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Abstract10

A model is presented for the horizontal and vertical diffusion of sand tracer particles by11

waves, and is verified using a re-analysis of the experiments of Miller and Komar [1979].12

In the model, sand particles take random jumps at a rate associated with the wave period,13

but also can bury one another resulting in intermittent long rest times between jumps. The14

particle jump length between burials is modeled by considering a vortex entrainment and15

advection mechanism, resulting in a probability distribution as a function of wave orbital ex-16

cursion amplitude and particle settling velocity. The model is formalized using the theory of17

continuous time random walks to obtain closed-form expressions for the horizontal particle18

spreading rate, and plume shape, without tunable parameters. Importantly, the model pre-19

dicts sub-diffusive particle spreading, a previously unconsidered phenomenon that is appar-20

ent in the experimental data. The plume horizontal extent versus time is also well-predicted21

compared to experimental data.22

1 Introduction23

The Lagrangian approach to sediment transport aims to describe the trajectories of sed-24

iment particles driven by a fluid flow, as would be measured by tracking tagged sediment or25

“tracers”. Such measurements were widely used in early studies of nearshore wave-driven26

sediment transport [Inman and Chamberlain, 1959; Komar and Inman, 1970; Ingle and27

Gorsline, 1973]. Although tracer use has declined in nearshore research following the de-28

velopment of high-resolution Eulerian sediment flux sensors [White, 1998], which measure29

time-dependent sediment concentration and flux at a fixed station, they are still preferred30

for problems that consider a broad range of spatial/temporal scales. For instance, tracers are31

favored for monitoring the long-term and large-scale dispersal of dredge placements [Mc-32

Comb and Black, 2005], where Eulerian measurements or model simulations are impractical.33

They are a natural fit for monitoring the redistribution of sediments from a localized source34

(whether natural or anthropogenic), or the fate of certain contaminants which exist preferen-35

tially in a sediment-bound phase (e.g., radioisotopes, heavy metals). And tracers can be used36

to monitor transport of cobble- and gravel-sized sediment for which few other observational37

techniques exist [Osborne, 2005; Allan et al., 2006; Stark and Hay, 2016].38

The interpretation of tracer measurements requires a Lagrangian theory that predicts39

time-dependent statistics (e.g., spatial mean and standard deviation) of an ensemble of tracer40

particles travelling over the seabed, accounting for both advection and diffusion processes.41

However, no general theory for sediment diffusion currently exists. The classical advection-42

diffusion equation is often invoked when analyzing tracer data, but here the diffusive pro-43

cess is generally treated empirically, i.e. by fitting the particle diffusivity to data. Predicting44

diffusion from first principles requires considering sediment entrainment, stirring (e.g., by45

turbulent eddies and Taylor dispersion), and deposition and burial. Mei and Chian [1994] de-46

rived analytical equations for turbulent sediment diffusion in an oscillatory boundary layer,47

valid for very small particles that do not undergo deposition or burial. Mazumder and Paul48

[2012] developed a similar numerical model that included particle deposition, which they49

found caused a significant reduction in diffusion. Soulsby et al. [2007] adopted a more prac-50

tical approach, by directly simulating particle trajectories within a full-scale coastal model,51

and using stochastic representations for burial, entrainment, and stirring. This latter approach52

highlighted the role of stochastic parameterization in predictive models for Lagrangian sed-53

iment transport, due to the fact that coastal models do not resolve the boundary layer pro-54

cesses responsible for diffusion. The stochastic approach has also been studied on a more55

fundamental level by Komar [1969], who modeled wave-driven stirring as a classical random56

walk process, and Pizzuto [1987], who directly simulated a similar random walk model, in-57

cluding particles with different diffusion coefficients which they attributed to different modes58

of transport (suspended and bed-load).59
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Stochastic models for Lagrangian sediment transport, such as the ones just described,60

all have their basis in a random walk description [Einstein, 1937] where each sediment parti-61

cle is assumed to execute a series of jumps of random length separated by random rest time62

periods. An application of the central limit theorem then shows that the distribution of an63

ensemble of such particles is governed by the classical advection diffusion equation. Re-64

cent developments in Lagrangian sediment transport theory have challenged this by invoking65

the possibility of jump length and/or rest time probability distributions that include large in-66

termittent events. In particular, heavy-tailed distributions (whose tails decay as x−α−1 with67

0 < α < 2) lack a finite second moment, and the central limit theorem no longer applies.68

Metzler and Klafter [2000] described the more-general theory governing diffusion in this69

case, and Schumer et al. [2009] reviewed the main results as they apply to sediment trans-70

port. The theory shows that heavy-tailed jump length distributions result in heavy-tailed71

particle excursion distributions, and heavy-tailed rest time distributions result in anoma-72

lously slow spreading (standard deviation increases slower than t1/2). Some possible phys-73

ical causes for heavy-tailed jump length distributions include the influence of heterogeneous74

flow or topography at the scale of particle motion [Tucker and Bradley, 2010], or differing75

mobility within mixed-size sediments [Ganti et al., 2010; Hill et al., 2010]. Heavy-tailed rest76

time distributions may be caused by particles being intermittently trapped or buried [Parker77

et al., 2000; Voepel et al., 2013; Martin et al., 2014; Pelosi et al., 2014, 2016]. Both types of78

anomalous diffusion behavior have been observed for sediment transport in streams [Nikora79

et al., 2002; Bradley et al., 2010], and the microscopic (particle-scale) statistics which under-80

lie the anomalous macroscopic behavior have also been the subject of experiments [Drake81

et al., 1988; Habersack, 2001; Ancey et al., 2006; Lajeunesse et al., 2010; Martin et al.,82

