI and also

the value assigned to it. Figure 5.1 demonstrates the Continuous Cooperative Rover

Domain.
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5.1 Agent State Representation

As mentioned in the previous section, in the Continuous Cooperative Rover Domain,

each agent has two types of sensors (POI, Rover) and a total of 8 sensors (four of each

type). Each rover’s view is divided into four quadrants and each quadrant contains both

a POI and a rover sensor. The quadrant axes are oriented along the rover’s heading at

every given time-step t (see Fig. 5.1). Each type of sensor returns a value representing

the density of POIs or rovers (respectively) in that quadrant. The value of this density

is calculated as the sum of the values of each of the POIs or rovers divided by their

euclidean distance from the sensor. The detections within each quadrant are used to

compute the state input vector for the neural network controller. Formally, the state

Figure 5.1: Diagram of the rover domain. The world is broken up into four quadrants relative to the
rovers position and orientation. POIs and fellow rovers that are observed in each quadrant are summed
resulting in 8 state input variables. At each time-step, the agent’s neural network controller yields two
continuous outputs [dx, dy], which determine the rover’s motion in the next time-step. Each POI has an
observation radius such that only rovers within that radius are able to observe that POI.
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dx
dy

Figure 5.2: The figure shows the rover heading and the x and y axis with respect to the rover’s heading.
At each time step the rover has two continuous outputs (dy, dx) giving the magnitude of the motion in
a two-dimensional plane relative to the rover’s orientation.

variable representing rover detections in quadrant q for rover j is defined as:

sroverj,q =
∑
j′∈Jq

1

Lj′
, (5.1)

where Jq is the set of the observed rovers in quadrant q, and Lj′ is the relative distance

from rover j to rover j
′
. The state variable representing POI detections in quadrant q

of rover j is defined as:

sPOIj,q =
∑
i∈Iq

Vi
Li
, (5.2)

where Iq is the set of observed POIs in quadrant q, and Li is the relative distance

between rover j and POI i. These state variables give an approximate representation of

the world, reducing the location and number of rovers and POIs in each quadrant to a

representative value.

5.2 Agent Action Representation

Every rover (agent) in this domain moves around in a continuous two-dimensional plane

based upon its calculated actions. The actions are chosen by the agents’ current poli-

cies, generated using the neuroevolutionary algorithm described in Section 2.3.3.1. The

movement of each rover is governed by the neuroevolutionary algorithm as follows:

dx = d(O1 − 0.5), (5.3)

dy = d(O2 − 0.5), (5.4)
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where d
2 is the maximum distance a rover can move in a given direction during a single

time step, O1 and O2 are the x and y outputs from the agent’s current neural network

policy, and dx and dy are the action selections of the agent.

5.3 Objective Function

As discussed earlier, the main difference of this domain with previously explored multia-

gent rover domains in [2,32] is in the objective function, which requires tighter coordina-

tion among agents. Here, each POI requires multiple simultaneous observations within

its observation radius to count as a success otherwise no reward is received by the team

for those observations. In this domain, prior knowledge of POIs, such as their locations,

observation radius, the number of POIs and the utility of observing any particular POI

is not known and rovers must learn to coordinate such that the team’s utility function

is maximized.

To formalize the problem, we first focus on the simple case where m = 2 observations

are required in order to observe a POI. In this case, if more than two rovers observe a

POI, only the observations of the closest two rovers are considered and their observation

distances are averaged in the computation of the global system evaluation G, which is

formulated as:

G (z) =
∑
i

∑
j

∑
k

ViN
1
i,jN

2
i,k

1
2(δi,j + δi,k)

, (5.5)

where z is the joint state-action of the team, Vi is the value of observing the i-th POI,

and δi,j is the distance between the j-th rover, and the i-th POI. The variables N1
i,j and

N2
i,k indicate whether rovers j, k were within the observation distance δ0 and were the

closest two rovers to the i-th POI. That is,

N1
i,j =

1, if δi,j < δ0 and δi,j < δi,l, ∀l 6= j,

0, otherwise,
(5.6)

N2
i,k =

1, if δi,k < δ0 and δi,k < δi,l, ∀l 6= j, k,

0, otherwise.
(5.7)

The overall team objective is to maximize the global system evaluation (5.5).
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Each member of the team of rovers executes a policy described by a neural network.

Neural networks have the ability to model continuous state-action control policies given

only a coarse representation of the system state [4]. To train a neural network, the

weights will be adjusted in such a way that given the current state as an input, the

network returns an action that maximizes a particular utility function. The performance

of the learned policy is strongly dependent on the utility function used to evaluate the

policies.

In this work, we train neural network controllers with cooperative coevolutionary

algorithms (CCEA) while we use the D++ evaluation function as the fitness function,

and we compare the results against those trained on the difference (D) and global (G)

evaluation functions.

5.4 Rover Policies

Neuro-evolutionary algorithms have been shown to be effective in domains with contin-

uous states and actions [4] like the Cooperatively Coupled Rover Domain. In this work,

agents policies are represented by neural networks and these policies are updated via

CCEA algorithm explained in algorithm 2. Each agent evolves its policy from a pool of

policies including 15 neural networks that are randomly initialized. Each of these neural

networks has 9 hidden units, 8 inputs, 2 outputs, and each neuron utilizes sigmoid acti-

vation functions. Algorithm 2 shows the process that is used to select, mutate, evaluate

the rover policies. Starting with random policies, in each generation, 10% of the neural

network weights (randomly chosen) are mutated using a normal distribution of mean

0 and standard deviation of 1.0. Mutation results in shifting the population to cover

more of the policy search space. Teams are created by selecting (without replacement)

a policy from each agent’s population, and are executed in the world for 20 time-steps.

Depending on how well they performed the task, these policies are ranked according to

the chosen policy evaluation function and are retained for the next generation using an

ε-greedy policy selection.
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5.5 Experimental Setup

To investigate the performance of the proposed shaped reward, different sets of exper-

iments will be presented. We compare the performance of D++ learners against those

using the difference evaluation function signal and global evaluation signal. The ex-

periments are performed in simulation and the rover policies are evaluated and learned

offline. Generally, at every time-step, each rover uses the policy encoded by the neural

network controller to determine two controls in the (x, y) directions. The weights of the

neural networks are adjusted via the (CCEA) algorithm, explained in algorithm 2. The

eight inputs are the state variables as defined in (5.1) and (5.2). The neural network

output provides two values in the range of [0, 1] and each of these values are mapped to

one of the two controls. Each agent has a population of 15 policies, initialized using a

normal distribution N (0, 1).

In the following experiments, we first focus on the homogeneous multi-rover system

for which the survey region is 30 × 30 units in size, containing a fixed number of ran-

domly distributed POIs. Each POI requires a fixed number of simultaneous observations

within its observation range, which is defined as rPOI = 4.0. The maximum allowable

rover movement is defined as dmax = 1 unit/timestep. In this problem, we assume full

observability for the rover sensors. In future work, we will address partial observability

and its effect on the performance of the proposed learning algorithm.

5.6 Homogeneous Teams

Two sets of experiments are conducted. In both experiments, a team of 12 rovers explore

the region to observe 10 POIs. In the first experiment, each POI requires 3 simultaneous

observations. In the second experiment, in order to analyze how the learning algorithm

performs with tighter agent coupling, the number of required observations for each POI

was doubled.

5.6.1 12 Agents, 10 POIs, 3 Required Observations

Averaged learning results associated with all three reward functions, G, D, D++ with

error bars reporting the standard error in the mean are given in figure 5.3. These

results show that agents learning with the D++ evaluation signal significantly outperform
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agents using global evaluations or the difference evaluation function alone. In fact, D++

produces policies that perform up to 100% better than those of D and at a quadruple

speedup in the learning rate.