2012; Roseberry et al., 2012; Hassan et al., 2013; Heyman et al., 2013; Radice et al., 2013;83

Ballio and Radice, 2015; Fathel et al., 2015; Wilson and Hay, 2016] and theories [Ancey84

et al., 2008; Ancey, 2010; Furbish and Schmeeckle, 2013; Fan et al., 2014, 2016]. It should85

be noted that the root causes of anomalous diffusion have, in large part, eluded direct veri-86

fication, e.g. via observations of heavy-tailed jump length distributions, and this remains an87

ongoing area of research.88

It is unknown whether anomalous sediment diffusion occurs for wave-driven transport,89

as it does in streams. If so, this would affect the interpretation of sediment tracer observa-90

tions, as well as model predictions that assume classical advection-diffusion behavior. With91

that in mind, the goal of the present work is to develop a basic statistical model for parti-92

cle diffusion starting from a random walk description, where the diffusion is assumed to be93

due to sediment exchange amongst vortex ripples (the latter assumption being motivated in94

part by the available experimental data). The model includes an explicit representation of95

particle burial, which results in a heavy-tailed rest time distribution. This is illustrated in a96

simple conceptual framework showing that burial causes sub-diffusion with a plume width97

(as measured by standard deviation) growing as t1/4. The conceptual model is then gener-98

alized as a continuous time random walk (CTRW), with a jump length probability distribu-99

tion based on existing sediment transport parameterizations over vortex ripples. In section100

4, the CTRW model is used to re-analyze sediment tracer data collected by Miller and Ko-101

mar [1979] (section 3), whose experiments considered pure sediment diffusion (i.e., no ad-102

vection) by waves over self-generated vortex ripples. The data exhibit a clear signature of103

anomalous sub-diffusion, which would not be predicted by a classical advection-diffusion104

model, but is well-predicted by the proposed CTRW model. The space/time scales for diffu-105

sion, which derive from the proposed jump length probability distribution, are also found to106

agree well with observations.107

2 Theory108

The sediment diffusion theory will be developed in three sections. First, section 2.1 in-109

troduces the conceptual approach used, including the main assumptions and approximations,110

leading to a basic stochastic model for simulating sediment diffusion. Section 2.2 applies111
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Figure 1. Sketch of conceptual model discretizing vortex ripples into cells that exchange coherent packets
of sediment. Open arrows indicate free stream flow direction. The vortex entrainment and exchange mecha-
nism is shown, comprising (i) pickup of a coherent packet of sediment by the lee vortex during the forward
wave stroke, (ii) ejection of this packet into the main flow during flow reversal, and finally (iii) advection and
deposition of the packet downstream during the backward wave stroke. Only one vortex is shown, for clarity.
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134

135

abstractions to this conceptual model, with the aim of deriving a closed-form solution for112

the distribution of particle displacements using the theory of continuous time random walks113

(CTRW). Finally, closure of the CTRW model requires a probability distribution for particle114

jump lengths, which is derived in section 2.3 based on existing sediment transport parameter-115

izations.116

2.1 Conceptual Model117

The model concept is based on random sediment transport and exchange, driven by118

periodic wave motion. The bed is assumed to be infinitely deep and homogeneous, made of119

uniform sized particles, and in equilibrium with the driving flow. The model discretizes the120

bed into a one-dimensional array of cells, in which the cell spacing is equal to a characteris-121

tic excursion distance for an entrained particle during one wave stroke. In particular, in the122

present description the bed will be assumed to be organized into vortex ripples (also known123

as orbital-scale ripples), assumed to be in equilibrium and non-migrating. Each model cell124

corresponds to one ripple face, i.e. 1/2 ripple wavelength, as illustrated in Figure 1. Note125

that, unlike other cellular automata-like models designed to simulate the time evolution of126

wave-formed ripples [Pannell et al., 2002; Gallagher, 2011], the present model is not de-127

signed to resolve the bed topography itself and the associated flow-topography feedbacks.128

Rather, the intent of the model is to represent the stochastic mobilization and redistribution129

of sediment amongst pre-existing ripples.130

Sediment transport in vortex ripples was first described by Bagnold and Taylor [1946]136

and is illustrated (in a simplified form) in Figure 1. During each wave stroke a coherent vor-137

tex forms on the lee side of each ripple, then is subsequently ejected up into the water col-138

umn around the time of flow reversal. These vortices drive bed-load sediment transport up139

the ripple crests, thereby reinforcing the ripple shape. They also entrain suspended sedi-140

ment and thereby account for most of the suspended transport: once ejected, the sediment-141

laden vortices are advected by the wave flow by distances of one or more ripple wavelengths,142

all the while continually releasing sand. The path of the advected vortices can be approxi-143

mated as passive advection by the wave orbital velocity, as has been documented using par-144

ticle imaging velocimetry [Earnshaw and Greated, 1998; Admiraal et al., 2006]. Sediment145

transport by the vortices has been quantified by Nakato et al. [1977] and van der Werf et al.146

[2007], who measured vertical profiles of sediment concentration at various fixed points147

along the ripple profile. Their time series observations show multiple distinct peaks in sedi-148

ment concentration associated with the passage of the advected vortices. Nakato et al. [1977]149

observed two such peaks per wave stroke, while van der Werf et al. [2007] observed three,150

which they interpreted as advection over a distance of one or two ripple wavelengths respec-151

tively.152
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A simple conceptual model is proposed here for the vortex mechanism of sediment ex-153

change between ripples. Transfers of sediment between ripple cells will be represented in154

terms of unit packets of an arbitrary average size (number of particles), similar to the “grab155

and dump” model of Nielsen [1988]. This corresponds to the basic description of vortex rip-156

ple sediment exchange discussed above, where suspended sediment is transported in coherent157

vortices as in Figure 1. For each wave stroke, one such packet is assumed to be mobilized158

from the surface of each ripple cell, and is transferred onto the surface of the adjacent down-159

stream ripple cell with fixed probability p < 1. Furthermore, whenever a sediment packet160

is transferred from one ripple cell to another the deposited particles cause an equal number161

of particles in the receiving ripple cell to become buried, and such buried particles remain162

inactive until some combination of subsequent transfers causes them to rise back to the sur-163

face. The intra-ripple spatial distribution of this process is taken to be uniform, as explained164

in the Appendix. Additionally, wave-to-wave variability in the number of particles entrained165

is assumed to be averaged out over the course of multiple wave strokes.166

The average distribution of horizontal particle excursions versus time can be calculated167

for this model by simulating a large number of particle trajectories while taking into account168

the interactions between particles by burial. It would appear that this simulation requires169

accounting for interactions between all surface particles in every ripple cell, but here is it as-170

sumed that the particles in each sediment packet are randomly mixed such that the same aver-171

age distribution of particle interactions (and therefore particle trajectories) would be obtained172

if each ripple cell supported just one surface particle. Therefore, the overall distribution of173

trajectories can be approximated by an ensemble of model realizations having one particle174

per ripple cell. This simplifies the book-keeping associated with particle burial and exhuma-175

tion, as each cell effectively maintains a last-in-first-out vertical stack of particles.176

Numerical simulations of the above conceptual model were implemented using a peri-177

odic lattice of 1000 single-particle ripple cells in one horizontal dimension, for 450 wave cy-178

cles, and for 500 independent trials. The simulations used an arbitrary value of p = 0.25. In179

each wave stroke the simulation randomly assigns either transfer or non-transfer to each cell,180

and then sequentially executes each transfer and its associated burial. Horizontal and verti-181

cal trajectories were recorded for all of the particles that started on the bed surface. Figure 2182

shows an example model simulation result illustrating how particles are redistributed, mixed,183

and buried over time. Figure 3 shows example time series of particle horizontal displace-184

ments for the same simulation, illustrating the fact that particles are occasionally inactive for185

long periods of time due to burial.186

Statistics of the particle trajectories are shown in Figures 4–5. It is apparent that the196

burial process has a significant effect on spreading: particles are sometimes stationary (buried)197

for long periods of time, resulting in a variance growth rate that tends asymptotically to t0.5
198

(Figure 4). That is, burial causes sub-diffusion, meaning variance growth that is slower than199

the linear rate predicted by classical diffusion. The distribution of particle displacements200

(Figure 5) features a cusp at x = 0, and light tails which decay faster than x−3, as is expected201

for a sub-diffusive random walk process [Klafter and Sokolov, 2011].202

2.2 RandomWalk Model208

The conceptual sediment diffusion model will now be further abstracted as a random209

walk on a continuous horizontal coordinate x, with a discrete vertical coordinate m used to210

represent the particle burial/exhumation process, and a time index n = t/∆t. The constraint211

that particles can only jump a distance of one ripple 1/2-wavelength per unit time will also be212

relaxed.213

The geometry and concept of the random walk model is sketched in Figure 6. Con-221

sider a single particle at x = 0 which is initially (n = 0) on the bed surface m = 0. At time222

n = 1, exactly one of two events is assumed to occur: A“jump”, in which the particle is trans-223

ferred from x = 0 to x = x ′, for some value of x ′; or a “burial”, in which a different particle224
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Figure 2. Example simulation using conceptual ripple cell model (section 2.1). Top: initial state, with
surface particles marked by colors and non-surface particles in black (only the topmost part of the infinitely-
deep bed is shown). Bottom: state after 450 wave cycles. In each wave 1/2 cycle, each ripple cell (horizontal
gridpoint) transfers its surface particle to the adjacent downstream cell with finite probability. The particle
burial/exhumation associated with these transfers results in a random horizontal and vertical redistribution of
the marked particles. Note that the vertical scale is greatly exaggerated, being on the order of grain diameters,
compared to the horizontal scale which represents ripple 1/2-wavelengths.