Figure 5.4 shows the paths of the team of rovers after being trained with the D++

reward function. The dots in magenta are the POIs, and they vary in size based on

their value to the system. The POIs are spread across the exploration region. Rovers

are initially located in the center and should spread and explore the area of interest. As

seen in figure 5.4, rovers have successfully formed teams of three and have coordinated to

observe multiple POIs in their proximity. The significance of these results is that team

formation has been performed in an implicit manner, requiring no communication among

agents or any prior information about other agents’ intended behavior. This approach

is particularly useful in cases where communication is limited or expensive since it can

provide more reliable and robust results.
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Figure 5.3: Observation performance of policies trained on G, D, D++ for 12 rovers, 10 POIs each
requiring 3 simultaneous observations.
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Figure 5.4: Rover paths executed by policies learned using the D++ reward function. POIs are repre-
sented as pink circles; larger circles indicate that the POI has a higher observation value.

5.6.2 12 Agents, 10 POIs, 6 Required Observations

To investigate the ability of the proposed algorithm in dealing with tighter agent cou-

plings, we doubled the number of required simultaneous observations. Averaged results

over 50 trials are shown in figure 5.5. These results indicate that as the coupling of

the system increases, both G and D lose applicability since learning algorithms using

either of these reward functions rely heavily on multiple agents simultaneously selecting

the right actions, which is highly unlikely in tightly coupled domains. However, D++

overcomes this issue by using counterfactual agents. In particular in the rover domain,

D++ rewards a policy that leads an agent to the observable region of a POI. Even if

an insufficient number of rovers are available to accomplish the observation task; it pro-

motes coordination by rewarding the stepping stones that ultimately lead to achieving

the system objective.
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Figure 5.5: Observation performance of policies trained on G, D, D++ for 12 rovers, 10 POIs each
requiring 6 simultaneous observations.

5.7 Computation Time Analysis

Recall from Section 3.4 that while calculating D++ one must continue introducing coun-

terfactual agents until the resulting reward provides a gradient that can be used as the

reward. However, as previous results on the performance of policies trained using D++

show, agents learn to coordinate relatively quickly compared to the results from using

either G or D. This results in a decrease in the number of required counterfactual agents

and also a decrease in the computation effort needed. Figure 5.6 supports the above ar-

gument by indicating the average required number of simulated counterfactual agents in

D++ calculations during training. As shown in figure 5.6, there is a sharp decrease in

the calculations required in D++ within the first 500 generations.
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Figure 5.6: Average calls to G across progressive learning generations in the D++ calculation for two
cases where POIs require 3 and 6 simultaneous observations, respectively. Averages over 50 trial runs
are plotted along with the shaded region showing the 95% confidence interval.

5.8 Heterogeneous Teams

In this section, two sets of results on the heterogeneous exploration domain are presented.

In both experiments, t = 3 types of rovers are considered. In the first experiment, each

POI requires at least one rover of each type for a successful observation. In the second

experiment, we increase the level of heterogeneity by requiring one rover of the first two

types, t = {1, 2}, and three rovers of the third type, t = 3, to simultaneously observe

a POI. This will indicate the power of our algorithm in dealing with different levels of

system heterogeneity. Similar to the homogeneous case, the survey region is 30×30 units

in size and each POI has a fixed observation radius of rPOI = 4.0. Again, the maximum

allowable rover movement is dmax = 1 unit/time-step as defined before. The following

results are generated from 50 statistical trials.
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Figure 5.7: Observation performance of policies trained on G, D, D++ for 9 rovers, 15 POIs each requiring
simultaneous observations from the rovers, one of each type t.

5.8.1 9 Agents, 15 POIs, 3 Required Observations of 3 Different

Types

In this experiment, we assume that there are 3 different types of rovers, each having

a particular capability required for the successful observation of the POIs. A POI is

counted as observed only if it is simultaneously observed by at least one rover of each

type. Figure 5.7 indicates the learning curves comparing the performance of policies

learned by three different functions, G, D and D++. The learning curves are plotted

against number of calls to G to account for the required computation of each reward

function. As seen, with the same number of calls to G, policies learned using G and D

perform similarly while D++ yields policies that perform about 1.5 times better and up

to four times faster compared to the results of G and D.

Figure 5.8 is a snapshot of the exploration domain which depicts the actual rover
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Figure 5.8: Rover paths executed by policies learned using the D++ reward function. Different colors of
blue, green and red are used to represent different types of rovers in the system. As seen, two groups of
rovers, bounded in the dashed box, consist of all the three required types and have successfully formed
teams to explore the POIs in that region. However, the remaining rovers are still optimizing their policies
trying to observe the remaining POIs.

paths executed by policies learned using the D++ reward function. The path are colored

in blue, green and red, each representing a different type of rover in the system. The

POIs are marked with magenta dots with varying sizes, indicating their importance to

the system. As seen, the rovers, starting from the center of the domain, have formed two

distinctive teams consisting of one rover of each type which have successfully coordinated

to make observations of the POIs along their paths. Meanwhile, three rovers, shown

outside of the dashed box, have not fully coordinated.
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5.8.2 9 Agents, 15 POIs, 5 Required Observations of 3 Different

Types as ([1, 1, 3])
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Figure 5.9: Observation performance of policies trained on G, D, D++ for 9 rovers, 15 POIs each requiring
simultaneous observations of a total of 5 rovers, including one of each types of t = 1 and t = 2, and three
rovers of type t = 3.

This experiment measures the performance of the D++ algorithm when the level of

the system heterogeneity increases. For this purpose, we assume that each POI must be

simultaneously observed by at least five distinctive rovers, one from each of the first two

types, and three of the third type. An equivalent problem in a real world scenario can

be where we have different rover types each equipped with different sensors and tools to

explore an unknown area. In such a case, three rovers can assist in localization, and the

second and third type may provide the tools to perform excavation and data collection.

Figure 5.9, indicates the performance of the learned policies in stimulated scenario. It

is clear from these results that training using either G or D fails to yield a high-reward

policy. This can be explained by the fact that both of these reward functions rely on
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multiple agents simultaneously selecting the right actions, which is highly unlikely in

such a tightly coupled problem. The problem is even more severe compared to the

homogeneous domain since the rover types also matter and any coordination algorithm

must account for that as well. In contrast to G and D, D++ manages to reward policies

that are stepping stones to the ultimate system objective even in the case of agent

heterogeneity.

5.9 Robustness Analysis

In this section, we investigate how failure of agents impacts learning. To this end, after

2000 generations, we fix 25% of the agents (the agents are static in their initial position

and do not move). In this experiment, there are 12 agents, 10 POIs scattered across the

domain, each requiring 3 simultaneous observations. The results are averaged over 50

statistical runs.

It is noteworthy, that failure percentage has been intentionally set high to greatly

challenge coordination afterwards. Since it is tightly coupled task, the failure of agents

greatly impairs the system. Figure 5.10 indicates the results of the robustness analysis

which shows that although D++ outperform the other two reward functions, they seem-

ingly suffer greater than G or D learners in the case of failure. This can be explained

by the fact that those failed agents have actually coordinated and are achieving util-

ity for the system and as such, the failure of those agents greatly impacts the systems

performance. This demonstrates that D++ makes good use of all of the agents in the

team. On the other hand, failed agents that were trained using the G and D learners

are mostly randomly exploring agents that have not coordinated well with other team

members, and their removal does not severely impact team performance. In terms of

recovering from the failure, it can be observed that D++ learners recover less compared

to G and D learners. This behavior can be explained with the tightly coupled nature of

the task. It is obvious that by failure of 25% agents in such a tightly coupled system,

the maximum achievable performance drops and even a perfect coordination algorithm

is not able to yield to the same performance as before. However, in the case of G and

D learners, since the resources are not fully utilized even after 2000 generations, there is

still room for improvement in behavior.
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Figure 5.10: Observation performance of policies trained on G, D, D++ for 12 agents, 10 POIs each
requiring simultaneous observations of a total of 3 agents. At 2000 generations, 25% of agents fail (stay
static).
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Chapter 6: Conclusion

6.1 Summary

Coordinating disparate agents such that can collectively achieve a complex task is a key

problem in multiagent settings that can open up more advanced usage of multiagent

systems in many real-world applications. Even though there are many mechanisms

developed mainly for solving such coordination problems, they are often unable to fully

address the coordination issues due to limiting communication restrictions, insufficient

domain knowledge or the general problem complexity that make it increasingly more

difficult to define good agent policies a priori.