187

188

189

190

191

192

193

Figure 3. Example timeseries of horizontal particle displacements (measured in number of cells) for a
simulation of the conceptual ripple cell model, as shown in Figure 2.

194

195
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Figure 4. Variance of horizontal displacements (measured in number of cells) of initially surface particles
in the conceptual ripple cell model, as a function of time. Solid line is t0.5.

203

204

Figure 5. Estimated probability density function of horizontal displacements (measured in number of cells)
of initially surface particles in the conceptual ripple cell model, after 450 wave cycles. Inset shows same data
on log-log axis to illustrate tail behavior: dashed line shows heavy-tail limit α = 2 for comparison.

205

206

207
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Figure 6. Coordinates and schematic for random walk particle model. At the next time step, the shaded
particle at the bed surface will either jump horizontally (x → ±x′) or be buried vertically (m → m + 1),
with equal probability. Jumps can take on any distance x: several example jump trajectories are shown, la-
belled with their corresponding probabilities pi . Burial can be caused by particles jumping to x = 0 from
any distance x: the same example trajectories are shown to illustrate the symmetry in the jump/burial process.
If buried, the particle then executes a random walk in m before being exhumed, which can also be modeled
using the burial time probability distribution equation (1).

214
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219

220
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jumps from some location x = x ′ to x = 0, causing the original particle to become buried225

(m increases from 0 to 1). By symmetry, “jump” and “burial” events are equally probable at226

time n = 1 for the particle at x = 0: the bed is assumed uniform and composed of identical227

particles, so the probability of a particle jumping from x = 0 to x = x ′ is equal to that of228

a particle jumping from x = x ′ to x = 0, for any x ′. While the possibility of particles si-229

multaneously entering and leaving the site x = 0 during one time step appears to have been230

neglected, this can be resolved by considering the model in terms of an ensemble of possible231

outcomes (jump or burial) for the single particle at x = 0, rather than as a lattice of mutually232

interacting particles as in the previous conceptual model.233

Assuming the particle originally at x = 0 executes a jump at n = 1, it remains as a234

surface particle at its new position and thus repeats the same process at the next time step.235

If instead the original particle is buried at n = 1, the process repeats at x = 0 but for the236

new surface particle (i.e. the one which caused the burial), so that at the next time step the237

original particle may become further buried (m = 2), or may be exhumed (m = 0). Im-238

portantly, these two events also occur with equal probability due to the jump/burial symme-239

try noted previously. Continuing this process, it is apparent that a particle that jumps to a240

site x at time n = 0 subsequently executes a 1-dimensional random walk in the vertical di-241

rection [cf. Voepel et al., 2013; Martin et al., 2014], consisting of zero or more time steps242

with m ≥ 0, followed by one jump event. The probability of 2n time steps occurring before243

the latter jump event is therefore equal to the first-return probability for a 1-d random walk244

[Klafter and Sokolov, 2011],245

u2n =

(
2n
n

)
2−2n

2n − 1
. (1)

In other words, u2n describes the probability that a particle will rest for 2n time steps be-246

tween successive jumps, i.e. it is the (discrete) rest time distribution. Stirling’s approximation247

shows that for large n equation (1) tends to a power-law distribution n−3/2/2
√
π. Therefore,248

an appropriate continuous probability density function for modeling the time between jump249

events is250

pT (t) =
α

∆t

( t
∆t

)−1−α
, (2)

where α = 1/2 and t ≥ ∆t. Figure 7 shows that pT has the same tail behavior as the discrete254

equation (1), and also approximates the probability mass for small n. Note that the parameter255

∆t represents the minimum time any particle stays at a given x position before either jumping256

or becoming buried, consistent with the previous description where a particle at the surface257

will experience either a jump or a burial within time ∆t.258

Similar to the rest time distribution pT , a distribution pX is assumed to exist for the259

particle jump lengths, although a specific model for pX is deferred to section 2.3. The distri-260

butions pX and pT together specify a continuous-time random walk [CTRW; Montroll and261

Weiss, 1965], in which a particle’s horizontal path consists of a series of random jumps sepa-262

rated by random rest times (in this case representing burial). The relevant theory has been263

reviewed by Schumer et al. [2009] with an eye towards sediment transport, as well as by264

Metzler and Klafter [2000] who provide some useful closed-form results. In particular, for265

a light-tailed jump length distribution pX the spatial distribution of an ensemble of tracer266

particles originating from a point source tends asymptotically to267

W (x, t) =
1

√
4Kαtα

∞∑
n=0

(−1)n

n!Γ (1 − α[n − 1]/2)

(
x2

Kαtα

)n/2
, (3)

where α = 1/2 as in equation (2), and Γ is the Gamma function. The generalized diffusion268

constant Kα in equation 3 is defined as269

Kα =
σ2
x/2
∆tα

, (4)
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Figure 7. Comparison of equation (1), Stirling’s approximation (u2n ≈ n−3/2/2
√
π), and the continuous

rest time distribution equation (2). The latter has been integrated over centered bins of width 2n to calculate a
probability mass for comparison to u2n.

251

252

253

where σ2
x is the jump length variance (based on pX ). Finally, the variance of horizontal par-270

ticle excursions is given by271

σ2 = E[∆x2] =
2Kα

Γ(1 + α)
tα . (5)

Note that the variance growth rate for classical diffusion is recovered when α = 1, whereas272

the numerically simulated behavior of the conceptual model in section 2.1 (Figures 4–5) is273

recovered with α = 1/2 as predicted by equation (2). This confirms that the abstraction of274

particle burial as a first-return random walk process (equation (2)) is indeed consistent with275

the more-intuitive conceptual model.276

2.3 Particle Jump Length Distribution277

Whereas pT in the random walk model represents the particle burial and exhumation278

process, pX describes the motions of particles in terms of their jump length distribution279

when they are mobilized. Recall that in the present case the particle “jumps” correspond to280

entrainment within a ripple lee vortex followed by subsequent advection by the wave orbital281

velocity and ending in deposition. Nielsen [1988] introduced a simple model for particle282

trajectories in this situation, based on the idea that particles are entrained into the flow in-283

stantaneously at the moment of flow reversal (t = 0), i.e. when the lee vortex is released into284

the flow. The time-averaged vertical distribution of these entrained particles can be approxi-285

mated by286

c(z) = c0e−z/L0, (6)

which stems from particle setting being balanced by turbulent stirring with a constant eddy287

diffusivity. This model is supported by observations of the mean sediment concentration288

above both flat and rippled beds [e.g., van der Werf et al., 2006]. The underlying assumption289

of constant sediment eddy diffusivity is generally valid in the lowermost part of the flow over290

rippled beds, where the transport is dominated by vortex shedding [Thorne et al., 2009]. A291
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parameterization for the decay length L0 was given by Nielsen [1992] as292

L0 =



0.075U0
ws
η, U0

ws
< 18

1.4η, U0
ws

> 18
(7)

where U0 is the free stream wave orbital velocity amplitude, ws is the particle settling veloc-293

ity, and η is the ripple height.294

Nielsen [1988] also developed a convective transport model [see also Nielsen, 1992]295

for vortex ripple sediment entrainment, which links equation (6) to an exponential probabil-296

ity distribution for the heights reached by particles when they are first entrained by the lee297

vortex; following their notation, this distribution is denoted f (z) ∝ c(z). An additional con-298

straint on f (z) is that the maximum entrainment height should equal the vertical distance of299

particle settling during one wave stroke, to satisfy the assumption of bed equilibrium. For300

particles settling at the rate ws , and neglecting vertical advection by a mean flow, this implies301

f (z) = 0 for z > πws/ω, where ω = 2π/T . Therefore a truncated exponential probability302

distribution is proposed,303

f (z) = L−1
0

(
1 − e−πw

′
)−1

e−z/L0, 0 < z < πw′, (8)

and f (z) = 0 outside of 0 < z < πw′; here, a non-dimensional settling velocity has also been304

introduced,305

w′ =
ws

ωL0
. (9)

Once entrained, particles are advected with the wave orbital velocity u = U0 sinωt while306

settling vertically at speed ws , so that the total horizontal distance for a particle starting at307

z = z0 is308

x(z0) = A
(
1 − cos

ωz0
ws

)
, (10)

where A = U0/ω is the wave orbital excursion amplitude. Combining equations (8) and (10)309

yields a distribution for the jump lengths,310

pX (x) =
w′

A

(
1 − e−πw

′
)−1 exp

[
−w′ cos−1

(
1 − x

A

)]

[
1 −

(
1 − x

A

)2]1/2 , (11)

valid for 0 < x < 2A (otherwise pX (x) = 0). The mean and variance of jump length can be311

calculated from pX as312

µx =
A

eπw′ − 1

[
1 + eπw

′

1 + w′2
− 2

]
, (12)

313

σ2
x =

2A2

eπw′ − 1

[
5 + 3eπw

′

+ 2w′2

4 + 5w′2 + w′4
− 2

]
− µ2

x . (13)

Figure 8 shows the dependence of mean and variance on w′. This result is used to close314

equations (3)–(5).315

3 Experimental Data: Miller and Komar [1979]318

The Miller and Komar [1979] (hereafter MK79) experiments were among the first to319

be conducted in the Oregon State University large wave flume, which at that time had width320

3.7 m, water depth 3.7 m, and used a paddle wavemaker. The flume was lined with well-321

sorted beach sand with median grain diameter 0.178 mm, which was brought to an equi-322

librium bed state consisting of orbital-scale ripples. Fluorescently tagged tracer sand was323

then added to the equilibrated bed in a narrow transverse line at time t = 0. The transverse-324

averaged spatial distribution of tracer concentration, C(x, t), was measured in synoptic “snap-325

shots” by SCUBA divers collecting grab samples on a regular grid (with the wavemaker326
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Figure 8. Dependence of moments of particle jump length distribution (equations 12–13) on nondimen-
sional particle settling velocity w′, normalized by wave orbital excursion amplitude A.

316

317

Table 1. Experimental conditions for MK79 laboratory (Exp. 1–3) and field (Exp. F1–F2) data. Wave
parameters for field data are based on significant wave height, used for all calculations.