We identified one of the major setbacks in tightly coupled agent coordination which is

the fact that the chances of agents finding the proper joint actions required to achieve the

task is very low and as such, agents do not receive strong feedback throughout learning.

Therefore, in order to improve the coordination task we focused on the structural credit

assignment problem in tightly coupled multiagent domains and we built upon current

work in the literature of multiagent credit assignment to develop a reward structure that

enables us to reward stepping-stone policies of agents regardless of the task being fully

accomplished or not.

D++ is a novel reward framework which builds on the idea of counterfactuals and

aims to differentiate between actions that are potentially useful in the long term goal

achievement and actions that are not beneficial to the system. To indicate the ability

of the proposed reward function in training good and coordinated agent policies, we

demonstrated the performance of the algorithm in two different problem domains defined

based on a tightly coupled environmental monitoring task.

In the first problem domain, which was a simplified version of the continuous coop-

erative rover domain, we mainly explored the impact of different objective functions and

we indicated the how the degree of coupling impacts learning for different objectives.

We also explored the performance of the D++ algorithm in the continuous rover domain

which poses larger coordination challenges and we investigated the problem along two
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dimensions, the heterogeneity of the multiagent system and the degree of coupling. D++

was successfully tested in the homogeneous domain, showing significant improvement in

learning, both in terms of convergence speed and learning performance, compared to the

policies trained on either G and D. Additionally, to account for system heterogeneity,

the D++ reward function was extended to a domain with different types of agents, all re-

quired for the completion of the task. D++ was also able to successfully learn coordinated

policies in this domain whereas both G and D fail to find high-reward policies.

The results presented in this work, confirmed our original hypothesis that by reward-

ing the stepping stones policies one can highly promote coordination. Notably, as the

coupling of the system increases, both G and D lose applicability since they rely heav-

ily on multiple agents simultaneously selecting the appropriate actions, which is highly

unlikely in tightly coupled domains.

Finally, we investigated how failure of agents impacts learning. The results of the

robustness analysis indicated that D++ learners suffer greater than G or D learners

which was explained by the fact that those failed agents had actually coordinated and

were achieving utility for the system. Such greater failure impact indicates good use

of the resources whereas in the cases of G and D learners, the failed agents are mostly

randomly exploring agents that have not coordinated well with other team members and

their removal does not impact the performance as much.

6.2 Future Work

In this work, we showed how the use of counterfactual agents provides a powerful tool to

tackle different multiagent coordination problems. Although most of the present work

focuses on homogeneous teams of agents, we showed that by extending the counterfactual

search domain, D++ algorithm can also account for agent heterogeneity. These results

are encouraging to further extend this research to a broader range of problems, for

example, cases with heterogeneous actions. An example of this case in the Cooperatively

Coupled Rover Domain is where agents are necessarily required to observe a POI from

different angles. By adding heterogeneity to the agents’ actions, D++ computation can

rise quickly. A possible solution to this problem is to come up with better counterfactuals.

For example, in the present work, the counterfactual was defined as agents that are

located in the same position as the primary agent and executing the same policy. For
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another domain, and depending on the agents’ states and actions, other definitions of

counterfactuals may be required. Also, in this work, we showed that we can greatly

reduce the computation by making a simple assumption that at any state the entire team

of agents must be able to accomplish the task if at all possible. This is a valid assumption

if the problem is well-posed. Similar assumptions can be made to guide the search when

calculating D++ to decrease the computation for other types of domains. In addition,

as discussed in section 3.4, D++ calculations quickly drop as learning proceeds and the

reason is that by proper rewarding, it is able to coordinate the agents comparatively

quickly which saves a great deal of computation afterwards.

Furthermore, throughout this work, we assumed full observability for the entire team.

In [9], authors showed that D can be approximated from locally available information.

Future work will investigate how partial observability impacts learning in tightly coupled

tasks and how D++ can be approximated from local information.
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