343

344

Exp. Period Height Orb. Vel. Ripple Length Ripple Amp
T [sec] H [cm] U0 [cm/s] λ [cm] η [cm]

1 3 37.6 17.5 7.5 1.0
2 4 37.6 24.2 13.5 1.0
3 5 35.1 33.7 10.6 1.0
F1 10 92 26.9 7.3 1.2
F2 10 99 27.0 10.6 1.8

stopped). Four such snapshots were collected spanning 90 minutes of wave action, and this327

was repeated for three trials with wave periods of 3, 4, and 5 seconds respectively.328

Two similar experimental trials were also conducted by MK79 in the field at 16–18329

m depth off the Oregon coast. In that case, tracer was placed at a single location and then330

surveyed once after a period of 60 minutes for each trial. The spreading of tracer in the field331

was 2-dimensional and nearly isotropic, in contrast to the laboratory data which measured332

1-dimensional spreading. Therefore, when comparing to field data the model (section 2) will333

be modified by adjusting the value of σx downwards by a factor of 1/
√

2. Effectively this334

extends the model to 2-dimensions by using the vector sum of two 1-dimensional horizontal335

random walks, scaled to preserve the magnitude of jump length.336

The relevant experimental parameters are listed in Table 1. Note that the ripple height,337

η, was reported by Miller and Komar [1980] for the laboratory data of MK79, but values of338

η were not recorded for the field experiments. A synthesis of laboratory and field observa-339

tions of vortex (orbital-scale) ripples by Wiberg and Harris [1994] found η ≈ 0.17λ over a340

broad range of the ripple wavelengths λ, hence this parameterization is used to estimate η for341

the MK79 field data.342
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Figure 9. Longitudinal variance of tracer concentration, vs. time, from laboratory measurements of MK79
for three values of wave period T (see legend). Data have been normalized by the variance observed at
t = 900 s in each case. Solid and dashed lines represent sub-diffusive and classical diffusion models, t1/2 and
t respectively.

354

355

356

357

To my knowledge, the MK79 experiments are the only systematic investigation of sand345

tracer dispersal by waves, controlling for complicating factors such as low-frequency currents346

or broad grainsize distribution. Other studies using sand tracers in waves have focused on347

tracer advection as a means to determine net sediment transport, and were not designed in348

such a way as to isolate the diffusion process. The MK79 experiments were conducted far349

from the wave breaking zone where undertow might cause a net transport, and the laboratory350

waves had small Ursell numbers such that the wave velocities were likely highly symmetric.351

Therefore, the MK79 data alone is used for validating the CTRW model in section 4.352

4 Results353

Longitudinal tracer variance was estimated by MK79 [tabulated in Miller, 1978] based361

on graphical fits to the raw transverse-averaged observations. These data are compared to362

the model in two ways. First, Figure 9 shows the variance vs. time for the laboratory exper-363

iments, normalized by the variance observed at time t = 900 s. This shows that the data364

collapse to a constant rate of spreading which is roughly t1/2, confirming the prediction of365

the model. Second, Figure 10 compares the dimensional (non-normalized) variance of longi-366

tudinal tracer distribution for both laboratory and field data to predictions using equation (5).367

Note that these results depend on the parameterization used for jump length variance, equa-368

tion (13), and therefore should be considered a quantitative validation thereof. The relevant369

model parameters are listed in Table 2, calculated from the experimental parameters listed370

in Table 1. These calculations assume quartz sand with median grain diameter 0.178 mm as371
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Table 2. Calculated parameters for MK79 laboratory (Exp. 1–3) and field (Exp. F1–F2) experiments.358

Exp. Time Scale Orb. Amp. Vert. Scale Non-Dim Vel.
∆t = T/2 A [cm] L0 [cm] w′ [-]

1 1.5 8.36 0.70 1.3
2 2.0 15.4 0.97 1.2
3 2.5 26.8 1.4 1.1
F1 5 43 1.3 2.2
F2 5 43 2.0 1.5

Figure 10. Calculated vs. measured values of longitudinal tracer spread (spatial variance). Calculations use
the parameter values listed in Table 2.

359

360

reported by MK79, which yielded a settling velocity of 1.87 cm/s using the parameterization372

by Brown and Lawler [2003].373

Figure 11 compares the longitudinal distribution of tracer predicted by equation (3) to374

laboratory observations, for snapshots in time in each MK79 experiment (data were digitized375

from MK79 Figs. 2–4). Results using classical diffusion theory are also shown, using the376

constant diffusion coefficients estimated by MK79. Figure 12 shows the same data normal-377

ized to unit variance using equation (5). In these figures, the shape of the main lobe of the378

tracer plume is seen to be generally well-fit by equation (3), and is also well-fit by a Gaus-379

sian distribution as predicted by the classical theory. The classical model does not correctly380

predict the spreading rate of the plume over time, however, as seen in Figures 9 and 11.381
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Figure 11. Model-data comparison for snapshots of longitudinal distribution of tracer concentration from
MK79 experiments (black dots, representing three longitudinal transects). Solid lines are the distribution
predicted by the CTRW model (equation (3)), using parameters listed in Table 2. Dashed lines are Gaussian
distributions, using the diffusion coefficient obtained by MK79 by fitting to data for t ≥ 900. Scaling factor to
convert from modeled probability density to measured grains per cm2 is based on observed total tracer mass
at t = 900 s, for each experiment. Axis labels in bottom-left apply to all sub-figures.

382

383

384

385

386

387

Both models underpredict the tracer concentration in the tails of the distribution (see391

Figure 12), in all cases. A possible source for this error lies in the jump length probability392

distribution in the CTRW model, pX ; in particular, a better overall fit could be obtained by393

instead assuming a power-law distribution for pX . To show this, the dashed line in Figure394

12 represents a Monte-Carlo integration of the CTRW model with pX ∼ x−1−β [sampled395

following Clauset et al., 2009]. Tests were performed for values of β ranging from 0.5 to 2.5,396

in increments of 0.1; the results using β = 1.8 are shown, chosen based on minimizing the397

mean-square difference in log-probability between theory and observations.398
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Figure 12. Tracer distribution data as in Figure 11, but normalized to unit variance using equation (5).
Solid line is equation (3), dashed line is a Gaussian distribution, and dashed line is computed from a CTRW
model with pX ∼ x−1−β , where β = 1.8 (see text).

388

389

390

5 Discussion399

A major factor distinguishing the present CTRW model from the classical diffusion400

model is the prediction of sub-diffusion due to particle burial. MK79 observed this quali-401

tatively, and described it in terms of an initially fast rate of tracer spreading followed by a402

slowdown over time. Figure 9 shows that tracer variance in fact grows roughly as t1/2, much403

slower than the linear growth rate predicted by the classical theory. This has significant im-404

plications for long-term particle dispersal. For the field data of MK79, for instance, extrapo-405

lating the measured plume by assuming linear variance growth would yield a spread of about406

10 meters in 10 days; the same extrapolation using the sub-diffusive model predicts a spread407

of only about 3 meters. If sub-diffusion does extend to such long time periods, it seems likely408

it would be quickly overwhelmed by dispersal due to advective transport, which would be an409

important consideration for Lagrangian models. On the other hand, additional experiments410

would be needed to confirm that sub-diffusion persists over time. For instance, Voepel et al.411

[2013] showed that a finite maximum depth for particle burial, which is not considered in the412

present model, leads to a transition to classical diffusion behavior at long time scales, and413

Nikora et al. [2002] also observed regimes of anomalous diffusion behavior that changed de-414

pending on time scale.415

Figures 9–12 show that the CTRW model reproduces most aspects of the MK79 ob-416

servations, with some notable exceptions. For field data, errors may have occurred due to the417

uncertainty of physical parameters, for example the ripple amplitude was not directly mea-418

sured. The laboratory data are predicted with apparently less error than field data, although419

the tracer spatial variance was systematically underpredicted compared to measurements420

(Figure 10), which suggests underprediction of the jump length variance by equation (13).421

An exception to this systematic trend is the T = 5 s experiment, for which the tracer spread422

was well-predicted. However, it should also be noted that the T = 5 s experiment had rela-423

tively shorter wavelength ripples, suggesting a possible transition to sub-orbital ripples which424

would cast doubt on the vortex ripple parameterizations underlying equation (13). Therefore,425
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it seems likely that jump length variance is generally underpredicted by equation (13), due426

either to simplifications made by the jump length model (section 2.3), or uncertainty in the427

parameterizations used to calculate w′. Further investigation of these errors would require428

measurements of suspended sediment concentration and particle jump length, which were429

not available for the present experiments.430

The model also under-predicted tracer concentrations in the tails of the distribution,431

Figure 12. This discrepancy, while small in magnitude, is notable because it may point to432

important physics missing in the proposed model. A working hypothesis is that the assumed433

particle jump length distribution, pX , is responsible for this aspect of model-data misfit. In434

particular a heavy-tailed jump length distribution, i.e. pX ∝ x−1−β where 0 < β < 2 (empiri-435

cally, β = 1.8), was found to predict the tails of the distribution, despite contrasting with the436

intuitive notion that jump lengths should be limited by the wave excursion amplitude. Power-437

law tails have also been observed in tracer distributions in fluvial transport, and hypotheses438

about pX have also been put forward in those cases [e.g. see the review by Schumer et al.,439

2009], although experimental evidence has not yet confirmed such a distribution. Another440

explanation in that case invokes the combination of heavy-tailed rest time distribution with a441

thin-tailed but strongly-asymmetric (downstream directed) jump length distribution [Weeks442

and Swinney, 1998; Phillips et al., 2013; Bradley, 2017]; this explanation does not require443

heavy-tailed pX , but does require asymmetry which was not present in the MK79 experi-444

ments. Possibly a different, yet unknown, mechanism exists that can explain the anomalous445

tail behavior in the oscillatory flow case, for example related to the intermittent bursts of sus-446

pension that have been observed to occur in fine sand transport in oscillatory flow [Jaffe and447

Sallenger, 1993; Cox and Kobayashi, 2000; Yoon and Cox, 2012; Brinkkemper et al., 2016].448

It is unclear how such effects would be quantified and modeled, however, and so the more449

parsimonious heavy-tailed pX hypothesis is adopted for now. Testing this hypothesis would450

require more detailed observations of particle trajectories under waves, similar to the unidi-451

rectional flow experiments by Martin et al. [2012].452

6 Conclusions453

A random walk model was developed for diffusion of sediment by waves. The main454

feature of the model is its representation of sediment burial, which tends to slow down diffu-455

sion by causing intermittent long rest times between particle motions. By treating the sed-456

iment transport as homogeneous and in equilibrium, and being associated with a regular457

surface time scale (the period of wave motion), the burial duration is found to be equiva-458

lent to the first-return time of a 1-dimensional random walk, equation (1). The heavy-tailed459

nature of this distribution causes the model to predict a sub-diffusive rate of particle spread-460

ing, qualitatively different from the predictions of classical diffusion theory as assumed in461

previous studies.462

A simple “grab and dump” style model of sediment transport is used to close the model463

by providing a probability distribution for the particle jump lengths. This model assumes an464

initial exponential vertical distribution of particles upon entrainment by a ripple lee vortex,465

followed by passive horizontal advection and vertical settling. The resulting jump length dis-466

tribution is cast in terms of a nondimensional settling velocity and the wave orbital excursion467

amplitude, equations (11)–(13). Both parameters are given in terms of physical properties of468

the sediment and waves, i.e. no free tuning parameters are included in the model.469

The physical validity of the model was tested using a re-analysis of the unique sed-470

iment tracer dataset of Miller and Komar [1979]. Their measurements confirm the model471

prediction of sub-diffusive spreading, where the longitudinal variance of tracer concentra-472

tion grows as t1/2. The measured longitudinal variance of the tracer distribution is also well-473

predicted based on the proposed jump length distribution, and the spatial shape of tracer474

plumes is for the most part well-fit by either the proposed model or a classical Gaussian475

distribution. Notably, the tails of the measured tracer plumes were not well-fit by either the476
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proposed model or the classical Gaussian shape, but could be fit by assuming a heavy-tailed477

distribution for particle jump length, pX ∼ x−1−β , where β = 1.8. This distribution is qualita-478

tively different than what is expected for sediment transport under waves, and this interesting479

result remains to be explained.480

A: Non-Uniform Entrainment Within Ripple Cells481

Spatially non-uniform entrainment may be expected to influence the probability dis-482

tribution of particle rest time, insomuch as particles that are deposited in areas of lower flow483

or bed slope (e.g., a ripple trough) may take longer to be re-mobilized. This section shows484

that such effects can be neglected when modeling the long-term statistical behavior of par-485

ticle trajectories as in section 2.1. The added influence of burial on the particle rest times is486

not considered in this section, but can be included subsequently following the same logic of487

section 2.1.488

A sediment packet as described in section 2.1 consists of particles mobilized from a489

variety of positions within a ripple cell, and likewise these particles may be deposited any-490

where along the receiving ripple cell. To model this, consider a microscopic lattice discretiz-491

ing each ripple cell into M sites, denoted by j = 1, . . . , M . During each wave stroke, define a492

probability mass distribution pm, j which is used to randomly select pM particles for transfer,493

where p is the transfer probability defined in section 2.1. Upon transfer, pm, j is also used to494

randomly assign deposition sites in the receiving sub-cell, to satisfy the assumption of equi-495

librium. Moreover, note that particles are subject to vortex stirring during transfer, so that496

the site from which a transfer is initiated does not influence the site to which that particle is497

deposited. Therefore, the site j occupied by a particle at any one time does not influence its498

later trajectory — for example, a particle entrained from a ripple trough is not preferentially499

deposited in another ripple trough. Given this, statistics may be calculated on the particle rest500

times as follows. First consider the probability that a particle at a given site j will rest for N501

time steps before being selected for transfer:502

pm, j
(
1 − pm, j

)N−1
. (A.1)

After many jumps, a particle will have visited sites j each with probability pm, j , hence the503

average of its rest time between jumps (neglecting burial as noted previously) is proportional504

to505

E [N] =

M∑
j=1

pm, j
∞∑

N=1
N pm, j

(
1 − pm, j

)N−1

=

M∑
j=1

p2
m, j

∞∑
N=1

N
(
1 − pm, j

)N−1

= M (A.2)

Similarly, the variance of rest times in the particle’s trajectory is proportional to E[N2] −506

E[N]2, where507

E
[
N2

]
=

M∑
j=1

pm, j
∞∑

N=1
N2pm, j

(
1 − pm, j

)N−1

=

M∑
j=1

2 − pm, j
1 − pm, j

(A.3)

This shows that the rest times have finite variance, so the law of large numbers applies. That508

is, for a sufficiently large number of wave strokes S the total number of transfer events con-509

verges to N/(pMS), i.e. is not dependent on the spatial distribution of entrainment probabil-510

ities pm, j . The rate of convergence (definition of “large” S) depends, however, on the partic-511

ular choice of pm, j , because large values of rest time variance will result in a longer time for512

convergence.513
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